The Variational Quantum Eigensolver (VQE) for Estimating the Ground State of the H₂ Molecule

Zhi Han, Xinbo Li, Jonas Jäger, Nabil Zerradi

Every member independently implemented the full workshop materials, and contributed to a column of the poster according to the author order

Methodology

Introduction

Motivation

- Every known chemical interaction is an electron-electron interaction
- However, simulating large many body interactions is computationally difficult
- Jordan Wigner transformation: fermion operators (electrons) → quantum logic gates
- Enabling quantum computers to efficiently simulate **all** of chemistry
- VQE algorithm: quantum logic gates → ground state

Problem Statement

• Calculate ground state energy of H₂

VQE: A hybrid quantum-classical algorithm

Results & Benchmarking

Experiments

- VQE for H₂ with different bond distances
- QASM Simulator (ideal simulation)
- Real 5-qubit IBM Quantum Computer (ibmq-lima)

Main results

- 1. Simulated VQE matches exact solutions •
- 2. (Uncorrected) IBMQ overestimates
- Error mitigation improves IBMQ results by mitigating the overestimation x

Experimental details

- 8192 Shots per expectation estimation
- Qiskit Runtime minimal error mitigation: *Twirled Readout Error eXtinction* (resilience level 1)

Conclusion

- Our implementation is successful
- The simulated VQE applied to the H₂ molecule converges to the exact solution
- Error mitigation is an effective approach to obtaining better result in the NISQ era

Future Work

Possible improvement can be achieved if

- molecular symmetries are exploited (indicating other mapping like the parity mapping)
- more advanced classical optimizers are used
- simultaneous estimation circuit is implemented to reduce runtime

Acknowledgements

We sincerely thank CMC, QsiTech, QuantumBC for this informative workshop, and IBM for providing the quantum hardware. We had fun, and racoon eyes :)

