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Outline 

•  gradient descent and Newton method 
•  LBFGS 
•  LBFGS in VW 
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Smooth convex 
unconstrained optimization 

Goal: 

where f is strongly convex 
and twice continuously differentiable 

Our objective: 

•  possibly weighted loss 
•  regularization can have coordinate-specific scaling 

(specified by user) 
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Warm-up: Gradient descent 

•  initialize w0 
•  for t=1,2,...: 

move in the direction of the steepest descent 
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Warm-up: Gradient descent 

Gradient descent update: 
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Warm-up: Gradient descent 

Gradient descent update: 

Equivalently: 
•  approximate 
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Warm-up: Gradient descent 

Gradient descent update: 

Equivalently: 
•  approximate 

•  optimize approximation: 
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Gradient descent update: 

Equivalently: 
•  approximate 

•  optimize approximation: 

min
w∈Rd

ƒ (w)

ƒ (w) =
�n
�=1 loss(w;��, y�) +

λ
2 �w�

2

wt+1 =wt − η∇ƒ (wt)

ƒ (w) ≈ ƒ (wt) + g�t (wt −w) + 1
2η �wt −w�2

wt+1 = �rgmin
w

�
ƒ (wt) + g�t (wt −w) + 1

2η �wt −w�2
�

gt = ∇ƒ (wt)

min
w∈Rd

ƒ (w)

ƒ (w) =
�n
�=1 loss(w;��, y�) +

λ
2 �w�

2

wt+1 =wt − η∇ƒ (wt)

ƒ (w) ≈ ƒ (wt) + g�t (wt −w) + 1
2η �wt −w�2

wt+1 = �rgmin
w

�
ƒ (wt) + g�t (wt −w) + 1

2η �wt −w�2
�

gt = ∇ƒ (wt)

min
w∈Rd

ƒ (w)

ƒ (w) =
�n
�=1 loss(w;��, y�) +

λ
2 �w�

2

wt+1 =wt − η∇ƒ (wt)

ƒ (w) ≈ ƒ (wt) + g�t (wt −w) + 1
2η �wt −w�2

wt+1 = �rgmin
w

�
ƒ (wt) + g�t (wt −w) + 1

2η �wt −w�2
�

gt = ∇ƒ (wt)

min
w∈Rd

ƒ (w)

ƒ (w) =
�n
�=1 loss(w;��, y�) +

λ
2 �w�

2

wt+1 =wt − η∇ƒ (wt)

ƒ (w) ≈ ƒ (wt) + g�t (wt −w) + 1
2η �wt −w�2

wt+1 = �rgmin
w

�
ƒ (wt) + g�t (wt −w) + 1

2η �wt −w�2
�

gt = ∇ƒ (wt)

gradient 

Can we replace quadratic term by a tighter approximation? 



Newton method 

Better approximation 

Update: 

Hessian 
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LBFGS = a quasi-Newton method 

Instead of the Newton update 

Perform a quasi-Newton update: 
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LBFGS = a quasi-Newton method 

Instead of the Newton update 
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Line search in LBFGS 

Update: 

•  direction determined by Kt gt 

•  step size ηt must satisfy Wolfe conditions 

[Nocedal 1980, Liu-Nocedal 1989] 
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       for some α in (0,0.5) 
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ƒ (w) ≈ ƒ (wt) + g�t (wt −w) + 1
2(wt −w)�Ht(wt −w)

Ht = ∇2ƒ (wt)

wt+1 =wt −H−1t gt

wt+1 =wt − ηtKtgt

where: Kt is a low-rank approximation of H−1t
ηt is obtained by line search

ƒ (wt) + g�t �w

ƒ (wt) + αg�t �w

ƒ (wt+1) ≤ ƒ (wt) + αg�t �w

�w =wt+1 −wt

�ƒ = ƒ (wt+1)− ƒ (wt)

ƒ (w) ≈ ƒ (wt) + g�t (wt −w) + 1
2(wt −w)�Ht(wt −w)

Ht = ∇2ƒ (wt)

wt+1 =wt −H−1t gt

wt+1 =wt − ηtKtgt

where: Kt is a low-rank approximation of H−1t
ηt is obtained by line search

ƒ (wt) + g�t �w

ƒ (wt) + αg�t �w

ƒ (wt+1) ≤ ƒ (wt) + αg�t �w

�w =wt+1 −wt

�ƒ = ƒ (wt+1)− ƒ (wt)

�ƒ ≤ αg�t �w

α ≤ �ƒ
g�t �w

(because g�t �w is negative)

wolfe1 = �ƒ
g�t �w

���g�t+1�w
��� ≤ βg�t �w

β ≥
����
g�t+1�w
g�t �w

����

wolfe2 =
g�t+1�w
g�t �w

�ƒ ≤ αg�t �w

α ≤ �ƒ
g�t �w

(because g�t �w is negative)

wolfe1 = �ƒ
g�t �w

���g�t+1�w
��� ≤ βg�t �w

β ≥
����
g�t+1�w
g�t �w

����

wolfe2 =
g�t+1�w
g�t �w

       for some α in (0,0.5) 

