Permalink
Fetching contributors…
Cannot retrieve contributors at this time
3734 lines (3158 sloc) 129 KB
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2012 The Bitcoin developers
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <boost/algorithm/string/replace.hpp>
#include <boost/filesystem.hpp>
#include <boost/filesystem/fstream.hpp>
#include "alert.h"
#include "chainparams.h"
#include "checkpoints.h"
#include "db.h"
#include "init.h"
#include "kernel.h"
#include "net.h"
#include "txdb.h"
#include "txmempool.h"
#include "ui_interface.h"
using namespace std;
using namespace boost;
#if defined(NDEBUG)
# error "BlackCoin cannot be compiled without assertions."
#endif
//
// Global state
//
CCriticalSection cs_setpwalletRegistered;
set<CWallet*> setpwalletRegistered;
CCriticalSection cs_main;
CTxMemPool mempool;
map<uint256, CBlockIndex*> mapBlockIndex;
set<pair<COutPoint, unsigned int> > setStakeSeen;
CBigNum bnProofOfStakeLimit(~uint256(0) >> 20);
CBigNum bnProofOfStakeLimitV2(~uint256(0) >> 48);
int nStakeMinConfirmations = 500;
unsigned int nStakeMinAge = 8 * 60 * 60; // 8 hours
unsigned int nModifierInterval = 10 * 60; // time to elapse before new modifier is computed
int nCoinbaseMaturity = 500;
CBlockIndex* pindexGenesisBlock = NULL;
int nBestHeight = -1;
uint256 nBestChainTrust = 0;
uint256 nBestInvalidTrust = 0;
uint256 hashBestChain = 0;
CBlockIndex* pindexBest = NULL;
int64_t nTimeBestReceived = 0;
bool fImporting = false;
bool fReindex = false;
bool fHaveGUI = false;
struct COrphanBlock {
uint256 hashBlock;
uint256 hashPrev;
std::pair<COutPoint, unsigned int> stake;
vector<unsigned char> vchBlock;
};
map<uint256, COrphanBlock*> mapOrphanBlocks;
multimap<uint256, COrphanBlock*> mapOrphanBlocksByPrev;
set<pair<COutPoint, unsigned int> > setStakeSeenOrphan;
size_t nOrphanBlocksSize = 0;
map<uint256, CTransaction> mapOrphanTransactions;
map<uint256, set<uint256> > mapOrphanTransactionsByPrev;
// Constant stuff for coinbase transactions we create:
CScript COINBASE_FLAGS;
const string strMessageMagic = "BlackCoin Signed Message:\n";
//////////////////////////////////////////////////////////////////////////////
//
// dispatching functions
//
// These functions dispatch to one or all registered wallets
namespace {
struct CMainSignals {
// Notifies listeners of updated transaction data (passing hash, transaction, and optionally the block it is found in.
boost::signals2::signal<void (const CTransaction &, const CBlock *, bool)> SyncTransaction;
// Notifies listeners of an erased transaction (currently disabled, requires transaction replacement).
boost::signals2::signal<void (const uint256 &)> EraseTransaction;
// Notifies listeners of an updated transaction without new data (for now: a coinbase potentially becoming visible).
boost::signals2::signal<void (const uint256 &)> UpdatedTransaction;
// Notifies listeners of a new active block chain.
boost::signals2::signal<void (const CBlockLocator &)> SetBestChain;
// Notifies listeners about an inventory item being seen on the network.
boost::signals2::signal<void (const uint256 &)> Inventory;
// Tells listeners to broadcast their data.
boost::signals2::signal<void (bool)> Broadcast;
} g_signals;
}
void RegisterWallet(CWalletInterface* pwalletIn) {
g_signals.SyncTransaction.connect(boost::bind(&CWalletInterface::SyncTransaction, pwalletIn, _1, _2, _3));
g_signals.EraseTransaction.connect(boost::bind(&CWalletInterface::EraseFromWallet, pwalletIn, _1));
g_signals.UpdatedTransaction.connect(boost::bind(&CWalletInterface::UpdatedTransaction, pwalletIn, _1));
g_signals.SetBestChain.connect(boost::bind(&CWalletInterface::SetBestChain, pwalletIn, _1));
g_signals.Inventory.connect(boost::bind(&CWalletInterface::Inventory, pwalletIn, _1));
g_signals.Broadcast.connect(boost::bind(&CWalletInterface::ResendWalletTransactions, pwalletIn, _1));
}
void UnregisterWallet(CWalletInterface* pwalletIn) {
g_signals.Broadcast.disconnect(boost::bind(&CWalletInterface::ResendWalletTransactions, pwalletIn, _1));
g_signals.Inventory.disconnect(boost::bind(&CWalletInterface::Inventory, pwalletIn, _1));
g_signals.SetBestChain.disconnect(boost::bind(&CWalletInterface::SetBestChain, pwalletIn, _1));
g_signals.UpdatedTransaction.disconnect(boost::bind(&CWalletInterface::UpdatedTransaction, pwalletIn, _1));
g_signals.EraseTransaction.disconnect(boost::bind(&CWalletInterface::EraseFromWallet, pwalletIn, _1));
g_signals.SyncTransaction.disconnect(boost::bind(&CWalletInterface::SyncTransaction, pwalletIn, _1, _2, _3));
}
void UnregisterAllWallets() {
g_signals.Broadcast.disconnect_all_slots();
g_signals.Inventory.disconnect_all_slots();
g_signals.SetBestChain.disconnect_all_slots();
g_signals.UpdatedTransaction.disconnect_all_slots();
g_signals.EraseTransaction.disconnect_all_slots();
g_signals.SyncTransaction.disconnect_all_slots();
}
void SyncWithWallets(const CTransaction &tx, const CBlock *pblock, bool fConnect) {
g_signals.SyncTransaction(tx, pblock, fConnect);
}
void ResendWalletTransactions(bool fForce) {
g_signals.Broadcast(fForce);
}
//////////////////////////////////////////////////////////////////////////////
//
// Registration of network node signals.
//
void RegisterNodeSignals(CNodeSignals& nodeSignals)
{
nodeSignals.ProcessMessages.connect(&ProcessMessages);
nodeSignals.SendMessages.connect(&SendMessages);
}
void UnregisterNodeSignals(CNodeSignals& nodeSignals)
{
nodeSignals.ProcessMessages.disconnect(&ProcessMessages);
nodeSignals.SendMessages.disconnect(&SendMessages);
}
//////////////////////////////////////////////////////////////////////////////
//
// mapOrphanTransactions
//
bool AddOrphanTx(const CTransaction& tx)
{
uint256 hash = tx.GetHash();
if (mapOrphanTransactions.count(hash))
return false;
// Ignore big transactions, to avoid a
// send-big-orphans memory exhaustion attack. If a peer has a legitimate
// large transaction with a missing parent then we assume
// it will rebroadcast it later, after the parent transaction(s)
// have been mined or received.
// 10,000 orphans, each of which is at most 5,000 bytes big is
// at most 500 megabytes of orphans:
size_t nSize = tx.GetSerializeSize(SER_NETWORK, CTransaction::CURRENT_VERSION);
if (nSize > 5000)
{
LogPrint("mempool", "ignoring large orphan tx (size: %u, hash: %s)\n", nSize, hash.ToString());
return false;
}
mapOrphanTransactions[hash] = tx;
BOOST_FOREACH(const CTxIn& txin, tx.vin)
mapOrphanTransactionsByPrev[txin.prevout.hash].insert(hash);
LogPrint("mempool", "stored orphan tx %s (mapsz %u)\n", hash.ToString(),
mapOrphanTransactions.size());
return true;
}
void static EraseOrphanTx(uint256 hash)
{
map<uint256, CTransaction>::iterator it = mapOrphanTransactions.find(hash);
if (it == mapOrphanTransactions.end())
return;
BOOST_FOREACH(const CTxIn& txin, it->second.vin)
{
map<uint256, set<uint256> >::iterator itPrev = mapOrphanTransactionsByPrev.find(txin.prevout.hash);
if (itPrev == mapOrphanTransactionsByPrev.end())
continue;
itPrev->second.erase(hash);
if (itPrev->second.empty())
mapOrphanTransactionsByPrev.erase(itPrev);
}
mapOrphanTransactions.erase(it);
}
unsigned int LimitOrphanTxSize(unsigned int nMaxOrphans)
{
unsigned int nEvicted = 0;
while (mapOrphanTransactions.size() > nMaxOrphans)
{
// Evict a random orphan:
uint256 randomhash = GetRandHash();
map<uint256, CTransaction>::iterator it = mapOrphanTransactions.lower_bound(randomhash);
if (it == mapOrphanTransactions.end())
it = mapOrphanTransactions.begin();
EraseOrphanTx(it->first);
++nEvicted;
}
return nEvicted;
}
//////////////////////////////////////////////////////////////////////////////
//
// CTransaction and CTxIndex
//
bool CTransaction::ReadFromDisk(CTxDB& txdb, COutPoint prevout, CTxIndex& txindexRet)
{
SetNull();
if (!txdb.ReadTxIndex(prevout.hash, txindexRet))
return false;
if (!ReadFromDisk(txindexRet.pos))
return false;
if (prevout.n >= vout.size())
{
SetNull();
return false;
}
return true;
}
bool CTransaction::ReadFromDisk(CTxDB& txdb, COutPoint prevout)
{
CTxIndex txindex;
return ReadFromDisk(txdb, prevout, txindex);
}
bool CTransaction::ReadFromDisk(COutPoint prevout)
{
CTxDB txdb("r");
CTxIndex txindex;
return ReadFromDisk(txdb, prevout, txindex);
}
bool IsStandardTx(const CTransaction& tx, string& reason)
{
if (tx.nVersion > CTransaction::CURRENT_VERSION || tx.nVersion < 1) {
reason = "version";
return false;
}
// Treat non-final transactions as non-standard to prevent a specific type
// of double-spend attack, as well as DoS attacks. (if the transaction
// can't be mined, the attacker isn't expending resources broadcasting it)
// Basically we don't want to propagate transactions that can't be included in
// the next block.
//
// However, IsFinalTx() is confusing... Without arguments, it uses
// chainActive.Height() to evaluate nLockTime; when a block is accepted, chainActive.Height()
// is set to the value of nHeight in the block. However, when IsFinalTx()
// is called within CBlock::AcceptBlock(), the height of the block *being*
// evaluated is what is used. Thus if we want to know if a transaction can
// be part of the *next* block, we need to call IsFinalTx() with one more
// than chainActive.Height().
//
// Timestamps on the other hand don't get any special treatment, because we
// can't know what timestamp the next block will have, and there aren't
// timestamp applications where it matters.
if (!IsFinalTx(tx, nBestHeight + 1)) {
reason = "non-final";
return false;
}
// nTime has different purpose from nLockTime but can be used in similar attacks
if (tx.nTime > FutureDrift(GetAdjustedTime(), nBestHeight + 1)) {
reason = "time-too-new";
return false;
}
// Extremely large transactions with lots of inputs can cost the network
// almost as much to process as they cost the sender in fees, because
// computing signature hashes is O(ninputs*txsize). Limiting transactions
// to MAX_STANDARD_TX_SIZE mitigates CPU exhaustion attacks.
unsigned int sz = tx.GetSerializeSize(SER_NETWORK, CTransaction::CURRENT_VERSION);
if (sz >= MAX_STANDARD_TX_SIZE) {
reason = "tx-size";
return false;
}
BOOST_FOREACH(const CTxIn& txin, tx.vin)
{
// Biggest 'standard' txin is a 15-of-15 P2SH multisig with compressed
// keys. (remember the 520 byte limit on redeemScript size) That works
// out to a (15*(33+1))+3=513 byte redeemScript, 513+1+15*(73+1)+3=1627
// bytes of scriptSig, which we round off to 1650 bytes for some minor
// future-proofing. That's also enough to spend a 20-of-20
// CHECKMULTISIG scriptPubKey, though such a scriptPubKey is not
// considered standard)
if (txin.scriptSig.size() > 1650) {
reason = "scriptsig-size";
return false;
}
if (!txin.scriptSig.IsPushOnly()) {
reason = "scriptsig-not-pushonly";
return false;
}
if (!txin.scriptSig.HasCanonicalPushes()) {
reason = "scriptsig-non-canonical-push";
return false;
}
}
unsigned int nDataOut = 0;
txnouttype whichType;
BOOST_FOREACH(const CTxOut& txout, tx.vout) {
if (!::IsStandard(txout.scriptPubKey, whichType)) {
reason = "scriptpubkey";
return false;
}
if (whichType == TX_NULL_DATA)
nDataOut++;
else if (txout.nValue == 0) {
reason = "dust";
return false;
}
if (!txout.scriptPubKey.HasCanonicalPushes()) {
reason = "scriptpubkey-non-canonical-push";
return false;
}
}
// not more than one data txout per non-data txout is permitted
// only one data txout is permitted too
if (nDataOut > 1 && nDataOut > tx.vout.size()/2) {
reason = "multi-op-return";
return false;
}
return true;
}
bool IsFinalTx(const CTransaction &tx, int nBlockHeight, int64_t nBlockTime)
{
AssertLockHeld(cs_main);
// Time based nLockTime implemented in 0.1.6
if (tx.nLockTime == 0)
return true;
if (nBlockHeight == 0)
nBlockHeight = nBestHeight;
if (nBlockTime == 0)
nBlockTime = GetAdjustedTime();
if ((int64_t)tx.nLockTime < ((int64_t)tx.nLockTime < LOCKTIME_THRESHOLD ? (int64_t)nBlockHeight : nBlockTime))
return true;
BOOST_FOREACH(const CTxIn& txin, tx.vin)
if (!txin.IsFinal())
return false;
return true;
}
//
// Check transaction inputs to mitigate two
// potential denial-of-service attacks:
//
// 1. scriptSigs with extra data stuffed into them,
// not consumed by scriptPubKey (or P2SH script)
// 2. P2SH scripts with a crazy number of expensive
// CHECKSIG/CHECKMULTISIG operations
//
bool AreInputsStandard(const CTransaction& tx, const MapPrevTx& mapInputs)
{
if (tx.IsCoinBase())
return true; // Coinbases don't use vin normally
for (unsigned int i = 0; i < tx.vin.size(); i++)
{
const CTxOut& prev = tx.GetOutputFor(tx.vin[i], mapInputs);
vector<vector<unsigned char> > vSolutions;
txnouttype whichType;
// get the scriptPubKey corresponding to this input:
const CScript& prevScript = prev.scriptPubKey;
if (!Solver(prevScript, whichType, vSolutions))
return false;
int nArgsExpected = ScriptSigArgsExpected(whichType, vSolutions);
if (nArgsExpected < 0)
return false;
// Transactions with extra stuff in their scriptSigs are
// non-standard. Note that this EvalScript() call will
// be quick, because if there are any operations
// beside "push data" in the scriptSig
// IsStandard() will have already returned false
// and this method isn't called.
