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SUMMARY

It is inconvenient and often difficult to consider systems, or environments, that are not

completely known. However, with the proliferation of autonomous systems, where the suc-

cess or survival of the system is coupled to the ability to make decisions with incomplete

information, it is becoming increasingly important. When restricting the scope of the sys-

tem and its uncertainty to be linear and Gaussian, an efficient, closed-form solution can

be constructed. However, for many complex systems, the reduction of the fidelity of both

the system and the means to quantify its uncertainty may result in sub-par, or unintended,

outcomes. With the advent of high-powered computing platforms, including the use of

Graphics Processing Units (GPUs), to handle the increased computational workload, more

generalized probabilistic planning methodologies may be explored.

This work introduces an optimal control algorithm in which the Koopman operator is

used to solve for the probabilistically optimal input in the presence of initial condition

and/or parametric uncertainty. The proposed approach is minimally restrictive; applicable

to nonlinear systems and non-Gaussian uncertainty. Additionally, it offers unique compu-

tational advantages over alternative uncertainty quantification techniques, such as Monte

Carlo methods, providing a practical method to compute a probabilistically optimal input.

Leveraging kernel-based interpolation methods, the expected value computation may be

carried out on large, high-dimensional scattered datasets.

In the context of the airdrop problem, these inputs are the optimal package release point,

aircraft run-in, and transition altitude. Given an objective–or cost–function defined over the

drop zone and a joint probability density function (PDF) quantifying the uncertainty in the

system parameters and initial state, the objective function is pulled back to the drop altitude

using the Koopman operator, and an expected value is computed with the joint PDF. The

objective function provides a mechanism for tactical considerations to be included in the

planning process. With the control inputs embedded in the initial joint PDF and the system

xiii



dynamics, the problem is treated as probabilistic from the beginning, a fundamental shift

from the current state-of-the-art.

Simulation examples are presented highlighting performance of the algorithm in real-

world scenarios. Included are a complex workload cost function over non-flat terrain and a

scenario where a constraint must be satisfied probabilistically. Results compare favorably

with those achieved through deterministic methods.

xiv



CHAPTER 1

INTRODUCTION

1.1 Problem Statement & State-of-the-Art

As autonomous systems evolve toward increasing use in practical environments, they nat-

urally encounter growing uncertainty in dynamic behavior and the environment in which

they operate. There is a growing consensus that such systems must be able to derive optimal

control inputs based not on the mean behavior of the system, but rather on a probabilistic

model of the system incorporating all aspects of uncertainty. A variety of stochastic opti-

mal control algorithms have been developed to address this growing need. Many stochastic

optimal control algorithms seek to maximize (minimize) an expected value between the

time-varying joint PDF of the system state and an objective (cost) function. The control

inputs that minimize this cost represent the optimal inputs given the assumed uncertainty

distributions.

There has been extensive theoretical developments in the field of stochastic optimal

control over the previous several decades. Given a mathematical description of the system,

the methodology to optimize a single, or possibly multiple, control decisions probabilisti-

cally against an objective, or cost, function is sought. A well-known result for linear sys-

tems with additive Gaussian noise against a quadratic cost function is the Linear Quadratic

Gaussian (LQG) control law [1], which minimizes the expected value of the cost over an

infinite or finite horizon [2]. The LQG solution represents the pairing of the Kalman Fil-

ter [3, 4], a linear-quadratic estimator (LQE), and the linear-quadratic regulator (LQR) [5,

6]. For nonlinear systems and/or non-Gaussian uncertainty, the time-varying density often-

times cannot be evolved in closed-form. Numerous control algorithms have been proposed

to date for these types of problems to include path integral control [7], dynamic program-
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ming [8], Monte Carlo-based methods [9, 10], and others [11, 12].

A key element of many nonlinear stochastic optimal control algorithms is an uncer-

tainty propagation component, which estimates the time-evolution of the joint PDF of

the system. A variety of methods exist for this purpose including Monte Carlo, Polyno-

mial Chaos [13], direct quadrature method of moments [14], direct evolution through the

Fokker-Planck-Kolmogorov equation [15], and, for linear Gaussian systems, direct evolu-

tion of the covariance through the Ricatti equation [16]. Comparing each method, there

exists a trade-off between the generality of the problem that it may be applied to and the

ability to obtain a solution, whether it be in closed-form or evaluated numerically. Consid-

ering aspects of the problem such as nonlinearity, non-Gaussian uncertainty, process noise,

and dimensionality, the number of usable methods begin to diminish.

Airdrop is one such application in which decisions must be made in the presence of sig-

nificant uncertainty in system behavior and the environment. Over the past several decades,

shifts in military tactics and logistical environments have led to increasing interest in the

use of airdrop missions for military resupply and large-scale humanitarian aid. A variety of

technology development efforts have been pursued which have focused on improving ac-

curacy, practicality, and safety of airdrop systems. Generally, two types of airdrop systems

are currently in use: guided systems, in which the package is actively controlled under a

rectangular parafoil; and unguided systems, which typically fall ballistically under a circu-

lar parachute. Guided systems exhibit superior accuracy, but the cost associated with such

systems (and the need to recover their guidance units) precludes their use in large-scale de-

livery missions and in contested areas [17]. For unguided systems, accuracy considerations

usually dictate that packages should be released from a low altitude to limit the packages’

exposure to uncertain winds. However, in response to the proliferation of threats from

small arms fire, anti-aircraft artillery, and Man Portable Air Defense Systems, precision

airdrop missions are shifting to High Altitude, Low Opening (HALO) procedures to better

protect aircraft and flight personnel [18]. In HALO drops, packages are released from a

2



high altitude under a drogue parachute, falling at a high descent rate. The main parachute

is deployed at a lower altitude to slow the system before impact with the ground.

Given the absence of feedback control on ballistic airdrop systems, there is limited

opportunity to improve accuracy. One avenue that has been considered is to optimize the

transition altitude at which the main parachute is inflated [19, 20]. This affords limited con-

trol authority with which to reduce dispersion, allowing packages to optimize their impact

location along a so-called ”line of control” [20] determined by the wind profile. Another

opportunity for accuracy improvement in ballistic airdrop lies in improved selection of the

Computed Air Release Point (CARP), the point where the packages are released from the

aircraft, and from a secondary standpoint, optimization of the aircraft heading on arrival

at the CARP. The US military’s current airdrop mission planning tool, the Consolidated

Airdrop Tool (CAT) [21], uses a nominal model of the wind field (based on a current wind

forecast), a nominal package descent rate, and an intended point of impact (IPI) to solve

for the optimal CARP location through a boundary value solution process. Monte Carlo

simulations are then performed from this CARP to estimate the resulting dispersion caused

by uncertainty in winds, package descent rates, aircraft roll-out variation, and other fac-

tors. From the resulting dispersion pattern the user must make a go/no-go decision. If the

outcome is unacceptable, the planning process must be restarted with a new IPI. Given

this deterministic solution method for the CARP, limited accuracy enhancements are pos-

sible by improving the planner’s internal models of package release [22] and parachute

inflation [23, 24] as well as the wind forecast accuracy [25, 26].

1.2 Objective of Work

The focus of this work is to develop a methodology applicable to a class of problems that

require the probabilistic optimization of control decisions under system behavior and en-

vironmental uncertainty. As such, the optimization problem is framed using an expected

value to minimize a cost function, or maximize an objective function. The algorithms pre-

3



sented in this paper leverage explicit uncertainty propagation techniques [27, 28, 9, 29]

to compute the optimal control decisions in the presence of initial condition uncertainty.

This explicit propagation can be performed through density evolution techniques such as

the Liouville Equation, a first-order ODE derived from the Frobenius-Perron operator, as

described in [20]. However, there are unique computational advantages obtained by using

the adjoint to this forward propagation scheme, i.e. the Koopman operator. Here, the Koop-

man operator is instead used to pull back the objective function to the initial time, at which

the expected value can be maximized (minimized) with respect to the initial joint den-

sity. While the Frobenius-Perron and Koopman operators are well-known in mathematics-

focused dynamical systems literature [30, 31], it has not been until recently that they have

been applied to more tangible engineering problems, e.g. [32, 33, 34]. However, while

these works exploit certain properties of the Frobenius-Perron and Koopman operators in-

dividually, they do not explicitly utilize the adjoint relationship between the two. As such,

it a goal of this thesis to present the operators, with an emphasis on their adjoint relation-

ship, for their use in the planning framework such that the application-oriented reader may

find them beneficial. Leveraging the adjoint property of the operators has been explored in

the context control optimization and is therefore a novel contribution of this work.

The mission planning methodology presented in this paper represents a fundamental

paradigm shift in how airdrop planning is to be performed, directed toward approaches

that explicitly account for uncertainty and away from approaches that use only nominal

(or mean) information about the system in the planning process. The advantage of this

new probabilistic planning approach is that the uncertainty in all aspects of the airdrop

process are considered as inputs to the CARP computation process and are directly used

in its selection, rather than used strictly to evaluate mission feasibility. Along the lines

of the work presented in [20], in this new probabilistic framework the user provides an

objective function quantifying mission success as a function of drop zone impact location.

This definition of mission success can be much more general than a classical definition

4



of a single IPI, and can represent operational factors such as retrieval workload [35]. As

a result, the CARP location is selected as that which optimizes the multi-variate criteria

for mission success given the uncertainty distributions for a given scenario. This ability

to rapidly generate control solutions according to multi-variate success criteria is a key

element of Operational Agility as outlined in the Air Force Future Operating Concept [36].

Applying the control optimization methodology to the precision airdrop problem, an

objective function is defined over the drop zone which encodes information about the de-

sired impact point, obstacles, and other tactical considerations. Uncertainty distributions

are defined capturing uncertainty in winds, parachute dynamics, and aircraft release condi-

tions, which are partially parameterized by the selected CARP and run-in. The goal of the

mission planner is then to optimize the CARP, run-in heading, and, possibly, transtion alti-

tude such that the expected value between the objective function and the joint uncertainty

distribution propagated to ground impact is maximized (or minimized). This solution for

CARP and run-in represents the probabilistically optimal release location for the packages

which will generate the highest (or lowest) average value of the objective function, given

the assumed uncertainty. When the problem considers the transition altitude as a variable

to be optimized, the solution also includes a transition altitude schedule that returns the

altitude at which the main parachute should be inflated to obtain the optimal objective or

cost value. Note that in this framework the planning and uncertainty validation steps, pre-

viously separated into two different stages by the CAT planning tool, are now combined

into a single step in order to generate a probabilistically optimal solution.

It is important to understand that the probabilistic optimization methodology described

in this paper may be used across a wide variety of engineering problems and is not lim-

ited to the airdrop application. Recently, numerous authors have investigated the use of

explicit uncertainty quantification techniques, specifically the Liouville Equation (which

is the transport equation of the Frobenius-Perron operator), as an alternative to Monte

Carlo simulation to evolve a probability density through time for the purposes of trajec-
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tory optimization [37], system performance analysis [38], and other applications [39, 40].

Several computational issues often arise in implementation of the Liouville Equation, how-

ever. These include problems with numerical precision caused by the rapid reduction in the

PDF support for many systems [41] and the need for scattered data integration over a non-

uniform mesh of points at which the PDF is known. For problems in which the expectation

of the time-varying PDF must be computed, the algorithm presented here leverages the

Koopman operator to circumvent these numerical issues. By ”pulling back” the objective

function at the initial time through the Koopman operator and evaluating the expectation

over the initial joint density, the underlying mesh on which numerical integration must

be performed can be designed advantageously to reduce numerical inaccuracies. This so-

lidifies the novel use of the Frobenius-Perron-Koopman adjoint relationship to solve the

problem of control selection under uncertainty.

1.3 Structure of Work

The structure of this work proceeds as follows. First, relevant background on uncertainty

quantification and density evolution through a dynamical system is presented. This includes

a discussion of the Frobenius-Perron and Koopman operators. The discussion highlights

assumptions and restrictions of the operators and focuses primarily on their application

to systems of ordinary differential equations. In the same chapter, kernel-based methods

for scattered-data interpolation and integration are presented. The use of Lobachevsky

splines for use in computing conditional expectations, or marginalizations, is investigated

and included in an example. Next, the Koopman operator approach to optimization in the

presence of uncertainty is presented, to include a discussion of the numerical advantages in

implementation compared to the Frobenius-Perron operator. The methodology is developed

in a general sense, considering an arbitrary system and associated control decisions.

Following the generalized optimization methodology, the focus is shifted to its ap-

plication to the unguided precision airdrop problem. As such, the dynamic model and
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corresponding sources of uncertainty in the drop and descent procedures are identified.

The proposed mission planning algorithm is presented in terms of each of the relevant

computational steps. This includes frameworks for CARP and run-in optimizations for a

predetermined and optimized transition altitude. Additionally, an algorithm for real-time

transition altitude optimization during descent is developed. Example simulation results

are presented to demonstrate the capabilities of the developed methods in complex drop

environments, including performance comparisons against current deterministic methods.

