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ABSTRACT
Predicting traffic conditions from online route queries is a chal-

lenging task as there are many complicated interactions over the

roads and crowds involved. In this paper, we intend to improve

traffic prediction by appropriate integration of three kinds of im-

plicit but essential factors encoded in auxiliary information. We

do this within an encoder-decoder sequence learning framework

that integrates the following data: 1) offline geographical and so-

cial attributes. For example, the geographical structure of roads

or public social events such as national celebrations; 2) road inter-

section information. In general, traffic congestion occurs at major

junctions; 3) online crowd queries. For example, when many online

queries issued for the same destination due to a public performance,

the traffic around the destination will potentially become heavier

at this location after a while. Qualitative and quantitative experi-

ments on a real-world dataset from Baidu have demonstrated the

effectiveness of our framework.
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1 INTRODUCTION
Traffic prediction is an important part of intelligent transportation

systems (ITS) and is crucial to many applications including traf-

fic network planning, route guidance, and congestion avoidance

[39]. For large cities such as Beijing, such prediction is crucial but

challenging to perform. This is due to the dynamic and complex

traffic environment in large cities and the limited potential for new

roads: this places an important emphasis on network management.

Such management has a wide-reaching impact, not just due to the

large population involved, but also because it supports decision

making in various other applications e.g. the optimization of pol-

lution is relevant to traffic. In this paper, we argue that previous

models have failed to effectively include several important factors

for prediction. We outline these as follows, before introducing our

system which utilises these and demonstrates a positive impact on

our application.

Offline geographical and social factors. The geographical

structure of roads has an impact on traffic dynamics. For example,

the traffic on a main road would be different from that of a lane

and in general traffic congestion occurs more often at a major

junction. Furthermore, social temporal factors such as holidays

and the weekend have an influence on traffic. These characteristics

serve to highlight the difficulty of traffic prediction.

Online potential influence. Widely used mobile technology

applications such as Baidu Map and Google Map provide a rich

source of data for transportation analysis and forecasting. Figure

1 shows the average traffic speed and crowd query counts around

Capital Gym, Beijing on April 8, 2017. The query counts at time

t are calculated by accumulating the queries whose destinations

https://doi.org/10.1145/3219819.3219895
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are around Capital Gym and their estimated arrival time is t . We

can clearly observe that the current query counts (in red) are much

more than usual query counts (in blue) at 18:00, which leads to a

sudden drop of the traffic speed. Note that the query is long-term

(the average travel time is 46 minutes shown in Table 2) foresee-

able, which would provide an early warning of traffic jams in ITS.

More interestingly, the emergence of map queries from the crowd

indicates that there is an event here, namely “Fish Leong Concert".

Online map queries from the crowd, which are innately related

to the future states of road networks, can potentially be used to

predict traffic dynamics, making the integration of multi-modal

data an interesting yet challenging problem.

Limited dataset. Due to the accessibility of traffic data, previ-

ous research on traffic prediction usually use limited datasets for

experimentation. There are relatively few publicly available large-

scale traffic prediction datasets for researchers to compare their

models and propose new models.

Figure 1: The traffic speed (left) and online query counts
(right) around the Beijing Capital Gym on April 8, 2017. The
red line denotes the unusual traffic speed (query counts)
while the blue line indicates the usual traffic speed (query
counts). At 19:00 PM, there was the Fish Leong Concert in
the Capital Gym.

To improve the state of the art in traffic prediction, we release

a large-scale traffic dataset from Baidu Map, the Q-Traffic dataset,

which provides various offline and online auxiliary information

along with traffic speed data. There are three kinds of auxiliary

domains in the Q-Traffic dataset: 1) Offline geographical and social

attributes which include public holidays, peak-hour, speed etc; 2)

the road intersection information such as local road network and

junctions; and 3) online crowd queries which record map search

queries from users.

Table 4 shows that the offline geographical and social attributes

from the Q-traffic dataset include a large number of categorical

features, making the input features space sparse, i.e., the field speed-
class contains 8 class of speed limit. Learning and exploiting the

sparse feature through a wide feature transformation is effective

and interpretable, but requires a large degree of feature engineer-

ing effort. Conversely, deep neural networks can generalize better

through low-dimensional dense embeddings. Motivated by [6], a

wide transformation is utilised to learn the interactions from the

sparse geographical and social attributes while an encoder-decoder

deep network is used to decode the traffic condition given the

combination of the traffic encoding and transformed features.

