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ABSTRACT
Deconvolution is a versatile method to enhance the quality of sig-
nals measured with systems which can be expressed mathemati-
cally as a convolution of a system’s response function with a signal.
In this paper, we present DeconvOptim.jl, a flexible toolbox
written in Julia to deconvolve one or multiple multi-dimensional
signals which have been degraded by a multi-dimensional signal
response function. DeconvOptim.jl works both on CPUs and
GPUs and utilizes recent advancements in Julias automatic differ-
entiation ecosystem.
In this work we demonstrate that DeconvOptim.jl surpasses
the performance of existing open source libraries clearly and is ap-
plicable to one dimensional time series datasets but also to multi-
dimensional microscopical imaging datasets.

Keywords
Julia, Image Processing, Deconvolution, Microscopy

1. Introduction
Deconvolution has been a long addressed problem especially in as-
tronomical imaging, digital signal processing or microscopy imag-
ing. The assumption is that images are degraded by some kind of
blur which can be described as a convolution of a kernel h with the
image S:

I(r) = (h ∗ S)(r) (1)

where ∗ denotes a convolution operation. I indicates the ideal mea-
sured image. r is the position vector or the pixel positions in the dis-
crete case. h is often called the point spread function (PSF) since
it characterizes how the systems maps a point in the object to a
blurred spot in the image. Often this convolution operation is dis-
turbed by different types of noise where the most common are addi-
tive Gaussian noise (e.g. due to the read out of the camera sensors)
or Poisson shot noise (e.g. due to the quantum nature of photons):

YPoisson(r) = Poisson[(h ∗ S)(r)] (2)
YGauss(r) = (h ∗ S)(r) + Gaussσ(r) (3)

Due to noise and the low pass filter effect of the PSF, deconvolution
is an ill-posed problem which cannot be solved directly.
A well known approach, because of its simplicity, has been the
iterative Richardson-Lucy deconvolution algorithm [18], [14] for
Poisson noise degraded signals. Another common method is the
non-iterative Wiener filter [21] because of its predictable runtime.

The Wiener filter assumes additive noise which is often not a good
approximation, especially in low light conditions as in microscopy
or astronomy. Recently, machine learning based methods have be-
come more and more favoured in deconvolution because of the
possibility to add learned properties of similar images to the algo-
rithm [12]. However, those implementations are usually restricted
to cases where experimental datasets are available for the character-
ization and training. DeconvOptim.jl is a toolbox written in Julia
[4] which offers several deconvolution algorithms like the iterative
Richardson-Lucy algorithm but also much more flexible methods
which are based on minimizing a noise-dependent loss function
with the help of modern gradient-descent minimization routines.
Also this toolbox is not restricted in dimensionality and therefore
can be applied to deconvolution problems in many different fields.

2. Efficient Convolutions
The mathematical definition of a convolution is

(h ∗ S)(r) =

∫ ∞
−∞

h(r− x) · S(x) dx. (4)

To obtain efficient deconvolution algorithms we also need an ef-
ficient way to calculate the convolution operations. Today, convo-
lution operations of spatially small kernels h can be calculated on
GPUs very efficiently in real space. However, often the blurring
kernel h is not spatially small and might be also multi-dimensional.
In that case, FFT based convolutions outperform sliding kernels. In
microscopy and astronomy that is often the case, since a defocus
broadens the PSF.

2.1 FFT Based Convolution
The basis for fast convolution calculation via Fourier transforms
lies in the convolution theorem. It states that

F {(h ∗ S)} (k) = F{h}(k) · F{S}(k), (5)

which means that a Fourier transform F of a convolution operation
is equivalent to a point wise multiplication of the Fourier trans-
forms of h and S. Fortunately, the Fourier transform operations can
be calculated even for moderate large 3D arrays quickly on mod-
ern computing machines via the Fast Fourier Transform (FFT). In
Julia, FFTW.jl offers a convenient interface to the FFTW library
[7]. The time complexity to calculate Equation 5 is O(N · logN)
for a one dimensional discretized dataset withN samples. For a 2D
dataset with size N ×M it is O(N ·M log(N ·M)) and accord-
ingly for higher dimensions. Real space based convolution kernels
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with sizeK×L applied on an image withN ×M data points have
a runtime ofO(N ·M ·K ·L). It is clear that for larger kernel sizes
(K,L� 1) the sliding method has worse computational complex-
ity than the FFT based convolutions. The many cores of a GPU can
mitigate that to a certain extent but since the FFT (CuFFT in the
CUDA library [16]) can be also executed in parallel fashion, both
approaches profit from parallelization.

