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Abstract
The interest in studying rodent whiskers has recently seen
a significant increase, particularly in the field of neurophys-
iology. As a result, there is a need for automatic tracking
of whisker movements. Currently available commercial so-
lutions either are expensive, restrict the experiment setup,
or fail in the presence of clutter or occlusion.

This thesis proposes a proof-of-concept implementation
of a probabilistic tracking system. This solution uses a tech-
nique known as the particle filter to propagate a whisker
model between frames of high speed video. In each frame,
the next state of the model is predicted by querying a pre-
trained database and filtering the results through the par-
ticle filter. The implementation is written in Python 2.6
using NumPy and SQLite3.

Testing results indicate that the approach is feasible.
Even using a rather crude database, the tracker manages
to track multiple real whiskers at once, though only for
short sequences at a time. Better training data, such as
hand-labeled real data, might vastly improve the result.

Keywords: Tracking, Multiple, Whisker, Particle Fil-
ter, Transition Database, Model Evaluation, Proof-of-Concept



Referat
Statistisk Följning av Multipla Morrhår hos

Gnagare i Video.

Intresset för att studera morrhår hos gnagare har på
senare tid ökat, speciellt inom neurofysiologin. Som ett re-
sultat av detta finns det ett behov av automatisk följning
av morrhår. Nuvarande kommersiella lösningar är anting-
en dyra, sätter begräsningar på experimentuppställningen
eller misslyckas i stökiga miljöer eller när överlappning fö-
rekommer.

Denna avhandling bidrar med en enkel implementation
av ett probabilistiskt följningssystem. Lösningen använder
sig av en teknik som kallas partikelfilter för att propagera en
morrhårmodell mellan bildrutor i höghastighetsvideo. För
varje bildruta förutspås nästa tillstånd genom att fråga en
förtränad databas och filtera svaret genom partikelfiltret.
Implementationen är skriven i Python 2.6 och använder sig
av programbiblioteken NumpPy och SQLite3.

Testresultaten indikerar att metoden är rimlig. Med en-
dast en grov, genererad databas lyckades algoritmen följa
multipla morrhår, dock endast under korta sekvenser i ta-
get. Bättre träningsdata, såsom handmarkerad riktig data,
skulle kunna förbättra resultatet väsentligt.

Nyckelord: Följning, Multipla, Morrhår, Partikelfil-
ter, Övergångsdatabas, Modellevaluering, Proof-of-Concept
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Chapter 1

Introduction

With the ever increasing power and mobility of computers, computer vision has
recently seen a large increase in interest. Encompassing problems such as classifica-
tion, recognition, perception and tracking, application of the discipline could make
many tasks easier and more efficient.

In particular, biology and neuroscience researchers are interested in tracking
the movements and posture [3] of animals or parts of animals. One such field aims
to study the movements of rodent whiskers. However, most whisker tracking soft-
ware available today suffers a few fundamental flaws. They are either so expensive
that not even well funded laboratories feel they can afford them or have problems
tracking multiple whiskers at once, often requiring removal of almost all whiskers.
Some higher precision systems impose other restrictions on the experiment, such
as restraining the animal or attaching motion capture markers to the whiskers.
The latter does not seem to be a significant problem [4], but keeping the animal
restrained eliminates the possibility of studying whisker use in exploration.

1.1 Difficulties

In general, the main difficulty in tracking and localization is to separate the tracked
object from clutter and occlusion. In 2001, Hedvig Sidenbladh investigated proba-
bilistic methods for tracking three-dimensional human motion in monocular video.
[6] Many of the problems inherent in computer vision were regarded, and the thesis
shows that powerful conclusions can be drawn by combining multiple visual cues.1

The most apparent problems in whisker tracking is occlusion and motion blur.
Other, more subtle, problems include 3D to 2D projection ambiguities and that the
whisker root is constantly occluded by facial hairs. The latter gives us the problem
of not knowing where the whiskers are rooted, making the whiskers more difficult
to model. The relatively low spatial and temporal resolution in high-speed video
may also result in sub-pixel whiskers and motion blur.[3]

1The solution in this thesis employs only a single visual cue.
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CHAPTER 1. INTRODUCTION

1.2 Contributions of this thesis
This thesis provides three main contributions:

Functional model Use of functions as the model, and the Lp norm to better
represent "distance" between two hypotheses, for the prediction part of the
particle filter.

Proof of concept An example implementation showing that probabilistic whisker
tracking is indeed feasible.

Parameter investigation Parameter analysis on the algorithm and how the track-
ing parameters affect the quality of tracking.

This mainly addresses the problem of occlusion. Using a model makes the track-
ing more robust against crossing whiskers, as opposed to pure frame-by-frame image
analysis where this is often a great problem. Similarly, the problem of overlapping
whiskers becomes less apparent, but is still an issue.

2



Chapter 2

Related Work

The following is a summary of some of the work that has been done in the field
of automatic whisker tracking, as well as a Ph.D thesis on probabilistic tracking of
human motion. The work in this thesis will be based on the latter since the whisker
tracking problem is similiar, though in many regards simpler.

In 2011, Roy et al. [4] describe a whisker tracking system that uses motion
capture markers and two tracking cameras to track whisker movements in 3D. A
spatial resolution of < 0.5 mm in all dimensions and a temporal resolution of 5 ms
is reported. The impact of the markers on whisker movements were investigated by
comparison with a light beam detection system, and no significant difference was
detected. The system requires head fixation since the markers need to be visible to
both cameras at all times.

In 2008, Voigts et al. [9] developed a system that uses frame-by-frame image
analysis on off-line monocular images, and does not impose other restrictions on the
setup. The solution is based on creating vector fields using anisotropy in the image
and tracks movements along the full length of the whiskers. It is fully automatic,
and successfully tracks up to 8 whiskers on each side of the snout simultaneously,
though it suffers some difficulties when applied on full whisker arrays.

