Skip to content
Permalink
master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
#!/usr/bin/env python3
## -*- coding: utf-8 -*-
##
## Jonathan Salwan - 2018-11-02
##
## This code solve the angry-reverser from the HackCon 2016 CTF.
## The particularity of this sample is that we use an external solver to solve
## queries instead of using the internal Triton's solver (even if in both cases
## it uses z3). The point here is to show that Triton can provide generic smt2
## outputs and theses outputs can be send to external solvers and get back
## model which then are sent to Triton (see the myExternalSolver function of
## this example).
##
## Output:
##
## $ time python3 solve.py
## [+] Loading 0x400040 - 0x400200
## [+] Loading 0x400200 - 0x40021c
## [+] Loading 0x400000 - 0x405d04
## [+] Loading 0x605d08 - 0x605f58
## [+] Loading 0x605d20 - 0x605ef0
## [+] Loading 0x40021c - 0x400260
## [+] Loading 0x405bb0 - 0x405bec
## [+] Loading 0x000000 - 0x000000
## [+] Hooking puts
## [+] Hooking printf
## [+] Hooking __libc_start_main
## [+] Hooking ptrace
## [+] Hooking __isoc99_scanf
## [+] Hooking exit
## [+] Starting emulation.
## [+] __libc_start_main hooked
## [+] argv[0] = yolomolo
## [+] scanf hooked
## [+] symbolizing scanf buffer
## [+] ptrace hooked
## [+] Solving condition at 0x402c31
## [+] Solving condition at 0x402ea4
## [+] Solving condition at 0x403111
## [+] Solving condition at 0x403380
## [+] Solving condition at 0x4035ed
## [+] Solving condition at 0x40385d
## [+] Solving condition at 0x403aca
## [+] Solving condition at 0x403d3c
## [+] Solving condition at 0x403fae
## [+] Solving condition at 0x40421c
## [+] Solving condition at 0x40448b
## [+] Solving condition at 0x4046ff
## [+] Solving condition at 0x40496d
## [+] Solving condition at 0x404be1
## [+] Solving condition at 0x404e4e
## [+] Solving condition at 0x4050bc
## [+] Solving condition at 0x40532d
## [+] Solving condition at 0x40559e
## [+] Solving condition at 0x4057e9
## [+] Solving condition at 0x405a20
## [+] printf hooked
## YAYY : 2684354496
## [+] Solving the last query to get the good serial...
## Serial is: HACKCON{VVhYS04ngrY}
## [-] Instruction not supported: 0x400579: hlt
## [+] Instruction executed: 4453
## [+] Emulation done.
##
## python3 solve.py 113.53s user 0.09s system 99% cpu 1:53.79 total
##
from __future__ import print_function
from triton import *
import random
import string
import sys
import os
import lief
TARGET = os.path.join(os.path.dirname(__file__), 'yolomolo')
DEBUG = True
SERIAL = str()
# The debug function
def debug(s):
if DEBUG: print(s)