Finally, implications of this work and avenues for additional developments are discussed in

the Conclusion.
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CHAPTER 2

MATHEMATICAL TOOLS

2.1 Frobenius-Perron & Koopman Operators

Given that, in general, some aspects of a dynamical system are not completely known, it

is beneficial to understand how variations in the initial state or system parameters affects

the state time histories of the system. When this variation is captured by a density and

the dynamical system is described by a set of ordinary differential equations (ODEs), this

propagation can be performed through the use of well-known uncertainty quantification

methods based on the Frobenius-Perron operator. However, for certain classes of problems

the adjoint to the Frobenius-Perron operator, the Koopman operator, proves to be advanta-

geous. For a thorough development of these tools the interested reader should consult [30,

32, 42], and [43] for an ODE-specific treatment.

2.1.1 Frobenius-Perron Operator

The Frobenius-Perron operator provides a method to propagate initial condition uncertainty

through a system. More generally, it is a mechanism that allows for the measure-preserving

transformation of a density through a map. As such, it is applicable to both continuous

and discrete systems that satisfy certain conditions that will be elaborated on below. The

focus of this section is to layout the formulation of the operator, highlighting important

characteristics. A rigorous derivation including proofs may be found in [30].

To begin, a measure space (Ω,A, µ) is prescribed over the state-space Rd. For the

purposes of this workA is taken as the Borel σ-algebra of Rd and µ the Borel measure [44].

If a mapping S: Ω → Ω is applied over the state-space, elements x ∈ Ω are transformed

according to x2 = S(x1). The same holds true for densities over the state-space, however
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this transformation is handled by the Frobenius-Perron operator of S, PS. Written in a

similar fashion, the densities f are transformed according to

f2 = PSf1 f1, f2 ∈ L1 (2.1)

where PS : L1 → L1. The densities, or functions, f1 and f2 are members of L1, the

space of Lebesque integrable functions satisfying
∫

Ω

∣∣f (x)
∣∣µ (dx) < ∞. Additionally,

if f : Ω → R is considered to be non-negative for all x ∈ Rd and is restricted such

that
∫

Ω
f (x)µ (dx) = 1, it is then a probability density, or probability density function

(PDF) [45].

Given a density f and known measure µ, a new measure on A ∈ A may be induced by

f according to

µf (A) =

∫
A

f(x)µ(dx) (2.2)

If f is a PDF, then Eq. (2.2) is the process of assigning probabilities to subsets of the state-

space and the induced measure is a probability measure. The process may also be reversed

using the Radon-Nikodym theorem [46], which states that if a second measure v is known

and v(A) = 0 for all A ∈ A where µ(A) = 0, then the density f is uniquely defined by

v(A) =

∫
A

f(x)µ(dx) (2.3)

Leveraging Eqs. (2.2) and (2.3), the Frobenius-Perron operator of the mapping S, de-

noted PS, is defined as the operator that satisfies the equality

∫
A

PSf(x)µ(dx) =

∫
S−1(A)

f(x)µ(dx) ∀A ∈ A (2.4)

where S−1(A) is the counter-image ofA. The mapping S must be both measurable, S−1(A) ∈

A ∀A ∈ A, and nonsingular, µ
(
S−1(A)

)
= 0 ∀A such that µ(A) = 0 [30]. As such, the

operator is uniquely defined by Eq. (2.4) and conserves the measure of element S−1(A)–
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the right-hand side of Eq. (2.4)–as it is mapped to A by S. This is accomplished by the

right-hand side integral of Eq. (2.4) being simultaneously the induced measure of Eq. (2.2)

and the known measure in Eq. (2.3). Substituting in Eq. (2.1) for the density in Eq. (2.3),

and connecting the integrands by the mapping S, completes the equality.

From a more intuitive viewpoint, considering that f is a PDF, the Frobenius-Perron

operator conserves the probability mass of the subregion A when it is transported to a new

region of the state space according to S. This is true for any possible subregion in the

domain Ω. When A = Ω, the total probability mass is conserved. If the mapping S is

differentiable and invertible, then Eq. (2.4) may be differentiated to explicitly solve for the

transformed density function

PSf(x) = f
(
S−1(x)

) ∣∣∣∣∣dS−1(x)

dx

∣∣∣∣∣ (2.5)

where
∣∣dS−1(x) / dx

∣∣ is the determinant of the Jacobian of the inverse mapping S−1.

In many situations, it is of interest to apply the mapping S iteratively, say in the case of a

discrete-time system. If Sn is the mapping S applied to the state-space n times, Sn = S◦· · ·◦

S, then, using its linearity, the Frobenius-Perron operator to transform f by the mapping Sn

is (PS)n. When the separation (time) between consecutive applications approaches zero,

the iterated Frobenius-Perron operator may be expressed using its infinitesimal form. This

is of benefit when system dynamics are described by set of ODEs, as is the case when

considering autonomous, continuous-time systems of the form

dx

dt
= F (x) (2.6)

where F ∈ C1 to guarantee the existence and uniqueness of solutions for all t ≥ 0. As

such, a mapping parameterized by time may be written as

x(t) = St(x0) = x0 +

∫ t

0

F
(
x(τ)

)
dτ (2.7)
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where the time-invariance of F allows for the property that St(St′(x)) = St+t′(x). Con-

sidering also that S0(x) = x and F is continuous, the set of all possible mappings {St}t≥0

generated from the set of ODEs in Eq. (2.6) is known as a semidynamical system, with

corresponding semigroup of Frobenius-Perron operators {Pt}t≥0 [30].

Semigroups generated by systems of ODEs may be equipped with an infinitesimal op-

erator. The Frobenius-Perron infinitesimal operator of {Pt}t≥0 on the density f is defined

in the limit as

AFPf = lim
t→0

Ptf − f
t

(2.8)

and in [30], with help from the Koopman operator, is found to be equal to

AFPf(x) = −
d∑
i=1

∂(f Fi)

∂xi
(x) (2.9)

where d is the dimension of the state space. For the density f , the function u(t, x) =

Ptf(x) satisfies u′(t, x) = AFPu(t, x) and is a solution to the partial differential equation

∂u

∂t
+

d∑
i=1

∂(uFi)

∂xi
= 0 (2.10)

with the initial condition u(0, x) = f(x).

The partial differential equation (PDE) of Eq. (2.10) may be solved using the Method of

Characteristics (MOC) [47]. By application of the MOC, the PDE in Eq. (2.10) collapses

to a first-oder ODE that is valid only along trajectories of the system in Eq. (2.6), i.e,

du

dt
= −u(t)Φ(x)

∣∣∣∣
x(t)

(2.11)

where Φ(x) =
∑d

i=1 ∂Fi(x) / ∂xi is the trace of the Jacobian of the dynamics F (x). Equa-

tion (2.11), also known as the Stochastic Liouville Equation (SLE) [48], may be solved

alongside the ODEs in Eq. (2.6) yielding a representation of the time-dependent density

u(t, x). As it relates to an initial value problem (IVP), the Frobenius-Perron operator is a
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mechanism that allows for uncertainty–quantified by a PDF–to be pushed forward through

a dynamical system with equations of motion (EOMs) defined by F .

2.1.2 Koopman Operator

The Koopman operator [31] is a mechanism that allows for the transportation of a func-

tion through a map, or dynamical system. Also known as the composition operator, the

Koopman operator U: L∞ → L∞ states that

USg(x) = g
(
S(x)

)
∀g ∈ L∞ (2.12)

where S is non-singular and L∞ is the space of functions satisfying ‖g‖∞ <∞. Intuitively,

g, a function of the state-space vector x, may be considered as an observable of the state-

space.

Considering again a system of ODEs generating a set of state-space mappings, Eq. (2.7),

the semidynamical system {St}t≥0 also has a corresponding semigroup of Koopman oper-

ators, {Ut}t≥0. Like the Frobenius-Perron operator, the semigroup of Koopman operators

may be equipped with an infinitesimal form. Assuming a continuously differentiable g

with compact support, the infinitesimal Koopman operator AK is explicitly derived from

the limit [30]:

AKg = lim
t→0

Utg(x0)− g(x0)

t
=

d∑
i=1

∂g(x0)

∂xi
Fi(x0) (2.13)

and is valid for all x0. Following the form of the infinitesimal Frobenius-Perron operator’s

derivation, the function u(t, x) = Ut g(x) is taken to satisfy u′(t, x) = AKu(t, x) and is

a solution to the partial differential equation

∂u

∂t
−

d∑
i=1

Fi
∂u

∂xi
= 0 (2.14)
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with the initial condition u(0, x) = g(x).

Using the Method of Characteristics once again, Eq. (2.14) collapses to a first-order

ODE that is valid only along trajectories of the system:

du

dt
= 0

∣∣∣∣
x(t)

(2.15)

This may be solved alongside the system ODEs in Eq. (2.6). Equation (2.15) states that,

given a deterministic mapping, the initial conditions x0 completely define the value of

g(x(t)) along the trajectory from x(0)→ x(t).

The necessity of a continuously differentiable and compactly supported (which is, in-

formally, that outside of a closed domain the function is identically zero) g, and therefore

its derivatives, asserts the convergence of the difference quotient as t→ 0 used in deriving

Eq. (2.14) [30]. When considering functions that are not naturally compactly supported,

by including a maximum bound, the function may be saturated and inverted to ensure com-

pact support. Conversely, after applying the Koopman operator, the original function may

be recovered within the domain of compact support. The inversion and reversion steps are

defined as:

Invert : gc(x) = max
(
Λ− g(x), 0

)
∀x ∈ Ω (2.16a)

Revert : g(x) = Λ− gc(x) ∀x ∈ AX (2.16b)

where Λ is the maximum bound, gc is compactly supported, and AX ⊂ Ω is the support of

gc.
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2.1.3 Adjoint Relationship

The Frobenius-Perron and Koopman operators of a mapping S, noted PS and US, respec-

tively, are adjoint to each other and satisfy the equality [30]

〈PSf, g〉 = 〈f, USg〉 f ∈ L1 and g ∈ L∞ (2.17)

where f and g are continuously differentiable and g is compactly supported.

The adjoint relationship with the Frobenius-Perron operator provides a convenient and

intuitive use of the Koopman operator. As the inner products in Eq. (2.17) are operating on

real-valued functions defined on the state-space Ω, they can be rewritten in the following

form [49]

〈u, v〉 =

∫
Ω

u(x) v(x) dx (2.18)

If x in Eq. (2.18) is a random variable emitting a PDF defined by u, and v is a function of

x, then the integral on the right-hand side of Eq. (2.18) is equivalent to the expected value

of v(X) whenX ∼ u, i.e.

E
[
v(X)

]
=

∫
Ω

u(x) v(x) dx = 〈u, v〉 (2.19)

Figure 2.1 provides a visual representation of this adjoint relationship, leveraging the

insight of Eq. (2.19). Consider a dynamical system with initial condition uncertainty. The

top row of Figure 2.1 represents the left side of the adjoint equation, Eq. (2.17). The

PDF f (dashed line) is propagated through the system dynamics and an inner product is

taken with g (solid line). The scalar result–the expected value of g under the uncertainty

Pf–is represented by the area of the shaded region. The bottom-row represents the right

side of the adjoint equation, where the Koopman operator is applied to g before the inner

product with f is taken. The scalar result, the shaded region, in this case is the expected

value of Ug under the uncertainty f . While the pointwise-products
(
Pf(x) · g(x)

)
and
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Frobenius-

Perron

Koopman

Figure 2.1: Illustration of the Frobenius-Perron and Koopman operators adjoint property.
The inner products, represented by the area of the filled regions in the top-right and bottom-
left plots, are equivalent

(
f(x) · Ug(x)

)
may not be equal everywhere-as seen by the differing shapes of the shaded

regions–the scalar result of the inner products, i.e., the total shaded areas, are equal [30].

As a result, it is convenient to consider the Frobenius-Perron operator as a push-forward

mechanism on measures and the Koopman operator as a pull-back mechanism on obser-

vations, both inherently dependent on the dynamics of the underlying system. Through

their adjoint relationship, the equality of the inner product shown in Eq. (2.17), the op-

erators may be used to express two different, but equivalent, forms of an expected value

calculation.

2.1.4 Parameter Uncertainty & Process Noise

Interpreting the adjoint relationship of the Frobenius-Perron and Koopman operators as an

expected value provides a means for it to be used in problems that contain uncertainty in

initial conditions of systems. In many engineering problems, there is uncertainty in not

only the initial conditions but also parameters defining the specific behavior of the system.
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To allow for the Frobenius-Perron and Koopman operators to be applied to these sys-

tems, consider a dynamical system of the form found in Eq. (2.6),

ds

dt
= F

(
s | p

)
(2.20)

F : Rn → Rn (2.21)

where s ∈ Rn is the state vector, p ∈ Rp is a vector containing possible uncertain pa-

rameters, and F is a continuous function such that solutions to Eq. (2.20) exist and are

unique [30]. Alternatively, this system can be represented with the parameters included as

additional states with no dynamics [42]:

x =

[
s

p

]
(2.22)

dx

dt
= F̄ (x) =

[
F
(
s | p

)
0 p×1

]
(2.23)

where F̄ : Rn+p → Rn+p. By using this augmented system, all parametric uncertainty

can be treated as initial condition uncertainty, captured by a single joint PDF on the aug-

mented state-space, f(x). For systems with parametric uncertainty, the Frobenius-Perron

and Koopman operators will be of the augmented system form in Eq. (2.23).

