
Proceedings of JuliaCon

Basic Threading Examples in JuliaLang v1.3
Jameson Nash1, Jeff Bezanson1, and Kiran Pamnany2

1Julia Computing, Inc.
2Intel Corporation

ABSTRACT
A major distinguishing point of any programming language is how
it deals with concurrency. Of course, I’m really interested here in
parallelism, and specifically how to get the best throughput out of
my application. But we know that actually taking advantage of all
cores correctly and efficiently is really hard as a programmer. Here
we take a look at how JuliaLang prepares to unleash the full power
of your modern CPU’s many cores.
Hopefully we won’t drive any users mad with frustration as they
try to write code to utilize threads. Towards that end, we’ll look
at how JuliaLang looks to provide a range of modern primitives
that are designed to automatically compose effectively, and some of
the trade-offs we make to try to simplify the mental model for the
user. We’ll also take a look at where we think that this development
should go towards next.

Keywords
Julia, JuliaLang, Multithreading, Parallelism, Concurrency, Opti-
mization, Compiler, Runtime VM

1. Introduction
A design principle for JuliaLang is to make common tasks easy and
difficult tasks possible. This has extended from automatic mem-
ory management vs manual memory reuse, to having one type of
method with dispatch, to optional type-inference for performance.
And now, this includes concurrency. By extending design work that
has been present in the language for many years to provide paral-
lelism, we developed a means to add parallelism that preserved the
(relative) simplicity of single-threaded for existing code, while al-
lowing new code to benefit from the possibility of threading. This
work has been inspired by parallel programming systems like Cilk,
Intel Threading Building Blocks (TBB) and Go.
In this paradigm, any piece of a program can be marked for ex-
ecution in parallel, and a “task” will be started to run that code
automatically on an available thread. A dynamic scheduler handles
making cache-aware decisions for when to launch the work items.
This model of parallelism has many wonderful properties. We see it
as somewhat analogous to garbage collection: with GC, you freely
allocate objects without worrying about when and how they are
freed. With task parallelism, you freely spawn tasks—potentially
millions of them—without worrying about where they may eventu-
ally run.
The model is portable and free from low-level details. You don’t
need to explicitly start and stop threads, and you don’t even need
to know how many processors or threads there are (though you can
find out if you want).

The model is nestable and compose-able: you can start parallel
tasks that call library functions that themselves start parallel tasks,
and everything works. This property is crucial for a high-level lan-
guage where a lot of work is done by library functions. You need
to be free to write whatever code you need—including parallel
code—without worrying about how the libraries it calls are im-
plemented. This model isn’t limited just to JuliaLang code either:
we’ve shown it can be extended to native libraries such as FFTW
and are working on extending it to OpenBLAS.

1.1 Background History
Initially, JuliaLang exclusively provided users the ability to use
cooperatively scheduled workers. In other contexts, these may be
known as “green threads”, “threadlets”, or “coroutines”. In Julia,
we’ve called these tasks. A task is a unit of work with it’s own
context (stack) whose execution can be interleaved with that of any
other task. Additionally, these have the ability to produce a value or
an exception, making them useful for structured concurrency, with-
out requiring an extra channel to manage. But they haven’t had the
ability to work in parallel (simultaneously).
These have been good for writing generators and outstanding for
dealing with I/O workloads. In these cases, we know we might have
a lot of unpredictable latency, so we need to be able to quickly jump
between various threads of operation. When an event comes in, we
need to resume our context quickly to react to the event before go-
ing off to handle something else. For example, a common pattern
for a server is to provide a separate context for each child. Let’s
look at some code snippets for a toy socket echo server in a few
other languages. With JavaScript promises, we could make some-
thing like the following work:� �
while (true) {

listen(port)
.then(client => {

return client.read()
.then(data => {

return client.write(data);
})
.then(() => {

return client.close();
})
.done();

})
.done();

};� �
With async/await we can make that a bit clearer with better struc-
ture and cut that down:

1

ADR
Note
Pedants will insist on "such as", since the items are members of the set being discussed.

