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ABSTRACT1

Point processes model the occurrence of a countable number of2

random points over some support. They can model diverse phe-3

nomena, such as chemical reactions, stock market transactions4

and social interactions. We show that JumpProcesses.jl is5

a fast, general-purpose library for simulating point processes.6

JumpProcesses.jl was first developed for simulating jump7

processes via stochastic simulation algorithms (SSAs) (including8

Doob’s method, Gillespie’s methods, and Kinetic Monte Carlo9

methods). Historically, jump processes have been developed in the10

context of dynamical systems to describe dynamics with discrete11

jumps. In contrast, the development of point processes has been12

more focused on describing the occurrence of random events. In13

this paper, we bridge the gap between the treatment of point and14

jump process simulation. The algorithms previously included in15

JumpProcesses.jl can be mapped to three general methods16

developed in statistics for simulating evolutionary point processes.17

Our comparative exercise revealed that the library initially lacked18

an efficient algorithm for simulating processes with variable inten-19

sity rates. We, therefore, extended JumpProcesses.jl with a20

new simulation algorithm, Coevolve, that enables the rapid sim-21

ulation of processes with locally-bounded variable intensity rates.22

It is now possible to efficiently simulate any point process on23

the real line with a non-negative, left-continuous, history-adapted24

and locally bounded intensity rate coupled or not with differential25

equations. This extension significantly improves the computational26

performance of JumpProcesses.jl when simulating such pro-27

cesses, enabling it to become one of the few readily available, fast,28

general-purpose libraries for simulating evolutionary point pro-29

cesses.30

1. Introduction31

Methods for simulating the trajectory of evolutionary point pro-32

cesses can be split into exact and inexact methods. Exact methods33

describe the realization of each point in the process chronologi-34

cally. This exactness avoids bias from numerical approximations,35

but such methods can suffer from reduced performance when sim-36

ulating systems with large populations (where numerous events can37

fire within a short period since every single point needs to be ac-38

counted for). Inexact methods trade accuracy for speed by simu-39

lating the total number of events in successive intervals. They are40

popular in biochemical applications, e.g. τ -leap methods [4], which41

often require the simulation of chemical reactions in systems with42

large molecular populations.43

Previously, point process simulation library development focused44

primarily on univariate processes with exotic intensities, or large45

systems with conditionally constant intensities, but not on both.46

As such, there was no widely used general-purpose software for47

efficiently simulating compound point processes in large sys-48

tems with time-dependent rates. To enable the efficient simula-49

tion of such processes, we contribute the Coevolve aggrega-50

tor to JumpProcesses.jl, a core component of the popular51

DifferentialEquations.jl library [17]. The implemented52

algorithm improves the COEVOLVE algorithm described in [2]53

from where it borrows its name. Among other improvements, our54

algorithm supports any process with locally bounded conditional55

intensity rates, adapts to intensity rates that can change between56

jumps, can be coupled with differential equations, and avoids both57

the unnecessary re-computation of randomly generated numbers58

and the computation of the intensity rate when its lower bound59

is available. This extension of JumpProcesses.jl dramatically60

boosts the computational performance of the library in simulat-61

ing processes with intensities that have an explicit dependence62

on time and/or other continuous variables, significantly expanding63

the type of models that can be efficiently simulated. Widely-used64

point processes with such intensities include compound inhomo-65

geneous Poisson, Hawkes, and stress-release processes — all de-66

scribed in [1]. Since JumpProcesses.jl is a member of Ju-67

lia’s SciML organization, it also becomes easier, and more feasi-68

ble, to incorporate compound point processes with explicit time-69

dependent rates into a wide variety of applications and higher-level70

analyses. With our new additions we bump JumpProcesses.jl71

to version 9.71.72

In this paper, we bridge the gap between simulation methods de-73

veloped in statistics and biochemistry, which led us to the develop-74

ment of Coevolve. First, we briefly introduce evolutionary point75

processes. Next, since all simulation methods require a basic under-76

1All examples and benchmarks in this paper use this version of the library
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standing of simulation methods for the Poisson homogeneous pro-77

cess, we first describe such methods. Then, we identify and discuss78

three general, exact methods. In the second part of this paper, we79

describe the algorithms in JumpProcesses.jl and how they re-80

late to the literature. We highlight our contribution Coevolve, in-81

vestigate the correctness of our implementation and provide perfor-82

mance benchmarks to demonstrate its value. The paper concludes83

by discussing potential improvements.84

2. The evolutionary point process85

The evolutionary point process is a stochastic collection of marked86

points over a one-dimensional support. They are exhaustively de-87

scribed in [1]. The likelihood of any evolutionary point process is88

fully characterized by its conditional intensity,89

λ∗(t) ≡ λ(t | Ht−) =
p∗(t)

1−
∫ tn
t− p∗(u) du

, (2.1)

and conditional mark distribution, f ∗(k|t) — see Chapter 7 [1].90

Here Ht− = {(tn, kn) | 0 ≤ tn ≤ t} denotes the internal91

history of the process up to but not including t, the superscript ∗92

denotes the conditioning of any function on Ht− , and p∗(t) is the93

density function corresponding to the probability of an event taking94

place at time t given Ht− . We can interpret the conditional inten-95

sity as the likelihood of observing a point in the next infinitesimal96

unit of time, given that no point has occurred since the last observed97

point inHt− . Lastly, the mark distribution denotes the density func-98

tion corresponding to the probability of observing mark k given the99

occurrence of an event at time t and internal history Ht− .100

3. The homogeneous process101

A homogeneous process can be simulated using properties of the102

Poisson process, which allow us to describe two equivalent sam-103

pling procedures. The first procedure consists of drawing succes-104

sive inter-arrival times. The distance between any two points in105

a homogeneous process is distributed according to the exponen-106

tial distribution — see Theorem 7.2 [9]. Given the homogeneous107

process with intensity λ, then the distance ∆t between two points108

is distributed according to ∆t ∼ exp(λ). Draws from the ex-109

ponential distribution can be performed by drawing from a uni-110

form distribution in the interval [0, 1]. If V ∼ U [0, 1], then111

T = − ln(V )/λ ∼ exp(1). (Note, however, in Julia the opti-112

mized Ziggurat-based method used in the randexp stdlib func-113

tion is generally faster than this inverse method for sampling a114

unit exponential random variable.) When a point process is homo-115

geneous, the inverse method of Subsection 4.1 reduces to this ap-116

proach. Thus, we defer the presentation of this Algorithm to the117

next section.118

The second procedure uses the fact that Poisson processes can be119

represented as a mixed binomial process with a Poisson mixing120

distribution — see Proposition 3.5 [9]. In particular, the total num-121

ber of points of a Poisson homogeneous process in [0, T ) is dis-122

tributed according toN (T ) ∼ Poisson(λT ) and the location of123

each point within the region is distributed according to the uniform124

distribution tn ∼ U [0, T ].125

4. Exact simulation methods126

4.1 Inverse methods127

The inverse method leverages Theorem 7.4.I [1] which states that128

every simple point process2 can be transformed to a homogeneous129

Poisson process with unit rate via the compensator. Let tn be the130

time in which the n-th chronologically sorted event took place and131

t0 ≡ 0, we define the compensator as:132

Λ∗(tn) ≡ t̃n ≡
∫ tn

0

λ∗(u)du (4.1)

