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ABSTRACT
Medical research requires statistical tools that are both sophisti-
cated and powerful enough to address complex inferential prob-
lems, as well as intuitive and user-friendly enough to not require
advanced statistical and programming expertise. Combining Julia
with the Bayesian MCMC machinery addresses this need.

Examples of Bayesian probabilistic biostatistics in Julia, including
Bayesian adaptive trial design, sequential analysis of randomized
controlled trials, and Bayesian hierarchical modeling for a meta-
analysis are presented. Further, these examples illustrate the appli-
cation of a sophisticatedly simple approach to statistical analysis
and modeling for clinical research.

Keywords
Julia, Bayesian methods, Meta-analyses, Biostatistics, Randomized
Controlled Trials

1. Introduction
Julia solves the “two-language problem”: it is both fast and effi-
cient (performance), and easy to use (user friendliness).[3] Addi-
tionally, using the Bayesian MCMC machinery in Julia solves “the
two field problem”: clinical researchers often need expertise in both
medicine and in statistical computing.

As those conducting and funding clinical randomized controlled
trials (RCTs) recognize the high costs of these studies (e.g., med-
ication expense, time required, and potential exposure of patients
to ineffective treatments), there has been greater enthusiasm for
(1) improving statistical analytic methods for RCTs, and 2) using
evidence-based methods to examine existing naturalistically col-
lected clinical data to inform clinical practice without the need for
RCTs. These approaches require far greater statistical and program-
ming knowledge and sophistication from users. Thus, there is an
urgent need to provide statistical tools to clinician-researchers that
are intuitive and easy to use, yet sophisticated and powerful enough
“under the hood” to answer questions that simpler methods cannot.

The Bayesian machinery of posterior simulation and Markov chain
Monte Carlo (MCMC) methods together with Julia offer a solu-
tion to this “two-field problem”. This enables exact small sample
inference and hypothesis testing for complex models without re-
quiring the restrictive assumptions necessary to obtain analytical
tractability (performance), and facilitates the analysis of complex
models with basic statistical concepts: frequency distributions, den-

sity plots, means, medians, modes, standard deviations, quantiles,
and posterior density ratios (user friendliness).[7]

This paper presents examples from our research developing and ap-
plying Bayesian probabilistic approaches to inference and testing
in RCTs.[7, 9, 10, 11, 12] Our approach leverages posterior sim-
ulation and MCMC methods which, being recursive, require effi-
cient looping to code effectively, so most available R packages rely
on C++ code. This leads to the two-language problem: either you
have to code in C++ or something similar, or rely on a black box
package. Julia offers a clean coding experience and many pack-
ages that, being written in Julia, allow one to examine and learn
from the source code. We are currently developing our own pack-
age, BayesTesting.jl,[6] along with taking advantage of several Ju-
lia packages (e.g. Distributions.jl, DataFrames.jl, CSV.jl and Tur-
ing.jl) to apply MCMC and hierarchical models to conduct analy-
ses and meta-analyses of data from RCTs.[9]

2. Moving Hypothesis Testing Forward
At some future time trials may be evaluated using
fully Bayesian notions of utilities and decisions ...
which would enable designs to be built that do not
violate the Likelihood Principle or Bayesian notions.
But currently, the regulatory structure is such that
confirmatory trials are usually judged and evaluated
using Type I error.[2], p.220-221.

Despite widespread and persistent criticism of p-values,[1] the
“p ≤ 0.05 is ‘statistically significant’, p > 0.05 is not” is an iron
law for publishing in leading journals in many fields. In general,
you cannot successfully publish applied science without precise hy-
pothesis testing. Statisticians, especially Bayesians, argue against
that approach, but there is far too much institutional inertia and
bias towards precise testing and use of p-values as ‘proper’ applied
science. At the very least, we need a bridge from ‘pure’ hypothesis
testing to a more complete Bayesian analysis.