ADR
Note
One word: "composable"

ADR
Note
possessive is "it's"

Proceedings of JuliaCon 1(1), 2019

� �
(async () => {

while (true) {
let client = await listen(port);
(async () => {

let data = await client.read();
await client.write(data);
await client.close();

})();
}

})();� �
But we still have some slightly obnoxious syntax there creating
some distracting line noise. While most parts of the language are
loosely typed and inferred by the runtime, this distinction is forced
upon the user. So then, let’s see how we would write that in Julia:� �
function accept(cb, server)
while true
let client = accept(server)
@async cb(client)
end
end
end
accept(listen(port)) do client

data = read(client)
write(client, data)
close(client)

end� �
Notice here how we would typically leverage the do-block syntax
to additionally re-use the loop logic, Task allocation, and error han-
dling from a central place.
This works well for latency-bound activities, such as a web-server.
But these codes only used one core, even though they only need
to do thread-local actions, and so running these simultaneously on
multiple threads should not require major changes. But also a lot
of code is not written with the expectation of concurrent access,
so we wanted to continue providing both kinds of concurrency. If
we define a thread as a unit of work managed by the runtime sys-
tem, we can call this N : 1 threading, where the runtime library
lets you manage N independent operations and maps them onto
one system thread (approximately representing a CPU core). In the
new system, we’ll let the user now additionally have M CPU cores.
This goes beyond the classic N : M threading model however, as
you have cooperative affinities where certain tasks won’t interrupt
each other. I propose calling this N(k : 1) : M scheduling since
we’re combining the advantages of single-threaded work queues
with multiple cores.
In N(k : 1) : M scheduling, we have N units of work mapped
onto M cpu threads. Additionally, each of those units of work may
be composed of k cooperatively scheduled Tasks. This is achieved
by pinning the tasks in the group to one CPU-thread, while load
balancing those across the available cores using the novel partr
scheduler algorithm. Finally, we can extend this model once more
by factoring out a common factor of P : P to write this as
N(k : 1) : M + P (k : 1) : P and derive one further useful
use case: the ability to pin one thread to running one task (or task-
group). These P tasks could be an over-subscription of the CPU
cores, or take away from M, or both. Typical uses for this mode
of operation would be high-availability tasks (with low latency re-
quirements, but also minimal computation), such as background
I/O processing, blocking work pools (foreign library integration),
finalizers, or message server queues.

The newest work here is to implement a thread-aware scheduler.
For a couple years, JuliaLang has been able to perform simple tasks
with some caveats with a static work schedule and minimal-to-none
inter-thread communication. This had been given the status of “ex-
perimental,” while we worked out the details and shook out the
bugs. The recent work to generalize that functionality has allowed
us to rewrite that older static capability on top of our new runtime,
demonstrating the power and flexibility of the new system. While
the old system let us test out the thread-related bugs in the runtime,
it had some significant shortcomings. We knew those would need
to be addressed before we could move beyond the “experimental”
label.
Those limitations included:

—it had no scheduler, and so couldn’t interact with regular tasks or
do I/O

—the runtime was full of race conditions

—the ‘@threads’ loops could not be nested

—parallel code couldn’t run outside the ‘@threads’ loop

Running Julia with Threads

In the examples below, we will be using JuliaLang v1.3
launched with multiple threads. To get follow along on your
own machine, you will want to download the upcoming
JuliaLang release (currently v1.3.0-rc1) from https://
julialang.org/downloads. Run ./julia with the en-
vironment variable JULIA_NUM_THREADS= set to the num-
ber of threads to use.
Alternatively, after installing JuliaLang, follow the
steps at http://docs.junolab.org/latest/man/
installation/ to install the Juno IDE. It will automat-
ically set the number of threads based on the number of
available processor cores, and also provides a graphical
interface for changing the number of threads.

