
HydroPowerModels.jl: A Julia/JuMP Package for
Hydrothermal Economic Dispatch Optimization

Andrew W. Rosemberg1, 2, Alexandre Street1, 2, Joaquim D. Garcia1, 2, Thuener Silva1, 3,
Davi M. Valladão1, 3, and Oscar Dowson4

1Laboratory of Applied Mathematical Programming and Statistics (LAMPS)
2Department of Eletrical Engineering, PUC-RIO

3Department of Industrial Engineering, PUC-RIO
4Department of Industrial Engineering, Northwestern University, Evanston

ABSTRACT
HydroPowerModels.jl is a Julia package for solving multistage,
steady-state, hydro-dominated, power network optimization prob-
lems with stochastic dual dynamic programming. Our state-of-the-
art open source tool is flexible enough for practitioners in the elec-
trical sector to test new ideas in an efficient way. This tool was made
possible by the Julia language and the surrounding ecosystem of
packages. We use JuMP, a package for mathematical programming
modeling; PowerModels.jl, a JuMP-extension for power network
optimization; and SDDP.jl, another extension that implements the
SDDP.

Keywords
Julia, Optimization, Energy, Stochastic

1. Introduction
The hydrothermal dispatch problem is important for the planning
and operation of hydro-dominated electrical systems such as the
Brazilian national grid. The objective is to coordinate generation,
energy distribution, and hydro-storage management in order to
minimize the cost of operation. In this context, the hydrother-
mal dispatch problem is a medium-term planning problem where
uncertainties related to the hydrology (i.e., rainfall and other in-
flows) of the hydroelectric plants and consumer-demand have fun-
damental importance. Generation takes two main forms: i) hydro-
generation with a low marginal cost, and ii) thermal-generation,
with a high marginal cost. However, in hydro-dominated systems
such as Brazil, there is often insufficient capacity of thermal gener-
ation to meet demand. Thus, the system-operator faces a trade-off
between using water for cheap generation in the present, against
conserving water for future periods of drought. Because of this
trade-off, the hydrothermal dispatch problem is often modeled as
a multistage stochastic problem [14, 12, 15].
Solving multistage stochastic programs, however, is a challeng-
ing numerical problem. The solution of the problem is intractable
and common approximations such as stochastic dynamic program-
ming can suffer from high dimensionality (frequently referred as
the curse of dimensionality). One method that partially overcomes

the curse of dimensionality is the stochastic dual dynamic program-
ming algorithm (SDDP) of [14].
A number of programs implementing SDDP are in-use around
the world, ranging from unpublished implementations in academic
institutions to professional software such as PSR’s SDDP1 [16].
However, until recently, there was no fast, reliable, and open-source
implementation of the SDDP algorithm. Without such a tool, re-
searchers and practitioners have not had a common ground for the
discussion and analysis of different hydrothermal dispatch formu-
lations and their solutions.
The objective of this work is to build an open source tool, called Hy-
droPowerModels.jl, that can be this common ground. HydroPow-
erModels.jl can be used to assess the impact of modeling choices
during the planning of a hydrothermal power system. These choices
include the usage of different network formulations, the consider-
ation of different risk measures, and the planning horizons for un-
certain future costs. Addressing these issues provides the research
community and the energy industry with a powerful tool for the
efficient design of hydrothermal power systems.
To develop a tool that can be used by both researchers and indus-
try professionals, we take advantage of the Julia language [3] and
two main packages: PowerModels.jl [6], which implements power
flow models for electrical dispatch, SDDP.jl [7], which implements
the stochastic dual dynamic programming algorithm. Both Power-
Models.jl and SDDP.jl handle their respective optimization models
through JuMP.jl [8], a Julia package for mathematical optimization.
JuMP.jl makes it simple to write complex optimization problems
and solve them with numerous solvers. HydroPowerModels.jl takes
advantage from the fact that PowerModels.jl and SDDP.jl were not
only developed in Julia, but also deeply rely on JuMP.jl to build and
solve mathematical optimization problems. SDDP.jl is used to spec-
ify the hydro storage dynamics and stochastics of inflows, renew-
ables and loads. PowerModels.jl is used to provide multiple net-
work dispatch formulations as a starting point for the HydroPow-
erModels.jl formulation that couples the electrical constraints with
hydro constraints and uncertainty.
The next sections are organized as follows: 1) A brief understand-
ing of multistage stochastic problems and decisions under uncer-

1Confusingly, the “SDDP” acronym is used to denote a software product,
the original algorithm of [14], and a more general class of algorithms in-
spired by the original SDDP algorithm.

