
Batch optimization
in VW via LBFGS

Miroslav Dudík
12/16/2011

Outline

•  gradient descent and Newton method
•  LBFGS
•  LBFGS in VW

Smooth convex
unconstrained optimization

Goal:

where f is strongly convex
and twice continuously differentiable

min
w∈Rd

ƒ (w)

ƒ (w) =
�n
�=1 loss(w;��, y�) +

λ
2 �w�

2

wt+1 =wt − η∇ƒ (wt)

ƒ (w) ≈ ƒ (wt) + g�t (wt −w) + 1
2η �wt −w�2

wt+1 = �rgmin
w

�
ƒ (wt) + g�t (wt −w) + 1

2η �wt −w�2
�

gt = ∇ƒ (wt)

Smooth convex
unconstrained optimization

Goal:

where f is strongly convex
and twice continuously differentiable

Our objective:

•  possibly weighted loss
•  regularization can have coordinate-specific scaling

(specified by user)

min
w∈Rd

ƒ (w)

ƒ (w) =
�n
�=1 loss(w;��, y�) +

λ
2 �w�

2

wt+1 =wt − η∇ƒ (wt)

ƒ (w) ≈ ƒ (wt) + g�t (wt −w) + 1
2η �wt −w�2

wt+1 = �rgmin
w

�
ƒ (wt) + g�t (wt −w) + 1

2η �wt −w�2
�

gt = ∇ƒ (wt)

min
w∈Rd

ƒ (w)

ƒ (w) =
�n
�=1 loss(w;��, y�) +

λ
2 �w�

2

wt+1 =wt − η∇ƒ (wt)

ƒ (w) ≈ ƒ (wt) + g�t (wt −w) + 1
2η �wt −w�2

wt+1 = �rgmin
w

�
ƒ (wt) + g�t (wt −w) + 1

2η �wt −w�2
�

gt = ∇ƒ (wt)

Warm-up: Gradient descent

•  initialize w0
•  for t=1,2,...:

move in the direction of the steepest descent

min
w∈Rd

ƒ (w)

ƒ (w) =
�n
�=1 loss(w;��, y�) +

λ
2 �w�

2

wt+1 =wt − η∇ƒ (wt)

ƒ (w) ≈ ƒ (wt) + g�t (wt −w) + 1
2η �wt −w�2

wt+1 = �rgmin
w

�
ƒ (wt) + g�t (wt −w) + 1

2η �wt −w�2
�

gt = ∇ƒ (wt)

Warm-up: Gradient descent

Gradient descent update:

min
w∈Rd

ƒ (w)

ƒ (w) =
�n
�=1 loss(w;��, y�) +

λ
2 �w�

2

wt+1 =wt − η∇ƒ (wt)

ƒ (w) ≈ ƒ (wt) + g�t (wt −w) + 1
2η �wt −w�2

wt+1 = �rgmin
w

�
ƒ (wt) + g�t (wt −w) + 1

2η �wt −w�2
�

gt = ∇ƒ (wt)

Warm-up: Gradient descent

Gradient descent update:

Equivalently:
•  approximate

min
w∈Rd

ƒ (w)

ƒ (w) =
�n
�=1 loss(w;��, y�) +

λ
2 �w�

2

wt+1 =wt − η∇ƒ (wt)

ƒ (w) ≈ ƒ (wt) + g�t (wt −w) + 1
2η �wt −w�2

wt+1 = �rgmin
w

�
ƒ (wt) + g�t (wt −w) + 1

2η �wt −w�2
�

gt = ∇ƒ (wt)

min
w∈Rd

ƒ (w)

ƒ (w) =
�n
�=1 loss(w;��, y�) +

λ
2 �w�

2

wt+1 =wt − η∇ƒ (wt)