The comparison of means from two samples provides a canonical
example. Suppose we have samples from two different treatments,
x1 and x2 and wish to evaluate the evidence on whether there is
any difference in average treatment effect (ATE). This is equivalent
to evaluating the precise vs. composite hypotheses,

H0 : δ = 0, H1 : δ 6= 0. (1)

where δ = µ1 − µ2, and µj is the ATE for treatment j.
Appealing to the Central Limit Theorem and the Principle of Max-
imum Entropy provides strong justification for assuming that the
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distribution of the sample mean, x̄j , for each sample (i.e. the like-
lihood) is Gaussian,

x̄j ∼ N(µj , σ
2
j /nj), j = 1, 2, (2)

where µj and σ2
j are the unknown population mean and variance of

xj , and nj is the number of observations in sample xj . Adopting
uninformative priors for the mean and variance leads to conditional
posterior densities,

µj |σj , xj ∼ N(x̄j , s
2
j ), (3)

σ2
j |µj , xj ∼ IG((nj − 1)/2, (njs

2
j )/2). (4)

where s2j is the sample variance. This is as far as we need to go ana-
lytically. The rest of the problem can be solved numerically (though
one more step is easily taken in this case, leading to a Student-t
marginal posterior density for µj with posterior mean x̄j , variance
s2j , and degrees of freedom nj − 1).

Obtaining M draws from these conditional distributions provides
pseudo-samples from the marginal posteriors for µ and σ2 (or
drawing directly from the Student-t marginal posterior for µ). We
then obtain an MCMC pseudo-sample of sizeM from the posterior
distribution of δ, δ(m) = µ

(m)
1 − µ(m)

2 , m = 1, ...,M . In this way,
posteriors for any function of the parameters are available, such as
differences in differences and ratios. For example, we often wish
to compare two treatments to placebo, then to each other, which is
accomplished by obtaining ∆(m) = δ

(m)
1 −δ(m)

2 . While the analyt-
ical distribution of ∆ is unknown and asymptotic approximations
require unrealistic assumptions, MCMC sampling allows the ex-
act small sample posterior density to be approximated arbitrarily
closely as M is increased. The rest of the analysis requires only
knowledge of basic statistics: plotting the density of the MCMC
draws, computing summary statistics, and testing hypotheses. Note
that this addresses the Behrens-Fisher problem, allows for different
unknown variances in each sample, and allows for different sample
sizes. Correlation across samples and other model extensions are
straightforward.

To test the hypotheses in (1) we evaluate the posterior density ratio,
PDR, (or ‘posterior odds’) against H0, by evaluating the MCMC
posterior density for δ at the value in the null hypothesis and at the
mode. For two samples from treatments 1 and 2, x1 and x2, the
PDR is,

PDR(δ = 0|x1, x2) =
p(δ = δMAP |x1, x2)

p(δ = 0|x1, x2)
, (5)

where δMAP is the maximum a posteriori estimate of δ. We can
also compute posterior tail probabilities (one-sided ‘Bayesian p-
values’), from the MCMC sample,

p-value = min [P (δ ≤ 0|x1, x2), P (δ ≥ 0|x1, x2)], (6)

P (δ ≤ 0|x1, x2) =

∑M
m=1 I(δ(m) ≤ 0)

M
,

P (δ ≥ 0|x1, x2) =

∑M
m=1 I(δ(m) ≥ 0)

M
,

where the indicator functions I(.) = 1 if the condition is true, 0
otherwise. These same formulas can be used to evaluate hypotheses
concerning other quantities of interest, such as ∆. The PDR for
joint hypotheses (suppose δ is a vector of parameters) can readily
be evaluated using Rao-Blackwellization.[6, 7]

Fig. 1. Difference in ATE between treatment and placebo groups.