The transformed data t̃n forms a homogeneous Poisson process133

with unit rate. Now, if this is the case, then the transformed interval134

is distributed according to the exponential distribution.135

∆t̃n ≡ t̃n − t̃n−1 ∼ exp(1) (4.2)

The idea is to draw realizations from the unit rate Exponential pro-136

cess and solve Equation 4.2 for tn to determine the next event/firing137

time. We illustrate this in Algorithm 1 where we adapt Algorithm138

7.4 [1].139

Whenever the conditional intensity is constant between two140

points, Equation 4.2 can be solved analytically. Let λ∗ (t) =141

λn−1,∀tn−1 ≤ t < tn, then142 ∫ tn

tn−1

λ∗ (u) du = ∆t̃n ⇐⇒

λn−1(tn − tn−1) = ∆t̃n ⇐⇒

tn = tn−1 +
∆t̃n
λn−1

.

(4.3)

Which is equivalent to drawing the next realization time from the143

re-scaled exponential distribution ∆tn ∼ exp(λn−1). As we will144

see in Subsection 2, this implies that the inverse and thinning145

methods are the same whenever the conditional intensity is con-146

stant between jumps.147

The main drawback of the inverse method is that the root finding148

problem defined in Equation 4.2 often requires a numerical solu-149

tion. To get around a similar obstacle in the context of the piece-150

wise deterministic Markov process, Veltz [23] proposes a change151

of variables in time that recasts the root finding problem into an152

initial value problem. He denotes his method CHV.153

Piecewise deterministic Markov processes are composed of two154

parts: the jump process and the piecewise ODE that changes155

stochastically at jump times — see Lemaire et al. [11] for a for-156

mal definition. Therefore, it is easy to employ CHV in our case157

by setting the ODE part to zero throughout time. Adapting from158

Veltz [23], we can determine the model jump time tn after sam-159

pling ∆t̃n ∼ exp(1) by solving the following initial value prob-160

lem until ∆t̃n.161

t(0) = tn−1 ,
dt

dt̃
=

1

λ∗(t)
(4.4)

Looking back at Equation 4.1, we note that it is a one-to-one map-162

ping between t and t̃ which makes it completely natural to write163

t(∆t̃n) ≡ Λ∗−1(t̃n−1 +∆t̃n).164

2A simple point process is a process in which the probability of observing
more than one point in the same location is zero.
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Alternatively, when the intensity function is differentiable between165

jumps we can go even further by recasting the jump problem as a166

piecewise deterministic Markov process. Let λ∗n ≡ λ∗(tn), then167

the flow ϕt−tn(λ
∗
n) maps the initial value of the conditional inten-168

sity at time tn to its value at time t. In other words, the flow de-169

scribes the deterministic evolution of the conditional intensity func-170

tion over time. Next, denote 1(·) as the indicator function, then the171

conditional intensity function can be re-written as a jump process:172

λ∗(t) =
∑
n≥1

ϕt−tn−1(λn−1)1(tn−1 ≤ t < tn). (4.5)

According to Meiss [15], if ϕt(·) is a flow, then it is a solution to173

the initial value problem:174

ϕ0(λ
∗
n) = λ∗n ,

d

dt
ϕt−tn(λ

∗
n) = g(ϕt−tn(λ

∗
n)) (4.6)

where g : R+ → R is the vector field of λ∗ such that dλ∗/dt =175

g(λ∗).176

Based on Equation 2.1, we find that the probability of observing an177

interval longer than s given internal history Ht− is equivalent to:178

Pr(tn − tn−1 > s | Ht−) = 1−
∫ tn−1+s

tn−1

p∗(u)du =

= exp

(
−
∫ tn−1+s

tn−1

λ∗(u)du

)
=

= exp

(
−
∫ tn−1+s

tn−1

ϕu−tn−1(λ
∗
n−1)du

)
(4.7)

Equations 4.5 and 4.7 define a piecewise deterministic Markov pro-179

cess satisfying the conditions of Theorem 3.1 [23]. In this case, we180

find tn by solving the following initial value problem from 0 to181

∆t̃n ∼ exp(1).182 
λ∗(t(0)) = λ∗(tn−1) ,

dλ∗

dt̃
=

g(λ∗(t))

λ∗(t)

t(0) = tn−1 ,
dt

dt̃
=

1

λ∗(t)
.

(4.8)

This problem specifies how the conditional intensity and model183

time evolve with respect to the transformed time. The solution to184

Equation 4.2 is then given by (tn = t(∆t̃n), λ
∗(t(∆t̃n)) =185

λ∗(tn)).186

In Algorithm 1, we can implement the CHV method by solving187

either Equation 4.4 or Equation 4.8 instead of Equation 4.2. We188

denote the first specification as CHV simple and the second as189

CHV full. Note that CHV full requires that the conditional inten-190

sity be piecewise differentiable. The algorithmic complexity is then191

determined by the ODE solver and no root-finding is required. In192

Section 6.2, we will show that there are substantial differences in193

performance between them with the full specification being faster.194

Another concern with Algorithm 1 is updating and drawing from195

the conditional mark distribution in Line 8, and updating the con-196

ditional intensity in Line 9. Assume a process with K number of197

marks. A naive implementation of Line 9 scales with the number198

of marks as O(K) since λ∗ is usually constructed as the sum of K199

independent processes, each of which requires updating the condi-200

tional intensity rate. Likewise, drawing from the mark distribution201

in Line 8 usually involves drawing from a categorical distribution202

whose naive implementations also scales with the number of marks203

as O(K).204

Finally, Algorithm 1 is not guaranteed to terminate in finite time205

since one might need to sample many points before tn > T . The206

sampling rate can be especially high when simulating the process207

in a large population with self-exciting encounters. In biochemistry,208

Salis and Kaznessis [19] partition a large system of chemical reac-209

tions into two: fast and slow reactions. While they approximate the210

fast reactions with a Gaussian process, the slow reactions are solved211

using a variation of the inverse method. They obtain an equivalent212

expression for the rate of slow reactions as in Equation 4.2, which213

is integrated with the Euler method.214

Algorithm 1 The inverse method for simulating a marked evolu-
tionary point process over a fixed duration of time [0, T ).

