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ABSTRACT

Domain-specific languages (DSLs) enable scientific programmers
to describe their models in a high-level format while still allowing
for internal optimizations. However, while the homoiconicity of Ju-
lia has encouraged the proliferation of DSLs, code reuse between
DSLs has been stymied due to the lack of a common intermedi-
ate representation for performing inspection, symbolic transforma-
tion, and compilation of scientific models. In this paper, we present
ModelingToolkit.jl, a Julia library and intermediate representation
for scientific DSLs. We discuss the internal representations of sym-
bolic expressions and systems, chosen to implicitly enforce logical
invariants. We showcase how ModelingToolkit is being used in the
pharmacometric modeling DSL Pumas.jl, and describe future im-
provements to incorporate this system into other Julia packages.
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1. Introduction

In many applications, scientists and engineers need to perform sym-
bolic transformations on their models in order to have a formula-
tion that is efficiently computable by numerical methods. For exam-
ple, Modelica [8]] is a language for describing physical differential-
algebraic equations (DAEs) and utilizes the Pantelides algorithm
[12] to transform higher index systems to index 1 DAEs, which
can be handled by numerical solvers like DASSL [13]] or the IDA
method of SUNDIALS [6]. NONMEM [15] is a domain-specific
language for pharmacometrics in Fortran that reads a text file de-
scribing differential equation models and appends the sensitivity
equations utilized by parameter estimation routines. These pack-
ages are just two among many which have developed their own
internal systems for performing the steps necessary to handle this
process, which includes:

—Parsing a text file into an internal representation (IR).

—Performing transformations on the IR to build new model ex-
pressions.

—Compiling the expressions to a common format to be utilized by
numerical methods.

rn = Q@reaction_network begin
2.0, X +Y --> XY
1.0, XY --> 71 + Z2

end
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Fig. 1: DiffEqBiological Reaction Network Example

While the distinct tools achieve the goals of the end user, the inter-
nal mathematical systems for computing the model transformations
cannot be utilized outside of their respective frameworks.

The Julia programming language [2]] is a high-level dynamic lan-
guage for scientific computing which is able to generate compiled
code with performance on par with C and Fortran. Julia is no-
tably homoiconic, with macros that allow users to manipulate Ju-
lia expressions without writing a custom parser. This abstraction
greatly simplifies the construction of domain-specific languages
(DSLs) which has led to the proliferation of DSLs throughout the
Julia package ecosystem. For example, the differential equation
solvers of DifferentialEquations.jl [14] has an @ode_def macro
which converts simple differential equation expressions into Julia
functions usable by numerical methods. DiffEqBiological.jl [7] in-
cludes the @reaction_network DSL that describes a system of
chemical reactions and creates Julia functions for the ordinary dif-
ferential equation, stochastic differential equation, and jump equa-
tion solvers. An example of the reaction network DSL is shown in
Figure[T] taking in a description of the reactions and generating the
chemical kinetics expressions corresponding to the included sys-
tem.