ƒ (w) ≈ ƒ (wt) + g�t (wt −w) + 1
2η �wt −w�2

wt+1 = �rgmin
w

�
ƒ (wt) + g�t (wt −w) + 1

2η �wt −w�2
�

gt = ∇ƒ (wt)

min
w∈Rd

ƒ (w)

ƒ (w) =
�n
�=1 loss(w;��, y�) +

λ
2 �w�

2

wt+1 =wt − η∇ƒ (wt)

ƒ (w) ≈ ƒ (wt) + g�t (wt −w) + 1
2η �wt −w�2

wt+1 = �rgmin
w

�
ƒ (wt) + g�t (wt −w) + 1

2η �wt −w�2
�

gt = ∇ƒ (wt)

gradient

Warm-up: Gradient descent

Gradient descent update:

Equivalently:
•  approximate

•  optimize approximation:

min
w∈Rd

ƒ (w)

ƒ (w) =
�n
�=1 loss(w;��, y�) +

λ
2 �w�

2

wt+1 =wt − η∇ƒ (wt)

ƒ (w) ≈ ƒ (wt) + g�t (wt −w) + 1
2η �wt −w�2

wt+1 = �rgmin
w

�
ƒ (wt) + g�t (wt −w) + 1

2η �wt −w�2
�

gt = ∇ƒ (wt)

min
w∈Rd

ƒ (w)

ƒ (w) =
�n
�=1 loss(w;��, y�) +

λ
2 �w�

2

wt+1 =wt − η∇ƒ (wt)

ƒ (w) ≈ ƒ (wt) + g�t (wt −w) + 1
2η �wt −w�2

wt+1 = �rgmin
w

�
ƒ (wt) + g�t (wt −w) + 1

2η �wt −w�2
�

gt = ∇ƒ (wt)

min
w∈Rd

ƒ (w)

ƒ (w) =
�n
�=1 loss(w;��, y�) +

λ
2 �w�

2

wt+1 =wt − η∇ƒ (wt)

ƒ (w) ≈ ƒ (wt) + g�t (wt −w) + 1
2η �wt −w�2

wt+1 = �rgmin
w

�
ƒ (wt) + g�t (wt −w) + 1

2η �wt −w�2
�

gt = ∇ƒ (wt)

min
w∈Rd

ƒ (w)

ƒ (w) =
�n
�=1 loss(w;��, y�) +

λ
2 �w�

2

wt+1 =wt − η∇ƒ (wt)

ƒ (w) ≈ ƒ (wt) + g�t (wt −w) + 1
2η �wt −w�2

wt+1 = �rgmin
w

�
ƒ (wt) + g�t (wt −w) + 1

2η �wt −w�2
�

gt = ∇ƒ (wt)

gradient

Warm-up: Gradient descent

Gradient descent update:

Equivalently:
•  approximate

•  optimize approximation:

min
w∈Rd

ƒ (w)

ƒ (w) =
�n
�=1 loss(w;��, y�) +

λ
2 �w�

2

wt+1 =wt − η∇ƒ (wt)

ƒ (w) ≈ ƒ (wt) + g�t (wt −w) + 1
2η �wt −w�2

wt+1 = �rgmin
w

�
ƒ (wt) + g�t (wt −w) + 1

2η �wt −w�2
�

gt = ∇ƒ (wt)

min
w∈Rd

ƒ (w)

ƒ (w) =
�n
�=1 loss(w;��, y�) +

λ
2 �w�

2

wt+1 =wt − η∇ƒ (wt)

ƒ (w) ≈ ƒ (wt) + g�t (wt −w) + 1
2η �wt −w�2

wt+1 = �rgmin
w

�
ƒ (wt) + g�t (wt −w) + 1

2η �wt −w�2
�

gt = ∇ƒ (wt)

min
w∈Rd

ƒ (w)

ƒ (w) =
�n
�=1 loss(w;��, y�) +

λ
2 �w�

2

wt+1 =wt − η∇ƒ (wt)