1: procedure INVERSEMETHOD([0, T ), λ∗, f ∗,)
2: initialize the history HT− ← {}
3: set n← 0, t← 0
4: while t < T do
5: n← n+ 1
6: draw ∆t̃n ∼ exp(1)
7: find the next event time tn by solving Equation 4.2 or 4.8
8: update f ∗ and draw the mark kn ∼ f ∗ (k | tn)
9: update the history HT− ← HT− ∪ (tn, kn) and λ∗

10: end while
11: return HT−

12: end procedure

4.2 Thinning methods215

Thinning methods are one of the most popular methods for sim-216

ulating point processes. The main idea is to successively sample217

a homogeneous process, then thin the obtained points with the218

conditional intensity of the original process. As stated in Propo-219

sition 7.5.I [1], this procedure simulates the target process by con-220

struction. The advantage of thinning over inverse methods is that221

the former only requires the evaluation of the conditional intensity222

function while the latter requires computing the inverse of its inte-223

grated form [1].224

Thinning algorithms have been proposed in different forms [1].225

The Shedler-Lewis algorithm can simulate processes with bounded226

intensity [12]. The classical algorithm from Ogata [16] overcomes227

this limitation and only requires the local boundedness of the con-228

ditional intensity. The advantage of Ogata’s algorithm and its vari-229

ations is that it can simulate processes with potentially unbounded230

intensity, such as self-exciting ones. As long as the intensity condi-231

tioned on the simulated history remains locally bounded, it is pos-232

sible to simulate subsequent points indefinitely.233

In biochemistry, the thinning method was popularized by Gille-234

spie [6, 5]. For this reason, this method is also called the Gille-235

spie method. Gillespie himself called it the direct method or the236

stochastic simulation algorithm. Gillespie introduced the thin-237

ning method in the context of simulating chemical reactions of238

well-stirred systems. He developed a stochastic model for molecule239

interactions from physics principles without any references to the240

point process theory developed in this section. His model of chemi-241

cal interactions is equivalent to a marked Poisson process with con-242

stant conditional intensity between jumps. The model consists of243

distinct populations of molecular species that interact through sev-244

eral reaction channels. A chemical reaction consists of a Poisson245

process that transforms a set of molecules of some type into a set246
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of molecules of another type. What Gillespie calls the master equa-247

tion can be deduced from the superposition theorem — Theorem248

3.3 [9].249

Alternatively, in biochemistry, thinning methods are known as re-250

jection algorithms. Than et al. [21, 22] proposed the rejection-251

based algorithm with composition-rejection search, yet an-252

other more sophisticated variation of the thinning method. In this253

case, the procedure groups similar processes together. For each254

group, an upper- and lower-bound conditional intensity is used for255

thinning. A similar procedure is also described in [20], in which the256

authors refer to their algorithm as kinetic Monte Carlo.257

In Algorithm 2, we modify Algorithm 7.5.IV [1] to incorporate the258

idea of a lower bound for the conditional intensity from [22]. To im-259

plement the algorithm, we define three functions, B̄∗(t) = B̄(t |260

Ht),B
∗(t) = B(t | Ht) and L∗(t) = L(t | Ht), that charac-261

terize the local boundedness condition such that:262

λ∗ (t+ u) ≤ B̄∗(t) and λ∗ (t+ u) ≥B∗(t),

∀ 0 ≤ u ≤ L∗(t).
(4.9)

The tighter the bound on B̄∗(t), the lower the number of samples263

discarded. Since looser bounds lead to less efficient algorithms, the264

art, when simulating via thinning, is to find the optimal balance be-265

tween the local supremum of the conditional intensity B̄∗(t) and266

the duration of the local interval L∗(t). On the other hand, the in-267

fimumB∗(t) can be used to avoid the evaluation of λ∗ (t+ u) in268

Line 5 of Algorithm 3 which often can be expensive.269

When the conditional intensity is constant between jumps such that270

λ∗ (t) = λn−1,∀tn−1 ≤ t < tn, let B̄∗(t) = B∗(t) = λn−1271

and L∗(t) = ∞. We have that for any u ∼ exp(1 / B̄∗(t)) =272

exp(λn−1) and v ∼ U [0, 1], u < L∗(t) =∞ and v < λ∗ (t+273

u) / B̄∗(t) = 1. Therefore, we advance the internal history for274

every iteration of Algorithm 2. In this case, the bound B̄∗(t) is as275

tight as possible, and this method becomes the same as the inverse276

method of Subsection 4.1.277

We can draw many more connections between the thinning and278

inverse methods. Lemaire et al. [11] propose a version of the279

thinning algorithm for Piecewise Deterministic Markov Processes280

which does not use the local interval L∗ for rejection — this is281

equivalent toL∗(t) =∞—, and does not assume the upper bound282

B̄∗(t) is constant over L∗(t). The efficiency of their algorithm de-283

pends on the assumption that the stochastic process determined by284

B̄∗(t) can be efficiently inverted such that candidate times can be285

efficiently obtained using Equation 4.1. They propose an optimal286

bound as a piecewise constant function partitioned in such a way287

that it envelopes the intensity function as strictly as possible. They288

then show that under certain conditions the stochastic process deter-289

mined by B̄∗(t) converges in distribution to the target conditional290

intensity as the partitions of the optimal boundary converge to zero.291

Although their simulation approach does not exactly match ours,292

it suggests some properties between the thinning and the inverse293

method that we could investigate in the future. Among other things,294

the efficiency of thinning compared to inversion most likely de-295

pends on the rejection rate obtained by the former and the number296

of steps required by the ODE solver for the latter.297

While thinning algorithms avoid the issue of directly computing298

the inverse of the integrated conditional intensity, they increase the299

number of time steps needed in the sampling algorithm as we are300

now sampling from a process with an increased intensity relative301

to the original process. Moreover, like the inverse method, thin-302

ning algorithms can also face issues related with drawing from the303

conditional mark distribution — Line 11 of Algorithm 2 —, and304

updating the conditional intensity — Line 3 of Algorithm 3 — and305

the mark distribution — Line 12 of Algorithm 2.306

Algorithm 2 The thinning method for simulating a marked evolu-
tionary point process over a fixed duration of time [0, T ).

1: procedure THINNINGMETHOD([0, T ), λ∗, f ∗,)
2: initialize the history HT− ← {}
3: set n← 0, t← 0
4: while true do
5: t← TimeViaThinning([t, T ),HT− , λ

∗)
6: if t ≥ T then
7: break
8: end if
9: n← n+ 1

10: tn ← t
11: update f ∗ and draw the mark kn ∼ f ∗ (k | tn)
12: update the history HT− ← HT− ∪ (tn, kn)
13: end while
14: return HT−

15: end procedure

Algorithm 3 Generates the next event time via thinning.
1: procedure TIMEVIATHINNING([t, T ), λ∗, Ht,)
2: while t < T do
3: update λ∗

4: find B̄∗(t),B∗(t) and L∗(t) which satisfy Eq. 4.9
5: draw u ∼ exp(B̄∗(t)) and v ∼ U [0, B̄∗(t)]
6: if u > L∗(t) then
7: t← t+ L∗(t)
8: next
9: end if

10: if (v >B∗(t)) and (v > λ∗ (t+ u)) then
11: t← t+ u
12: next
13: end if
14: t← t+ u
15: break
16: end while
17: return t
18: end procedure