JuMPjl [3] is a system for mathematical programming which uti-
lizes a macro system to take in a user’s model and generate expres-
sions to be used by various optimization routines. Modia.jl [4] is a
recreation of Modelica as a system of Julia macros by the original
authors of Modelica.
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Each of these systems is able to compute model transformations
that enhance the user experience. For example, DiffEqBiological.jl
has specialized compilation code that improves the performance
of Julia’s target LLVM when expressions involve numerous vari-
ables. JuMPjl is able to construct expressions for sparse Hessians.
Modia.jl has new algorithms for DAE index reduction that retain
the sparsity of the system [[11]. However, while the reusable pars-
ing has enabled the proliferation and democratization of DSL con-
struction within the Julia package ecosystem, none of the code for
performing the analysis and symbolic computation on the model’s
resulting equations is shared between the packages. Instead, each
of the packages maintains its own internal representation, writes
the symbolic transformation routines to act on its IR, and develops
a compilation routine that transforms its IR into Julia functions for
numerical packages. As a result, none of the advances within the
packages can be reused by the other systems.
To reduce redundancy between domain-specific languages, we de-
veloped ModelingToolkit.jl. ModelingToolkit is a compiler with a
specialized IR for representing scientific computing problems via
symbolic expressions. This IR serves as a common target for mod-
eling languages with built-in methods for inspecting, transform-
ing, and compiling scientific models. Using this toolkit, a domain-
specific language (DSL) in Julia only needs to translate its syntax
into a mathematical problem, such as a differential equation or a
nonlinear rootfinding problem. The subsequent problem can then
be analyzed and compiled using the shared functionality of Mod-
elingToolkit.jl. The software is designed to be extensible, allowing
interaction with user-defined routines. As a common development
platform between Julia-based DSLs, ModelingToolkit.jl can reduce
the amount of specialized code necessary to build a DSL without
sacrificing features or performance.
In the following sections, we will detail ModelingToolkit.jl and its
usage. In Section 2] we outline the fundamental datatypes used to
store algebraic expressions. In Section [3] we explore the current
built-in system datatypes and demonstrate how a user would define
and transform a system of differential equations. In Section ] we
show how ModelingToolkit.jl is being utilized in a pharmacometric
modeling DSL. In Section 5] we describe short term feature goals
and the integration of ModelingToolkit.jl with other DSLs.
In constructing Julia-based DSLs, significant labor is being wasted
on reinventing basic symbolic tools, such as the tabulation of
derivative rules for the calculation of Jacobians. A common un-
derlying symbolic framework for these DSLs is required in order
for continued progress to be made. ModelingToolkit.jl provides a
structured and documented IR that DSLs can parse into. The in-
spection, analysis, transformations, and compilation of the IR are
contained within a single library, giving DSLs a unique target to
parse into, perform transformations on, and query for compiled
antouts. This reduces the burden on DSLs developers while giving
rematicians a common package in which to implement sym-
bolic transformations.

2. Expression Representations

We design our datatypes for representing algebraic expressions in-
ductively, as is common in computational symbolic mathematics
literature [1]. Each function call is represented by an internal node
of the tree as an instance of the Operation datatype, storing the
function itself and a list of arguments. Note that the number and
types of arguments can be arbitrary, mirroring the polyvariadic na-
ture of Julia functions. We also define the Constant type, which
simply wraps a numerical value in Julia.
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Fig. 2: Representation of o - (y(¢) —x(t)) as an expression tree. Nodes with
darkened borders denote variables, as opposed to known functions. Note
that the o and ¢ nodes denote nullary functions, standing for a parameter
and independent variable, respectively.  and y are dependent variables,
represented as functions of ¢.

2.0.1 Variables. Drawing inspiration from the field of differen-
tial equations, we represent variables as functions; each instance
of Variable serves as a placeholder for a specific function value.
To construct an expression from a variable, we call the variable in-
stance to create an Operation node containing the variable as the
root function. In contrast to the common representation of variables
as leaf nodes within the tree, our function-based strategy allows
variables to depend on arbitrary expressions. In the case that a vari-
able should have no dependence on other expressions, in the cases
of constant parameters and independent variables, we treat the vari-
able as a constant function which takes no arguments. An example
expression tree is shown in Figure[2]

3. System Representations

We store various system representations under the
AbstractSystem abstract type, specializing the representa-
tion to ensure relevant invariants hold. Currently, ModelingToolkit
supports two system types by default: nonlinear systems and
systems of ordinary differential equations. However, this can
easily be extended to other kinds of systems by defining additional
subtypes.

In the following discussion, we briefly examine the data structures
used to store the built-in systems.

3.1 Nonlinear Systems

Rather than storing raw expression trees, we analyze reshape ex-
pressions to mirror the structure of the stored data. We store non-
linear systems in a NonlinearSystem instance, which at its core
is a NLEq array (Figure[3).

Within ModelingToolkit, we define a conversion procedure from
arbitrary equations (consisting simply of a left-hand and right-hand
side) to a NLEq representation, guaranteeing in further analysis that
our requirements about the equations hold due to the shape of the
data itself. We require that the implicit left-hand side of each NLEq
is zero; note that this transformation is fairly trivial, subtracting the
left-hand side from the right-hand side in the case that it is initially
nonzero.