2.2 Wrap-Around Artifacts in FFT based
Convolutions

One drawback of a FFT based convolution are wrap-around arti-
facts (see arrow in Figure 1a). The reason is, that the FFT operation
calculates the discrete Fourier transform (DFT) which inherently
assumes periodic data. If one applies a FFT on a finite object the
assumption is that this finite object repeats itself. To weaken the
wrap-around artifacts in the convolution one can zero or mean pad
the image before convolution and remove the padding afterwards.
Such approaches still suffer from artifacts when boundary values
do not fit to the mean or to zero as it can be observed in Figure 1b
where the arrow is pointing to. To solve for the wrap-around arti-

(a) Without padding (b) With padding.
Fig. 1: Comparison between two blurred images. The image a) is a straight-
forward FFT based blurred image. The zoomed region shows dark artifacts
at the left side originated from the right hand side. Also at the top of the
image some dark regions from the bottom scattered into the bright sky. Im-
age b) was padded before blurring with 10 pixels on each side with value
0.7 which results in bright regions around the image. The blur kernel was a
Gaussian kernel with standard deviation σ = 3pixel.

facts in deconvolution we use a different approach which will be
presented in subsection 3.2.

2.3 Preferred Convolution
The current state of DeconvOptim.jl uses the FFT approach to
calculate the convolution. However, in principle one could add the
possibility to choose spatially based convolutions. But since the
runtime gets especially long in multi-dimensional signal deconvo-
lution where FFT based methods are faster, we always use FFT
based convolutions here.

3. Inverse Modelling
In Figure 2 we show our approach to deconvolution. The general
idea is to create a (physical) forward model describing the mea-
surement process.
At the beginning of the optimization we start with an initial guess
x(r). Via a mapping function we can impose some restrictions to
the final solution (e.g. non-negativity, value intervals). The forward
model is then applied to the mapped reconstruction. We provide a
default function where the forward function is a convolution but
we also allow to plug in a different forward model. This output of
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Fig. 2: General pipeline of our deconvolution approach.

the forward function is compared to our noisy measurement under
a given loss function. Since deconvolution is an ill-posed problem,
we regularize the loss function with a regularizer. Afterwards
we calculate the gradient of the loss function with respect to the
reconstruction x(r) via automatic differentiation (AD). The values
of the total loss and the gradient are then used by an optimizer (to
minimize the total loss) to apply a gradient descent optimization to
get a proper reconstruction.

Except FFTW.jl and CUDA.jl [2], the entire package is written in
Julia. Therefore it is easy to replace the forward model with any
Julia code, as long as we can automatically differentiate through
the code. The gradient step is currently calculated with the reverse
mode AD of Zygote.jl [11]. As default for the optimization we
use the L-BFGS [13] routine provided by Optim.jl [15]. L-BFGS
is suitable for optimization with many million parameters as it only
stores a sparse representation of the inverse Hessian matrix, which
is built from a finite number of past function and gradient eval-
uations. Results are often good after 10 to 50 iterations whereas
Richardson-Lucy takes a few hundreds iterations. However, as we
will see later due to the more complex optimization routine the
speed-up in using L-BFGS is for a simple deconvolution minor.

