MultiScaleArrays_Test_2018-10-01

October 1, 2018

Following along with example from: https://github.com/JuliaDiffEq/MultiScaleArrays.jl

In [7]: using Pkg
Pkg.add("MultiScaleArrays")
Pkg.resolve()
using MultiScaleArrays;

Updating registry at ~~/.julia/registries/General”
Updating git-repo “https://github.com/JuliaRegistries/General.git"
Resolving package versions...

Updating “Project.toml”

[no changes]

Updating "Manifest.toml"

[no changes]
Resolving package versions...

Updating "Project.toml”

[no changes]

Updating “Manifest.toml"

[no changes]

Build a hierarchy where Embryos contain Tissues which contain Populations which contain
Cells, and the cells contain proteins whose concentrations are modeled as simply a vector of num-
bers (it can be anything linearly indexable).

In [8]: struct Cell{B} <: AbstractMultiScaleArrayLeaf{B}

values: :Vector{B}

end

struct Population{T<:AbstractMultiScaleArray,B<:Number} <: AbstractMultiScaleArray{B}
nodes: :Vector{T}
values: :Vector{B}
end_idxs::Vector{Int}

end

struct Tissue{T<:AbstractMultiScaleArray,B<:Number} <: AbstractMultiScaleArray{B}
nodes: :Vector{T}
values: :Vector{B}
end idxs::Vector{Int}

end

struct Embryo{T<:AbstractMultiScaleArray,B<:Number} <: AbstractMultiScaleArrayHead{B}
nodes: :Vector{T}
values: :Vector{B}
end_idxs::Vector{Int}

end

Using the constructors we can directly construct leaf types:

In [18]:

Out[18]:

celll
cell2

Cell([1.0; 2.0; 3.0]1)
Cell([4.0; 5.01)

Cell{Float64}([4.0, 5.0])

build types higher up in the hierarchy by using the constuct method

In [19]:

Out [19]:

population = construct(Population, deepcopy([celll, cell2])) # Make a Population from
cell3 = Cell([3.0; 2.0; 5.01)

celld = Cell([4.0; 6.01)

population2 = construct(Population, deepcopy([cell3, celld]))

tissuel = construct(Tissue, deepcopy([population, population2])) # Make a Tissue from
tissue2 = construct(Tissue, deepcopy([population2, population]))

embryo = construct(Embryo, deepcopy([tissuel, tissue2])) # Make an embryo from Tissue

Embryo{Tissue{Population{Cell{Float64},Float64},Float64},Float64}(Tissue{Population{C

Note that tuples can be used as well. This allows for type-stable indexing with heterogeneous
nodes. For example:

In [20]:

Out [20] :

tissuel = construct(Tissue, deepcopy([population, cell3]))

Tissue{AbstractMultiScaleArray{Float64},Float64} (AbstractMultiScaleArray{Float64} [Pop:

The head node then acts as the king. It is designed to have functionality which mimics a vector
in order for usage in DifferentialEquations or Optim. This returns the “12th protein”, counting by
Embryo > Tissue > Population > Cell in order of the vectors.

In [24]:
Out [24] :
In [23]:

Out[23]:

embryo [12]
2.0
embryo[:]

20-element Array{Float64,1}:
1.0

N W o W
O O O O O O

GO WNEFE O N WO PO
O O O O O O O OO OO oo

In [22]: size(embryo)

Out [22]: (20,)

The linear indexing exists for every AbstractMultiScaleArray. These types act as full linear
vectors, so standard operations do the sensical operations:

In [25]: embryo[10] = 4.0 # changes protein concentration 10

Out[25]: 4.0

In [30]: embryo[2,3,1] # Gives the 1st cell in the 3rd population of the second tissue

BoundsError: attempt to access 2-element Array{Population{Cell{Float64},Float64},1} at

Stacktrace:

[1]

[2]

(3]

[4]

(5]

(6]

getindex at ./array.jl:731 [inlined]

nodechild at /Users/mcfefa/.julia/packages/MultiScaleArrays/k0Sa9/src/indexing. jl
getindex at /Users/mcfefa/.julia/packages/MultiScaleArrays/k0Sa9/src/indexing. j1::
nodeselect at /Users/mcfefa/.julia/packages/MultiScaleArrays/k0Sa9/src/indexing. j
getindex (: :Embryo{Tissue{Population{Cell{Float64},Float64},Float64},Float64}, ::I

top-level scope at none:0

In [31]: embryol[:] # generates a wector of all of the protein concentrations

Out [31]: 20-element Array{Float64,1}:
1.0

GO WONEFP, O N WD P ONWOO P WwN
O O O O O O OO OO OO OO oo o oo

In [32]: eachindex(embryo) # generates an tterator for the indices
Out[32]: 1:20

Continuous models can thus be written at the protein level and will work seamlessly with
DifferentialEquations or Optim which will treat it like a vector of protein concentrations. Using
the iterators, note that we can get each cell population by looping through 2 levels below the top,
so

In [33]: for cell in level_iter(embryo,3)
Do something with the cells!
end

To apply a function cell-by-cell, you can write a dispatch f on the type for the level. Assuming
we have d_embryo as similar to embryo, using level_iter_idx we can have its changes update
some other head node d_embryo via:

In [34]: for (cell, y, z) in LevelIterIdx(embryo, 3)
f(t, cell, Qview d_embryoly:z])
end

UndefVarError: d_embryo not defined

Stacktrace:

[1] top-level scope at ./In[34]:2 [inlined]

[2] top-level scope at ./none:0

Since embryo will be the “vector” for the differential equation or optimization problem, it will
be the value passed to the event handling. MultiScaleArrays includes behavior for changing the
structure. For example:

In [35]: tissue3 = construct(Tissue, deepcopy([population, population2]))
add_node! (embryo, tissue3) # Adds a new tissue to the embryo
remove_node! (embryo, 2, 1) # Removes population 1 from tissue 2 of the embryo

In [37]: tissue3[:]

Out [37]: 10-element Array{Float64,1}:
1.0

P OO WO WN
O O OO O O O oo

In [38]: embryol:]

Out [38]: 25-element Array{Float64,1}:
1.0

W NP O WONEFE D OON WO WwN
O O O O O O O OO OO OO oo oo

O O O O O O o
< WL MmN O