ƒ (w) ≈ ƒ (wt) + g�t (wt −w) + 1
2η �wt −w�2

wt+1 = �rgmin
w

�
ƒ (wt) + g�t (wt −w) + 1

2η �wt −w�2
�

gt = ∇ƒ (wt)

min
w∈Rd

ƒ (w)

ƒ (w) =
�n
�=1 loss(w;��, y�) +

λ
2 �w�

2

wt+1 =wt − η∇ƒ (wt)

ƒ (w) ≈ ƒ (wt) + g�t (wt −w) + 1
2η �wt −w�2

wt+1 = �rgmin
w

�
ƒ (wt) + g�t (wt −w) + 1

2η �wt −w�2
�

gt = ∇ƒ (wt)

gradient

Can we replace quadratic term by a tighter approximation?

Newton method

Better approximation

Update:

Hessian

ƒ (w) ≈ ƒ (wt) + g�t (wt −w) + 1
2(wt −w)�Ht(wt −w)

Ht = ∇2ƒ (wt)

wt+1 =wt −H−1t gt

wt+1 =wt − ηtKtgt

where: Kt is a low-rank approximation of H−1t
ηt is obtained by line search

ƒ (wt) + g�t �w

ƒ (wt) + αg�t �w

ƒ (wt+1) ≤ ƒ (wt) + αg�t �w

�w =wt+1 −wt

�ƒ = ƒ (wt+1)− ƒ (wt)

ƒ (w) ≈ ƒ (wt) + g�t (wt −w) + 1
2(wt −w)�Ht(wt −w)

Ht = ∇2ƒ (wt)

wt+1 =wt −H−1t gt

wt+1 =wt − ηtKtgt

where: Kt is a low-rank approximation of H−1t
ηt is obtained by line search

ƒ (wt) + g�t �w

ƒ (wt) + αg�t �w

ƒ (wt+1) ≤ ƒ (wt) + αg�t �w

�w =wt+1 −wt

�ƒ = ƒ (wt+1)− ƒ (wt)

ƒ (w) ≈ ƒ (wt) + g�t (wt −w) + 1
2(wt −w)�Ht(wt −w)

Ht = ∇2ƒ (wt)

wt+1 =wt −H−1t gt

wt+1 =wt − ηtKtgt

where: Kt is a low-rank approximation of H−1t
ηt is obtained by line search

ƒ (wt) + g�t �w

ƒ (wt) + αg�t �w

ƒ (wt+1) ≤ ƒ (wt) + αg�t �w

�w =wt+1 −wt

�ƒ = ƒ (wt+1)− ƒ (wt)

Newton method

Better approximation

Update:

Hessian

ƒ (w) ≈ ƒ (wt) + g�t (wt −w) + 1
2(wt −w)�Ht(wt −w)

Ht = ∇2ƒ (wt)

wt+1 =wt −H−1t gt

wt+1 =wt − ηtKtgt

where: Kt is a low-rank approximation of H−1t
ηt is obtained by line search

ƒ (wt) + g�t �w

ƒ (wt) + αg�t �w

ƒ (wt+1) ≤ ƒ (wt) + αg�t �w

�w =wt+1 −wt

�ƒ = ƒ (wt+1)− ƒ (wt)

ƒ (w) ≈ ƒ (wt) + g�t (wt −w) + 1
2(wt −w)�Ht(wt −w)

Ht = ∇2ƒ (wt)

wt+1 =wt −H−1t gt

wt+1 =wt − ηtKtgt

where: Kt is a low-rank approximation of H−1t
ηt is obtained by line search

ƒ (wt) + g�t �w

ƒ (wt) + αg�t �w

ƒ (wt+1) ≤ ƒ (wt) + αg�t �w

�w =wt+1 −wt

�ƒ = ƒ (wt+1)− ƒ (wt)

ƒ (w) ≈ ƒ (wt) + g�t (wt −w) + 1
2(wt −w)�Ht(wt −w)