vector<vector<unsigned char> > stack;
if (!EvalScript(stack, tx.vin[i].scriptSig, tx, i, SCRIPT_VERIFY_NONE, 0))
return false;
if (whichType == TX_SCRIPTHASH)
{
if (stack.empty())
return false;
CScript subscript(stack.back().begin(), stack.back().end());
vector<vector<unsigned char> > vSolutions2;
txnouttype whichType2;
if (Solver(subscript, whichType2, vSolutions2))
{
int tmpExpected = ScriptSigArgsExpected(whichType2, vSolutions2);
if (tmpExpected < 0)
return false;
nArgsExpected += tmpExpected;
}
else
{
// Any other Script with less than 15 sigops OK:
unsigned int sigops = subscript.GetSigOpCount(true);
// ... extra data left on the stack after execution is OK, too:
return (sigops <= MAX_P2SH_SIGOPS);
}
}
if (stack.size() != (unsigned int)nArgsExpected)
return false;
}
return true;
}
unsigned int GetLegacySigOpCount(const CTransaction& tx)
{
unsigned int nSigOps = 0;
BOOST_FOREACH(const CTxIn& txin, tx.vin)
{
nSigOps += txin.scriptSig.GetSigOpCount(false);
}
BOOST_FOREACH(const CTxOut& txout, tx.vout)
{
nSigOps += txout.scriptPubKey.GetSigOpCount(false);
}
return nSigOps;
}
unsigned int GetP2SHSigOpCount(const CTransaction& tx, const MapPrevTx& inputs)
{
if (tx.IsCoinBase())
return 0;
unsigned int nSigOps = 0;
for (unsigned int i = 0; i < tx.vin.size(); i++)
{
const CTxOut& prevout = tx.GetOutputFor(tx.vin[i], inputs);
if (prevout.scriptPubKey.IsPayToScriptHash())
nSigOps += prevout.scriptPubKey.GetSigOpCount(tx.vin[i].scriptSig);
}
return nSigOps;
}
int CMerkleTx::SetMerkleBranch(const CBlock* pblock)
{
AssertLockHeld(cs_main);
CBlock blockTmp;
if (pblock == NULL)
{
// Load the block this tx is in
CTxIndex txindex;
if (!CTxDB("r").ReadTxIndex(GetHash(), txindex))
return 0;
if (!blockTmp.ReadFromDisk(txindex.pos.nFile, txindex.pos.nBlockPos))
return 0;
pblock = &blockTmp;
}
// Update the tx's hashBlock
hashBlock = pblock->GetHash();
// Locate the transaction
for (nIndex = 0; nIndex < (int)pblock->vtx.size(); nIndex++)
if (pblock->vtx[nIndex] == *(CTransaction*)this)
break;
if (nIndex == (int)pblock->vtx.size())
{
vMerkleBranch.clear();
nIndex = -1;
LogPrintf("ERROR: SetMerkleBranch() : couldn't find tx in block\n");
return 0;
}
// Fill in merkle branch
vMerkleBranch = pblock->GetMerkleBranch(nIndex);
// Is the tx in a block that's in the main chain
map<uint256, CBlockIndex*>::iterator mi = mapBlockIndex.find(hashBlock);
if (mi == mapBlockIndex.end())
return 0;
CBlockIndex* pindex = (*mi).second;
if (!pindex || !pindex->IsInMainChain())
return 0;
return pindexBest->nHeight - pindex->nHeight + 1;
}
bool CTransaction::CheckTransaction() const
{
// Basic checks that don't depend on any context
if (vin.empty())
return DoS(10, error("CTransaction::CheckTransaction() : vin empty"));
if (vout.empty())
return DoS(10, error("CTransaction::CheckTransaction() : vout empty"));
// Size limits
if (::GetSerializeSize(*this, SER_NETWORK, PROTOCOL_VERSION) > MAX_BLOCK_SIZE)
return DoS(100, error("CTransaction::CheckTransaction() : size limits failed"));
// Check for negative or overflow output values
int64_t nValueOut = 0;
for (unsigned int i = 0; i < vout.size(); i++)
{
const CTxOut& txout = vout[i];
if (txout.IsEmpty() && !IsCoinBase() && !IsCoinStake())
return DoS(100, error("CTransaction::CheckTransaction() : txout empty for user transaction"));
if (txout.nValue < 0)
return DoS(100, error("CTransaction::CheckTransaction() : txout.nValue negative"));
if (txout.nValue > MAX_MONEY)
return DoS(100, error("CTransaction::CheckTransaction() : txout.nValue too high"));
nValueOut += txout.nValue;
if (!MoneyRange(nValueOut))
return DoS(100, error("CTransaction::CheckTransaction() : txout total out of range"));
}
// Check for duplicate inputs
set<COutPoint> vInOutPoints;
BOOST_FOREACH(const CTxIn& txin, vin)
{
if (vInOutPoints.count(txin.prevout))
return false;
vInOutPoints.insert(txin.prevout);
}
if (IsCoinBase())
{
if (vin[0].scriptSig.size() < 2 || vin[0].scriptSig.size() > 100)
return DoS(100, error("CTransaction::CheckTransaction() : coinbase script size is invalid"));
}
else
{
BOOST_FOREACH(const CTxIn& txin, vin)
if (txin.prevout.IsNull())
return DoS(10, error("CTransaction::CheckTransaction() : prevout is null"));
}
return true;
}
int64_t GetMinFee(const CTransaction& tx, unsigned int nBlockSize, enum GetMinFee_mode mode, unsigned int nBytes)
{
// Base fee is either MIN_TX_FEE or MIN_RELAY_TX_FEE
int64_t nBaseFee = (mode == GMF_RELAY) ? MIN_RELAY_TX_FEE : MIN_TX_FEE;
unsigned int nNewBlockSize = nBlockSize + nBytes;
int64_t nMinFee = (1 + (int64_t)nBytes / 1000) * nBaseFee;
// Raise the price as the block approaches full
if (nBlockSize != 1 && nNewBlockSize >= MAX_BLOCK_SIZE_GEN/2)
{
if (nNewBlockSize >= MAX_BLOCK_SIZE_GEN)
return MAX_MONEY;
nMinFee *= MAX_BLOCK_SIZE_GEN / (MAX_BLOCK_SIZE_GEN - nNewBlockSize);
}
if (!MoneyRange(nMinFee))
nMinFee = MAX_MONEY;
return nMinFee;
}
bool AcceptToMemoryPool(CTxMemPool& pool, CTransaction &tx, bool fLimitFree,
bool* pfMissingInputs)
{
AssertLockHeld(cs_main);
if (pfMissingInputs)
*pfMissingInputs = false;
if (!tx.CheckTransaction())
return error("AcceptToMemoryPool : CheckTransaction failed");
// Coinbase is only valid in a block, not as a loose transaction
if (tx.IsCoinBase())
return tx.DoS(100, error("AcceptToMemoryPool : coinbase as individual tx"));
// ppcoin: coinstake is also only valid in a block, not as a loose transaction
if (tx.IsCoinStake())
return tx.DoS(100, error("AcceptToMemoryPool : coinstake as individual tx"));
// Rather not work on nonstandard transactions (unless -testnet)
string reason;
if (!TestNet() && !IsStandardTx(tx, reason))
return error("AcceptToMemoryPool : nonstandard transaction: %s",
reason);
// is it already in the memory pool?
uint256 hash = tx.GetHash();
if (pool.exists(hash))
return false;
// Check for conflicts with in-memory transactions
{
LOCK(pool.cs); // protect pool.mapNextTx
for (unsigned int i = 0; i < tx.vin.size(); i++)
{
COutPoint outpoint = tx.vin[i].prevout;
if (pool.mapNextTx.count(outpoint))
{
// Disable replacement feature for now
return false;
}
}
}
{
CTxDB txdb("r");
// do we already have it?
if (txdb.ContainsTx(hash))
return false;
MapPrevTx mapInputs;
map<uint256, CTxIndex> mapUnused;
bool fInvalid = false;
if (!tx.FetchInputs(txdb, mapUnused, false, false, mapInputs, fInvalid))
{
if (fInvalid)
return error("AcceptToMemoryPool : FetchInputs found invalid tx %s", hash.ToString());
if (pfMissingInputs)
*pfMissingInputs = true;
return false;
}
// Check for non-standard pay-to-script-hash in inputs
if (!TestNet() && !AreInputsStandard(tx, mapInputs))
return error("AcceptToMemoryPool : nonstandard transaction input");
// Check that the transaction doesn't have an excessive number of
// sigops, making it impossible to mine. Since the coinbase transaction
// itself can contain sigops MAX_TX_SIGOPS is less than
// MAX_BLOCK_SIGOPS; we still consider this an invalid rather than
// merely non-standard transaction.
unsigned int nSigOps = GetLegacySigOpCount(tx);
nSigOps += GetP2SHSigOpCount(tx, mapInputs);
if (nSigOps > MAX_TX_SIGOPS)
return tx.DoS(0,
error("AcceptToMemoryPool : too many sigops %s, %d > %d",
hash.ToString(), nSigOps, MAX_TX_SIGOPS));
int64_t nFees = tx.GetValueIn(mapInputs)-tx.GetValueOut();
unsigned int nSize = ::GetSerializeSize(tx, SER_NETWORK, PROTOCOL_VERSION);
// Don't accept it if it can't get into a block
int64_t txMinFee = GetMinFee(tx, 1000, GMF_RELAY, nSize);
if ((fLimitFree && nFees < txMinFee) || (!fLimitFree && nFees < MIN_TX_FEE))
return error("AcceptToMemoryPool : not enough fees %s, %d < %d",
hash.ToString(),
nFees, txMinFee);
// Continuously rate-limit free transactions
// This mitigates 'penny-flooding' -- sending thousands of free transactions just to
// be annoying or make others' transactions take longer to confirm.
if (fLimitFree && nFees < MIN_RELAY_TX_FEE)
{
static CCriticalSection csFreeLimiter;
static double dFreeCount;
static int64_t nLastTime;
int64_t nNow = GetTime();
LOCK(csFreeLimiter);
// Use an exponentially decaying ~10-minute window:
dFreeCount *= pow(1.0 - 1.0/600.0, (double)(nNow - nLastTime));
nLastTime = nNow;
// -limitfreerelay unit is thousand-bytes-per-minute
// At default rate it would take over a month to fill 1GB
if (dFreeCount > GetArg("-limitfreerelay", 15)*10*1000)
return error("AcceptToMemoryPool : free transaction rejected by rate limiter");
LogPrint("mempool", "Rate limit dFreeCount: %g => %g\n", dFreeCount, dFreeCount+nSize);
dFreeCount += nSize;
}
// Check against previous transactions
// This is done last to help prevent CPU exhaustion denial-of-service attacks.
if (!tx.ConnectInputs(txdb, mapInputs, mapUnused, CDiskTxPos(1,1,1), pindexBest, false, false, STANDARD_SCRIPT_VERIFY_FLAGS))
{
return error("AcceptToMemoryPool : ConnectInputs failed %s", hash.ToString());
}
// Check again against just the consensus-critical mandatory script
// verification flags, in case of bugs in the standard flags that cause
// transactions to pass as valid when they're actually invalid. For
// instance the STRICTENC flag was incorrectly allowing certain
// CHECKSIG NOT scripts to pass, even though they were invalid.
//
// There is a similar check in CreateNewBlock() to prevent creating
// invalid blocks, however allowing such transactions into the mempool
// can be exploited as a DoS attack.
if (!tx.ConnectInputs(txdb, mapInputs, mapUnused, CDiskTxPos(1,1,1), pindexBest, false, false, MANDATORY_SCRIPT_VERIFY_FLAGS))
{
return error("AcceptToMemoryPool: : BUG! PLEASE REPORT THIS! ConnectInputs failed against MANDATORY but not STANDARD flags %s", hash.ToString());
}
}
// Store transaction in memory
pool.addUnchecked(hash, tx);
SyncWithWallets(tx, NULL);
LogPrint("mempool", "AcceptToMemoryPool : accepted %s (poolsz %u)\n",
hash.ToString(),
pool.mapTx.size());
return true;
}
int CMerkleTx::GetDepthInMainChainINTERNAL(CBlockIndex* &pindexRet) const
{
if (hashBlock == 0 || nIndex == -1)
return 0;
AssertLockHeld(cs_main);
// Find the block it claims to be in
map<uint256, CBlockIndex*>::iterator mi = mapBlockIndex.find(hashBlock);
if (mi == mapBlockIndex.end())
return 0;
CBlockIndex* pindex = (*mi).second;
if (!pindex || !pindex->IsInMainChain())
return 0;
// Make sure the merkle branch connects to this block
if (!fMerkleVerified)
{
if (CBlock::CheckMerkleBranch(GetHash(), vMerkleBranch, nIndex) != pindex->hashMerkleRoot)
return 0;
fMerkleVerified = true;
}
pindexRet = pindex;
return pindexBest->nHeight - pindex->nHeight + 1;
}
int CMerkleTx::GetDepthInMainChain(CBlockIndex* &pindexRet) const
{
AssertLockHeld(cs_main);
int nResult = GetDepthInMainChainINTERNAL(pindexRet);
if (nResult == 0 && !mempool.exists(GetHash()))
return -1; // Not in chain, not in mempool
return nResult;
}
int CMerkleTx::GetBlocksToMaturity() const
{
if (!(IsCoinBase() || IsCoinStake()))
return 0;
return max(0, (nCoinbaseMaturity+1) - GetDepthInMainChain());
}
bool CMerkleTx::AcceptToMemoryPool(bool fLimitFree)
{
return ::AcceptToMemoryPool(mempool, *this, fLimitFree, NULL);
}
bool CWalletTx::AcceptWalletTransaction(CTxDB& txdb)
{
{
// Add previous supporting transactions first
BOOST_FOREACH(CMerkleTx& tx, vtxPrev)
{
if (!(tx.IsCoinBase() || tx.IsCoinStake()))
{
uint256 hash = tx.GetHash();
if (!mempool.exists(hash) && !txdb.ContainsTx(hash))
tx.AcceptToMemoryPool(false);
}
}
return AcceptToMemoryPool(false);
}
return false;
}
bool CWalletTx::AcceptWalletTransaction()
{
CTxDB txdb("r");
return AcceptWalletTransaction(txdb);
}
int CTxIndex::GetDepthInMainChain() const
{
// Read block header
CBlock block;
if (!block.ReadFromDisk(pos.nFile, pos.nBlockPos, false))
return 0;
// Find the block in the index
map<uint256, CBlockIndex*>::iterator mi = mapBlockIndex.find(block.GetHash());
if (mi == mapBlockIndex.end())
return 0;
CBlockIndex* pindex = (*mi).second;
if (!pindex || !pindex->IsInMainChain())
return 0;
return 1 + nBestHeight - pindex->nHeight;
}
// Return transaction in tx, and if it was found inside a block, its hash is placed in hashBlock
bool GetTransaction(const uint256 &hash, CTransaction &tx, uint256 &hashBlock)
{
{
LOCK(cs_main);
{
if (mempool.lookup(hash, tx))
{
return true;
}
}
CTxDB txdb("r");
CTxIndex txindex;
if (tx.ReadFromDisk(txdb, COutPoint(hash, 0), txindex))
{
CBlock block;
if (block.ReadFromDisk(txindex.pos.nFile, txindex.pos.nBlockPos, false))
hashBlock = block.GetHash();
return true;
}
}
return false;
}
//////////////////////////////////////////////////////////////////////////////
//
// CBlock and CBlockIndex
//
static CBlockIndex* pblockindexFBBHLast;
CBlockIndex* FindBlockByHeight(int nHeight)
{
CBlockIndex *pblockindex;
if (nHeight < nBestHeight / 2)
pblockindex = pindexGenesisBlock;
else
pblockindex = pindexBest;
if (pblockindexFBBHLast && abs(nHeight - pblockindex->nHeight) > abs(nHeight - pblockindexFBBHLast->nHeight))
pblockindex = pblockindexFBBHLast;
while (pblockindex->nHeight > nHeight)
pblockindex = pblockindex->pprev;
while (pblockindex->nHeight < nHeight)
pblockindex = pblockindex->pnext;
pblockindexFBBHLast = pblockindex;
return pblockindex;
}
bool CBlock::ReadFromDisk(const CBlockIndex* pindex, bool fReadTransactions)
{
if (!fReadTransactions)
{
*this = pindex->GetBlockHeader();
return true;
}
if (!ReadFromDisk(pindex->nFile, pindex->nBlockPos, fReadTransactions))
return false;
if (GetHash() != pindex->GetBlockHash())
return error("CBlock::ReadFromDisk() : GetHash() doesn't match index");
return true;
}
uint256 static GetOrphanRoot(const uint256& hash)
{
map<uint256, COrphanBlock*>::iterator it = mapOrphanBlocks.find(hash);
if (it == mapOrphanBlocks.end())
return hash;
// Work back to the first block in the orphan chain
do {
map<uint256, COrphanBlock*>::iterator it2 = mapOrphanBlocks.find(it->second->hashPrev);
if (it2 == mapOrphanBlocks.end())
return it->first;
it = it2;
} while(true);
}
// ppcoin: find block wanted by given orphan block
uint256 WantedByOrphan(const COrphanBlock* pblockOrphan)
{
// Work back to the first block in the orphan chain
while (mapOrphanBlocks.count(pblockOrphan->hashPrev))
pblockOrphan = mapOrphanBlocks[pblockOrphan->hashPrev];
return pblockOrphan->hashPrev;
}
// Remove a random orphan block (which does not have any dependent orphans).
