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Abstract—Semantic segmentation is a long standing challeng-
ing issue in computer vision. In this paper, a novel method
named SegGAN is proposed, in which a pre-trained deep se-
mantic segmentation network is fitted into a generative adver-
sarial framework for computing better segmentation masks. The
composited networks are jointly fine-tuned end-to-end to get
better segmentation masks. In the pre-training of Generative
Adversarial Network (GAN), we try to minimize the loss between
the generated images from the generator with the ground truth
masks as input and the original images. Our motivation is that the
learned GAN shows the relationship between the ground truth
masks and the original images, thus the predicted masks of the
semantic segmentation model should have the same distribution
or relationship with the original images. Concretely, GAN is
treated as a kind of loss for semantic segmentation to achieve
better performance. Numerous experiments conducted on two
publicly available datasets demonstrate the effectiveness of the
proposed SegGAN.

Index Terms—Semantic segmentations, Generative adversarial
network,

I. INTRODUCTION

Semantic segmentation is one of the most challenging tasks

in computer vision, which aim at predicting the pixel-level

class label of the input images. In recent years, segmentation

approaches based on deep learning methods had become the

mainstream in related research domains. As a important task,

semantic segmentation is widely used in various applications,

i.e., autonomous driving, scene understanding, etc.

Convolutional neural networks (CNNs) have pushed the

performance of computer vision systems to soaring heights

on a broad array of high-level problems, and have also

been adopted in semantic segmentation. However, CNNs

are originally designed for the image classification task. To

achieve the invariance to numerous transformations, down-

sampling operations are frequently conducted. Inevitably, rigid

architecture problems are faced. Specifically, the resolution

reduction problem restricts the localization accuracy, and

the low-resolution feature maps are difficult to predict the

boundaries of objects at multiscales. As the pioneer of full

CNN-based semantic segmentation work, Fully Convolutional

Network (FCN) [15] proposed the skip architecture to solve

the resolution reduction problem. In [15], feature maps at

lower layers were adopted and upsampled by consecutive

deconvolutional operations to produce dense per-pixel labeled

outputs. In [12], a visual-attention-aware model is proposed to

mimic the human visual system for salient-object detection.

In [13], the algorithm, Quaternionic Distance Based Weber

Descriptor (QDWD) which was initially designed for detecting

outliers in color images, is used to represent the directional

cues in an underwater image. In [17] [2], an encoder-decoder

architecture was proposed to recover the spatial information

from the low-resolution feature maps. In deeplab [4], atrous

convolutional operations were adopted to solve the feature

resolution reduction problem. The downsampling operators

were removed from the last few max pooling layers, and atrous

convolutions were adopted in the subsequent convolutional

layers, to generate lager feature maps. In [3] [18], the atrous

spatial pyramid pooling (ASPP) operation was proposed to

solve the multiscale problem during segmentation. In [14] [20],

DenseCRF was adopted to capture long range information to

refine the predicted boundaries. Although, numerous solutions

were proposed in semantic segmentation related domain , the

problems of accurate boundary extraction and areas prediction

still remain to be the challenging tasks.

In this paper, we concentrate on modeling the distribution

of the statistical relationship between the predicted masks and

input images. The motivation is that a good segmentation

mask should have strong correlation with the input image.

With the help of Generative Adversarial Network (GAN) [8],

we can even generate a similar image from a good mask.

Thus, we attempt to learn a GAN, in which the inputs are the

ground truth masks. And we try to minimize the loss between

the generated images and the real images. Then the learned

GAN is treated as a kind of loss for semantic segmentation
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Fig. 1. The proposed framework for SegGAN.

model for finetuning. The proposed method is named as

SegGAN, and is composed of three key components: (1) a

semantic segmentation model, (2) a generator, for generating

images from the predicted masks, (3) a discriminator, for

distinguishing original images from dataset or fake images

reconstructed by generator. Note that, the GAN model need

to be trained firstly. We adopt the ground-truth images as the

input of the generator and try to minimize the loss between

the generated images and the original images. The goal of

this step is to learn the relationship between the ground truth

masks and the original images. Then, the GAN model is

combined with the segmentation model. In detail, the outputs

of the semantic segmentation network are directly put into pre-

trained generative model. GAN can learn the distribution pz
of the ground-truth label data in an adversarial way.