1

https://github.com/andrewrosemberg/HydroPowerModels.jl
https://github.com/andrewrosemberg/HydroPowerModels.jl
https://github.com/lanl-ansi/PowerModels.jl
https://github.com/lanl-ansi/PowerModels.jl
https://github.com/odow/SDDP.jl
https://github.com/lanl-ansi/PowerModels.jl
https://github.com/JuliaOpt/JuMP.jl
lsalazar
Highlight
I think you should define the acronym SDDP here.

lsalazar
Highlight
Here, SDDP is used but it's not defined.

lsalazar
Highlight
Two things:

1) I was taught not to use apostrophes in articles. However, I have seen other oarticles in different journals where apostrophes are used. Therfore, I encourage you not to use them but the decision is up to you.

2) State who PSR is. People that does not know much about energy (such as I) will not know what you are talking about.

lsalazar
Highlight
Remove the acronym.

lsalazar
Highlight
A brief sentence explaining what a multistage stochastic program is and not only why it is difficult to solve.

Proceedings of JuliaCon 1(1), 2019

tainty; 2) A presentation of the problem’s modeling formulation
and specification; 3) Different simplifications of the model; 4) An
explanation of the solution method (SDDP); 5) A comparison of
existing alternative solution implementations and listing of the pro-
posed package functionalities; 6) A case study to clarify usage.

2. Multistage Stochastic Optimization
Stochastic Programming (SP) is a branch of optimization under un-
certainty, where the value of random variables (ω) influence the
problem’s conditions and consequently the optimal decisions. Un-
certainty relates to the probability distributions of parameters and
may be incorporated to the problem in various manners.
One class of simple stochastic programs is known as a two-stage
problem with recourse. It can be formulated as follows:

1st Stage

min
x

cTx+

Q(x)︷ ︸︸ ︷
ρ[Q(x, ω)]

s.t. x ∈ X

2nd Stage

Q(x, ω) =


min
u

gTu

s.t. Au = b(ω)−Ex
u ∈ U

 .

The objective of the first stage is composed of an immediate cost
term cTx and a cost-to-go function Q(x). Q is a function of some
decision variables of the first stage x that fix the state of the sec-
ond stage (its feasible region). These variables are called state vari-
ables. First stage decisions are made under uncertainty, while the
decision variables of the second stage u are chosen after the real-
ization of the variable ω (under a deterministic scope) and are so
called recourse variables. The function ρ is known as a risk mea-
sure [2] and is commonly assumed to be the expectation operator
E.
The goal of this problem is to find an optimal stage decision x and
an optimal second-stage decision u for each realization of ω condi-
tioned on x. Collectively, this set of decisions is known as a policy.
The two-stage problem discussed above naturally extends to a mul-
tistage problem via recursion. A multistage stochastic program
with T stages can be formulated as follows:

min
x1∈X1

f1(x1)+

ρ[inf
x2∈X2(x1,ω2)

f2(x2, ω2)+

ρ[...+ ρ[inf
xT ∈XT (xT−1,ωT)

fT (xT , ωT)]...]]

Assuming the problem is linear, we have:

Xt(xt−1, ω) =
{
xt ≥ 0 : Atxt = bt(ω)−Etxt−1

}
ft(xt, ω) = cTt xt

In this setting, the uncertain data ω1, ..., ωT is revealed gradually
over time. The sequence ωt ∈ Rdt of data vectors is viewed as a
stochastic process, i.e., as a sequence of random variables with a
specified probability distribution.
Just like in the two stage problem, there are state variables at every
stage that partially impact the objective through the risk measure
of the subsequent stages optimal values. The policy optimized by

this problem is a mapping from the realized stochastic process to
the decisions for each stage.
Using dynamic programming, the nested formulation of a multi-
stage stochastic program may be represented by the following Bell-
man recursion for each stage:

Qt(xt−1, ωt) =


min
xt

cTt xt + ρt+1[Qt+1(xt, ωt+1)]

s.t. Atxt = bt(ωt)−Etxt−1 [πt(ωt)]

xt ≥ 0


For the purpose of simplicity, we assume that QT+1(·, ·) = 0.
In these equations, the optimal value at stage t depends on previous
decision xt−1 and the realization of the data process ωt. Finally, the
optimal value of the first stage problem gives the optimal value of
the corresponding multistage problem.