void static PruneOrphanBlocks()
{
size_t nMaxOrphanBlocksSize = GetArg("-maxorphanblocksmib", DEFAULT_MAX_ORPHAN_BLOCKS) * ((size_t) 1 << 20);
while (nOrphanBlocksSize > nMaxOrphanBlocksSize)
{
// Pick a random orphan block.
int pos = insecure_rand() % mapOrphanBlocksByPrev.size();
std::multimap<uint256, COrphanBlock*>::iterator it = mapOrphanBlocksByPrev.begin();
while (pos--) it++;
// As long as this block has other orphans depending on it, move to one of those successors.
do {
std::multimap<uint256, COrphanBlock*>::iterator it2 = mapOrphanBlocksByPrev.find(it->second->hashBlock);
if (it2 == mapOrphanBlocksByPrev.end())
break;
it = it2;
} while(1);
setStakeSeenOrphan.erase(it->second->stake);
uint256 hash = it->second->hashBlock;
nOrphanBlocksSize -= it->second->vchBlock.size();
delete it->second;
mapOrphanBlocksByPrev.erase(it);
mapOrphanBlocks.erase(hash);
}
}
static CBigNum GetProofOfStakeLimit(int nHeight)
{
if (IsProtocolV2(nHeight))
return bnProofOfStakeLimitV2;
else
return bnProofOfStakeLimit;
}
// miner's coin base reward
int64_t GetProofOfWorkReward(int64_t nFees)
{
int64_t nSubsidy = 10000 * COIN;
LogPrint("creation", "GetProofOfWorkReward() : create=%s nSubsidy=%d\n", FormatMoney(nSubsidy), nSubsidy);
return nSubsidy + nFees;
}
// miner's coin stake reward
int64_t GetProofOfStakeReward(const CBlockIndex* pindexPrev, int64_t nCoinAge, int64_t nFees)
{
int64_t nSubsidy;
if (IsProtocolV3(pindexPrev->nTime))
nSubsidy = COIN * 3 / 2;
else
nSubsidy = nCoinAge * COIN_YEAR_REWARD * 33 / (365 * 33 + 8);
LogPrint("creation", "GetProofOfStakeReward(): create=%s nCoinAge=%d\n", FormatMoney(nSubsidy), nCoinAge);
return nSubsidy + nFees;
}
static const int64_t nTargetTimespan = 16 * 60; // 16 mins
// ppcoin: find last block index up to pindex
const CBlockIndex* GetLastBlockIndex(const CBlockIndex* pindex, bool fProofOfStake)
{
while (pindex && pindex->pprev && (pindex->IsProofOfStake() != fProofOfStake))
pindex = pindex->pprev;
return pindex;
}
unsigned int GetNextTargetRequired(const CBlockIndex* pindexLast, bool fProofOfStake)
{
CBigNum bnTargetLimit = fProofOfStake ? GetProofOfStakeLimit(pindexLast->nHeight) : Params().ProofOfWorkLimit();
if (pindexLast == NULL)
return bnTargetLimit.GetCompact(); // genesis block
const CBlockIndex* pindexPrev = GetLastBlockIndex(pindexLast, fProofOfStake);
if (pindexPrev->pprev == NULL)
return bnTargetLimit.GetCompact(); // first block
const CBlockIndex* pindexPrevPrev = GetLastBlockIndex(pindexPrev->pprev, fProofOfStake);
if (pindexPrevPrev->pprev == NULL)
return bnTargetLimit.GetCompact(); // second block
int64_t nTargetSpacing = GetTargetSpacing(pindexLast->nHeight);
int64_t nActualSpacing = pindexPrev->GetBlockTime() - pindexPrevPrev->GetBlockTime();
if (IsProtocolV1RetargetingFixed(pindexLast->nHeight)) {
if (nActualSpacing < 0)
nActualSpacing = nTargetSpacing;
}
if (IsProtocolV3(pindexLast->nTime)) {
if (nActualSpacing > nTargetSpacing * 10)
nActualSpacing = nTargetSpacing * 10;
}
// ppcoin: target change every block
// ppcoin: retarget with exponential moving toward target spacing
CBigNum bnNew;
bnNew.SetCompact(pindexPrev->nBits);
int64_t nInterval = nTargetTimespan / nTargetSpacing;
bnNew *= ((nInterval - 1) * nTargetSpacing + nActualSpacing + nActualSpacing);
bnNew /= ((nInterval + 1) * nTargetSpacing);
if (bnNew <= 0 || bnNew > bnTargetLimit)
bnNew = bnTargetLimit;
return bnNew.GetCompact();
}
bool CheckProofOfWork(uint256 hash, unsigned int nBits)
{
CBigNum bnTarget;
bnTarget.SetCompact(nBits);
// Check range
if (bnTarget <= 0 || bnTarget > Params().ProofOfWorkLimit())
return error("CheckProofOfWork() : nBits below minimum work");
// Check proof of work matches claimed amount
if (hash > bnTarget.getuint256())
return error("CheckProofOfWork() : hash doesn't match nBits");
return true;
}
bool IsInitialBlockDownload()
{
LOCK(cs_main);
if (pindexBest == NULL || nBestHeight < Checkpoints::GetTotalBlocksEstimate())
return true;
static int64_t nLastUpdate;
static CBlockIndex* pindexLastBest;
if (pindexBest != pindexLastBest)
{
pindexLastBest = pindexBest;
nLastUpdate = GetTime();
}
return (GetTime() - nLastUpdate < 15 &&
pindexBest->GetBlockTime() < GetTime() - 8 * 60 * 60);
}
void static InvalidChainFound(CBlockIndex* pindexNew)
{
if (pindexNew->nChainTrust > nBestInvalidTrust)
{
nBestInvalidTrust = pindexNew->nChainTrust;
CTxDB().WriteBestInvalidTrust(CBigNum(nBestInvalidTrust));
}
uint256 nBestInvalidBlockTrust = pindexNew->nChainTrust - pindexNew->pprev->nChainTrust;
uint256 nBestBlockTrust = pindexBest->nHeight != 0 ? (pindexBest->nChainTrust - pindexBest->pprev->nChainTrust) : pindexBest->nChainTrust;
LogPrintf("InvalidChainFound: invalid block=%s height=%d trust=%s blocktrust=%d date=%s\n",
pindexNew->GetBlockHash().ToString(), pindexNew->nHeight,
CBigNum(pindexNew->nChainTrust).ToString(), nBestInvalidBlockTrust.GetLow64(),
DateTimeStrFormat("%x %H:%M:%S", pindexNew->GetBlockTime()));
LogPrintf("InvalidChainFound: current best=%s height=%d trust=%s blocktrust=%d date=%s\n",
hashBestChain.ToString(), nBestHeight,
CBigNum(pindexBest->nChainTrust).ToString(),
nBestBlockTrust.GetLow64(),
DateTimeStrFormat("%x %H:%M:%S", pindexBest->GetBlockTime()));
}
void CBlock::UpdateTime(const CBlockIndex* pindexPrev)
{
nTime = max(GetBlockTime(), GetAdjustedTime());
}
bool IsConfirmedInNPrevBlocks(const CTxIndex& txindex, const CBlockIndex* pindexFrom, int nMaxDepth, int& nActualDepth)
{
for (const CBlockIndex* pindex = pindexFrom; pindex && pindexFrom->nHeight - pindex->nHeight < nMaxDepth; pindex = pindex->pprev)
{
if (pindex->nBlockPos == txindex.pos.nBlockPos && pindex->nFile == txindex.pos.nFile)
{
nActualDepth = pindexFrom->nHeight - pindex->nHeight;
return true;
}
}
return false;
}
bool CTransaction::DisconnectInputs(CTxDB& txdb)
{
// Relinquish previous transactions' spent pointers
if (!IsCoinBase())
{
BOOST_FOREACH(const CTxIn& txin, vin)
{
COutPoint prevout = txin.prevout;
// Get prev txindex from disk
CTxIndex txindex;
if (!txdb.ReadTxIndex(prevout.hash, txindex))
return error("DisconnectInputs() : ReadTxIndex failed");
if (prevout.n >= txindex.vSpent.size())
return error("DisconnectInputs() : prevout.n out of range");
// Mark outpoint as not spent
txindex.vSpent[prevout.n].SetNull();
// Write back
if (!txdb.UpdateTxIndex(prevout.hash, txindex))
return error("DisconnectInputs() : UpdateTxIndex failed");
}
}
// Remove transaction from index
// This can fail if a duplicate of this transaction was in a chain that got
// reorganized away. This is only possible if this transaction was completely
// spent, so erasing it would be a no-op anyway.
txdb.EraseTxIndex(*this);
return true;
}
bool CTransaction::FetchInputs(CTxDB& txdb, const map<uint256, CTxIndex>& mapTestPool,
bool fBlock, bool fMiner, MapPrevTx& inputsRet, bool& fInvalid)
{
// FetchInputs can return false either because we just haven't seen some inputs
// (in which case the transaction should be stored as an orphan)
// or because the transaction is malformed (in which case the transaction should
// be dropped). If tx is definitely invalid, fInvalid will be set to true.
fInvalid = false;
if (IsCoinBase())
return true; // Coinbase transactions have no inputs to fetch.
for (unsigned int i = 0; i < vin.size(); i++)
{
COutPoint prevout = vin[i].prevout;
if (inputsRet.count(prevout.hash))
continue; // Got it already
// Read txindex
CTxIndex& txindex = inputsRet[prevout.hash].first;
bool fFound = true;
if ((fBlock || fMiner) && mapTestPool.count(prevout.hash))
{
// Get txindex from current proposed changes
txindex = mapTestPool.find(prevout.hash)->second;
}
else
{
// Read txindex from txdb
fFound = txdb.ReadTxIndex(prevout.hash, txindex);
}
if (!fFound && (fBlock || fMiner))
return fMiner ? false : error("FetchInputs() : %s prev tx %s index entry not found", GetHash().ToString(), prevout.hash.ToString());
// Read txPrev
CTransaction& txPrev = inputsRet[prevout.hash].second;
if (!fFound || txindex.pos == CDiskTxPos(1,1,1))
{
// Get prev tx from single transactions in memory
if (!mempool.lookup(prevout.hash, txPrev))
return error("FetchInputs() : %s mempool Tx prev not found %s", GetHash().ToString(), prevout.hash.ToString());
if (!fFound)
txindex.vSpent.resize(txPrev.vout.size());
}
else
{
// Get prev tx from disk
if (!txPrev.ReadFromDisk(txindex.pos))
return error("FetchInputs() : %s ReadFromDisk prev tx %s failed", GetHash().ToString(), prevout.hash.ToString());
}
}
// Make sure all prevout.n indexes are valid:
for (unsigned int i = 0; i < vin.size(); i++)
{
const COutPoint prevout = vin[i].prevout;
assert(inputsRet.count(prevout.hash) != 0);
const CTxIndex& txindex = inputsRet[prevout.hash].first;
const CTransaction& txPrev = inputsRet[prevout.hash].second;
if (prevout.n >= txPrev.vout.size() || prevout.n >= txindex.vSpent.size())
{
// Revisit this if/when transaction replacement is implemented and allows
// adding inputs:
fInvalid = true;
return DoS(100, error("FetchInputs() : %s prevout.n out of range %d %u %u prev tx %s\n%s", GetHash().ToString(), prevout.n, txPrev.vout.size(), txindex.vSpent.size(), prevout.hash.ToString(), txPrev.ToString()));
}
}
return true;
}
const CTxOut& CTransaction::GetOutputFor(const CTxIn& input, const MapPrevTx& inputs) const
{
MapPrevTx::const_iterator mi = inputs.find(input.prevout.hash);
if (mi == inputs.end())
throw std::runtime_error("CTransaction::GetOutputFor() : prevout.hash not found");
const CTransaction& txPrev = (mi->second).second;
if (input.prevout.n >= txPrev.vout.size())
throw std::runtime_error("CTransaction::GetOutputFor() : prevout.n out of range");
return txPrev.vout[input.prevout.n];
}
int64_t CTransaction::GetValueIn(const MapPrevTx& inputs) const
{
if (IsCoinBase())
return 0;
int64_t nResult = 0;
for (unsigned int i = 0; i < vin.size(); i++)
{
nResult += GetOutputFor(vin[i], inputs).nValue;
}
return nResult;
}
bool CTransaction::ConnectInputs(CTxDB& txdb, MapPrevTx inputs, map<uint256, CTxIndex>& mapTestPool, const CDiskTxPos& posThisTx,
const CBlockIndex* pindexBlock, bool fBlock, bool fMiner, unsigned int flags)
{
// Take over previous transactions' spent pointers
// fBlock is true when this is called from AcceptBlock when a new best-block is added to the blockchain
// fMiner is true when called from the internal bitcoin miner
// ... both are false when called from CTransaction::AcceptToMemoryPool
if (!IsCoinBase())
{
int64_t nValueIn = 0;
int64_t nFees = 0;
for (unsigned int i = 0; i < vin.size(); i++)
{
COutPoint prevout = vin[i].prevout;
assert(inputs.count(prevout.hash) > 0);
CTxIndex& txindex = inputs[prevout.hash].first;
CTransaction& txPrev = inputs[prevout.hash].second;
if (prevout.n >= txPrev.vout.size() || prevout.n >= txindex.vSpent.size())
return DoS(100, error("ConnectInputs() : %s prevout.n out of range %d %u %u prev tx %s\n%s", GetHash().ToString(), prevout.n, txPrev.vout.size(), txindex.vSpent.size(), prevout.hash.ToString(), txPrev.ToString()));
// If prev is coinbase or coinstake, check that it's matured
if (txPrev.IsCoinBase() || txPrev.IsCoinStake())
{
int nSpendDepth;
if (IsConfirmedInNPrevBlocks(txindex, pindexBlock, nCoinbaseMaturity, nSpendDepth))
return error("ConnectInputs() : tried to spend %s at depth %d", txPrev.IsCoinBase() ? "coinbase" : "coinstake", nSpendDepth);
}
// ppcoin: check transaction timestamp
if (txPrev.nTime > nTime)
return DoS(100, error("ConnectInputs() : transaction timestamp earlier than input transaction"));
if (IsProtocolV3(nTime))
{
if (txPrev.vout[prevout.n].IsEmpty())
return DoS(1, error("ConnectInputs() : special marker is not spendable"));
}
// Check for negative or overflow input values
nValueIn += txPrev.vout[prevout.n].nValue;
if (!MoneyRange(txPrev.vout[prevout.n].nValue) || !MoneyRange(nValueIn))
return DoS(100, error("ConnectInputs() : txin values out of range"));
}
// The first loop above does all the inexpensive checks.
// Only if ALL inputs pass do we perform expensive ECDSA signature checks.