Additional fields store the variables and parameters of the sys-
tem (noting that variables are to be solved for and parameters are
abstractly represented but known). During the construction of a
NonlinearSystem object, we extract this information, inferring
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struct NLEq
rhs: :Expression
end

struct NonlinearSystem <: AbstractSystem
eqs: :Vector{NLEq}
vs::Vector{Expression}
ps::Vector{Variable}

end

Fig. 3: Representation for Nonlinear Systems

the meaning of each variable based on its internally-stored context.
Note that variables in a nonlinear system are considered arbitrary
expressions, since it is common to solve for compound expressions
(such as x(t)). However, parameters are strictly instances of vari-
able functions.

3.2 System of Ordinary Differential Equations

Systems of differential equations are stored similarly to nonlin-
ear systems, although with more data being stored. Each differen-
tial equation is converted to a DiffEq, equivalent to the 3-tuple
(z,n,r) given the differential equation fl;zf = r for an externally-
known parameter ¢ (Figure ). Note that the conversion procedure
may fail if the given equation cannot be interpreted as an ordinary
differential equation, either due to user error or in cases where the
conversion algorithm is not yet sophisticated enough.

struct DiffEq
x::Variable
n::Int
rhs: :Expression
end

struct ODESystem <: AbstractSystem
eqs: :Vector{DiffEq}
iv::Variable
dvs::Vector{Variable}
ps::Vector{Variable}
jac: :RefValue{Matrix{Expression}}
end

Fig. 4: Representation for Systems of Ordinary Differential Equations

Additional fields within ODESystem store various contextual ele-
ments, such as the independent variable, dependent variables, and
parameters of the system. We also include a reference cell for
caching the Jacobian.

3.2.1 First-Order Transformation. We provide a procedure
which transforms a higher-order ODE system into its first-order
equivalent.

For example, suppose we are given the higher-order system shown
in Equation|[T}

du 9 v du dx

w A T T a o
Pu_dr
dt2 — dt

We transform to a first-order system by creating additional vari-
ables to represent higher-order derivatives, as shown in Equation
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Code for the creation and transformation of the system is naturally
derived from the abstract mathematical representation, shown in

Figure[3]

eqs = [D3(u) ~ 2(D2(u)) +D(u) +D(x) + 1
D2(x) ~ D(x) +2]

de = ODESystem(eqs)

de' = ode_order_lowering(de)

Fig. 5: Transformation of a Higher-Order System to a First-Order System

4. Application: Pharmacometric Modeling in Pumas

Pumas.jl is a pharmacometric modeling package that allows clin-
icians to create population models in a high-level form and to fit
these models to clinical data, resulting in the ability to perform per-
sonalized drug dosing. Pumas defines a domain-specific language
(DSL) which translates its models into ModelingToolkit format,
where transformations can be performed to automatically improve
performance and scale the user’s model. An example of a Pumas
defined model is given in Figure m In this application, the user
defines population level parameters 6 and subject level parameters
1 which are coalesced into the variables for a dynamical model.
The dynamics block defines a differential equation system via these
coalesced parameters and is modified by event handling which de-
scribes dosing of the patients. Figure[6]shows the result of this mul-
tiple dosing model [[10].

This Julia macro was developed by parsing the user’s dynamical
expression into the ModelingToolkit.jl IR. By doing so, Pumas.jl
utilizes ModelingToolkit.jl’s compilation pathway to generate Julia
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&
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- B0 4
3 a0 g s
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20 1
0 a
L] 50 100 150 200 i} 50 100 150 200
time time
Subject ID: 1 Subject ID: 1
5
40
4
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0
[} 50 100 150 200 1] 50 100 150 200
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Fig. 6: Multiple Dosing Model Simulation Output
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@model begin
Q@param 6 € VectorDomain(12)
Q@random 7 ~ MvNormal(Matrix{Float64}(I, 11, 11))

@pre begin
Kal = 0[1]
©L = 0[2]*exp(n[1])
Ve = 0[31*exp(n[2])
Q = O[4]*exp(n[3])
Vp = 0[56]*exp(nl4])
Kin = 0[6]*exp(n[5])
Kout = 0[71*exp(nL6]1)
I1C50 = 0[81*exp(nl71)
IMAX = 0[9]xexp(n[8])
y = 0[10]*exp(n[9])
Vmax = 6[11]*exp(n[10]1)
Km = 6[12]*exp(n[11])
end