3. The Hydrothermal Dispatch Problem
The hydrothermal dispatch problem is a multistage stochastic op-
timization problem that comprises an optimal power flow (OPF)
problem and the hydro storage management for multiple periods
and scenarios.
Introduced by [5], the OPF problem extends the economic dispatch
problem, where the goal is to plan the operation of an electrical
power system by determining the contribution of available energy
sources in supplying demands, to include constraints representing
the power flow equations, resulting in a more realistic model of the
dispatch.
Since its introduction, the OPF problem has received additional
constraints to better represent present power systems. The adopted
version of the PowerModels.jl package, is a AC Optimal Power
Flow problem. The AC Power Flow constraints implement voltage
bounds, generation bounds, nodal conservation of power, power
flow on lines and thermal limit of the lines (power flow limit) for
an alternating current system. Different from original OPF formu-
lations, support was also added for multiple load and shunt com-
ponents on each bus together with a line charging that supports
conductance and asymmetrical values.
Besides the modifications from PowerModels.jl, deficit variables
to work as slack to the attendance of each load have frequently
been used by the electrical sector and will be incorporated in our
package. This variables allow a more detailed evaluation of the cost
of not attending some demands.
The optimal dispatch tries to find the most economic use of system
resources and is the objective function of an OPF. However, in a
hydrothermal power system, where water is a main resource and
its inflow is uncertain, risk averse planning is an important task
to ensure the lowest cost operation. The necessary hydro storage
management to attend demand during periods of scarcity adds an
extra layer of decisions and constraints.
Reservoir operation is a problem composed by the balance of in-
coming and outgoing flow of water as well as its usage to generate
power. Since many storage facilities are linked through rivers, this
problem may be simply viewed as a directed flow graph where each
node in the graph represents a storage reservoir. A constraint binds
the power generation of generators using water as fuel to the out-
flow of the respective storage. Operation is also restricted by the
limits of reservoir volume and outflow.
The solution of this problem returns a operation policy representing
the optimal generation and hydro management possible given the
horizon studied and the scenarios considered.

2

lsalazar
Highlight
apostrophe

lsalazar
Highlight
apostrophe

lsalazar
Highlight
Cite an article of the basic literature of Multistage optimization

lsalazar
Highlight
You defined the acronym of this problem in section 4. Define it here instead.

Proceedings of JuliaCon 1(1), 2019

As it is common for multistage problems, we will define the under-
lying sub-problem (i.e., Q) that unifies the OPF problem with the
hydro-thermal dispatch problem.

3.1 The Mathematical Model
Following the notation chosen by the PowerModels.jl package, the
sets and parameters used to define the sub-problem are listed with
the addition of those created for the hydro storage management and
the data for the state of the sub-problem:

Sets.

N - buses
R - reference buses

E,ER - branches, forward and reverse orientation
G,Gi - generators and generators at bus i
L, Li - loads and loads at bus i
S, Si - shunts and shunts at bus i

H,HG - reservoirs and reservoirs with power generation

HU
h ,H

S
h - upstream reservoirs out-flowing and spilling to h

GH
h - generator at reservoir h

Data.

Sgl
k , S

gu
k ∀k ∈ G - generator complex power bounds

c2k, c1k, c0k ∀k ∈ G - generator cost components

vli, v
u
i ∀i ∈ N - voltage bounds

Sd
k ∀k ∈ L - load complex power consumption
Y s
k ∀k ∈ S - bus shunt admittance
Yij , Y

c
ij , Y

c
ji ∀(i, j) ∈ E - branch pi-section parameters

Tij ∀(i, j) ∈ E - branch complex transformation ratio
suij ∀(i, j) ∈ E - branch apparent power limit

iuij ∀(i, j) ∈ E - branch current limit

θ∆l
ij , θ

∆u
ij ∀(i, j) ∈ E - branch voltage angle difference bounds

νh ∀h ∈ H - reservoir volume limit
uh ∀h ∈ H - reservoir outflow limit

ph ∀h ∈ HG - hydro generation production factor
cd - deficit cost
cs - spillage cost

States.

νh,t−1 ∀h ∈ H - incoming reservoir volume
ah ∀h ∈ H - reservoir inflow

For simplicity the stage index t of the sub-problem is omitted from
every data and variable with exception of the incoming reservoir
volume νh,t−1 (in order to differentiate it from the outgoing reser-
voir volume νh).
Notice that, as usual, alternating components (i.e. voltage, power
generation, power demand and power flow) are modeled using
complex numbers to fully represent the process.

A complete mathematical model of the sub-problem is as follows,

Qt(νt−1, ωt) =

variables:
Sg
k ∀k ∈ G - generator complex power dispatch (1a)
Vi ∀i ∈ N - bus complex voltage (1b)

Sij ∀(i, j) ∈ E ∪ER - branch complex power flow
(1c)

Uh ∀h ∈ H - reservoir outflow (1d)
Sh ∀h ∈ H - reservoir spillage (1e)
νh ∀h ∈ H - reservoir volume (1f)
Di ∀i ∈ N - bus complex deficit (1g)

minimize:
∑
k∈G

c2k(<(Sg
k))

2 + c1k<(Sg
k) + c0k+∑

i∈N

cd<(Di) +
∑
h∈H

csSh + ρt+1[Qt+1(νt, ωt+1)]

(1h)

subject to:
∠Vr = 0 ∀r ∈ R (1i)

Di +
∑
k∈Gi

Sg
k −

∑
k∈Li

Sd
k −

∑
k∈Si

Y s
k |Vi|2

=
∑

(i,j)∈Ei∪ER
i

Sij ∀i ∈ N (1j)

Sij =
(
Yij + Y c

ij

)∗ |Vi|2

|Tij |2
− Y ∗ij

ViV
∗
j

Tij

∀(i, j) ∈ E

(1k)

Sji =
(
Yij + Y c

ji

)∗ |Vj |2 − Y ∗ij
V ∗i Vj

T ∗ij
∀(i, j) ∈ E

(1l)

|Sij | ≤ suij ∀(i, j) ∈ E ∪ER (1m)

θ∆l
ij ≤ ∠(ViV

∗
j) ≤ θ∆u

ij ∀(i, j) ∈ E (1n)

νh + Uh +Sh = νh,t−1 + ah(ωt)+∑
k∈HU

h

Uk +
∑

k∈HS
h

Sk ∀h ∈ H (1o)

Uhph = <(Sg

GH
h

) ∀h ∈ HG (1p)

Sgl
k ≤ S

g
k ≤ S

gu
k ∀k ∈ G (1q)

vli ≤ |Vi| ≤ vui ∀i ∈ N (1r)
0 ≤ νh ≤ νh ∀h ∈ H (1s)
0 ≤ Uh ≤ uh ∀h ∈ H (1t)

The objective of the sub-problem (1h) is to minimize the costs of
real power generation, cost of real energy supply’s deficit, cost of
spillage (in order to try and avoid degenerate solutions) and the
cost-to-go function Q.
Constraint (1i) fixes reference buses complex voltage angles to
zero, as the remaining angles will be defined accordingly.
Constraint (1q) bounds the complex power generation, representing
the physical limitation of generators and fuel source availability.
The magnitude of the complex voltage is bounded in constraint (1r)
by restricting the absolute square of its value. The upper limit alone
defines a circular feasible region for each voltage, while the lower

3

lsalazar
Highlight
apostrophe

lsalazar
Highlight
Is it necessary to define this parameter? We know that Y_ij is defined for all (i,j) in E. That includes (j,i)

lsalazar
Highlight
Move this after the definition of the variables.

lsalazar
Highlight

lsalazar
Highlight
It don't get what the asterisk means. Please, clarify.

lsalazar
Highlight

lsalazar
Highlight

lsalazar
Highlight

lsalazar
Highlight
V_i is defined over N but in constraint (1i) is used over R and in (1k) and(1l) is used over E. Clarify why that is possible.

lsalazar
Highlight
i belogns to... ?
Is it G_i contained in G?

lsalazar
Highlight
Read comment on set G.

lsalazar
Highlight
Read comment on set G.

lsalazar
Highlight
Read comment on set G.

lsalazar
Highlight
Read comment on set G.

Proceedings of JuliaCon 1(1), 2019

limit reshapes the region as a ring, bringing a non-convexity to the
problem.
The Branch complex power flow is formulated in (1k) and (1l),
dependent on the voltage at each end and implementing elements
of line charging and the effects of transformers. The power flow is
bounded in (1m) through its absolute value. These power limits of
the lines represent thermal limits and stability limits.
Constraint (1j) implements Kirchhoff’s Current law (KCL), which
refers to power preservation at each node, balancing generation, de-
mand, flow and shunt. Although, deficit variables have been added
in order to guarantee feasibility in case of lack of power availability.
Angle difference between buses are bounded in (1n). The reason
for the limits is to approximate the transient stability constraints of
power flowing in branches. These restrictions refer to the synchro-
nism among machines at each end of a line. The limits depend on
the equipment installed and the system configuration.
An important variable in a economic dispatch problem is the
marginal cost of energy at each bus, which, in optimality, is de-
termined by the dual value of (1j). This value is also referred to as a
shadow price, local marginal price (LMP), or nodal price. Regard-
less, this value represents the cost of an extra unit of energy in a
bus.
The conservation of water equation is implemented in (1o), where
the water stored at a reservoir should equal the water previously
stored plus the incoming flow (precipitation and water from up-
stream reservoirs), minus the portion used to generate energy and
the one spilled away.
The binding of the hydro real power generation and water used
is done in (1p), which depends on the efficiency of the generator
modeled through a production factor.
Constraints (1s) and (1t) bound respectively the volume of water
stored and the amount of water used in generation. These limits are
defined by the capacity limit of storage facility and the equipment
installed.

4. Network Formulations
The AC Optimal Power Flow (AC-OPF) problem, defined in (1),
captures the nonlinear and complex nature of the power flow. How-
ever, solving a nonlinear problem (NLP) is hard. The scarcity of
efficient NLP solvers, the numerical issues created by large prob-
lem instances and the inconsistency of solutions (local optimums)
reduce the depth of research using AC-OPF. Besides, the require-
ment of convexity frequently needed for applications limit its us-
age.
Hence, many approximations and relaxations have been developed
for the AC-OPF. In general these are simplifications and are easier
to solve, but ignore some parts of the problem. As a result, it is im-
perative to understand and weigh the advantages and compromises
of each formulations when choosing one to use in a model.
The Linear DC approximation is a linear formulation which par-
tially represents power voltage. This formulation makes some as-
sumptions for linearization purposes: voltage magnitudes are suf-
ficiently near nominal value (one), angle differences are close to
zero, and there are practically no power losses. The effect of these
assumptions is a linear model of a purely active power system. Still
it is important to notice that, while this model seeks to approximate
the feasible region of the AC power flow, it may not include the
entire feasible region, including the global optimum.
Instead of approximating parts of the power system, it is possible to
relax some of the nonlinear constraints. These relaxations contain
all feasible points, and their solutions provide lower bounds to the
original problem. In this regard, relaxations, through mathematical

guarantees, may provide better and more reliable conclusions of a
power system. Although, some relaxations are more precise than
others and include less points unfeasible to the original problem.
The Copper Plate is the simplest linear relaxation and models the
system by a centralized energy pool, relaxing transmission lines
limits and the Kirchhoff’s laws. Easily implementable and solvable,
this is the most simplified linear formulation, neglecting the entire
grid of the problem. However, because of the simplifications of this
model it produces only one shadow price, i.e. the marginal price
of energy in each node of the network are equal. This may send a
distorted signal to the agents responsible for the system, and may
return the most unfeasible solution across all formulations.
Another linear relaxation, the Transportation model, or tube model,
extends Copper Plate by adding line limits. Locational restric-
tions are better represented and the value of transmission lines are
clearer. Although, by completely ignoring the power voltage, net-
work design becomes less relevant and incorrect system analysis is
possible.
The SOC relaxation is a non-linear convex relaxation that is tighter
than the linear versions, i.e., its feasible region is strictly contained
inside them. This formulation relaxes the non-convex constraints of
the problem, composed by the product of the voltage variables, by
neglecting the phases of the voltages and saving only their branch
wise difference and magnitudes. The resulting problem may be
specified as a second order cone formulation, hence its name.
The SDP relaxation deals with the non-convex constraints of the
problem by using the fact that they define a positive semi-definite
matrix with rank 1. The relaxation comes from removing the rank
1 restriction. This formulation’s feasible region is contained within
the SOC relaxation’s feasible region, providing a better bound to
the original problem.
The QC relaxation exploits the polar form of the non-convex con-
straints and uses known convex envelopes to relax each non-convex
term present. These envelopes retain stricter links between the volt-
age variables, producing a tighter relaxation than the SOC formu-
lation.
These, and other relaxations, provide a good alternative to solve the
original problem. Besides bounding the optimal value of the orig-
inal problem, they have sufficiently good solutions for real world
applications. An extensive survey of relaxations and approxima-
tions of the power flow equations is given in [13].
The PowerModels.jl package, a framework for steady-state power
network optimization, is able to construct these and other mathe-
matical programming formulations of OPF problem. Since Power-
Models.jl uses JuMP.jl to construct these formulations, they can be
passed to a variety of solvers. This allows the user to easily choose
an approximation or relaxation, solve it, and then discuss and com-
pare the impacts of using different relaxations and approximations
in the planning and operation of the economic dispatch problem.

5. Solution method
As we have seen, the hydrothermal dispatch is a complicated prob-
lem with different network formulations. The OPF problem, is only
a part of a sub-problem composing a multistage stochastic program.
As discussed previously, solving a multistage stochastic program
has its own difficulties, and requires specific and efficient algo-
rithms.
In a multistage stochastic program, we are faced with a
cost-to-go function: ρt+1[Qt+1(xt, ωt+1)]. The issue is
that ρt+1[Qt+1(xt, ωt+1)] also depends on a cost-to-go
ρt+2[Qt+2(xt+1, ωt+2)], and the evaluation of those functions
can be expensive.

4

lsalazar
Highlight
Explain why it is hard to solve.

lsalazar
Highlight
but they ignore

lsalazar
Highlight
singular

lsalazar
Highlight
which one

lsalazar
Highlight
apostrophe

lsalazar
Highlight
apostrophe

lsalazar
Highlight
the OPF problem

lsalazar
Highlight
Read comment in section 3 about this term.

lsalazar
Highlight
I didn't understand this phrase.

Proceedings of JuliaCon 1(1), 2019

The crucial step that facilitates the solution of these problems is to
construct approximations of the cost-to-go functions, recursively,
going backward in time. Thus, the optimal value of the first stage
problem approximates the optimal value of the corresponding mul-
tistage problem.
For the construction of this approximation a widely used method
is dynamic programming, which evaluates the function in a range
of discrete values of the state variable for further interpolation.
However, this method becomes intractable with the growth of the
state dimension (commonly referred as the curse of dimensional-
ity of dynamic programming). A solution for this was proposed by
[14] with a method called stochastic dual dynamic programming
(SDDP).
The methodology, simply posed, approximates the cost-to-go func-
tion by the maximum of a set of linear hyper-planes called cuts.
SDDP is based on an interactive construction of the cost-to-go
function approximations. The procedure may be divided in sub-
sequential forward and backward passes, where the first chooses
points in which the second will update the current approximation
of the functions. For a detailed discussion of the SDDP algorithm,
see [14, 7].
Other solution algorithms have been proposed to solve multistage
problems, such as progressive hedging and nested Benders. How-
ever, for most large instances, none has proven to be viable and
efficient alternatives. SDDP has been extensively used to solve and
plan hydrothermal dispatch operations since its original publica-
tion.
On the other hand, this method is a complex and difficult to imple-
ment algorithm. Moreover, to make it flexible enough for different
applications while not compromising performance is a main issue.
Hence, the historical scarcity of reliable and open software versions
has limited development and discussions of its contributions. Yet,
new and efficient implementations have risen with the advance of
open-source languages as the Julia language.
One such implementation is SDDP.jl, a Julia/JuMP package for
solving large multistage convex stochastic optimization problems
using stochastic dual dynamic programming. It provides a practical
and efficient way to find the solution to the hydrothermal dispatch
problem. With this package it was possible to define the dynam-
ics and random variables of our problem and solve the instantiated
model with the SDDP algorithm.

6. HydroPowerModels.jl
HydroPowerModels.jl uses the PowerModels.jl and SDDP.jl pack-
ages to implement and solve different hydrothermal dispatch for-
mulations. It provides an interface to easily solve and simulate hy-
drothermal dispatch models and allows the creation of a collection
of hydrothermal problems described in input files for the package
(following the PowerModels.jl standard), thereby helping the dis-
cussion of methodology and the resulting policies for specific case
instances.
In contrast to the previously available official software for hy-
drothermal dispatch models, the proposed package is part of an
academic open-source effort. This helps to promote the continuous
improvement of models and solution algorithms for the research
community.
Other academic implementations of SDDP have being developed
and may be applied to the hydrothermal dispatch problem. How-
ever, the advances of the Julia Language and JuMP.jl are a much
more adequate framework than those of MATLAB [4] or Python
[17, 1]. Moreover, a free and open-source tool can be of great help

for the research community alternatively to paid professional prod-
ucts as [11] and the renowned version from PSR Inc.
Additional implementations of SDDP are also available in Julia [9]
[10], but SDDP.jl [7] has proven an easy to learn, efficient version
of SDDP that is flexible enough for the purposes of the HydroPow-
erModels.jl package.
HydroPowerModels.jl is composed of different and useful function-
alities, from compact case sharing to dispatch solution results visu-
alizations. A work-flow of a simple usage of the package helps to
give a basic overview:

—Load case data from input files describing: Power network data;
Reservoir facilities details and water network data; Inflow sce-
narios.