As stated in Section 2.1.1, the Frobenius-Perron operator conserves probability mass

for every A ∈ A, including total probability when A = Ω. As such, the operator is ap-

plicable to initial condition uncertainty only and may not include process noise within the

mapping (probability mass may not be created or added). However, Halder et. al [50] have

shown that by representing the stochastic process as an infinite (or truncated) combina-

tion of deterministic functions using the Karhunen Loève expansion, process noise may be

added to a Frobenius-Perron operator in the form of parametric uncertainty. However, in

doing so, the overall dimension of the augmented system is increased.
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2.2 Scattered Data Interpolation & Integration

This section presents the problem of, and possible solutions to, multivariate, scattered data

integration via interpolation. When computing the infinitesimal forms of the Frobenius-

Perron and Koopman operators along trajectories using the MOC, the resulting densities

and functions, respectively, are typically in the form of scattered data and must be interpo-

lated to produce a continuous representation. The notation of scattered data is that it has

no prefixed structure e.g., gridded or sampled uniform, normally, etc. To begin the section,

the problem is first defined and then a naive approach is given to reinforce the necessity

of better solutions. Next, the idea of kernel-based methods is introduced. Radial Basis

Functions (RBF), a well-known kernel-based method, are explored as a possible solution.

Following the RBFs, Lobachevsky splines, another kernel-based method, are investigated.

Finally, an example using software developed for–and fundamental to–this work is given.

In line with the overall goal of this work, this section hopes to bridge the gap between the

applied math literature and tangible engineering problems.

2.2.1 Problem Statement

The scattered data interpolation (approximation) problem can be stated as follows: given a

set of data {(xi, yi)}Ni=1 where x ∈ Rd, y ∈ R, and yi = f(xi), find an approximation to

the unknown function f , such that it exactly matches the given data-set, i.e. yi = f̄(xi).

The solution should be applicable to higher dimensions (multivariate) and possess the abil-

ity to accommodate large data-sets (large N ).

Additionally, in the context of this work, a solution to the scattered data integration

problem is also sought. From the same data-set, {(xi, yi)}Ni=1 with underlying function

yi = f(xi), find an approximation to integral function F̄ (z) ≈ F (z) =
∫
·· ·
∫
f(x)dζ,

where z and ζ are partitions of the element x ∈ Rd. If z = ∅ and ζ ∈ Rd then the total

integral is taken.
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It is desired that both f̄ and F̄ be smooth functions over their entire domains. These

problems can be found in many engineering applications, including: Verification and Vali-

dation [38, 51], Entry, Descent, and Landing [52], Impact Prediction [41, 39], and pharma-

cokinetics [43, 53].

Additionally, it should be noted, that the notation and assumptions from the previous

section for certain variables (e.g. f , F , F̄ ) are not reflected in this section.

Binning Method

The problem stated above becomes trivial if the data-sites are structured into a linearly-

spaced grid. With a gridded structure, an approximation of the underlying function within

the domain of the grid may be achieved through linear interpolation of the surrounding

grid points. Additionally, the integration of dimensions may be approximated by taking an

arithmetic mean across those dimensions of the grid. The total integration of the function

may be approximated by the mean of the function values, yi, scaled by the volume of the

data-site grid. The structured format, while straight-forward and intuitive, is restrictive and

does not extend well to higher-dimensions. Considering 10 discretizations across each of

the 5 dimensions, producing a total of 105 = 100,000 data-sites, increasing the number

of discritizations of a single dimension adds 104 = 10,000 data-sites. Incrementing the

number of discretizations across all dimensions adds 115 − 105 = 61,051 data-sites; the

method suffers from the curse of dimensionality.

If interpolating the underlying function, f , is not needed but instead the approximation

of an integral function, F̄ , is desired, then a binning method may be employed[20, 52].

The binning method does not require a structure on the data-sites, however, unstructured

output–or evaluation–points leads to a computationally costly implementation.

The binning process begins by defining a set of integral evaluation points {zk}Nbk=1

where Nb is the number of bins. These values will define the geometric center of each

bin. While it is not necessary for the bin centers to be structured on a grid–however it
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Figure 2.2: Binning method used to marginalize a 5-dimensional joint PDF to two dimen-
sions at three different instances (altitudes)

is the most practical–a method to define the bin boundaries and compute the bin volume

is necessary. For scattered bin centers, the bin boundaries may be found using a Voronoi

diagram [54] and volume computed using a convex hull algorithm. However, the compu-

tational cost of these algorithms become prohibitive with a binning-dimension p > 3 and

increasing Nb [55]. The computations are trivial for a grid. With the bins defined, the

data-sites are projected into the space over which the bins are defined, Rp, where p is the

dimension of the bins. The integral value for each bin, F̄k(zk), is defined as the mean of

the functional values yi in that bin. The integral values are then normalized by bin volume.

In [20], Leonard et al. used the binning method to marginalize a joint PDF. The five-

dimensional, scattered joint PDF data was marginalized to two dimensions and evaluated

on a 60 × 60 grid. Figure 2.2 shows the 5D data projected onto the xy-plane (left), the

binning method applied (center), and the resulting 2D marginal PDF after normalizing

(right).

While the binning method is straight-forward and easy to implement, its ability to ac-

curately represent the integrated function F clearly depends the on the dimensionality of

the problem, the number of data-sites, and the number of bins (the resolution). Consider-
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ing a practical implementation, a trade-off arises between coverage (number of data-sites

per bin) and the resolution. Additionally, it presents a further problem of how to evaluate

the resulting integral function at locations other than the evaluation points; i.e. whether

interpolation between points is used, or the bin-center value is constant across the entire

bin.

2.2.2 Kernel-Based Methods

Kernel-based methods, also known as meshfree methods, present an attractive solution to

the problem presented in Section 2.2.1. The use of Kernel-based methods can be found

across various fields in science, engineering, and computer science, including: machine

learning applications [56, 57], image processing [58, 59], and path-planning and dynamics

problems [60, 19]. The most well-known meshfree method is that of Radial Basis Func-

tions (RBF), covered briefly in Section 2.2.3. The intent of this section is to present the

material necessary to understand what kernel-based methods are and how they may be uti-

lized, specifically for the problems covered in this work. Readers interested in a deeper

understanding of the material are advised to consult [61], [62], [63], and the references

therein.

Formulation

Reiterating the problem statement, kernel-based methods aim to approximate the relation-

ship of the scattered data-set {(xi, yi)}Ni=1 where the true relationship y = f(x) is known

at {xi}Ni=1 only. The function f is approximated by a linear combination of basis functions,

Bi(x), from B = {B1(x), . . . , BM(x)}, where M is the dimension of the function space

B. To ensure that an interpolant from B exists, the basis functions can be generated from a

kernel applied to the data-set [61], i.e. B = {K(x, x1), . . . , K(x, xN)} where the kernel

is K : Rd × Rd → R and now M = N , the number of data-sites. The interpolant of the
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data-set to the unknown function f may now be written as

f̄(x) =
N∑
i=1

ciBi(x) (2.24a)

=
N∑
i=1

ciK(x, xi) (2.24b)

where the basis coefficients, c = [c1, . . . , cN ]ᵀ, are computed by solving the linear system,

Kc = y (2.25)

with (K)ij = K(xi,xj) i, j = 1, . . . , N and y = [y1, . . . , yN ]ᵀ. The kernel matrix, K, is

N × N and a unique solution to Eq. (2.25) exists when detK 6= 0; it is nonsingular. The

kernel K is restricted such that it generates a symmetric, positive definite kernel matrix K,

i.e.

cᵀKc > 0 ∀ c ∈ RN , c 6= 0 (2.26)

Under this restriction, the kernel matrix will always be nonsingular. Kernels that satisfy

this requirement are also known as positive definite [62, 61]. Additionally, if the kernel is

also compactly supported then it may generate a sparse matrix, which is beneficial when

solving Eq. (2.25) numerically.

Computing Basis Coefficients

With the kernel matrix guaranteed to be nonsingular, Eq. (2.25) may be solved using a vari-

ety of methods. Computational resources (mainly memory) permitting, cmay be computed

using a direct method, such as LU factorization, or, given the restrictions above, Cholesky

factorization [64]. However, for large data-sets, an indirect, or iterative, method may be

needed to solve the linear system of equations. Given the restrictions on K, symmetric and

positive definite, a conjugate gradient scheme may be used.

Derived as a direct method, conjugate gradient (CG) seeks to minimize the residual
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error over a growing Krylov subspace at each iteration [65, 66, 67, 64]. In doing so, the

method produces an optimal direction and step-size to be taken from the current iterate.

Theoretically, the CG method will converge to the exact solution (zero residual error) in

k steps, where k ≤ N is number of unique eigenvectors of K. When used as an iterative

method with an acceptable residual-error tolerance ‖Kc∗−y‖ < ε, a solution may be found

in less than k iterations. It is common for the tolerance ε to be defined as a relative residual,

ε = η‖y‖ [65]. An additional benefit of the CG method is that it never explicitly requires

the matrix K to be known. Rather, all that is required for a numerical implementation is

the result of a matrix-vector product, w(x) = Kx, known as matrix free evaluation. This

is of great benefit when K is sparse. The algorithm to fully implement the method may be

found in [65].

2.2.3 Radial Basis Functions

A well known class of positive definite functions are known as Radial Basis Functions

(RBF) [68, 66, 63, 62]. These corresponding kernels are of the form,

KR(x,xi) = φ
(
‖x− xi‖

)
(2.27)

where ‖ · ‖ is the Euclidean norm and φ(r) : [0, ∞)→ R+ is the radial function. Table 2.1

lists three types of commonly used RBFs. For each function, it is also common to add a

shape parameter α > 0 in the form of φ(αr), the effects of which are shown in Figure 2.3.

Table 2.1: Common Radial Basis Functions

Name Function

Gaussian φ(r) = e−r
2

Inverse Multiquadratic (IMQ) φ(r) = 1√
1+r2

Wendland W2 φ3,2(r) = (1− r)4
+(4r + 1)

Wendland W4 φ3,4(r) = (1− r)6
+(35r2 + 18r + 3)

The notation of the Wendland functions in Table 2.1 is φdmax, k, where dmax is the maxi-
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Figure 2.3: Effect of the shape parameter α on Gaussian (left) and Wendland φ3,2 (right)
RBFs

mum dimension of the data-set that the function may be applied to and k is the smoothness

of the function, Ck. Additionally, (·)+ is a cutoff function equivalent to max(·, 0).

While there are numerous other RBFs that may be used, the functions in Table 2.1 were

chosen to highlight some limitations of using radial functions. The first deals with the

support of the functions. While all four functions approach zero as r → ∞, the Gaussian

and IMQ functions never are zero and are thus not compactly supported. These functions

will generate a dense–as opposed to sparse–kernel matrix which will require the use of a

direct method to solve Eq. (2.25), effectively limiting the number of data-sites that may be

used. In contrast, the Wendland functions are identically zero for r ≥ 1. It is common to

use the shape parameter α, shown in Figure 2.3, to control the support of the functions via

the relation r < 1/α.

The second limitation of RBFs is the difficulty associated with integrating all-or-some

dimensions of the interpolated function. In [69], the total integration of the unknown func-

tion is investigated. The authors find that 1.) the compactly supported Wendland W2 and

the thin-plate spline (a conditionally positive-definite function not shown) are the most reli-

able and robust and 2.) the ability to successfully solve the problem is correlated to both the

number of data-sites and RBF used. As alluded to in Section 2.2.2, the use of compactly
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support RBFs (kernels) improves the tractability of a solution for larger data-sets (hundreds

of thousands data-sites), this is reaffirmed by [69].

As a final note to the integration of RBFs, the work in [69] does not explicitly address

the idea of integrating single, or multiple but not all, dimensions of the interpolant. For

scattered data in the unit hypercube [0, 1]d, it is shown that the Gaussian RBF may be

decomposed using separation of variables, i.e.

φ(r) = e−r
2

= e−((x1−xi,1)2+...+(xd−xi,d)2) (2.28)

and the integral of each basis function computed along the individual dimensions indepen-

dently using the error function,

Ii ∝
(
erf(1− xi,1)− erf(−xi,1)

)
· . . . ·

(
erf(1− xi,d)− erf(−xi,d)

)
(2.29)

where the scaling of the solution would depend on the dimension d and, possibly, the

shape parameter α. Using this methodology, it would be possible to integrate dimensions

independently. However, this separation is typically not possible with radial functions.

2.2.4 Lobachevsky Splines

Lobachevsky splines for use in scattered data interpolation were first introduced in 2010

by Roberto Cavoretto in his PhD thesis, Meshfree approximation methods, algorithms and

applications [70]. The splines were investigated further in [71, 72, 73], with their primary

application being landmark-based image registration [74, 59]. In [59], the performance

of the Lobachevsky splines is compared against that of RBFs, including the Gaussian and

Wendland W2 functions. In this, and related work by Leonard et al., the splines have been

found to be of great use for marginalizing joint PDFs or computing conditional expectations

on scattered data [75, 76].