# Memory mapping
BASE_PLT = 0x10000000
BASE_ARGV = 0x20000000
BASE_STACK = 0x9fffffff
# These instruction conditions must set zf to 1.
conditions = [
0x402C31,
0x402EA4,
0x403111,
0x403380,
0x4035ED,
0x40385D,
0x403ACA,
0x403D3C,
0x403FAE,
0x40421C,
0x40448B,
0x4046FF,
0x40496D,
0x404BE1,
0x404E4E,
0x4050BC,
0x40532D,
0x40559E,
0x4057E9,
0x405A20,
]
def getMemoryString(ctx, addr):
s = str()
index = 0
while ctx.getConcreteMemoryValue(addr+index):
c = chr(ctx.getConcreteMemoryValue(addr+index))
if c not in string.printable: c = ""
s += c
index += 1
return s
def getFormatString(ctx, addr):
return getMemoryString(ctx, addr) \
.replace("%s", "{}").replace("%d", "{:d}").replace("%#02x", "{:#02x}") \
.replace("%#x", "{:#x}").replace("%x", "{:x}").replace("%02X", "{:02x}") \
.replace("%c", "{:c}").replace("%02x", "{:02x}").replace("%ld", "{:d}") \
.replace("%*s", "").replace("%lX", "{:x}").replace("%08x", "{:08x}") \
.replace("%u", "{:d}").replace("%lu", "{:d}") \
# Simulate the printf() function
def printfHandler(ctx):
debug('[+] printf hooked')
# Get arguments
arg1 = getFormatString(ctx, ctx.getConcreteRegisterValue(ctx.registers.rdi))
arg2 = ctx.getConcreteRegisterValue(ctx.registers.rsi)
arg3 = ctx.getConcreteRegisterValue(ctx.registers.rdx)
arg4 = ctx.getConcreteRegisterValue(ctx.registers.rcx)
arg5 = ctx.getConcreteRegisterValue(ctx.registers.r8)
arg6 = ctx.getConcreteRegisterValue(ctx.registers.r9)
nbArgs = arg1.count("{")
args = [arg2, arg3, arg4, arg5, arg6][:nbArgs]
s = arg1.format(*args)
if DEBUG:
sys.stdout.write(s)
# Return value
return len(s)
# Simulate the putchar() function
def putcharHandler(ctx):
debug('[+] putchar hooked')
# Get arguments
arg1 = ctx.getConcreteRegisterValue(ctx.registers.rdi)
sys.stdout.write(chr(arg1) + '\n')
# Return value
return 2
# Simulate the scanf() function
def scanfHandler(ctx):
debug('[+] scanf hooked')
# Get arguments
arg1 = ctx.getConcreteRegisterValue(ctx.registers.rdi)
arg2 = ctx.getConcreteRegisterValue(ctx.registers.rsi)
# Fill scanf buffer with dummy inputs
ctx.setConcreteMemoryAreaValue(arg2, b"HACKCON{???????????}\n\x00")
# Symbolize 30 bytes
debug('[+] symbolizing scanf buffer')
for index in range(8, 19):
var = ctx.symbolizeMemory(MemoryAccess(arg2 + index, CPUSIZE.BYTE))
# Return value
return 21
# Simulate the ptrace() function
def ptraceHandler(ctx):
debug('[+] ptrace hooked')
# Don't care about ptrace :)
# Return value
return 0
# Simulate the puts() function
def putsHandler(ctx):
debug('[+] puts hooked')
# Get arguments
arg1 = getMemoryString(ctx, ctx.getConcreteRegisterValue(ctx.registers.rdi))
sys.stdout.write(arg1 + '\n')
# Return value
return len(arg1) + 1
# Simulate the strncpy() function
def strncpyHandler(ctx):
debug('[+] strncpy hooked')
dst = ctx.getConcreteRegisterValue(ctx.registers.rdi)
src = ctx.getConcreteRegisterValue(ctx.registers.rsi)
cnt = ctx.getConcreteRegisterValue(ctx.registers.rdx)
for index in range(cnt):
dmem = MemoryAccess(dst + index, 1)
smem = MemoryAccess(src + index, 1)
cell = ctx.getMemoryAst(smem)
expr = ctx.newSymbolicExpression(cell, "strncpy byte")
ctx.setConcreteMemoryValue(dmem, cell.evaluate())
ctx.assignSymbolicExpressionToMemory(expr, dmem)
return dst
def exitHandler(ctx):
debug('[+] exit hooked')
sys.exit(0)
def libcMainHandler(ctx):
debug('[+] __libc_start_main hooked')