—Receive case parameters: Power network formulation; Number
of stages; Number of hours in Stage and optimizer to solve the
sub-problems.

—Build the multistage, hydrothermal steady-state power network
optimization problem.

—Run SDDP method to approximate the cost-to-go functions.
—Simulate the policy.

A code example is presented in the next subsections to help
clarify the usage of the package. Although, for a more ex-
tensive tutorial of the package, a detailed documentation is
made available in https://andrewrosemberg.github.io/
HydroPowerModels.jl/latest/.

6.1 Usage
The usage of HydroPowerModels.jl follow the paradigms of the
Julia language and the structure of the dependent packages.
In order to access the available functionalities, first import Hy-
droPowerModels.jl and an adequate solver:� �
using HydroPowerModels
using GLPK� �
Load a case by passing the folder containing the input files
(PowerModels.json, hydro.json, and inflows.csv):� �
data = HydroPowerModels . parse_folder (

" case3_folderpath ")� �
Use create_param to create a set of problem parameters. For
example, a 12-stage problem using the DC approximation can be
specified as follows:� �
params = create_param (
stages = 12 ,
stage_hours = 168 .0 ,
model_constructor_grid = DCPPowerModel ,
optimizer = with_optimizer (GLPK . Optimizer))� �

Then, build the Model and execute the SDDP train method:� �
m = hydrothermaloperation (data , params);

HydroPowerModels . train (m)� �

5

https://andrewrosemberg.github.io/HydroPowerModels.jl/latest/
https://andrewrosemberg.github.io/HydroPowerModels.jl/latest/
lsalazar
Highlight
SDDP

Proceedings of JuliaCon 1(1), 2019

Finally, simulate the performance of the policy with 1000 Monte
Carlo scenarios:� �
Simulate 1000 instances
results = HydroPowerModels . simulate (m, 1000);� �
� �

Dict { Any , Any } with 5 entries :
" simulations " => Dict [Dict { Any , Any }(Pair { Any ,...
" data " => Dict { Any , Any }[Dict { Any , Any }(...
" params " => Dict { Any , Any }(Pair { Any , Any }(...
" machine " => Dict (" cpu "=>" Intel (R) Xeon (R)...
" solve_time " => 205.31247� �
7. Case Study
For a case study, consider a the hydrothermal dispatch of a realistic
system with the following specifications:

—Number of buses: 166
—Number of loads: 286
—Number of generators: 145
—Number of branches: 235

In order for a qualitative view of the system, the package disposes
a graph illustration plot:� �
plot_grid (data , node_label = false)� �

Fig. 1. Network Grid graph

Figure 1 shows the installed power available in the network
(grouped by bus) using a logarithmic scale. The red nodes repre-
sent the thermal generators, the blue represent the hydro genera-

tors. For comparison purposes, orange nodes have been added that
are equivalent to average real power demands.
As we can see from the plot of the grid 1, this appears to be a well
balanced case, with similar installed hydro and thermal power ca-
pacity and with a reasonable average demand. In addition, it is a
well distributed network, without any evident critical sections sus-
ceptible to impacting power flow problems. Those facts are indi-
cations of a significant hydro-generation optimal dispatch without
large complications.
For this study, a 160 stage horizon planning and simulation have
been executed using the following case parameters:

—Number of stages: 160

—Number of hours in stage: 168

—Network Formulation: Linear DC approximation

7.1 Results
The simulate command returns a detailed dictionary of the execu-
tion. In order to plot those results returned by the simulate function,
you may choose from a variety of methods, including the function
plot_aggregate_results(). This function receives the dictio-
nary results and generates the most common aggregated variable
plots, which best summarize simulations of a hydrothermal dis-
patch:� �
plot_aggregated_results (results)� �
Figures 2 to 9 show the output from the above command. As men-
tioned, the plots are of aggregated quantities, but the methods used
to aggregate were chosen in order to help analysis. For example:
The final nodal price is an average of nodal prices weighted by the
contribution of local loads to the total demand; Reservoir volume
was grouped weighted by the amount of energy that could be pro-
duced by the stored water (as was the inflow of water).
As expected the optimal dispatch of the simulations uses more
hydro-generators, however it needs thermal-generators to met all
demands without deficit. On this hydro-dominated system, the un-
certain inflow is a driving factor of optimal dispatch. As we can see
in Figure 9, the inflow has a strong seasonality component, result-
ing the significant seasonality trait observable in the variables of
the policy simulations. 2-3, 5-8.
Similar studies are possible for any case and formulation chosen,
helping to analyze existing realistic cases and assess impacts of
future system changes.