From the derivations provided in [70, 71], the univariate Lobachevsky spline is defined
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as

f ∗n(αx) =

√
n

3

1

2n(n− 1)!

n∑
k=0

(−1)k
(
n

k

)[√
n

3
αx+ (n− 2k)

]n−1

+

∀x ∈ R (2.30)

where α > 0 is a shape parameter and n ≥ 2 is an even integer defining the function’s

smoothness, Cn (similar to the Wendland functions in Table 2.1). It is shown in [71] that

the univariate Lobachevsky spline in Eq. (2.30) is positive definite. Extending to higher

dimensions, the multivariate Lobachevsky kernel is the product of the univariate functions,

i.e.

KL(x, xi) =
d∏

h=1

f ∗n

(
αh
(
xh − xi,h

))
∀x, xi ∈ Rd (2.31)

where αh is the shape parameter for the hth dimension. In [61], this form of kernel is called

a tensor product and from the properties of positive definite functions given by [61, 62], the

product of positive definite functions is also positive definite. As such, the Lobachevsky

kernel of Eq. (2.31) will generate a symmetric, positive definite kernel matrixK. Figure 2.4

shows the effects of various n and α values on Eq. (2.30).
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Figure 2.4: The Lobachevsky spline function. (left) The effect of smoothness parameter n
(with α = 1.0). (right) Effect of varying the shape parameter α on L4 function (n = 4)

The Lobachevsky spline possesses a number of unique properties that are of benefit to

the problem of interest. First, in the limit as n → ∞ the spline function f ∗n converges to
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the standard normal distribution uniformly for all x ∈ R, this convergence extends to the

multivariate kernel [71]. As such, KL asymptotically behaves like the Gaussian RBF from

Section 2.2.3, though it is not radial itself [73]. Next, for finite n, the kernel is compactly

supported on the d-dimensional box defined by [−
√

3n/αh,
√

3n/αh] h = 1, . . . , d. In

turn, KL can generate a sparse kernel matrix; a great benefit when implementing numer-

ically. Finally, and maybe most importantly, the Lobachevsky kernel may be integrated

analytically along any dimension or combination of dimensions. While all kernel-based in-

terpolants may be integrated via the integration of their basis functions through the linearity

of Eq. (2.24), i.e.

∫
Ω

f̄(x) dζ =

∫
Ω

N∑
i=1

ciK(x, xi)dζ (2.32a)

=
N∑
i=1

ci

∫
Ω

K(x, xi)dζ (2.32b)

where ζ ∈ Ω ⊆ Rd is the subset of dimensions to be integrated, the Lobachevsky kernel

allows the integral(s) of Eq. (2.32b) to be evaluated in closed-form.

The integration process of the Lobachevsky spline and of its multivariate kernel for

d ≥ 2 is investigated in [72] and [73], respectively. Considering the univariate Lobachevsky

spline, its integral on the domain Ω = [a, b] is

IΩ(xi, α) =

∫ b

a

f ∗n(α(x− xi))dx =
1

α

[
Φ∗n(α(b− xi))− Φ∗n(α(a− xi))

]
(2.33)

with the function Φ∗n(x) x ∈ R being

Φ∗n(x) =
1

2nn!

n∑
k=0

(−1)k
(
n

k

)[√
n

3
x+ (n− 2k)

]n
+

(2.34)

which converges to the standard normal CDF as n→∞. As such, in the limit, the integral

of Eq. (2.33) asymptotically approaches that of Eq. (2.29).
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Using the kernel-based method of Section 2.2.2, the Lobachevsky interpolant of the

unknown function f , written out explicitly, is,

f̄(x) =
N∑
i=1

ciKL(x, xi) =
N∑
i=1

ci

d∏
h=1

f ∗n(α(xh − xi,h)) (2.35a)

=
N∑
i=1

cif
∗
n(α(x1 − xi,1)) · . . . · f ∗n(α(xd − xi,d)) (2.35b)

with the basis coefficients, c, computed by solving Kc = y. For notational simplicity, α is

assumed to be constant across all dimensions. Leveraging the structure of Eq. (2.35b), the

integral of any dimension, or dimensions, may be analytically evaluated. The element x ∈

Rd is partitioned into ζ ∈ Rm and z ∈ Rd−m, the integrated and remaining dimensions,

respectively, such that z ∪ ζ = x and z ∩ ζ = ∅.

F̄ (z) =

∫
· · ·
∫

Ωζ

f̄(x)dζ (2.36a)

=

∫
· · ·
∫

Ωζ

N∑
i=1

cif
∗
n(α(x1 − xi,1)) · . . . · f ∗n(α(xd − xi,d))dζ1 . . . dζm (2.36b)

=
N∑
i=1

cif
∗
n(α(z1 − zi,1)) · . . . · f ∗n(α(zd−m − zi,d−m))×∫

Ω
(1)
ζ

f ∗n(α(ζ1 − ζi,1))dζ1 · . . . ·
∫

Ω
(m)
ζ

f ∗n(α(ζm − ζi,m))dζm (2.36c)

and using the univariate integral defined in Eq. (2.33),

F̄ (z) =
N∑
i=1

ci

d−m∏
h=1

f ∗n(α(zh − zi,h))×
m∏
h=1

I
Ω

(h)
ζ

(ζi,h, α) (2.37a)

=
N∑
i=1

c̃i

d−m∏
h=1

f ∗n(α(zh − zi,h)) (2.37b)

where the domain of integration for dimension h, Ω
(h)
ζ , is defined by the minimum and

maximum values of the data-set in that dimension. Since the integral function in Eq. (2.37a)
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does not depend on the evaluation point z, the contributions from each data-site’s I(·)

may be multiplied into its ci, yielding the new set of coefficients c̃. From Eq. (2.37b),

F̄ constitutes the analytical integration of the approximated function f̄ across the chosen

dimensions. As such, during the integration process the interpolation errors, e(x) = f̄(x)−

f(x), are aggregated. This circumstance is investigated in [73], however, the authors only

consider the full-integration case.

2.2.5 Example

Kernel-based approximation methods, while a strong solution to the scattered data interpo-

lation and integration problem, present challenges when considering high-dimensions and

large data-sets. For use in this work, a C++ library named InterpCL was created to implement

the algorithms.

To handle potentially large, high-dimensional data-sets, the library targets graphical

processing units (GPU) using the OpenCL standard [77]. Using object-oriented program-

ming (OOP) and the polymorphism that it affords [78], InterpCL was designed to provide a

simple interface through which to apply the kernel-based methods, including interpolation,

evaluation, and possibly integration. Targeting data-sets in the range of hundreds of thou-

sands of data-sites, InterpCL implements the conjugate gradient (CG) solver discussed in

Section 2.2.2. As such, it is designed for sparse kernel matrices, like those generated by the

the Lobachevsky and Wendland kernels, where matrix-free methods allow for the tractable

evaluation of the matrix-vector products. However, the class structure of the library pro-

vides the means for a direct solver to be easily implemented which could extend the library

to globally supported kernels.

To highlight the capabilities of the library, an example is presented. The function of

interest is five-dimensional, f : R5 → R with dimensions x = [x, y, p1, p2, p3]ᵀ and is
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defined as

f(x) = franke(x, y)× P (p1)× P (p2)× P (p3) (2.38)

P (z) =
1

σ
√

2π
exp

(
−(z − µ)2

2σ2

)

where franke is Franke’s function [79], a well-known test function for scattered data inter-

polation (shown in Figure 2.5a), and P is the PDF of the normal distribution with µ = 0.5

and σ = 0.5/3.5. To create the data-set, N = 512,000 data-sites were generated using a

Halton sequence [80], filling the [0, 1]5 hypercube, and Eq. (2.38) evaluated at each.
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Figure 2.5: Comparison of the true Franke’s function (left) and recovered function using
Lobachevsky spline integration (right)

To recover the underlying function, the 5D data-set is first interpolated using an L4

(Lobachevsky n = 4) spline. The shape parameter is chosen such that the compact support

is ±0.22 from the center of each data-site in each dimension. This creates a 512,000 ×

512,000 kernel matrix that is 99% sparse. The basis coefficients are computed using the

CG solver, terminating at a relative-residual error of 1e−8. For this case, the solver required

932 iterations. Accelerated by a NVIDIA K40 GPU, the process takes 1 hour 49 minutes

to complete. The resulting interpolant is evaluated at 256,000 points and, when compared
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to the true function value, produces a root-mean-squared(RMS) error of 0.08. However, it

should be noted that the maximum function value in [0, 1]5 is approximately 25.0.

Following the integration process presented in Section 2.2.4, the interpolant is inte-

grated along the p1, p2, and p3 dimensions. Figure 2.5 shows the recovered function–an

approximation of the underlying function–evaluated on a 500 × 500 grid. It can be seen

that the kernel-based method produces a smooth, continuous function. The absolute error

between the recovered function and the true Franke’s function is shown in Figure 2.6a. Ad-

ditionally, the relative error–absolute error divided by the true Franke’s function–is shown

in Figure 2.6b. The RMS error is computed to be 2e−3 with a maximum function value of

1.22.
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(b) Relative error

Figure 2.6: (left) The absolute error between the recovered and true functions. The plot is
saturated at 5e−3 to mitigate large edge errors. (right) The relative error, saturated at 1%.

In Figures 2.6a and 2.6b it can be seen that the greatest error arises on the lower and

left-hand side borders. These errors may be–at least partially–attributed to Franke’s func-

tion, and therefore the full function in Eq. (2.38), not being a member of the kernel’s native

space [61]. Considering the basis generated by the compactly supported Lobachevsky

splines, its native space will be of compactly supported functions, which also have com-

pactly supported derivatives. Franke’s function is the composition of two Gaussian peaks,

30



a Gaussian dip, and a sloping surface. The Gaussian elements, and their derivatives, while

not compactly supported, do asymptotically approach zero. However, the sloping surface

is not compactly supported, nor does its derivatives go to zero. As such, it will be a source

of large edge error [61]. Additionally, kernel-based methods are subject to Gibbs phe-

nomenon [81], which can be seen moving inward from the edges in Figure 2.6b.

InterpCL, leveraging the Lobachevsky splines, will be employed later in this work to

perform the computation of conditional expectations in conjunction with the Koopman

operator. Fortunately, as discussed in Section 2.1.2, the infinitesimal Koopman operator

requires the objective function to be compactly supported, helping to eliminate the large

edge error shown above.
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CHAPTER 3

CONTROL OPTIMIZATION UNDER UNCERTAINTY

The goal of this work is to propose a probabilistic control optimization methodology lever-

aging the Frobenius-Perron and Koopman operators that is applicable to the precision air-

drop problem. However, the methodology of this section is developed in a generalized

sense as it may be applied to wide range of optimization problems.

3.1 Generalized Optimization Problem

To begin formulating the general optimization problem, it is important to separate–and

define–the notion of a decision-space and an objective-space. The decision-space is con-

sidered to be the space, or subspace, in which all initial conditions may be found. Put

another way, the decision-space is defined as

D = {f0(x) > 0, t = t0 : x ∈ Ω, t ∈ R} (3.1)

where f0 is the joint PDF describing the initial condition uncertainty at an arbitrary time t0.

The objective-space is the space over which the objective function–a measure of success or

cost–is to be applied and can be defined as

O = {h(t, x) = 0, t ≥ t0 : x ∈ Ω, t ∈ R} (3.2)

where h is an arbitrary function of the state-space and, possibly, time. The function h may

for instance be defined at some terminal condition of the system, signifying the end-point

of any possible system trajectory. As they are defined, the decision and objective-spaces

may have spatial and temporal components and as such D, O ∈ Ω × R. The spaces are
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connected through the system dynamics and the mapping is therefore S: D → O.

The optimization problem of interest is one in which an objective function–applied over

the objective-space–is maximized. The use of an objective, or score, over a cost allows for

the function to be compactly supported. Given the uncertainty in the initial conditions,

and therefore uncertainty supported on the objective-space, the objective function can be

evaluated probabilistically using an expected value. It follows that the expected value of

the objective function is, explicitly, the function to be optimized, i.e.

u∗ = arg max
u∈U

EO
[
g(X) | u

]
(3.3)

where u∗ is the optimal control decision, U is the domain of acceptable control decisions,

and EO[·] is the expected value of the objective function g supported on the objective-space

O. The expected value is evaluated considering that X ∼ fO, the joint PDF supported on

the objective space.

The control decision variable, noted as u, can enter the optimization problem in two

different ways: 1) through the initial condition uncertainty, f0 = f(x | u), and/or 2)

through the system dynamics, St = S(x, u). As an example, consider a damped oscillator

with Gaussian uncertainty in the initial position and velocity of the system. If the user may

change the mean and/or variance of the initial conditions, they are in essence searching for

the optimal density in a set. On the other hand, if the user may not change the PDF of

the initial conditions but may pick a damping coefficient (on which the system response is

parametrized), they are searching for the optimal system in a set characterized by a control

variable, the damping coefficient.

Equation (3.3) represents the probabilistically optimal control selection given an ob-

jective function and taking into consideration initial condition uncertainty. The difference

between its solution, and a deterministic solution (when the initial condition uncertainty

is neglected) depends on the relationship between the two elements of the expected value:
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the forward propagated uncertainty and the objective function. Within the support of the

PDF quantifying the forward propagated uncertainty, the difference is driven by the level

of symmetry of both the objective about its maximal point and the PDF itself. In the case

of a symmetric objective function and PDF, the deterministic and probabilistic solutions

will match. Additionally, given a PDF with very narrow support or an objective function

with a very shallow gradient (about its maximal point) the differences will become negligi-

ble. Therefore, at the discretion of the user, for problems with minimal uncertainty (narrow

PDF support), a symmetric objective function, or a flat objective function within the PDF’s

support, a deterministic solution may be sufficient.

