Skip to content

Support for real-valued function with complex arguments #498

@Uroc327

Description

@Uroc327

If I understood #157 correctly, ForwardDiff should be able to differentiate a real-valued function with complex arguments. When I try this, I get the following error instead:

julia> ForwardDiff.gradient(v -> sum(abs2, v), [1.0+2.0im 3.0+4.0im 5.0+6.0im])
ERROR: ArgumentError: Cannot create a dual over scalar type Complex{Float64}. If the type behav
es as a scalar, define FowardDiff.can_dual.
Stacktrace:
 [1] throw_cannot_dual(::Type{T} where T) at /home/crunge/.julia/packages/ForwardDiff/qTmqf/src
/dual.jl:36
 [2] ForwardDiff.Dual{ForwardDiff.Tag{var"#21#22",Complex{Float64}},Complex{Float64},3}(::Compl
ex{Float64}, ::ForwardDiff.Partials{3,Complex{Float64}}) at /home/crunge/.julia/packages/Forwar
dDiff/qTmqf/src/dual.jl:18
 [3] _broadcast_getindex_evalf at ./broadcast.jl:648 [inlined]
 [4] _broadcast_getindex at ./broadcast.jl:621 [inlined]
 [5] getindex at ./broadcast.jl:575 [inlined]
 [6] macro expansion at ./broadcast.jl:932 [inlined]
 [7] macro expansion at ./simdloop.jl:77 [inlined]
 [8] copyto! at ./broadcast.jl:931 [inlined]
 [9] copyto! at ./broadcast.jl:886 [inlined]
 [10] materialize! at ./broadcast.jl:848 [inlined]
 [11] materialize! at ./broadcast.jl:845 [inlined]
 [12] seed!(::Array{ForwardDiff.Dual{ForwardDiff.Tag{var"#21#22",Complex{Float64}},Complex{Floa
t64},3},2}, ::Array{Complex{Float64},2}, ::Tuple{ForwardDiff.Partials{3,Complex{Float64}},Forwa
rdDiff.Partials{3,Complex{Float64}},ForwardDiff.Partials{3,Complex{Float64}}}) at /home/crunge/
.julia/packages/ForwardDiff/qTmqf/src/apiutils.jl:65
 [13] vector_mode_dual_eval(::var"#21#22", ::Array{Complex{Float64},2}, ::ForwardDiff.GradientC
onfig{ForwardDiff.Tag{var"#21#22",Complex{Float64}},Complex{Float64},3,Array{ForwardDiff.Dual{F
orwardDiff.Tag{var"#21#22",Complex{Float64}},Complex{Float64},3},2}}) at /home/crunge/.julia/pa
ckages/ForwardDiff/qTmqf/src/apiutils.jl:36
 [14] vector_mode_gradient(::var"#21#22", ::Array{Complex{Float64},2}, ::ForwardDiff.GradientCo
nfig{ForwardDiff.Tag{var"#21#22",Complex{Float64}},Complex{Float64},3,Array{ForwardDiff.Dual{Fo
rwardDiff.Tag{var"#21#22",Complex{Float64}},Complex{Float64},3},2}}) at /home/crunge/.julia/pac
kages/ForwardDiff/qTmqf/src/gradient.jl:99
 [15] gradient(::Function, ::Array{Complex{Float64},2}, ::ForwardDiff.GradientConfig{ForwardDif
f.Tag{var"#21#22",Complex{Float64}},Complex{Float64},3,Array{ForwardDiff.Dual{ForwardDiff.Tag{v
ar"#21#22",Complex{Float64}},Complex{Float64},3},2}}, ::Val{true}) at /home/crunge/.julia/packa
ges/ForwardDiff/qTmqf/src/gradient.jl:19
 [16] gradient(::Function, ::Array{Complex{Float64},2}, ::ForwardDiff.GradientConfig{ForwardDif
f.Tag{var"#21#22",Complex{Float64}},Complex{Float64},3,Array{ForwardDiff.Dual{ForwardDiff.Tag{v
ar"#21#22",Complex{Float64}},Complex{Float64},3},2}}) at /home/crunge/.julia/packages/ForwardDi
ff/qTmqf/src/gradient.jl:17 (repeats 2 times)
 [17] top-level scope at REPL[558]:1
 [18] run_repl(::REPL.AbstractREPL, ::Any) at /build/julia/src/julia-1.5.3/usr/share/julia/stdl
ib/v1.5/REPL/src/REPL.jl:288

Is this use-case supported? If yes, how do I do this? I didn't find anything in the documentation.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions