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ABSTRACT1

Point processes model the occurrence of a countable number of2

random points over some support. They can model diverse phe-3

nomena, such as chemical reactions, stock market transactions4

and social interactions. We show that JumpProcesses.jl li-5

brary, which was first developed for simulating jump processes6

via stochastic simulation algorithms (SSAs) — including Doob’s7

method, Gillespie’s methods, and Kinetic Monte Carlo methos —,8

is also fit for point process simulation. Historically, jump processes9

have been developed in the context of dynamical systems to de-10

scribe dynamics with discrete jumps. In contrast, the development11

of point processes has been more focused on describing the occur-12

rence of random events. In this paper, we bridge the gap between13

the treatment of point and jump process simulation. The algorithms14

previously included in JumpProcesses.jl can be mapped to15

three general methods developed in statistics for simulating tempo-16

ral point processes (TPPs). Our comparative exercise reveals that17

the library lacked an efficient algorithm for simulating processes18

with variable intensity rates. We develop a new simulation algo-19

rithm Coevolve. This is the first thinning algorithm to step in20

sync with model time reducing the number of time proposal rejec-21

tions and allowing for new possibilities such as simulating variable-22

rate jump process coupled with differential equations via thinning.23

JumpProcesses.jl can finally simulate any point process on24

the real line with a non-negative, left-continuous, history-adapted25

and locally bounded intensity rate efficiently, enabling the library to26

become one of the few readily available, fast and general-purpose27

options for simulating TPPs.28

1. Introduction29

Methods for simulating the trajectory of temporal point processes30

(TPPs) can be split into exact and inexact methods. Exact meth-31

ods are exact in the sense that they describe the realization of each32

point in the process chronologically 1. This exactness can suffer33

from reduced performance when simulating systems where numer-34

1Some exact methods might not be completely exact since they rely on root
finding approximation methods. However, we follow convention and denote
all such methods as exact methods.

ous events can fire within a short period since every single point35

needs to be accounted for. Inexact methods trade accuracy for speed36

by simulating the total number of events in successive intervals.37

They are popular in biochemical applications, e.g. τ -leap meth-38

ods [5], which often require the simulation of chemical reactions39

in systems with large molecular populations.40

Previously, the development of point process simulation libraries41

focused primarily on univariate processes with exotic intensities,42

or large systems with conditionally constant intensities, but not43

on both. As such, there was no widely used general-purpose soft-44

ware for efficiently simulating compound point processes in large45

systems with time-dependent rates. To enable the efficient sim-46

ulation of such processes, we contribute a new simulation algo-47

rithm together with its implementation as the Coevolve aggre-48

gator in JumpProcesses.jl, a core sub-library of the popu-49

lar DifferentialEquations.jl library [18]. Our new al-50

gorithm is a type of thinning algorithm that thins in sync with51

model time allowing the coupling of large multivariate TPPs with52

other algorithms that step chronologically through time such as53

differential equation solvers. Our new algorithm improves the54

COEVOLVE algorithm described in [3] from where the new55

JumpProcesses.jl aggregator borrows its name. The exten-56

sion of JumpProcesses.jl dramatically boosts the computa-57

tional performance of the library in simulating processes with in-58

tensities that have an explicit dependence on time and/or other59

continuous variables, significantly expanding the type of models60

that can be efficiently simulated. Widely-used point processes with61

such intensities include compound inhomogeneous Poisson pro-62

cess, Hawkes process, stress-release process and piecewise deter-63

ministic Markov process (PDMP). Since JumpProcesses.jl64

is a member of Julia’s SciML organization, it also becomes eas-65

ier, and more feasible, to incorporate compound point processes66

with explicit time-dependent rates into a wide variety of applica-67

tions and higher-level analyses. With our new additions we bump68

JumpProcesses.jl to version 9.72.69

This paper starts by bridging the gap between simulation methods70

developed in statistics and biochemistry, which led us to the de-71

velopment of Coevolve. We briefly introduce TPPs and simula-72

2All examples and benchmarks in this paper use this version of the library
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tion methods for the Poisson homogeneous process, which serve73

the basis for all other simulation methods. Then, we identify and74

discuss three types of exact simulation methods. In the second75

part of this paper, we describe the algorithms implemented in76

JumpProcesses.jl and how they relate to the literature. We77

highlight our contribution Coevolve, investigate the correctness78

of our implementation and provide performance benchmarks to79

demonstrate its value. The paper concludes by discussing potential80

improvements.81

2. The temporal point process82

The TPP is a stochastic collection of marked points over a one-83

dimensional support. They are exhaustively described in [2]. The84

likelihood of any TPP is fully characterized by its conditional in-85

tensity,86

λ∗(t) ≡ λ(t | Ht−) =
p∗(t)

1−
∫ t

tn
p∗(u) du

, (2.1)

and conditional mark distribution, f ∗(k|t) — see Chapter 7 [2].87

Here Ht− = {(tn, kn) | 0 ≤ tn < t} denotes the internal88

history of the process up to but not including t, the superscript ∗89

denotes the conditioning of any function on Ht− , and p∗(t) is the90

density function corresponding to the probability of an event taking91

place at time t given Ht− . We can interpret the conditional inten-92

sity as the likelihood of observing a point in the next infinitesimal93

unit of time, given that no point has occurred since the last observed94

point inHt− . Lastly, the mark distribution denotes the density func-95

tion corresponding to the probability of observing mark k given the96

occurrence of an event at time t and internal history Ht− .97

3. The homogeneous process98

A homogeneous process can be simulated using properties of the99

Poisson process, which allow us to describe two equivalent sam-100

pling procedures. The first procedure consists of drawing succes-101

sive inter-arrival times. The distance between any two points in102

a homogeneous process is distributed according to the exponen-103

tial distribution — see Theorem 7.2 [10]. Given the homogeneous104

process with intensity λ, then the distance ∆t between two points105

is distributed according to ∆t ∼ exp(λ). Draws from the ex-106

ponential distribution can be performed by drawing from a uni-107

form distribution in the interval [0, 1]. If V ∼ U [0, 1], then108

T = − ln(V )/λ ∼ exp(1). (Note, however, in Julia the opti-109

mized Ziggurat-based method used in the randexp stdlib func-110

tion is generally faster than this inverse method for sampling a111

unit exponential random variable.) When a point process is homo-112

geneous, the inverse method of Subsection 4.1 reduces to this ap-113

proach. Thus, we defer the presentation of this Algorithm to the114

next section.115

The second procedure uses the fact that Poisson processes can be116

represented as a mixed binomial process with a Poisson mixing dis-117

tribution — see Proposition 3.5 [10]. In particular, the total number118

of points of a Poisson homogeneous process in [0, T ) is distributed119

according to N (T ) ∼ Poisson(λT ) and the location of each120

point within the region is independently distributed according to121

the uniform distribution tn ∼ U [0, T ].122

4. Exact simulation methods123

4.1 Inverse methods124

The inverse method leverages Theorem 7.4.I [2] which states that125

every simple point process3 can be transformed to a homogeneous126

Poisson process with unit rate via the compensator. Let tn be the127

time in which the n-th chronologically sorted event took place and128

t0 ≡ 0, we define the compensator as:129

Λ∗(tn) ≡ t̃n ≡
∫ tn

0

λ∗(u)du (4.1)

The transformed data t̃n forms a homogeneous Poisson process130

with unit rate. Now, if this is the case, then the transformed interval131

is distributed according to the exponential distribution.132

∆t̃n ≡ t̃n − t̃n−1 ∼ exp(1) (4.2)

The idea is to draw realizations from the unit rate Exponential pro-133

cess and solve Equation 4.2 for tn to determine the next event/firing134

time. We illustrate this in Algorithm 1 where we adapt Algorithm135

7.4 [2].136

Whenever the conditional intensity is constant between two137

points, Equation 4.2 can be solved analytically. Let λ∗ (t) =138

λn−1,∀tn−1 ≤ t < tn, then139 ∫ tn

tn−1

λ∗ (u) du = ∆t̃n ⇐⇒

λn−1(tn − tn−1) = ∆t̃n ⇐⇒

tn = tn−1 +
∆t̃n
λn−1

.

(4.3)

Which is equivalent to drawing the next realization time from the140

re-scaled exponential distribution ∆tn ∼ exp(λn−1). As we will141

see in Subsection 2, this implies that the inverse and thinning142

methods are the same whenever the conditional intensity is con-143

stant between jumps.144

The main drawback of the inverse method is that the root finding145

problem defined in Equation 4.2 often requires a numerical solu-146

tion. To get around a similar obstacle in the context of the PDMP,147

Veltz [24] proposes a change of variables in time that recasts the148

root finding problem into an initial value problem. He denotes his149

method CHV.150

PDMPs are composed of two parts: the jump process and the151

piecewise ODE that changes stochastically at jump times — see152

Lemaire et al. [12] for a formal definition. Therefore, it is easy to153

employ CHV in our case by setting the ODE part to zero through-154

out time. Adapting from Veltz [24], we can determine the model155

jump time tn after sampling ∆t̃n ∼ exp(1) by solving the fol-156

lowing initial value problem until ∆t̃n.157

t(0) = tn−1 ,
dt

dt̃
=

1

λ∗(t)
(4.4)

Looking back at Equation 4.1, we note that it is a one-to-one map-158

ping between t and t̃ which makes it completely natural to write159

t(∆t̃n) ≡ Λ∗−1(t̃n−1 +∆t̃n).160

Alternatively, when the intensity function is differentiable between161

jumps we can go even further by recasting the jump problem as a162

3A simple point process is a process in which the probability of observing
more than one point in the same location is zero.
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PDMP. Let λ∗n ≡ λ∗(tn), then the flow ϕt−tn(λ
∗
n) maps the ini-163

tial value of the conditional intensity at time tn to its value at time164

t. In other words, the flow describes the deterministic evolution of165

the conditional intensity function over time. Next, denote 1(·) as166

the indicator function, then the conditional intensity function can167

be re-written as a jump process:168

λ∗(t) =
∑
n≥1

ϕt−tn−1(λn−1)1(tn−1 ≤ t < tn). (4.5)

According to Meiss [16], if ϕt(·) is a flow, then it is a solution to169

the initial value problem:170

ϕ0(λ
∗
n) = λ∗n ,

d

dt
ϕt−tn(λ

∗
n) = g(ϕt−tn(λ

∗
n)) (4.6)

where g : R+ → R is the vector field of λ∗ such that dλ∗/dt =171

g(λ∗).172

Based on Equation 2.1, we find that the probability of observing an173

interval longer than s given internal history Ht− is equivalent to:174

Pr(tn − tn−1 > s | Ht−) = 1−
∫ tn−1+s

tn−1

p∗(u)du =

= exp

(
−
∫ tn−1+s

tn−1

λ∗(u)du

)
=

= exp

(
−
∫ tn−1+s

tn−1

ϕu−tn−1(λ
∗
n−1)du

)
(4.7)

Equations 4.5 and 4.7 define a PDMP satisfying the conditions of175

Theorem 3.1 [24]. In this case, we find tn by solving the following176

initial value problem from 0 to ∆t̃n ∼ exp(1).177 
λ∗(t(0)) = λ∗(tn−1) ,

dλ∗

dt̃
=

g(λ∗(t))

λ∗(t)

t(0) = tn−1 ,
dt

dt̃
=

1

λ∗(t)
.

(4.8)

This problem specifies how the conditional intensity and model178

time evolve with respect to the transformed time. The solution to179

Equation 4.2 is then given by (tn = t(∆t̃n), λ
∗(t(∆t̃n)) =180

λ∗(tn)).181

In Algorithm 1, we can implement the CHV method by solving182

either Equation 4.4 or Equation 4.8 instead of Equation 4.2. We183

denote the first specification as CHV simple and the second as184

CHV full. Note that CHV full requires that the conditional inten-185

sity be piecewise differentiable. The algorithmic complexity is then186

determined by the ODE solver and no root-finding is required. In187

Section 6.2, we will show that there are substantial differences in188

performance between them with the full specification being faster.189

Another concern with Algorithm 1 is updating and drawing from190

the conditional mark distribution in Line 8, and updating the con-191

ditional intensity in Line 9. Assume a process with K number of192

marks. A naive implementation of Line 9 scales with the number193

of marks as O(K) since λ∗ is usually constructed as the sum of K194

independent processes, each of which requires updating the condi-195

tional intensity rate. Likewise, drawing from the mark distribution196

in Line 8 usually involves drawing from a categorical distribution197

whose naive implementations also scales with the number of marks198

as O(K).199

Finally, Algorithm 1 is not guaranteed to terminate in finite time200

since one might need to sample many points before tn > T . The201

sampling rate can be especially high when simulating the process202

in a large population with self-exciting encounters. In biochemistry,203

Salis and Kaznessis [20] partition a large system of chemical reac-204

tions into two: fast and slow reactions. While they approximate the205

fast reactions with a Gaussian process, the slow reactions are solved206

using a variation of the inverse method. They obtain an equivalent207

expression for the rate of slow reactions as in Equation 4.2, which208

is integrated with the Euler method.209

Algorithm 1 The inverse method for simulating a marked TPP over
a fixed duration of time [0, T ).

1: procedure INVERSEMETHOD([0, T ), λ∗, f ∗,)
2: initialize the history HT− ← {}
3: set n← 0, t← 0
4: while t < T do
5: n← n+ 1
6: draw ∆t̃n ∼ exp(1)
7: find the next event time tn by solving Equation 4.2 or 4.8
8: update f ∗ and draw the mark kn ∼ f ∗ (k | tn)
9: update the history HT− ← HT− ∪ (tn, kn) and λ∗

10: end while
11: return HT−

12: end procedure

4.2 Thinning methods210

Thinning methods are one of the most popular for simulating point211

processes. The main idea is to successively sample a homogeneous212

process, then thin the obtained points with the conditional intensity213

of the original process. As stated in Proposition 7.5.I [2], this pro-214

cedure simulates the target process by construction. The advantage215

of thinning over inverse methods is that the former only requires216

the evaluation of the conditional intensity function while the latter217

requires computing the inverse of its integrated form [2].218

Thinning algorithms have been proposed in different forms [2].219

Shedler-Lewis [13] first suggested a thinning routine that simulated220

processes with bounded intensity over a fixed interval. Ogata’s re-221

finement [17] suggests a procedure for evolving the simulation via222

local boundary conditions and fixed partitions of the real line. As223

long as the intensity conditioned on the simulated history remains224

locally bounded, it is possible to simulate subsequent points indef-225

initely.226

In biochemistry, the thinning method was popularized by Gille-227

spie [7, 6]. For this reason, this method is also called the Gille-228

spie method. Gillespie himself called it the direct method or229

the stochastic simulation algorithm. Gillespie introduced thin-230

ningin the context of simulating chemical reactions of well-stirred231

systems. He developed a stochastic model for molecule interactions232

from physics principles without any references to the point process233

theory developed in this section. His model of chemical interactions234

is equivalent to a marked Poisson process with constant conditional235

intensity between jumps. The model consists of distinct populations236

of molecular species that interact through several reaction channels.237

A chemical reaction consists of a Poisson process that transforms238

a set of molecules of some type into a set of molecules of another239

type. What Gillespie calls the master equation can be deduced from240

the superposition theorem — Theorem 3.3 [10].241

In biochemistry, thinning methods are known as rejection algo-242

rithms. Than et al. [22, 23] proposed the rejection-based algo-243

rithm with composition-rejection search, yet another more so-244

phisticated variation of the thinning method. In this case, the pro-245
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cedure groups similar processes together. For each group, an upper-246

and lower-bound conditional intensity is used for thinning. A sim-247

ilar procedure is also described in [21], in which the authors refer248

to their algorithm as kinetic Monte Carlo.249

Algorithm 2 presents a thinning algorithm, which is a modified250

version of Algorithm 7.5.IV [2]. To implement the algorithm, we251

define three functions, B̄∗(t) = B̄(t | Ht),B
∗(t) =B(t | Ht)252

and L∗(t) = L(t | Ht), that characterize the local boundedness253

condition such that:254

λ∗ (t+ u) ≤ B̄∗(t+ u) and λ∗ (t+ u) ≥B∗(t+ u),

∀ 0 ≤ u ≤ L∗(t).
(4.9)

The tighter the bound B̄∗(·) on λ∗(·), the lower the number of255

discarded samples. Since looser bounds lead to less efficient algo-256

rithms, the art, when simulating via thinning, is to find the optimal257

balance between the local supremum of the conditional intensity258

B̄∗ and the duration of the local interval L∗(t). On the other hand,259

the infimumB∗(·) can be used to avoid the evaluation of λ∗ (·) in260

Line 11 of Algorithm 3 which often can be expensive.261

Since u is a TPP with conditional intensity B̄, we are back to sim-262

ulating a TPP via the inverse method in Line 5 of Algorithm 2.263

Therefore, the wrong choice of B̄∗ could in fact deteriorate the264

performance of the simulation. In many applications, the bound265

B̄∗(·) is fixed over L∗(t) which simplifies the simulation since266

then u ∼ exp(B̄∗(t)). Alternatively, Bierkens et al. [1] uses a267

Taylor approximation of λ∗(t) to obtain an upper-bound which is268

a linear function of t 4.269

When the conditional intensity is constant between jumps such that270

λ∗ (t) = λn−1,∀tn−1 ≤ t < tn, let B̄∗(t) = B∗(t) = λn−1271

and L∗(t) = ∞. We have that for any u ∼ exp(1 / B̄∗(t)) =272

exp(λn−1) and v ∼ U [0, 1], u < L∗(t) =∞ and v < λ∗ (t+273

u) / B̄∗(t) = 1. Therefore, we advance the internal history for274

every iteration of Algorithm 2. In this case, the bound B̄∗(t) is as275

tight as possible, and this method becomes the same as the inverse276

method of Subsection 4.1.277

We can draw more connections between thinning and inversion.278

Lemaire et al. [12] propose a version of the thinning algorithm279

for PDMPs which does not use a local interval for rejection —280

equivalent to L∗(t) = ∞. They propose an optimal upper-bound281

B̄∗(t) as a piecewise constant function partitioned in such a way282

that it envelopes the intensity function as strictly as possible. The283

efficiency of their algorithm depends on the assumption that the284

stochastic process determined by B̄∗(t) can be efficiently inverted.285

They show that under certain conditions the stochastic process de-286

termined by B̄∗(t) converges in distribution to the target condi-287

tional intensity as the partitions of the optimal boundary converge288

to zero. These results suggest that the efficiency of thinning com-289

pared to inversion most likely depends on the rejection rate ob-290

tained by the former and the number of steps required by the ODE291

solver for the latter.292

While thinning algorithms avoid the issue of directly computing293

the inverse of the integrated conditional intensity, they increase the294

number of time steps needed in the sampling algorithm as we are295

now sampling from a process with an increased intensity relative296

to the original process. Moreover, like the inverse method, thin-297

ning algorithms can also face issues related with drawing from the298

4Their implementation of the Zig-Zag process, a type of PMDP for Markov
Chain Monte Carlo, is available as a Julia package at https://github.
com/mschauer/ZigZagBoomerang.jl.

conditional mark distribution — Line 11 of Algorithm 2 —, and299

updating the conditional intensity — Line 3 of Algorithm 3 — and300

the mark distribution — Line 12 of Algorithm 2.301

Algorithm 2 The thinning method for simulating a marked TPP
over a fixed duration of time [0, T ).

1: procedure THINNINGMETHOD([0, T ), λ∗, f ∗,)
2: initialize the history HT− ← {}
3: set n← 0, t← 0
4: while true do
5: t← TimeViaThinning([t, T ),HT− , λ

∗)
6: if t ≥ T then
7: break
8: end if
9: n← n+ 1

10: tn ← t
11: update f ∗ and draw the mark kn ∼ f ∗ (k | tn)
12: update the history HT− ← HT− ∪ (tn, kn)
13: end while
14: return HT−

15: end procedure

Algorithm 3 Generates the next event time via thinning.
1: procedure TIMEVIATHINNING([t, T ), λ∗, Ht,)
2: while t < T do
3: update λ∗

4: find B̄∗(t),B∗(t) and L∗(t) which satisfy Eq. 4.9
5: draw candidate interval u such that P (u > s) =

exp(−
∫ s

0
B̄∗(t+ s)ds)

6: draw acceptance threshold v ∼ U [0, 1]
7: if u > L∗(t) then
8: t← t+ L∗(t)
9: next

10: end if
11: if (v ≤B∗(t+ u)) ∨ (v ≤ λ∗ (t+ u)/B̄∗(t+ u)) then
12: t← t+ u
13: return t
14: end if
15: t← t+ u
16: end while
17: return t
18: end procedure

4.3 Queuing methods for multivariate processes302

As an alternative to his direct method — in this text referred as the303

constant rate thinning method —, Gillespie introduced the first304

reaction method in his seminal work on simulation algorithms [7].305

The first reaction method separately simulates the next reaction306

time for each reaction channel — i.e. for each mark. It then selects307

the smallest time as the time of the next event, followed by updat-308

ing the conditional intensity of all channels accordingly. This is a309

variation of the constant rate thinning method to simulate a set of310

inter-dependent point processes, making use of the superposition311

theorem — Theorem 3.3 [10] — in the inverse direction.312

Gibson and Bruck [4] improved the first reaction method with the313

next reaction method. They innovate on three fronts. First, they314

keep a priority queue to quickly retrieve the next event. Second,315

4
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they keep a dependency graph to quickly locate all conditional in-316

tensity rates that need to be updated after an event is fired. Third,317

they re-use previously sampled reaction times to update unused re-318

action times. This minimizes random number generation, which319

can be costly. Priority queues and dependency graphs have also320

been used in the context of social media [3] and epidemics [9] sim-321

ulation. In both cases, the phenomena are modelled as point pro-322

cesses.323

We prefer to call this class of methods queued thinning methods324

since most efficiency gains come from maintaining a priority queue325

of the next event times. Up to this point we assumed that we were326

sampling from a global process with a mark distribution that could327

generate any mark k given an event at time t. With queuing, it is328

possible to simulate point processes with a finite space of marks329

as M interdependent point processes — see Definition 6.4.1 [2] of330

multivariate point processes — doing away with the need to draw331

from the mark distribution at every event occurrence. Alternatively,332

it is possible to split the global process into M interdependent pro-333

cesses each one of which with its own mark distribution.334

Algorithm 5, presents a method for sampling a superposed point335

process consisting of M processes by keeping the strike time of336

each process in a priority queue Q. The priority queue is initially337

constructed in O(M) steps in Lines 4 to 7 of Algorithm 5. In con-338

trast to thinning methods, updates to the conditional intensity de-339

pend only on the size of the neighborhood of i. That is, processes j340

whose conditional intensity depends on the history of i. If the graph341

is sparse, then updates will be faster than with thinning.342

A source of inefficiency in some implementations of queued thin-343

ning algorithms such as [3] is the fact that one goes through mul-344

tiple rejection cycles at time t before accepting a time candidate345

t < ti for process i. This requires looking ahead in the future. In346

addition to that, if process j, which i depends on, takes place be-347

fore ti, then we need to repeat the whole thinning process to obtain348

a new time candidate for i.349

In Algorithm 5, we take a different approach which performs thin-350

ning in synchrony with the main loop, avoiding look ahead and351

wasted rejections. Our main contribution is to modify the main loop352

of previous thinning algorithms to allow at most one event proposal353

for each sub-process for each time step. The proposed candidates354

are always added to the priority queue Q because we need to stop at355

each proposed time. When the candidate is pre-rejected, we update356

the bounds and make a new proposal. Alternatively, if the candidate357

time has not been pre-rejected, we draw the acceptance threshold358

and compute the intensity rate to make a decision. If the candi-359

date is accepted, we trigger a new round of thinning. Otherwise,360

we update the bounds and make a new proposal. Overall, we avoid361

unnecessary updates. Additionaly, thinning is now synced with the362

main loop, which allows the coupling of this simulator with other363

algorithms that step chronologically through time. These include364

ordinary differential equation solvers, enabling us to simulate jump365

processes with rates given by a differential equation. This is the first366

queued thinning synced algorithm we are aware of.367

Since Algorithm 5 can be mapped to a non-queued thinning al-368

gorithm — see [3] —, it can simulate any point process on the real369

line with a non-negative, left-continuous, history-adapted and lo-370

cally bounded intensity rate as per Proposition 7.5.I [2].371

5. Implementation372

JumpProcesses.jl is a Julia library for simulating jump —373

or point — processes which is part of Julia’s SciML organization.374

Jumps are implemented as callbacks of a OrdinaryDiffEq.jl375

Algorithm 4 Generates the next candidate time for queued thin-
ning.

1: procedure QUEUETIME(t, λ∗, Ht,)
2: update λ∗

3: find B̄∗(t),B∗(t) and L∗(t) which satisfy Eq. 4.9
4: draw u ∼ exp(B̄∗(t))
5: if u > L∗(t) then
6: accepted← false
7: u← L∗(t)
8: else
9: accepted← true

10: end if
11: t← t+ u
12: return t, B̄∗(t),B∗, accepted
13: end procedure

Algorithm 5 The queued thinning method for simulating a marked
TPP over a fixed duration of time [0, T ).

1: procedure QUEUINGMETHOD([0, T ), {λ∗k}, {f ∗k},)
2: initialize the history HT− ← {}
3: set n← 0, t← 0
4: for i=1,M do
5: (ti, B̄

∗
i ,B

∗
i , ai)← QueueTime(0,HT− , λ

∗
i(·))

6: push (i, ti, B̄
∗
i ,B

∗
i , ai) to Q

7: end for
8: while t < T do
9: first (i, ti, B̄∗i ,B

∗
i , ai) from Q

10: t← ti
11: if t ≥ T then
12: break
13: end if
14: draw v ∼ U [0, B̄∗i ]
15: if ai ∧ (v >B∗i) ∧ (v > λ∗ (t)) then
16: ai ← false
17: end if
18: if ai then
19: n← n+ 1
20: tn ← t
21: update f ∗ and draw the mark kn ∼ f ∗i (k | tn)
22: update the history HT− ← HT− ∪ (tn, kn)
23: for j ∈ {i} ∪Neighborhood(i) do
24: (tj , B̄

∗
j ,B

∗
j , aj)← QueueTime(t,HT− , λ

∗
j(·))

25: update (j, tj , B̄
∗
j ,B

∗
j , aj) in Q

26: end for
27: else
28: (ti, B̄

∗
i ,B

∗
i , ai)← QueueTime(t,HT− , λ

∗
i(·))

29: update (i, ti, B̄
∗
i ,B

∗
i , ai) in Q

30: end if
31: end while
32: return HT−

33: end procedure

numerical solver. In simple terms, callbacks are functions that can376

be arbitrarily called at each step of the main loop of the solver.377

Our discussion in Section 4 identified three exact methods378

for simulating point processes. In all the cases, we identified379

two mathematical constructs required for simulation: the inten-380

sity rate and the mark distribution. In JumpProcesses.jl,381

these can be mapped to user defined functions rate(u, p,382

t) and affect!(integrator). The library provides APIs383
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for defining processes based on the nature of the intensity rate384