Furthermore, due to the spatial dependencies in the road network,

it is natural to utilise the graph convolutional neural networks

[27] to embed the traffic conditions induced by neighbouring road

segments. Specifically, given a central road segment, neighbouring

road segments are selected based on the PageRank score [28] at

first, which measures local spatial importance. The combination of

graph CNN and the encoder-decoder deep network can integrate

spatial patterns and historical traffic sequence.

Online map queries from the crowd, which are innately related

to the future states of road networks, would potentially influence

the traffic condition. For example, assume that we had the historical

traffic data of road segments around the Capital Gym by 17:00 PM,

being aware of many people would arrive at the Beijing Capital

Gym around 18:00 PM, would effectively boost the performance

of traffic prediction at 18:00 PM. We quantify the potential impact

that online crowd queries have on the road segments, embed the

impact with an encoder, and assemble the traffic and query impact

with a deep fusion.

In this paper, we effectively utilise three kinds of auxiliary in-

formation in an encoder-decoder sequence to sequence (Seq2Seq)

[7, 32] learning manner as follows: a wide linear model is used to

encode the interactions among geographical and social attributes,

a graph convolution neural network is used to learn the spatial cor-

relation of road segments, and the query impact is quantified and

encoded to learn the potential influence of online crowd queries.

Therefore a hybridmodel based on deep sequence learningwith aux-

iliary information for traffic prediction is proposed. In this model,

offline geographical and social attributes, spatial dependencies and

online crowd queries are integrated. The contribution of this paper

can be summarised as follows:

• We release a large-scale traffic prediction dataset with of-

fline and online auxiliary information including map crowd

search queries, road intersections and geographical and so-

cial attributes.

• We integrate the sequence to sequence deep neural networks

with geographical and social attributes via a wide and deep

manner.

• To incorporate the spatial dependencies within local road

network, we utilise the graph convolution neural network

to embed the traffic speed of neighbouring road segments.

• We quantify the potential influence and devise a query im-

pact algorithm to calculate the impact that online crowd

queries have on the road segments.

• We propose a hybrid Seq2Seq model which incorporates the

offline geographical and social attributes, spatial dependen-

cies and online crowd queries with a deep fusion.

The rest of this paper is organised as follows. We first introduce

the released dataset in Sec.2. Following that, we propose a series of

methods for traffic prediction on the Q-Traffic dataset in Sec.3. Sec.4



presents qualitative and quantitative results of different methods.

Sec.5 presents the related work of traffic prediction. Finally, we

conclude the paper in Sec.6.

2 Q-TRAFFIC DATASET
In this section, we first introduce a large-scale traffic prediction

dataset — Q-Traffic dataset
1
, which consists of three sub-datasets:

query sub-dataset, traffic speed sub-dataset and road network sub-

dataset. We compare our released Q-Traffic dataset with different

datasets used for traffic prediction.

2.1 Query Sub-dataset

Figure 2: The flowchart of the mining of potential traffic in
queries. A set of map queries is segmented into grids, then
we can estimate the arrival time at each query’s destination,
thus constructing an arrival time tensor. An event discov-
ery algorithm is used to discover the events from the arrival
time tensor.

This sub-dataset was collected in Beijing, China between April

1, 2017 and May 31, 2017, from the Baidu Map
2
application. Two

modes of map queries are provided by the Baidu Map: one is called

“location search”, which includes the searches of a specific place;

the other is called “route search”, which recommends a naviga-

tion route from one location to another. This sub-dataset contains

about 114 million user queries, each of which records the user ID

(anonymised), search time-stamp, coordinate of the current location,

coordinate and query word of starting location (in “route search”),

coordinate and query word of destination. Note that if the query

mode is “location search”, the starting location is the same as the

current location. The top/left of the Figure 2 shows several records

of the query sub-dataset. This dataset is pre-processed as follows,

with the statistics of the dataset after processing given in Table 2.

• To eliminate redundancy, only the last query will be retained

if a single user submitted several queries in 10 minutes.

• The queries whose current locations are 2km (or more) away

from the starting locations will be eliminated due to the

assumption that the users are more likely to go to their

searched destinations if they are currently close to the searched

starting location.

1
The code and dataset are available at https://github.com/JingqingZ/BaiduTraffic

2
https://map.baidu.com

• Since the filtered starting locations are all within 2km from

current locations, the starting time is estimated according to

the distance between starting location and current location,

with a speed of 3.6km/h (by walk).