Ht = ∇2ƒ (wt)

wt+1 =wt −H−1t gt

wt+1 =wt − ηtKtgt

where: Kt is a low-rank approximation of H−1t
ηt is obtained by line search

ƒ (wt) + g�t �w

ƒ (wt) + αg�t �w

ƒ (wt+1) ≤ ƒ (wt) + αg�t �w

�w =wt+1 −wt

�ƒ = ƒ (wt+1)− ƒ (wt)

Problem: Hessian can be too big (matrix of size dxd)

LBFGS = a quasi-Newton method

Instead of the Newton update

Perform a quasi-Newton update:

ƒ (w) ≈ ƒ (wt) + g�t (wt −w) + 1
2(wt −w)�Ht(wt −w)

Ht = ∇2ƒ (wt)

wt+1 =wt −H−1t gt

wt+1 =wt − ηtKtgt

where: Kt is a low-rank approximation of H−1t
ηt is obtained by line search

ƒ (wt) + g�t �w

ƒ (wt) + αg�t �w

ƒ (wt+1) ≤ ƒ (wt) + αg�t �w

�w =wt+1 −wt

�ƒ = ƒ (wt+1)− ƒ (wt)

ƒ (w) ≈ ƒ (wt) + g�t (wt −w) + 1
2(wt −w)�Ht(wt −w)

Ht = ∇2ƒ (wt)

wt+1 =wt −H−1t gt

wt+1 =wt − ηtKtgt

where: Kt is a low-rank approximation of H−1t
ηt is obtained by line search

ƒ (wt) + g�t �w

ƒ (wt) + αg�t �w

ƒ (wt+1) ≤ ƒ (wt) + αg�t �w

�w =wt+1 −wt

�ƒ = ƒ (wt+1)− ƒ (wt)

ƒ (w) ≈ ƒ (wt) + g�t (wt −w) + 1
2(wt −w)�Ht(wt −w)

Ht = ∇2ƒ (wt)

wt+1 =wt −H−1t gt

wt+1 =wt − ηtKtgt

where: Kt is a low-rank approximation of H−1t
ηt is obtained by line search

ƒ (wt) + g�t �w

ƒ (wt) + αg�t �w

ƒ (wt+1) ≤ ƒ (wt) + αg�t �w

�w =wt+1 −wt

�ƒ = ƒ (wt+1)− ƒ (wt)

[Nocedal 1980, Liu-Nocedal 1989]

LBFGS = a quasi-Newton method

Instead of the Newton update

Perform a quasi-Newton update:

•  rank m specified by user (default m=15)
•  instead of storage d2, only storage 2dm required

(update of Kt also has running time O(dm) per iteration)

ƒ (w) ≈ ƒ (wt) + g�t (wt −w) + 1
2(wt −w)�Ht(wt −w)

Ht = ∇2ƒ (wt)

wt+1 =wt −H−1t gt

wt+1 =wt − ηtKtgt

where: Kt is a low-rank approximation of H−1t
ηt is obtained by line search

ƒ (wt) + g�t �w

ƒ (wt) + αg�t �w

ƒ (wt+1) ≤ ƒ (wt) + αg�t �w

�w =wt+1 −wt

�ƒ = ƒ (wt+1)− ƒ (wt)

ƒ (w) ≈ ƒ (wt) + g�t (wt −w) + 1
2(wt −w)�Ht(wt −w)

Ht = ∇2ƒ (wt)

wt+1 =wt −H−1t gt

wt+1 =wt − ηtKtgt

where: Kt is a low-rank approximation of H−1t
ηt is obtained by line search

ƒ (wt) + g�t �w

ƒ (wt) + αg�t �w

ƒ (wt+1) ≤ ƒ (wt) + αg�t �w

�w =wt+1 −wt

�ƒ = ƒ (wt+1)− ƒ (wt)

ƒ (w) ≈ ƒ (wt) + g�t (wt −w) + 1
2(wt −w)�Ht(wt −w)