3. Bayesian adaptive trial design and sequential
analysis

As described above, the Bayesian machinery can be employed to
perform Bayesian adaptive trial design and sequential analysis of
RCTs. In this context, the Bayesian approach also offers the ad-
vantage of no statistical requirement for a stopping rule. Though
other reasons for a stopping rule are important, such as funding
and avoiding bias due to stopping when a test critical value is just
reached, a sequential analysis minimizes costs, time and the num-
ber of patients exposed to inferior treatment. Further, there is no
satisfactory frequentist differences of differences analysis without
restrictive assumptions. The analytical sampling distributions are
unknown and intractable; asymptotic assumptions are invalid with
small samples; and there may be other constraints (e.g., boundary
conditions). Bootstrapping is also inferior due to the small sam-
ple sizes. The commonly used Welch t-test represents an ad hoc
attempt to deal with different variances across samples that does
not perform well in simulations.[7] Importantly, these issues are
resolved by the Bayesian MCMC machinery.

In previous work,[10, 7] categorical and quantitative outcome data
from a federally-funded NIH trial of pediatric anxiety disorders
(Child/Adolescent Anxiety Multimodal Study [CAMS], N=488)
were analyzed to validate the proposed methodology and to exam-
ine treatment and placebo responses. In CAMS, youth, aged 7-17
years of age (mean age: 10.7 years) with generalized, separation
and or social anxiety disorders, were randomized (2:2:2:1) to cog-
nitive behavioral therapy (CBT, n=139), a selective serotonin reup-
take inhibitor (SSRI), sertraline (SRT, n=133), SRT+CBT (n=140),
or pill placebo (PBO, n=76).

The following example sequentially analyzes the data for the com-
bined treatment SRT+CBT relative to PBO using Bayesian updat-
ing. We wish to evaluate the hypothesis in equation (1) where µ1 is
the average treatment effect (ATE) of SRT+CBT and µ2 is the ATE
of the placebo. Starting with a sample of 12 (8 treated, 4 placebo),
the posterior density was updated with each additional 6 obser-
vations (4 treated:2 placebo). The sequence of posteriors as n is
increased for the difference in ATE between SRT+CBT and PBO
is shown in Figure 1, and the PDR giving posterior odds against
the null hypothesis (5), posterior probability that the difference is
greater than zero (6) and Bayesian posterior (two sided) p-value
(≈ 2× p(δ ≥ 0)) are given in Table 1 .
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Fig. 2. Bayesian Hierarchical Model for Treatment Comparisons.

Table 1. Evidence Against H0:δ = 0
n PDR(δ = 0) P(δ ≥ 0) p-value

18 1.37 0.2382 0.4763
36 1.19 0.2887 0.5775
54 3.49 0.0625 0.1250
72 61.35 0.0025 0.0051
90 572.96 0.0003 0.0005

108 1083.5 0.0001 0.0002
126 329.24 0.0005 0.0010
144 610.67 0.0002 0.0004
162 4596.8 0.0000 0.0000
180 2394.6 0.0000 0.0000
198 46452.9 0.0000 0.0000

There is clear evidence of a difference in efficacy between the
SRT+CBT treatment and PBO, δ, by n = 72 (posterior odds
against H0:δ = 0.0 are 61.4:1, P (δ ≥ 0|s, n) = 0.0025,), sug-
gesting that for this treatment comparison, the clinical trial could
have been completed with less than half of the original sample with
no change in the categorical or quantitative conclusions.

4. Bayesian hierarchical modeling
A Bayesian hierarchical model (BHM) provides a flexible setting
for modeling data that allows for heterogeneity across individuals
or groups. If homogeneity across studies is assumed, the data can
be combined via Bayesian updating as in the sequential analysis in
the previous section. For categorical data, all that is needed are the
number of occurrences, si, in ni subjects in each study, i, of N

studies. The posterior distribution is then

p(θ|s1, ..., sN , n1, ..., nN , a, b) =

Beta(

N∑
i=1

si + a,

N∑
i=1

(ni − si) + b),
(7)

with a = b = 1 for a uniform prior for θ.