Our main contributions can be summarized as follows:

• A novel method named SegGAN is proposed, in which

the learned GAN is adopted to refine the segmentation

masks.

• We adopt GAN to learn the relationship between the

masks and the real images;

• The proposed method achieves promising performance

against the state-of-the-art works.

In Section II, we present our approach, where we first

describe the design and structure, then cover the training steps.

Section III deals with experimental results, where we report

our results on Pascal VOC 2012 [6], and StanfordBG datasets

[9]. Finally, we conclude the paper in Section IV.

II. PROPOSED METHOD

A. Architecture

The proposed SegGAN (as shown in Fig. 1) is a dif-

ferentiable method in which the GAN model is combined

with an existed segmentation network. The proposed hybrid

framework is optimized in an end-to-end manner. The Seg-

GAN consists of semantic segmentation model, discriminator

and the generator. The task of our generator network G is

to generate an image based on the predictions layer of the

segmentation model.
Following the architecture in [11], we define generator

network G and discriminator network D in such a way that

D can act as supervisor to G in the min-max optimization

process. This process aims at training the generator G to be

able to generate a synthetical image IR corresponding with

the original one, while the discriminator D tries to distinguish

between the original image and the reconstructed image IR.

The detail loss function of GAN can be defined as follows:

min
θG

max
θD

log (D (I)) + log
(

1− D
(

IR
))

(1)

The generator takes simultaneously output of predictions

layer pseg and original image I as input, then try to generate

same image with original image I . This processing can be

described as G(pseg). Highly motivated by [11] [19] [22], the

G network in the proposed method adopts 4 convolutional

layers and 4 de-convolutional layers with random dropout at

rate the 0.5 to avoid overfit trap. In addition, the D network

adopts 4 convolutional layers with ReLU method as activation

function followed every layer but excludes the last layer. The

original image and the fake image are sent into the D network

concurrently. So that the random process of selecting an image

from them could be avoided.
In the proposed method, DeepLab [4] is selected as a

basic segmentation model for the below two reasons: (1)

Computation performance: the fully-connected CRF generally

requires 0.5 second per image while DeepLab only need

0.12 second. (2) Simplicity:A serious of methods, such as

CRF and CNNs, can well combined with DeepLab as post-

precessing functions. The goal of segmentation model is to

generat confidence maps pseg ∈ Rc∗w∗h, where the c is

dataset class number and w, h are the width and height of

prediction maps respectively. Then, the argmax operation will

be performed to the predictions layer to get the final prediction

mask, which each value show the label of response pix of the

input image. In detail, the segmentation model has 4 blocks

and 4 dilation layers without fully connect layer to accomodate

different input size. Without loss and generality, we use fix size

input image by pre-precessing, such as random crop or resize.

B. Optimization

The loss function ℓ in our method consists of three main

key componments: segmentation loss ℓS , content loss ℓC and

adversarial loss ℓA. In detail, the loss function ℓ can be

formulated as follow:

ℓ = ℓS + λ1ℓC + λ2ℓA (2)



TABLE I
PER-CLASS RESULTS ON THE PASCAL VOC 2012 VALIDATION SET. THE REFERENCE OF THE METHOD MARKED THE ‘†’ CAN BE FOUND AT [21]

.

Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mIoU

FCN [15] 76.8 34.2 68.9 49.4 60.3 75.3 74.7 77.6 21.4 62.5 46.8 71.8 63.9 76.5 73.9 45.2 72.4 37.4 70.9 55.1 62.2

Zoom-out † 85.6 37.3 83.2 62.5 66.0 85.1 80.7 84.9 27.2 73.2 57.5 78.1 79.2 81.1 77.1 53.6 74.0 49.2 71.7 63.3 69.6