• As shown in Figure 2, the map is partitioned into a R × C
grid map according to the lon/lat bounding box of (116.10,

39.69, 116.71, 40.18), where R = 72,C = 68 and the width

and height of a grid are both about 1km.

• For each query, since the exact time when the user arrives at

the destination is not available, an estimated arrival time t id
for “route search” is calculated according to the query mode

with a speed of 30km/h (by car), 20km/h (by bus), 10km/h

(by bike) or 3.6km/h (by walk). And the estimated arrival

time t id for “location search” is calculated according to the

distance between the starting location and destination, with

a speed of 20km/h (by bus, distance > 2km) or 3.6km/h (by

walk, distance ≤ 2km).

A query qi can be represented as qi = (t is , si ,di ,x is ,yis ,x id ,y
i
d )

where i = 1, 2, . . . ,n. We can calculate (x is ,yis ,x id ,y
i
d ) based on the

grid map, where t is , t
i
d , s

i
, di , (x is ,yis ), (x id ,y

i
d ), n stand for the start-

ing time-stamp, estimated arrival time, query word of the starting

location, query word of the destination, coordinates of the start-

ing location and the destination, and the number of all queries,

respectively.

We note that a user may not go to the destination that they

have searched, however, they will be much more likely to go to

this destination if it relates to a public event that is occurring.

To account for this, we declare an “event" (see Sec.2.1.1) to have

occurred when query counts for a place are much higher than

usual over a short period of time. For example, assume that we

had received a lot of queries for Capital Gym as a destination and

the arrival time was around 6 PM on April 8, 2017. As the number

of queries is much more than usual we postulate that there could

be an “event" here (in this case the “Fish Leong Concert"). The

users who submitted these queries have a high probability of going

to the Capital Gym for the concert. For all queries Q = {qi |i =
1, 2, . . . ,n}, we can construct arrival time tensor D = {dx,y,t },
where x = 1, 2, . . . ,C ,y = 1, 2, . . . ,R, t = 1, 2, . . . ,T , andT = 5, 856

(61-day × 24-hour × 4-quarter) is the total time-stamps (since we

aggregate the queries every 15 minutes). We define dx,y,t as:

dx,y,t = |{qk |xkd = x ,ykd = y, t
k
d = t}| (1)

where | · | denotes the cardinality of a set. We will use the arrival

time tensor D to discover the events in Sec.2.1.1 .

2.1.1 Event Discovery. The density ρd =
N

R×C×T of arrival time

tensor D is 4, which implies D is very sparse. We will find the

spatiotemporal ranges whose query counts are much more than

usual, using the following definitions.

Definition 2.1 (Moment). A tuplem = (x ,y, t) is a moment if

dx,y,t−∆t > 0 (2)

dx,y,t − dx,y,t−∆t > ζ (3)

dx,y,t − dx,y,t−∆t
dx,y,t−∆t

> η (4)

We denoteM a set of all moments.



Table 1: Examples of discovered events, where Time, Grid, QC_cur, QC_last, Top1 query word, Top1_qc, and Description repre-
sents the start time and end time, grid coordinates, query counts in the current time period, query counts in the same period
of last week, top 1 query word, top 1 query counts and the description of each event, respectively.

Time Grid QC_cur QC_last Top1 query word Top1_qc Description

2017-04-08 14:00-20:00 (26, 39) 3431 417 Capital Gym 2724 Fish Leong Concert

2017-04-11 08:00-10:00 (24, 38) 447 93 Beijing Shangri-La Restaurant 304 IBM Data Scientist Forum

2017-04-15 08:00-16:00 (13, 47) 4551 2202 Beijing Botanical Garden 3849 Spring outing

2017-04-15 16:00-20:00 (21, 34) 2173 207 Letv sports center 1831 Chou Chuan-huing Concert

2017-04-30 08:00-18:00 (22, 47) 7283 3607 Summer Palace 7149 Summer Palace (May Day)

2017-04-30 08:00-18:00 (26, 46) 3691 1582 Tsinghua University 3102 106th Anniversary of THU

Table 2: Statistics of the query sub-dataset in Beijing be-
tween April 1 and May 31, 2017.