3.2 Utilizing Frobenius-Perron and Koopman Operators

The optimized function of Eq. (3.3) is the expected value of the objective function with

respect to the joint PDF when it is supported on the objective-space. Written using the

inner product notation, it is equivalent to

EO
[
g(X) | u

]
=

∫
Ω

fO(x | u)g(x) dx = 〈fO, g〉 (3.4)

Employing the Frobenius-Perron operator, the joint PDF supported on the objective-space

may be written as a transformation of the initial condition uncertainty, i.e, fO(x | u) =

PSf0(x | u), where u may also be found in S and therefore PS. Substituting the quantity

into Eq. (3.4),

EO
[
g(X) | u

]
= 〈PSf0, g〉 (3.5)

The expected value is a function of f0 and S, both of which may contain the control decision

u.

Leveraging the adjoint relation from Section 2.1.3 and Eq. (2.17), an equivalent ex-
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pected value is expressed using the Koopman operator,

〈PSf0, g〉 = 〈f0, USg〉

=

∫
Ω

f0(x | u)USg(x) dx (3.6)

= ED
[
USg(X) | u

]
(3.7)

where ED[·] is evaluated over the decision-space with X ∼ f0. Considering the optimiza-

tion problem of Eq. (3.3) to be the Frobenius-Perron form, an alternative, but equivalent,

problem may be written using the Koopman operator

u∗ = arg max
u∈U

ED
[
USg(X) | u

]
(3.8)

where the optimized function is still explicitly dependent on u through its appearance in f0

and/or S.

The choice of constructing the control optimization problem using the Koopman op-

erator versus the Frobenius-Perron operator, and vice versa, is problem dependent. Each

methods brings associated benefits, costs, and restrictions. Considering a problem where

the system dynamics S, or F , are not a function of the control selection u, the Koopman

operator approach provides a method to pull-back the objective function once and then

compute the expected value for each f0(x | u) directly on the decision-space. However,

when using the Koopman operator, the joint PDF supported on the objective-space is not

needed nor explicitly computed. If this forward-propagated density is of value when solv-

ing the control optimization problem, the Frobenius-Perron operator approach may be used.

Even so, care must be taken when evaluating the forward propagated joint PDF numerically

using Eq. (2.11). Given a strictly positive or strictly negative Φ(x) ∀x ∈ Ω, the joint PDF

will approach 0 or ∞, respectively, given enough time, causing floating-point precision

errors.
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3.3 Inequality Constraints

The optimization problems of Eqs. (3.3) and (3.8) may be easily extended to include in-

equality constraints over the augmented state space. Given the uncertainty that exists in the

initial conditions, any constraint is inherently probabilistic and expressed as an expected

value. Constructed in a similar fashion to the decision and objective spaces, a constraint

space is expressed as

C =
{∣∣q(t, x)

∣∣ > 0: x ∈ Ω, t ∈ R
}

(3.9)

where q is the constraint function. Considering the semidynamical system {St}t≥0, the

mapping Q: D → C, Q ∈ {St}t≥0 connects the decision-space to the constraint space

where Q is indexed from the set via the parameter tq. If t0 indexes the decision-space and

tf the objective-space, it is assumed that t0 ≤ tq ≤ tf . The generality of the definition

allows for the inclusion of constraints that are: 1) supported on the decision-space, C ⊆ D

with tq = t0, 2) supported on the objective-space, C ⊆ O with tq = tf , or 3) supported

anywhere in between, i.e, t0 < tq < tf .

Considering the mapping Q, the Frobenius-Perron operator may be used to push-forward

the initial condition PDF to where it is supported on the constraint-space for use in an ex-

pected value calculation. The constrained optimization problem in the Frobenius-Perron

form is written as

u∗ = arg max
u∈U

EO
[
g(X) | u

]
, X ∼ PSf0 (3.10a)

s.t EC
[
q(X) | u

]
≤ λ, X ∼ PQf0 (3.10b)

where λ is the constraint tolerance. Alternatively, and equivalently, the Koopman operator

may be used to pull-back the constraint function from the constraint-space to the decision-

36



space. The constrained optimization problem in the Koopman form is written as

u∗ = arg max
u∈U

ED
[
USg(X) | u

]
, X ∼ f0 (3.11a)

s.t ED
[
UQq(X) | u

]
≤ λ, X ∼ f0 (3.11b)

where both expected value calculations are performed on the decision-space.

Using this methodology, an arbitrary number of constraints may be considered where

qi, Ci, and λi are the equation, space, and tolerance of the ith constraint, respectively.

3.4 Change of Variables

In the sections above, S, and possibly Q, are members of the semidynamical system gen-

erated by a set of ODEs with time t as the independent variable, i.e. S, Q ∈ {St}t≥0.

As such, the corresponding Frobenius-Perron and Koopman operator semigroups, {Pt}t≥0

and {Ut}t≥0, respectively, are parametrized by time. Additionally, when equipped with an

infinitesimal operator, the ODE form from the MOC (Sections 2.1.1 and 2.1.2) is with re-

spect to time. However, when defining the objective-space, or constraint-space(s), it is often

with respect to a function of the state-space and not time, i.e. h(t, x) 6= h(t). Therefore,

the semidynamical system and corresponding semigroups/infinitesimal operators must be

reparametrized so that a single mapping delivers all possible initial conditions to the space

of interest.

The reparametrization is accomplished by first considering the impact of a space not

explicitly dependent on time. From the definition of an objective-space, for example, that

is a subspace of the state-space, the time of the event te (the time needed by an initial

condition to reach the space) is defined to be the solution of

h(te, Ste(x0)) = 0 ∀x0 ∈ D (3.12)
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where h is from Eq. (3.2). It is assumed that te is finite for all x0 ∈ D. While two different

initial conditions may have the same event time, i.e. he : x0 7→ te is not unique, it is the

possibility that he maps to something other than a constant for all initial conditions that

forces a reparametrization.

To make the mapping above consistent for all x0 ∈ D, a new variable v is introduced.

It is assumed that v = φ(t,x) and the relationship φ satisfies

v(0) = φ(0, x) = 0 ∀x0 ∈ D (3.13a)

v(te) = φ(te, x) = ve ∀x0 ∈ O (3.13b)

dv = φ̇(t, x)dt 0 ≤ t ≤ te (3.13c)

where, from the definition of the objective–and other–spaces, te 6= 0 and ve 6= 0. Because,

as an independent variable, time was taken to be monotonic, it is assumed that the function

φ is monotonic for all 0 ≤ t ≤ te to ensure that the transformation is invertible. As such,

φ̇(t, x) 6= 0 for all 0 ≤ t ≤ te.

Using Eqs. (3.13), the change of variables approach may be applied to the ODEs of the

semidynamical system of Eq. (2.6),

xv =

[
x

t

]
(3.14a)

dxv
dv

=
1

φ̇(xv)

[
F (x)

1

]
(3.14b)

where the state-space is augmented to include time explicitly as a state, xv ∈ Rd+1. The

necessity of the monotonic condition of the function φ can be seen in Eq. (3.14b).

The semigroups of Frobenius-Perron and Koopman operators generated by Eq. (3.14b)

may now be expressed as {Pv}0≤v≤ve and {Uv}0≤v≤ve , respectively, parametrized by the
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new variable v. The infinitesimal operators may be derived from each, i.e.

duP

dv
=
duP

dt

(
dt

dv

)
= −u(v)

Φ(xv)

φ̇(xv)

∣∣∣∣
xv(v)

(3.15a)

duU

dv
=
duU

dt

(
dt

dv

)
= 0

∣∣∣∣
xv(v)

(3.15b)

where, once again, the necessity of a monotonic φ may be seen in Eq. (3.15a). However,

it is shown in [32] that singularities occurring from φ̇ = 0 may be mitigated in certain

circumstances.

For the Koopman operator, this change of variables approach is trivial, as shown in

Eq. (3.15b). This is due, in part, by the fact that the Koopman operator is the means through

which a function of observables is transported through the state-space. As such, the change

of variables may be considered an alteration to the function itself and not the underlying

state-space. Therefore, the direct relationships φ and φ′ do not need to be explicitly known.

For the Frobenius-Perron operator, where the density f is inherently connected to the

state-space–through its integral definition in Eq. (2.4)–the change is not as simple. An

explicit form of φ̇ is needed in Eq. (3.15a). In the case where v is another dimension of the

state-space, i.e. v = xi, 1 ≤ i ≤ d, the derivative relationship is known, φ̇(x) = Fi(x),

where Fi is from Eq. (2.6). This case is investigated in [82]. What the authors termed

terrain compensation may be attributed to the required normalization of Eq. (3.13b) to a

single value ve for all possible x0 ∈ D.

3.5 Spring-Mass-Damper Example

This section presents a simple example utilizing the Frobenius-Perron and Koopman opera-

tor optimization approaches, highlighting the benefits of the operator-theoretic formulation

of control selection under uncertainty. The system of interest is a simple spring-mass-

damper (SMD) with an externally applied control force. The equations of motion of the
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system are

mẍ+ cẋ+ kx = F [u(t− tstart)− u(t− (tstart + ∆t)] (3.16)

where u(t− a) is the unit step function, tstart is the time at which the force is applied, and

∆t is the duration. The goal is to determine the optimal tstart to probabilistically maximize

an objective function at T = 10s, the final time. As such, the optimal control decision is

denoted as u∗, which, while it is a scalar value, is left bolded to avoid confusion with the

step function. The system parameters used in Eq. (3.16) may be found in Table 3.1.

Table 3.1: Spring-Mass-Damper system parameters

Parameter Value
Mass (m) 1.0 kg
Spring constant (k) 1.0 N/m
Damping constant (c) 0.3 Ns/m
Force (F ) 1.0 N
Applied time (∆t) 0.5 s

To utilize the control optimization procedure developed in the previous sections, the

EOM of Eq. (3.16) must be written in state-space notation. Additionally, the state-space

EOMs must be time invariant. From Eq. (3.16), it can be seen that the step function has

a dependence on time. To satisfy this restriction, two state-space systems are developed,

unforced and forced variants, with states x = [x, ẋ]ᵀ

Unforced : ẋU = Ax =

[
0 1

−k −c

][
x

ẋ

]
(3.17a)

Forced : ẋF = Ax+ b =

[
0 1

−k −c

][
x

ẋ

]
+

[
0

F

]
(3.17b)

where the instances tstart and tstart + ∆t signal the unforced-to-forced and forced-to-

unforced switches, respectively. The state-space mapping St of the system may be created
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by splicing together the unforced and forced stages according to

Stage 1: x1(t) = eAtx0 0 ≤ t ≤ ts (3.18a)

Stage 2: x2(t) = eA(t−ts)x1(ts) +
(

eA(t−ts) − I
)
A−1b ts < t ≤ ts + ∆t (3.18b)

Stage 3: x3(t) = eA(t−(ts+∆t))x2(ts + ∆t) t > ts + ∆t (3.18c)

where tstart was shortened to ts for simplicity. The full mapping ST : x0 7→ xT may be

written as a single entity by substituting Stage 1 into Stage 2, and the result into Stage 3.

Figure 3.1 shows an example trajectory of the mass displacement as a function of time with

an initial displacement of 0.3m and the input force applied at tstart = 2s.

The Frobenius-Perron and Koopman operators of the mapping may be formulated in a

similar fashion, respectively,

PTf = P3(P2(P1f)) = P3P2P1f (3.19)

UTg = U1(U2(U3g)) = U1U2U3g (3.20)

where the number values correspond to the stages in Eqs. (3.18). Note that because the

underlying systems differ, Eq. (3.17a) versus Eq. (3.17b), the operators may not be added

together, e.g. PtPt′ = Pt+t′ .

3.5.1 Initial Condition Uncertainty

For this example, uncertainty in initial position, x(0), and velocity, ẋ(0), are considered.

The variables are considered random, exhibiting a Uniform distribution over the domain

Ω = [0, 0.5]2. It is assumed that there is no uncertainty in the system parameters. The joint

PDF is then defined as:

f0 = 4 ∀x, ẋ ∈ Ω (3.21)
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Figure 3.1: Example Trajectory with Input Force at tstart = 2s

The objective function is defined only over the position at the final time:

g(x(T )) = 1− [x(T )]2 (3.22)

The optimal selection of tstart, according to the objective function in Eq. (3.22), may

be expressed using the Frobenius-Perron or Koopman operators, discussed in Section 3.2,

respectively,

u∗ = arg max
u∈U

E[g(X) | u]

= arg max
u∈U

∫∫
Ω

(1− x2)PTf0(x, ẋ)dxdẋ (3.23a)

u∗ = arg max
u∈U

E[UTg(X) | u]

= arg max
u∈U

∫∫
Ω

UT (1− x2)f0(x, ẋ)dxdẋ (3.23b)

where both PT and UT are dependent on u (tstart). According to the adjoint property, the

results of Eqs. (3.23a) and (3.23b) will be identical. Using Eq. (3.23a), the expected value

integral may be solved analytically leveraging the system’s linearity. Figure 3.2 shows the

expected objective function value for each possible control decision, tstart.
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Figure 3.2: Expected objective function value versus possible control decisions, tstart

To compare the Frobenius-Perron and Koopman operator approaches to Monte Carlo

simulations, the integrals of Eqs. (3.23) are computed numerically using Monte Carlo in-

tegration such that there exists a dependence on the number of samples/discretizations for

each method. The Monte Carlo, Frobenius-Perron, and Koopman approaches are given,

respectively, as

E[g(X | u)] ≈ 1

N

N∑
i=1

g(xi(T )) (3.24a)

E[g(X) | u] ≈ V (T )
1

N

N∑
i=1

g(xi(T )) PTf0(xi(0)) (3.24b)

E[UTg(X) | u] ≈ V (0)
1

N

N∑
i=1

UTg(xi(0)) f0(xi(0)) (3.24c)

where N is the number of samples/discretizations and V (t) is the volume (area) of the

integration domain at time t (the support of ft). Leveraging, again, the linearity of the SMD

system, this quantity is known analytically. Given the asymptotic stability of the system,

V (t) decreases with time causing an increase in the PDF value of each particle, i.e. Ψ(x) <

0 as discussed in Section 2.1.1. In the T = 10s time-frame, this does not become an
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issue. However, given sufficient time, the individual values would exceed numerical limits.