Alternatively, BHMs can allow for heterogeneity across studies
due to different trial sites, different types of treatment, such as
different families of anxiety medication (SSRI or serotonin nore-
pinephrine reuptake inhibitor, SNRI), etc., and the same Bayesian
machinery can be employed to compare a variety of treatments rel-
ative to placebo. For the categorical data examined herein there
are two common BHM specifications: the Beta-Gamma,[4] and
the Logistic-Normal.[5]. In the following, we adopted the Beta-
Gamma BHM specification as it directly provides intuitively under-
standable parameter estimates, whereas the logistic specification is
more difficult to interpret (though is better suited when covariates
are included).

The complete Beta-Gamma BHM modeling framework is illus-
trated in Figure 2 for the case of comparing two sets of RCTs for
different treatments (sertraline vs. fluoxetine) with placebo groups
in each RCT. Each RCT in Figure 2 has a Binomial likelihood for
si successes in ni trials with probability of success θi (row 3). A
common Beta prior with mode ω and precision parameter K is as-
signed to each θi (row 2), and a Beta and Gamma hierarchical prior
are assigned to ω andK respectively (row 1). The hyperparameters
a, b, d and r are selected to represent a priori knowledge about the
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distributions of ω and K (typically relatively uninformative priors
are assigned unless other information is available).

The package Turing.jl provides Hamiltonian Monte Carlo (HMC)
and MCMC algorithms to obtain posterior density MCMC
chains from an essentially unlimited variety of models. The Ju-
lia macros provide a flexible and intuitive modeling and infer-
ence framework. The model specification in Turing.jl closely
matches how one would write the model mathematically, e.g. for
the Beta-Gamma BHM (Turing code examples for the Logistic-
Normal are available at github.com/TuringLang/Turing.jl and
github.com/StatisticalRethinkingJulia):� �
# Turing . jl BHM for binomial trials
using Turing , MCMCChains
@model binomial_trials (s,n) = begin
g = length (n) # number of groups
# hierarchical priors
ω ~ Beta (2,3)
K ~ Gamma ( 10 ,1/0 .0 5)
a = ω*K + 1 .0
b = (1 .0 - ω)*K + 1 .0
# priors for each occurrence rate
θ = Array { Float64 }( undef , g)
for k in 1:g
θ[k] ~ Beta (a,b)
end
# likelihood
for i in 1:g
s[i] ~ Binomial (n[i],θ[i])
end
end� �
Only a few more lines of code are needed to obtain posterior sam-
ples from the No U-Turn (NUTS) or Hamiltonian Monte Carlo
(HMC) samplers in Turing.jl, and then examine the posterior and
test the hypothesis of no mean difference between two groups:� �
using BayesTesting

# treatment
ctrt = mapreduce (c-> sample ( binomial_trials ( s2 , n2 ),

NUTS ( 5000 , 1000 ,0 .6 5)), chainscat , 1:5)
# for HMC sampler replace NUTS () with :
# HMC (5000 , 0.05 , 10)

# placebo
cpbo = mapreduce (c-> sample ( binomial_trials ( s1 , n1 ),

NUTS ( 5000 , 1000 ,0 .6 5)), chainscat , 1:3)

ωt = Array ( ctrt ["ω"][ 1001 : end ]) # treatment ω
ωp = Array ( cpbo ["ω"][ 1001 : end ]) # placebo ω
δ = ωt - ωp # difference
plot (δ , st =: density , label =" Difference ")

# compute mean , SD , 0.95 prob . interval ,
# PDR odds and tail prob .
[ mean (δ ) std (δ )]
quantile (δ ,[0 .0 25 ,0 .5 ,0 .9 75 ])
[ mcodds (δ , h0 =0 .0 ) bayespval (δ )]� �
In recent work,[8] a meta-analysis of results from several RCTs was
conducted to obtain more complete evidence on the expected side
effects of SSRIs. Side effect or adverse event (AE) occurrence in an
RCT is generally recorded as a categorical variable, leading to bino-
mial data consisting of number of AEs, si, in ni subjects for trial i.
The results below are for the “activation” (or restlessness) AE. Five
studies included data for activation. Posteriors for each of the five