Items #

Filtered queries 114,658,750

Query words 17,210,732

Average distance/query 12km

Average travel time/query 46 minutes

Definition 2.2 (Event). A tuple E = (x ,y, ts , td ) is an event if

td − ts > ϵ (5)

∀t ∈ [ts , td ], m = (x ,y, t) ∈ M (6)

m = (x ,y, ts − 1) <M ∧m = (x ,y, td + 1) <M (7)

According to the Def.2.1 and Def.2.2, let η = 0.2, ζ = 300, ∆t =
672 (7 × 24 × 4, a week), ϵ = 4 (an hour), 932 events are discovered.

The number of all the event queries and time steps is 2,336,114

and 15,892, respectively. Thus the density ρe of all the events is

147, which is much larger than ρd = 4. Table 1 shows some events

that we discovered. Several kinds of events are presented, including

concerts, forums, places of interest and anniversaries. For each

event, one can find that the query counts are much more than that

in last week, and the top 1 query word is highly related to the event.

Not only that, more than 80% of the query counts comes from the

top 1 query word.

2.2 Traffic Speed Sub-dataset
We also collect the traffic speed data for the same area and during

the same time period as the query sub-dataset. The origin traffic

speed dataset contains the traffic speed of ∼450k road segments.

What we are interested in are the traffic conditions of those road seg-

ments which are close to the events. Thus we collect a sub-dataset

whose road segments are nearby the destinations where events

held. This sub-dataset contains 15,073 road segments covering ap-

proximately 738.91 km. Table 3 and Figure 3 shows the statistics

and spatial distribution of these road segments, respectively. They

are all in the 6th ring road, which is the most crowded area of Bei-

jing. The traffic speed of each road segment is recorded per minute.

Since the traffic speed sub-dataset is from real-world urban areas,

the traffic lights would have a great impact on the traffic speed,

leading to the traffic speed varies greatly. For instance, the traffic

Figure 3: Spatial distribution of the road segments in Beijing

speed may differ 20km/h between two consecutive minutes. To

make the traffic speed predictable, for each road segment, we use

simple moving average
3
with a 15-minute time window to smooth

the traffic speed sub-dataset and sample the traffic speed per 15

minutes.

Table 3: Statistics of the traffic speed sub-dataset

Items #

Road segments 15,073

Total length 738.91 km

Interval 15 minutes

Time April 1, 2017 - May 31, 2017

Total records 265,967,808

lon/lat bounding box (116.10, 39.69, 116.71, 40.18)

2.3 Road Network Sub-dataset
Due to the spatiotemporal dependencies of traffic data, the topology

of the road network would help to predict traffic. Table 4 shows the

fields of the road network sub-dataset. For each road segment in the

traffic speed sub-dataset, the road network sub-dataset provides the

3
https://en.wikipedia.org/wiki/Moving_average



Table 4: Examples of geographical attributes of each road
segment.

Field Type Description

link_id Char (13) road segment id

width Char (3) width, 15: <=3.0m; 30: (3.0m, 5.0m);

55: (5.5m, 13m); 130: >13m

direction Char (1) direction, 0: unknown, default two-way;

1: two-way; 2: single-way, from start

node to end node; 3: single-way, from

end node to start node

snodeid Char (13) start node id

enodeid Char (13) end node id

snodegps Char (30) gps coordinate (lon, lat) of start node

enodegps Char (30) gps coordinate (lon, lat) of end node

length Char (8) length (kilo-meter)

speedclass Char (1) speed limit (km/h), 1: >130; 2: (100, 130);

3: (90, 100); 4: (70, 90); 5: (50, 70);

6: (30, 50); 7: (11, 30); 8: <11

lanenum Char (1) number of lanes, 1: 1; 2: 2 or 3; 3: >=4

starting node (snode) and ending node (enode) of the road segment,

based on which the topology of the road network can be built.

In addition, the sub-dataset also provides various geographical

attributes of each road segment, such as width, length, speed limit

and the number of lanes. Furthermore, we also provide the social

attributes such as weekdays, weekends, public holidays, peak hours

and off-peak hours.

2.4 Comparison with Other Datasets
Table 5 shows the comparison of different datasets for traffic speed

prediction. The most popular dataset for traffic prediction is Cal-

trans PerformanceMeasurement System (PeMS)
4
. However, it doesn’t

provide road attributes and other auxiliary information. In the past

few years, researchers have performed experiments with small or

(and) private datasets. The release of Q-Traffic, a large-scale public

available dataset with offline (geographical and social attributes,

road network) and online (crowd map queries) information, should

lead to an improvement of the research of traffic prediction.