Q@init begin
Resp = 6[61/6[7]
end

@dynamics begin
Evl' = -Kal*Ev1l
Cent' = Kal*Evl - (CL+Vmax/(Km+(Cent/Vc))+Q)*(Cent/Vc)
+ Q*(Periph/Vp)

Periph' = Qx*(Cent/Vc) - Q*(Periph/Vp)
Resp' = Kin*(1-(IMAX*(Cent/Vc)~~/(IC50~~+(Cent/Vc)"7)))
- Kout*Resp
end
Q@derived begin
evl = Evil
cp = Cent / 6[3]
periph = Periph
resp = Resp

end
end

Fig. 7: Pumas Multiple Response Model

functions for the differential equation solvers. Additionally, Pumas
can utilize this pathway to generate expressions for the analytic
computation of Jacobians and sensitivity equations. These sensi-
tivity equations of a differential equation are an extension of the
ODEs which compute the derivative of the solution with respect to
the parameters. These equations are given by:

d (Ou

t <19pi>
a is the Jacobian of the derivative function f with respect
to the current state, and 5 f is the gradient of the derivative func-
tion with respect to the zth parameter. These sensitivity equations
thus give the gradient of the solution with respect to the differential
equation parameters which is then utilized by parameter optimiza-
tion schemes such as BFGS from Optim.jl [9] when trying to esti-
mate 0 and n from clinical trial data [16]. Crucially, the authors of
Pumas.jl do not need to create the code for handling such symbolic
calculations in their DSL since, by targeting ModelingToolkit.jl IR,
these transformations exist as part of a common toolkit. A sec-
ondary effect of this modularization is that the Pumas.jl authors
contribute these types of symbolic transformations to Modeling-
Toolkit.jI’s open source repository, which in turn allows the same
techniques to be utilized by the DSLs of other packages.

af ou _ of

9udp | op @

where 2
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5. Future Work

Continued development of ModelingToolkit.jl is focusing on ex-
panding the feature set and incorporating ModelingToolkit into
more DSLs. In our current form, the equations for systems of de-
lay, stochastic, and differential-algebraic differential equations are
representable but are lacking a system type. Our short term goals in-
clude added AbstractSystemtypes and compilation processes for
these systems. Once these systems have a canonical representation,
our existing symbolic transformations can be utilized to implement
transformations such as DAE index reduction and computing ana-
lytical Jacobians of delay differential equation systems. With this
litany of differential equation systems, we are looking into creat-
ing a higher level ODESystem which inspects the system’s defini-
tion and auto-classifies the resulting equations. This would allow
Pumas.jl to support these additional types of models without mod-
ification.

Feedback from the Julia community has signaled that one important
avenue for this DSL is in developing and supporting large complex
models. Along these lines, the detection of construction of analyti-
cal forms for sparse Jacobians is a natural extension of current func-
tionality that is being investigated. Additionally, we are looking to
introduce a new Component primitive which itself is a system that
can be embedded within a system. For example, a Heart compo-
nent would be a system of ODEs describing the chemical reactions
of the heart, while a Gut component describes the chemical reac-
tions of the gut, and from those two components we would con-
struct a system of differential equations which incorporates these
two parts and allows for interactions. This modularization would
allow Modelica-type models to be represented within Modeling-
Toolkit.

One final short term goal is to incorporate ModelingToolkit into
the DiffEqBiological jl reaction network DSL. Currently the arrow
syntax of the chemical reaction expressions are parsed and a multi-
stage process builds Julia expressions which are then transformed
into SymEngine [5] expressions in order to perform the required
symbolic transformations and Jacobian calcluations, and a com-
pilation toolchain then converts the resulting SymEngine expres-
sions into Julia functions for DifferentialEquations.jl. A quick way
to do the integration would be to intercept the process at the trans-
formation to SymEngine expressions, instead building Modeling-
Toolkit Expressions. Down the line, we would like to investigate
whether the chemical reactions themselves could be represented
within ModelingToolkit IR, so that transformation and analysis on
the chemical reaction level could take place within this system.
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7. Resources

ModelingToolkit.jl is available on GitHub under the MIT
“Expat” License: https://github.com/JuliaDiffEq/
ModelingToolkit.jl. Pumasjl is available at https:
//github.com/PumasAI/Pumas. j1
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