// Helps prevent CPU exhaustion attacks.
for (unsigned int i = 0; i < vin.size(); i++)
{
COutPoint prevout = vin[i].prevout;
assert(inputs.count(prevout.hash) > 0);
CTxIndex& txindex = inputs[prevout.hash].first;
CTransaction& txPrev = inputs[prevout.hash].second;
// Check for conflicts (double-spend)
// This doesn't trigger the DoS code on purpose; if it did, it would make it easier
// for an attacker to attempt to split the network.
if (!txindex.vSpent[prevout.n].IsNull())
return fMiner ? false : error("ConnectInputs() : %s prev tx already used at %s", GetHash().ToString(), txindex.vSpent[prevout.n].ToString());
// Skip ECDSA signature verification when connecting blocks (fBlock=true)
// before the last blockchain checkpoint. This is safe because block merkle hashes are
// still computed and checked, and any change will be caught at the next checkpoint.
if (!(fBlock && (nBestHeight < Checkpoints::GetTotalBlocksEstimate())))
{
// Verify signature
if (!VerifySignature(txPrev, *this, i, flags, 0))
{
if (flags & STANDARD_NOT_MANDATORY_VERIFY_FLAGS) {
// Check whether the failure was caused by a
// non-mandatory script verification check, such as
// non-null dummy arguments;
// if so, don't trigger DoS protection to
// avoid splitting the network between upgraded and
// non-upgraded nodes.
if (VerifySignature(txPrev, *this, i, flags & ~STANDARD_NOT_MANDATORY_VERIFY_FLAGS, 0))
return error("ConnectInputs() : %s non-mandatory VerifySignature failed", GetHash().ToString());
}
// Failures of other flags indicate a transaction that is
// invalid in new blocks, e.g. a invalid P2SH. We DoS ban
// such nodes as they are not following the protocol. That
// said during an upgrade careful thought should be taken
// as to the correct behavior - we may want to continue
// peering with non-upgraded nodes even after a soft-fork
// super-majority vote has passed.
return DoS(100,error("ConnectInputs() : %s VerifySignature failed", GetHash().ToString()));
}
}
// Mark outpoints as spent
txindex.vSpent[prevout.n] = posThisTx;
// Write back
if (fBlock || fMiner)
{
mapTestPool[prevout.hash] = txindex;
}
}
if (!IsCoinStake())
{
if (nValueIn < GetValueOut())
return DoS(100, error("ConnectInputs() : %s value in < value out", GetHash().ToString()));
// Tally transaction fees
int64_t nTxFee = nValueIn - GetValueOut();
if (nTxFee < 0)
return DoS(100, error("ConnectInputs() : %s nTxFee < 0", GetHash().ToString()));
if (!IsProtocolV3(nTime)) {
// enforce transaction fees for every block
int64_t nRequiredFee = GetMinFee(*this);
if (nTxFee < nRequiredFee)
return fBlock? DoS(100, error("ConnectInputs() : %s not paying required fee=%s, paid=%s", GetHash().ToString(), FormatMoney(nRequiredFee), FormatMoney(nTxFee))) : false;
}
nFees += nTxFee;
if (!MoneyRange(nFees))
return DoS(100, error("ConnectInputs() : nFees out of range"));
}
}
return true;
}
bool CBlock::DisconnectBlock(CTxDB& txdb, CBlockIndex* pindex)
{
// Disconnect in reverse order
for (int i = vtx.size()-1; i >= 0; i--)
if (!vtx[i].DisconnectInputs(txdb))
return false;
// Update block index on disk without changing it in memory.
// The memory index structure will be changed after the db commits.
if (pindex->pprev)
{
CDiskBlockIndex blockindexPrev(pindex->pprev);
blockindexPrev.hashNext = 0;
if (!txdb.WriteBlockIndex(blockindexPrev))
return error("DisconnectBlock() : WriteBlockIndex failed");
}
// ppcoin: clean up wallet after disconnecting coinstake
BOOST_FOREACH(CTransaction& tx, vtx)
SyncWithWallets(tx, this, false);
return true;
}
bool CBlock::ConnectBlock(CTxDB& txdb, CBlockIndex* pindex, bool fJustCheck)
{
// Check it again in case a previous version let a bad block in, but skip BlockSig checking
if (!CheckBlock(!fJustCheck, !fJustCheck, false))
return false;
unsigned int flags = SCRIPT_VERIFY_NOCACHE;
if (IsProtocolV3(nTime))
{
flags |= SCRIPT_VERIFY_NULLDUMMY |
SCRIPT_VERIFY_STRICTENC |
SCRIPT_VERIFY_ALLOW_EMPTY_SIG |
SCRIPT_VERIFY_FIX_HASHTYPE |
SCRIPT_VERIFY_CHECKLOCKTIMEVERIFY;
}
//// issue here: it doesn't know the version
unsigned int nTxPos;
if (fJustCheck)
// FetchInputs treats CDiskTxPos(1,1,1) as a special "refer to memorypool" indicator
// Since we're just checking the block and not actually connecting it, it might not (and probably shouldn't) be on the disk to get the transaction from
nTxPos = 1;
else
nTxPos = pindex->nBlockPos + ::GetSerializeSize(CBlock(), SER_DISK, CLIENT_VERSION) - (2 * GetSizeOfCompactSize(0)) + GetSizeOfCompactSize(vtx.size());
map<uint256, CTxIndex> mapQueuedChanges;
int64_t nFees = 0;
int64_t nValueIn = 0;
int64_t nValueOut = 0;
int64_t nStakeReward = 0;
unsigned int nSigOps = 0;
BOOST_FOREACH(CTransaction& tx, vtx)
{
uint256 hashTx = tx.GetHash();
// Do not allow blocks that contain transactions which 'overwrite' older transactions,
// unless those are already completely spent.
// If such overwrites are allowed, coinbases and transactions depending upon those
// can be duplicated to remove the ability to spend the first instance -- even after
// being sent to another address.
// See BIP30 and http://r6.ca/blog/20120206T005236Z.html for more information.
// This logic is not necessary for memory pool transactions, as AcceptToMemoryPool
// already refuses previously-known transaction ids entirely.
// This rule was originally applied all blocks whose timestamp was after March 15, 2012, 0:00 UTC.
// Now that the whole chain is irreversibly beyond that time it is applied to all blocks except the
// two in the chain that violate it. This prevents exploiting the issue against nodes in their
// initial block download.
CTxIndex txindexOld;
if (txdb.ReadTxIndex(hashTx, txindexOld)) {
BOOST_FOREACH(CDiskTxPos &pos, txindexOld.vSpent)
if (pos.IsNull())
return DoS(100, error("ConnectBlock() : tried to overwrite transaction"));
}
nSigOps += GetLegacySigOpCount(tx);
if (nSigOps > MAX_BLOCK_SIGOPS)
return DoS(100, error("ConnectBlock() : too many sigops"));
CDiskTxPos posThisTx(pindex->nFile, pindex->nBlockPos, nTxPos);
if (!fJustCheck)
nTxPos += ::GetSerializeSize(tx, SER_DISK, CLIENT_VERSION);
MapPrevTx mapInputs;
if (tx.IsCoinBase())
nValueOut += tx.GetValueOut();
else
{
bool fInvalid;
if (!tx.FetchInputs(txdb, mapQueuedChanges, true, false, mapInputs, fInvalid))
return false;
// Add in sigops done by pay-to-script-hash inputs;
// this is to prevent a "rogue miner" from creating
// an incredibly-expensive-to-validate block.
nSigOps += GetP2SHSigOpCount(tx, mapInputs);
if (nSigOps > MAX_BLOCK_SIGOPS)
return DoS(100, error("ConnectBlock() : too many sigops"));
int64_t nTxValueIn = tx.GetValueIn(mapInputs);
int64_t nTxValueOut = tx.GetValueOut();
nValueIn += nTxValueIn;
nValueOut += nTxValueOut;
if (!tx.IsCoinStake())
nFees += nTxValueIn - nTxValueOut;
if (tx.IsCoinStake())
nStakeReward = nTxValueOut - nTxValueIn;
if (!tx.ConnectInputs(txdb, mapInputs, mapQueuedChanges, posThisTx, pindex, true, false, flags))
return false;
}
mapQueuedChanges[hashTx] = CTxIndex(posThisTx, tx.vout.size());
}
if (IsProofOfWork())
{
int64_t nReward = GetProofOfWorkReward(nFees);
// Check coinbase reward
if (vtx[0].GetValueOut() > nReward)
return DoS(50, error("ConnectBlock() : coinbase reward exceeded (actual=%d vs calculated=%d)",
vtx[0].GetValueOut(),
nReward));
}
if (IsProofOfStake())
{
// ppcoin: coin stake tx earns reward instead of paying fee
uint64_t nCoinAge;
if (!vtx[1].GetCoinAge(txdb, pindex->pprev, nCoinAge))
return error("ConnectBlock() : %s unable to get coin age for coinstake", vtx[1].GetHash().ToString());
int64_t nCalculatedStakeReward = GetProofOfStakeReward(pindex->pprev, nCoinAge, nFees);
if (nStakeReward > nCalculatedStakeReward)
return DoS(100, error("ConnectBlock() : coinstake pays too much(actual=%d vs calculated=%d)", nStakeReward, nCalculatedStakeReward));
}
// ppcoin: track money supply and mint amount info
pindex->nMint = nValueOut - nValueIn + nFees;
pindex->nMoneySupply = (pindex->pprev? pindex->pprev->nMoneySupply : 0) + nValueOut - nValueIn;
if (!txdb.WriteBlockIndex(CDiskBlockIndex(pindex)))
return error("Connect() : WriteBlockIndex for pindex failed");
if (fJustCheck)
return true;
// Write queued txindex changes
for (map<uint256, CTxIndex>::iterator mi = mapQueuedChanges.begin(); mi != mapQueuedChanges.end(); ++mi)
{
if (!txdb.UpdateTxIndex((*mi).first, (*mi).second))
return error("ConnectBlock() : UpdateTxIndex failed");
}
// Update block index on disk without changing it in memory.
// The memory index structure will be changed after the db commits.
if (pindex->pprev)
{
CDiskBlockIndex blockindexPrev(pindex->pprev);
blockindexPrev.hashNext = pindex->GetBlockHash();
if (!txdb.WriteBlockIndex(blockindexPrev))
return error("ConnectBlock() : WriteBlockIndex failed");
}
// Watch for transactions paying to me
BOOST_FOREACH(CTransaction& tx, vtx)
SyncWithWallets(tx, this);
return true;
}
bool static Reorganize(CTxDB& txdb, CBlockIndex* pindexNew)
{
LogPrintf("REORGANIZE\n");
// Find the fork
CBlockIndex* pfork = pindexBest;
CBlockIndex* plonger = pindexNew;
while (pfork != plonger)
{
while (plonger->nHeight > pfork->nHeight)
if (!(plonger = plonger->pprev))
return error("Reorganize() : plonger->pprev is null");
if (pfork == plonger)
break;
if (!(pfork = pfork->pprev))
return error("Reorganize() : pfork->pprev is null");
}
// List of what to disconnect
vector<CBlockIndex*> vDisconnect;
for (CBlockIndex* pindex = pindexBest; pindex != pfork; pindex = pindex->pprev)
vDisconnect.push_back(pindex);
// List of what to connect
vector<CBlockIndex*> vConnect;
for (CBlockIndex* pindex = pindexNew; pindex != pfork; pindex = pindex->pprev)
vConnect.push_back(pindex);
reverse(vConnect.begin(), vConnect.end());
LogPrintf("REORGANIZE: Disconnect %u blocks; %s..%s\n", vDisconnect.size(), pfork->GetBlockHash().ToString(), pindexBest->GetBlockHash().ToString());
LogPrintf("REORGANIZE: Connect %u blocks; %s..%s\n", vConnect.size(), pfork->GetBlockHash().ToString(), pindexNew->GetBlockHash().ToString());
// Disconnect shorter branch
list<CTransaction> vResurrect;
BOOST_FOREACH(CBlockIndex* pindex, vDisconnect)
{
CBlock block;
if (!block.ReadFromDisk(pindex))
return error("Reorganize() : ReadFromDisk for disconnect failed");
if (!block.DisconnectBlock(txdb, pindex))
return error("Reorganize() : DisconnectBlock %s failed", pindex->GetBlockHash().ToString());
// Queue memory transactions to resurrect.
// We only do this for blocks after the last checkpoint (reorganisation before that
// point should only happen with -reindex/-loadblock, or a misbehaving peer.
BOOST_REVERSE_FOREACH(const CTransaction& tx, block.vtx)
if (!(tx.IsCoinBase() || tx.IsCoinStake()) && pindex->nHeight > Checkpoints::GetTotalBlocksEstimate())
vResurrect.push_front(tx);
}
// Connect longer branch
vector<CTransaction> vDelete;
for (unsigned int i = 0; i < vConnect.size(); i++)
{
CBlockIndex* pindex = vConnect[i];
CBlock block;
if (!block.ReadFromDisk(pindex))
return error("Reorganize() : ReadFromDisk for connect failed");
if (!block.ConnectBlock(txdb, pindex))
{
// Invalid block
return error("Reorganize() : ConnectBlock %s failed", pindex->GetBlockHash().ToString());
}
// Queue memory transactions to delete
BOOST_FOREACH(const CTransaction& tx, block.vtx)
vDelete.push_back(tx);
}
if (!txdb.WriteHashBestChain(pindexNew->GetBlockHash()))
return error("Reorganize() : WriteHashBestChain failed");
// Make sure it's successfully written to disk before changing memory structure
if (!txdb.TxnCommit())
return error("Reorganize() : TxnCommit failed");
// Disconnect shorter branch
BOOST_FOREACH(CBlockIndex* pindex, vDisconnect)
if (pindex->pprev)
pindex->pprev->pnext = NULL;
// Connect longer branch
BOOST_FOREACH(CBlockIndex* pindex, vConnect)
if (pindex->pprev)
pindex->pprev->pnext = pindex;
// Resurrect memory transactions that were in the disconnected branch
BOOST_FOREACH(CTransaction& tx, vResurrect)
AcceptToMemoryPool(mempool, tx, false, NULL);
// Delete redundant memory transactions that are in the connected branch
BOOST_FOREACH(CTransaction& tx, vDelete) {
mempool.remove(tx);
mempool.removeConflicts(tx);
}
LogPrintf("REORGANIZE: done\n");
return true;
}
// Called from inside SetBestChain: attaches a block to the new best chain being built
bool CBlock::SetBestChainInner(CTxDB& txdb, CBlockIndex *pindexNew)
{
uint256 hash = GetHash();
// Adding to current best branch
if (!ConnectBlock(txdb, pindexNew) || !txdb.WriteHashBestChain(hash))
{
txdb.TxnAbort();
InvalidChainFound(pindexNew);
return false;
}
if (!txdb.TxnCommit())
return error("SetBestChain() : TxnCommit failed");
// Add to current best branch
pindexNew->pprev->pnext = pindexNew;
// Delete redundant memory transactions
BOOST_FOREACH(CTransaction& tx, vtx)
mempool.remove(tx);
return true;
}
bool CBlock::SetBestChain(CTxDB& txdb, CBlockIndex* pindexNew)
{
uint256 hash = GetHash();
if (!txdb.TxnBegin())
return error("SetBestChain() : TxnBegin failed");
if (pindexGenesisBlock == NULL && hash == Params().HashGenesisBlock())
{
txdb.WriteHashBestChain(hash);
if (!txdb.TxnCommit())
return error("SetBestChain() : TxnCommit failed");
pindexGenesisBlock = pindexNew;
}
else if (hashPrevBlock == hashBestChain)
{
if (!SetBestChainInner(txdb, pindexNew))
return error("SetBestChain() : SetBestChainInner failed");
}
else
{
// the first block in the new chain that will cause it to become the new best chain
CBlockIndex *pindexIntermediate = pindexNew;
// list of blocks that need to be connected afterwards
std::vector<CBlockIndex*> vpindexSecondary;
// Reorganize is costly in terms of db load, as it works in a single db transaction.