In 2001, Hedvig Sidenbladh [6] investigated the general problem of tracking 3D
human motion in monocular video without making assumptions about the appear-
ance of the human or environment. The thesis sets up a probabilistic framework and
combines multiple visual cues, and achieves good accuracy in tests. It has been used
throughout the work on this thesis as inspiration and a reference on probabilistic
tracking.
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Chapter 3

Definitions

3.1 Images and Image Processing
Definition 1. A grayscale image can be defined as a function

I : N2 → R+

I : position → intensity. (3.1)

It can also be identified with N2 ×R+ as the tuple 〈position, intensity〉. The image
space is denoted as I in this thesis.

In a computer an image is represented as an integer matrix, often 8 bit integers.1

Definition 2. A video is a function mapping an integer to an image:

video : N→ I. (3.2)

Definition 3. The rendering function R takes a hypothesis x and renders an image
with a resemblance of how a real whisker would have looked like having the same
underlying model and parameters as x.

R : X → I
x 7→ R(x)

(3.3)

Definition 4. The addition operation on images is performed by element-wise
addition.

+ : I × I → I
(Ia, Ib) 7→ Ia + Ib

(3.4)

The structure 〈I,+, ∗〉 inherits the properties from 〈R+,+, ∗〉 by just being a
vectorized version.

1Integers in the range [0, 255].
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CHAPTER 3. DEFINITIONS

Definition 5. The multiplication operation on images is element-wise multiplica-
tion.

∗ : I × I → I
(Ia, Ib) 7→ Ia ∗ Ib

(3.5)

Definition 6. We will use subtraction loosely2 as element-wise subtraction and
then subtract the smallest element on all elements to make the operation closed.

− : I × I → I
(Ia, Ib) 7→ Ia − Ib

(3.6)

Definition 7. The image transformation φ takes an image I and returns a trans-
formed image.

φ : I → I
I 7→ φ(I)

(3.7)

3.2 States, hypotheses and estimates
A system is said to have a state. The state is some quantity that defines the qualities
of the system. Below follows definitions of key terms and quantities used throughout
the thesis.

State The state of a system is denoted Z. When time is relevant, the state at time
t is denoted Zt.

State space The set Z of all possible states, Z ∈ Z.

Hypothesis A guess x at the state Z of a system.

Hypothesis space The set X of all possible hypotheses, x ∈ X . In general, X 6= Z
since most models are simplifications of the system.

Estimate The hypothesis x∗ we believe approximates Z best.

Observation In general, it is not possible to directly record the state Z of a sys-
tem.3 We instead get an observation I of the state.

Degrees of Freedom The number of adjustable parameters in a model, often ab-
breviated DOF.

Note that all of the above depend on the model used.

2Meaning, no analysis on the structure is done.
3If it were, there would be no need for tracking.
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Chapter 4

Theory

The core of the tracking engine is a technique known as the particle filter. The
particle filter is a kind of Bayesian filtering where one uses discrete hypotheses, also
known as particles, to approximate continuous probability density functions (PDFs)
[8]. It builds upon the theory of Markov processes and the hidden Markov model.

4.1 Markov processes

A Markov process is a special case of a stochastic process. For a Markov process,
the next state depends only on the present state and not on past states. For this
reason, a Markov process is often said to be “forgetful”.

In mathematical terms, a Markov process satisfies the following:

p (Zt|Zt−1 ∧ Zt−2 ∧ · · · ∧ Z0) = p (Zt|Zt−1) , (4.1)

p (Zt|Zt−1 ∧ Zt−2 ∧ · · · ∧ Z0) is the probability that the system will have state Zt at
time t, given that the previous states where Zt−1, Zt−2, . . . , Z0. Figure 4.1 shows
how the state Z changes between time steps, depending on the previous state.

4.2 The Hidden Markov Model

The working principle of the particle filter is based on the hidden Markov model
(HMM). A HMM describes a Markov process where we cannot measure the state
directly - it is “hidden”[5]. Instead we obtain an observation I1 of the state. This
perception is generally non-deterministic, so we need to denote it as p(It|Zt) which
is the probability that we will observe It if the state is Zt. Figure 4.2 shows how
the observation It fits into the underlying Markov process.

1In this thesis, the observation is always a grayscale image, therefore the observation is denoted
I.

7



CHAPTER 4. THEORY

Z0p(Z0)

Z1p(Z1|Z0)

Z2p(Z2|Z1)

Ztp(Zt|Zt−1)

Physics

Physics

Figure 4.1. Schematic image of a Markov process.
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Figure 4.2. Schematic image of a hidden Markov model.
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4.3. THE CURSE OF DIMENSIONALITY
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Figure 4.3. Plots of 128 scattered samples in 1, 2 and 3 dimensions, respectively.

4.3 The Curse of Dimensionality

A phenomenon that becomes apparent in high-dimensional spaces is the so-called
“Curse of dimensionality” [5]. The problem is that the search volume grows expo-
nentially with the number of dimensions. It originates from the fact that we need
O(Cn) samples to obtain a sample density of C in a n-dimensional space.

The first consequence of this is that in order to approximate a high-dimensional
function one needs orders of magnitude more samples.

The other drawback of high dimensional spaces is the “borders” of the sample set
compared to lower dimensional spaces. The result is that the chance for a point one
wants to approximate to fall outside the sample set is orders of magnitude greater,
and the point then needs to be extrapolated instead of the better alternative of
interpolation.

The following examples illustrate some of the difficulties with high dimensional
spaces, as well as a case when an exhaustive is feasible.

Example 1. Figure 4.3 shows 128 randomly scattered points in 1, 2 and 3 dimen-
sions. Notice how the density decreases with increasing dimension.

Example 2. For a 16 DOF model one needs 1016 = 10 quadrillion data points to
acquire a density of 10 samples per unit volume. Millions of gigabytes would be
needed just to store the samples.

Example 3. In 2 dimensions it is sometimes feasible to use an exhaustive search.
An example of this is the Hough transform [1], where the search is done through
the ρθ space of line responses on images.