2. Motivating Examples
The presence and usability aspects of threading, as exemplified
here, reflect JuliaLang’s general policy of giving users control. One
driving philosophy is that users should have the ability to access the
full power of their machine. And it should be easy when needed but
ignorable when not required.
While many, or even most, programs can be written without need-
ing to touch multithreading, some require them, while some benefit
from them. In this paper, we’ll primarily examine some cases where
threads aren’t required, but are improved by their presence. Addi-
tionally we’ll look at a case where the work can be run sequentially
with cooperative scheduling, but at greatly reduced performance.
Most thread-specific functionality is exported from the Threads
submodule of the Base module. For example, we can querying it
for the runtime number of threads and the id of the current thread:� �
julia> Threads.nthreads()
4

julia> Threads.threadid()
1� �

2

https://julialang.org/downloads
https://julialang.org/downloads
http://docs.junolab.org/latest/man/installation/
http://docs.junolab.org/latest/man/installation/
https://junolab.org
ADR
Note
Change of voice here. Who is "I"?

ADR
Note
What is "partr"? Is it an acronym or proper name?

ADR
Note
Could tighten "is to implement" to just "implements"?

ADR
Note
"need" would be more precise.

ADR
Note
It took me a while to parse this. Changing the spacing might help, e.g. "N(k:1):M + P(k:1):P"

Proceedings of JuliaCon 1(1), 2019

2.1 Stochastic Ordering
One of the more visual ways to show we have threads working is to
show the scheduler picking up work in semi-random, interleaving,
orders. Previous versions of Julia already had an ‘@threads for’
macro which would split a range and run a portion on each thread
with a static schedule. So in the range below, thread 1 would run
items 1 and 2, thread 2 would run items 3 and 4, and so on. Now
these threads supports doing I/O too with that same schedule.� �
bash$> JULIA_NUM_THREADS=8 julia <<EOF
Threads.@threads for i = 1:12

println(i, " on thread ", Threads.threadid())
end
EOF
1 on thread 1
3 on thread 2
12 on thread 8
9 on thread 5
7 on thread 4
2 on thread 1
4 on thread 2
5 on thread 3
8 on thread 4
11 on thread 7
10 on thread 6
6 on thread 3� �
But now, it’s also now possible to do the same example but with
a completely dynamic schedule. With the improved language run-
time, this takes a few small tweaks now. We use the new ‘@spawn’
macro with the existing ‘@sync’ macro to delineate the work items.� �
bash$> JULIA_NUM_THREADS=8 julia <<EOF
@sync for i = 1:12

Threads.@spawn println(i, " on thread ", Threads.threadid())
end
EOF
2 on thread 5
3 on thread 4
8 on thread 7
6 on thread 5
12 on thread 7
7 on thread 6
9 on thread 8
10 on thread 5
4 on thread 3
1 on thread 2
5 on thread 1
11 on thread 1� �
But on to even more fun stuff...

2.2 Parallel Merge Sort
A classic algorithm, parallel merge sort shows nice performance
benefit and scaling from using multiple threads. This function will
create O(log(n)) subtasks which will sort independent portions of
the array before merging them into a final sorted copy of the input.
We use here the ability of each task to return a value to directly
fetch the result without requiring an additional channel for data!� �
perform a merge sort on `v` using parallel threads
function psort(v::AbstractVector)

hi = length(v)
if hi < 100_000 # below some cutoff, run in serial

return sort(view(v, 1:hi), alg = MergeSort)
end

split the range and sort the halves in parallel recursively
mid = (1 + hi) >>> 1
half = Threads.@spawn psort(view(v, 1:mid))
right = psort(view(v, (mid + 1):hi))
left = fetch(half)::typeof(right)

perform the merge on the result
out = similar(v)
i, il, ir = 1, 1, 1
@inbounds while il <= mid && ir <= (hi - mid)

l, r = left[il], right[ir]
if l < r

out[i] = l
il += 1

else
out[i] = r
ir += 1

end
i += 1

end
@inbounds while il <= length(left)

out[i] = left[il]
il += 1
i += 1

end
@inbounds while ir <= length(right)

out[i] = right[ir]
ir += 1
i += 1

end
return out

end� �
To see the timing results as we add threads, refer to figure 3 at the
end.
While not demonstrated here, fetch would also automatically
propagate errors, with the result of it being an error thrown if the
child task ended by throwing an exception.
Since we are using in-process threads, we could further optimize
this to instead mutate the input in-place and to reuse work buffers
for additional performance. We have elsewhere tested that and
shown the performance improvement is as expected. However,
since the scaling improvement was similar between them, we’ve
opted not to include it here.