6

lsalazar
Highlight
lowercase

lsalazar
Highlight

lsalazar
Highlight
lowercase

Proceedings of JuliaCon 1(1), 2019

Fig. 2. Thermal Generation

Fig. 3. Load Weighted Average Nodal Price

Fig. 4. Deficit

Fig. 5. Hydro Generation

Fig. 6. Thermal Turn (Storage Outflow)

Fig. 7. Hydro Spill (Storage Spillage)

7

Proceedings of JuliaCon 1(1), 2019

Fig. 8. Volume Reservoir

Fig. 9. Inflow

8. References
[1] sddpy python for stochastic dual dynamic programming algo-

rithm, 2019.
[2] Philippe Artzner, Freddy Delbaen, Jean-Marc Eber, and

David Heath. Coherent measures of risk. Mathematical fi-
nance, 9(3):203–228, 1999.

[3] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B
Shah. Julia: A fresh approach to numerical computing. SIAM
review, 59(1):65–98, 2017.

[4] Léopold Cambier and Damien Scieur. leopoldcambier/fast:
v0.9.1b, March 2018.

[5] J Carpentier. Contribution to the economic dispatch problem.
Bulletin de la Societe Francoise des Electriciens, 3(8):431–
447, 1962.

[6] Carleton Coffrin, Russell Bent, Kaarthik Sundar, Yeesian Ng,
and Miles Lubin. Powermodels.jl: An open-source framework
for exploring power flow formulations. In 2018 Power Sys-
tems Computation Conference (PSCC), pages 1–8, June 2018.

[7] Oscar Dowson and Lea Kapelevich. SDDP.jl: a Julia pack-
age for Stochastic Dual Dynamic Programming. Optimization
Online, 2017.

[8] Iain Dunning, Joey Huchette, and Miles Lubin. Jump: A mod-
eling language for mathematical optimization. SIAM Review,
59(2):295–320, 2017.

[9] Vincent Leclère, Henri Gérard, François Pacaud, and Tristan
Rigaut. Stochdynamicprogramming. jl a julia library for mul-
tistage stochastic optimization.

[10] Benoît Legat. leopoldcambier/structdualdynprog.jl: v0.2.0,
October 2018.

[11] N Löhndorf. Quasar optimization software 2.4, 2018.
[12] Maria Elvira Pineiro Maceira, V. S. Duarte, D. D. J. Penna,

L. A. M. Moraes, and A. C. G. Melo. Ten years of application
of stochastic dual dynamic programming in official and agent
studies in Brazil: Description of the NEWAVE program. 16th
PSCC, Glasgow, Scotland, pages 14–18, 2008.

[13] Daniel K Molzahn, Ian A Hiskens, et al. A survey of relax-
ations and approximations of the power flow equations. Foun-
dations and Trends® in Electric Energy Systems, 4(1-2):1–
221, 2019.

[14] Mario VF Pereira and Leontina MVG Pinto. Multi-stage
stochastic optimization applied to energy planning. Mathe-
matical programming, 52(1-3):359–375, 1991.

[15] Andy Philpott. On the Marginal Value of Water for Hydro-
electricity. In Tamás Terlaky, Miguel F. Anjos, and Shabbir
Ahmed, editors, Advances and Trends in Optimization with
Engineering Applications, pages 405–425. Society for Indus-
trial and Applied Mathematics, Philadelphia, PA, 2017.

[16] PSR. Software | PSR, 2019. [Online; accessed 2019-07-06].
[17] Luciano Raso, David Dorchies, Jan Kwakkel, and

Pierre Olivier Malaterre. Optimist: a python library for
water system optimal operation and analysis using sddp.
2016.

8

	Introduction
	Multistage Stochastic Optimization
	The Hydrothermal Dispatch Problem
	The Mathematical Model

	Network Formulations
	Solution method
	HydroPowerModels.jl
	Usage

	Case Study
	Results

	References