Ht = ∇2ƒ (wt)

wt+1 =wt −H−1t gt

wt+1 =wt − ηtKtgt

where: Kt is a low-rank approximation of H−1t
ηt is obtained by line search

ƒ (wt) + g�t �w

ƒ (wt) + αg�t �w

ƒ (wt+1) ≤ ƒ (wt) + αg�t �w

�w =wt+1 −wt

�ƒ = ƒ (wt+1)− ƒ (wt)

[Nocedal 1980, Liu-Nocedal 1989]

Line search in LBFGS

Update:

•  direction determined by Kt gt

•  step size ηt must satisfy Wolfe conditions

[Nocedal 1980, Liu-Nocedal 1989]

ƒ (w) ≈ ƒ (wt) + g�t (wt −w) + 1
2(wt −w)�Ht(wt −w)

Ht = ∇2ƒ (wt)

wt+1 =wt −H−1t gt

wt+1 =wt − ηtKtgt

where: Kt is a low-rank approximation of H−1t
ηt is obtained by line search

ƒ (wt) + g�t �w

ƒ (wt) + αg�t �w

ƒ (wt+1) ≤ ƒ (wt) + αg�t �w

�w =wt+1 −wt

�ƒ = ƒ (wt+1)− ƒ (wt)

1st Wolfe condition:

wt wt+1

f(w)

f(wt+1)

1st Wolfe condition:

wt wt+1

f(w)

f(wt+1)

1st Wolfe condition:

wt wt+1

ƒ (w) ≈ ƒ (wt) + g�t (wt −w) + 1
2(wt −w)�Ht(wt −w)

Ht = ∇2ƒ (wt)

wt+1 =wt −H−1t gt

wt+1 =wt − ηtKtgt

where: Kt is a low-rank approximation of H−1t
ηt is obtained by line search

ƒ (wt) + g�t �w

ƒ (wt) + αg�t �w

ƒ (wt+1) ≤ ƒ (wt) + αg�t �w

�w =wt+1 −wt

�ƒ = ƒ (wt+1)− ƒ (wt)

ƒ (w) ≈ ƒ (wt) + g�t (wt −w) + 1
2(wt −w)�Ht(wt −w)

Ht = ∇2ƒ (wt)

wt+1 =wt −H−1t gt

wt+1 =wt − ηtKtgt

where: Kt is a low-rank approximation of H−1t
ηt is obtained by line search

ƒ (wt) + g�t �w

ƒ (wt) + αg�t �w

ƒ (wt+1) ≤ ƒ (wt) + αg�t �w

�w =wt+1 −wt

�ƒ = ƒ (wt+1)− ƒ (wt)

f(w)

f(wt+1)

change in w

1st Wolfe condition:

wt wt+1

ƒ (w) ≈ ƒ (wt) + g�t (wt −w) + 1
2(wt −w)�Ht(wt −w)

Ht = ∇2ƒ (wt)

wt+1 =wt −H−1t gt

wt+1 =wt − ηtKtgt

where: Kt is a low-rank approximation of H−1t
ηt is obtained by line search

ƒ (wt) + g�t �w

ƒ (wt) + αg�t �w

ƒ (wt+1) ≤ ƒ (wt) + αg�t �w

�w =wt+1 −wt

�ƒ = ƒ (wt+1)− ƒ (wt)

ƒ (w) ≈ ƒ (wt) + g�t (wt −w) + 1
2(wt −w)�Ht(wt −w)

Ht = ∇2ƒ (wt)

wt+1 =wt −H−1t gt

wt+1 =wt − ηtKtgt

where: Kt is a low-rank approximation of H−1t
ηt is obtained by line search

ƒ (wt) + g�t �w

ƒ (wt) + αg�t �w

ƒ (wt+1) ≤ ƒ (wt) + αg�t �w

�w =wt+1 −wt

�ƒ = ƒ (wt+1)− ƒ (wt)