2.3 Parallel Primes Sieve
An unusual use of high-level threading operations can be used
to (inefficiently) compute prime numbers using the sieve of Er-
atosthenes. This use of threaded channels is translated from
Thomas Hoare’s seminal 1978 paper “Communicating Sequential
Processes”[2] example 6.1. It works by creating a task for each
prime number being generated. Upon receiving (and outputing) a
prime, each task will then take responsibility for filtering out mul-
tiples of that prime from the input list, as represented in figure 1.� �
function S61_SIEVE(n::Integer)

buffer = 5 # buffer capacity (configurable)
primes = Int[] # result
done = Threads.Atomic{Bool}(false) # completion signal
sieves = [Channel{Int}(buffer) for i = 1:n]
for i in 1:n

Threads.@spawn begin
p = take!(sieves[i])
push!(primes, p)
if length(primes) == numPrimes

done[] = true
return

end
mp = p # non-prime multiples of p
for m in sieves[i]

while m > mp

3

ADR
Note
It appears that only half of the classic algorithm is here. Missing half does each merge in parallel, which greatly improves the theoretical scalability.

Proceedings of JuliaCon 1(1), 2019

Fig. 1. Primes sieve in operation. Inputs ‘n’ across the top. Task numbers
‘i’ down the side. Outputs ‘P ’ marked in the center.

mp += p
end
if m < mp # rem(m, p) > 0

put!(sieves[i + 1], m)
end

end
end

end

put!(sieves[1], 2)
n = 3
while !done[]

put!(sieves[1], n)
n += 2

end
return primes

end� �
To see the timing results as we add threads, refer to figure 3 at the
end.
Since we’re creating one thread for each number, the overhead here
overwhelms the computational cost of the additions. That makes
this implementation much slower than the optimized routines typi-
cally used now, such as those provided in Primes.jl to compute
primes. But is also means we show exceptional (super-linear) scal-
ing. This is because we end up being able to run a better schedule
when we can fill and empty the channels in parallel. That is also
why the presence of at least a small buffer on the channel can be a
significant advantage for the implementation.

2.4 Parallel Prefix Scan
Prefix-scan-sum is another classic algorithm that is able to benefit
nicely from having multiple threads. Without going into any details
about how this operation works or what it does, the short code be-
low can take advantage of all cores and SIMD units available on
the native machine—even with a generic ahead-of-time-compiled
system image:� �
using .Threads: @threads
function prefix_threads!(⊕, y::AbstractVector)

l = length(y)
k = ceil(Int, log2(l))
do reduce phase
for j = 1:k

@threads for i = 2�j:2�j:min(l, 2�k)
@inbounds y[i] = y[i - 2�(j - 1)] ⊕ y[i]

end
end
do expand phase
for j = (k - 1):-1:1

@threads for i = 3*2�(j - 1):2�j:min(l, 2�k)

@inbounds y[i] = y[i - 2�(j - 1)] ⊕ y[i]
end

end
return y

end

A = fill(1, 500_000)
prefix_threads!(+, A)� �
JuliaLang can express this operation so well because it defines an
expressive front-end to describe optimizations to the compiler. Un-
der the hood, it puts together a comprehensive set of features that
free the user from dealing with memory management, thread man-
agement, nor compile/runtime distinction. The runtime is able to
prepare a version of this function specifically optimized for the ar-
guments types. And it spawns closures to be run on all available
CPUs. The compiler can also automatically specialize the function
for the current processor (both ahead-of-time and just-in-time), ad-
justing the ABI on-the-fly (with trampolines as needed). And our
lightweight threading system will dynamically schedule the work
chunks.

3. Performance
Each of the examples above shows a performance benefit attained
from adding threads!
On my quad-core laptop (Intel(R) Core(TM) i7-8559U CPU @
2.70GHz), I obtained the following scaling and timing numbers
shown in table 1 and 2.