9



CHAPTER 4. THEORY

4.3.1 Overcoming the Curse

One way to overcome the curse in the context of tracking is to perform a directed
search, which could be done in one of the following ways:

1. Let the search be in an n dimensional space with a grid of g grid lines in each
direction. Use the information about the most recent2 location and assume
that the tracked object cannot travel more than R < g grid steps in one time
step. This reduces the volume of the (discrete) search space from O(gn) to
O(Rn).

2. With prior knowledge of how the tracked objects move3 we can direct our
search to specific regions in the state space, depending on how probable it is
for the tracked object to be located there. This reduces the size of the search
space depending on how sure we are of the previous state.

The next section will describe a technique for reducing the size of the search
space using the second of these methods.

4.4 The Particle Filter
The particle filter is a technique for reducing the size of the search space. It uses
a finite set Xt of hypotheses to approximate the PDF p(Zt|Zt−1 ) of a HMM. The
hypotheses Xt are also referred to as particles, thereby the term “particle filter”.

Figure 4.4 shows the principle of the particle filter working alongside a hidden
Markov model. The following is the core function of the particle filter:

The particle filter attempts to approximate the PDF p(Zt|Zt−1 ) as a set
Xt of discrete hypotheses.

More particles mean greater accuracy, since the PDF can then be approximated
more closely. However, using many particles increases computational cost. The
particle filter employs a few tricks to filter the hypotheses, tending to keep probable
ones and throwing improbable ones away, in order to intelligently reduce the number
of particles needed for a good approximation. The filter works in four steps:

Prediction The hypotheses Xt−1 are updated in the prediction step to an ap-
proximation X̄t of p(Zt|Zt−1 ). This is done by drawing new samples from
p(xt|xt−1 ), for each xt−1 in Xt−1.

Perception By measuring the state of the system, we gain an observation It ∼
p(It|Zt ) of the state Zt.

2In the Bayesian case, the most recent estimate
3Such as the state transition probabilities p(Zt|Zt−1 ) in a HMM

10



4.4. THE PARTICLE FILTER
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Figure 4.4. Schematic image of the particle filter alongside a HMM.

Filtering The observation It of the system is then used for filtering bad hypotheses
out of X̄t. We draw samples Xt from X̄t with probabilities given by p(It

∣∣∣X̄t ).
The resultingXt will be a subset of X̄t where more probable hypotheses appear
multiple times. For this reason, this is also known as the resampling step. The
set Xt is the belief, our approximation of p(Zt|Zt−1 ).

The property X̄t ⊂ Xt can cause problems if the prediction step is deter-
ministic. This is because hypotheses “condense” into the most probable ones
during filtering, meaning that all hypotheses will eventually be the same if
the prediction step is deterministic.

Selection Finally, we produce a single hypothesis xt from Xt as our estimate of
the state Zt. Assuming Xt is a good approximation of p(Zt|Zt−1 ), and that
p(Zt|Zt−1 ) is unimodal, the mean value of Xt is a good estimate since it
approximates the expectation of p(Zt|Zt−1 ). If p(Zt|Zt−1 ) is multimodal,
however, the mean could be a bad estimate since the expectation may be very
improbable.

The reason why this works is the following theorem, which is Theorem 3.1 in [6]
with some modifications to notation:

Theorem 1. Given the PDFs p(xt|xt−1 ), p(It|xt ) and p(xt−1|It−1 ∧ · · · ∧ I0 ), the
PDF p(xt|It ∧ · · · ∧ I0 ) can be expressed as

11



CHAPTER 4. THEORY

p(xt|It ∧ · · · ∧ I0 ) = κp(It|xt )
∫
p(xt|xt−1 )p(xt−1|It−1 ∧ · · · ∧ I0 )dxt−1, (4.2)

where κ is a normalization constant[6].

The proof is beyond the scope of this thesis.
Remembering that we approximate p(xt−1|It−1 ∧ · · · ∧ I0 ) with the set Xt−1,

one can see the connection to the following algorithm.

4.4.1 The Particle Filter algorithm

Particle-Filter(Xt−1, It)
1 X̄t ← ∅
2 for each xt−1 ∈ Xt−1
3 do
4 xt ← Predict(xt−1)
5 w ← Importance(xt, It)
6 Append 〈xt, w〉 to X̄t

7
8 Xt ← ∅
9 while |Xt| <

∣∣∣X̄t

∣∣∣
10 do
11 Take 〈xt, w〉 from X̄t with probability ∝ w
12 Append xt to Xt

13 return Xt

Table 4.1. The particle filter algorithm.

Table 4.1 shows the particle filter algorithm. Note that the functions Predict
and Importance are unspecified - they are problem specific. They correspond to
the PDF p(xt|xt−1 ) and p(It|xt ), respectively.

In this thesis, the real xt−1 is not known. Rather xt−1 is estimated with a set
Xt−1 of N particles.

4.5 Visual Cues

The biggest problem with computer vision is that computers do not have
vision, only a data input device in the form of a camera.

12



4.6. RESPONSE

A visual cue is an image transformation φ that extracts some property of the image,
such as intensity 4, edges, ridges[6] or different refinements as in section 5.4.

4.6 Response
Definition 8. A response is how much a hypothesis matches an image. The simi-
larity measure for hypothesis response in this thesis is defined by

〈xt, It〉φ =
∑

φ(R(xt)) ∗ φ(It) (4.3)

where 〈xt, It〉φ will denote the response. 5

Assuming R renders xt perfectly and that It does not have clutter, the maximum
response will uniquely6, be when the two underlying models coincide, by theorem
2. How nice the response peak is is highly dependent on all the terms in (4.3).

Theorem 2. Let f be a positive Riemann function with finite support, defined on
a set Ω. Then

argmax
ē

∫
Ω

f(x̄)f(x̄− ē)

 = 0 (4.4)

Proof. We first define the window function

W b
a(x) =


0, x < a

1, a ≤ x ≤ b
0, x > b

Multiplication: (W b
aW

d
c )(x) = W

min(b,d)
max(a,c)(x)

Translation: W b
a(x− e) = W b+e

a+e(x)

Integration:
∫
R

W b
a(x)dx = Θ(b− a).

argmax
e

(∫
W b
a(x)W b

a(x− e)
)

=

argmax
e

(∫
W b
a(x)W b+e

a+e(x)
)

=

argmax
e

(∫
W

min(b,b+e)
max(a,a+e)(x)

)
=

argmax
e

(Θ(min(b, b+ e)−max(a, a+ e))) = 0.

