
Auxiliary Encryption in ElectionGuard as introduced in

version 1.0 of the specification

Michael Naehrig

January 2022

Notation is as in the ElectionGuard specification v0.95. Let g be the generator of the Elec-
tionGuard group, i.e. G = ⟨g⟩ is the multiplicative group of prime order q generated by g mod-
ulo the prime p. The number of guardians is n ∈ N, si ∈ Zq is the secret key of guardian
i and Ki = gsi mod p is the corresponding public key. The election master public key is
K = K1 ·K2 · · · · ·Kn = gs1+···+sn mod p.

1 Encrypting key shares and auxiliary data

According to the current specification v0.95, each guardian generates an auxiliary key pair for an
auxiliary public key encryption scheme. This is used to receive key shares from the other guardians
in encrypted form, but can also be used to encrypt other data. If this auxiliary encryption is a
variant of ElGamal, the guardian’s ElGamal key pair (sℓ,Kℓ) (for guardian Tℓ with number ℓ) can
be used.

For the auxiliary public key encryption we use hashed ElGamal, which deploys a key derivation
function (KDF) to generate a key stream that is then xored with the data. To implement the
KDF and to provide a message authentication code (MAC), the encryption requires the keyed
Hash Message Authentication Code HMAC (as defined in NIST PUB FIPS 198-1) instantiated
with the hash function H = SHA-256, i.e. HMAC-SHA-256. HMAC takes as input a secret key k
and a message (or data) m and returns a bit string HMAC(k,m) of the same length as the output
of the hash function H, i.e. 256 bits (32 bytes) for SHA-256.

1.1 Encryption to a guardian’s public key using hashed ElGamal

Assume that the length of the data m to be encrypted in bytes is a multiple of 32. If this is not
the case, m is padded to a multiple of 32 by an appropriate padding method. Divide m into L
32-byte blocks mi,

m = m1||m2|| . . . ||mL.

To encrypt m to the public key Kℓ, generate an ElGamal pair (a, b) = (gR,KR
ℓ) as usual and

compute a secret key
k = H(a, b) = H(gR,KR

ℓ) ∈ {0, 1}256.

The key k is now used for a KDF in counter mode (as specified in NIST SP 800-108) to generate
a MAC key k0 and an encryption key k1|| . . . ||kL, where

ki = HMAC(k, [i]32||Q̄||[L]32).

1

Here, [i] is a 32-bit encoding of the counter i, [L] is a 32-bit encoding of the length of the data to
be encrypted, and Q̄ is the extended base hash. The ciphertext is then computed as

c = Eℓ(R,m) = (c0, c1, c2),

c0 = gR,

c1 = m1 ⊕ k1||m2 ⊕ k2|| . . . ||mL ⊕ kL,

c2 = HMAC(k0, c0||c1).

The component c2 of the ciphertext is a MAC computed from the hashed ElGamal encryption
(c0, c1) to detect unauthorized modification of the ciphertext. A ciphertext consists of one group
element modulo p, a byte array as long as the encrypted data and one 256-bit MAC value. For the
4096-bit ElectionGuard prime p and an encryption of a 128-byte auxiliary text field, the ciphertext
is 512 + 128 + 32 = 672 bytes.

1.2 Decryption of hashed ElGamal

Decryption first uses either the secret key sℓ or the random nonce R to compute KR
ℓ = (gR)sℓ .

Next, k = H(c0,K
R
ℓ) is computed and the MAC key k0 is derived as above. It is then checked

whether c2 = HMAC(k0, c0||c1). Decryption aborts if this is not the case. Then, the key blocks
ki = HMAC(k, [i]||Q̄||[L]) are obtained for i = 1, . . . , L as above and the message can be decrypted
via m = c1 ⊕ (k1|| . . . ||kL).

1.3 Encrypting key shares with hashed ElGamal

Guardian Ti encrypts their key share Pi(ℓ) to guardian Tℓ by encrypting to Tℓ’s public key Kℓ.
Since Pi(ℓ) ∈ Zq, the encrypted data here is only one block long. The ciphertext in this case is

c = Eℓ(R,m) = (c0, c1, c2),

c0 = gR,

c1 = [Pi(ℓ)]256 ⊕ k1,

c2 = HMAC(k0, c0||c1),

where kj = HMAC(k, [j]32||Q̄||[L]32) for jS ∈ {0, 1} is as above and [Pi(ℓ)]256 is a 256-bit encoding
of Pi(ℓ). Decryption works as above.

1.4 Encrypting to the election public key

Auxiliary data on a ballot such as information about over-votes or write-in candidates is encrypted
to the election master public key K. It is done as described above using K instead of Kℓ. Verifiable
decryption with all n guardians or a quorum of k guardians is done in the usual way just as for
decrypting other data. Guardian Ti computes

Mi = csi0

or it is reconstructed for them if they are not present. This allows to compute

KR =

n∏
i=1

Mi.

From here, decryption proceeds by hashing k = H(c0,K
R) and so on as above.

2

	Encrypting key shares and auxiliary data
	Encryption to a guardian's public key using hashed ElGamal
	Decryption of hashed ElGamal
	Encrypting key shares with hashed ElGamal
	Encrypting to the election public key

