
Docs » Ancillary tool kit » Decomposi�on and parallelism

Decomposition and parallelism

The decomposi�on module provides code to help you divide your processing into smaller pieces

which can fit into memory, or be run in parallel. The decomposi�on framework will deal with

spli�ng your cubes into sub cubes, running the processing, and combining the results back into a

single cube. You need to define a func�on that can work on a por�on of a cube to do your

processing, the decomposi�on framework will do the rest. For the full set of reference

documenta�on, the reader is referred to ants.decomposition .

Decomposi�on is supported for both unary and binary opera�ons. The former is where we operate

on a single field, processing its data in some way. The la�er is where we operate on two fields, one

the source and the other some target grid.

In the unary case, the source is simply turned into a mosaic via a class generator factory and dealt

with piecemeal.

In the binary case, the target grid is decomposed to make a mosaic in the same way that the source

is in the unary case. Each piece of these target mosaic pieces are then used to retrieve the

corresponding overlapping source. The binary opera�on is then performed with each source-target

pair.

Basic Usage

Usage of the decomposi�on framework can be achieved via a simple interface

(ants.decomposition.decompose()):

No decomposi�on:

res = operation(source, target)

Decomposi�on:

res = decomp.decompose(operation, source, target)

This interface gives control over how the problem is to be decomposed, which framework is to be

u�lised, whether serial, single machine or mul�-machine parallelism.

Breaks a source cube into smaller slices to perform a parallel calcula�on.

ants.decomposition.decompose(opera�on, sources, targets=None, split=None, framework=None)
[source]

Parameters: opera�on (callable) – Opera�on to be computed on each decomposed piece within

the decomposi�on framework, whether unary or binary.

sources (One or more iris.cube.Cube) – Cube(s) upon which the opera�on will be

performed.

targets (One of more iris.cube.Cube , op�onal) – Target grid cube(s), u�lised in

binary opera�ons. See the note below on providing suitable targets.

split (tuple, op�onal) – Defines how each dimension should be split. If not

specified, a suitable value is derived (can also be specified via the configura�on file).

framework (ants.decomposition.DomainDecompose object, op�onal) – Chosen

decomposi�on framework, whether serial via ants.decomposition.DomainDecompose

(default), mul�processing via ants.decomposition.MultiprocessingDomainDecompose

or mul�-machine parallelism via

ants.decomposition.IPythonParallelDomainDecompose . The framework can also be

specified via the configura�on files via sec�on ‘decomposi�on’, op�on ‘framework’.

Returns: Result from applying source and op�onal targets to the specified opera�on via
the decomposi�on framework.

Return type: One or more iris.cube.Cube

Notes

When providing mul�ple sources, one of the following rules must hold true for the specified

targets variable: * len(targets) == 0 * len(targets) == 1 * len(targets) == len(sources)

When these condi�ons are not met, the rela�onship between source and target is ambiguous

and an excep�on is thrown.

Advanced Usage

The following sec�on provides a means to gain greater control over the decomposi�on framework

as well as provide a greater depth of understanding to how the components which make up the

framework func�on.

Mosaics

There are numerous ways in which one could define how to generate a mosaic. The following

abstract class defines the interface which all mosaic generator factory classes must implement (i.e.

all custom mosaic class generator factories must inherit from this abstract base class

CallableMosaic):

Abstract mosaic generator factory.

Mosaic generator.

class ants.decomposition.CallableMosaic [source]

__call__() [source]

Called each �me we require a slice through our sliceable object. Par�cularly beneficial where

we are restricted by memory.

Returns: Mosaic generator of sliceable pieces.

x.__init__(…) ini�alizes x; see help(type(x)) for signature

The following approach generates a mosaic by specifying the resul�ng shape of the mosaic pieces.

Mosaic generator factory where mosaic piece size is determine by the specified shape.