4.3 Queuing methods307

As an alternative to his direct method — in this text referred as the308

constant rate thinning method —, Gillespie introduced the first309

reaction method in his seminal work on simulation algorithms [6].310

The first reaction method separately simulates the next reaction311

time for each reaction channel — i.e. for each mark. It then selects312

the smallest time as the time of the next event, followed by updat-313

ing the conditional intensity of all channels accordingly. This is a314

variation of the constant rate thinning method to simulate a set of315

inter-dependent point processes, making use of the superposition316

theorem — Theorem 3.3 [9] — in the inverse direction.317

Gibson and Bruck [3] improved the first reaction method with the318

next reaction method. They innovate on three fronts. First, they319

keep a priority queue to quickly retrieve the next event. Second,320

they keep a dependency graph to quickly locate all conditional in-321

tensity rates that need to be updated after an event is fired. Third,322
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they re-use previously sampled reaction times to update unused re-323

action times. This minimizes random number generation, which324

can be costly. Priority queues and dependency graphs have also325

been used in the context of social media [2] and epidemics [8] sim-326

ulation. In both cases, the phenomena are modelled as point pro-327

cesses.328

We prefer to call this class of methods queuing methods since most329

efficiency gains come from maintaining a priority queue of the next330

event times. Up to this point we assumed that we were sampling331

from a global process with a mark distribution that could generate332

any mark k given an event at time t. With queuing, it is possible to333

simulate point processes with a finite space of marks as M interde-334

pendent point processes — see Definition 6.4.1 [1] of multivariate335

point processes — doing away with the need to draw from the mark336

distribution at every event occurrence. Alternatively, it is possible337

to split the global process into M interdependent processes each338

one of which with its own mark distribution.339

Our contribution, Algorithm 5, presents a method for sampling a340

superposed point process consisting of M processes by keeping341

the strike time of each process in a priority queue Q. The prior-342

ity queue is initially constructed in O(M) steps in Lines 4 to 7 of343

Algorithm 5. In contrast to thinning methods, updates to the con-344

ditional intensity depend only on the size of the neighborhood of345

i. That is, processes j whose conditional intensity depends on the346

history of i. If the graph is sparse, then updates will be faster than347

with thinning.348

A source of inefficiency in some implementations of queuing al-349

gorithms is the fact that one might need to go through multiple350

rejection cycles before accepting a time candidate ti for process351

i. This might require looking ahead in the future. In addition to352

that, if process j, which i depends on, takes place before i, then353

we need to repeat the whole thinning process to obtain a new time354

candidate for i. We thus propose Algorithm 5 which is a queuing355

algorithm that performs thinning in synchrony with the main loop,356

thus avoiding look ahead and wasted rejections. Since thinning is357

now synced with the main loop, it is possible to couple this simu-358

lator with other algorithms that step chronologically through time.359

These include ordinary differential equation solvers, enabling us to360

simulate jump processes with rates given by a differential equation.361

This is the first synced thinning algorithm we are aware of.362

Algorithm 4 Generates the next candidate time for queuing.
1: procedure QUEUETIME(t, λ∗, Ht,)
2: update λ∗

3: find B̄∗(t),B∗(t) and L∗(t) which satisfy Eq. 4.9
4: draw u ∼ exp(B̄∗(t))
5: if u > L∗(t) then
6: accepted← false
7: else
8: accepted← true
9: end if

10: t← t+ u
11: return t, B̄∗(t),B∗, accepted
12: end procedure

5. Implementation363

JumpProcesses.jl is a Julia library for simulating jump —364

or point — processes which is part of Julia’s SciML organiza-365

tion. Our discussion in Section 4 identified three exact meth-366

ods for simulating point processes. In all the cases, we identi-367

Algorithm 5 The queuing method for simulating a marked evolu-
tionary point process over a fixed duration of time [0, T ).

1: procedure QUEUINGMETHOD([0, T ), {λ∗k}, {f ∗k},)
2: initialize the history HT− ← {}
3: set n← 0, t← 0
4: for i=1,M do
5: (ti, B̄

∗
i ,B

∗
i , ai)← QueueTime(0,HT− , λ

∗
i(·))

6: push (ti, B̄
∗
i ,B

∗
i , ai, i) to Q

7: end for
8: while t < T do
9: first (ti, i, B̄∗i ,B

∗
i , ai, i) from Q

10: t← ti
11: if t ≥ T then
12: break
13: end if
14: draw v ∼ U [0, B̄∗i ]
15: if (v >B∗i) and (v > λ∗ (t)) then
16: ai ← false
17: end if
18: if ai then
19: n← n+ 1
20: tn ← t
21: update f ∗ and draw the mark kn ∼ f ∗i (k | tn)
22: update the history HT− ← HT− ∪ (tn, kn)
23: for j ∈ {i} ∪Neighborhood(i) do
24: (tj , B̄

∗
j ,B

∗
j , aj)← QueueTime(0,HT− , λ

∗
j(·))

25: update (tj , B̄
∗
j ,B

∗
j , aj , j) in Q

26: end for
27: else
28: (ti, B̄

∗
i ,B

∗
i , ai)← QueueTime(0,HT− , λ

∗
i(·))

29: update (ti, B̄
∗
i ,B

∗
i , ai, i) in Q

30: end if
31: end while
32: return HT−

33: end procedure

fied two mathematical constructs required for simulation: the in-368

tensity rate and the mark distribution. In JumpProcesses.jl,369

these can be mapped to user defined functions rate(u, p,370

t) and affect!(integrator). The library provides APIs371

for defining processes based on the nature of the intensity rate372

and the intended simulation algorithm. Processes intended for373

exact methods can choose between ConstantRateJump and374

VariableRateJump. While the former expects the rate between375

jumps to be constant, the latter allows for time-dependent rates. The376

library also provides the MassActionJump API to define large377

systems of point processes that can be expressed as reaction equa-378

tions. Finally, RegularJump are intended for inexact methods.379

The inverse method as described around Equation 4.2 uses380

root find to find the next jump time. Jumps to be sim-381

ulated via the inverse method must be initialized as a382

VariableRateJump. JumpProcesses.jl builds a continu-383

ous callback following the algorithm in [19] and passes the prob-384

lem to an OrdinaryDiffEq.jl integrator, which easily inter-385

operates with JumpProcesses.jl (both libraries are part of386

the SciML organization, and by design built to easily compose).387

JumpProcesses.jl does not yet support the CHV ODE based388

approach.389

Alternatively, thinning and queuing methods can be simulated via390

discrete steps. In the context of the library, any method that uses a391

discrete callback is called an aggregator. There are twelve differ-392
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ent aggregators, seven of which implement a variation of the thin-393