3 METHODOLOGIES
In this section, we will introduce the definition of traffic speed

prediction problem and the hybridmodel to integrate three auxiliary

domains one by one.

3.1 Problem Definition
In a mere temporal model, the prediction of traffic speed can be for-

malised as forecasting future traffic speed {vt+1,vt+2, . . . ,vt+t ′}
given previous traffic speed {v1,v2, . . . ,vt }. The Q-Traffic dataset

makes it possible to combine benefits from multiple auxiliary do-

mains including spatial relation within local road network, offline

geographical and social attributes and online crowd search queries.

4
http://pems.dot.ca.gov/
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Figure 4: Seq2Seq: The Sequence to Sequencemodel predicts
future traffic speed {ṽt+1, ṽt+2, . . . , ṽt+t ′}, given the previous
traffic speed {v1,v2, ...vt }.

3.2 Seq2Seq
The fundamental network to be applied on the Q-Traffic for mere

temporal patterns is the Sequence to Sequence (Seq2Seq) model

[7, 32]. Both the encoder and decoder can be constructed based on

LSTM [17]. The Seq2Seq model with LSTM has achieved a great

success on different tasks such as speech recognition [13], machine

translation [32] and video question answering [34].

Figure 4 shows the architecture of the Seq2Seq model for traffic

prediction. The encoder embeds the input traffic speed sequence

{v1,v2, . . . ,vt } and the final hidden state of the encoder is fed

into the decoder, which learns to predict the future traffic speed

{ṽt+1, ṽt+2, . . . , ṽt+t ′}. Hybrid model that integrates the auxiliary

information will be proposed based on the Seq2Seq model.

…

𝑣"#$#%

LSTM LSTM LSTM LSTM LSTM LSTM

<END>

<START>

…

𝑣"#$&

𝑣#𝑣& 𝑣' 𝑣"#$#%(& 𝑣"#$#%

FC FC

𝐴𝑇(𝑣#$&) 𝐴𝑇(𝑣# $#%)

Concat Concat

Encoder Decoder

Figure 5: Seq2Seq + Attributes: The model incor-
porates offline geographical and social attributes
{AT (vt+1),AT (vt+2), . . . ,AT (vt+t ′)} into the decoder of
the Seq2Seq model.

3.3 Seq2Seq + Attributes
As aforementioned, it is beneficial to introduce both geographical

and social attributes into traffic sequence learning instead of merely

utilising speed information.

There are two kinds of offline attributes that have been extracted

for wide and deep learning. 1) Geographical attributes including

width, direction, speed limit and the number of lanes of each road

segment (Table 4). 2) Social attributes including information on

public holidays, workdays, peak hours and off-peak hours.

Motivated by [6], we utilise a wide and deep network that com-

bine the benefits from deep learning and feature engineering. These



Table 5: Comparison of different datasets for traffic speed prediction.

Datasets Scale Road info. Road net. Auxiliary info. Highway Urban Available

Subset of PeMS

√ √ √State Route 22, Garden Grove [37] 9

PeMSD7 (S) [38] 228

San Francisco Bay area [16] 943

PeMSD7 (L) [38] 1,026

Subset of Beijing

√
Ring road around Beijing [26] 2

√

Beijing 4th ring road [33] 3

√

Beijing 2nd/3rd ring road [36] 80

√

Beijing 2nd/3rd ring road [36] 122

√

Bejing taxi dataset [25] 236

√ √

Bejing taxi dataset [25] 352

√ √

I-80 in California [11] 6

√ √ √

Busan Metropolitan City [20] 10

√ √

California PATH [4] 12

√

Corridor in Orlando [30] 71

√

Rome dataset [12] 120

√ √

D100 [14] 122 weather

√

Bedok area [8] 226

√ √ √

Los Angeles [9] 1,642

√ √ √

Los Angeles [9] 4,048

√ √ √

Dallas-Forth Worth area [15] 4,764

√

Subnetwork in Singapore [3] 5,024

√ √ √

Q-Traffic Dataset 15,073

√ √
map query

√ √ √

attributes AT (vt ) are concatenated directly into the decoder net-

work of the Seq2Seq model and the encoder network remains iden-

tical as shown in Figure 5.