3.1 Mapping Function
Mapping functions are an easy way to constrain the resulting re-
construction to predefined ranges. For example, if the optimizer
optimizes the variables rec which are then squared, we know that
rec2 is definitely non-negative. Instead of directly using fwd(rec)
we compare fwd(rec2) with the measurement Y where fwd is the
function describing the physical operation (mostly a convolution).
This mapping function does not change the outcome as long as it is
an surjective function for the desired number space (e.g. a parabola
is non-negative and covers all positive values) and does not change
the convexity of a problem. Functions like shifted tanh are possible
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as well since it is an bijective function in [−1, 1] and monotonic in-
creasing in the whole definition space. Hence the final result is rec2
in case of the quadratic mapping.

3.2 Wrap-around Artifacts Suppression
To prevent that wrap-around artifacts occur during deconvolution
we can instead of reconstructing an object having the same size as
the measurement, reconstruct an object having a slightly larger size.
This is shown in Figure 3. Consequently, we only compare the grey

Padded area

area compared
with measure-
ment

Fig. 3: Reconstructed data is padded before deconvolution but only the red
region is compared with the measurement.

part of the reconstruction with the measurement. Through the AD
and the convolution operations we still optimize for the whole area
(including the red one). With that padding we reduce that images
on the boundary influence in circular manner on reconstruction in
the grey area.

4. Loss Function
Apart from the forward model, the loss function is the most critical
part in the optimization. It has to account for the noise created by
the measurement process or instrument.

4.1 Poisson Data Term
Poisson shot noise is often the dominant source of noise hence we
explain the details. The key is to interpret the measurement as a
stochastic process. Our aim is to find a deconvolved image which
predicts the measured image as accurately as possible. Mathemat-
ically the probability for a certain measurement Y under Poisson
noise is

p(Y (r)|µ(r)) =
∏
r

µ(r)Y (r)

Γ(Y (r) + 1)
exp(−µ(r)) (6)

where Y is the measurement, µ is the expected measurement (ideal
measurement without noise) and Γ is the generalized factorial func-
tion. In the deconvolution process we get Y as measured input
and want to find the ideal specimen S which results in a mea-
surement µ(r) = (S ∗ PSF)(r). Since we want to obtain the
best reconstruction, we want to find a µ(r) so that p(Y (r)|µ(r))
gets maximized. Because that means that we find the specimen
which describes the measurement with the highest probability. In-
stead of maximizing p(Y (r)|µ(r)) a common trick is to mini-
mize − log(p(Y (r)|µ(r))). Mathematically, the optimization of
both functions provides same results but the latter is numerically
more stable.

arg min
S(r)

(− log(p(Y (r)|µ(r)))) = (7)

arg min
S(r)

∑
r

µ(r) + log(Γ(Y (r) + 1))− Y (r) log(µ(r)) (8)

which is equivalent to

arg min
S(r)

L = arg min
S(r)

∑
r

(µ(r)− Y (r) log(µ(r)) (9)

since the second term only depends on the constant Y (r) but not
on µ(r). The gradient of L with respect to µ(r) is simply

∇L = 1− Y (r)

µ(r)
(10)

The function L and the gradient ∇L are needed for any gradient
descent optimization algorithm. The numerical evaluation of the
Poisson loss can lead to issues. Since µ(r) = 0 can happen for a
measurement with zero intensity background. However, the loss is
not defined for µ ≤ 0. In our source code we set all intensity values
below a predefined threshold ε to ε itself. This prevents the evalua-
tion of the logarithm at undefined values. The final source code has
a modified version of Equation 10 as registered gradient for Equa-
tion 9. The reason is, that for values of µ(r) = 0 the equation is
not defined and has to be handled separately.

4.2 Regularizer
The regularizer is an additional part in the total loss to add some ad-
ditional priors like sparsity and smoothness. Most real samples are
smooth over large regions and such regularizers enhance the quality
of the reconstruction. In our toolbox we currently implement sev-
eral regularizer like (smoothed) Total Variation, Good’s roughness
[20], [8] and Tikhonov.