ning method and five of which a variation of the queuing method.394

We start with the thinning aggregators, none of which support395

VariableRateJump. Algorithm 2 assumes that there is a single396

process. In reality, all the implementations assume a finite multi-397

variate point process withM interdependent processes. This can be398

easily conciliated, as we do now, using Definition 6.4.1 [1] which399

states the equivalence of such process with a point process with a400

finite space of marks. As all the thinning aggregators only deal401

with ConstantRateJump, the intensity between jumps is con-402

stant, Algorithm 3 short-circuits to quickly return t ∼ exp(B̄) =403

exp(λn) as discussed in Subsection 4.2. Next, the mark distribu-404

tion becomes the categorical distribution weighted by the intensity405

of each process. That is, given an event at time tn, we have that406

the probability of drawing process i out of M sub-processes is407

λ∗i (tn)/λ
∗(tn). Conditional on sub-process i, the corresponding408

affect!(integrator) is invoked, that is, kn ∼ f ∗i (k | tn).409

Here we use a notation analogous to Section 4.3.410

Where most implementations differ is on updating the mark dis-411

tribution in Line 11 of Algorithm 2 and the conditional intensity412

rate in Line 3 of Algorithm 3. Direct and DirectFW follows the413

direct method in [6] which re-evaluates all intensities after every414

iteration scaling at O(K). When drawing the process to fire, it ex-415

ecutes a search in an array that stores the cumulative sum of rates.416

DirectCR, SortingDirect and RDirect only re-evaluate the417

intensities of the processes that are affected by the realized process.418

This operation is executed efficiently by keeping a vector of depen-419

dencies. These three algorithms differ in how they select the pro-420

cess. DirectCR keeps the intensity rates in a priority table, it is421

implemented after [20]. SortingDirect keeps the intensity rate422

in a loosely sorted array following [14]. In both cases, the idea is to423

use a randomly generated number between zero and one to guide424

the search for the next jump. With the intensity rates sorted, more425

frequent processes should be selected faster than less frequent ones.426

Overall, this should increase the speed of the simulation. RDirect427

keeps track of the maximum rate of the system, it implements an428

algorithm equivalent to thinning with B̄ equal to the maximum429

rate. However, the implementation differs. It thins with B̄ = λn,430

then randomly selects a candidate process and confirms the candi-431

date only if its rate is above a random proportion of the maximum432

rate. Finally, RSSA and RSSACR group processes with similar rates433

in bounded brackets. The upper bounds are used for thinning. For434

each round of thinning, a sampled candidate process is considered435

for selection. In RSSA, the candidate process is selected similarly436

to Direct, while a priority table is used in RSSACR. Both of these437

algorithms follow from [21, 22].438

Next, we consider the queuing aggregators. Starting with aggre-439

gators that only support ConstantRateJumps we have, FRM,440

FRMFW and NRM. FRM and FRMFW follow the first reaction method441

in [6]. To compute the next jump, both algorithms compute the time442

to the next event for each process and select the process with min-443

imum time. This is equivalent to assuming a complete dependency444

graph in Algorithm 5. For large systems, they can be less efficient445

than NRM. The latter implementation is sourced from [3] and fol-446

lows Algorithm 5 very closely.447

Previously, we attempted to bridge the gap between the treatment448

of point process simulation in statistics and biochemistry. Despite449

the many commonalities, most of the algorithms implemented in450

JumpProcesses.jl are derived from the biochemistry litera-451

ture. There has been less emphasis on implementing processes452

commonly studied in statistics such as self-exciting point pro-453

cesses characterized by time-varying and history-dependent inten-454

sity rates. This is addressed by our latest aggregator, Coevolve.455

This is the first aggregator that supports VariableRateJumps,456

facilitating substantially more performant simulation of processes457

with time-dependent intensity rates in JumpProcesses.jl and458

DifferentialEquations.jl compared to the current in-459

verse method-based approach that relies on ODE integration and460

continuous events.461

The implementation of this aggregator takes inspiration from [2],462

and improves the method in several ways. First, we take advan-463

tage of the modularity and composability of Julia to design an API464

that accepts any intensity rate, not only the Hawkes’. Second, we465

avoid the re-computation of unused random numbers. When updat-466

ing processes that have not yet fired, we can transform the unused467

time of constant rate processes to obtain the next candidate time468

for the first round of iteration of the thinning procedure in Algo-469

rithm 3. This saves one round of sampling from the exponential dis-470

tribution, which translates into a faster algorithm. Third, we allow471

the user to supply a lower bound rate which can short-circuit the472

loop in Algorithm 3, saving yet another round of sampling. Fourth,473

it adapts to processes with constant intensity between jumps which474

reduces the loop in Algorithm 3 to the equivalent implemented in475

NRM. Finally, since Coevolve can be mapped to a thinning algo-476

rithm — see [2] —, it can simulate any point process on the real477

line with a non-negative, left-continuous, history-adapted and lo-478

cally bounded intensity rate as per Proposition 7.5.I [1].479

Coevolve syncs with the main execution loop which means that480

it can be easily coupled with differential equations modeled with481

OrdinaryDiffEq.jl. For instance, It is possible to model pro-482

cesses whose rates are given by a differential equation. This is a483

departure from the algorithm described in [2] which translates not484

only into a faster, but also more flexible simulator. This difference485

in implementation follows our discussion on the relationship be-486

tween the main execution loop and the thinning loop in Section 4.3.487

6. Empirical evaluation488

This section conducts some empirical evaluation of the489

JumpProcesses.jl aggregators described in Section 5.490

First, since Coevolve is a new aggregator, we test its correctness491

by conducting statistical analysis. Second, we conduct the jump492

benchmarks available in SciMLBenchmarks.jl. We have493

added new benchmarks that assess the performance of the new494

aggregators under settings that could not be simulated with495

previous aggregators.496

6.1 Statistical analysis of Coevolve497

To simulate a process intended for a discrete solver with Jump-498

Processes.jl, we define a discrete problem, initialize the499

jumps and define the jump problem which takes the aggregator as500

an argument. The jump problem can then be solved with the dis-501

crete stepper provided by JumpProcesses.jl, SSAStepper.502

The code for simulating the homogeneous Poisson process with503

Direct is reproduced in Listing 1.504

Listing 1: Simulation of the homogeneous Poisson process.� �
505

using JumpProcesses506

rate (u, p, t) = p[1]507

affect !( integrator ) = ( integrator .u[1] += 1;508

nothing )509

jump = ConstantRateJump ( rate , affect !)510

u, tspan , p = [0.], (0., 200 .), (0 .2 5,)511

dprob = DiscreteProblem (u, tspan , p)512

jprob = JumpProblem ( dprob , Direct (), jump ;513

6
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dep_graph =[[1]])514

sol = solve ( jprob , SSAStepper ())515 � �516

The simulation of a Hawkes process — see Subsection 6.2 for a517

definition — requires a VariableRateJump along with the rate518

bounds and the interval for which the rates are valid. Also, since519