ƒ (w) ≈ ƒ (wt) + g�t (wt −w) + 1
2(wt −w)�Ht(wt −w)

Ht = ∇2ƒ (wt)

wt+1 =wt −H−1t gt

wt+1 =wt − ηtKtgt

where: Kt is a low-rank approximation of H−1t
ηt is obtained by line search

ƒ (wt) + g�t �w

ƒ (wt) + αg�t �w

ƒ (wt+1) ≤ ƒ (wt) + αg�t �w

�w =wt+1 −wt

�ƒ = ƒ (wt+1)− ƒ (wt)

f(w)

f(wt+1)

change in w

1st Wolfe condition:

wt wt+1

ƒ (w) ≈ ƒ (wt) + g�t (wt −w) + 1
2(wt −w)�Ht(wt −w)

Ht = ∇2ƒ (wt)

wt+1 =wt −H−1t gt

wt+1 =wt − ηtKtgt

where: Kt is a low-rank approximation of H−1t
ηt is obtained by line search

ƒ (wt) + g�t �w

ƒ (wt) + αg�t �w

ƒ (wt+1) ≤ ƒ (wt) + αg�t �w

�w =wt+1 −wt

�ƒ = ƒ (wt+1)− ƒ (wt)

ƒ (w) ≈ ƒ (wt) + g�t (wt −w) + 1
2(wt −w)�Ht(wt −w)

Ht = ∇2ƒ (wt)

wt+1 =wt −H−1t gt

wt+1 =wt − ηtKtgt

where: Kt is a low-rank approximation of H−1t
ηt is obtained by line search

ƒ (wt) + g�t �w

ƒ (wt) + αg�t �w

ƒ (wt+1) ≤ ƒ (wt) + αg�t �w

�w =wt+1 −wt

�ƒ = ƒ (wt+1)− ƒ (wt)

ƒ (w) ≈ ƒ (wt) + g�t (wt −w) + 1
2(wt −w)�Ht(wt −w)

Ht = ∇2ƒ (wt)

wt+1 =wt −H−1t gt

wt+1 =wt − ηtKtgt

where: Kt is a low-rank approximation of H−1t
ηt is obtained by line search

ƒ (wt) + g�t �w

ƒ (wt) + αg�t �w

ƒ (wt+1) ≤ ƒ (wt) + αg�t �w

�w =wt+1 −wt

�ƒ = ƒ (wt+1)− ƒ (wt)

f(w)

ƒ (w) ≈ ƒ (wt) + g�t (wt −w) + 1
2(wt −w)�Ht(wt −w)

Ht = ∇2ƒ (wt)

wt+1 =wt −H−1t gt

wt+1 =wt − ηtKtgt

where: Kt is a low-rank approximation of H−1t
ηt is obtained by line search

ƒ (wt) + g�t �w

ƒ (wt) + αg�t �w

ƒ (wt+1) ≤ ƒ (wt) + αg�t �w

�w =wt+1 −wt

�ƒ = ƒ (wt+1)− ƒ (wt)

f(wt+1)

change in w

 for some α in (0,0.5)

1st Wolfe condition:

Rewrite as

where

ƒ (w) ≈ ƒ (wt) + g�t (wt −w) + 1
2(wt −w)�Ht(wt −w)

Ht = ∇2ƒ (wt)

wt+1 =wt −H−1t gt

wt+1 =wt − ηtKtgt

where: Kt is a low-rank approximation of H−1t
ηt is obtained by line search

ƒ (wt) + g�t �w

ƒ (wt) + αg�t �w

ƒ (wt+1) ≤ ƒ (wt) + αg�t �w

�w =wt+1 −wt

�ƒ = ƒ (wt+1)− ƒ (wt)

ƒ (w) ≈ ƒ (wt) + g�t (wt −w) + 1
2(wt −w)�Ht(wt −w)