Figure 3.3 shows the average relative error, taken over all the possible tstart values, for

each of the three approaches. As expected, the Frobenius-Perron and Koopman approaches

evaluate to the same values and show faster convergence than the Monte Carlo simulations.
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Figure 3.3: Comparison of the Frobenius-Perron, Koopman, and Monte Carlo simulation
approaches evaluated numerically given N points

3.5.2 Parametric Uncertainty

This example considers the identical problem as in the previous section, except that uncer-

tainty in the spring constant, k, is considered in addition to the initial condition, x and ẋ,

uncertainty. Following the methodology of Section 2.1.4, the state-space is augmented such

that x = [x, ẋ, k]ᵀ. The joint PDF quantifying the initial condition–state and parameter–is

taken to be

f0(x) = fx(x)fẋ(ẋ)fk(k)

= N (0.25, 0.0625)N (0.25, 0.0625)U(0.5, 1.5) (3.25)
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whereN (µ, σ) is the Normal distribution and U(a, b) the Uniform distribution. The Gaus-

sian distributions are truncated at ±4σ to enforce a compact support over the entire aug-

mented state domain. This results in a three-dimensional initial state-space domain that is

rectangular in R3.

With the additional uncertainty in the parameter k, the system becomes nonlinear in

the augmented state. This nonlinearity warps the initial domain such that the state space

volume at the final time T = 10 sec is a highly complex shape. Figure 3.4 shows the

discretized state-space at the initial and final times, respectively, with their corresponding

joint PDF values, pushed-forward using the Frobenius-Perron operator. The complexity of

this shape prohibits an analytical solution to the expected value integral since the bounds of

integration are coupled to the dynamics and therefore the initial conditions, e.g. parameter

k. The three numerical approaches used previously, Eq. (3.24), are employed instead.

First, the Monte Carlo simulation approximation of Eq. (3.24a) can be applied, yielding

the expected value estimates shown in Fig. 3.5 for N = 1000. Applying the Koopman op-

erator approach in Eq. (3.24c) is quite straightforward, since the initial volume V (0) is rect-

angular and known exactly. The analytical trajectory solution of Eq. (3.18) is used to ob-

tain the cost function associated with each discretized point in the initial uncertainty space

(again with N = 1000), and the expected value is computed and shown in Fig. 3.5. Finally,

the Frobenius-Perron approach using Eq. (3.24b) is more involved–in this example–due to

the difficulty in computing the volume of the joint PDF support at the final time, V (T ).

While there are methods to approximate the domain volume in the three dimensional case,

using either a convex hull [83] or alpha shape function [84], these approximations may be

inaccurate even with large numbers of points and they do not easily extend beyond three

dimensions. Furthermore, when using the Frobenius-Perron approach, the final PDF val-

ues at T = 10 sec are in the range [0, 800] compared to the range [0, 40] at the initial time;

demonstrating the growth of the PDF values as the state space contracts. For example, by

increasing the damping coefficient to c = 1.4 Ns/m, the final PDF values at T = 10 sec
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were in the range [0, 107]. Using alpha shape functions to best approximate the final do-

main volume, the expected value estimates using the Frobenius-Perron approach are shown

in Fig. 3.5, where it is evident that the distortion of the state space and growth of the PDF

values lead to reduced accuracy compared to the Koopman and Monte Carlo approaches.

Note that significantly more points are required using the FP operator approach to converge

to the results generated by the Koopman operator or Monte Carlo simulation. Overall, these

results highlight the benefit of the Koopman operator approach in avoiding problems with

complex domain volumes and loss of numerical precision as the PDF evolves over time.
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Figure 3.4: (left) Initial joint PDF with rectangular support, N = 10,000 particles realized
using Halton sequence. (right) Final joint PDF at T = 10s, given the nonlinear mapping
particles fill non-rectangular volume.
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Figure 3.5: Expected values for possible control decisions (tstart) for parametric and ini-
tial condition uncertainty. Various N amounts for Frobenius-Perron approach highlights
impact on convergence.
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CHAPTER 4

APPLICATION TO PRECISION AIRDROP

A primary contribution of this work is the development of a probabilistically optimal

method to the selection of the CARP, aircraft run-in, and transition altitude for ballistic

airdrop. As such, a mathematical representation of the parachute-payload dynamical sys-

tem must be developed. Additionally, the sources of uncertainty in the mission planning

process must be identified. These sources are separated into uncertainty during release and

uncertainty during descent as described below. The uncertainty during release is condi-

tioned on the CARP location and run-in heading control decisions.

Using the parachute-payload dynamical system and associated sources of uncertainty,

probabilistic planning procedures are developed for the optimal selection of the CARP lo-

cation and run-in heading considering a predetermined transition altitude and an optimized

transition altitude. A discussion on the numerical implementations of the algorithms is

included.

4.1 Parachute-Payload Dynamic Model

The planning process developed in this work addresses high altitude, low opening (HALO)

ballistic airdrop missions. However, the methodology can be easily applied to more stan-

dard airdrop missions in which the main parachute is deployed immediately after release

from the aircraft. A typical HALO airdrop descent can be divided into the three stages

depicted in Figure 4.1. As the package exits the aircraft, the drogue parachute inflates and

the initial momentum from aircraft release dissipates, at which point the package is said

to be stabilized. From here, the system descends under the drogue parachute in a quasi-

steady state to the so-called transition altitude, where the drogue parachute is released and

the main parachute begins to inflate. After the main parachute is fully inflated it descends
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in a quasi-steady state until impact with the terrain. In this work, two different scenarios

are considered. In the first scenario, the transition altitude is predetermined and constant

across all bundles. In the second, the transition altitude is optimized and therefore may

vary between multiple bundles. An investigation into the benefits of the optimized transi-

tion altitude scenario can be found in [20, 19, 22].

For the purposes of this paper, a number of simplifying assumptions are made. First,

stabilization of the drogue-parachute system is assumed to be deterministic and happens

immediately after exiting the aircraft. Second, the main parachute inflation follows a simple

parametrized model as described in [22]. Lastly, the drag of the payload is neglected and the

drag of the system is comprised entirely by that of the parachute. It is important to note that

these assumptions pertain to the model choice and are not a reflection of the methodology

itself. For example, in the case of the first assumption, a random forward-throw descent

stage may be included in the model without any modification to the methodology.

Figure 4.1: HALO airdrop stages.

Considering an inertial, non-rotating North-East-Down (NED) coordinate system shown

in Figure 4.1, the equations of motion for a point-mass model representation of the parachute-
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payload system are given by [22]:

ẍÿ
z̈

 =
−ρCdS‖Vrel‖ − 8kaρπR

2Ṙ

2 (m+ma)

ẋ− wxẏ − wy
ż − wz

+
m

m+ma

0

0

g

 (4.1)

where ρ is the air density, S is the parachute’s reference area, Cd is the coefficient of

drag, m is the mass of the system, ma is the mass of the air contained in the parachute

canopy (referred to as the apparent mass), R is the instantaneous parachute radius, and g is

gravity. Note that the values of S and R depend on whether the drogue or main parachute

is deployed at the time that the model is evaluated. A spatially-varying, three-dimensional

wind field

w(x, y, z) = wx(x, y, z)Î + wy(x, y, z)Ĵ + wz(x, y, z)K̂ (4.2)

is considered and as such the magnitude of the airspeed vector is given by

‖Vrel‖ =

√
(ẋ− wx)2 +

(
ẏ − wy

)2
+ (ż − wz)2 (4.3)

The second term of the numerator in Eq. (4.1) accounts for parachute inflation. The

parameter ka is the apparent mass coefficient and is parachute-specific. During drogue and

main parachute descent, this second term is zero due to Ṙ = 0, while during inflation this

term is non-zero. A full derivation of the inflation dynamics is provided in [22], where

the change in the parachute’s radius, Ṙ, is defined as a function of time using an empirical

model developed by Ludtke [85].

Considering a fully inflated drogue or main parachute, i.e. Ṙ = 0, the quasi-steady-state

package descent rate is given by [86] as

żss =

√
2mg

ρ (z)CdS
(4.4)

Given the model defined in Eq. (4.1), the state vector of the parachute-payload system
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during quasi-steady state descent is defined as

s = [x, y, z, ẋ, ẏ, ż]ᵀ (4.5a)

s.t ṡ = F (s). (4.5b)

where it is assumed that the parachute is fully inflated (Ṙ = 0) and therefore R is omit-

ted from the state vector in Eq. (4.5a). During inflation, when Ṙ > 0, the instantaneous

parachute radius R is explicitly included, i.e.

sR = [x, y, z, ẋ, ẏ, ż, R]ᵀ (4.6a)

s.t ṡR =
[
F (s), Ṙ

]ᵀ
. (4.6b)

4.2 Sources of Uncertainty

The model defined above depends on many environmental and system-specific parameters.

In traditional planning schemes, a nominal set of parameters is used during the planning

process and any deviation from this set in the real, physical system will result in an outcome

that differs from that predicted by the planner. However, by capturing the uncertainty with

a joint probability density, the probabilistic planner can model a range of outcomes and

condition the optimal solution parameters on the most likely (or expected) outcome given

the current uncertainty. This subsection details the sources of uncertainty analyzed in this

study, which were selected as the most influential sources of uncertainty typically present

in airdrop scenarios [87].

4.2.1 Uncertainty During Descent

In the analysis by Petry [88] a comprehensive list of factors affecting airdrop accuracy is

compiled and investigated. During descent the most influential factors affecting airdrop

accuracy include wind, parachute performance, and Total Time of Fall, which is interre-
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lated with the first two factors. Within the scope of this paper, these sources of uncer-

tainty are captured by perturbations to the wind field forecast and uncertainty in the main

parachute coefficient of drag. While these are the most influential sources of uncertainty

during package descent, the proposed probabilistic framework can easily account for ad-

ditional sources of uncertainty if the associated distributions (and correlations with other

uncertain variables) can be appropriately quantified.

Main parachute performance and Total Time of Fall are parameterized by specifying

PDFs for the main parachute’s coefficient of drag, which when coupled with a wind field,

affects dispersion through drift errors. In addition, the difference between the true wind

field at drop time and the forecast wind field is captured by introducing perturbations to the

wind magnitude and direction. By rewriting the xy-components of the wind vector from

Eq. (4.2) in polar coordinates, parametric uncertainty is modeled by

wm(x, y, z) = ŵm

√
w2
x + w2

y (4.7a)

wψ(x, y, z) = arctan

(
wy
wx

)
+ ŵψ (4.7b)

where the multiplicative wind magnitude perturbation ŵm and the additive wind direction

perturbation ŵψ are random variables, but are assumed constant over all altitude. This

reduction of wind uncertainty to two random parameters valid over all altitudes is a sim-

plification of the actual uncertainty in winds that exists in real-world scenarios, but is in

line with those used by other mission planning tools. It should also be noted that for the

remainder of this paper, the z component of the wind vector, wz, is assumed to be zero.

Including the uncertainty in drag coefficient, the uncertain parameter vector for the

airdrop problem may be defined as:

p =
[
Cd, ŵm, ŵψ

]ᵀ (4.8)

Assuming that the uncertainties in each dimension are independent and uncorrelated at the
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drop altitude, the joint PDF quantifying the parameter uncertainty is

fp(p) = fCd(Cd) fŵm(ŵm) fŵψ(ŵψ) (4.9)

While fCd , fŵm , and fŵψ may be any valid PDF (derived, for instance, from simulated

or experimental data), in this work they are taken to be Gaussian: fCd = N (µCd , σCd),

fŵm = N (1.0, σŵm), and fŵψ = N (0.0, σŵψ). Specifically, the distribution modeling the

uncertainty in the coefficient of drag, fCd , is developed from experimental data [19].

Following the form of Eq. (2.22), the state-vector from Eq. (4.5a) is extended to include

the parameter-vector p,

x =

[
s

p

]
=
[
x, y, z, ẋ, ẏ, ż, Cd, ŵm, ŵψ

]ᵀ (4.10)

x =

[
F (x)

0

]
(4.11)

where the parameters have zero dynamics (i.e., are assumed constant with respect to time).