the Hawkes process is history dependent, we close the rate and520

affect! function with a vector containing the history of events.521

The code for simulating the Hawkes process is reproduced in List-522

ing 2. Note that it is possible to simplify the computation of the523

rate — see Subsection 6.2 —, but we keep the code here as close524

as possible to its usual definition for illustration purposes.525

Listing 2: Simulation of the Hawkes process.� �
526

using JumpProcesses527

h = Float64 []528

rate (u, p, t) = p[1] +529

p[2]* sum ( exp (-p[3]*(t- _t )) for _t in h; init =0)530

lrate (u, p, t) = p[1]531

urate = rate532

rateinterval (u, p, t) = 1/(2* urate (u,p,t))533

affect !( integrator ) = ( push !(h, integrator .t);534

integrator .u[1] += 1; nothing )535

jump = VariableRateJump ( rate , affect !; lrate ,536

urate , rateinterval )537

u, tspan , p = [0.], (0., 200 .), (0 .2 5, 0 .5 , 2 .0 )538

dprob = DiscreteProblem (u, tspan , p)539

jprob = JumpProblem ( dprob , Coevolve (), jump ;540

dep_graph =[[1]])541

sol = solve ( jprob , SSAStepper ())542 � �543

To assess the correctness of Coevolve, we add it to the Jump-544

Processes.jl test suite. Some tests check whether the aggrega-545

tors are able to obtain empirical statistics close to the expected in546

a number of simple biochemistry models such as linear reactions,547

DNA repression, reversible binding and extinction. The test suite548

was missing a unit test for self-exciting process. Thus, we have549

added a test for the univariate Hawkes model that checks whether550

algorithms that accept VariableRateJump are able to produce551

an empirical distribution of trajectories whose first two moments of552

the observed rate are close to the expected ones.553

In addition to that, the correctness of the implemented algorithm554

can be visually assessed using a Q-Q plot. As discussed in Sub-555

section 4.1, every simple point process can be transformed to a556

Poisson process with unit rate. This implies that the interval be-557

tween points for any such transformed process should match the558

exponential distribution. Therefore, the correctness of any aggre-559

gator can be assessed as following. First, transform the simulated560

intervals with the appropriate compensator. Let tni
be the time in561

which the n-th event of sub-process i took place and t0i ≡ 0, the562

compensator for sub-process i is given by the following:563

Λ∗i (tni
) ≡ Λ∗ni

≡
∫ tni

0

λ∗i (u)du (6.1)

Then the transformed simulated interval is given by:564

∆Λni
≡ Λ∗ni

− Λ∗(n−1)i (6.2)

Compute the empirical quantiles of the transformed intervals. That565

is, the q-th quantile is the interval ∆Λq that divides the sorted in-566

tervals in two sets, those below and above ∆Λq such that q-percent567

of the elements are below it. Plot the empirical quantiles with the568

corresponding quantiles of the exponential distribution. If the sim-569

ulator produces correct trajectories, this plot known as Q-Q plot570
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Fig. 1: Simulations of 10-nodes compound Hawkes process with parameters
λ = 0.5, α = 0.1, β = 2.0 for 200 units of time. (a) and (b) sampled
trajectory and intensity rate for a single simulation for the three selected
nodes in (c) for the first 20 units of time. (c) underlying 10-nodes network
with three random nodes selected. (d) Q-Q plot of transformed inter-event
time for 250 simulations colored by node.

should depict the points aligned around the 45-degree line. We pro-571

duce Q-Q plots for the homogeneous Poisson process as well as the572

compound Hawkes process — see Subsection 6.2 for a definition573

— to attest the correctness of Coevolve. Figure 1 (d) depicts the574

Q-Q plot for a ten-node compound Hawkes process with parame-575

ters λ = 0.5, α = 0.1, β = 2.0 simulated 250 times for 200576

units of time. Figure 1 also depicts the trajectory, the conditional577

intensity and the network structure of a single simulation for three578

random nodes in panels (a), (b) and (c) respectively. We obtained579

similar Q-Q plots for the other algorithms that benchmarked the580

Multivariate Hawkes process below.581

6.2 Benchmarks582

We conduct a set of benchmarks to assess the performance of583

the JumpProcesses.jl aggregators described in Section 5. All584

7



Proceedings of JuliaCon 1(1), 2023

Diffusion Multi-state Gene I Gene II
Direct 7.18 s 0.16 s 0.24 ms 0.59 s
FRM 15.04 s 0.25 s 0.29 ms 0.78 s
SortingDirect 1.08 s 0.11 s 0.23 ms 0.50 s
NRM 0.75 s 0.25 s 0.39 ms 0.89 s
DirectCR 0.51 s 0.21 s 0.47 ms 1.00 s
RSSA 1.42 s 0.10 s 0.43 ms 0.65 s
RSSACR 0.46 s 0.16 s 0.91 ms 1.07 s
Coevolve 0.90 s 0.36 s 0.59 ms 1.33 s

Table 1. : Median execution time. A 1-dimensional continuous time ran-
dom walk approximation of a diffusion model (Diffusion), the multi-state
model from Appendix A.6 [13] (Multi-state), a simple negative feedback
gene expression model (Gene I) and the negative feedback gene expres-
sion from [7] (Gene II). Fastest time is bold, second fastest underlined.
Benchmark source code and dependencies are available in SciMLBench-

marks.jl, see first paragraph of Section 6.2 for source references.

benchmarks are available in SciMLBenchmarks.jl3. All were585

run in BuildKite4 via the continuous integration facilities provided586

by the package maintainers. We have added two benchmark suites587

to assess the performance of the new aggregators under settings that588

could not be simulated with previous aggregators.589

First, we assess the speed of the aggregators against jump pro-590

cesses whose rates are constant between jumps. There are four such591

benchmarks: a 1-dimensional continuous time random walk ap-592

proximation of a diffusion model (Diffusion), the multi-state model593

from Appendix A.6 [13] (Multi-state), a simple negative feedback594

gene expression model (Gene I) and the negative feedback gene595

expression from [7] (Gene II). We simulate a single trajectory for596

each aggregator to visually check that they produce similar trajec-597

tories for a given model. The Diffusion, Multi-state, Gene I and598

Gene II benchmarks are then simulated 50, 100, 2000 and 200599

times, respectively. Check the source code for further implementa-600

tion details.601

Benchmark results are listed in Table 1. The table shows that no602

single aggregator dominates suggesting they should be selected ac-603

cording to the task at hand. However, FRM, NRM, Coevolve never604

dominate any benchmark. In common, they all belong to the family605

of queuing methods suggesting that there is a penalty when using606

such methods for jump processes whose rates are constant between607

jumps. We also note that the performance of Coevolve lag that608

of NRM despite the fact that Coevolve should take the same num-609

ber of steps as NRM when no VariableRateJump is used. The610

reason behind this discrepancy is likely due to implementation dif-611

ferences, but left for future investigation.612

Second, we add a new benchmark which simulates the compound613

Hawkes process for an increasing number processes. Consider a614

graph with V nodes. The compound Hawkes process is character-615

ized by V point processes such that the conditional intensity rate616

of node i connected to a set of nodes Ei in the graph is given by617

λ∗i (t) = λ+
∑
j∈Ei

∑
tnj

<t

α exp
[
−β(t− tnj

)
]
. (6.3)

This process is known as self-exciting, because the occurrence of618

an event j at tnj
will increase the conditional intensity of all the619

3https://github.com/SciML/SciMLBenchmarks.jl/tree/

3bf650c1aae7b10e49cbd10e8f626d2a517f3e79/benchmarks/

Jumps
4https://buildkite.com/julialang/scimlbenchmarks-dot-jl/

builds/1326#01898802-ba51-4cd5-a31f-6c9b937b6146

processes connected to it by α. The excited intensity then decreases620

at a rate proportional to β.621

dλ∗i (t)

dt
= −β

∑
j∈Ei

∑
tnj

<t

α exp
[
−β(t− tnj

)
]