…

𝑣"#$#%

LSTM LSTM LSTM

LSTM LSTM LSTM

<END>

<START>

…

𝑣"#$&
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Encoder Decoder
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𝑁𝐵(𝑣+) 𝑣#

Graph
CNN

𝑁𝐵(𝑣# )

Concat Concat

Figure 6: Seq2Seq + Spatial Relation: Traffic speed of neigh-
bouring road segments {NB(v1),NB(v2), . . . ,NB(vt )} is em-
bedded into the encoder of Seq2Seq model by using Graph
Convolutional Neural Network. The neighbouring road
segements are selected based on PageRank score, which re-
flects impact of neighbours on the central road segment.

3.4 Seq2Seq + Spatial Relation
The traffic at a specific road segment can be affected by its neigh-

bouring road segments [38]. However, the Seq2Seq model is de-

signed to learn temporal dependencies but not spatial dependencies

within road intersections.

Graph Convolutional Neural Networks [27] are applied to embed

traffic of neighbouring road segments, NB(vt ), into the encoder

of the Seq2Seq model as shown in Figure 6. As each road segment

has a direction of traffic flow, the local road intersections can be

constructed as a directed graph. Given a central road segment, five

predecessors and five successors in the directed graph are selected

based on PageRank score [28], which provides the relative spatial

impact of neighbouring road segments on the central road segment.

3.5 Seq2Seq + Query Impact
Correlation Analysis. The query counts have a clear correlation

with the traffic speed. For each event, we compute the average

traffic speed of all the road segments within a range of 1km and

measure the correlation between the average traffic speed and the

corresponding query counts with a resolution of 15 minutes. As

both of the variables are non-linear, Spearman’s rank correlation

coefficient is applied and the result ρ = −0.52 with a P-value=
1.23 × 10

−4
indicates a strong negative correlation between the

average traffic speed and the query counts, making the prediction

of traffic with the query sub-dataset promising.

Query Impact. The query impact QI measures the influence

of queries on road segments. It is calculated based on the query

counts and the spatial region that the query will influence.

Given an event at location A, note that the queries come from

different places {S1, S2, ...}, each query has different impact on dif-

ferent road segments around the locationA. Thus, the query impact



should consider the spatial locations of each query. As described

in Section 2.1, let Q = {qi |i = 1, 2, . . . ,n} denotes all the queries,
where qi = (t is , t id , s

i ,di ,x is ,y
i
s ,x

i
d ,y

i
d ). Road segments are denoted

by RS = {l i |i = 1, 2, . . . ,k}. The query impact QI(l, t) of queries
on each road segments l can be calculated by Algorithm 1. In the

Algorithm 1, the function dist in line 10 calculates the Euclidean

distance of a point and a segment. The h in line 11 is a decreasing

function whose input is the distance dl and output is the impact

h(dl ) that query qi makes on the road segment l at time t id . For

simplicity, we choose the exponential function h(x) = exp(− xσ ),
where σ is the impact factor.

Algorithm 1:QueryImpact Calculate the query impact

Input: A set Q = {q1,q2, . . . ,qn } of queries, where
qi = (t is , t id , s

i ,di ,x is ,y
i
s ,x

i
d ,y

i
d ), a set

RS = {l1, l2, . . . , lk } of links, total time stamp T
Output: The query impact QI

1 Initialisation: QI (l , t) ← 0

2 for i ← 1 to n do
3 // return the longitude and latitude of a location

4 lonlats ← lonlat(si )
5 lonlatd ← lonlat(di )
6 seдi ← seдment(lonlats , lonlatd )
7 // return the set of road segments within 1km

L← nearroad(lonlatd )
8 for each l ∈ L do
9 lonlatl ← lonlat(l)

10 dl ← dist(lonlatl , seдi )
11 QI (l , t id ) ← QI (l , t id ) + h(dl )

12 returnQI

The query impact {QI(l, t + 1),QI(l, t + 2), ...,QI(l, t + t ′)}
are encoded by a RNN with LSTM and the final hidden state is

concatenated into the decoder of the Seq2Seqmodel and the encoder

remains identical as shown in Figure 7.
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Figure 7: Seq2Seq + Query Impact: The query impactQI are
calculated based on the query counts and the spatial region
that the queries can influence. An RNN encoder with LSTM
is applied to encode the QI sequence. For simplicity, note
that theQ(t) refers toQ(l, t) on corresponding road segment.
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Figure 8: Hybrid model integrates all three auxiliary do-
mains including attributes AT (vt ), spatial relation NB(vt ),
and query impactQI(l, t).