// Try to limit how much needs to be done inside
while (pindexIntermediate->pprev && pindexIntermediate->pprev->nChainTrust > pindexBest->nChainTrust)
{
vpindexSecondary.push_back(pindexIntermediate);
pindexIntermediate = pindexIntermediate->pprev;
}
if (!vpindexSecondary.empty())
LogPrintf("Postponing %u reconnects\n", vpindexSecondary.size());
// Switch to new best branch
if (!Reorganize(txdb, pindexIntermediate))
{
txdb.TxnAbort();
InvalidChainFound(pindexNew);
return error("SetBestChain() : Reorganize failed");
}
// Connect further blocks
BOOST_REVERSE_FOREACH(CBlockIndex *pindex, vpindexSecondary)
{
CBlock block;
if (!block.ReadFromDisk(pindex))
{
LogPrintf("SetBestChain() : ReadFromDisk failed\n");
break;
}
if (!txdb.TxnBegin()) {
LogPrintf("SetBestChain() : TxnBegin 2 failed\n");
break;
}
// errors now are not fatal, we still did a reorganisation to a new chain in a valid way
if (!block.SetBestChainInner(txdb, pindex))
break;
}
}
// Update best block in wallet (so we can detect restored wallets)
bool fIsInitialDownload = IsInitialBlockDownload();
if ((pindexNew->nHeight % 20160) == 0 || (!fIsInitialDownload && (pindexNew->nHeight % 144) == 0))
{
const CBlockLocator locator(pindexNew);
g_signals.SetBestChain(locator);
}
// New best block
hashBestChain = hash;
pindexBest = pindexNew;
pblockindexFBBHLast = NULL;
nBestHeight = pindexBest->nHeight;
nBestChainTrust = pindexNew->nChainTrust;
nTimeBestReceived = GetTime();
mempool.AddTransactionsUpdated(1);
uint256 nBestBlockTrust = pindexBest->nHeight != 0 ? (pindexBest->nChainTrust - pindexBest->pprev->nChainTrust) : pindexBest->nChainTrust;
LogPrintf("SetBestChain: new best=%s height=%d trust=%s blocktrust=%d date=%s\n",
hashBestChain.ToString(), nBestHeight,
CBigNum(nBestChainTrust).ToString(),
nBestBlockTrust.GetLow64(),
DateTimeStrFormat("%x %H:%M:%S", pindexBest->GetBlockTime()));
// Check the version of the last 100 blocks to see if we need to upgrade:
if (!fIsInitialDownload)
{
int nUpgraded = 0;
const CBlockIndex* pindex = pindexBest;
for (int i = 0; i < 100 && pindex != NULL; i++)
{
if (pindex->nVersion > CBlock::CURRENT_VERSION)
++nUpgraded;
pindex = pindex->pprev;
}
if (nUpgraded > 0)
LogPrintf("SetBestChain: %d of last 100 blocks above version %d\n", nUpgraded, (int)CBlock::CURRENT_VERSION);
if (nUpgraded > 100/2)
// strMiscWarning is read by GetWarnings(), called by Qt and the JSON-RPC code to warn the user:
strMiscWarning = _("Warning: This version is obsolete, upgrade required!");
}
std::string strCmd = GetArg("-blocknotify", "");
if (!fIsInitialDownload && !strCmd.empty())
{
boost::replace_all(strCmd, "%s", hashBestChain.GetHex());
boost::thread t(runCommand, strCmd); // thread runs free
}
return true;
}
// ppcoin: total coin age spent in transaction, in the unit of coin-days.
// Only those coins meeting minimum age requirement counts. As those
// transactions not in main chain are not currently indexed so we
// might not find out about their coin age. Older transactions are
// guaranteed to be in main chain by sync-checkpoint. This rule is
// introduced to help nodes establish a consistent view of the coin
// age (trust score) of competing branches.
bool CTransaction::GetCoinAge(CTxDB& txdb, const CBlockIndex* pindexPrev, uint64_t& nCoinAge) const
{
CBigNum bnCentSecond = 0; // coin age in the unit of cent-seconds
nCoinAge = 0;
if (IsCoinBase())
return true;
BOOST_FOREACH(const CTxIn& txin, vin)
{
// First try finding the previous transaction in database
CTransaction txPrev;
CTxIndex txindex;
if (!txPrev.ReadFromDisk(txdb, txin.prevout, txindex))
continue; // previous transaction not in main chain
if (nTime < txPrev.nTime)
return false; // Transaction timestamp violation
if (IsProtocolV3(nTime))
{
int nSpendDepth;
if (IsConfirmedInNPrevBlocks(txindex, pindexPrev, nStakeMinConfirmations - 1, nSpendDepth))
{
LogPrint("coinage", "coin age skip nSpendDepth=%d\n", nSpendDepth + 1);
continue; // only count coins meeting min confirmations requirement
}
}
else
{
// Read block header
CBlock block;
if (!block.ReadFromDisk(txindex.pos.nFile, txindex.pos.nBlockPos, false))
return false; // unable to read block of previous transaction
if (block.GetBlockTime() + nStakeMinAge > nTime)
continue; // only count coins meeting min age requirement
}
int64_t nValueIn = txPrev.vout[txin.prevout.n].nValue;
bnCentSecond += CBigNum(nValueIn) * (nTime-txPrev.nTime) / CENT;
LogPrint("coinage", "coin age nValueIn=%d nTimeDiff=%d bnCentSecond=%s\n", nValueIn, nTime - txPrev.nTime, bnCentSecond.ToString());
}
CBigNum bnCoinDay = bnCentSecond * CENT / COIN / (24 * 60 * 60);
LogPrint("coinage", "coin age bnCoinDay=%s\n", bnCoinDay.ToString());
nCoinAge = bnCoinDay.getuint64();
return true;
}
bool CBlock::AddToBlockIndex(unsigned int nFile, unsigned int nBlockPos, const uint256& hashProof)
{
AssertLockHeld(cs_main);
// Check for duplicate
uint256 hash = GetHash();
if (mapBlockIndex.count(hash))
return error("AddToBlockIndex() : %s already exists", hash.ToString());
// Construct new block index object
CBlockIndex* pindexNew = new CBlockIndex(nFile, nBlockPos, *this);
if (!pindexNew)
return error("AddToBlockIndex() : new CBlockIndex failed");
pindexNew->phashBlock = &hash;
map<uint256, CBlockIndex*>::iterator miPrev = mapBlockIndex.find(hashPrevBlock);
if (miPrev != mapBlockIndex.end())
{
pindexNew->pprev = (*miPrev).second;
pindexNew->nHeight = pindexNew->pprev->nHeight + 1;
}
// ppcoin: compute chain trust score
pindexNew->nChainTrust = (pindexNew->pprev ? pindexNew->pprev->nChainTrust : 0) + pindexNew->GetBlockTrust();
// ppcoin: compute stake entropy bit for stake modifier
if (!pindexNew->SetStakeEntropyBit(GetStakeEntropyBit()))
return error("AddToBlockIndex() : SetStakeEntropyBit() failed");
// Record proof hash value
pindexNew->hashProof = hashProof;
// ppcoin: compute stake modifier
uint64_t nStakeModifier = 0;
bool fGeneratedStakeModifier = false;
if (!ComputeNextStakeModifier(pindexNew->pprev, nStakeModifier, fGeneratedStakeModifier))
return error("AddToBlockIndex() : ComputeNextStakeModifier() failed");
pindexNew->SetStakeModifier(nStakeModifier, fGeneratedStakeModifier);
pindexNew->bnStakeModifierV2 = ComputeStakeModifierV2(pindexNew->pprev, IsProofOfWork() ? hash : vtx[1].vin[0].prevout.hash);
// Add to mapBlockIndex
map<uint256, CBlockIndex*>::iterator mi = mapBlockIndex.insert(make_pair(hash, pindexNew)).first;
if (pindexNew->IsProofOfStake())
setStakeSeen.insert(make_pair(pindexNew->prevoutStake, pindexNew->nStakeTime));
pindexNew->phashBlock = &((*mi).first);
// Write to disk block index
CTxDB txdb;
if (!txdb.TxnBegin())
return false;
txdb.WriteBlockIndex(CDiskBlockIndex(pindexNew));
if (!txdb.TxnCommit())
return false;
// New best
if (pindexNew->nChainTrust > nBestChainTrust)
if (!SetBestChain(txdb, pindexNew))
return false;
if (pindexNew == pindexBest)
{
// Notify UI to display prev block's coinbase if it was ours
static uint256 hashPrevBestCoinBase;
g_signals.UpdatedTransaction(hashPrevBestCoinBase);
hashPrevBestCoinBase = vtx[0].GetHash();
}
return true;
}
bool CBlock::CheckBlock(bool fCheckPOW, bool fCheckMerkleRoot, bool fCheckSig) const
{
// These are checks that are independent of context
// that can be verified before saving an orphan block.
// Size limits
if (vtx.empty() || vtx.size() > MAX_BLOCK_SIZE || ::GetSerializeSize(*this, SER_NETWORK, PROTOCOL_VERSION) > MAX_BLOCK_SIZE)
return DoS(100, error("CheckBlock() : size limits failed"));
// Check proof of work matches claimed amount
if (fCheckPOW && IsProofOfWork() && !CheckProofOfWork(GetPoWHash(), nBits))
return DoS(50, error("CheckBlock() : proof of work failed"));
// Check timestamp
if (GetBlockTime() > FutureDriftV2(GetAdjustedTime()))
return error("CheckBlock() : block timestamp too far in the future");
// First transaction must be coinbase, the rest must not be
if (vtx.empty() || !vtx[0].IsCoinBase())
return DoS(100, error("CheckBlock() : first tx is not coinbase"));
for (unsigned int i = 1; i < vtx.size(); i++)
if (vtx[i].IsCoinBase())
return DoS(100, error("CheckBlock() : more than one coinbase"));
if (IsProofOfStake())
{
// Coinbase output should be empty if proof-of-stake block
if (vtx[0].vout.size() != 1 || !vtx[0].vout[0].IsEmpty())
return DoS(100, error("CheckBlock() : coinbase output not empty for proof-of-stake block"));
// Second transaction must be coinstake, the rest must not be
if (vtx.empty() || !vtx[1].IsCoinStake())
return DoS(100, error("CheckBlock() : second tx is not coinstake"));
for (unsigned int i = 2; i < vtx.size(); i++)
if (vtx[i].IsCoinStake())
return DoS(100, error("CheckBlock() : more than one coinstake"));
}
// Check proof-of-stake block signature
if (fCheckSig && !CheckBlockSignature())
return DoS(100, error("CheckBlock() : bad proof-of-stake block signature"));
// Check transactions
BOOST_FOREACH(const CTransaction& tx, vtx)
{
if (!tx.CheckTransaction())
return DoS(tx.nDoS, error("CheckBlock() : CheckTransaction failed"));
// ppcoin: check transaction timestamp
if (GetBlockTime() < (int64_t)tx.nTime)
return DoS(50, error("CheckBlock() : block timestamp earlier than transaction timestamp"));
}
// Check for duplicate txids. This is caught by ConnectInputs(),
// but catching it earlier avoids a potential DoS attack:
set<uint256> uniqueTx;
BOOST_FOREACH(const CTransaction& tx, vtx)
{
uniqueTx.insert(tx.GetHash());
}
if (uniqueTx.size() != vtx.size())
return DoS(100, error("CheckBlock() : duplicate transaction"));
unsigned int nSigOps = 0;
BOOST_FOREACH(const CTransaction& tx, vtx)
{
nSigOps += GetLegacySigOpCount(tx);
}
if (nSigOps > MAX_BLOCK_SIGOPS)
return DoS(100, error("CheckBlock() : out-of-bounds SigOpCount"));
// Check merkle root
if (fCheckMerkleRoot && hashMerkleRoot != BuildMerkleTree())
return DoS(100, error("CheckBlock() : hashMerkleRoot mismatch"));
return true;
}
bool CBlock::AcceptBlock()
{
AssertLockHeld(cs_main);
if (!IsProtocolV3(nTime)) {
if (nVersion > CURRENT_VERSION)
return DoS(100, error("AcceptBlock() : reject unknown block version %d", nVersion));
}
// Check for duplicate
uint256 hash = GetHash();
if (mapBlockIndex.count(hash))
return error("AcceptBlock() : block already in mapBlockIndex");
// Get prev block index
map<uint256, CBlockIndex*>::iterator mi = mapBlockIndex.find(hashPrevBlock);
if (mi == mapBlockIndex.end())
return DoS(10, error("AcceptBlock() : prev block not found"));
CBlockIndex* pindexPrev = (*mi).second;
int nHeight = pindexPrev->nHeight+1;
if (IsProtocolV2(nHeight) && nVersion < 7)
return DoS(100, error("AcceptBlock() : reject too old nVersion = %d", nVersion));
else if (!IsProtocolV2(nHeight) && nVersion > 6)
return DoS(100, error("AcceptBlock() : reject too new nVersion = %d", nVersion));
if (IsProofOfWork() && nHeight > Params().LastPOWBlock())
return DoS(100, error("AcceptBlock() : reject proof-of-work at height %d", nHeight));
// Check coinbase timestamp
if (GetBlockTime() > FutureDrift((int64_t)vtx[0].nTime, nHeight))
return DoS(50, error("AcceptBlock() : coinbase timestamp is too early"));
// Check coinstake timestamp
if (IsProofOfStake() && !CheckCoinStakeTimestamp(nHeight, GetBlockTime(), (int64_t)vtx[1].nTime))
return DoS(50, error("AcceptBlock() : coinstake timestamp violation nTimeBlock=%d nTimeTx=%u", GetBlockTime(), vtx[1].nTime));
// Check proof-of-work or proof-of-stake
if (nBits != GetNextTargetRequired(pindexPrev, IsProofOfStake()))
return DoS(100, error("AcceptBlock() : incorrect %s", IsProofOfWork() ? "proof-of-work" : "proof-of-stake"));
// Check timestamp against prev
if (GetBlockTime() <= pindexPrev->GetPastTimeLimit() || FutureDrift(GetBlockTime(), nHeight) < pindexPrev->GetBlockTime())
return error("AcceptBlock() : block's timestamp is too early");
// Check that all transactions are finalized
BOOST_FOREACH(const CTransaction& tx, vtx)
if (!IsFinalTx(tx, nHeight, GetBlockTime()))
return DoS(10, error("AcceptBlock() : contains a non-final transaction"));
// Check that the block chain matches the known block chain up to a checkpoint
if (!Checkpoints::CheckHardened(nHeight, hash))
return DoS(100, error("AcceptBlock() : rejected by hardened checkpoint lock-in at %d", nHeight));
uint256 hashProof;
// Verify hash target and signature of coinstake tx
if (IsProofOfStake())
{
uint256 targetProofOfStake;
if (!CheckProofOfStake(pindexPrev, vtx[1], nBits, hashProof, targetProofOfStake))
{
return error("AcceptBlock() : check proof-of-stake failed for block %s", hash.ToString());
}
}
// PoW is checked in CheckBlock()
if (IsProofOfWork())
{
hashProof = GetPoWHash();
}
// Check that the block satisfies synchronized checkpoint
if (!Checkpoints::CheckSync(nHeight))
return error("AcceptBlock() : rejected by synchronized checkpoint");
// Enforce rule that the coinbase starts with serialized block height
CScript expect = CScript() << nHeight;
if (vtx[0].vin[0].scriptSig.size() < expect.size() ||
!std::equal(expect.begin(), expect.end(), vtx[0].vin[0].scriptSig.begin()))
return DoS(100, error("AcceptBlock() : block height mismatch in coinbase"));
// Write block to history file
if (!CheckDiskSpace(::GetSerializeSize(*this, SER_DISK, CLIENT_VERSION)))
return error("AcceptBlock() : out of disk space");
unsigned int nFile = -1;
unsigned int nBlockPos = 0;
if (!WriteToDisk(nFile, nBlockPos))
return error("AcceptBlock() : WriteToDisk failed");
if (!AddToBlockIndex(nFile, nBlockPos, hashProof))
return error("AcceptBlock() : AddToBlockIndex failed");
// Relay inventory, but don't relay old inventory during initial block download
int nBlockEstimate = Checkpoints::GetTotalBlocksEstimate();
if (hashBestChain == hash)
{
LOCK(cs_vNodes);
BOOST_FOREACH(CNode* pnode, vNodes)
if (nBestHeight > (pnode->nStartingHeight != -1 ? pnode->nStartingHeight - 2000 : nBlockEstimate))
pnode->PushInventory(CInv(MSG_BLOCK, hash));
}
return true;
}
uint256 CBlockIndex::GetBlockTrust() const
{
CBigNum bnTarget;
bnTarget.SetCompact(nBits);
if (bnTarget <= 0)
return 0;
return ((CBigNum(1)<<256) / (bnTarget+1)).getuint256();
}
bool CBlockIndex::IsSuperMajority(int minVersion, const CBlockIndex* pstart, unsigned int nRequired, unsigned int nToCheck)
{
unsigned int nFound = 0;
for (unsigned int i = 0; i < nToCheck && nFound < nRequired && pstart != NULL; i++)
{
if (pstart->nVersion >= minVersion)
++nFound;
pstart = pstart->pprev;
}
return (nFound >= nRequired);
}
void PushGetBlocks(CNode* pnode, CBlockIndex* pindexBegin, uint256 hashEnd)
{
// Filter out duplicate requests
if (pindexBegin == pnode->pindexLastGetBlocksBegin && hashEnd == pnode->hashLastGetBlocksEnd)
return;
pnode->pindexLastGetBlocksBegin = pindexBegin;
pnode->hashLastGetBlocksEnd = hashEnd;
pnode->PushMessage("getblocks", CBlockLocator(pindexBegin), hashEnd);
}
bool static IsCanonicalBlockSignature(CBlock* pblock, bool checkLowS)
{
if (pblock->IsProofOfWork()) {
return pblock->vchBlockSig.empty();
}
return checkLowS ? IsLowDERSignature(pblock->vchBlockSig, false) : IsDERSignature(pblock->vchBlockSig, false);
}
bool ProcessBlock(CNode* pfrom, CBlock* pblock)
{
AssertLockHeld(cs_main);
// Check for duplicate
uint256 hash = pblock->GetHash();
if (mapBlockIndex.count(hash))
return error("ProcessBlock() : already have block %d %s", mapBlockIndex[hash]->nHeight, hash.ToString());
if (mapOrphanBlocks.count(hash))
return error("ProcessBlock() : already have block (orphan) %s", hash.ToString());