4In our case this is possible since we have a homogeneous object in the form of a backlit rodent
5The notation 〈·, ·〉φ for response was chosen to show the similarity with inner product.
6Disregarding the phenomenon of having ∃xa 6= xb : R(xa) = R(xb)
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CHAPTER 4. THEORY

This trivially holds for superposition of windows, since all windows will scale
and translate the same way. With a finite support, e = 0 is the only solution.
Additionally, this also holds in higher finite dimensions since we can just repeat the
process one dimension at a time.

All Riemann functions with compact support can be written as a superposition
of finite number of finite windows like this

f(x) =
∑

ciW
bi
ai (x),

and therefore (4.4) holds for any Riemann function f .

4.7 Model

A whisker can be modeled as a function:

Definition 9. Let

whisker : R+ → R2

ω 7→ whisker(ω)
(4.5)

where ω is a coordinate along the length of the whisker and whisker(ω) is a point
in the x-y plane.

The tracking problem is then to find a function whisker∗ that approximates
whisker. The function class used in a model must satisfy the following conditions:

1. It must be able to approximate the whisker sufficiently well.

Example 4. A straight line will not suffice since the whisker is generally
curved and straight lines can not fill that partition of the space.

2. The functions must be C1 and be possible to represent with a finite number
of parameters.

With this in mind, two classes of functions immediately appear as candidates:

• Polynomials ∑n
i=0 aiω

i

• Fourier series ∑n
k=0 ak sin(kπωL ) + bk cos(kπωL )

A brief analysis of both will follow, after a discussion of simplifications and
difference measures..

14



4.7. MODEL

4.7.1 Simplifications
One simplification one might make is to assume that the root of the whisker is fixed
in some point on the snout. This means that we can let the whisker function be
defined in a head-fixed coordinate system for each whisker, with the root of the
whisker at the origin. This gives us the boundary condition

whisker∗(0) = 0̄. (4.6)

Manual inspection of whisker videos suggests that this is not the case for real
whiskers. However, there seems to be some point within the snouts that stays
approximately still and can be regarded as the root of the whisker. A better model
could take this into account, but that will not be covered in this thesis.

The thickness of a whisker is not constant, but decreases as the distance from
the head increases. A simple model for this is to define the whisker thickness as

d(ω) =
{
D − Dω

L , ω < L

0, ω ≥ L
(4.7)

where D > 0 is the thickness at the root and L > 0 is the total length of the
whisker.

4.7.2 Difference measure
The standard way to quantify distance between functions defined on an interval
[a, b] is to use the norm in the L2([a, b] , 1) Hilbert space. In this thesis, the norms
for p = 2, 4, 8 will be used, and the impact of the choice of p will be investigated.
This means that condition 1 above says the model must be such that the Lp distance
||whisker− whisker*||Lp can be made sufficiently small.

4.7.3 Polynomial a3ω
3 + a2ω

2 + a1ω

The first and simplest candidate is the polynomials. Manual tests in MATLAB
indicate that three terms are enough to approximate a whisker well enough that
the difference is not visible to the naked eye. A whisker function can therefore be
modeled as a third degree polynomial a3ω

3 + a2ω
2 + a1ω, also known as a spline.

These define parameterized curves in the xy plane as

(ω, a3ω
3 + a2ω

2 + a1ω) (4.8)

This choice can be justified by comparing with the theory of beams under small
deformations in solid mechanics. After all, a whisker is not too different from a
beam. The two main assumptions for this to hold is that deformations are small and
that the effects of motion on whisker deformation are negligible. [2] This may not
quite be the case, but a spline is still capable of approximating the momentaneous
shape of a whisker well enough.
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CHAPTER 4. THEORY

Figure 4.5. Comparison of whisker models. Left: Splines, Right: Sine series

4.7.4 Sine series ∑ ak sin
(
kπω
L

)
Another promising candidate is the Fourier series. Considering (4.6), the Fourier
series is reduced to a sine series ∑ ak sin

(
kπω
L

)
. However, such a series will always

be zero at ω = L, and is therefore not a reasonable model for whiskers. To address
this, one could instead use quarter-periods: ∑ ak sin

(
kπω
2L

)
, but at the cost of losing

the orthogonality property of the sine basis. Manual tests in MATLAB indicate that
such a series to third order performs approximately the same as a spline.

These define parameterized curves in the xy plane as

(ω,
∑

an sin(2πn
L

ω)) (4.9)

The choice of a sine series can be justified by comparing with the theory of stiff
strings in analytical mechanics. The movement equation for a stiff string is a partial
differential equation containing the second and fourth spatial derivatives.7 A classic
separation of variables solution to the equation would be a sine series for the spatial
part.

4.7.5 Theoretical evaluation
It is hard to theoretically justify the choice of whisker∗ model since we do not have
an analytic model for the whisker.

For this thesis, the spline model was used in the tracking engine. The main
reason for this is that it is slightly simpler than the sine model. It also is rather
easy to get an intuitive grasp of how the parameters affect the curve shape - the
ω3 term mostly affects the tip of the whisker while the ω term affects the overall
orientation.

7Source: Solving exercise 7.10 of [7] using variational calculus.
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Chapter 5

Algorithms and Implementations

The testing implementation was developed with high modularity in mind, since it is
meant to be a proof-of-concept implementation and not a production grade system.
High modularity also makes development easier and the system more robust against
changes, two very important qualities during this project.

The implementation is written in Python using NumPy and SQLite3, and con-
sists of three main parts:

Particle Filter A direct implementation of the procedure in table 4.1.