4.2.1 Total Variation as example. As the name suggests, Total
Variation tries to penalize variation in the image intensity. There-
fore it sums up the gradient strength at each point of the image:

Reg(S(r)) =
∑
r

|(∇S)(r)| (11)

Since we look at the magnitude of the gradient strength, this regu-
larizer is anisotropic. In 2D TV is defined like:

Reg(S(r)) =
∑
x,y

[
|S(x+ 1, y)− S(x, y)|2

+ |S(x, y + 1)− S(x, y)|2
] 1

2
(12)

In many frameworks, such a regularizer is implemented via func-
tions like circshift. However, such approaches create often sev-
eral copies of the data. We currently use Tullio.jl[1] to cre-
ate efficient functions calculating the regularizer and the gradient.
For simple expressions such as below, Tullio.jl registers an an-
alytical gradient and therefore allows to apply the same efficient
mechanisms to the gradient calculation which have been used for
the regularizer evaluation itself. A (smoothed) Total Variation with
Tullio.jl is defined here:� �
function total_variation ( arr , ε = eltype ( arr )(1 e-8 ))

@tullio r = sqrt ( ε +
abs2 ( arr [i,j] - arr [i+1,j]) +
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abs2 ( arr [i,j] - arr [i,j+1]))
end� �
ε is needed for regions where arr == 0 because otherwise the gra-
dient returns infinite values. Note, that definition just demonstrates
how the regularizer can be written down. In our toolbox we allow
for much more options. Since Tullio.jl cannot handle generic
multi-dimensional data yet we create regularizers which can vary
in step size, dimensionality and different weighting in dimensions
via Julia’s metaprogramming capability. A call like� �
julia > using DeconvOptim

julia > reg = TV ( num_dims =4, sum_dims =[1,2,3],
weights =[1,1,2])

# 169 ( generic function with 1 method )

julia > reg ( randn (( 10 , 20 , 30 , 40 )))
417810 .1 1332404887� �
results in a regularizer accepting four dimensional arrays. However,
the regularization only happens along the first three dimension and
the third dimensions is weighted differently. Such options are avail-
able for most of the regularizers implemented in our toolbox.

5. Experiments
In this section we show some experiments and compare parts
of the software to other solutions. All experiments were exe-
cuted on Ubuntu 20.04 using a AMD Ryzen 5 5600X 6-Core
processor (12 threads) with 32 GB DDR4 RAM and Julia 1.6.2.
If possible, all threads were used. As GPU accelerator we used
a GeForce RTX 2060 SUPER with 8 GB memory and CUDA
11.3 and CUDA.jl 3.3.1. Our experiments additionally made use
of the following packages in Julia 1.6.2: ArrayInterface.jl[17],
BenchmarkTools.jl[6], FFTW.jl[7], LLVM.jl[3], Optim.jl[15] and
Zygote.jl[11].

5.1 One-Dimensional Time Series
First, we want to demonstrate the deconvolution of an artificial one
dimensional dataset blurred with a certain PSF. Additionally, we
want to demonstrate the mechanism to reduce wrap-around artifacts
in the deconvolution. On the left hand side in Figure 4 we can see
a data series which has been simulated as a convolution with a PSF
and degradation with additive Gaussian noise.

(a) (b)
Fig. 4: 1D data which has been convolved with a PSF and was degraded
with additive Gaussian noise with σ = 1.0. Note that for the deconvolution
we have chosen a position interval which is well within the full series so
that there are not wrap-around artifacts in the measurement.

On the right hand we can see the results of the following deconvo-
lution. The first statement applies a total padding of 1 meaning that
the size is doubled and therefore the measured data is padded. As
we can see, the blue curve in Figure 4b does not show these intense
spikes at the boundaries as the green curve shows.� �
r_p , o = deconvolution ( measured , psf , loss = Gauss (),

iterations = 12 , regularizer = TV ( num_dims =1),
λ=0 .0 5, padding =1)

r, o = deconvolution ( measured , psf , loss = Gauss (),
iterations = 12 , regularizer = TV ( num_dims =1),
λ=0 .0 5, padding =0)� �

Also we notice that the deconvolved data in Figure 4b does not
show all the details which are visible in the ground truth. The rea-
son is that the PSF is a low pass filter and therefore only frequencies
which have been passed through the filter can be enhanced in terms
of contrast in a deconvolved result.