// ppcoin: check proof-of-stake
// Limited duplicity on stake: prevents block flood attack
// Duplicate stake allowed only when there is orphan child block
if (!fReindex && !fImporting && pblock->IsProofOfStake() && setStakeSeen.count(pblock->GetProofOfStake()) && !mapOrphanBlocksByPrev.count(hash))
return error("ProcessBlock() : duplicate proof-of-stake (%s, %d) for block %s", pblock->GetProofOfStake().first.ToString(), pblock->GetProofOfStake().second, hash.ToString());
if (pblock->hashPrevBlock != hashBestChain)
{
// Extra checks to prevent "fill up memory by spamming with bogus blocks"
const CBlockIndex* pcheckpoint = Checkpoints::AutoSelectSyncCheckpoint();
int64_t deltaTime = pblock->GetBlockTime() - pcheckpoint->nTime;
if (deltaTime < 0)
{
if (pfrom)
pfrom->Misbehaving(1);
return error("ProcessBlock() : block with timestamp before last checkpoint");
}
}
if (!IsCanonicalBlockSignature(pblock, false)) {
if (pfrom && pfrom->nVersion >= CANONICAL_BLOCK_SIG_VERSION) {
pfrom->Misbehaving(100);
}
return error("ProcessBlock(): bad block signature encoding");
}
if (!IsCanonicalBlockSignature(pblock, true)) {
if (pfrom && pfrom->nVersion >= CANONICAL_BLOCK_SIG_LOW_S_VERSION) {
pfrom->Misbehaving(100);
return error("ProcessBlock(): bad block signature encoding (low-s)");
}
if (!EnsureLowS(pblock->vchBlockSig))
return error("ProcessBlock(): EnsureLowS failed");
}
// Preliminary checks
if (!pblock->CheckBlock())
return error("ProcessBlock() : CheckBlock FAILED");
// If we don't already have its previous block, shunt it off to holding area until we get it
if (!mapBlockIndex.count(pblock->hashPrevBlock))
{
LogPrintf("ProcessBlock: ORPHAN BLOCK %lu, prev=%s\n", (unsigned long)mapOrphanBlocks.size(), pblock->hashPrevBlock.ToString());
// Accept orphans as long as there is a node to request its parents from
if (pfrom) {
// ppcoin: check proof-of-stake
if (pblock->IsProofOfStake())
{
// Limited duplicity on stake: prevents block flood attack
// Duplicate stake allowed only when there is orphan child block
if (setStakeSeenOrphan.count(pblock->GetProofOfStake()) && !mapOrphanBlocksByPrev.count(hash))
return error("ProcessBlock() : duplicate proof-of-stake (%s, %d) for orphan block %s", pblock->GetProofOfStake().first.ToString(), pblock->GetProofOfStake().second, hash.ToString());
}
PruneOrphanBlocks();
COrphanBlock* pblock2 = new COrphanBlock();
{
CDataStream ss(SER_DISK, CLIENT_VERSION);
ss << *pblock;
pblock2->vchBlock = std::vector<unsigned char>(ss.begin(), ss.end());
}
pblock2->hashBlock = hash;
pblock2->hashPrev = pblock->hashPrevBlock;
pblock2->stake = pblock->GetProofOfStake();
nOrphanBlocksSize += pblock2->vchBlock.size();
mapOrphanBlocks.insert(make_pair(hash, pblock2));
mapOrphanBlocksByPrev.insert(make_pair(pblock2->hashPrev, pblock2));
if (pblock->IsProofOfStake())
setStakeSeenOrphan.insert(pblock->GetProofOfStake());
// Ask this guy to fill in what we're missing
PushGetBlocks(pfrom, pindexBest, GetOrphanRoot(hash));
// ppcoin: getblocks may not obtain the ancestor block rejected
// earlier by duplicate-stake check so we ask for it again directly
if (!IsInitialBlockDownload())
pfrom->AskFor(CInv(MSG_BLOCK, WantedByOrphan(pblock2)));
}
return true;
}
// Store to disk
if (!pblock->AcceptBlock())
return error("ProcessBlock() : AcceptBlock FAILED");
// Recursively process any orphan blocks that depended on this one
vector<uint256> vWorkQueue;
vWorkQueue.push_back(hash);
for (unsigned int i = 0; i < vWorkQueue.size(); i++)
{
uint256 hashPrev = vWorkQueue[i];
for (multimap<uint256, COrphanBlock*>::iterator mi = mapOrphanBlocksByPrev.lower_bound(hashPrev);
mi != mapOrphanBlocksByPrev.upper_bound(hashPrev);
++mi)
{
CBlock block;
{
CDataStream ss(mi->second->vchBlock, SER_DISK, CLIENT_VERSION);
ss >> block;
}
block.BuildMerkleTree();
if (block.AcceptBlock())
vWorkQueue.push_back(mi->second->hashBlock);
mapOrphanBlocks.erase(mi->second->hashBlock);
setStakeSeenOrphan.erase(block.GetProofOfStake());
nOrphanBlocksSize -= mi->second->vchBlock.size();
delete mi->second;
}
mapOrphanBlocksByPrev.erase(hashPrev);
}
LogPrintf("ProcessBlock: ACCEPTED\n");
return true;
}
#ifdef ENABLE_WALLET
// novacoin: attempt to generate suitable proof-of-stake
bool CBlock::SignBlock(CWallet& wallet, int64_t nFees)
{
// if we are trying to sign
// something except proof-of-stake block template
if (!vtx[0].vout[0].IsEmpty())
return false;
// if we are trying to sign
// a complete proof-of-stake block
if (IsProofOfStake())
return true;
static int64_t nLastCoinStakeSearchTime = GetAdjustedTime(); // startup timestamp
CKey key;
CTransaction txCoinStake;
if (IsProtocolV2(nBestHeight+1))
txCoinStake.nTime &= ~STAKE_TIMESTAMP_MASK;
int64_t nSearchTime = txCoinStake.nTime; // search to current time
if (nSearchTime > nLastCoinStakeSearchTime)
{
int64_t nSearchInterval = IsProtocolV2(nBestHeight+1) ? 1 : nSearchTime - nLastCoinStakeSearchTime;
if (wallet.CreateCoinStake(wallet, nBits, nSearchInterval, nFees, txCoinStake, key))
{
if (txCoinStake.nTime >= pindexBest->GetPastTimeLimit()+1)
{
// make sure coinstake would meet timestamp protocol
// as it would be the same as the block timestamp
vtx[0].nTime = nTime = txCoinStake.nTime;
// we have to make sure that we have no future timestamps in
// our transactions set
for (vector<CTransaction>::iterator it = vtx.begin(); it != vtx.end();)
if (it->nTime > nTime) { it = vtx.erase(it); } else { ++it; }
vtx.insert(vtx.begin() + 1, txCoinStake);
hashMerkleRoot = BuildMerkleTree();
// append a signature to our block
return key.Sign(GetHash(), vchBlockSig);
}
}
nLastCoinStakeSearchInterval = nSearchTime - nLastCoinStakeSearchTime;
nLastCoinStakeSearchTime = nSearchTime;
}
return false;
}
#endif
bool CBlock::CheckBlockSignature() const
{
if (IsProofOfWork())
return vchBlockSig.empty();
if (vchBlockSig.empty())
return false;
vector<valtype> vSolutions;
txnouttype whichType;
const CTxOut& txout = vtx[1].vout[1];
if (!Solver(txout.scriptPubKey, whichType, vSolutions))
return false;
if (whichType == TX_PUBKEY)
{
valtype& vchPubKey = vSolutions[0];
return CPubKey(vchPubKey).Verify(GetHash(), vchBlockSig);
}
else if (IsProtocolV3(nTime))
{
// Block signing key also can be encoded in the nonspendable output
// This allows to not pollute UTXO set with useless outputs e.g. in case of multisig staking
const CScript& script = txout.scriptPubKey;
CScript::const_iterator pc = script.begin();
opcodetype opcode;
valtype vchPushValue;
if (!script.GetOp(pc, opcode, vchPushValue))
return false;
if (opcode != OP_RETURN)
return false;
if (!script.GetOp(pc, opcode, vchPushValue))
return false;
if (!IsCompressedOrUncompressedPubKey(vchPushValue))
return false;
return CPubKey(vchPushValue).Verify(GetHash(), vchBlockSig);
}
return false;
}
bool CheckDiskSpace(uint64_t nAdditionalBytes)
{
uint64_t nFreeBytesAvailable = filesystem::space(GetDataDir()).available;
// Check for nMinDiskSpace bytes (currently 50MB)
if (nFreeBytesAvailable < nMinDiskSpace + nAdditionalBytes)
{
string strMessage = _("Error: Disk space is low!");
strMiscWarning = strMessage;
LogPrintf("*** %s\n", strMessage);
uiInterface.ThreadSafeMessageBox(strMessage, "", CClientUIInterface::MSG_ERROR);
StartShutdown();
return false;
}
return true;
}
static filesystem::path BlockFilePath(unsigned int nFile)
{
string strBlockFn = strprintf("blk%04u.dat", nFile);
return GetDataDir() / strBlockFn;
}
FILE* OpenBlockFile(unsigned int nFile, unsigned int nBlockPos, const char* pszMode)
{
if ((nFile < 1) || (nFile == (unsigned int) -1))
return NULL;
FILE* file = fopen(BlockFilePath(nFile).string().c_str(), pszMode);
if (!file)
return NULL;
if (nBlockPos != 0 && !strchr(pszMode, 'a') && !strchr(pszMode, 'w'))
{
if (fseek(file, nBlockPos, SEEK_SET) != 0)
{
fclose(file);
return NULL;
}
}
return file;
}
static unsigned int nCurrentBlockFile = 1;
FILE* AppendBlockFile(unsigned int& nFileRet)
{
nFileRet = 0;
while (true)
{
FILE* file = OpenBlockFile(nCurrentBlockFile, 0, "ab");
if (!file)
return NULL;
if (fseek(file, 0, SEEK_END) != 0)
return NULL;
// FAT32 file size max 4GB, fseek and ftell max 2GB, so we must stay under 2GB
if (ftell(file) < (long)(0x7F000000 - MAX_SIZE))
{
nFileRet = nCurrentBlockFile;
return file;
}
fclose(file);
nCurrentBlockFile++;
}
}
bool LoadBlockIndex(bool fAllowNew)
{
LOCK(cs_main);
if (TestNet())
{
nStakeMinConfirmations = 10;
nCoinbaseMaturity = 10; // test maturity is 10 blocks
}
//
// Load block index
//
CTxDB txdb("cr+");
if (!txdb.LoadBlockIndex())
return false;
//
// Init with genesis block
//
if (mapBlockIndex.empty())
{
if (!fAllowNew)
return false;
CBlock &block = const_cast<CBlock&>(Params().GenesisBlock());
// Start new block file
unsigned int nFile;
unsigned int nBlockPos;
if (!block.WriteToDisk(nFile, nBlockPos))
return error("LoadBlockIndex() : writing genesis block to disk failed");
if (!block.AddToBlockIndex(nFile, nBlockPos, Params().HashGenesisBlock()))
return error("LoadBlockIndex() : genesis block not accepted");
}
return true;
}
void PrintBlockTree()
{
AssertLockHeld(cs_main);
// pre-compute tree structure
map<CBlockIndex*, vector<CBlockIndex*> > mapNext;
for (map<uint256, CBlockIndex*>::iterator mi = mapBlockIndex.begin(); mi != mapBlockIndex.end(); ++mi)
{
CBlockIndex* pindex = (*mi).second;
mapNext[pindex->pprev].push_back(pindex);
// test
//while (rand() % 3 == 0)
// mapNext[pindex->pprev].push_back(pindex);
}
vector<pair<int, CBlockIndex*> > vStack;
vStack.push_back(make_pair(0, pindexGenesisBlock));
int nPrevCol = 0;
while (!vStack.empty())
{
int nCol = vStack.back().first;
CBlockIndex* pindex = vStack.back().second;
vStack.pop_back();
// print split or gap
if (nCol > nPrevCol)
{
for (int i = 0; i < nCol-1; i++)
LogPrintf("| ");
LogPrintf("|\\\n");
}
else if (nCol < nPrevCol)
{
for (int i = 0; i < nCol; i++)
LogPrintf("| ");
LogPrintf("|\n");
}
nPrevCol = nCol;
// print columns
for (int i = 0; i < nCol; i++)
LogPrintf("| ");
// print item
CBlock block;
block.ReadFromDisk(pindex);
LogPrintf("%d (%u,%u) %s %08x %s mint %7s tx %u",
pindex->nHeight,
pindex->nFile,
pindex->nBlockPos,
block.GetHash().ToString(),
block.nBits,
DateTimeStrFormat("%x %H:%M:%S", block.GetBlockTime()),
FormatMoney(pindex->nMint),
block.vtx.size());
// put the main time-chain first
vector<CBlockIndex*>& vNext = mapNext[pindex];
for (unsigned int i = 0; i < vNext.size(); i++)
{
if (vNext[i]->pnext)
{
swap(vNext[0], vNext[i]);
break;
}
}
// iterate children
for (unsigned int i = 0; i < vNext.size(); i++)
vStack.push_back(make_pair(nCol+i, vNext[i]));
}
}
bool LoadExternalBlockFile(FILE* fileIn)
{
int64_t nStart = GetTimeMillis();
int nLoaded = 0;
{
try {
CAutoFile blkdat(fileIn, SER_DISK, CLIENT_VERSION);
unsigned int nPos = 0;
while (nPos != (unsigned int)-1 && blkdat.good())
{
boost::this_thread::interruption_point();
unsigned char pchData[65536];
do {
fseek(blkdat, nPos, SEEK_SET);
int nRead = fread(pchData, 1, sizeof(pchData), blkdat);
if (nRead <= 8)
{
nPos = (unsigned int)-1;
break;
}
void* nFind = memchr(pchData, Params().MessageStart()[0], nRead+1-MESSAGE_START_SIZE);
if (nFind)
{
if (memcmp(nFind, Params().MessageStart(), MESSAGE_START_SIZE)==0)
{
nPos += ((unsigned char*)nFind - pchData) + MESSAGE_START_SIZE;
break;
}
nPos += ((unsigned char*)nFind - pchData) + 1;
}
else
nPos += sizeof(pchData) - MESSAGE_START_SIZE + 1;
boost::this_thread::interruption_point();
} while(true);
if (nPos == (unsigned int)-1)
break;
fseek(blkdat, nPos, SEEK_SET);
unsigned int nSize;
blkdat >> nSize;
if (nSize > 0 && nSize <= MAX_BLOCK_SIZE)
{
CBlock block;
blkdat >> block;
LOCK(cs_main);
if (ProcessBlock(NULL,&block))
{
nLoaded++;
nPos += 4 + nSize;
}
}
}
}
catch (std::exception &e) {
LogPrintf("%s() : Deserialize or I/O error caught during load\n",
__PRETTY_FUNCTION__);
}
}
LogPrintf("Loaded %i blocks from external file in %dms\n", nLoaded, GetTimeMillis() - nStart);
return nLoaded > 0;
}
struct CImportingNow
{
CImportingNow() {
assert(fImporting == false);
fImporting = true;
}
~CImportingNow() {
assert(fImporting == true);
fImporting = false;
}
};
void ThreadImport(std::vector<boost::filesystem::path> vImportFiles)
{
RenameThread("blackcoin-loadblk");
CImportingNow imp;
// -loadblock=
BOOST_FOREACH(boost::filesystem::path &path, vImportFiles) {
FILE *file = fopen(path.string().c_str(), "rb");
if (file)
LoadExternalBlockFile(file);
}
// hardcoded $DATADIR/bootstrap.dat
filesystem::path pathBootstrap = GetDataDir() / "bootstrap.dat";
if (filesystem::exists(pathBootstrap)) {
FILE *file = fopen(pathBootstrap.string().c_str(), "rb");
if (file) {
filesystem::path pathBootstrapOld = GetDataDir() / "bootstrap.dat.old";
LoadExternalBlockFile(file);
RenameOver(pathBootstrap, pathBootstrapOld);
}
}
}
//////////////////////////////////////////////////////////////////////////////
//
// CAlert
//
extern map<uint256, CAlert> mapAlerts;
extern CCriticalSection cs_mapAlerts;
string GetWarnings(string strFor)
{
int nPriority = 0;
string strStatusBar;
string strRPC;
if (GetBoolArg("-testsafemode", false))
strRPC = "test";
if (!CLIENT_VERSION_IS_RELEASE)
strStatusBar = _("This is a pre-release test build - use at your own risk - do not use for mining or merchant applications");
// Misc warnings like out of disk space and clock is wrong
if (strMiscWarning != "")
{
nPriority = 1000;
strStatusBar = strMiscWarning;
}
// Alerts
{
LOCK(cs_mapAlerts);
BOOST_FOREACH(PAIRTYPE(const uint256, CAlert)& item, mapAlerts)
{
const CAlert& alert = item.second;
if (alert.AppliesToMe() && alert.nPriority > nPriority)
{
nPriority = alert.nPriority;
strStatusBar = alert.strStatusBar;
}
}
}
if (strFor == "statusbar")
return strStatusBar;
else if (strFor == "rpc")
return strRPC;
assert(!"GetWarnings() : invalid parameter");
return "error";
}
//////////////////////////////////////////////////////////////////////////////
//
// Messages
//
bool static AlreadyHave(CTxDB& txdb, const CInv& inv)
{
switch (inv.type)
{
case MSG_TX:
{
bool txInMap = false;
txInMap = mempool.exists(inv.hash);
return txInMap ||
mapOrphanTransactions.count(inv.hash) ||
txdb.ContainsTx(inv.hash);
}
case MSG_BLOCK:
return mapBlockIndex.count(inv.hash) ||
mapOrphanBlocks.count(inv.hash);
}
// Don't know what it is, just say we already got one
return true;
}
void static ProcessGetData(CNode* pfrom)
{
std::deque<CInv>::iterator it = pfrom->vRecvGetData.begin();
vector<CInv> vNotFound;
LOCK(cs_main);
while (it != pfrom->vRecvGetData.end()) {
// Don't bother if send buffer is too full to respond anyway
if (pfrom->nSendSize >= SendBufferSize())
break;
const CInv &inv = *it;
{
boost::this_thread::interruption_point();
it++;
if (inv.type == MSG_BLOCK)
{
// Send block from disk
map<uint256, CBlockIndex*>::iterator mi = mapBlockIndex.find(inv.hash);
if (mi != mapBlockIndex.end())
{
CBlock block;
block.ReadFromDisk((*mi).second);
// previous versions could accept sigs with high s
if (!IsCanonicalBlockSignature(&block, true)) {
bool ret = EnsureLowS(block.vchBlockSig);
assert(ret);
}
pfrom->PushMessage("block", block);
// Trigger them to send a getblocks request for the next batch of inventory
if (inv.hash == pfrom->hashContinue)
{
// Bypass PushInventory, this must send even if redundant,
// and we want it right after the last block so they don't
// wait for other stuff first.