Database A database with functions for extracting transition hypotheses. Pro-
vides the prediction PDF p(xt|xt−1 ) to the particle filter.

Tracker Manages the model and performs matching between hypotheses and im-
ages. Provides the filtering PDF p(In|xn ) to the particle filter.

The implementation was developed in two steps. It was first tested on tracking
white squares against a black background. The purpose of this was to begin with
very simple test cases until the general parts of the algorithm were in place. After
that, whisker tracking modules were developed and tested on artificially generated
whisker videos.

5.1 The particle filter

The particle filter implementation is a direct implementation of the procedure in
table 4.1. It is implemented as a function that takes the parameters Xt−1, It,
importance_function and sampling_function. The parameters are the hypothe-
ses from the last time step, the current video frame and the functions to use as
Predict and Importance in 4.1, respectively. This means that the particle filter
function is general and independent of the model used. The implementations of
Predict and Importance are provided by the database and tracker, respectively.

17



CHAPTER 5. ALGORITHMS AND IMPLEMENTATIONS

5.1.1 Initilization x0

The test implementation needs to be manually initialized. When tracking generated
whiskers, the states were always known and the initialization could therefore be
programmatically inserted. When testing on real whiskers, the start states were
calculated by manually selecting five or six pixels along each whisker and using a
MATLAB script to find the least squares solution for the coefficients (a3, a2, a1).
The problem of automatic initialization is a difficult one [6], and is not covered in
this thesis.

5.2 The state transition database

5.2.1 Data format

A state transition is a pair (xfrom, xto) that denotes we have observed a system go
from state xfrom to state xto in one time step. Technically, the state transition
database is implemented as an SQLite3 database. One transition is represented in
the database as a row with the state parameters of the model before and after the
transition. The set of transitions in the database will be denoted T .

5.2.2 Prediction p(xt|xt−1 )

DB-Predict(xt−1)
1 xt ← 0
2 W ← 0
3 for each (xfrom, xto) ∈ T
4 do
5 w ← (||xfrom − xt||Lp)

−a

6 xt ← xt + w · xto
7 W ←W + w
8 Take v ∼ N (0,Σ)
9 return xt/W + v

Table 5.1. Pseudocode for the prediction function. Notice the parameters a and p.

The Predict function in table 4.1 is implemented as a weighted mean of the
state transitions in the database. The function is stated in table 5.1. Notice the
parameters a and p. p is a positive integer that determines which Lp space to
compute the norm in. a is a positive number, and determines how fast the weight
w declines with the distance ||xfrom − xt−1||Lp . A high a means closer transitions
get a much higher weight than ones far away, see figure 5.1.

18



5.3. TRACKER

At this point, however, the prediction is still deterministic - the result for any
given input xt−1 is completely determined by the parameters a and p and the content
of the database. A deterministic prediction function is not desirable, since the filter-
ing step only removes improbable hypotheses and replaces them with duplicates of
probable ones. This means that having a deterministic prediction effectively reduces
the number of hypotheses with each filtering step. For this reason, the result is offset
by a small normal distributed term1 v to make the prediction nondeterministic.

1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5
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0.7

0.8

0.9

1

x

x−
a

 

 
a=1
a=2
a=4
a=8

Figure 5.1. Transitions closer to xt−1 recieve a much greater weight if a is large.

5.3 Tracker

The tracker uses the whisker model described in chapter 4 and internally repre-
sents whiskers with the tuple (a3, a2, a1) of polynomial coefficients. When multiple
whiskers are to be tracked, they are tracked independently in sequence as individual
tracking assignments. This means that the whisker models cannot account for each
other’s positions.

1The offset v is a polynomial b3ω
3 +b2ω

2 +b1ω where coefficient bi ∼ N (0, σi) and σi is different
for the different i.
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CHAPTER 5. ALGORITHMS AND IMPLEMENTATIONS

5.3.1 Filtering p(It|xt )

The Importance function in table 4.1 is implemented simply as the response of
xt on It, raised to a power g. A high g means that the peak in the response is
further amplified. Figure 5.2 shows an example of a rendered hypothesis, as used
for computing the response. See section 4.6 for details on the response.

Importance(xt, It)
1 return 〈xt, It〉gφ

Table 5.2. Pseudocode for the importance function. Notice the parameter g.

The Importance function in table 4.1 as being the response for xt on It.

Figure 5.2. Example rendered image R(xt) for some hypothesis xt.

To indicate how the response works for generated and real data we look at
the following figures. Figure 5.3 shows the response curve for a generated image
with parameters (0, 0, 0) when varying the different parameters in the polynomial
model. Figure 5.4 shows the response curve for real images which has approximatly
the parameters (0, 0, 0), we can clearly see that the curve is far from perfect. The
ground truth peak is still around (0, 0, 0) but much less appearent. The faulty peaks
are generated by clutter from the other whiskers and we can see a tendency of high
responses for positive values. This is explained by the fact that there was more
clutter in the positive region in the tested image.

5.4 Preprocessing of real images

In the images of real rodents used for testing, the rodent was illuminated from below,
meaning it and its whiskers were dark against a bright background, as shown in
figure 5.5. The filtering function described in the previous section expects whisker
pixels to be bright, so the images had to be inverted. However, the body had the
same pixel values as the whiskers, meaning no conclusions can be drawn simply by
inspecting the value of a pixel. Therefore the following steps also had to be taken.
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Figure 5.3. Response curves over the parameters (a3, a2, a1) of the polynomial
model on a generated whiskers image with the parameters (0, 0, 0). With φ = 1.
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Figure 5.4. Response curves over the parameters (a3, a2, a1) of the polynomial
model on a real whisker image, p(whisker) from 5.4.3, with approximatly the param-
eters (0, 0, 0). With φ = 1.
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CHAPTER 5. ALGORITHMS AND IMPLEMENTATIONS

Figure 5.5. Left: Original image, Right: Mean static background of the first 100
frames.

Figure 5.6. Image after background subtraction and inversion.

5.4.1 Background subtraction

Removing effects like difference in background illumination and static objects is
preferred in order to minimize faulty responses.