For example:

>>> arr = np.array([[1, 2], [3, 4]])
>>> splitter = MosaicByShape(arr, (1, 2))
>>> # Return our generator
>>> slices = splitter()
>>> print list(slices)
[array([[1, 2]]), array([[3, 4]])]

Mosaic generator factory for the given sliceable with specified target shape.

Parameters: sliceable (sliceable object) – Object with shape property and numpy style

indexing. Mosaic pieces correspond to pieces of this given sliceable object.

shape (tuple) – Resul�ng shape of each mosaic piece.

tuple – The shape of this mosaic piece.

The alterna�ve is to request decomposi�on based on the number of slices or pieces for each

dimension.

Mosaic generator factory where mosaic piece size is determined by the number of pieces

requested for the mosaic.

For example:

__init__

class ants.decomposition.MosaicByShape(sliceable, shape) [source]

__call__() [source]

__init__(sliceable, shape) [source]

shape

class ants.decomposition.MosaicBySplit(sliceable, split) [source]

>>> import numpy as np
>>> arr = np.array([[1, 2], [3, 4]])
>>> splitter = MosaicBySplit(arr, (2, 1))
>>> # Return our generator
>>> slices = splitter()
>>> print list(slices)
[array([[1, 2]]), array([[3, 4]])]

Mosaic generator factory for the given sliceable with specified target shape.

Parameters: sliceable (sliceable object) – Object with shape property and numpy style

indexing. Mosaic pieces correspond to a pieces of this given sliceable object.

split (tuple) – Specified how each dimension should be split.

tuple – Number of split corresponding to each dimension.

Decomposition

Serial

When u�lising serial decomposi�on, the DomainDecompose class gives us access to a decomposi�on

framework with minimal effort.

Domain decompose an opera�on for a given cube for both unary and binary opera�ons.

Perform the provided opera�on over each decomposed piece.

Parameters: opera�on (callable) – Binary or unary opera�on on which to apply over each

decomposed piece.

mosaic (CallableMosaic object) – Callable which returns a generator of cubes.

sources (One or more iris.cube.Cube , op�onal) – Source cube(s), where an

extracted overlap is performed with each target piece in order to perform our

binary opera�on.

Create a decomposable cube wrapper to which we can apply unary and binary opera�ons.

__call__() [source]

__init__(sliceable, split) [source]

split

class ants.decomposition.DomainDecompose [source]

__call__(opera�on, mosaics, sources=None) [source]

__init__() [source]

iterator – An iterator over all the mosaic pieces.

list of Cube – The source which overlaps each decomposed target piece.

Single-machine parallelism

Also available is a multiprocessing implementa�on of the decomposi�on framework, which has

the same calling interface as DomainDecompose . Each piece within the decomposi�on is then

operated upon on a separate process.

Domain decompose an opera�on in parallel for a given cube for both unary and binary

opera�ons. U�lises multiprocessing.Pool .

Perform the provided opera�on over each decomposed piece.

Parameters: opera�on (callable) – Binary or unary opera�on on which to apply over each

decomposed piece.

mosaic (CallableMosaic object) – Callable which returns a generator of cubes.

sources (One or more iris.cube.Cube , op�onal) – Source cube(s), where an

extracted overlap is performed with each target piece in order to perform our

binary opera�on.

Create a decomposable cube wrapper to which we can apply unary and binary opera�ons.

iterator – An iterator over all the mosaic pieces.

list of Cube – The source which overlaps each decomposed target piece.

Multi-machine parallelism

We can extend capability further by u�lising ipython.parallel via the

ants.decomposition.IPythonParallelDomainDecompose interface. This allows us to u�lise both single

machine or mul�ple machine parallelism.

mosaic_generator

src_generator

class ants.decomposition.MultiprocessingDomainDecompose [source]

__call__(opera�on, mosaics, sources=None)

__init__()

mosaic_generator

src_generator

class ants.decomposition.IPythonParallelDomainDecompose [source]

Domain decompose an opera�on in parallel for a given cube for both unary and binary

opera�ons. U�lises IPython.parallel .