# Get arguments
main = ctx.getConcreteRegisterValue(ctx.registers.rdi)
# Push the return value to jump into the main() function
ctx.setConcreteRegisterValue(ctx.registers.rsp, ctx.getConcreteRegisterValue(ctx.registers.rsp)-CPUSIZE.QWORD)
ret2main = MemoryAccess(ctx.getConcreteRegisterValue(ctx.registers.rsp), CPUSIZE.QWORD)
ctx.setConcreteMemoryValue(ret2main, main)
# Setup argc / argv
ctx.concretizeRegister(ctx.registers.rdi)
ctx.concretizeRegister(ctx.registers.rsi)
argvs = [
TARGET, # argv[0]
]
# Define argc / argv
base = BASE_ARGV
addrs = list()
index = 0
for argv in argvs:
addrs.append(base)
ctx.setConcreteMemoryAreaValue(base, bytes(argv.encode('utf8')) + b'\x00')
base += len(argv)+1
debug('[+] argv[%d] = %s' %(index, argv))
index += 1
argc = len(argvs)
argv = base
for addr in addrs:
ctx.setConcreteMemoryValue(MemoryAccess(base, CPUSIZE.QWORD), addr)
base += CPUSIZE.QWORD
ctx.setConcreteRegisterValue(ctx.registers.rdi, argc)
ctx.setConcreteRegisterValue(ctx.registers.rsi, argv)
return 0
# Functions to emulate
customRelocation = [
('__libc_start_main', libcMainHandler, BASE_PLT + 0),
('__isoc99_scanf', scanfHandler, BASE_PLT + 1),
('exit', exitHandler, BASE_PLT + 2),
('printf', printfHandler, BASE_PLT + 3),
('ptrace', ptraceHandler, BASE_PLT + 4),
('putchar', putcharHandler, BASE_PLT + 5),
('puts', putsHandler, BASE_PLT + 6),
('strncpy', strncpyHandler, BASE_PLT + 7),
]
def hookingHandler(ctx):
pc = ctx.getConcreteRegisterValue(ctx.registers.rip)
for rel in customRelocation:
if rel[2] == pc:
# Emulate the routine and the return value
ret_value = rel[1](ctx)
if ret_value is not None:
ctx.setConcreteRegisterValue(ctx.registers.rax, ret_value)
# Get the return address
ret_addr = ctx.getConcreteMemoryValue(MemoryAccess(ctx.getConcreteRegisterValue(ctx.registers.rsp), CPUSIZE.QWORD))
# Hijack RIP to skip the call
ctx.setConcreteRegisterValue(ctx.registers.rip, ret_addr)
# Restore RSP (simulate the ret)
ctx.setConcreteRegisterValue(ctx.registers.rsp, ctx.getConcreteRegisterValue(ctx.registers.rsp)+CPUSIZE.QWORD)
return
def getVarSyntax(ctx):
s = str()
ast = ctx.getAstContext()
for k, v in list(ctx.getSymbolicVariables().items()):
s += str(ast.declare(ast.variable(v))) + '\n'
return s
def getSSA(ctx, expr):
s = str()
ast = ctx.getAstContext()
ssa = ctx.sliceExpressions(expr)
for k, v in sorted(ssa.items())[:-1]:
s += str(v) + '\n'
s += str(ast.assert_(expr.getAst())) + '\n'
return s
def myExternalSolver(ctx, node, addr=None):
"""
The particularity of this sample is that we use an external solver to solve
queries instead of using the internal Triton's solver (even if in both cases
it uses z3). The point here is to show that Triton can provide generic smt2
outputs and theses outputs can be send to external solvers and get back model
which then are sent to Triton.
"""
import z3
expr = ctx.newSymbolicExpression(node, "Custom for Solver")
smtFormat = '(set-logic QF_BV) %s %s (check-sat) (get-model)' %(getVarSyntax(ctx), getSSA(ctx, expr))
c = z3.Context()
s = z3.Solver(ctx=c)
s.add(z3.parse_smt2_string(smtFormat, ctx=c))
if addr:
debug('[+] Solving condition at %#x' %(addr))
if s.check() == z3.sat:
ret = dict()
model = s.model()
for x in model:
ret.update({int(str(x).split('_')[1], 10): int(str(model[x]), 10)})
return ret
else:
debug('[-] unsat :(')
sys.exit(-1)