The state-vector for the inflation dynamics, Eqs.(4.6a) and (4.6b), may be extended in the

same way.

4.2.2 Bundle Exit Uncertainty

In addition to the uncertainty found in the descent process, Petry [88] also identified sources

of uncertainty in the package release process which must be accounted for. The bundle exit

PDF formulated here explicitly describes the uncertainty in the packages’ actual horizontal

coordinates at release from the aircraft. This uncertainty is conditioned on the coordinates

of the CARP, which is the desired package release location. This is commonly known in

the airdrop community as the ”CARP miss”, and may be caused by pilot error in tracking

the CARP location, a delay of the loadmaster releasing the packages when the CARP is

crossed, time delays caused by friction as the package rolls out of the aircraft, the position

53



of the load in the aircraft, and other factors.
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Figure 4.2: Aircraft reference fame, rotated Ψ off of the Inertial NED frame

To determine the bundle exit PDF, an aircraft reference frame is defined with its origin

at the CARP location, (xC , yC), and its î axis aligned with the aircraft run-in, as shown in

Figure 4.2. The bundle exit uncertainty is captured by the longitudinal CARP miss in the

î direction, X̂C , the lateral CARP miss in the ĵ direction, ŶC , and the bundle exit time Te,

where the bundle exit time is defined as the difference in time between two consecutive

bundles exiting the aircraft. This time is primarily driven by the pitch angle of the aircraft

and the rolling friction of the cargo floor. In a multi-bundle drop, this time is considered to

be constant across the stick1. These three random variables are taken to be Gaussian and

characterized by the PDFs X̂C ∼ N (µx̂, σx̂), YC ∼ N (µŷ, σŷ), and Te ∼ N (µTe , σTe),

respectively. These distributions are developed from experimental data [19].

In the longitudinal î-direction, the PDF describing the release location of the kth bundle

in the stick is a function of the random variables X̂C and Te and is defined as a Gaussian
1The term for the collection of bundles
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according to,

f
(k)
x̂ = N

(
µkx̂,

(
σkx̂

)2
)

(4.12)

where the mean and standard deviation is given by,

µ
(k)
x̂ = µx̂C + (k − 1) vgµTe (4.13)

σ
(k)
x̂ =

√
σ2
x̂C

+
(
(k − 1)vgσTe

)2 (4.14)

and vg is the aircraft’s ground speed. Figure 4.3 shows the bundle exit PDF for a stick of

eight packages and demonstrates that each package in the stick has a unique PDF describing

its initial release location.
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Figure 4.3: Longitudinal component of bundle exit PDF for an 8-bundle stick

Assuming that the lateral CARP miss is independent of, and uncorrelated with, the

longitudinal CARP miss and package number within the stick, a joint PDF describing the

uncertainty in the release location of package k in the aircraft frame may be written as

fx̂ŷ = N
(
µ̂(k), Σ̂

)
where µ̂(k) =

[
µ

(k)
x̂ , µŷC

]ᵀ
and Σ̂ is a diagonal matrix of elements
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(σ
(k)
x̂ )2 and (σŷC )2. For planning purposes, it is convenient to rotate this 2D Gaussian joint

PDF into the inertial frame and express its mean relative to the origin of the inertial frame

as follows:

R(Ψ) =
[

cos Ψ − sin Ψ
sin Ψ cos Ψ

]
(4.15)

f (k)
xy = N

(
R(Ψ) µ̂(k) +

[
xC
yC

]
, R(Ψ) Σ̂R(Ψ)ᵀ

)
(4.16)

where (xC , yC) is the CARP location in the inertial frame and Ψ is the run-in heading.

The joint PDF describing the total initial condition uncertainty in the augmented state

space is constructed using Eqs. (4.9) and (4.16). Assuming that the parametric uncertainty

in Eq. (4.9) is independent of the xy-uncertainty in Eq. (4.16), the joint PDF of the kth

bundle state at the drop altitude may be written as

f
(k)
0 (x | u) = f (k)

xy (x, y | u) fCd(Cd) fŵm(ŵm) fŵψ(ŵψ)1A(z, ẋ, ẏ, ż | x) (4.17)

where u = [xC , yC , Ψ]ᵀ and the remaining augmented state space dimensions (z, ẋ, ẏ, ż)

are included using a characteristic function [30]. The characteristic function of the subset

A, 1A, is defined as

1A(x) =

1 x ∈ A

0 x /∈ A
(4.18)

with the subset A in Eq. (4.17) being

A =
{
z = zd, ẋ = wm cos(wψ), ẏ = wm sin(wψ), ż = żss : x ∈ D

}
(4.19)

where zd is the drop altitude, wm = wm(x, y) and wψ = wψ(x, y) are from Eq. (4.7), and

żss is the quasi-steady-state package descent rate under the drogue parachute defined in

Eq. (4.4). It can be seen that the characteristic function provides a method that allows aug-

mented states to be initially deterministic or a deterministic function of probabilistic states.
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Using Lebesque integration, the characteristic function 1A ensures that
∫

Ω
f0(x)µ(dx) = 1

is satisfied.

The initial joint PDF in Eq. (4.17) is conditioned on a CARP location and run-in head-

ing and is therefore the entry point of the control variable u = [xC , yC , Ψ]ᵀ into the

precision airdrop problem. The goal of the probabilistic planning methodology is therefore

to choose the optimal value of these three parameters given the uncertainty distributions

during package release and package descent with respect to an objective function defined

on the ground.

4.3 Probabilistic Planning Procedure

When formulating the probabilistic mission planning algorithm, the separation of the de-

cision and objective spaces introduced in Section 3.1 is an important step and distinction.

The measure for success in this problem is typically defined at ground–or terrain–level,

while the decisions to be made are defined at the drop altitude. These spaces are connected

through the dynamics of the parachute-payload system defined in Section 4.1. The uncer-

tainty inherent in the dynamics of the system combined with the uncertainty in the actual

initial conditions that result from a selected CARP and heading is the motivation behind

formulating the planning algorithm probabilistically. In this section, the probabilistic plan-

ning algorithms will be discussed in detail. This includes the definition of an objective

function, use of the Koopman operator to transport the function to the decision-space, and

finally the steps taken to optimally determine the CARP and aircraft heading.

4.3.1 Optimization Elements

To facilitate discussion of the CARP and run-in optimization problem, the objective and

decision spaces must be defined. The decision-space is taken to be

D = {z(0) = zd : x ∈ Ω , t = 0} (4.20)
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where z is a member of x, Eq. (4.10), and zd is the pre-determined drop altitude (usually

selected through operational considerations). Given that mission success is usually defined

as a function of where the packages land on the ground, it is natural to define the objective-

space as the set of all points in the state space which have a zero altitude above the local

terrain:

O = {z(t)− h
(
x(t), y(t)

)
= 0: x ∈ Ω, t > 0} (4.21)

where x and y are also members of x and h is a terrain elevation function. For flat terrain,

h(x, y) = 0. It is assumed that h(x, y) < zd ∀x, y and therefore D ∩ O = ∅. The semi-

dynamical system generated by the parachute-payload system’s EOMs in the augmented

state space (Eq. (4.5b)) connect the decision and objective spaces. The specific mapping is

indexed via T , the time needed to impact terrain, ST : D → O. The joint PDF quantifying

the uncertainty in the parachute-payload system’s augmented state, supported initially on

the decision-space, is fully described in Eq. (4.17).

The objective function is a user-supplied function that allows tactical considerations to

be embedded in the airdrop problem. Defined over the objective-space, O, it is a function

of x and y only for this work. However, a functional dependence on any other element

of the augmented state-space Ω may be included with minimal modification. While the

objective can represent any physical or non-physical quantity, one possible approach is to

define a cost function based on the workload required to retrieve a package, where work-

load is a weighted function of the lateral and/or vertical distance that must be traveled

from a starting location to a retrieval point [89, 82]. However, when considering a cost,

the corresponding function is typically not compactly supported, a restriction discussed in

Section 2.1.2. Using Eq. (2.16), the workload cost function may be inverted into a com-

pactly supported objective function, where the maximum workload is user-specified. After

the expected value of the objective function is taken, the result may be reverted back to a

cost.

Figure 4.4 shows an example of inverting a cost function to an objective function. Fig-
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Figure 4.4: Workload cost function and corresponding objective function generated using
500m upper bound

ure 4.4a is generated by the workload cost function

gWL(x, y) = D(x, y | xIPI, yIPI) (4.22)

where (xIPI, yIPI) = (5000m, 5000m) and D is a function quantifying the travel distance

from the IPI to an arbitrary (x, y) point in meters. In the simplest of scenarios this is the

Euclidean distance from the IPI. However, when obstacles are present, a method for com-

puting the minimal travel path is needed. This can be implemented by using Dijkstra’s

algorithm [90] or the fast marching method [91], for example. It can be seen that there

exists an untraversable region to the west of the IPI, creating an asymmetry in the objec-

tive function. Figure 4.4b shows the cost function converted to an objective function using

Eq. (2.16a) with a maximum bound of Λ = 500 m. Note that as distance from the IPI

increases, the function decreases to a minimum of zero satisfying the need for compact

support. As highlighted in the next section and in References [89, 82], this same methodol-

ogy can be used to create complex and multi-faceted objective functions capturing various

combinations of tactical objectives and operational constraints.

Using the methodology in Section 3.3, inequality constraints may be optionally added
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to facilitate the embedding of additional complex mission requirements into the planning

procedure. These constraints may, for example, enforce specified no-fly zones or attempt

to eliminate terrain impacts in specified regions. A no-fly zone would be an example of a

constraint function supported on the decision-space, while eliminating terrain impacts in

specified regions is an example of a constraint function supported on the objective-space

and is shown in Section 5.1.3. As discussed in Section 3.3, constraints in between the

decision and objective spaces may also be considered, e.g. enforcing that packages do not

fly over civilian areas at low altitudes.

With all of the needed elements defined, the optimal xy-CARP location and run-in

heading may be found by solving

[x∗C , y
∗
C , Ψ∗]ᵀ = arg max

u∈U
EO
[
g (X) | u

]
(4.23a)

= arg max
u∈U

ED
[
USg (X) | u

]
(4.23b)

where Eq. (4.23a) is the Frobenius-Perron form and Eq. (4.23b) is the Koopman form.

The control variable u = [xC , yC , Ψ]ᵀ is found explicitly in Eq. (4.17), and is therefore

considered an optimal PDF selection problem. If a spatially-varying wind field (Eq. (4.2))

is employed, in which (xC , yC) will influence the specific wind velocity values the package

experiences during its descent, then the problem may be considered a combined optimal

system and PDF selection problem.

4.3.2 Formulating the Expected Value

With the expected value integrals of Eqs. (4.23a) and (4.23b) shown to be equivalent in

Section 3.2, computational processes which implement either version of the expected value

should theoretically yield the same result. However, several computational advantages can

be obtained by using the Koopman operator form. This section will detail a proposed

computational process to evaluate the expected values in Eqs. (4.23a) and (4.23b), and
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will likewise describe the computational advantages obtained when using the Koopman

operator as opposed to the Frobenius-Perron operator.

As a first step in computing the expected value, the mapping ST : D → O, where T is

the terrain impact time, is formed using an ensemble of trajectories. It should be noted that,

from Section 3.4, the use of ST is a slight abuse of notation given that the time to terrain

impact T may be a function of the initial conditions and therefore is unable to parametrize

the semidynamical system and corresponding semigroups. If this is the case, the change of

variables procedure presented in Section 3.4 should be applied to resolve the conflict, e.g.

reparametrizing to z from t in the case of flat terrain. Emphasizing again a key point from

Section 3.4, the reparametrization of the Koopman operator semigroup is trivial. However,

for notational simplicity, the system and semigroups are left parameterized by t.

For the precision airdrop problem, it is of interest to ensure that this ensemble of trajec-

tories covers important xy-areas of the objective-space at the time of impact. To compute

the trajectories, a set of N realizations {ω(i)(Ti)}Ni=1 is created, where Ti is the time at

which the realization impacts the ground. Each realizationω(i) contains
[
x, y, Cd, w̄m, w̄ψ

]ᵀ
and is an element of the subspace

AT =


(x, y) ∈ Axy x, y ∈ R

Cd
min ≤ Cd ≤ Cd

max Cd ∈ R
w̄min
m ≤ w̄m ≤ w̄max

m w̄m ∈ R
w̄min
ψ ≤ w̄ψ ≤ w̄max

ψ w̄ψ ∈ R

 (4.24)

whereAxy is the area of interest on the ground. The area of interest and minimum/maximum

values for each parameter are scenario-specific and defined by the user. For the work in this

paper, a multidimensional Halton sequence [80] is used to form the realizations. While the

Halton sequence possesses good space-filling characteristics, uniformity of the discretized

points is not necessary and additional points may be strategically added to increase resolu-

tion in certain areas. It is important to note that the subspace AT is being discretized, rather

than sampled from a joint PDF. As such, it is not required that the spatial density of the
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realizations {ω} be correlated to the joint PDF or objective function in any way.