Perform the provided opera�on over each decomposed piece.

Parameters: opera�on (callable) – Binary or unary opera�on on which to apply over each

decomposed piece.

mosaic (CallableMosaic object) – Callable which returns a generator of cubes.

sources (One or more iris.cube.Cube , op�onal) – Source cube(s), where an

extracted overlap is performed with each target piece in order to perform our

binary opera�on.

Create a decomposable cube wrapper to which we can apply unary and binary opera�ons.

iterator – An iterator over all the mosaic pieces.

list of Cube – The source which overlaps each decomposed target piece.

Again, this has the same calling interface as DomainDecompose . See the IPython userguide on how

to get started.

Example use-case

Unary Example

Let’s begin by defining a unary func�on:

def operation_unary(a):
 return a + 1

Now define a sample cube:

import iris.tests.stock as stock
source = stock.lat_lon_cube()

This is how we might call our func�on with this Cube without decomposi�on:

res = operation_unary(source)

__call__(opera�on, mosaics, sources=None)

__init__()

mosaic_generator

src_generator

To repeat the process u�lising decomposi�on, first import the relevant module:

import ants.decomposition as decomp

Now, perform the opera�on u�lising decomposi�on. We define how we want to generate our

pieces, here spli�ng by our second dimension into two pieces (see):

mosaic = decomp.MosaicBySplit(source, (1, 2))

Now we must choose our decomposi�on framework and then call this with our opera�on, using

our mosaic factory generator (mosaic):

domain_decomposer = decomp.DomainDecompose()
res = domain_decomposer(operation_unary, mosaic)

Similarly we could have specified our mosaic by a specified shape, where the following specifies

that the shape of each piece is (1, 2):

mosaic = decomp.MosaicByShape(source, (1, 2))

Similarly, to u�lise parallel decomposi�on, is as simple as choosing the alterna�ve framework and

then calling it in the same way:

domain_decomposer = decomp.MultiprocessingDomainDecompose()
res = domain_decomposer(operation_unary, mosaic)

Binary Example

Now let’s define a binary func�on:

def operation_binary(a, b):
 return a + b

This �me we will need to define a target grid:

target = stock.lat_lon_cube()

This is how we would call this without decomposi�on:

res = operation_binary(source, target)

Now let’s u�lise decomposi�on in exactly the same way as we did in the unary case, passing this

�me both our target mosaic and the source:

import ants.decomposition as decomp

domain_decomposer = decomp.DomainDecompose()
mosaic = decomp.MosaicBySplit(target, (1, 2))
res = domain_decomposer(operation_binary, mosaic, source)

Extended Usage

In some cases your processing func�on may have arguments other than the source and/or target

cubes. The python func�on functools.partial() can be used to help you turn these processing

func�ons into a form usable by the decomposi�on module.

A simple example of this is shown here:

from functools import partial
import ants.decomposition as decomp

def operation_unary(a, base=0):
 return a + 1 + base

mosaic = decomp.MosaicByShape(source, (1, 2))
domain_decomposer = decomp.DomainDecompose()

set the values of the keyword argument for decomposition framework
process_func = partial(operation_unary, base=10)
res = domain_decomposer(process_func, mosaic)

Quick-start interface

The following shows a comparison between the interfaces as a means to providing a quick

reference to ge�ng started.

No decomposi�on:

res = operation_unary(source)

Decomposi�on (serial):

import ants.decomposition as decomp

mosaic = decomp.MosaicByShape(source, (1, 2))
domain_decomposer = decomp.DomainDecompose()
res = domain_decomposer(mosaic)

Decomposi�on (parallel - single host):

import ants.decomposition as decomp

mosaic = decomp.MosaicByShape(source, (1, 2))
domain_decomposer = decomp.MultiprocessingDomainDecompose()
res = domain_decomposer(mosaic)

