
Aquarium Code Analysis/Overview
brandon1.jones@intel.com

April 2, 2019

Intent
In order to showcase meaningful results from our performance optimization work, we must start with a

workload that represents an efficient and modern rendering model. The purpose of this document is to

identify inefficiencies that occur within the Aquarium workload. By identifying and removing these

issues, we can develop a workload that effectively showcases our backend optimization work. This

document only refers to the Dawn backend. No analysis of the OpenGL backend is planned at this time.

Aquarium::init()
This is the primary initialization function for Aquarium. It includes parameter parsing, resource creation,

and resource upload.

context->initGeneralResources(): This function is empty and does nothing.

setupModelEnumMap(): This function places the name of each info within g_sceneInfo into an array.

loadReource(): Function name is misspelled. This function does the majority of the initialization work in

the functions it calls: loadModels() and loadPlacement(). The function also loads resources for the

“skybox”. The skybox is a 6-sided background the scene is drawn within.

• loadModels(): This function iterates through each object in g_sceneInfo and calls loadModel.

loadModel iterates through .json files to find resources to load. The shader for the model is set

with model->setProgram and then resource initialization and upload is done with model->init().

Each model creates uniform buffers, textures, input state, bind group layouts, and render

pipelines.

! Performance Issue: When TextureDawn::loadTexture() is called, all possible mipmaps

are generated on the CPU, then transferred to the GPU. This is the primary bottleneck

causing a long startup time. Solution: Find a more efficient way to generate mipmaps. I

believe the best path would be to upload the full size textures to the GPU, then use a

compute shader to generate all the mips.

o GenericModelDawn::init(): This sets up various background resources, such as the

globe, arch, ship, rocks etc. These objects are static throughout the workload and have

varying number of instances.

! Redundant Buffers: lightFactorUniforms are constant between all generic

models. It’s unnecessary to make more than one copy. Solution: Create a

uniform buffer that’s shared between all generic models.

o FishModelDawn::init(): This sets up models for each of the various fish types.

! Performance Issue: When fishPersBuffer is created, it is hardcoded to create an

entry for 100,000 fish. This is unnecessarily large. Solution: Pass the number of

fish per fish model and size the buffer accordingly.

mailto:brandon1.jones@intel.com
mailto:brandon1.jones@intel.com

! Redundant Buffers: lightFactorUniforms are constant between all fish models.

It’s unnecessary to make more than one copy. Solution: Create a uniform buffer

that’s shared between all fish models.

o InnerModelDawn::init(): This function sets up the model for the inside of the globe.

o OutsideModelDawn::init(): This function sets up the model outside the globe, including

the skybox.

o SeaweedModelDawn::init(): This function creates a model for each type of seaweed.

! Redundant Buffers: lightFactorUniforms are constant between all seaweed

models. It’s unnecessary to make more than one copy. Solution: Create a

uniform buffer that’s shared between all seaweed models.

• loadPlacement(): This function parses JSON files that contain the world locations for static

models and puts them inside a matrix owned by the model.

calculateFishCount(): This function calculates the number of fish for each different fish type.

Aquarium::render()
This is the main render function for Aquarium. A single render pass is created and added to for all

components. After all operations have been added to the render pass, it is submitted and the backbuffer

is presented.

updateGlobalUniforms(): This function calculates common position values in the scene, as well as the

FPS. The values are copied into CPU-side buffer viewUniforms.

! Performance Issue: These global viewUniforms are later copied into individual buffers for each

model and updated on the GPU, even though they do not change between models. Solution:

Upload these to a single uniform buffer than can be shared by all models once per frame.

matrix::resetPseudoRandom(): Sets a random seed for matrixes to use.

context->preFrame(): This function gets the next texture from the backbuffer, then creates and begins a

render pass for the frame that renders to the backbuffer. This render pass is used throughout the

workload and shared between all models.

drawBackground(): This function iterates and draws the various background components of the scene

using DrawIndexed.

• GenericModelDawn::draw(): The global render pass is acquired and added to here. Bind groups,

vertex & index buffers are set and DrawIndexed is used to draw all the background pieces.

! Performance Issue: DrawIndexed is sometimes called with instances = 1. DrawIndexed

requires overhead that is not optimal when drawing a single instance in comparison to

Draw. Solution: Add a way to use Draw when instances is 1.

! Performance Issue: DrawIndexed is sometimes called with instances = 0. Nothing is

drawn in this case. Solution: Add an early out when instances is 0.

drawFishes(): The 5 different fish models have a corresponding fishVertexUniforms, viewUniforms and

fishPersBuffer updated on the GPU. Each fish model is then drawn using DrawIndexed.

! Performance Issue: fishVertexUniforms contains constant data, but it is unnecessarily updated

and copied for every fish model for every frame. Solution: Initialize this data in a uniform buffer

within FishModelDawn::init() and do not update the buffer every frame.

• FishModel->draw(): The global render pass is acquired and added to here. Bind groups, vertex &

index buffers are set and each fish model is drawn using DrawIndexed with a varying count.

! Performance Issue: fishPersBuffer is updated with a hardcoded length of 100,000, which

does not correspond to the actual number of fish rendered. Solution: Pass the number

of fish for the model as a parameter and use that as the count.

drawInner(): MODELGLOBEINNER has viewBuffer updated and is then drawn.

• InnerModelDawn::draw(): The global render pass is acquired and added to here. Bind groups,

vertex & index buffers are set and DrawIndexed is used to draw a single instance.

! Performance Issue: The DrawIndexed call has hardcoded the number of instances to 1.

DrawIndexed requires overhead that is not optimal when drawing a single instance in

comparison to Draw. Solution: Revise the function to work with Draw.

drawSeaweed(): MODELSEAWEEDA and MODELSEAWEEDB have viewUniforms and timeBuffer updated
on the GPU, then 11 instances for each model are drawn using DrawIndexed.

drawOutside(): MODELENVIRONMENTBOX has viewBuffer updated on the GPU and is then drawn.

• OuterModelDawn::draw(): The global render pass is acquired and added to here. Bind groups,

vertex & index buffers are set and DrawIndexed is used to draw a single instance.

! Performance Issue: The DrawIndexed call has hardcoded the number of instances to 1.

DrawIndexed requires overhead that is not optimal when drawing a single instance in

comparison to Draw. Solution: Revise the function to work with Draw.

