diff --git a/docs/components.html b/docs/components.html index d191942d012412..57314aba919844 100644 --- a/docs/components.html +++ b/docs/components.html @@ -172,7 +172,7 @@

1. DocumentAssembler: Getting -

2. RegexTokenizer: Word tokens

+

2. Tokenizer: Word tokens

Example:

-
sentence_detector = SentenceDetectorModel() \
+                                            
sentence_detector = SentenceDetector() \
   .setInputCols(["document"]) \
   .setOutputCol("sentence") \
   .setUseAbbreviations(True)
@@ -673,7 +673,7 @@

9. SentenceDetector: Sentence B Example:

-
val sentenceDetector = new SentenceDetectorModel()
+                                            
val sentenceDetector = new SentenceDetector()
   .setInputCols("document")
   .setOutputCol("sentence")
@@ -790,7 +790,7 @@

11. SentimentDetector: Sentime
Example:

-
sentiment_detector = SentimentDetectorModel() \
+                                            
sentiment_detector = SentimentDetector() \
   .setInputCols(["lemma", "sentence"]) \
   .setOutputCol("sentiment")
@@ -825,7 +825,7 @@

11. SentimentDetector: Sentime
Example:

-
val sentimentDetector = new SentimentDetectorModel
+                                            
val sentimentDetector = new SentimentDetector
   .setInputCols(Array("token", "sentence"))
   .setOutputCol("sentiment")
@@ -902,7 +902,7 @@

13. SpellChecker: Token spell Inputs: Any text for corpus. A list of words for dictionary. A comma separated custom dictionary.
- Requires: RegexTokenizer
+ Requires: Tokenizer
Functions:
  • @@ -947,7 +947,7 @@

    13. SpellChecker: Token spell Inputs: Any text for corpus. A list of words for dictionary. A comma separated custom dictionary.
    - Requires: RegexTokenizer
    + Requires: Tokenizer
    Functions:
    • @@ -1017,7 +1017,7 @@

      14. ViveknSentimentDetec Input: File or folder of text files of positive and negative data
      Example:

      -
      sentiment_detector = SentimentDetectorModel() \
      +                                            
      sentiment_detector = SentimentDetector() \
           .setInputCols(["lemma", "sentence"]) \
           .setOutputCol("sentiment")
      @@ -1225,7 +1225,7 @@

      16. TokenAssembler: Getting data Annotators