return
# Emulate the binary.
def emulate(ctx, pc):
global SERIAL
global conditions
count = 0
while pc:
# Fetch opcodes
opcodes = ctx.getConcreteMemoryAreaValue(pc, 16)
# Create the Triton instruction
instruction = Instruction()
instruction.setOpcode(opcodes)
instruction.setAddress(pc)
# Process
if ctx.processing(instruction) == EXCEPTION.FAULT_UD:
debug('[-] Instruction not supported: %s' %(str(instruction)))
break
count += 1
#print(instruction)
if instruction.getType() == OPCODE.X86.HLT:
break
# Simulate routines
hookingHandler(ctx)
if pc in conditions:
zf = ctx.getSymbolicRegister(ctx.registers.zf).getAst()
ast = ctx.getAstContext()
pco = ctx.getPathPredicate()
mod = myExternalSolver(ctx, zf == 1, pc)
for k, v in list(mod.items()):
ctx.setConcreteVariableValue(ctx.getSymbolicVariable(k), v)
# End of the execution
if pc == 0x405B00:
debug('[+] Solving the last query to get the good serial...')
ast = ctx.getAstContext()
pco = ctx.getPathPredicate()
mod = myExternalSolver(ctx, ast.land(
[pco] +
[ast.variable(ctx.getSymbolicVariable(x)) >= 0x20 for x in range(0, 11)] +
[ast.variable(ctx.getSymbolicVariable(x)) <= 0x7e for x in range(0, 11)] +
[ast.variable(ctx.getSymbolicVariable(x)) != 0x00 for x in range(0, 11)]
))
serial = str()
for k, v in sorted(mod.items()):
serial += chr(v)
SERIAL = "HACKCON{%s}" %(serial)
print('Serial is: %s' %(SERIAL))
# Next
pc = ctx.getConcreteRegisterValue(ctx.registers.rip)
debug('[+] Instruction executed: %d' %(count))
return
def loadBinary(ctx, binary):
# Map the binary into the memory
phdrs = binary.segments
for phdr in phdrs:
size = phdr.physical_size
vaddr = phdr.virtual_address
debug('[+] Loading 0x%06x - 0x%06x' %(vaddr, vaddr+size))
ctx.setConcreteMemoryAreaValue(vaddr, list(phdr.content))
return
def makeRelocation(ctx, binary):
# Perform our own relocations
try:
for rel in binary.pltgot_relocations:
symbolName = rel.symbol.name
symbolRelo = rel.address
for crel in customRelocation:
if symbolName == crel[0]:
debug('[+] Hooking %s' %(symbolName))
ctx.setConcreteMemoryValue(MemoryAccess(symbolRelo, CPUSIZE.QWORD), crel[2])
except:
pass
# Perform our own relocations
try:
for rel in binary.dynamic_relocations:
symbolName = rel.symbol.name
symbolRelo = rel.address
for crel in customRelocation:
if symbolName == crel[0]:
debug('[+] Hooking %s' %(symbolName))
ctx.setConcreteMemoryValue(MemoryAccess(symbolRelo, CPUSIZE.QWORD), crel[2])
except:
pass
return
def run(ctx, binary):
# Define a fake stack
ctx.setConcreteRegisterValue(ctx.registers.rbp, BASE_STACK)
ctx.setConcreteRegisterValue(ctx.registers.rsp, BASE_STACK)
# Let's emulate the binary from the entry point
debug('[+] Starting emulation.')
emulate(ctx, binary.entrypoint)
debug('[+] Emulation done.')
return
def main():
# Get a Triton context
ctx = TritonContext()
# Set the architecture
ctx.setArchitecture(ARCH.X86_64)
# Set optimization
ctx.setMode(MODE.ALIGNED_MEMORY, True)
ctx.setMode(MODE.ONLY_ON_SYMBOLIZED, True)
ctx.setMode(MODE.CONSTANT_FOLDING, True)
ctx.setMode(MODE.AST_OPTIMIZATIONS, True)
# AST representation as Python syntax
ctx.setAstRepresentationMode(AST_REPRESENTATION.SMT)
# Parse the binary
binary = lief.parse(TARGET)
# Load the binary
loadBinary(ctx, binary)
# Perform our own relocations
makeRelocation(ctx, binary)
# Init and emulate
run(ctx, binary)
return not (SERIAL == 'HACKCON{VVhYS04ngrY}')
if __name__ == '__main__':
retValue = main()
sys.exit(retValue)