and the intended simulation algorithm. Processes intended for385

exact methods can choose between ConstantRateJump and386

VariableRateJump. While the former expects the rate between387

jumps to be constant, the latter allows for time-dependent rates. The388

library also provides the MassActionJump API to define large389

systems of point processes that can be expressed as reaction equa-390

tions. Finally, RegularJump are intended for inexact methods.391

The inverse method as described around Equation 4.2 uses392

root find to find the next jump time. Jumps to be sim-393

ulated via the inverse method must be initialized as a394

VariableRateJump. JumpProcesses.jl builds a continu-395

ous callback following the algorithm in [20] and passes the prob-396

lem to an OrdinaryDiffEq.jl integrator, which easily inter-397

operates with JumpProcesses.jl (both libraries are part of398

the SciML organization, and by design built to easily compose).399

JumpProcesses.jl does not yet support the CHV ODE based400

approach.401

Alternatively, thinning methods can be simulated via discrete402

steps. In the context of the library, any method that uses a discrete403

callback is called an aggregator. There are twelve different aggre-404

gators which we discuss below and are summarized in Table 4 in405

the Annex.406

We start with constant rate thinning aggregators for marked TPPs.407

Algorithm 2 assumes that there is a single process. In reality, all408

the implementations first assume a finite multivariate point process409

with M interdependent sub-processes. This can be easily concil-410

iated, as we do now, using Definition 6.4.1 [2] which states the411

equivalence of such process with a point process with a finite space412

of marks.413

As all the constant rate thinning aggregators only deal with414

ConstantRateJump, the intensity between jumps is constant,415

Algorithm 3 short-circuits to quickly return t ∼ exp(B̄) =416

exp(λn) as discussed in Subsection 4.2. Next, the mark distribu-417

tion becomes the categorical distribution weighted by the intensity418

of each process. That is, given an event at time tn, we have that419

the probability of drawing process i out of M sub-processes is420

λ∗i (tn)/λ
∗(tn). Conditional on sub-process i, the corresponding421

affect!(integrator) is invoked, that is, kn ∼ f ∗i (k | tn).422

So all sub-process could potentially be marked. Where most imple-423

mentations differ is on updating the mark distribution in Line 11 of424

Algorithm 2 and the conditional intensity rate in Line 3 of Algo-425

rithm 3.426

Direct and DirectFW follows the direct method in [7] which427

re-evaluates all intensities after every iteration scaling at O(K). It428

draws the next-time from the ground process whose rate is the sum429

of all sub-processes’ rates. It selects the mark by executing a search430

in an array that stores the cumulative sum of rates.431

SortingDirect, RDirect, DirectCR are improvements over432

the Direct method. They only re-evaluate the intensities of the433

processes that are affected by the realized process based on a de-434

pendency graph. SortingDirect draws from the ground pro-435

cess, but keeps the intensity rate in a loosely sorted array follow-436

ing [15]. RDirect is a rejection-based direct method which as-437

signs the maximum rate of the system as the bound to all processes.438

The implementation slight differs from Algorithm 2. Since all sub-439

process have the same rate it draws the next time from a homoge-440

neous Poisson process with the maximum rate, then randomly se-441

lects a candidate process and confirms the candidate only if its rate442

is above a random proportion of the maximum rate. DirectCR —443

from [21] — is a composition-rejection method that groups sub-444

processes with similar rates using a priority table. Each group is as-445

signed the sum of all the rates within it. We apply a routine equiv-446

alent to Direct to select the time in which the next group fires.447

Given a group, we then select which process fires.448

RSSA and RSSACR places processes in bounded brackets. RSSA449

— from [22] — follows Algorithm 2 very closely in the case where450

the bounds are constant between jumps. RSSACR — from [23] —451

groups sub-processes with similar rates like DirectCR, but then452

places each group within a bounded bracket. It then samples the453

next group to fire similar to RSSA. Given the group, it selects a454

candidate to fire and performs a thinning routine to accept or reject.455

Next, we consider the queued thinning aggregators. Starting with456

aggregators that only support ConstantRateJumps we have,457

FRM, FRMFW and NRM. FRM and FRMFW follow the first reaction458

method in [7]. To compute the next jump, both algorithms compute459

the time to the next event for each process and select the process460

with minimum time. This is equivalent to assuming a complete de-461

pendency graph in Algorithm 5. For large systems, these methods462

are inefficient compared to NRM which is a queued thinning463

method sourced from [4].464

Most of the algorithms implemented in JumpProcesses.jl465

come from the biochemistry literature. There has been less em-466

phasis on implementing processes commonly studied in statis-467

tics such as self-exciting point processes characterized by time-468

varying and history-dependent intensity rates. Our latest ag-469

gregator, Coevolve, which is an implementation of Algo-470

rithm 5, addresses this gap. This is the first aggregator that sup-471

ports VariableRateJumps. Compared with the current inverse472

method-based approach that relies on ODE integration, the new473

aggregator substantially improves the performance of simulations474

with time-dependent intensity rates and/or coupled with differential475

equations from DifferentialEquations.jl.476

Coevolve also employs a few enhancements compared to Algo-477

rithm 5. First, we avoid the re-computation of unused random num-478

bers. When updating processes that have not yet fired, we can trans-479

form the unused time of constant rate processes to obtain the next480

candidate time for the first round of iteration of the thinning proce-481

dure in Algorithm 3. This saves one round of sampling from the ex-482

ponential distribution, which translates into a faster algorithm. Sec-483

ond, it adapts to processes with constant intensity between jumps484

which reduces the loop in Algorithm 3 to the equivalent imple-485

mented in NRM.486

6. Empirical evaluation487

This section conducts some empirical evaluation of the488

JumpProcesses.jl aggregators described in Section 5.489

First, since Coevolve is a new aggregator, we test its correctness490

by conducting statistical analysis. Second, we conduct the jump491

benchmarks available in SciMLBenchmarks.jl. We have492

added new benchmarks that assess the performance of the new493

aggregators under settings that could not be simulated with494

previous aggregators.495

6.1 Statistical analysis of Coevolve496

To simulate a process intended for a discrete solver with Jump-497

Processes.jl, we define a discrete problem, initialize the498

jumps and define the jump problem which takes the aggregator as499

an argument. The jump problem can then be solved with the dis-500

crete stepper provided by JumpProcesses.jl, SSAStepper.501

On the one hand, we can think of the stepper as the routine that502

determines how the numerical solver advances time. On the other503
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hand, the aggregator is the algorithm for sampling the path of a jum504

process. The aggregator provides stopping times to the stepper.505

The code for simulating the homogeneous Poisson process with506

Direct is reproduced in Listing 1.507

Listing 1: Simulation of the homogeneous Poisson process.� �
508

using JumpProcesses509

rate (u, p, t) = p[1]510

affect !( integrator ) = ( integrator .u[1] += 1;511

nothing )512

jump = ConstantRateJump ( rate , affect !)513

u, tspan , p = [0.], (0., 200 .), (0 .2 5,)514

dprob = DiscreteProblem (u, tspan , p)515

jprob = JumpProblem ( dprob , Direct (), jump ;516

dep_graph =[[1]])517

sol = solve ( jprob , SSAStepper ())518 � �519

The simulation of a Hawkes process — see Subsection 6.2 for a520

definition — requires a VariableRateJump along with the rate521

bounds and the interval for which the rates are valid. Also, since522

the Hawkes process is history dependent, we close the rate and523

affect! function with a vector containing the history of events.524

The code for simulating the Hawkes process is reproduced in List-525

ing 2. Note that it is possible to simplify the computation of the526

rate — see Subsection 6.2 —, but we keep the code here as close527

as possible to its usual definition for illustration purposes.528

Listing 2: Simulation of the Hawkes process.� �
529

using JumpProcesses530

h = Float64 []531

rate (u, p, t) = p[1] +532

p[2]* sum ( exp (-p[3]*(t- _t )) for _t in h; init =0)533

lrate (u, p, t) = p[1]534

urate = rate535

rateinterval (u, p, t) = 1/(2* urate (u,p,t))536

affect !( integrator ) = ( push !(h, integrator .t);537

integrator .u[1] += 1; nothing )538

jump = VariableRateJump ( rate , affect !; lrate ,539

urate , rateinterval )540

u, tspan , p = [0.], (0., 200 .), (0 .2 5, 0 .5 , 2 .0 )541

dprob = DiscreteProblem (u, tspan , p)542

jprob = JumpProblem ( dprob , Coevolve (), jump ;543

dep_graph =[[1]])544

sol = solve ( jprob , SSAStepper ())545 � �546

To assess the correctness of Coevolve, we add it to the Jump-547

Processes.jl test suite. Some tests check whether the aggrega-548

tors are able to obtain empirical statistics close to the expected in549

a number of simple biochemistry models such as linear reactions,550

DNA repression, reversible binding and extinction. The test suite551

was missing a unit test for self-exciting process. Thus, we have552

added a test for the univariate Hawkes model that checks whether553

algorithms that accept VariableRateJump are able to produce554

an empirical distribution of trajectories whose first two moments of555

the observed rate are close to the expected ones.556

In addition to that, the correctness of the implemented algorithm557

can be visually assessed using a Q-Q plot. As discussed in Sub-558

section 4.1, every simple point process can be transformed to a559

Poisson process with unit rate. This implies that the interval be-560

tween points for any such transformed process should match the561

exponential distribution. Therefore, the correctness of any aggre-562

gator can be assessed as following. First, transform the simulated563

intervals with the appropriate compensator. Let tni
be the time in564

which the n-th event of sub-process i took place and t0i ≡ 0, the565

compensator for sub-process i is given by the following:566

Λ∗i (tni
) ≡ Λ∗ni

≡
∫ tni

0

λ∗i (u)du (6.1)

Then the transformed simulated interval is given by:567

∆Λni
≡ Λ∗ni

− Λ∗(n−1)i (6.2)