Ht = ∇2ƒ (wt)

wt+1 =wt −H−1t gt

wt+1 =wt − ηtKtgt

where: Kt is a low-rank approximation of H−1t
ηt is obtained by line search

ƒ (wt) + g�t �w

ƒ (wt) + αg�t �w

ƒ (wt+1) ≤ ƒ (wt) + αg�t �w

�w =wt+1 −wt

�ƒ = ƒ (wt+1)− ƒ (wt)

�ƒ ≤ αg�t �w

α ≤ �ƒ
g�t �w

(because g�t �w is negative)

wolfe1 = �ƒ
g�t �w

���g�t+1�w
��� ≤ βg�t �w

β ≥
����
g�t+1�w
g�t �w

����

wolfe2 =
g�t+1�w
g�t �w

 for some α in (0,0.5)

1st Wolfe condition:

Rewrite as

where

Equivalent to:

We use notation for the ratio on the rhs.

ƒ (w) ≈ ƒ (wt) + g�t (wt −w) + 1
2(wt −w)�Ht(wt −w)

Ht = ∇2ƒ (wt)

wt+1 =wt −H−1t gt

wt+1 =wt − ηtKtgt

where: Kt is a low-rank approximation of H−1t
ηt is obtained by line search

ƒ (wt) + g�t �w

ƒ (wt) + αg�t �w

ƒ (wt+1) ≤ ƒ (wt) + αg�t �w

�w =wt+1 −wt

�ƒ = ƒ (wt+1)− ƒ (wt)

ƒ (w) ≈ ƒ (wt) + g�t (wt −w) + 1
2(wt −w)�Ht(wt −w)

Ht = ∇2ƒ (wt)

wt+1 =wt −H−1t gt

wt+1 =wt − ηtKtgt

where: Kt is a low-rank approximation of H−1t
ηt is obtained by line search

ƒ (wt) + g�t �w

ƒ (wt) + αg�t �w

ƒ (wt+1) ≤ ƒ (wt) + αg�t �w

�w =wt+1 −wt

�ƒ = ƒ (wt+1)− ƒ (wt)

�ƒ ≤ αg�t �w

α ≤ �ƒ
g�t �w

(because g�t �w is negative)

wolfe1 = �ƒ
g�t �w

���g�t+1�w
��� ≤ βg�t �w

β ≥
����
g�t+1�w
g�t �w

����

wolfe2 =
g�t+1�w
g�t �w

�ƒ ≤ αg�t �w

α ≤ �ƒ
g�t �w

(because g�t �w is negative)

wolfe1 = �ƒ
g�t �w

���g�t+1�w
��� ≤ βg�t �w

β ≥
����
g�t+1�w
g�t �w

����

wolfe2 =
g�t+1�w
g�t �w

 for some α in (0,0.5)

�ƒ ≤ αg�t �w

α ≤ �ƒ
g�t �w

(because g�t �w is negative)

wolfe1 = �ƒ
g�t �w

���g�t+1�w
��� ≤ βg�t �w

β ≥
����
g�t+1�w
g�t �w

����

wolfe2 =
g�t+1�w
g�t �w

2nd Wolfe condition (strengthened):

wt

f(w)

�ƒ ≤ αg�t �w

α ≤ �ƒ
g�t �w

(because g�t �w is negative)

wolfe1 = �ƒ
g�t �w

���g�t+1�w
��� ≤ βg�t �w

β ≥
����
g�t+1�w
g�t �w

����

wolfe2 =
g�t+1�w
g�t �w

�ƒ ≤ αg�t �w

α ≤ �ƒ
g�t �w

(because g�t �w is negative)

wolfe1 = �ƒ
g�t �w

���g�t+1�w
��� ≤ βg�t �w

β ≥
����
g�t+1�w
g�t �w

����

wolfe2 =
g�t+1�w
g�t �w

wt+1

2nd Wolfe condition (strengthened):

wt

f(w)