5.2 Influence of Regularizer
In this part we want to demonstrate the influence of the regularizer.
Figure 5b is a simulated imaged which has been affected by Poisson
shot noise and blurring by a PSF.

(a) (b) (c)

(d) (e)
Fig. 5: a) is the ground truth image. b) has been convolved with a PSF
and affected by Poisson shot noise (100 photons expected for the brightest
pixel). c) is deconvolved for 50 iterations without a regularizer, d) for 10
iterations without a regularizer. e) converged with Good’s roughness regu-
larizer and after 24 iterations with λ = 0.03.

This test chart is suited to judge the resolution of a reconstruction
since the pieces of the Siemens star have decreasing spacing to-
wards its middle which is equivalent to higher spatial frequencies.
Figure 5c shows the result after 50 iterations of the deconvolution.
We see that the image is heavily affected by some artifacts (the dot-
ted patterns) which usually occur after too many iterations without
a regularizer. Additionally, we notice that the core in the Siemens
star is denser requiring higher spatial resolution to resolve. Fig-
ure 5d shows the results after 10 iterations of the deconvolution
without a regularizer. We have chosen 10 iterations since the nor-
mal cross correlation (NCC) shows the maximum at 10 iterations.
Optimizing for more iterations seems to introduce more and more
artifacts to the image as it can be seen visually as well. Figure 5e
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shows the results after 24 iterations of the deconvolution but regu-
larized with a Good’s roughness regularizer. The total image qual-
ity is much better since the regularizer dampens the artifacts but
also results in lower resolution. With the regularizer weight λ one
can adjust the regularization strength. In Figure 6a we show the
relative energy regain GR (REG) [9]. The meaning of the REG is
how well certain frequencies are reconstructed in comparison to
the ground truth. GR = 1 is a perfect reconstruction, GR = 0 in-
dicates that this frequency could not be recovered at all, GR < 0
means that the reconstruction introduces wrong information at this
frequencies which are further from the ground truth than not re-
constructing these frequencies. We can see that the red measured

(a) REGGR over different frequencies. (b) NCC over the number of iterations.
Fig. 6: NCC and REG are quantitative measurements to judge the quality
of a deconvolution result. In a) we show the REG for the hand-optimized
non-regularized version with 10 iterations and the (converged) regularized
versions with λ = 0.03 and λ = 0.5.

curve shows the typical contrast loss until the maximum frequency
fmax (the PSF has zero transmittance over this frequency threshold).
Beyond fmax Poisson noise introduces fake frequencies. The green
curve shows the REG of the deconvolution without a regularizer.
For regions below fmax the deconvolution enhances the contrast.
However, around and beyond fmax several artifacts are introduced.
The regularized blue curve performs better and only some frequen-
cies show a REG below zero. To some extent the regularized ver-
sion can also recover information above fmax which are not sup-
ported by the PSF. Figure 6b shows the NCC over the number of
iterations. Especially the deconvolution without a regularizer suf-
fers from poor performance after a high number of iterations. Either
one has to stop early after a hand optimized iteration number (here
10) or use a regularizer. The regularized version seems to be ro-
bust against a higher number of iterations and even converges after
24. In conclusion we can say that both the regularized and the non-
regularized versions produce good results. In the non-regularized
one has to hand-optimize the number of iterations whereas in the
regularized one has to optimize λ. However, without the ground
truth image it is not clear which iteration or λ is optimal and hence
this depends on the user. Advantage of the non-regularized version
is, that it performs more than twice as fast but as it can be seen in
Figure 5d it shows slightly more artifacts in homogenous regions.