Compute the empirical quantiles of the transformed intervals. That568

is, the q-th quantile is the interval ∆Λq that divides the sorted in-569

tervals in two sets, those below and above ∆Λq such that q-percent570

of the elements are below it. Plot the empirical quantiles with the571

corresponding quantiles of the exponential distribution. If the sim-572

ulator produces correct trajectories, this plot known as Q-Q plot573

should depict the points aligned around the 45-degree line. We pro-574

duce Q-Q plots for the homogeneous Poisson process as well as the575

compound Hawkes process — see Subsection 6.2 for a definition576

— to attest the correctness of Coevolve. Figure 1 (d) depicts the577

Q-Q plot for a ten-node compound Hawkes process with parame-578

ters λ = 0.5, α = 0.1, β = 2.0 simulated 250 times for 200579

units of time. Figure 1 also depicts the trajectory, the conditional580

intensity and the network structure of a single simulation for three581

random nodes in panels (a), (b) and (c) respectively. We obtained582

similar Q-Q plots for the other algorithms that benchmarked the583

Multivariate Hawkes process below.584

6.2 Benchmarks585

We conduct a set of benchmarks to assess the performance of586

the JumpProcesses.jl aggregators described in Section 5. All587

benchmarks are available in SciMLBenchmarks.jl5. All were588

run in BuildKite6 via the continuous integration facilities provided589

by the package maintainers. We have added two benchmark suites590

to assess the performance of the new aggregators under settings that591

could not be simulated with previous aggregators.592

First, we assess the speed of the aggregators against jump pro-593

cesses whose rates are constant between jumps. There are four such594

benchmarks: a 1-dimensional continuous time random walk ap-595

proximation of a diffusion model (Diffusion), the multi-state model596

from Appendix A.6 [14] (Multi-state), a simple negative feedback597

gene expression model (Gene I) and the negative feedback gene598

expression from [8] (Gene II). We simulate a single trajectory for599

each aggregator to visually check that they produce similar trajec-600

tories for a given model. The Diffusion, Multi-state, Gene I and601

Gene II benchmarks are then simulated 50, 100, 2000 and 200602

times, respectively. Check the source code for further implementa-603

tion details.604

Benchmark results are listed in Table 1. The table shows that no605

single aggregator dominates suggesting they should be selected ac-606

cording to the task at hand. However, FRM, NRM, Coevolve never607

dominate any benchmark. In common, they all belong to the family608

of queuing methods suggesting that there is a penalty when using609

such methods for jump processes whose rates are constant between610

jumps. We also note that the performance of Coevolve lag that611

of NRM despite the fact that Coevolve should take the same num-612

ber of steps as NRM when no VariableRateJump is used. The613

5https://github.com/SciML/SciMLBenchmarks.jl/tree/

3bf650c1aae7b10e49cbd10e8f626d2a517f3e79/benchmarks/

Jumps
6https://buildkite.com/julialang/scimlbenchmarks-dot-jl/

builds/1326#01898802-ba51-4cd5-a31f-6c9b937b6146

7

https://github.com/SciML/SciMLBenchmarks.jl/tree/3bf650c1aae7b10e49cbd10e8f626d2a517f3e79/benchmarks/Jumps
https://github.com/SciML/SciMLBenchmarks.jl/tree/3bf650c1aae7b10e49cbd10e8f626d2a517f3e79/benchmarks/Jumps
https://github.com/SciML/SciMLBenchmarks.jl/tree/3bf650c1aae7b10e49cbd10e8f626d2a517f3e79/benchmarks/Jumps
https://buildkite.com/julialang/scimlbenchmarks-dot-jl/builds/1326#01898802-ba51-4cd5-a31f-6c9b937b6146
https://buildkite.com/julialang/scimlbenchmarks-dot-jl/builds/1326#01898802-ba51-4cd5-a31f-6c9b937b6146
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Fig. 1: Simulations of 10-nodes compound Hawkes process with parameters
λ = 0.5, α = 0.1, β = 2.0 for 200 units of time. (a) and (b) sampled
trajectory and intensity rate for a single simulation for the three selected
nodes in (c) for the first 20 units of time. (c) underlying 10-nodes network
with three random nodes selected. (d) Q-Q plot of transformed inter-event
time for 250 simulations colored by node.

reason behind this discrepancy is likely due to implementation dif-614

ferences, but left for future investigation.615

Second, we add a new benchmark which simulates the compound616

Hawkes process for an increasing number processes. Consider a617

graph with V nodes. The compound Hawkes process is character-618

ized by V point processes such that the conditional intensity rate619

of node i connected to a set of nodes Ei in the graph is given by620

λ∗i (t) = λ+
∑
j∈Ei

∑
tnj

<t

α exp
[
−β(t− tnj

)
]
. (6.3)

This process is known as self-exciting, because the occurrence of621

an event j at tnj
will increase the conditional intensity of all the622

processes connected to it by α. The excited intensity then decreases623

Diffusion Multi-state Gene I Gene II

Direct 7.18 s 0.16 s 0.24 ms 0.59 s
FRM 15.04 s 0.25 s 0.29 ms 0.78 s
SortingDirect 1.08 s 0.11 s 0.23 ms 0.50 s
NRM 0.75 s 0.25 s 0.39 ms 0.89 s
DirectCR 0.51 s 0.21 s 0.47 ms 1.00 s
RSSA 1.42 s 0.10 s 0.43 ms 0.65 s
RSSACR 0.46 s 0.16 s 0.91 ms 1.07 s
Coevolve 0.90 s 0.36 s 0.59 ms 1.33 s

Table 1. : Median execution time. A 1-dimensional continuous time ran-
dom walk approximation of a diffusion model (Diffusion), the multi-state
model from Appendix A.6 [14] (Multi-state), a simple negative feedback
gene expression model (Gene I) and the negative feedback gene expres-
sion from [8] (Gene II). Fastest time is bold, second fastest underlined.
Benchmark source code and dependencies are available in SciMLBench-

marks.jl, see first paragraph of Section 6.2 for source references.

at a rate proportional to β.624

dλ∗i (t)

dt
= −β

∑
j∈Ei

∑
tnj

<t

α exp
[
−β(t− tnj

)
]

= −β (λ∗i (t)− λ)

(6.4)

The conditional intensity of this process has a recursive formulation625

which can significantly speed the simulation. The recursive formu-626

lation for the univariate case is derived in [11] which also provides627

additional discussion and results on the Hawkes process. We derive628

the compound case here. Let tNi
= max{tnj

< t | j ∈ Ei}629

and φ∗i (t) below.630

φ∗i (t) =
∑
j∈Ei

∑
tnj

<t

α exp
[
−β(t− tNi

+ tNi
− tnj

)
]

= exp [−β(t− tNi
)]
∑
j∈Ei

∑
tnj
≤tNi

α exp
[
−β(tNi

− tnj
)
]

= exp [−β(t− tNi
)] (α+ φ∗i (tNi

))
(6.5)

Then the conditional intensity can be re-written in terms of631

φ∗i (tNi
).632

λ∗i (t) = λ+ φ∗i (t) = λ+ exp [−β(t− tNi
)] (α+ φ∗i (tNi

))
(6.6)