Assuming we always have a static camera setup for each sequence and that we
have an adequate sequence without the rodent, the background BG was captured
a priori by taking the mean IBG of the first 100 frames as seen to the right in figure
5.5.2 Then we can simply subtract the background IBG from the orignal image I
and getting the result shown in figure 5.6: 3

IFG = I − IBG. (5.1)

2A sufficient number
3Worth noting is that more sophisticated background subtraction methods exist, but this so-

lution works relatively well considering the simplicity.
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5.4. PREPROCESSING OF REAL IMAGES

Figure 5.7. The image to the left shows the blured image with σ = 9px, to the right
we have the snout mask.

5.4.2 Extract the body p(body)

Extracting the body has two purposes. First, to find the head-fixed coordinate
system. Second, to subtract the body from the image in order to highlight the
whiskers.

Definition 10. The image
p(body) ∈ I (5.2)

is an estimation if the probablity of the pixel being a body pixel.4

We will assume that the only non-static objects in the image are the whiskers
and body. One simple feature that easily classifies p(whisker) from p(body) is size.
Blurring the image removes fine structures and retains larger which can be seen to
the left in figure 5.7. This was performed by convoluting the image with a Gaussian
with σ = 9px:5

p(body) = Iblur = IFG ?N (0, σ). (5.3)

Note that N (µ, σ) traditionally denotes a set of normal distributed stochastic vari-
ables. In this thesis, we will also use this to denote the PDF of the normal distri-
bution, and let the context provide the distinction.

p(body) was then used to create a mask Ibody:

Ibody = p(body) > 0.6 ∈ I, (5.4)

meaning Ibody is white where p(body) is greater than 0.6 and black everywhere else,
the result is displayed to the right in figure 5.7.6

5.4.3 Extract the whiskers p(whisker)
The filtering described in section 5.3.1 needs an indicator for the locations of
whiskers.

4The estimate only needs to be an indication of whether it is a body
5The value of σ was obtained by manual testing and inspection.
6The 0.6 threshold was found, through manual testing, to make the body stable between frames.
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CHAPTER 5. ALGORITHMS AND IMPLEMENTATIONS

Figure 5.8. The finished preprocessed image.

Definition 11. The image
p(whisker) ∈ I (5.5)

is an estimation of the probablity of a pixel being a whisker pixel.7

This is naively performed by masking with the inverse Ībody of Ibody:

p(whisker) = IFG ∗ Ībody (5.6)

which finally gives the results shown in figure 5.8.

5.4.4 Find the snout coordinate system

The whisker model does not take head movements into account, and therefore ex-
pects whisker roots to be stationary throughout the sequence. Therefore, the video
is translated such that the head stays approximately fixed throughout the image
sequence.

For this, we use a transformation φ that extracts the shape of the body. φ first
blurs the image8, to smooth out the response, then applies a Prewitt filter:

φblur(I) = I ?N (0, 5px)
φ(I) =

√
(φblur(I) ? Prewittx)2 + (φblur(I) ? Prewitty)2.

that extracts the shape of the body.
7The estimate only needs to be an indication of whether it is a whisker.
8The value σ = 5 pixels was obtained through manual testing.
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5.4. PREPROCESSING OF REAL IMAGES

Figure 5.9. The snout coordinate system tracking in progress, here the best match
is shown. Reference image is green and the tracked image is red, meaning the overlap
becomes yellow.

The first frame where the snout is fully visible is hand picked and used to create
an image Iref = φ(Ibody), where Ibody is created through the steps detailed in section
5.4.2.

A local search within 5px from the last location is then performed9 for each
body image Ibody in the sequence, which can be seen in figure 5.9. The translation
(∆x,∆y) from Iref is extracted:10

(∆x,∆y) = argmax
(x,y) close

(
∑

translate(Iref,−(x, y)) ∗ φ(Ibody)) ∈ Z2, (5.7)

and the frame is then translated accordingly.

9This could easily be extended to include rotation as well.
10In the same way as 〈·, ·〉φ but without the hypothesis.
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Chapter 6

Results

The results consist of two parts:

• A benchmark of the impact of different parameters on the tracking perfor-
mance, performed on artificial videos and evaluated programmatically

• A test run on real data with the best performing parameters from the bench-
mark, evaluated manually

6.1 Parameter Benchmark
A benchmark was performed in order to identify how tracking performance is af-
fected by the different parameters. The benchmark was performed on generated
videos of artificial whiskers, which enabled programmatic evaluation of the results
since the correct shapes of the whiskers, the ground truth, were known.

The benchmarks were run on about 16 computers1 in the computer halls Grå
and Karmosin at KTH for two nights. The computers were all equipped with 2.83
GHz quad-core Intel® Core™ 2 Quad processors and 3.8 GiB of RAM, and were
running Ubuntu Linux 10.04.

6.1.1 Test data
The test data consisted of a single generated video of artificial whiskers. The video
contained 6 whiskers and was 64 frames long. Each whisker had length 200 and
a random base shape a3ω

3 + a2ω
2 + a1ω. Each ai was in the range [0, σi), where

σ3 = 1.6 · 10−5, σ2 = 4 · 10−3, σ1 = 1. Each whisker was then assigned a random
phase d ∈ [0, 2π), and the shape at time step t was

(
a3ω

3 + a2ω
2 + a1ω

)
sin(2πt

30 +d).
The shape and the frequency 1

30 were selected through manual inspection of a
video of real whiskers in order to make the generated whiskers roughly realistic. The
resulting whiskers were roughly reminiscent of real whiskers, and 6 sample frames
can be seen in figure 6.1.

1This varied in time as other students also wanted access to the computers.
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Frame 0 Frame 5 Frame 10

Frame 15 Frame 20 Frame 25
Figure 6.1. Sample frames from the testing video.

The database was generated with the same settings as the video, and contained
214 = 16384 transitions. Each transition consisted of a “from” part xfrom and a “to”
part xto. xfrom was created by generating a base state and phase in the same way
as for the video, and setting t = 0. xto was created by taking xfrom and increasing
the phase by 2π

30 .