3.6 Hybrid Model
The hybrid model combines benefits from all available informa-

tion domains. Figure 8 shows that the hybrid model enhances the

Seq2Seq model with the attributes, the spatial relation, and the

query impact. The spatial relation from NB(vt ) are incorporated
into the encoder of the Seq2Seq model, while the attributesAT (vt )
and the query impactQI(l, t) are embedded into the decoder.

4 EXPERIMENTS
In this section, we describe the compared methods, implementa-

tion details and evaluation metrics. We also discuss the results of

different models.

4.1 Compared methods
We compare our proposed model with the following methods.

• Random forests (RF) [22]: RF is a traditionalmachine learning

method for regression, often used for traffic prediction;

• Support vector regression (SVR) [19]: SVR is a version of

SVM for regression, widely used in traffic prediction;

• Deep neural networks including the Seq2Seq model, the

Seq2Seq + Attributes (AT) model, the Seq2Seq + Spatial rela-

tion (NB) model, the Seq2Seq + Query Impact (QI) model and

the Hybrid Model that combines all three auxiliary domains.

4.2 Implementation Details
The traffic speed with 15-minute moving average is sampled at 15-

minute intervals. One-day traffic speed sequence is used as inputs

to predict future 2-hour traffic speed. Thus the length of the input

sequence is t = 96 and the length of the output sequence is t ′ = 8.

Given the traffic speed sequence {v1,v2, . . . ,vt }, note that the
standard Random Forests and SVR can only predict the traffic speed

vt+1, whose goals are slightly different from our Seq2Seq model.

So, on the testing stage, we treat prior forecasts as observations

and use them for subsequent forecasts. For the Random Forests, the

number of trees and the maximum depth are both 10. For SVR, we

set C = 1, ϵ = 0.1 and use RBF kernel. We use scikit-learn [29] to

implement the Random Forests and SVR.



Table 6: ErrT (%): MAPE on the whole testing set. The results with the best performance are marked in bold.

Prediction 15-min 30-min 45-min 60-min 75-min 90-min 105-min 120-min Overall

RF 6.00 9.15 10.20 10.66 10.98 11.21 11.39 11.56 10.14

SVR 5.44 9.20 10.07 10.34 10.51 10.65 10.76 10.83 9.73

Seq2Seq 4.61 8.22 9.28 9.72 9.98 10.27 10.48 10.61 9.23

Seq2Seq+AT 4.53 8.06 9.09 9.48 9.70 9.84 9.93 10.01 8.83

Seq2Seq+NB 4.52 8.05 9.07 9.45 9.67 9.83 9.93 9.99 8.81

Seq2Seq+QI 4.58 8.01 8.95 9.31 9.51 9.66 9.80 9.94 8.72

Hybrid 4.52 7.93 8.89 9.24 9.43 9.56 9.69 9.78 8.63

Table 7: ErrE (%): MAPE during events on the testing set. The results with the best performance are marked in bold.

Prediction 15-min 30-min 45-min 60-min 75-min 90-min 105-min 120-min Overall

RF 6.14 9.51 10.81 11.45 11.84 12.13 12.38 12.56 10.85

SVR 5.64 9.56 10.59 11.02 11.32 11.56 11.73 11.83 10.41

Seq2Seq 4.76 8.52 9.87 10.52 10.91 11.31 11.60 11.80 9.91

Seq2Seq+AT 4.65 8.32 9.63 10.23 10.58 10.81 10.98 11.13 9.54

Seq2Seq+NB 4.63 8.25 9.53 10.10 10.45 10.70 10.89 11.02 9.45

Seq2Seq+QI 4.69 8.18 9.37 9.93 10.28 10.55 10.77 10.98 9.34

Hybrid 4.61 8.09 9.30 9.84 10.16 10.39 10.60 10.76 9.22

All of the deep neural networks are implemented by TensorLayer

[10] which is a deep learning and reinforcement learning library

based on TensorFlow [1]. Stochastic gradient descent using the

Adam optimiser [21] is applied to update trainable parameters with

mini-batch size 128. The deep neural networks are trained on a

single NVIDIA GeForce GTX TITAN X GPU with 12GB memory.

The dimension of LSTM hidden state is set as 128. The social

attributes have 6 dimensions and the geographical attributes have

131 dimensions. Half of the data (the first month) is used as the

training set and the other half (the second month) is used for testing.