5.3 Multi-Dimensional Microscopy Data
To more completely demonstrate the features available in
DeconvOptim.jl, we deconvolve a four dimensional (three spa-
tial dimensions and a color dimension) dataset where the measured
volume consists of a 3D datasets with three different color chan-
nels, shown in Figure 7. Here we assumed a common single 3D
PSF for all color channels. Julia’s broadcast mechanism is able to
understand that the data has more dimensions that the PSF and ex-
pands the PSF so that a multiplication still works. We only need to

Fig. 7: Slice of a 3D dataset with three different colors. a) is the raw data
and b) is the deconvolved image.

specify for the FFT over which dimensions the convolution should
happen. Clearly we can see that the deconvolution removed a lot of
the background blur.

5.4 Performance Comparison
Since Julia is often advertised with great performance we compare
parts and the full deconvolution to other implementations in terms
of their total performance.

5.4.1 Regularizer. In Table 1 we can see the runtimes for differ-
ent TV regularizer implementations. As we can see, Tullio.jl
outperforms a plain Julia implementation by more than order of
magnitude. Partially, that is caused by Tullio.jl being able to
use of threads whereas Julia’s built in broadcast mechanism is not
multi threaded. By plain Julia we are referring to an implementa-
tion which is written with standard Julia Base functions. The same
plain Julia implementation was then used together with CUDA.jl to
make use of the GPU capabilities. We see that there is a minor ben-
efit in using a GPU for the regularizer instead of the Tullio.jl
version on the CPU. Unfortunately, GPU support by Tullio.jl
is still experimental and especially on the gradient step we could
not achieve reasonable results with it. We also compare the perfor-

a) plain ∇ plain Tullio.jl ∇ Tullio.jl
CPU 84ms 1.1 s 4.8ms 117ms

GPU 3.2ms 30ms 3.4ms 13.7 s

JAX ∇ JAX
CPU 49ms 360ms

GPU 1.06ms 11.4ms

b) plain ∇ plain Tullio.jl ∇ Tullio.jl
CPU 390 µs 2.7ms 19.5 µs 533 µs
GPU 45 µs 470 µs 51.0 µs 450 µs

JAX ∇ JAX
CPU 150 µs 1.31ms
GPU 26 µs 885 µs

Table 1. : Runtimes of a single Total Variation regularizer calculation for
different Julia versions and JAX. ∇ indicates the gradient calculation. For
a) we used a 3 dimensional Float32 array with size 300 × 300 × 300. For
b) the size was 512× 512.

mance to an implementation written in Python with the Framework
JAX [5]. The GPU version seems to outperform the Julia version by
roughly a factor of 2 − 3 in both forward and gradient pass. How-
ever, on the CPU Tullio.jl is considerably faster. In general one
could always squeeze more performance out of the gradient cal-
culations if the kernels would be hand optimized. In our package
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we especially try avoid that because of the multi-dimensionality it
is much more convenient to rely on AD and as shown above the
performance is usually acceptable.

5.5 Full Deconvolution
In Table 2 we show the deconvolution time for a 3D dataset with
a size of 512 × 256 × 1281 The basic settings of the different al-
gorithms and packages are noted in Table 3. The aim of this com-
parison is not to compare the quality of the results but the comput-
ing time to achieve similar reconstructions. The algorithms used
in DeconvOptim.jl are not fundamentally different to a plain
Richardson-Lucy deconvolution and therefore the results will not
exceed those results significantly in terms of quality.
One should keep in mind that such performance comparisons are
usually biased since we are not familiar with all options which
should be chosen to achieve best performance. The comparison
should give a rough overview which runtime is expected for each
toolbox.
The different packages used were ThreeDeconv.jl [10],
Huygens Professional version 21.04 (Scientific Volume Imaging,
The Netherlands, http://svi.nl), DeconvolutionLab2 [19]
and GenericDeconv.

CPU in s GPU in s NCC
DeconvOptim.jl 32.9 2.20 0.86
DeconvOptim.jl - TV 39.9 4.46 0.79
Richardson-Lucy (Julia) 40.0 3.05 0.74
ThreeDeconv.jl 1550 27.1 0.85
GenericDeconv 140 6.32 0.86
GenericDeconv - TV 233 9.35 0.73
Huygens 30.1 6.8 0.86
DeconvolutionLab2 - LR 1640 0.76

Table 2. : Runtimes of different deconvolution implementations. See Table 3
for the number of iterations for each method. We have chosen the same
number of iterations for the deconvolutions with and without regularizers.