6.1.2 Evaluated parameters

The following parameters were evaluated:

n Number of particles

p In which Lp space to compute ||xfrom − xt−1||Lp in the prediction step

a The exponent for the weights in the prediction step, w = ||xfrom − xt−1||−aLp

σ Standard deviation modifier for the offset in the prediction step. Standard devi-
ations for the ω3, ω2 and ω terms are σσ3, σσ2 and σσ1, respectively.2

g The exponent for the importance in the filtering step
2See section 6.1.1 for the σi values.
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Parameter Values
n 64, 128, 256, 512
p 2, 4, 8
a 1, 2, 4, 8
σ 0.025, 0.05, 0.1, 0.2
g 1, 2, 4, 8

Table 6.1. Specification of test cases.

Table 6.1 shows the tested values. The values to test were chosen for the follow-
ing reasons:

n 512 particles was the most the computer systems could handle in reasonable time.
This was then scaled down to 64 as lower particle counts are, subjectively,
quite uninteresting.

p The Lp norm computation implementation used only handled even values of p.
Computation time increased rapidly with p, so p = 8 was the highest value
for which the computations could be done in time.

a The range was chosen to start from 1 because lower values would counteract the
intended purpose of the parameter. The end 8 was chosen since higher values
were believed to restrict the prediction too much.

σ The max value 0.2 was selected so that each parameter could vary roughly a fifth
of the parameter space in each direction. The other three were selected as
lower, exponentially spaced points.

g The range was selected in the same way as that of a.

All value series were spaced exponentially since orders of magnitude are most
interesting in this benchmark.

6.1.3 Benchmark procedure

The benchmark was run on the test video for each combination of parameters in
table 6.1. The output from the benchmark is an error matrix εi,t, where index
i, t contains ||Zt − xt||L2 , the L2 distance between the ground truth and estimated
shape for whisker i at time t. From this, a list εi was computed as the root mean
square of εi,t in the t direction. Finally, the maximum value in εi was selected as
the error ε of that run. This gives us the error tensor

En,p,a,σ,g = max
i

√√√√∑t ε2i,t
64 ∀ (n, p, a, σ, g) . (6.1)
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However, some tests took a very long time to run, and therefore some did not
finish in time. This included all tests for n = 512 and p = 8, some of whose running
times were observed to exceed 12 hours. These test cases and the ones specified in
table 6.2 were not included in the analysis.

n p a σ g

64 8 4 0.05 8
64 8 8 0.05 1
64 8 8 0.1 2
64 8 8 0.025 4
512 2 4 0.025 4
512 2 4 0.05 4
512 2 4 0.1 4
512 4 1 0.2 8

Table 6.2. Unfinished test runs. Omitted are (512, 8, a, σ, g) ∀a, σ, g.

Note that the absolute magnitude of the error ε is irrelevant - it is the ratios
between these errors that is interesting. One could argue for instead using the
relative error ||Zt − xt||L2 / ||Zt||L2 , but the relative error is misleading here. The
reason is that a deviation from a very bent whisker would then be considered better
than the same deviation from a very straight whisker. Therefore the absolute error
is used for the analysis.

Since the error tensor is five-dimensional, displaying all of its contents is not
feasible. Instead the index (n0, p0, a0, σ0, g0) for which En0,p0,a0,σ0,g0 is minimized
was used as the common point of the following plots. Using this index, the the cross
sections

Ep,a = En0,p,a,σ0,g0 ∀p, a (6.2)
Eσ,g = En0,p0,a0,σ,g ∀σ, g (6.3)
En = En,p0,a0,σ0,g0 ∀n (6.4)

were extracted and plotted.
Also investigated was the effect of computing E using the L4 and L8 norms, in

order to see if this had some correlation to the choice of p. However, the resulting
Ep,a and Eσ,g for L2,L4 and L8 all had the same qualitative behavior, so the L4 and
L8 versions of E are omitted from this report.

6.1.4 Results
The minimum of En,p,a,σ,g was found to be 38.18 for

n = 512, p = 2, a = 2, g = 4, s = 0.2.

Figures 6.2 and 6.4 show Ep,a and Eσ,g, respectively. Figures 6.3 and 6.5 show
the same graphs, but with the dominant points removed. Figure 6.6 shows En.
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Figure 6.2. Ep,a.
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Figure 6.3. Ep,a with dominant points removed. Notice that the plot has been
rotated so that the p axis now extends to the left.
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Figure 6.4. Eσ,g.
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Figure 6.5. Eσ,g with dominant points removed.
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Figure 6.6. En. Note the logarithmic scale of n.

6.2 Run on real data
The parameters p0, a0, σ0, g0 from the parameter benchmark were used for running
the tracker on a real whisker video of 131 frames. The particle count n, however, was
set to 128 to reduce computation time.3 The performance was evaluated manually.

Figure 6.7 shows the first 18 frames, including the manually initialized start
frame. Green lines are the estimated shapes of the whiskers.. The following figures
show a selection of images from the tracking sequence. Figure 6.8 shows how the
model of the lower whisker “jumps” to another whisker further down the array.
Figure 6.9 shows another jump, this time resulting in both models coinciding. Figure
6.10 shows how both models simultaneously jump to other whiskers, the top being
a smaller whisker.

3This was performed late in the project, and there was no time to run the test with 512 particles.
The error should roughly follow the behaviour in figure 6.6, perhaps steeper since real data poses
more difficulties.

33



CHAPTER 6. RESULTS

Figure 6.7. The 18 first frames from tracking results with 128 particles on real data,
ordered left-to-right, top-to-bottom. The first frame shows the initialization.
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Figure 6.8. Frames 22 and 23. The model of the lower whisker “jumps” to another
whisker.

Figure 6.9. Frames 45 and 46. The model of the lower whisker jumps to another
whisker, this time coinciding with the top model.