vector<CInv> vInv;
vInv.push_back(CInv(MSG_BLOCK, hashBestChain));
pfrom->PushMessage("inv", vInv);
pfrom->hashContinue = 0;
}
}
}
else if (inv.IsKnownType())
{
// Send stream from relay memory
bool pushed = false;
{
LOCK(cs_mapRelay);
map<CInv, CDataStream>::iterator mi = mapRelay.find(inv);
if (mi != mapRelay.end()) {
pfrom->PushMessage(inv.GetCommand(), (*mi).second);
pushed = true;
}
}
if (!pushed && inv.type == MSG_TX) {
CTransaction tx;
if (mempool.lookup(inv.hash, tx)) {
CDataStream ss(SER_NETWORK, PROTOCOL_VERSION);
ss.reserve(1000);
ss << tx;
pfrom->PushMessage("tx", ss);
pushed = true;
}
}
if (!pushed) {
vNotFound.push_back(inv);
}
}
// Track requests for our stuff.
g_signals.Inventory(inv.hash);
if (inv.type == MSG_BLOCK /* || inv.type == MSG_FILTERED_BLOCK */)
break;
}
}
pfrom->vRecvGetData.erase(pfrom->vRecvGetData.begin(), it);
if (!vNotFound.empty()) {
// Let the peer know that we didn't find what it asked for, so it doesn't
// have to wait around forever. Currently only SPV clients actually care
// about this message: it's needed when they are recursively walking the
// dependencies of relevant unconfirmed transactions. SPV clients want to
// do that because they want to know about (and store and rebroadcast and
// risk analyze) the dependencies of transactions relevant to them, without
// having to download the entire memory pool.
pfrom->PushMessage("notfound", vNotFound);
}
}
bool static ProcessMessage(CNode* pfrom, string strCommand, CDataStream& vRecv, int64_t nTimeReceived)
{
RandAddSeedPerfmon();
LogPrint("net", "received: %s (%u bytes)\n", strCommand, vRecv.size());
if (mapArgs.count("-dropmessagestest") && GetRand(atoi(mapArgs["-dropmessagestest"])) == 0)
{
LogPrintf("dropmessagestest DROPPING RECV MESSAGE\n");
return true;
}
if (strCommand == "version")
{
// Each connection can only send one version message
if (pfrom->nVersion != 0)
{
pfrom->Misbehaving(1);
return false;
}
int64_t nTime;
CAddress addrMe;
CAddress addrFrom;
uint64_t nNonce = 1;
vRecv >> pfrom->nVersion >> pfrom->nServices >> nTime >> addrMe;
if (pfrom->nVersion < MIN_PEER_PROTO_VERSION)
{
// disconnect from peers older than this proto version
LogPrintf("partner %s using obsolete version %i; disconnecting\n", pfrom->addr.ToString(), pfrom->nVersion);
pfrom->fDisconnect = true;
return false;
}
if (pfrom->nVersion == 10300)
pfrom->nVersion = 300;
if (!vRecv.empty())
vRecv >> addrFrom >> nNonce;
if (!vRecv.empty())
vRecv >> pfrom->strSubVer;
if (!vRecv.empty())
vRecv >> pfrom->nStartingHeight;
// Disconnect if we connected to ourself
if (nNonce == nLocalHostNonce && nNonce > 1)
{
LogPrintf("connected to self at %s, disconnecting\n", pfrom->addr.ToString());
pfrom->fDisconnect = true;
return true;
}
pfrom->addrLocal = addrMe;
if (pfrom->fInbound && addrMe.IsRoutable())
{
SeenLocal(addrMe);
}
// Be shy and don't send version until we hear
if (pfrom->fInbound)
pfrom->PushVersion();
pfrom->fClient = !(pfrom->nServices & NODE_NETWORK);
// Change version
pfrom->PushMessage("verack");
pfrom->ssSend.SetVersion(min(pfrom->nVersion, PROTOCOL_VERSION));
if (!pfrom->fInbound)
{
// Advertise our address
if (!fNoListen && !IsInitialBlockDownload())
{
CAddress addr = GetLocalAddress(&pfrom->addr);
if (addr.IsRoutable())
{
pfrom->PushAddress(addr);
} else if (IsPeerAddrLocalGood(pfrom)) {
addr.SetIP(pfrom->addrLocal);
pfrom->PushAddress(addr);
}
}
// Get recent addresses
if (pfrom->fOneShot || pfrom->nVersion >= CADDR_TIME_VERSION || addrman.size() < 1000)
{
pfrom->PushMessage("getaddr");
pfrom->fGetAddr = true;
}
addrman.Good(pfrom->addr);
} else {
if (((CNetAddr)pfrom->addr) == (CNetAddr)addrFrom)
{
addrman.Add(addrFrom, addrFrom);
addrman.Good(addrFrom);
}
}
// Relay alerts
{
LOCK(cs_mapAlerts);
BOOST_FOREACH(PAIRTYPE(const uint256, CAlert)& item, mapAlerts)
item.second.RelayTo(pfrom);
}
pfrom->fSuccessfullyConnected = true;
LogPrintf("receive version message: version %d, blocks=%d, us=%s, them=%s, peer=%s\n", pfrom->nVersion, pfrom->nStartingHeight, addrMe.ToString(), addrFrom.ToString(), pfrom->addr.ToString());
int64_t nTimeOffset = nTime - GetTime();
pfrom->nTimeOffset = nTimeOffset;
if (GetBoolArg("-synctime", true))
AddTimeData(pfrom->addr, nTimeOffset);
}
else if (pfrom->nVersion == 0)
{
// Must have a version message before anything else
pfrom->Misbehaving(1);
return false;
}
else if (strCommand == "verack")
{
pfrom->SetRecvVersion(min(pfrom->nVersion, PROTOCOL_VERSION));
}
else if (strCommand == "addr")
{
vector<CAddress> vAddr;
vRecv >> vAddr;
// Don't want addr from older versions unless seeding
if (pfrom->nVersion < CADDR_TIME_VERSION && addrman.size() > 1000)
return true;
if (vAddr.size() > 1000)
{
pfrom->Misbehaving(20);
return error("message addr size() = %u", vAddr.size());
}
// Store the new addresses
vector<CAddress> vAddrOk;
int64_t nNow = GetAdjustedTime();
int64_t nSince = nNow - 10 * 60;
BOOST_FOREACH(CAddress& addr, vAddr)
{
boost::this_thread::interruption_point();
if (addr.nTime <= 100000000 || addr.nTime > nNow + 10 * 60)
addr.nTime = nNow - 5 * 24 * 60 * 60;
pfrom->AddAddressKnown(addr);
bool fReachable = IsReachable(addr);
if (addr.nTime > nSince && !pfrom->fGetAddr && vAddr.size() <= 10 && addr.IsRoutable())
{
// Relay to a limited number of other nodes
{
LOCK(cs_vNodes);
// Use deterministic randomness to send to the same nodes for 24 hours
// at a time so the setAddrKnowns of the chosen nodes prevent repeats
static uint256 hashSalt;
if (hashSalt == 0)
hashSalt = GetRandHash();
uint64_t hashAddr = addr.GetHash();
uint256 hashRand = hashSalt ^ (hashAddr<<32) ^ ((GetTime()+hashAddr)/(24*60*60));
hashRand = Hash(BEGIN(hashRand), END(hashRand));
multimap<uint256, CNode*> mapMix;
BOOST_FOREACH(CNode* pnode, vNodes)
{
if (pnode->nVersion < CADDR_TIME_VERSION)
continue;
unsigned int nPointer;
memcpy(&nPointer, &pnode, sizeof(nPointer));
uint256 hashKey = hashRand ^ nPointer;
hashKey = Hash(BEGIN(hashKey), END(hashKey));
mapMix.insert(make_pair(hashKey, pnode));
}
int nRelayNodes = fReachable ? 2 : 1; // limited relaying of addresses outside our network(s)
for (multimap<uint256, CNode*>::iterator mi = mapMix.begin(); mi != mapMix.end() && nRelayNodes-- > 0; ++mi)
((*mi).second)->PushAddress(addr);
}
}
// Do not store addresses outside our network
if (fReachable)
vAddrOk.push_back(addr);
}
addrman.Add(vAddrOk, pfrom->addr, 2 * 60 * 60);
if (vAddr.size() < 1000)
pfrom->fGetAddr = false;
if (pfrom->fOneShot)
pfrom->fDisconnect = true;
}
else if (strCommand == "inv")
{
vector<CInv> vInv;
vRecv >> vInv;
if (vInv.size() > MAX_INV_SZ)
{
pfrom->Misbehaving(20);
return error("message inv size() = %u", vInv.size());
}
// find last block in inv vector
unsigned int nLastBlock = (unsigned int)(-1);
for (unsigned int nInv = 0; nInv < vInv.size(); nInv++) {
if (vInv[vInv.size() - 1 - nInv].type == MSG_BLOCK) {
nLastBlock = vInv.size() - 1 - nInv;
break;
}
}
LOCK(cs_main);
CTxDB txdb("r");
for (unsigned int nInv = 0; nInv < vInv.size(); nInv++)
{
const CInv &inv = vInv[nInv];
boost::this_thread::interruption_point();
pfrom->AddInventoryKnown(inv);
bool fAlreadyHave = AlreadyHave(txdb, inv);
LogPrint("net", " got inventory: %s %s\n", inv.ToString(), fAlreadyHave ? "have" : "new");
if (!fAlreadyHave) {
if (!fImporting)
pfrom->AskFor(inv);
} else if (inv.type == MSG_BLOCK && mapOrphanBlocks.count(inv.hash)) {
PushGetBlocks(pfrom, pindexBest, GetOrphanRoot(inv.hash));
} else if (nInv == nLastBlock) {
// In case we are on a very long side-chain, it is possible that we already have
// the last block in an inv bundle sent in response to getblocks. Try to detect
// this situation and push another getblocks to continue.
PushGetBlocks(pfrom, mapBlockIndex[inv.hash], uint256(0));
if (fDebug)
LogPrintf("force request: %s\n", inv.ToString());
}
// Track requests for our stuff
g_signals.Inventory(inv.hash);
}
}
else if (strCommand == "getdata")
{
vector<CInv> vInv;
vRecv >> vInv;
if (vInv.size() > MAX_INV_SZ)
{
pfrom->Misbehaving(20);
return error("message getdata size() = %u", vInv.size());
}
if (fDebug || (vInv.size() != 1))
LogPrint("net", "received getdata (%u invsz)\n", vInv.size());
if ((fDebug && vInv.size() > 0) || (vInv.size() == 1))
LogPrint("net", "received getdata for: %s\n", vInv[0].ToString());
pfrom->vRecvGetData.insert(pfrom->vRecvGetData.end(), vInv.begin(), vInv.end());
ProcessGetData(pfrom);
}
else if (strCommand == "getblocks")
{
CBlockLocator locator;
uint256 hashStop;
vRecv >> locator >> hashStop;
LOCK(cs_main);
// Find the last block the caller has in the main chain
CBlockIndex* pindex = locator.GetBlockIndex();
// Send the rest of the chain
if (pindex)
pindex = pindex->pnext;
int nLimit = 500;
LogPrint("net", "getblocks %d to %s limit %d\n", (pindex ? pindex->nHeight : -1), hashStop.ToString(), nLimit);
for (; pindex; pindex = pindex->pnext)
{
if (pindex->GetBlockHash() == hashStop)
{
LogPrint("net", " getblocks stopping at %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString());
break;
}
pfrom->PushInventory(CInv(MSG_BLOCK, pindex->GetBlockHash()));
if (--nLimit <= 0)
{
// When this block is requested, we'll send an inv that'll make them
// getblocks the next batch of inventory.