A random graph is sampled from the Erdős-Rényi model. This633

model assumes the probability of an edge between two nodes is in-634

dependent of other edges, which we fix at 0.2. Note that this setup635

implies an increasing expected node degree with the graph size.636

We fix the Hawkes parameters at λ = 0.5, α = 0.1, β = 5.0637

ensuring the process does not explode and simulate models in the638

range from 1 to 95 nodes for 25 units of time. We simulate 50639

trajectories with a limit of ten seconds to complete execution. For640

this benchmark, we save the state of the system exactly after each641

jump.642

We assess the benchmark in eight different settings. First, we run643

the inverse method, Coevolve and CHV simple using the brute644

force formula of the intensity rate which loops through the whole645

history of past events — Equation 6.3. Second, we simulate the646

same three methods with the recursive formula — Equation 6.6.647

Next, we run the benchmark against CHV full. All CHV spec-648

ifications are implemented with PiecewiseDeterministic-649
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MarkovProcesses.jl 7 which is developed by Veltz, the au-650

thor of the CHV algorithm discussed in Subsection 4.1. Finally,651

we run the benchmark using the Python library Tick8. This library652

implements a version of the thinning method for simulating the653

Hawkes process and implements a recursive algorithm for comput-654

ing the intensity rate.655

Table 2 shows that the Inverse method which relies on root finding656

is the most inefficient of all methods for any system size. For large657

system size this method is unable to complete all 50 simulation658

runs because it needs to find an ever larger number of roots of an659

ever larger system of differential equations.660

The recursive implementation of the intensity rate brings a consid-661

erable boost to the simulations, placing Coevolve as one of the662

fastest algorithms. As shown in Algorithm 5, every sampled point663

in Coevolve requires a number of expected updates equal to the664

expected degree of the dependency graph. Therefore, it is able to665

complete non-exploding simulations efficiently.666

The Python library Tick remains competitive for smaller prob-667

lems, but gets considerably slower for bigger ones. Also, it is only668

specialized to the Hawkes process. Another drawback is that the669

library wraps the actual C++ implementation. In contrast, Jump-670

Processes.jl can simulate many other point processes with a671

relatively simple user-interface provided by the Julia language.672

There is substantial difference between the performance of recur-673

sive CHV simple and CHV full. The former does not make use674

of the derivative of the intensity function in Equation 6.4 which is675

more efficient to compute than the recursive rate in Equation 6.6.676

On the one hand, Coevolve clearly dominates CHV simple.677

On the other hand, CHV full is slower for smaller networks, but678

slightly faster than Coevolve for larger models. This change in679

relative performance occurs due to the rate of rejection in Coe-680

volve increasing in model size for this particular model. We com-681

pute the rejection rate as one minus the ratio between the number682

of jumps and the number of calls to the upper-bound. A system683

with a single node sees a rejection rate of around 8 percent which684

rapidly increases to 80 percent when the system reaches 20 nodes685

and plateaus at around 95 percent with 95 nodes.686

Finally, we introduce a new benchmark which is intended to assess687

the performance of algorithms capable of simulating the stochastic688

model of hippocampal synaptic plasticity with geometrical read-689

out of enzyme dynamics proposed in [19]. For short, we denote it690

as the synapse model. We chose to benchmark this model as it is691

representative of a complex biochemical model. It couples a jump692

problem containing 98 jumps affecting 49 discrete variables with693

a stiff, ordinary differential equation problem containing 34 con-694

tinuous variables. Continuous variables affect jump rates while the695

discrete variables affect the continuous problem. There are 3 stages696

to the simulation: pre-synaptic evolution, glutamate release, and697

post-synaptic evolution. Among the algorithms considered, only698

the inverse method implemented in JumpProcesses.jl, Co-699

evolve and CHV are theoretically able to simulate the synapse700

model. However, in practice, only the last two complete at least one701

benchmark run. The original synapse problem was described as a702

PDMP, so we do not make the distinction between CHV simple703

and full in this benchmark.704

Benchmark results are displayed in Table 3. We observe that CHV705

is the fastest algorithm completing the synapse evolution in about706

half of the time it takes Coevolve with less than half of the allo-707

7https://github.com/rveltz/PiecewiseDeterministicMarkovProcesses.

jl
8https://github.com/X-DataInitiative/tick

cations. Further investigation reveals that the thinning procedure in708

Coevolve reaches an average of 70 percent over all jumps which709

then leads to 2 to 3 times more function evaluations and Jaco-710

bians created compared to CHV. Our implementation adds stop-711

ping times via a call to register_next_jump_time! even for712

rejected jumps — we do not know a jump will be rejected until713

evaluated. This then leads the ODE solver to step to those times and714

make additional function evaluations and Jacobians. Lemaire et715

al. [12] performs a similar benchmark in which they compare the716

Hodgkin-Huxley model against different thinning conditions and717

against an ODE approximation. They find that a thinned algorithm718

with optimal boundary conditions can run significantly faster than719

the ODE approximation. Thus, there could be plenty of room to720

improve the performance of Coevolve in our setting.721

A disadvantage of CHV compared with Coevolve is that it sup-722

ports limited saving options by design. To save at pre-specified723

times would require using the fact that solutions are piecewise con-724

stant to determine solutions at times in-between jumps — and for725

coupled ODE-jump problems would require root-finding to deter-726

mine when s(u) = sn for each desired saving time sn in Equa-727

tion 4.8. The alternative proposed in [24] is to introduce an artificial728

jump to the model such as the homogeneous Poisson process with729

unit rate to sample the system at regular intervals. Alternatively,730

Coevolve allows saving at any arbitrary point. A common work-731

flow in simulating jump processes, particularly when interested in732

calculating statistics over time, is to pre-specify a precise set of733

times at which to save a simulation. In theory, this reduces mem-734

ory pressure, particularly for systems with large numbers of jumps,735

and can give increased computational performance relative to sav-736

ing the state at the occurrence of every jump. However, in the case737

of the synapse model, the number of candidate time rejections far738

surpasses the number of jumps. Therefore, reducing the number of739

saving points — e.g. only saving at start and end of the simulation740

— does not significantly reduce allocations or running time. Given741

these considerations, we decided to save after every jump and at742

regular pre-specified intervals that occur at the same frequency as743

the artificial saving jump used by CHV.744

Another parameter that can affect the precision and speed of the745

synapse benchmark is the ODE solver. The author of Piece-746

wiseDeterministicMarkovProcesses.jl discuss some747

of these issues in Discourse9. Some ODE solvers can be faster and748

more precise. Due to time constraints, we have not investigated this749

matter. The synapse benchmark uses the AutoTsit5(Rosen-750

brock23()) solver in both Coevolve and CHV. Further inves-751

tigation of this matter is left to future research.752

7. Conclusion753

This paper demonstrates that JumpProcesses.jl is a fast,754

general-purpose library for simulating TPPs. With the addition of755

Coevolve, any point process on the real line with a non-negative,756

left-continuous, history-adapted and locally bounded intensity rate757

can be simulated with this library. The objective of this paper was to758

bridge the gap between the point process simulation in statistics and759

biochemistry. We demonstrated that many of the algorithms devel-760

oped in biochemistry which served as the basis for the JumpPro-761

cesses.jl aggregators can be mapped to three general methods762

developed in statistics for simulating TPPs. We showed that the763

existing aggregators mainly differ in how they update and sample764

from the intensity rate and mark distribution. As we performed this765

9https://discourse.julialang.org/t/help-me-beat-lsoda/

88236

9

https://github.com/rveltz/PiecewiseDeterministicMarkovProcesses.jl
https://github.com/rveltz/PiecewiseDeterministicMarkovProcesses.jl
https://github.com/X-DataInitiative/tick
https://discourse.julialang.org/t/help-me-beat-lsoda/88236
https://discourse.julialang.org/t/help-me-beat-lsoda/88236
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Brute Force Recursive
V Inverse Coevolve CHV Inverse Coevolve CHV CHV Tick