Figure 6.10. Frames 122 and 123. Both models jump simultaneously.
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Chapter 7

Analysis and Discussion

Care must be taken when doing this type of experimental analysis on artificial data,
and then applying the conclusions on real data. Quoting Encyclopedia of Machine
Learning [5], section “Algorithm Evaluation”:

“However, much machine learning research includes experimental stud-
ies in which algorithms are compared using a set of data sets with little
or no consideration given to what class of applications those data sets
might represent. It is dangerous to draw general conclusions about rel-
ative performance on any application from relative performance on this
sample of some unknown class of applications. Such experimental eval-
uation has become known disparagingly as a bake-off.”

However, the results should still be able to give some direction for the parameters
for further studies on real whiskers. A configuration that fails even under ideal
circumstances is not very likely to succeed on real data.

7.1 Discussion of benchmark results

As expected, the highest number of particles yielded the best result. This is not
surprising, since more particles mean the PDFs can be more closely approximated.
However, as figure 6.6 shows, the decrease in error per increase in particle count
gets smaller and smaller, meaning even a significant increase in particle count does
not guarantee a measurable decrease in error. The model used in this thesis has
only 3 DOF, which can at most barely be considered high-dimensional, meaning
more particles may not be necessary for similar whisker models.

The value of p does not seem to notably affect tracking performance, as seen
in figure 6.2 which is almost flat in the p direction. Apparently, computing the
distances in any of the tested Lp spaces seems to suffice. It should be noted, however,
that many tests for p = 8 were left out because of the long computation time in
the testing implementation. Considering the increased computation time associated
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Figure 7.1. Computation times for computing
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times for p = 2, 4, 8.

with higher p, as illustrated in figure 7.1, it is probably best to settle for p = 2 and
instead increase the particle count, for the same computational cost or less.

The value of a that yielded the best result was a = 2. The error increased by
more than 20% when a was increased to 4 or 8, and more than tripled for a = 1.
This is reasonable, since a we want close transitions to receive higher weights, but a
too high a would make the weighted mean converge to the argmax function instead,
taking only a single training transition into account.

The modifier σ for the standard deviation of the offset to the sampled particles
had a large impact on the error. The best value was 0.2, the maximum value,
meaning the magnitude of the offset could be roughly a fifth of the width of the
populated region of the database in each direction. This may be a bit surprising
at first thought, but one has to remember that the database used was artificially
generated. Even real data samples suffer selection bias if the training data is not
sampled from the model one intends to learn.1 In this case, the training data is
not sampled from real data, and furthermore was generated with settings guessed
after inspection of whisker videos. This means that the training data is probably
a bad representative of whisker dynamics, and a large σ therefore helps “blur out”
the deficiencies of the training data.

Another note on the bias effect of the database is the size of the time step. In the
first runs performed on real data, the time scale of the database was approximately
two thirds that of the video. The result was that the posture estimations were left
behind when the whiskers moved away, and the model instances frequently jumped
between whiskers in the video. In conclusion, the time scale is perhaps one of the
most important properties of the training data.

Finally, the value of the parameter g that minimized E was g = 4. The depen-
1As mentioned in the section “Data Preparation” of Encyclopedia of Machine Learning. [5]
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dence of E on g, however, is unclear and no real conclusions can be drawn from
the results. No qualitative behavior can be seen in the g direction of figure 6.4.
It is also difficult to predict what values of g should give a good performance. A
low g would make clutter too important. A high g amplifies high responses, but a
high response does not necessarily mean that the posture coincides well with the
whisker it is intended to track. For instance, in the test run on real video there
was a small, bright whisker above the top tracked whisker, which sometimes gave a
higher response than the latter.

7.2 Possible improvements
Judging by the results of the run on real data, the following are the greatest weak-
nesses of the testing implementation:2

• The whisker model expects whisker roots to be stationary.

• The response function3 is too simple.

A combination of these manifested clearly in the run on real data. Because of the
first, the whisker models had to be rooted inside the snout, meaning no response
at all could be collected in a radius of a few pixels from the root. This means
that the estimated posture could emerge from the snout at multiple locations and
get comparable responses, which in turn means the model could sometimes find a
better match by switching to another whisker. This combined with the low temporal
resolution of the video - which sometimes makes it difficult even for a human to
notice a “swap” between whiskers - makes it difficult for the tracker to keep the
model tracking the same whisker. We therefore draw the following conclusion.

A good whisker model must account for movements of the whisker root
along the surface of the snout.

Here the “root” of the whisker refers to the point where the whisker shaft emerges
from the snout.

Other possible improvements include:

• Developing a statistically rigorous response function. The one used in this
thesis is very simple, and only gives a rough estimate of the probability that a
hypothesis matches a whisker in the image, as indicated by figure 5.4. A better
solution might be to create a classifier that estimates the probability of a pixel
being part of a whisker as opposed to the probability of being a non-whisker
pixel, and combine multiple visual cues.4 This might also include motion and

2Excluding the fact that the database is probably not representative of whisker dynamics
3Including the chosen transformation φ
4As is common in computer vision, and also used by Sidenbladh. [6]
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direction cues, and not only pure pixel cues. A direction cue could consider the
directions of whiskers, making it easier to cancel noise caused when whiskers
cross.
One could also investigate if it is possible to combine the particle filter with the
analysis developed by Voigts et al. [9] as it proved to be a powerful classifier
even on its own.

• Having the tracker manage all whiskers simultaneously, as opposed to inde-
pendently in sequence as is used in this thesis. The tracker could then avoid
mapping multiple whisker models to the same whisker in the image, and at-
tempt a perfect bipartite matching between time steps. This could make the
jumps between whiskers less frequent, or perhaps eliminate them altogether.

7.3 Conclusions
We conclude that probabilistic whisker tracking is feasible, and our results on track-
ing real whiskers are even quite promising. Our simple implementation manages to
track real whiskers, though the tracking is very unreliable and the posture estima-
tions frequently jump between whiskers. With more work, including better image
analysis and a database of real data, the performance could probably be vastly
increased, and eventually compete with the best solutions available today.
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