The impact factor for calculating the query impact is σ = 150.

4.3 Evaluation metrics
The mean absolute percentage error (MAPE) is used to evaluate the

performance for comparisons, which is defined as

MAPE =
1

T

T∑
t=1
|vt − ṽt

vt
| (8)

wherevt and ṽt are the actual and predicted traffic speed at time

t , respectively. Two error rates are calculated. 1) ErrT computes

the MAPE across the whole testing set. 2) ErrE only computes the

MAPE during events on the testing set.

4.4 Results and discussion
Table 6 and Table 7 show quantitative comparison between differ-

ent models. On the whole testing set, the hybrid model achieves

the best performance with lowest overall MAPE 8.63% and 2-hour

forecasting MAPE 9.78%. Compared with the common Seq2Seq

model, auxiliary information (e.g., attributes, spatial relation and

query impact) is able to improve the accuracy and the query impact

is more effective than the other two domains.

It is more challenging to predict traffic when events happen,

which is abnormally burst in traffic (Figure 1). Table 7 shows MAPE

during events and the prediction is less accurate than that during

normal conditions, especially for forecasting traffic more than one

hour. With query impact, the hybrid model achieves the best perfor-

mance with overall MAPE 9.22% and the Seq2Seq + Query Impact

model achieves the second best accuracy with overall MAPE 9.34%.

Therefore, with appropriate integration of three kinds of aux-

iliary information, the deep encoder-decoder sequence networks

can boost the traffic speed prediction during both events period

and whole time period. Compared with the other two auxiliary

domains, the query impact information has demonstrated larger

improvement and promising application in the practical scenario.

5 RELATEDWORK
5.1 Traffic Prediction
Traffic prediction is a critical component in ITS. Themethods of traf-

fic prediction can be classified into parametric and non-parametric

methods. Autoregressive integrated moving average (ARIMA) [2] is

a widely used parametric technique for traffic prediction, which is

based on the assumption that the traffic prediction is in a stationary

process. However, ARIMA and its family require high computa-

tional resources and are not suitable for large-scale traffic data. Due

to the stochastic and non-linear nature of traffic, researchers have

paidmuch attention to the non-parametric methods, such as RF [22],

SVR [19], online support vector regression (OL-SVR) [5], Bayesian

network [31] and neural networks like ANN [35]. Recently, some

deep learning methods are proposed for traffic prediction such as



stacked autoencoders (SAEs) [24], deep belief network [18]. Most

of them consider the traffic prediction for highways, whose traffic

condition are relatively stable. However, in real-world cities, the

traffic lights may have a great impact on the traffic speed, thus

the traffic speed may vary greatly and previous methods may no

longer work. [26] proposed to use long short-termmemory network

(LSTM) to predict traffic speed in cities. However, they only choose

two points to conduct their experiments, which may be insufficient

for practical applications.

5.2 Traffic Prediction via Auxiliary Domains
A few researchers have attempted to predict the traffic with related

multimodal data. [16] [23] proposed an optimization framework to

use traffic indicators extracted from social media with location in-

formation to model traffic sequence via linear regression. However,

the traffic is a nonlinear system, so using a linear regression may be

insufficient. [26] proposed an LSTM to forecast traffic speed given

microwave detector data. However, in real-world road systems, only

a small fraction of the road segments are deployed with sensors. For

those road segments without sensors, previous methods may no

longer work. Spatial dependencies among nodes can also improve

traffic prediction [3] and [25, 38] propose models based on CNN in

order to incorporate spatial information.

6 CONCLUSIONS
As an important part of intelligent transportation systems, traffic

prediction is limited by complex traffic environment in large cities

and accessibility of high-quality multi-modal dataset. In this pa-

per, we firstly introduce and release a large-scale traffic dataset,

Q-Traffic, addressing the obstacle of the limited dataset. This dataset

contains integrated online and offline auxiliary information includ-

ing crowd map queries, road intersections and geographical and

social attributes. Then we appropriately integrate traffic prediction

with crowd map queries, road intersections and geographical and

social attributes into a sequence to sequence learning framework,

respectively. At last, a hybrid model is proposed to combine the

benefits from all three auxiliary information domains and proved to

be superior to compared methods, addressing the obstacles of traffic

prediction with offline geographical factors and online potential

influence. As for future work, with the release of the dataset, it is

promising to attract more people to devise more approaches for

accurate and real-time traffic prediction.
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