= −β (λ∗i (t)− λ)

(6.4)

The conditional intensity of this process has a recursive formulation622

which can significantly speed the simulation. The recursive formu-623

lation for the univariate case is derived in [10] which also provides624

additional discussion and results on the Hawkes process. We derive625

the compound case here. Let tNi
= max{tnj

< t | j ∈ Ei}626

and φ∗i (t) below.627

φ∗i (t) =
∑
j∈Ei

∑
tnj

<t

α exp
[
−β(t− tNi

+ tNi
− tnj

)
]

= exp [−β(t− tNi
)]
∑
j∈Ei

∑
tnj
≤tNi

α exp
[
−β(tNi

− tnj
)
]

= exp [−β(t− tNi
)] (α+ φ∗i (tNi

))
(6.5)

Then the conditional intensity can be re-written in terms of628

φ∗i (tNi
).629

λ∗i (t) = λ+ φ∗i (t) = λ+ exp [−β(t− tNi
)] (α+ φ∗i (tNi

))
(6.6)

A random graph is sampled from the Erdős-Rényi model. This630

model assumes the probability of an edge between two nodes is in-631

dependent of other edges, which we fix at 0.2. Note that this setup632

implies an increasing expected node degree.633

We fix the Hawkes parameters at λ = 0.5, α = 0.1, β = 5.0634

ensuring the process does not explode and simulate models in the635

range from 1 to 95 nodes for 25 units of time. We simulate 50636

trajectories with a limit of ten seconds to complete execution. For637

this benchmark, we save the state of the system exactly after each638

jump.639

We assess the benchmark in eight different settings. First, we run640

the inverse method, Coevolve and CHV simple using the brute641

force formula of the intensity rate which loops through the whole642

history of past events — Equation 6.3. Second, we simulate the643

same three methods with the recursive formula — Equation 6.6.644

Next, we run the benchmark against CHV full. All CHV spec-645

ifications are implemented with PiecewiseDeterministic-646

MarkovProcesses.jl 5 which is developed by Veltz, the au-647

thor of the CHV algorithm discussed in Subsection 4.1. Finally,648

we run the benchmark using the Python library Tick6. This library649

implements a version of the thinning method for simulating the650

Hawkes process and implements a recursive algorithm for comput-651

ing the intensity rate.652

Table 2 shows that the Inverse method which relies on root finding653

is the most inefficient of all methods for any system size. For large654

system size this method is unable to complete all 50 simulation655

runs because it needs to find an ever larger number of roots of an656

ever larger system of differential equations.657

The recursive implementation of the intensity rate brings a consid-658

erable boost to the simulations, placing Coevolve as one of the659

5https://github.com/rveltz/PiecewiseDeterministicMarkovProcesses.

jl
6https://github.com/X-DataInitiative/tick
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fastest algorithms. As shown in Algorithm 5, every sampled point660