Table 1. Measured timing of the examples given
above.

nthreads 1 2 3 4
S61_SIEVE .704s .709s .065s .241s
psort .609s .528s .321s .993s
prefix_threads! .375s .462s .100s .043s

Table 2. Timing figures from table 1 converted
to scaling ratios relative to the first column.
nthreads 1 2 3 4
S61_SIEVE 1x 1.91x 3.62x 6.56x
psort 1x 1.71x 1.98x 2.63x
prefix_threads! 1x 1.62x 2.16x 2.28x

These can be seen plotted graphically in figure 2 and 3.

Be
nc

hm
ar

k
Ti

m
e

(s
ec

on
ds

)

0

4

8

12

16

N cores

0 1 2 3 4

S61_SIEVE prefix_threads! psort

Fig. 2. Timings from table 1 plotted graphically.

4

Proceedings of JuliaCon 1(1), 2019

Pe
rfo

rm
an

ce
 B

oo
st

 (r
el

at
iv

e)

0

2

4

6

8

N cores

0 1 2 3 4

S61_SIEVE prefix_threads! psort

Fig. 3. Scaling ratios from table 2 plotted graphically.

4. Integration into an existing language
Another challenge we faced was seeing what would be needed to
integrate this work with pre-existing code. JuliaLang is an exist-
ing, post version 1.0 language with promises to maintain backwards
compatibility and a large third-party code base that depends on it.
Any changes needed to have an upgrade-path. Whenever there were
existing code that might reasonably be expected to be safe to use
from multiple threads, that code needed to be identified and fixed.
Fortunately, many key aspects of the language had previously been
designed in expectations of becoming threaded. In some other pop-
ular languages, we see they have not been able to add unrestricted
threading. There were several areas that needed to be tackled to
determine the appropriate upgrade path:
User-facing APIs:

—concurrency basics: Task, and associated functions including
schedule, yield, wait

—mutexes: ReentrantLock and Condition variables, including
lock, unlock, wait

—synchronization primitives: Channel, Event, AsyncEvent,
Semaphore

—IO and other delays: including read, write, open, close,
sleep

—experimental Threads module: random assortment of building
blocks and atomics

—memoization-type caches (e.g. inside Regex.PCRE and the
Random.GLOBAL_RNG object reference)

Once we determined we wanted to make concurrency and paral-
lelism use the same concept (named a Task), that set many prior-
ities. Many of the APIs in our list of user-facing APIs were able
to directly add thread-safety “under-the-hood”, as they say. This
meant that we found that typical user code that already interacted
with IO, synchronization, locks, and tasks could continue to operate
unchanged. In most cases, we achieved this by adding fine-grained
locks on each critical resource. There were a few notable cases:

4.1 Changes to Tasks
The existing concurrency primitive of Tasks was enhanced by ex-
posing a new, optional flag to enable thread-migration for it. We
call this concept “sticky” tasks, as a default tasks is only cooper-
atively runnable on the thread that scheduled them. When set to
false, however, the task becomes eligible to be picked up by any
other thread. Combined with the internal changes to make wait on

events and channels thread-safe, we believe this provides an easy-
to-use mechanism for selecting between the simpler cooperatively
concurrent usage (single-threaded) and the more general simulta-
neous parallelism (multi-threaded).� �
t = Task(() -> [closure code])
t.sticky = false # t may now get run on any thread
schedule(t)
...
wait(t)� �
However, while conceptually simple, the above felt slightly awk-
ward compared to the fairly succinct @async syntax used for creat-
ing a concurrent task. We wanted to make it similarly convenient,
so we also created a new Threads.@spawn macro and integrated
it with the existing @sync macro.� �
using Threads: @spawn
@sync begin