LogPrint("net", " getblocks stopping at limit %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString());
pfrom->hashContinue = pindex->GetBlockHash();
break;
}
}
}
else if (strCommand == "getheaders")
{
CBlockLocator locator;
uint256 hashStop;
vRecv >> locator >> hashStop;
LOCK(cs_main);
CBlockIndex* pindex = NULL;
if (locator.IsNull())
{
// If locator is null, return the hashStop block
map<uint256, CBlockIndex*>::iterator mi = mapBlockIndex.find(hashStop);
if (mi == mapBlockIndex.end())
return true;
pindex = (*mi).second;
}
else
{
// Find the last block the caller has in the main chain
pindex = locator.GetBlockIndex();
if (pindex)
pindex = pindex->pnext;
}
vector<CBlock> vHeaders;
int nLimit = 2000;
LogPrint("net", "getheaders %d to %s\n", (pindex ? pindex->nHeight : -1), hashStop.ToString());
for (; pindex; pindex = pindex->pnext)
{
vHeaders.push_back(pindex->GetBlockHeader());
if (--nLimit <= 0 || pindex->GetBlockHash() == hashStop)
break;
}
pfrom->PushMessage("headers", vHeaders);
}
else if (strCommand == "tx")
{
vector<uint256> vWorkQueue;
vector<uint256> vEraseQueue;
CTransaction tx;
vRecv >> tx;
CInv inv(MSG_TX, tx.GetHash());
pfrom->AddInventoryKnown(inv);
LOCK(cs_main);
bool fMissingInputs = false;
mapAlreadyAskedFor.erase(inv);
if (AcceptToMemoryPool(mempool, tx, true, &fMissingInputs))
{
RelayTransaction(tx, inv.hash);
vWorkQueue.push_back(inv.hash);
vEraseQueue.push_back(inv.hash);
// Recursively process any orphan transactions that depended on this one
for (unsigned int i = 0; i < vWorkQueue.size(); i++)
{
map<uint256, set<uint256> >::iterator itByPrev = mapOrphanTransactionsByPrev.find(vWorkQueue[i]);
if (itByPrev == mapOrphanTransactionsByPrev.end())
continue;
for (set<uint256>::iterator mi = itByPrev->second.begin();
mi != itByPrev->second.end();
++mi)
{
const uint256& orphanTxHash = *mi;
CTransaction& orphanTx = mapOrphanTransactions[orphanTxHash];
bool fMissingInputs2 = false;
if (AcceptToMemoryPool(mempool, orphanTx, true, &fMissingInputs2))
{
LogPrint("mempool", " accepted orphan tx %s\n", orphanTxHash.ToString());
RelayTransaction(orphanTx, orphanTxHash);
vWorkQueue.push_back(orphanTxHash);
vEraseQueue.push_back(orphanTxHash);
}
else if (!fMissingInputs2)
{
// invalid or too-little-fee orphan
vEraseQueue.push_back(orphanTxHash);
LogPrint("mempool", " removed orphan tx %s\n", orphanTxHash.ToString());
}
}
}
BOOST_FOREACH(uint256 hash, vEraseQueue)
EraseOrphanTx(hash);
}
else if (fMissingInputs)
{
AddOrphanTx(tx);
// DoS prevention: do not allow mapOrphanTransactions to grow unbounded
unsigned int nEvicted = LimitOrphanTxSize(MAX_ORPHAN_TRANSACTIONS);
if (nEvicted > 0)
LogPrint("mempool", "mapOrphan overflow, removed %u tx\n", nEvicted);
}
if (tx.nDoS) pfrom->Misbehaving(tx.nDoS);
}
else if (strCommand == "block" && !fImporting && !fReindex) // Ignore blocks received while importing
{
CBlock block;
vRecv >> block;
uint256 hashBlock = block.GetHash();
LogPrint("net", "received block %s\n", hashBlock.ToString());
CInv inv(MSG_BLOCK, hashBlock);
pfrom->AddInventoryKnown(inv);
LOCK(cs_main);
if (ProcessBlock(pfrom, &block))
mapAlreadyAskedFor.erase(inv);
if (block.nDoS) pfrom->Misbehaving(block.nDoS);
}
// This asymmetric behavior for inbound and outbound connections was introduced
// to prevent a fingerprinting attack: an attacker can send specific fake addresses
// to users' AddrMan and later request them by sending getaddr messages.
// Making users (which are behind NAT and can only make outgoing connections) ignore
// getaddr message mitigates the attack.
else if ((strCommand == "getaddr") && (pfrom->fInbound))
{
// Don't return addresses older than nCutOff timestamp
int64_t nCutOff = GetTime() - (nNodeLifespan * 24 * 60 * 60);
pfrom->vAddrToSend.clear();
vector<CAddress> vAddr = addrman.GetAddr();
BOOST_FOREACH(const CAddress &addr, vAddr)
if(addr.nTime > nCutOff)
pfrom->PushAddress(addr);
}
else if (strCommand == "mempool")
{
LOCK(cs_main);
std::vector<uint256> vtxid;
mempool.queryHashes(vtxid);
vector<CInv> vInv;
for (unsigned int i = 0; i < vtxid.size(); i++) {
CInv inv(MSG_TX, vtxid[i]);
vInv.push_back(inv);
if (i == (MAX_INV_SZ - 1))
break;
}
if (vInv.size() > 0)
pfrom->PushMessage("inv", vInv);
}
else if (strCommand == "ping")
{
if (pfrom->nVersion > BIP0031_VERSION)
{
uint64_t nonce = 0;
vRecv >> nonce;
// Echo the message back with the nonce. This allows for two useful features:
//
// 1) A remote node can quickly check if the connection is operational
// 2) Remote nodes can measure the latency of the network thread. If this node
// is overloaded it won't respond to pings quickly and the remote node can
// avoid sending us more work, like chain download requests.
//
// The nonce stops the remote getting confused between different pings: without
// it, if the remote node sends a ping once per second and this node takes 5
// seconds to respond to each, the 5th ping the remote sends would appear to
// return very quickly.
pfrom->PushMessage("pong", nonce);
}
}
else if (strCommand == "pong")
{
int64_t pingUsecEnd = nTimeReceived;
uint64_t nonce = 0;
size_t nAvail = vRecv.in_avail();
bool bPingFinished = false;
std::string sProblem;
if (nAvail >= sizeof(nonce)) {
vRecv >> nonce;
// Only process pong message if there is an outstanding ping (old ping without nonce should never pong)
if (pfrom->nPingNonceSent != 0) {
if (nonce == pfrom->nPingNonceSent) {
// Matching pong received, this ping is no longer outstanding
bPingFinished = true;
int64_t pingUsecTime = pingUsecEnd - pfrom->nPingUsecStart;
if (pingUsecTime > 0) {
// Successful ping time measurement, replace previous
pfrom->nPingUsecTime = pingUsecTime;
} else {
// This should never happen
sProblem = "Timing mishap";
}
} else {
// Nonce mismatches are normal when pings are overlapping
sProblem = "Nonce mismatch";
if (nonce == 0) {
// This is most likely a bug in another implementation somewhere, cancel this ping
bPingFinished = true;
sProblem = "Nonce zero";
}
}
} else {
sProblem = "Unsolicited pong without ping";
}
} else {
// This is most likely a bug in another implementation somewhere, cancel this ping
bPingFinished = true;
sProblem = "Short payload";
}
if (!(sProblem.empty())) {
LogPrint("net", "pong %s %s: %s, %x expected, %x received, %zu bytes\n"
, pfrom->addr.ToString()
, pfrom->strSubVer
, sProblem
, pfrom->nPingNonceSent
, nonce
, nAvail);
}
if (bPingFinished) {
pfrom->nPingNonceSent = 0;
}
}
else if (strCommand == "alert")
{
CAlert alert;
vRecv >> alert;
uint256 alertHash = alert.GetHash();
if (pfrom->setKnown.count(alertHash) == 0)
{
if (alert.ProcessAlert())
{
// Relay
pfrom->setKnown.insert(alertHash);
{
LOCK(cs_vNodes);
BOOST_FOREACH(CNode* pnode, vNodes)
alert.RelayTo(pnode);
}
}
else {
// Small DoS penalty so peers that send us lots of
// duplicate/expired/invalid-signature/whatever alerts
// eventually get banned.
// This isn't a Misbehaving(100) (immediate ban) because the
// peer might be an older or different implementation with
// a different signature key, etc.
pfrom->Misbehaving(10);
}
}
}
else
{
// Ignore unknown commands for extensibility
}
// Update the last seen time for this node's address
if (pfrom->fNetworkNode)
if (strCommand == "version" || strCommand == "addr" || strCommand == "inv" || strCommand == "getdata" || strCommand == "ping")
AddressCurrentlyConnected(pfrom->addr);
return true;
}
// requires LOCK(cs_vRecvMsg)
bool ProcessMessages(CNode* pfrom)
{
//if (fDebug)
// LogPrintf("ProcessMessages(%zu messages)\n", pfrom->vRecvMsg.size());
//
// Message format
// (4) message start
// (12) command
// (4) size
// (4) checksum
// (x) data
//
bool fOk = true;
if (!pfrom->vRecvGetData.empty())
ProcessGetData(pfrom);
// this maintains the order of responses
if (!pfrom->vRecvGetData.empty()) return fOk;
std::deque<CNetMessage>::iterator it = pfrom->vRecvMsg.begin();
while (!pfrom->fDisconnect && it != pfrom->vRecvMsg.end()) {
// Don't bother if send buffer is too full to respond anyway
if (pfrom->nSendSize >= SendBufferSize())
break;
// get next message
CNetMessage& msg = *it;
//if (fDebug)
// LogPrintf("ProcessMessages(message %u msgsz, %zu bytes, complete:%s)\n",
// msg.hdr.nMessageSize, msg.vRecv.size(),
// msg.complete() ? "Y" : "N");
// end, if an incomplete message is found
if (!msg.complete())
break;
// at this point, any failure means we can delete the current message
it++;
// Scan for message start
if (memcmp(msg.hdr.pchMessageStart, Params().MessageStart(), MESSAGE_START_SIZE) != 0) {
LogPrintf("\n\nPROCESSMESSAGE: INVALID MESSAGESTART\n\n");
fOk = false;
break;
}
// Read header
CMessageHeader& hdr = msg.hdr;
if (!hdr.IsValid())
{
LogPrintf("\n\nPROCESSMESSAGE: ERRORS IN HEADER %s\n\n\n", hdr.GetCommand());
continue;
}
string strCommand = hdr.GetCommand();
// Message size
unsigned int nMessageSize = hdr.nMessageSize;
// Checksum
CDataStream& vRecv = msg.vRecv;
uint256 hash = Hash(vRecv.begin(), vRecv.begin() + nMessageSize);
unsigned int nChecksum = 0;
memcpy(&nChecksum, &hash, sizeof(nChecksum));
if (nChecksum != hdr.nChecksum)
{
LogPrintf("ProcessMessages(%s, %u bytes) : CHECKSUM ERROR nChecksum=%08x hdr.nChecksum=%08x\n",
strCommand, nMessageSize, nChecksum, hdr.nChecksum);
continue;
}
// Process message
bool fRet = false;
try
{
fRet = ProcessMessage(pfrom, strCommand, vRecv, msg.nTime);
boost::this_thread::interruption_point();
}
catch (std::ios_base::failure& e)
{
if (strstr(e.what(), "end of data"))
{
// Allow exceptions from under-length message on vRecv
LogPrintf("ProcessMessages(%s, %u bytes) : Exception '%s' caught, normally caused by a message being shorter than its stated length\n", strCommand, nMessageSize, e.what());
}
else if (strstr(e.what(), "size too large"))
{
// Allow exceptions from over-long size
LogPrintf("ProcessMessages(%s, %u bytes) : Exception '%s' caught\n", strCommand, nMessageSize, e.what());
}
else
{
PrintExceptionContinue(&e, "ProcessMessages()");
}
}
catch (boost::thread_interrupted) {
throw;
}
catch (std::exception& e) {
PrintExceptionContinue(&e, "ProcessMessages()");
} catch (...) {
PrintExceptionContinue(NULL, "ProcessMessages()");
}
if (!fRet)
LogPrintf("ProcessMessage(%s, %u bytes) FAILED\n", strCommand, nMessageSize);
break;
}
// In case the connection got shut down, its receive buffer was wiped
if (!pfrom->fDisconnect)
pfrom->vRecvMsg.erase(pfrom->vRecvMsg.begin(), it);
return fOk;
}
bool SendMessages(CNode* pto, bool fSendTrickle)
{
TRY_LOCK(cs_main, lockMain);
if (lockMain) {
// Don't send anything until we get their version message
if (pto->nVersion == 0)
return true;
//
// Message: ping
//
bool pingSend = false;
if (pto->fPingQueued) {
// RPC ping request by user
pingSend = true;
}
if (pto->nPingNonceSent == 0 && pto->nPingUsecStart + PING_INTERVAL * 1000000 < GetTimeMicros()) {
// Ping automatically sent as a latency probe & keepalive.
pingSend = true;
}
if (pingSend) {
uint64_t nonce = 0;
while (nonce == 0) {
RAND_bytes((unsigned char*)&nonce, sizeof(nonce));
}
pto->fPingQueued = false;
pto->nPingUsecStart = GetTimeMicros();
if (pto->nVersion > BIP0031_VERSION) {
pto->nPingNonceSent = nonce;
pto->PushMessage("ping", nonce);
} else {
// Peer is too old to support ping command with nonce, pong will never arrive.
pto->nPingNonceSent = 0;
pto->PushMessage("ping");
}
}
// Start block sync
if (pto->fStartSync && !fImporting && !fReindex) {
pto->fStartSync = false;
PushGetBlocks(pto, pindexBest, uint256(0));
}
// Resend wallet transactions that haven't gotten in a block yet
// Except during reindex, importing and IBD, when old wallet
// transactions become unconfirmed and spams other nodes.
if (!fReindex && !fImporting && !IsInitialBlockDownload())
{
ResendWalletTransactions();
}
// Address refresh broadcast
static int64_t nLastRebroadcast;
if (!IsInitialBlockDownload() && (GetTime() - nLastRebroadcast > 24 * 60 * 60))
{
LOCK(cs_vNodes);
BOOST_FOREACH(CNode* pnode, vNodes)
{
// Periodically clear setAddrKnown to allow refresh broadcasts
if (nLastRebroadcast)
pnode->setAddrKnown.clear();
// Rebroadcast our address
AdvertizeLocal(pnode);
}
if (!vNodes.empty())
nLastRebroadcast = GetTime();
}
//
// Message: addr
//
if (fSendTrickle)
{
vector<CAddress> vAddr;
vAddr.reserve(pto->vAddrToSend.size());
BOOST_FOREACH(const CAddress& addr, pto->vAddrToSend)
{
// returns true if wasn't already contained in the set
if (pto->setAddrKnown.insert(addr).second)
{
vAddr.push_back(addr);
// receiver rejects addr messages larger than 1000
if (vAddr.size() >= 1000)
{
pto->PushMessage("addr", vAddr);
vAddr.clear();
}
}
}
pto->vAddrToSend.clear();
if (!vAddr.empty())
pto->PushMessage("addr", vAddr);
}
//
// Message: inventory
//
vector<CInv> vInv;
vector<CInv> vInvWait;
{
LOCK(pto->cs_inventory);
vInv.reserve(pto->vInventoryToSend.size());
vInvWait.reserve(pto->vInventoryToSend.size());
BOOST_FOREACH(const CInv& inv, pto->vInventoryToSend)
{
if (pto->setInventoryKnown.count(inv))
continue;
// trickle out tx inv to protect privacy
if (inv.type == MSG_TX && !fSendTrickle)
{
// 1/4 of tx invs blast to all immediately
static uint256 hashSalt;
if (hashSalt == 0)
hashSalt = GetRandHash();
uint256 hashRand = inv.hash ^ hashSalt;
hashRand = Hash(BEGIN(hashRand), END(hashRand));
bool fTrickleWait = ((hashRand & 3) != 0);
if (fTrickleWait)
{
vInvWait.push_back(inv);
continue;
}
}
// returns true if wasn't already contained in the set
if (pto->setInventoryKnown.insert(inv).second)
{
vInv.push_back(inv);
if (vInv.size() >= 1000)
{
pto->PushMessage("inv", vInv);
vInv.clear();
}
}
}
pto->vInventoryToSend = vInvWait;
}
if (!vInv.empty())
pto->PushMessage("inv", vInv);
//
// Message: getdata
//
vector<CInv> vGetData;
int64_t nNow = GetTime() * 1000000;
CTxDB txdb("r");
while (!pto->mapAskFor.empty() && (*pto->mapAskFor.begin()).first <= nNow)
{
const CInv& inv = (*pto->mapAskFor.begin()).second;
if (!AlreadyHave(txdb, inv))
{
if (fDebug)
LogPrint("net", "sending getdata: %s\n", inv.ToString());
vGetData.push_back(inv);
if (vGetData.size() >= 1000)
{
pto->PushMessage("getdata", vGetData);
vGetData.clear();
}
mapAlreadyAskedFor[inv] = nNow;
}
pto->mapAskFor.erase(pto->mapAskFor.begin());
}
if (!vGetData.empty())
pto->PushMessage("getdata", vGetData);
}
return true;
}