�ƒ ≤ αg�t �w

α ≤ �ƒ
g�t �w

(because g�t �w is negative)

wolfe1 = �ƒ
g�t �w

���g�t+1�w
��� ≤ βg�t �w

β ≥
����
g�t+1�w
g�t �w

����

wolfe2 =
g�t+1�w
g�t �w

�ƒ ≤ αg�t �w

α ≤ �ƒ
g�t �w

(because g�t �w is negative)

wolfe1 = �ƒ
g�t �w

���g�t+1�w
��� ≤ βg�t �w

β ≥
����
g�t+1�w
g�t �w

����

wolfe2 =
g�t+1�w
g�t �w

�ƒ ≤ αg�t �w

α ≤ �ƒ
g�t �w

(because g�t �w is negative)

wolfe1 = �ƒ
g�t �w

���g�t+1�w
��� ≤ βg�t �w

β ≥
����
g�t+1�w
g�t �w

����

wolfe2 =
g�t+1�w
g�t �w

wt+1

 for some β in (α,1)

2nd Wolfe condition (strengthened):

�ƒ ≤ αg�t �w

α ≤ �ƒ
g�t �w

(because g�t �w is negative)

wolfe1 = �ƒ
g�t �w

���g�t+1�w
��� ≤ βg�t �w

β ≥
����
g�t+1�w
g�t �w

����

wolfe2 =
g�t+1�w
g�t �w

 for some β in (α,1)

Rewrite as .

We use notation for the ratio on the rhs.

�ƒ ≤ αg�t �w

α ≤ �ƒ
g�t �w

(because g�t �w is negative)

wolfe1 = �ƒ
g�t �w

���g�t+1�w
��� ≤ βg�t �w

β ≥
����
g�t+1�w
g�t �w

����

wolfe2 =
g�t+1�w
g�t �w

�ƒ ≤ αg�t �w

α ≤ �ƒ
g�t �w

(because g�t �w is negative)

wolfe1 = �ƒ
g�t �w

���g�t+1�w
��� ≤ βg�t �w

β ≥
����
g�t+1�w
g�t �w

����

wolfe2 =
g�t+1�w
g�t �w

Summarizing Wolfe conditions

Let and .

Let 0<α<0.5, α<β<1.
i)  wolfe1	 ≥ α	
ii) |wolfe2| ≤ β	

�ƒ ≤ αg�t �w

α ≤ �ƒ
g�t �w

(because g�t �w is negative)

wolfe1 = �ƒ
g�t �w

���g�t+1�w
��� ≤ βg�t �w

β ≥
����
g�t+1�w
g�t �w

����

wolfe2 =
g�t+1�w
g�t �w

�ƒ ≤ αg�t �w

α ≤ �ƒ
g�t �w

(because g�t �w is negative)

wolfe1 = �ƒ
g�t �w

���g�t+1�w
��� ≤ βg�t �w

β ≥
����
g�t+1�w
g�t �w

����

wolfe2 =
g�t+1�w
g�t �w

In VW, the Wolfe conditions are not enforced

•  ratios wolfe1 and wolfe2 are logged
•  it is always possible to choose α and β in the

hindsight as long as:
 wolfe1>0 and -1<wolfe2<1

Line search and termination in VW

•  in the first iteration:
–  evaluate directional 2nd derivative and initialize step size

according to the one-dimensional Newton step
–  if the loss does not decrease (i.e., wolfe1<0), shrink the step

•  in the subsequent iterations:
–  set step size to 1.0
–  if the loss does not decrease (i.e., wolfe1<0), shrink the step

•  terminate if
either: the specified number of passes over the data is reached
or: the relative decrease in the objective f(w)

 falls below a threshold

LBFGS switches

--bfgs
 turn on LBFGS optimization

--l2 0.0
 L2 regularization coefficient

--mem 15
 rank of the inverse Hessian approximation

--termination 0.001
 termination threshold for the
 relative loss decrease