@async concurrent_closure()
@spawn parallel_closure()

end # wait for all� �
4.2 Changes to Condition
The existing Condition object couldn’t be made thread-safe.
There were two replacements identified: one, replace it with an
auto-resetting event with the same API; or two, replace it with a
new mutex-based API. We decided to go with the latter option.
This meant that existing usage of Condition was only correct if it
remained on a single-thread. We decided to mechanically enforce
this by asserting on usage that it was always used from the same
thread it was created on. The new API requires writing the follow-
ing more verbose code pattern:� �
c = Threads.Condition()
or alternately
l = ReentrantLock()
...
c1 = Threads.Condition(l)
c2 = Threads.Condition(l)
...
lock(c)
try

while !is_condition_met()
...
wait(c)
...

end
finally

unlock(c)
end
...� �
Previously, this would have been more simply
c = Condition(); is_condition_met() wait(c). While this change
may seem more difficult at first glance, we observed that while
the lock acquisition here could be hidden inside wait in the first
replacement, all of this structure will usually still be required
by the is_condition_met function. And the code would get much
further complicated by the need to release the lock before calling
wait. We concluded therefore that in most cases the code would
be made simpler and faster by changing the API to the second
option. This also meant that when code was being changed to be

5

Proceedings of JuliaCon 1(1), 2019

thread-safe, it would need to replace uses of Condition with the
new Threads.Condition.

4.3 Changes to IO
Changing the I/O code (files, streams, folders, and other platform
code) to work on from any thread was another big project. The ex-
isting design requires an underlying asynchronous library, with a
design similar to Windows IOCP, to efficiently manage large num-
bers of open event sources and provide the simplicity and concision
of the logic shown in 1.1 on all platforms. For this, we have been us-
ing the libuv library. This lets us have most platform-specific code
isolated in a separately tested library and provide more commonal-
ity in our runtime library. As an initial implementation to make this
library safe to use from threads, we’ve used one big IO lock around
all calls to it. However, this library also has callbacks and will block
to wait for external incoming events, so we also needed to integrate
it fully with the task scheduler to get it to cooperatively release the
lock on demand. We were able to do so by adding an asynchronous
channel (uv_async_t) to wake the one thread running the event
loop while all other threads sleep on a system mutex (uv_cond_t)
when there is no work for them to perform. When try entering the
event loop, we do so only if the count of currently waiting tasks is
zero. In the future, this work may allow us to move the event loop
entirely to a separate thread (and/or multiple threads). It seems that
this design change may thus be making threading support a manda-
tory requirement for the underlying VM—with the advantage we
that we can get more throughput on the large-core systems that are
only becoming more common.

4.4 Changes to Memoization Caches
The usual strategy for dealing with these was to turn them from true
globals into thread-local variables. To assist in that goal, we assign
all threads a low numbered threadid. This can then be used to
index a global array to access the cache for that thread. For exam-
ple, instead of one global Random.GLOBAL_RNG object represent-
ing the global MersenneTwister pseudo-random number genera-
tor (PRNG) state, we use a Random.default_rng() function to
retrieve the current PRNG for that thread (or to lazy-initialize one
from system randomness on first use).� �
function default_rng()

tid = Threads.threadid()
@assert 0 < tid <= length(THREAD_RNGs)
if @inbounds isassigned(THREAD_RNGs, tid)

@inbounds MT = THREAD_RNGs[tid]
else

MT = MersenneTwister()
@inbounds THREAD_RNGs[tid] = MT

end
return MT

end
function __init__()

resize!(empty!(THREAD_RNGs), Threads.nthreads())
end� �
4.5 Changes to the Julia Runtime Library
The functionality provided in libjulia also needed to be thread-safe.
While some of it consists of stateless helper functions, much of it
is where the shared global state for the language lives (by contrast,
much of the system library is written in the JuliaLang language
itself and as a general principle, the whole system has avoided using
mutable global state unless essential).