in Coevolve requires a number of expected updates equal to the661

expected degree of the dependency graph. Therefore, it is able to662

complete non-exploding simulations efficiently.663

The Python library Tick remains competitive for smaller prob-664

lems, but gets considerably slower for bigger ones. Also, it is only665

specialized to the Hawkes process. Another drawback is that the666

library wraps the actual C++ implementation. In contrast, Jump-667

Processes.jl can simulate many other point processes with a668

relatively simple user-interface provided by the Julia language.669

There is substantial difference between the performance of recur-670

sive CHV simple and CHV full. The former does not make use671

of the derivative of the intensity function in Equation 6.4 which is672

more efficient to compute than the recursive rate in Equation 6.6.673

On the one hand, Coevolve clearly dominates CHV simple.674

On the other hand, CHV full is slower for smaller networks, but675

slightly faster than Coevolve for larger models. This change in676

relative performance occurs due to the rate of rejection in Coe-677

volve increasing in model size for this particular model. We com-678

pute the rejection rate as one minus the ratio between the number679

of jumps and the number of calls to the upper bound. A system680

with a single node sees a rejection rate of around 8 percent which681

rapidly increases to 80 percent when the system reaches 20 nodes682

and plateaus at around 95 percent with 95 nodes.683

Finally, we introduce a new benchmark which is intended to assess684

the performance of algorithms capable of simulating the stochastic685

model of hippocampal synaptic plasticity with geometrical read-686

out of enzyme dynamics proposed in [18]. For short, we denote it687

as the synapse model. We chose to benchmark this model as it is688

representative of a complex biochemical model. It couples a jump689

problem containing 98 jumps affecting 49 discrete variables with690

a stiff, ordinary differential equation problem containing 34 con-691

tinuous variables. Continuous variables affect jump rates while the692

discrete variables affect the continuous problem. There are 3 stages693

to the simulation: pre-synaptic evolution, glutamate release, and694

post-synaptic evolution. Among the algorithms considered, only695

the inverse method implemented in JumpProcesses.jl, Co-696

evolve and CHV are theoretically able to simulate the synapse697

model. However, in practice, only the last two complete at least698

one benchmark run. The original synapse problem was described699

as a piecewise deterministic Markov process, so we do not make700

the distinction between CHV simple and full in this benchmark.701

Benchmark results are displayed in Table 3. We observe that CHV702

is the fastest algorithm completing the synapse evolution in about703

half of the time it takes Coevolve with less than half of the allo-704

cations. Further investigation reveals that the thinning procedure in705

Coevolve reaches an average of 70 percent over all jumps which706

then leads to 2 to 3 times more function evaluations and Jaco-707

bians created compared to CHV. Our implementation adds stop-708

ping times via a call to register_next_jump_time! even for709

rejected jumps — we do not know a jump will be rejected until710

evaluated. This then leads the ODE solver to step to those times and711

make additional function evaluations and Jacobians. Lemaire et712

al. [11] performs a similar benchmark in which they compare the713

Hodgkin-Huxley model against different thinning conditions and714

against an ODE approximation. They find that a thinned algorithm715

with optimal boundary conditions can run significantly faster than716

the ODE approximation. Thus, there could be plenty of room to717

improve the performance of Coevolve in our setting.718

A disadvantage of CHV compared with Coevolve is that it sup-719

ports limited saving options by design. To save at pre-specified720

times would require using the fact that solutions are piecewise con-721

stant to determine solutions at times in-between jumps — and for722

coupled ODE-jump problems would require root-finding to deter-723

mine when s(u) = sn for each desired saving time sn in Equa-724

tion 4.8. The alternative proposed in [23] is to introduce an artificial725

jump to the model such as the homogeneous Poisson process with726

unit rate to sample the system at regular intervals. Alternatively,727

Coevolve allows saving at any arbitrary point. A common work-728

flow in simulating jump processes, particularly when interested in729

calculating statistics over time, is to pre-specify a precise set of730

times at which to save a simulation. In theory, this reduces mem-731

ory pressure, particularly for systems with large numbers of jumps,732

and can give increased computational performance relative to sav-733

ing the state at the occurrence of every jump. However, in the case734

of the synapse model, the number of candidate time rejections far735

surpasses the number of jumps. Therefore, reducing the number of736

saving points — e.g. only saving at start and end of the simulation737

— does not significantly reduce allocations or running time. Given738

these considerations, we decided to save after every jump and at739

regular pre-specified intervals that occur at the same frequency as740

the artificial saving jump used by CHV.741

Another parameter that can affect the precision and speed of the742

synapse benchmark is the ODE solver. The author of Piece-743

wiseDeterministicMarkovProcesses.jl discuss some744

of these issues in Discourse7. Some ODE solvers can be faster and745

more precise. Due to time constraints, we have not investigated this746

matter. The synapse benchmark uses the AutoTsit5(Rosen-747

brock23()) solver in both Coevolve and CHV. Further inves-748

tigation of this matter is left to future research.749

7. Conclusion750

This paper demonstrates that JumpProcesses.jl is a fast,751

general-purpose library for simulating evolutionary point pro-752

cesses. With the addition of Coevolve, any point process on the753

real line with a non-negative, left-continuous, history-adapted and754

locally bounded intensity rate can be simulated with this library.755

The objective of this paper was to bridge the gap between the treat-756

ment of point process simulation in statistics and biochemistry. We757

demonstrated that many of the algorithms developed in biochem-758

istry which served as the basis for the JumpProcesses.jl ag-759

gregators can be mapped to three general methods developed in760

statistics for simulating evolutionary point processes. We showed761

that the existing aggregators mainly differ in how they update and762

sample from the intensity rate and mark distribution. As we per-763

formed this exercise, we noticed the lack of an efficient aggregator764

for variable intensity rates in JumpProcesses.jl, a gap which765

Coevolve is meant to fill.766

Coevolve borrows many enhancements from other aggregators767

in JumpProcesses.jl. However, there are still a number of768

ways forward. First, given the performance of the CHV algo-769

rithm in our benchmarks, we should consider adding it to Jump-770

Processes.jl as another aggregator so that it can benefit from771

tighter integration with the SciML organization and libraries. The772

saving behavior of CHV might pose a challenge when bringing773

this algorithm to the library. We could leverage the connection be-774

tween inverse and thinning methods illustrated in Subsection 4.2775

to attempt to develop a version of this algorithm that can evolve in776

synchrony with model time. Second, the new aggregator depends777

on the user providing bounds on the jump rates as well as the du-778

ration of their validity. In practice, it can be difficult to determine779

7https://discourse.julialang.org/t/help-me-beat-lsoda/

88236
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Brute Force Recursive
V Inverse Coevolve CHV Inverse Coevolve CHV CHV Tick

simple simple full

Time

1 113.7 µs 4.8 µs 174.2 µ s 112.1 µs 5.1 µs 175.6 µs 173.1 µs 31.4 µs

10 17.5 ms 211.8 µs 4.8 ms 11.0 ms 76.1 µs 432.4 µs 579.0 µs 179.0 µs

20 139.1 ms 1.5 ms 50.7 ms 59.3 ms 282.9 µs 924.7 µs 884.4 µs 1.2 ms

30 415.3 ms 3.3 ms 133.0 ms 200.0 ms 516.9 µs 1.7 ms 1.3 ms 3.7 ms
n=25

40 2.2 s 8.2 ms 342.0 ms 1.6 s 1.0 ms 2.5 ms 1.6 ms 9.2 ms
n=5 n=30 n=7

50 5.1 s 16.9 ms 722.0 ms 3.4 s 1.6 ms 3.7 ms 2.0 ms 21.2 ms
n=2 n=14 n=3

60 8.5 s 37.7 ms 1.3 s 6.2 s 2.3 ms 5.1 ms 2.5 ms 45.0 ms
n=2 n=8 n=2

70 14.2 s 59.5 ms 2.1 s 10.9 s 3.3 ms 6.8 ms 3.0 ms 87.5 ms
n=1 n=5 n=1

80 22.2 s 88.3 ms 3.3 s 15.2 s 4.2 ms 9.0 ms 3.3 ms 142.2 ms
n=1 n=3 n=1

90 35.8 s 139.7 ms 6.2 s 24.6 s 5.5 ms 11.9 ms 3.8 ms 241.9 ms
n=1 n=2 n=1

Table 2. : Median execution time for the compound Hawkes process, V is the number of nodes and n is the total number of successful
executions under ten seconds. Brute force refers to the implementation of the intensity rate looping through the whole history of past events.
Recursive refers to a recursive implementation that only requires looking at the previous state of each node. Inverse and Coevolve are
algorithms from JumpProcesses.jl, CHV is an algorithm from PiecewiseDeterministicMarkovProcesses.jl. See Subsection 4.1
for the distinction between CHV simple and CHV full. Tick is a Python library. All simulations were run 50 times except when stated
otherwise under the running time. Fastest time is bold, second fastest underlined. Benchmark source code and dependencies are available in
SciMLBenchmarks.jl, see first paragraph of Section 6.2 for source references.

Time Allocation
Inverse - -
Coevolve 4.9 s 95.2 Mb
CHV 2.4 s 43.8 Mb

Table 3. : Median execution time and memory allocation. All simulations
were run 50 times, a dash indicates that no runs were successful. Fastest
time is bold, second fastest underlined. Benchmark source code and de-
pendencies are available in SciMLBenchmarks.jl, see first paragraph of
Section 6.2 for source references.

these bounds a priori, particularly for models with many ODE vari-780

ables. Moreover, determining such bounds from an analytical solu-781

tion or the underlying ODEs does not guarantee their holding for782

the numerically computed solution (which is obtained via an ODE783

discretization), and so modifications may be needed in practice. A784

possible improvement would be for JumpProcesses.jl to de-785

termine these bounds automatically taking into account the deriva-786

tive of the rates. Deriving efficient bounds require not only knowl-787

edge of the problem and a good amount of analytical work, but also788

knowledge about the numerical integrator. At best, the algorithm789

can perform significantly slower if a suboptimal bound or interval790

is used, at worst it can return incorrect results if a bound is incorrect791

— i.e. it can be violated inside the calculated interval of validity.792

Third, JumpProcesses.jl would benefit from further develop-793

ment in inexact methods. At the moment, support is limited to pro-794

cesses with constant rates between jumps and the only solver avail-795

able SimpleTauLeaping does not support marks. Inexact meth-796

ods should allow for the simulation of longer periods of time when797

only an event count per time interval is required. Hawkes processes798

can be expressed as a branching process. There are simulation algo-799

rithms that already take advantage of this structure to leap through800

time [10]. It would be important to adapt these algorithms for gen-801

eral, compound branching processes to cater for a larger number of802

settings. Finally, JumpProcesses.jl also includes algorithms803

for jumps over two-dimensional spaces. It might be worth conduct-804

ing a similar comparative exercise to identify algorithms in statis-805

tics for 2- and N -dimensional processes that could also be added806

to JumpProcess.jl as it has the potential to become the go-to807

library for general point process simulation.808
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