�ƒ ≤ αg�t �w

α ≤ �ƒ
g�t �w

(because g�t �w is negative)

wolfe1 = �ƒ
g�t �w

���g�t+1�w
��� ≤ βg�t �w

β ≥
����
g�t+1�w
g�t �w

����

wolfe2 =
g�t+1�w
g�t �w



2nd Wolfe condition (strengthened): 

wt 

f(w) 

�ƒ ≤ αg�t �w

α ≤ �ƒ
g�t �w

(because g�t �w is negative)

wolfe1 = �ƒ
g�t �w

���g�t+1�w
��� ≤ βg�t �w

β ≥
����
g�t+1�w
g�t �w

����

wolfe2 =
g�t+1�w
g�t �w

�ƒ ≤ αg�t �w

α ≤ �ƒ
g�t �w

(because g�t �w is negative)

wolfe1 = �ƒ
g�t �w

���g�t+1�w
��� ≤ βg�t �w

β ≥
����
g�t+1�w
g�t �w

����

wolfe2 =
g�t+1�w
g�t �w

wt+1 



2nd Wolfe condition (strengthened): 

wt 

f(w) 

�ƒ ≤ αg�t �w

α ≤ �ƒ
g�t �w

(because g�t �w is negative)

wolfe1 = �ƒ
g�t �w

���g�t+1�w
��� ≤ βg�t �w

β ≥
����
g�t+1�w
g�t �w

����

wolfe2 =
g�t+1�w
g�t �w

�ƒ ≤ αg�t �w

α ≤ �ƒ
g�t �w

(because g�t �w is negative)

wolfe1 = �ƒ
g�t �w

���g�t+1�w
��� ≤ βg�t �w

β ≥
����
g�t+1�w
g�t �w

����

wolfe2 =
g�t+1�w
g�t �w

�ƒ ≤ αg�t �w

α ≤ �ƒ
g�t �w

(because g�t �w is negative)

wolfe1 = �ƒ
g�t �w

���g�t+1�w
��� ≤ βg�t �w

β ≥
����
g�t+1�w
g�t �w

����

wolfe2 =
g�t+1�w
g�t �w

wt+1 

       for some β in (α,1) 



2nd Wolfe condition (strengthened): 

�ƒ ≤ αg�t �w

α ≤ �ƒ
g�t �w

(because g�t �w is negative)

wolfe1 = �ƒ
g�t �w

���g�t+1�w
��� ≤ βg�t �w

β ≥
����
g�t+1�w
g�t �w

����

wolfe2 =
g�t+1�w
g�t �w

       for some β in (α,1) 

Rewrite as                       . 

We use notation                               for the ratio on the rhs. 

�ƒ ≤ αg�t �w

α ≤ �ƒ
g�t �w

(because g�t �w is negative)

wolfe1 = �ƒ
g�t �w

���g�t+1�w
��� ≤ βg�t �w

β ≥
����
g�t+1�w
g�t �w

����

wolfe2 =
g�t+1�w
g�t �w

�ƒ ≤ αg�t �w

α ≤ �ƒ
g�t �w

(because g�t �w is negative)

wolfe1 = �ƒ
g�t �w

���g�t+1�w
��� ≤ βg�t �w

β ≥
����
g�t+1�w
g�t �w

����

wolfe2 =
g�t+1�w
g�t �w



Summarizing Wolfe conditions 

Let                            and                              . 

Let 0<α<0.5, α<β<1. 
i)  wolfe1	  ≥ α	  
ii)  |wolfe2| ≤ β	  

�ƒ ≤ αg�t �w

α ≤ �ƒ
g�t �w

(because g�t �w is negative)

wolfe1 = �ƒ
g�t �w

���g�t+1�w
��� ≤ βg�t �w

β ≥
����
g�t+1�w
g�t �w

����

wolfe2 =
g�t+1�w
g�t �w

�ƒ ≤ αg�t �w

α ≤ �ƒ
g�t �w

(because g�t �w is negative)

wolfe1 = �ƒ
g�t �w

���g�t+1�w
��� ≤ βg�t �w

β ≥
����
g�t+1�w
g�t �w

����

wolfe2 =
g�t+1�w
g�t �w

In VW, the Wolfe conditions are not enforced 

•  ratios wolfe1 and wolfe2 are logged 
•  it is always possible to choose α and β in the 

hindsight as long as: 
         wolfe1>0 and -1<wolfe2<1 



Line search and termination in VW 

•  in the first iteration: 
–  evaluate directional 2nd derivative and initialize step size 

according to the one-dimensional Newton step 
–  if the loss does not decrease (i.e., wolfe1<0), shrink the step 

•  in the subsequent iterations: 
–  set step size to 1.0 
–  if the loss does not decrease (i.e., wolfe1<0), shrink the step 

•  terminate if 
either: the specified number of passes over the data is reached 
or:       the relative decrease in the objective f(w) 

       falls below a threshold 



LBFGS switches 

--bfgs 
 turn on LBFGS optimization 

--l2 0.0 
 L2 regularization coefficient  

--mem 15 
 rank of the inverse Hessian approximation 

--termination 0.001 
 termination threshold for the 
 relative loss decrease 