Due to the design of the rest of the language avoiding access to mu-
table state inside the runtime library, we felt it would acceptable to
use fine-grained locked for protecting most accesses. Many of these
were added in an earlier version of JuliaLang, while threading was
still under highly experimental development. These included such
aspects as code-generation (JIT compilation) and GC (memory al-
location and freeing).
Discussion of the GC design and subsequent updates to make it
work well with threads could occupy an entire article of its own, so
it will not be discussed here. Although in the future work section
later in this paper, some improvements being investigated for the
compiler will be discussed.
When using locks, there is a hierarchy of access that must
be respected to avoid deadlocks. This is documented somewhat
sparsely at https://docs.julialang.org/en/v1/devdocs/
locks/. Over time, we’ll extend this list as we discover problems
or are able to simplify shared resources. There’s some known is-
sues already, such as the lack of a lock around certain “toplevel-
only” operations and an invalid design for the ordering of the
Module->lock. These issues will be addressed in time—they are
not known to be insurmountable issues.
The missing toplevel lock is interesting, since it is a lock against
concurrent execution of any other code. This will require halting
all other threads in some way to inhibit accidental observation of
the global state while it’s in an intermediate inconsistent state. This
should be possible in coordination with the GC-safepoint lock,
which already has a very similar problem.
Some aspects were still too performance critical however to be able
to use a lock there, so we also make careful use of atomic pointer-
publishing updates in a few specific places. As special-cases of that,
we use RCU-type (read-copy-update) updates in some places and
write-once in other places). This is known to work on most com-
puter architectures. Others, such as the notorious A, we are content
to exclude. In a code-base that already supports garbage-collection,
the RCU algorithm is greatly simplified (and writers pay no addi-
tional cost), so this is typically preferred, if mutation is absolutely
required and reads must be fast. Otherwise, a simple lock is used.

5. Implementation
A prototype implementation of the partr scheduler was first writ-
ten for us in C by Kiran Pamnany of Intel back in late 2016, fol-
lowing research done on scheduling threads for beneficial cache
sharing for best throughput[1]. The goal of this work was effortless
composition of threading-capable libraries with a globally depth-
first work ordering (as opposed to 1 : 1/preemptive scheduling,
which would try to make progress on all work, or work-stealing
scheduling, which is only depth-first local to a thread and is glob-
ally breadth-first).
The next stage of this work was then to integrate it with the existing
JuliaLang runtime system and hoist as much of the implementation
as possible into native Julian code. (Aside: one outcome of this
work has been to allow us to delete much of the special support
code from the C runtime for our prior experimental ‘@threads’
fork/join-style API!)
A big challenge of this work has been implementing a sound al-
gorithm for determining when threads should “park” themselves
in a sleep mutex or wait for IO. This requires careful coordination
to ensure we don’t create a single contention point when trying
schedule and run tasks, but also is responsive to resume when
new work arrives (either internally, from another thread, or exter-
nally, from IO streams). This is done by setting a flag in the task to
notify it after work is added to the queue. If the running task sees

6

https://docs.julialang.org/en/v1/devdocs/locks/
https://docs.julialang.org/en/v1/devdocs/locks/
ADR
Note
DEC Alpha?

Proceedings of JuliaCon 1(1), 2019

that the thread was previously sleeping, it then additionally notifies
its condition variable to wake it up.

6. Foreign Libraries
An important motivation for this work was our desire to better sup-
port multi-threaded-capable libraries, without considerable CPU
over-subscription killing performance due to cache-thrashing and
frequent preemptive CPU context switches. Previously, the only op-
tions were often for the user to decide up-front to limit JuliaLang
to N threads, and tell the threaded library (such as libfftw or lib-
blas) use bM ÷ Nc (floordiv) cores. The most common choices
probably being 1 and M, so only part of the application and run-
ning time is able to benefit from the presence of multiple cores in
the system. However, given our ability to quickly create and run
work items in our thread pool, we are looking at how to work with
external libraries also and let them also integrate with our existing
thread-pool.
This is an on-going area of exploration as we get feedback on the
performance and API needs of various libraries.
We’ve successfully adapted FFTW to run on top of our thread-
ing runtime instead of its own (a pthreads-based workpool). This
took us only a few hours! (We were fortunate to be able to enlist
the assistance of that library’s author). Without any performance
tweaking (yet), it got competitive performance results! We learned
important lessons in needing to tightly optimize our scheduler la-
tency, which is now ongoing work to achieve exact performance
parity. Even with some overhead imposed by generality, however,
we expect that the ability to compose thread-aware users and en-
able the better resource sharing created by the partr scheduler will
make this an overall improvement in program operation.