CRF-RNN † 87.5 39.0 79.7 64.2 68.3 87.6 80.8 84.4 30.4 78.2 60.4 80.5 77.8 83.1 80.6 59.5 82.8 47.8 78.3 67.1 72.0
DeconvNet [17] 89.9 39.3 79.7 63.9 68.2 87.4 81.2 86.1 28.5 77.0 62.0 79.0 80.3 83.6 80.2 58.8 83.4 54.3 80.7 65.0 72.5

GCRF [14] † 85.2 43.9 83.3 65.2 68.3 89.0 82.7 85.3 31.1 79.5 63.3 80.5 79.3 85.5 81.0 60.5 85.5 52.0 77.3 65.1 73.2

DPN † 87.7 59.4 78.4 64.9 70.3 89.3 83.5 86.1 31.7 79.9 62.6 81.9 80.0 83.5 82.3 60.5 83.2 53.4 77.9 65.0 74.1

Piecewise † 90.6 37.6 80.0 67.8 74.4 92.0 85.2 86.2 39.1 81.2 58.9 83.8 83.9 84.3 84.8 62.1 83.2 58.2 80.8 72.3 75.3
PSPNet [21] 91.8 71.9 94.7 71.2 75.8 95.2 89.9 95.9 39.3 90.7 71.7 90.5 94.5 88.8 89.6 72.8 89.6 64.0 85.1 76.3 82.6

DeepLab [4] 90.1 59.3 90.4 85.1 89.4 94.9 91.4 94.0 65.6 92.1 84.8 92.8 89.4 87.4 88.9 77.5 91.0 84.5 92.1 87.3 86.9
SegGAN 92.1 46.5 92.2 86.5 90.4 96.0 92.5 95.6 65.9 94.1 82.7 94.4 92.1 89.5 90.5 79.1 93.2 83.2 94.1 87.2 87.4

where the λ1 and λ2 are two emprical weight parameters.

In our method, the multi-label cross-entropy loss [10] is

adopted to evaluate the performance of segmentation perfor-

mance. The nature of segmentation is a dense classification

task. Consequently, the cross-entropy loss, instead of clas-

sification loss and mean squared loss, is more suitable for

neural network classifier training. The detail segmentation loss

function is defined as:

ℓS =
N
∑

x

C
∑

i

Pxi log(Yxi) (3)

where the Pxi is computed by segmentation model which

indicates the probability of assigning label i to pixel x, and

Yxi indicates the probability of ground-truth label.

The content loss is used to calculate quality of the synthet-

ical images IR reconstructed by G network. The pixel-wise

MSE loss is the widely used criterion, and calculated as:

ℓC =
1

WH

W
∑

i=1

H
∑

j=1

(

Iij − IRij
)2

(4)

The adversarial loss reflects the quality of synthetical image

IR reconstructed by G, which is defined as:

ℓA = log (D (I)) + log
(

1− D
(

IR
))

(5)

III. EXPERIMENTS

A. Experimental settings

All the networks are implemented based on the TensorFlow

framework [1]. The SegGAN framework is trained in two

steps: Firstly, the adversarial generative network is trained to

learn the distribution of the ground truth masks. Limited to the

GPU memory, the batch size is set as 8. As for the training of

the generator, the Adam optimizer is adopted with isotropic

Gaussian weights. The AdamOptimizer’s learning rate, beta1,

beta2 and epsilon are set as 0.001, 0.9, 0.999, 1e-08 respec-

tively. The loss function applied to this optimization process

can be formulated as:

ℓG = 100 ∗ ℓC + ℓA (6)

After 20000 iterations learning, we finish the training of our

GAN model.

In terms of the training on PASCAL VOC 2012, the

pretrained parameters provided by DrSleep [5] are directly

adopted. For the training of the segmentation model on the

StanfordBG Dataset, the parameters are initialized using the

weights pretrained on ImageNet.

After the GAN model and the segmentation model have

been fine-tuned, we combine the segmentation model, gener-

ator model and discriminator model as a whole framework.

Note that, the weights in the layers of the segmentation net-

work are initialized in the same way as the previous step. The

standard Adam optimizer is utilized for the optimization of the

semantic segmentation model, and the adversarial networks are

initialized using pre-trained weights from the first step.