simple simple full

Time

1 113.7 µs 4.8 µs 174.2 µ s 112.1 µs 5.1 µs 175.6 µs 173.1 µs 31.4 µs

10 17.5 ms 211.8 µs 4.8 ms 11.0 ms 76.1 µs 432.4 µs 579.0 µs 179.0 µs

20 139.1 ms 1.5 ms 50.7 ms 59.3 ms 282.9 µs 924.7 µs 884.4 µs 1.2 ms

30 415.3 ms 3.3 ms 133.0 ms 200.0 ms 516.9 µs 1.7 ms 1.3 ms 3.7 ms
n=25

40 2.2 s 8.2 ms 342.0 ms 1.6 s 1.0 ms 2.5 ms 1.6 ms 9.2 ms
n=5 n=30 n=7

50 5.1 s 16.9 ms 722.0 ms 3.4 s 1.6 ms 3.7 ms 2.0 ms 21.2 ms
n=2 n=14 n=3

60 8.5 s 37.7 ms 1.3 s 6.2 s 2.3 ms 5.1 ms 2.5 ms 45.0 ms
n=2 n=8 n=2

70 14.2 s 59.5 ms 2.1 s 10.9 s 3.3 ms 6.8 ms 3.0 ms 87.5 ms
n=1 n=5 n=1

80 22.2 s 88.3 ms 3.3 s 15.2 s 4.2 ms 9.0 ms 3.3 ms 142.2 ms
n=1 n=3 n=1

90 35.8 s 139.7 ms 6.2 s 24.6 s 5.5 ms 11.9 ms 3.8 ms 241.9 ms
n=1 n=2 n=1

Table 2. : Median execution time for the compound Hawkes process, V is the number of nodes and n is the total number of successful
executions under ten seconds. Brute force refers to the implementation of the intensity rate looping through the whole history of past events.
Recursive refers to a recursive implementation that only requires looking at the previous state of each node. Inverse and Coevolve are
algorithms from JumpProcesses.jl, CHV is an algorithm from PiecewiseDeterministicMarkovProcesses.jl. See Subsection 4.1
for the distinction between CHV simple and CHV full. Tick is a Python library. All simulations were run 50 times except when stated
otherwise under the running time. Fastest time is bold, second fastest underlined. Benchmark source code and dependencies are available in
SciMLBenchmarks.jl, see first paragraph of Section 6.2 for source references.

Time Allocation

Inverse - -
Coevolve 4.9 s 95.2 Mb
CHV 2.4 s 43.8 Mb

Table 3. : Median execution time and memory allocation. All simulations
were run 50 times, a dash indicates that no runs were successful. Fastest
time is bold, second fastest underlined. Benchmark source code and de-
pendencies are available in SciMLBenchmarks.jl, see first paragraph of
Section 6.2 for source references.

exercise, we noticed the lack of an efficient aggregator for variable766

intensity rates, a gap which Coevolve is meant to fill.767

There are still a number of ways forward. First, given the perfor-768

mance of the CHV algorithm in our benchmarks, we should con-769

sider adding it to JumpProcesses.jl as another aggregator so770

that it can benefit from tighter integration with the SciML orga-771

nization and libraries. The saving behavior of CHV might pose a772

challenge when bringing this algorithm to the library.773

Second, the new aggregator depends on the user providing bounds774

on the jump rates as well as the duration of their validity. In prac-775

tice, it can be difficult to determine these bounds a priori, particu-776

larly for models with many ODE variables. Moreover, determining777

such bounds from an analytical solution or the underlying ODEs778

does not guarantee their holding for the numerically computed so-779

lution (which is obtained via an ODE discretization), and so modi-780

fications may be needed in practice. A possible improvement would781

be for JumpProcesses.jl to determine these bounds automati-782

cally taking into account the derivative of the rates. The approach of783

ZigZagBoomerang.jl that combines Taylor approximation of784

the conditional intensity with automatic differentiation could be ex-785

plored. Deriving efficient bounds require not only knowledge of the786

problem and a good amount of analytical work, but also knowledge787

about the numerical integrator. At best, the algorithm can perform788

significantly slower if a suboptimal bound or interval is used, at789

worst it can return incorrect results if a bound is incorrect — i.e. it790

can be violated inside the calculated interval of validity.791

Third, JumpProcesses.jl would benefit from further develop-792

ment in inexact methods. At the moment, support is limited to pro-793

cesses with constant rates between jumps and the only solver avail-794

able SimpleTauLeaping does not support marks. Inexact meth-795

ods should allow for the simulation of longer periods of time when796

only an event count per time interval is required. Hawkes processes797

can be expressed as a branching process. There are simulation algo-798

rithms that already take advantage of this structure to leap through799

time [11]. It would be important to adapt these algorithms for gen-800

eral, compound branching processes to cater for a larger number of801

settings.802

Finally, JumpProcesses.jl also includes algorithms for jumps803

over two-dimensional spaces. It might be worth conducting a sim-804

ilar comparative exercise to identify algorithms in statistics for 2-805

and N -dimensional processes that could also be added to Jump-806

Process.jl as it has the potential to become the go-to library for807

general point process simulation.808
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Jump types
Aggregator Name Description Sample Update MA Con. Var. Source

from

Direct Direct
Rates kept in a non-sorted
array. Sample on ground
process.

ground all x x [7]

DiretFW
Direct with
FunctionWrapper

Same as Direct, but wraps
rate functions with
FunctionWrapper for type
stability and efficiency.

ground all x x [7]

SortingDirect Sorting direct
Rates kept in a loosely sorted
array. Sample on ground
process.

ground graph x x [15]

RDirect Rejection-based direct

Sample next time using the
maximum rate of the system,
then randomly selects a
candidate and confirms the
jump only if its rate is above a
random proportion of the
maximum rate.

ground graph x x ours*

DirectCR

Direct with
composition-rejection
search

Rates in group with similar
rates using a priority table.
Group rates are the sum of
rates in group.

ground graph x x [21]

RSSA

Rejection-based
stochastic simulation
algorithm

Processes are assigned lower-
and upper-bounds. Sample on
upper-bounds.

ground graph x x [22]

RSSACR

Rejection-based
stochastic simulation
algorithm with
composition-rejection
search

Rates in group with similar
rates using a priority table.
Groups and processes are
assigned lower- and
upper-bounds. Sample on
group upper-bounds.

ground graph x x [23]

FRM First reaction method Selects the minimum time
from all samples. sub all x x [7]

FRMFW
First reaction method
with FunctionWrapper

Same as FRM, but wraps rate
functions with
FunctionWrapper for type
stability and efficiency.

sub all x x [7]

NRM Next reaction method
Keeps a priority queue of
times. Next event is the
earliest in queue.

sub graph x x [4]

Coevolve Coevolve

Synced with model time.
Keeps a priority queue of
candidate times. Next stop
time is the earliest in the
queue.

sub graph x x x ours

Table 4. : JumpProcesses.jl aggegators. Sample from indicates whether the algorithm samples the ground process (or some composition
of it), or each sub-process separately. Update indicates whether the algorithm updates all rates, or only those affected by the realization of a
process via a dependency graph. Jump types indicates whether aggregators support MassActionJump (MA), ConstantRateJump (Con.), or
VariableRateJump (Var.). In source, ours* indicates that the algorithm was developed by the maintainers of the library prior to this paper.
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