Fig. 3. HMC chains from No U-Turn Sampler.

studies for treatment (with SSRI) and placebo were obtained using
Turing.jl (the third row of distributions in the 2), along with the dis-
tribution of the mode, ω, of the posterior for the estimated rate of
success for each study, θi (the fourth row in the Figure 2). Given the
MCMC pseudo-samples for each ω (e.g., SSRI-related side effects
and placebo-associated side effects), outcome differences between
treatment and placebo, then differences in differences between the
two treatments relative to placebo (e.g. SSRI vs. SNRI-related side
effects) can be determined (rows 5 and 6 in the Figure 2).

Using the NUTS and HMC sampler in Turing.jl, the BHM was
estimated for each treatment arm of the study data. Run times to
generate 5 chains using the above code were approx. 7 seconds or
less on a laptop with CPU: Intel(R) Core(TM) i7-6600U CPU @
2.60GHz running Julia Version 1.1.0. The stability of the chains
suggests convergence to the marginal posteriors has been attained,
as illustrated in Figure 3.
The resulting posterior densities for each study probability of oc-
currence rate (risk), θj and the hierarchical probability of occur-
rence across groups, ω are illustrated in Figure 4. Results using
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Fig. 4. Posterior Densities for Activation

Fig. 5. ATE posterior density with and without heterogeneity

the logistic-normal specification gave very similar results. The re-
sults for activation due to SSRI (mean difference between treatment
and placebo ω = 2.39, p(ω ≤ 0|s, n) = 0.0015, PDR against no
difference = 122.3:1) provide statistical evidence of an increased
likelihood of activation with the treatment. To examine the impact
of across study heterogeneity, Figure 5 presents the BHM poste-
rior density for ω in comparison to combining all studies ignoring
across study heterogeneity via equation (7).

5. Summary and Conclusions
This paper presented two examples of application of Bayesian
probabilistic modeling from our own research that illustrate our ex-
periences with Bayesian inferential methods for clinical research
using Julia. We have used this approach in several studies includ-
ing: reevaluating the evidence from previously conducted RCTs;
analysis of abandoned trials; joint evaluation of tolerability and
efficacy in RCTs; and Bayesian hierarchical modeling for meta-
analysis evaluating adverse events (“side effects”) in trial partici-
pants.

The approach presented provides a solution to the strong insti-
tutional bias/inertia of ‘≤ 5% = statistical significant’ through
provision of posterior odds as well as posterior tail probabilities
(‘Bayesian p-values’), posterior density intervals, and visualization
of posterior densities. This further allows for more flexibility in the
choice of critical value for a particular test, i.e. the cut-off point for

rejecting vs. failing to reject the null hypothesis. For example, re-
searchers at CERN attempting to detect gravitational waves would
wish to employ a much larger critical odds ratio (akin to the ‘5-
sigma rule’), whereas researchers comparing the efficacy of two
relatively harmless psychiatric treatments for anxiety or depression
would undoubtedly find posterior odds that pass a much lower crit-
ical threshold convincing enough to recommend one treatment over
another.

One of the major advantages of the contemporaneous Bayesian ap-
proach is its ability to utilize MC and MCMC methods. This ap-
proach is computationally intensive, but less mathematically and
analytically burdensome. Moreover, it typically requires fewer re-
strictions than needed for analytical tractability. Further, we find
Julia to be ideal for scientific programming of this nature; it re-
duces the need for the researcher to wear multiple expertise ‘hats’.
The resulting conservation of clinical researchers’ time and energy
by using Julia is substantial, and allows greater focus on the scien-
tific and clinical problems. Ultimately, this potentially hastens the
arrival of effective treatments and findings to the clinic.
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