For the results of GenericDeconv (written in Matlab by Rainer
Heintzmann) we used a Poisson loss function with a L-BFGS
minimizer and a quadratic non-negativity constraint. When the
TV regularizer was added the weight was λ = 0.001. The gen-
eral idea of GenericDeconv is very similar to DeconvOptim.jl.
DeconvolutionLab2 offers a wide variety of different algorithms
which however only run on a CPU. In the table we show the re-
sults of an iterative Richardson-Lucy deconvolution. The regular-
izer weight was λ = 0.001.
In DeconvOptim.jl we measured the runtime of the default de-
convolution routine with a Poisson loss function and the runtime of
straightforward Richardson-Lucy deconvolution without a regular-
izer.
ThreeDeconv.jl is another Julia deconvolution toolbox for de-
convolution of three dimensional data, the regularizer weight was
λ = 10−7. Since it is hard to judge the quality of those results with
a numerical loss function value, we compare them by the NCC,
see Figure 8. The CPU versions were multi threaded (if possi-
ble). DeconvolutionLab2, Huygens and GenericDeconv were
tested under Windows 10 and not Ubuntu. As summary of those

1Dataset was taken from http://bigwww.epfl.ch/deconvolution/
data/microtubules/[19]. During our experiments we noticed a pixel
offset between the ground truth and the noisy image. To reproduce our re-
sults, one has to correct this offset if the images are compared quantitatively.

Loss iterations
DeconvOptim.jl Poisson 45
DeconvOptim.jl TV Poisson 45
Richardson-Lucy Poisson 300
ThreeDeconv.jl Gauss+Poisson 300
GenericDeconv Poisson 45
GenericDeconv TV Poisson 45
Huygens Poisson 25
DeconvolutionLab2 LR Poisson 300

Table 3. : Overview which loss function (noise model) and number of iter-
ations are used.

performance tests we can state that our Julia implementation is
very competitive and especially on the GPU it was the fastest of
the tested packages. We also see that our routine was faster than
a plain Richardson-Lucy mainly due to the much lower number
of iterations. On the CPU DeconvOptim.jl is only beaten by the
commercial Huygens software. Despite ThreeDeconv.jl written
in Julia it is notably slower in comparison to our implementation.
DeconvolutionLab2 is written in Java and also uses hand writ-
ten gradients but still its speed is poor in comparison to all other
packages.

6. Summary
In conclusion, DeconvOptim.jl is a very performant, flexible de-
convolution software to deconvolve multi-dimensional datasets. Its
focus has been from the beginning to be fast and the source code
should be automatic differentiated by the available packages in
Julia. Usually we would expect that AD decreases performances
but still our software is faster than many other packages which
have been written with hand-optimized gradients. Furthermore,
our toolbox is not restricted in dimensionality and has mecha-
nism to prevent wrap-around artifacts which occur with FFT based
convolutions. Julia’s metaprogramming capabilities together with
Tullio.jl allow to generate regularizers which have high perfor-
mance and are easy to adapt. In future, we want to support more
regularizers on GPUs since they can not be handled efficiently with
the current Tullio.jl solution. Also we plan to extend the pack-
age to deconvolution of spatially varying kernels which are of im-
portance in optical systems with large field of view or poor manu-
facturing quality.
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(a) DeconvOptim.jl . NCC = 0.86.

(b) Julia Richardson-Lucy. NCC = 0.74.

(c) Deconvolution Lab2. NCC = 0.76.

(d) ThreeDeconv.jl. NCC = 0.85.

(e) GenericDeconv. NCC = 0.86.

(f) HuygensNCC = 0.86.

(g) Measured image. NCC = 0.41.

(h) Ground truth. NCC = 1.0

Fig. 8: Maximum intensity projections along one dimensions of some of the
deconvolution results.
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