As for the loss function formulated in formula (2), the λ1

and λ2 are both set as 0.1. Then, the optimization of the

segmentation model is conducted based on the adopted loss

function. Note that, the parameters of the GAN are not update.

Similar as the training process of the generator, the SegGAN is

also trained for 20000 iterations. In the testing phase, we only

adopted the semantic segmentation layers to conduct mask

prediction.

image G.T DeepLab SegGAN

Fig. 2. Samples of images produced by segmentation model on Pascal VOC.

B. Experiments on the PASCAL VOC 2012

In PASCAL VOC 2012 [6], there are 20 foreground object

classes and one background class. The original dataset contains

1464, 1449, and 1456 images for training, validation, and



TABLE II
THE SEGMENTATION PERFORMANCE ON THE STANFORDBG DATASET.
THE REFERENCE OF THE METHOD MARKED THE ‘†’ CAN BE FOUND AT

[7].

Method Class Acc Pix Acc Mean IoU

Gould et al. 2009† - 76.4 -

Munoz et al. 2010† 66.2 76.9 -

Tighe et al. 2010† - 77.5 -

Socher et al. 2011† - 78.1 -

Kumar et al. 2010† - 79.4 -

Lempitzky et al. 2011† 72.4 81.9 -

multiscale convnet† 72.4 78.8 -
INRIA et al. 2016 [16] 68.7 75.2 54.3

DeepLab [4] 75.9 87.0 63.4
SegGAN 79.0 89.3 69.9

image G.T DeepLab SegGAN

Fig. 3. Visual comparisons on the StanfordBG Database.

testing, respectively. The dataset is augmented by the extra

annotations, resulting in 10582 training images.

We evaluate the performance of the standard segmentation

model and the SegGAN framework on the PASCAL validation

set, and our model is trained on the augmented PASCAL

training set. The identification results are presented in Table

I. The performance of different models are measured by the

mean Intersection over Union (IoU) proposed in [15], and it

is calculated as:

SmIoU = (1/ncl)
∑

i

nii/





∑

j

nij +
∑

j

nji − nii



 (7)

where the nii is the number of pixels of class i predicted to

class i, ncl is the number of the dataset classes.

By adopting GAN in DeepLab, the proposed SegGAN can

achieve a higher mIoU score than the original DeepLab. It

indicates that more present classes in the images are identified

correctly. Admittedly, the proposed model doesn’t get best

performance at some classes, such as bike, sofa and tv. The

reason why our model get worse performance on those classes

is that the GAN model’s fully-connected layer eliminate the

location information from the original image. Despite having

those defects, SegGAN achieves the best result under this

train/test protocol for Pascal VOC dataset. The visual compar-

isons are provided in Fig.2. The original images, the ground

truth, the results of DeepLab and the results of SegGAN are

shown in Fig. 2 from the first column to the fourth column.

These images clearly indicate that our GAN model is able to

learn hidden structures, and can be adopted to enhance the

performance of our segmentation model.

C. Experiments on the Stanford Background dataset

Experiments are also conducted on the Stanford Background

dataset(StanfordBG) introduced in the work of [9]. The dataset

contains 715 images, and we random select 600 for training

and 115 images for testing. The experimental results are shown

in Table II. The symbol ’-’ means the paper has no data of

this term. Since some methods have no mIoU data, we use the

pixel accuracy and class accuracy defined in [15] to measure

the performance.

SegGAN can also achieve the best performance on the

StandforBG dataset. It can be seen that the class accuracy

is improved from 75.9% to 79.0%. And the mIoU accuracy

is improved from 63.4% to 69.9%. Sampled predicted masks

provided by different segmentation models are shown in Fig.3.

Similar to Fig.2, these images clearly suggest that GAN model

can effectively detect the perturbing of input data and feed

back it to the segmentation model.

IV. CONCLUSIONS

In this paper, we propose a novel framework called SegGAN

for the semantic segmentation task. In SegGAN, the GAN is

adopted to dig out the relationship between the masks and

images, and then the learned GAN is treated as a kind of

loss to finetune the semantic segmentation model. Numerous

experiments on two publicly available datasets show that the

SegGAN can well improve the performance of the semantic

segmentation model.
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