7. Future work
While this work has been ongoing for several years already, there’s
still much interesting or important improvements to consider. We’d
like to investigate ways to further expand the thread-safe API sur-
face and integrate powerful thread-sanitizer tooling to help users
write better code. There’s also substantial room for the standard li-
brary to start using this threading runtime whenever possible. But
we need to yet experiment with ways to safely and conveniently
expose this option to users (which often seem contradictory).
There also should be more performance testing to fine-tune the
heuristic numbers. For example, when adding work items to the
dynamic scheduler to run on P cores, what is a good ratio fac-
tor k to use when creating chunks of work? Should we make 1P
items (assume a static schedule)? or 105P (assume a static sched-
ule on either of P or P − 1 processors for P = 4, 6, 8, 16)? Or
perhaps simply 3P is sufficient to balance out much variation? And
yet other workloads, however, may want one work item for every
input value (like Distributed.pmap does)!
While I could mention many more items that remain to be explored,
there’s just one more I want to highlight: concurrent garbage col-
lection. Currently, JuliaLang’s runtime library needs to wait for all
threads to arrive at a safe-point or be in a safe-region (such as for-
eign code) before GC can start. This can introduce long pauses
if one or more threads are far away from hitting such a region.
Presently, those only exist where manually inserted into the code,
such as while waiting for a lock or doing allocation. In the future, it
is proposed we investigate options for automatic placement of these
by the system to minimize gc-start latency without unduly impact-
ing allocation-free code. There are certainly more approaches to
handle releasing memory then there are language implementations

in existence, possibly multiple times over. So suffice to say this is
an area with many possible trade-offs! For an example of where we
might also go with this, please take a look at the Mono project’s
documentation on cooperative thread suspension[3] for how a dif-
ferent language, which shares a common code-generation strategy,
handles this.

8. Conclusions and summary
JuliaLang’s approach to multi-threading combines many previously
known ideas in a novel framework. While we believe that each in
isolation is useful, that—as is so often the case—the sum is more
than the parts.

9. Acknowledgements
The authors would like to gratefully acknowledge funding support
from Intel and relationalAI that made it possible to develop these
new capabilities.
We are also grateful to the several people who patiently tried this
functionality while it was in development and filed bug reports or
pull requests, and spurred us to keep going.

10. Bad puns
We liken the addition of thread-safety as moving from the age of
mechanization...

Fig. 4. Ye olde age of Newtonian power.

to the atomic age!
The figure 4 is a windmill. The figure 5 is a atom.

11. References
[1] Shimin Chen, Phillip B. Gibbons, Michael Kozuch, Vasileios

Liaskovitis, Anastassia Ailamaki, Guy E. Blelloch, Babak Fal-
safi, Limor Fix, Nikos Hardavellas, Todd C. Mowry, and Chris
Wilkerson. Scheduling threads for constructive cache sharing
on cmps. In Proceedings of the Nineteenth Annual ACM Sym-
posium on Parallel Algorithms and Architectures, SPAA ’07,
pages 105–115, New York, NY, USA, 2007. ACM.

7

https://www.mono-project.com/docs/advanced/runtime/docs/coop-suspend/
https://www.mono-project.com/docs/advanced/runtime/docs/coop-suspend/

Proceedings of JuliaCon 1(1), 2019

Fig. 5. The atomic age.

[2] C. A. R. Hoare. Communicating sequential processes. Com-
mun. ACM, 21(8):666–677, August 1978.

[3] The Mono Project. Cooperative Suspend, Apr 16, 2018.

8

	Introduction
	Background History

	Motivating Examples
	Stochastic Ordering
	Parallel Merge Sort
	Parallel Primes Sieve
	Parallel Prefix Scan

	Performance
	Integration into an existing language
	Changes to Tasks
	Changes to Condition
	Changes to IO
	Changes to Memoization Caches
	Changes to the Julia Runtime Library

	Implementation
	Foreign Libraries
	Future work
	Conclusions and summary
	Acknowledgements
	Bad puns
	References