Given that the realizations have defined terrain impact locations, trajectories from the

drop altitude to ground are generated by solving a two-point boundary value problem

(BVP) for each ω(i). In this work, a single shooting method with an adaptive step-size

is used [92]. From Eq. (4.19), the compact support of the initial condition joint PDF is a

deterministic function of ω and can be used to populate a full augmented-state for each

ω(i) at the drop altitude. The EOMs in (4.1) are forward-integrated from the drop altitude

(decision-space) to terrain impact (objective-space) for each realization, creating a set of

N unique trajectories through the augmented state-space.

Using (2.11) and (2.15), the ODE forms of the Frobenius-Perron and Koopman op-

erators derived using the MOC, the forward-propagated joint PDF and pulled-back score

function may be embedded into each realization. Equation (2.11) states that the joint PDF

of the augmented state generated by the realization ω(i)(Ti) at ground is

fO(ω(i)(Ti) | u) = fD(ω(i)(t0) | u) e−
∫ Ti
t0

Ψ(τ) dτ (4.25)

where t0 is consistent for all realizations. Likewise, Eq. (2.15) states that realization ω(i)’s

objective function value at the drop altitude is

gD

(
ω(i)(t0)

)
= gO

(
ω(i)(Ti)

)
(4.26)

where gO is the user-defined objective function.

The use of the Koopman operator is a natural choice over the Frobenius-Perron op-

erator for the evaluation of the expected value of the objective function for a number of

reasons. If the Frobenius-Perron form of the expected value is used, Eq. (4.23a), then the

joint PDF would need to be propagated forward for each possible control decision. This is

because the density evolved through the state space is a function of the control variables.

As a result, the density propagation step along each realization in (4.25) will need to be
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performed repeatedly, each time a new control selection is evaluated in the search for an

optimal decision. Alternatively, since Eq. (4.26) does not explicitly contain the control

decision u, the pull-back of the score function must only be performed once. Evaluating

alternative control values (CARP locations and headings) then only involves re-computing

the expected value integral in Eq. (4.23b) with the specific joint density under consider-

ation. Compared with the Frobenius-Perron form of the expected value, which requires

both a density propagation step and computation of the expected value integral for each

candidate control decision, use of the Koopman operator involves only re-computation of

the integral and thus saves significant computational effort.

A second benefit of the Koopman operator is that the joint PDF is never explicitly

propagated. During descent, the parachute system approaches steady-state values in the

velocity dimensions, causing the volume of the support of the original joint PDF to decay

to zero. As such, the PDF values increase drastically to preserve the unit volume constraint

of the PDF. This may result in joint PDF values that are too large to work with numerically.

Hoogendoorn et al. experienced a similar problem in [41]. This is an issue which will

affect any system exhibiting Φ(x(t)) < 0, which includes stable systems, given sufficient

propagation time. Use of the Koopman operator form of the expected value, Eq. (4.23b),

avoids this issue with growth in the PDF values since the joint PDF is never propagated

(i.e., Eq. (4.25) is never used in the solution procedure).

Finally, as pointed out at the beginning of this Section, a reparameterization of the

system and semigroups is needed even for the simplest case of flat terrain. In the case of

complex, non-flat terrain or when considering the transition altitude to be a non-constant

system parameter the reparameterization becomes increasingly difficult for the Frobenius-

Perron operator as the derivative of the function relating t to the new independent variable

v, dv = φ̇(t, x)dt, is used explicitly in the MOC solution (Eq. (3.15a)). However, when

using the Koopman operator, the MOC solution (Eq. (3.15b)) does not change when re-

parameterizing. This allows for t to be used to develop the solution before representing it
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in terms of v.

Using the Koopman operator form of the optimization problem, the expected value of

Eq. (4.23b) for the airdrop planning problem is:

ED
[
G (X) | u

]
=

∫
Ω

G(x) fxy(x, y | u) fCd(Cd) fŵm(ŵm) fx̂ψ(ŵψ) dx (4.27)

where the k has been dropped from f
(k)
xy for notational simplicity and G = USg is the

pulled back objective function. Since the CARP and run-in decision u only appears in the

initial xy-uncertainty fxy, which is known in closed form, it is beneficial to partition the

full integral and create a second function dependent only on x and y,

g∗(x) = G(x, y, Cd, ŵm, ŵΨ)fCd(Cd) fŵm(ŵm) fx̂Ψ
(ŵΨ) (4.28)

g∗xy(x, y) =

∫
ACd

∫
Aŵm

∫
AŵΨ

g∗(x, y, Cd, ŵm, ŵΨ) dCd dŵm dŵΨ (4.29)

where g∗xy is the expectation of the objective function under perfect knowledge of the drop

location. This is typically referred to as a conditional expectation. Substituting Eq. (4.29)

into Eq. (4.27), the function may be expressed as

ED
[
G (X) | u

]
=

∫
Ax

∫
Ay

fxy(x, y | u)g∗xy(x, y) dx dy (4.30)

which highlights the influence of the control decision u on the expected value. Given that

the function fxy is known analytically, the difficulty in evaluating Eq. (4.30) comes from

computing the integrals found in Eq. (4.29).

While the decision to form the realization set at ground level ensures sufficient coverage

of the objective function, after solving the BVPs the realizations at the drop altitude (i.e.,

the origins of each trajectory in the decision-space) show no consistent structure and can be

considered scattered. It is only at theseN locations that the function g∗ is known and there-

fore the integrals of g∗ in Eq. (4.29) must be calculated numerically. For the purposes of
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this work, the kernel-based methods presented in Section 2.2.2 are used to approximate g∗

from the scattered data. Lobachevsky splines were chosen over other scattered-data approx-

imation methods because they can be integrated analytically; this procedure is presented in

detail in Section 2.2.4. Additionally, they have compact support, which leads to a sparse

system of equations during the approximation process, lending itself to a tractable numer-

ical implementation. The implementation is handle by InterpCL, the GPU-accelerated C++

library highlighted in Section 2.2.5.

Following the procedure set forth in Section 2.2.2, a kernel-based interpolant of g∗ is

formed from the scattered data

g∗(x) ≈
N∑
i=1

ciK(x, xi) =
N∑
i=1

ci

5∏
j=1

φ
(
xj − x(i)

j

)
(4.31)

where φ is the Lobachevsky spline function. Since multivariate Lobachevsky spline basis

functions are the product of univariate functions, single dimensions may be easily inte-

grated. When computing the conditional expectation in Eq. (4.29), three of the five dimen-

sions (drag, wind magnitude perturbation, and wind direction perturbation) are integrated

out analytically, leaving the two-dimensional function g∗xy. The spline approximation of

this conditional expectation may be written as,

g∗xy(x, y) ≈
N∑
i=1

c̄i φ(x− xi)φ(y − yi) (4.32)

where the c̄i coefficients are modified from the original coefficients in Eq. (4.31) according

to the procedure developed in Section 2.2.4. This constitutes the analytical integration of

the approximated g∗ function across the chosen dimensions.

Returning to the full expected value of Eq. (4.30), the density of the uncertainty in x

and y is given by the bundle exit PDF, Eq. (4.16). Substituting Eq. (4.32) into Eq. (4.30),

a functional representation of the expected objective function value given the CARP and
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run-in tuple u can be written as

E (u) =

∫
Ax

∫
Ay

fxy(x, y | u)
N∑
i=1

c̄i φ(x− xi)φ(y − yi) dx dy (4.33)

In this work, the final two integrals of Eq. (4.33) are evaluated using Monte Carlo integra-

tion. Since fxy is a two-dimensional Gaussian distribution, a total of Ne evaluation points

are sampled uniformly within a five standard deviation ellipse centered on the mean of fxy.

The complete integral is thus approximated as

E (u) ≈ A5σ

Ne

Ne∑
j=1

fxy(xj, yj | u)
N∑
i=1

c̄i φ(xj − xi)φ(yj − yi)

 (4.34)

where A5σ is the area of the 5σ-ellipse, which is itself a function of the CARP and run-

in tuple u. The reason for this dependency is that, when assuming a constant airspeed,

dropping the packages on a heading into the wind, the aircraft’s ground speed is lower.

Thus, the spatial uncertainty in the drop location (and thus the support of fxy) caused by

roll-out delays from the aircraft and other factors is less, compared to when the aircraft

drops the packages with a tailwind.

4.3.3 CARP and Heading Optimization

The methodology presented to this point formulates the optimization problem and enables

the planning algorithm to compute the expected value associated with a given choice of

CARP and run-in heading. To determine the optimal solution for these inputs given the

assumed uncertainty, the problem in Eq. (4.23b) must now be solved. Potentially, the op-

timal solution may be found through a gradient-based optimization routine as described

in [75]. One downside to such methods is susceptibility to local maxima, which may pre-

clude convergence to the global optimum. A second downside is that from a mission plan-

ning perspective, optimization through the use of a solver routine does not provide any type
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of situational awareness to the user, who may be interested in a visual description of the

expected performance as a function of CARP and run-in selection.

To address these concerns, an approximate solution to Eq. (4.23b) is found by gridding

the solution space, and selecting the optimal value from the candidate solutions in the grid.

The expected values associated with these candidate solutions are then used to visualize

the underlying mission tradeoffs for operator situational awareness. To begin, the control

domain is discretized into Nc×Nh CARP and run-in tuples, denoted by the set {ui}Nc×Nhi=1 ,

where Nc is the number of (x, y) CARP locations and Nh is the number of run-in headings

between [−180◦, 180◦). Evaluating Eq. (4.34) at each point produces a direct relationship

between the potential control decisions and their respective expected objective function

value.

The optimal CARP and run-in tuple may be found by querying the element in the grid

that corresponds to the maximal (or minimal) value E(u). Furthermore, the expected ob-

jective value (EOV) at drop altitude can be visualized by plotting E(u) at each x − y

location for a given heading. This map provides a visualization to the user of the expected

score function that results from dropping at any x−y location on the map, given that head-

ing selection and all associated uncertainty. If the user provided a cost function, which was

subsequently inverted, the EOV maps may be reverted to expected cost value (ECV) maps

using Eq. (2.16b). An array of these maps can be created, one for each discretized heading.

Note that when using this discretization method to find the approximate optimal CARP and

run-in, the error between the selected tuple and the true optimal tuple is dependent on the

grid point spacing ∆xC , ∆yC , and ∆Ψ (i.e., resolution). There is a natural tradeoff between

the degree of optimality of the resulting solution and the computational burden associated

with solving the problem on a higher-resolution mesh.

In addition to the optimal solution and the EOV/ECV map, the so-called Launch Ac-

ceptability Region (LAR) is also of interest from an operational perspective. The LAR is

a subset of the control domain in which a given set of operational constraints are satisfied.

67



For instance, in the case of an objective function which quantifies retrieval workload, the

LAR may be defined as the set of CARP location and run-in heading tuples that result

in a workload amount under a certain value. The LAR can be visualized on top of the

EOV/ECV map to improve situational awareness for the user, in order to balance airdrop

mission objectives with other flight path or operational constraints.

4.3.4 Transition Altitude Optimization

The CARP and run-in heading optimization procedure developed in the preceding Sections

assumed a predetermined, constant transition altitude for all bundles in a stick. In [20], [19],

and [82] it is shown that airdrop mission outcomes may be improved by allowing the transi-

tion altitude to be optimized, possibly varying between individual bundles in a stick. How-

ever, the developed algorithms assumed a predetermined CARP and run-in and computed

the optimal transition altitude as the package descended under the drogue parachute.

Considering the transition altitude to be a control decision to be optimized alongside the

CARP and run-in, such that the benefits of the transition altitude optimization are included

in the planning stage, the control input vector u is augmented to include zt, the transition

altitude, i.e. uz = [xC , yC , Ψ, zt]
ᵀ. Given that the transition altitude directly affects

the trajectories of the parachute-payload system, the augmented state-space must also be

expanded to include zt as a parameter.

Using the Koopman operator to pull the objective function g back to the decision-space

D, the full optimization problem to be solved may be expressed as

[xC , yC , Ψ, zt]
ᵀ = arg max

u∈U
ED
[
US(u)g(X) | u

]
= arg max

u∈U

∫
Ω

US(u)g(x)f0(x | u)dx (4.35)

where S(u) : D 7→ O is generated by the ODEs developed in Section 4.1. It is assumed

that the transition altitude parameter is a deterministic variable–that is, no transition alti-
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tude is more likely to occur than another transition altitude–and therefore its contribution

to the initial condition joint PDF may be considered independent of the other variables

and quantified by the characteristic function fzt(zt) = 1A(zt) where A = [zmin
t , zmax

t ], the

range of acceptable transition altitudes. In contrast to the CARP and run-in only optimiza-

tion, where only the initial condition joint PDF f0(x | u) was conditioned on the control

input, the inclusion of the transition altitude embeds the control decision in the state-space

mapping S(u).

To solve the optimization problem in Eq. (4.35), an approach similar to that of Sec-

tion 4.3.2 may be taken. The realizations {ωz}, used to numerically represent the state-

space mapping S through trajectories, contain [x, y, Cd, w̄m, w̄ψ, zt]
ᵀ, where the first four

elements are from the subspace defined in Eq. (4.24) and zt ∈ [zmin
t , zmax

t ]. Considering

that ωz ∈ AZ , where AZ ⊂ R6 is a six-dimensional hyperrectangle, the space may be filled

using a Halton sequence or similar discretization method.

After solving the BVPs for the set of realizations, a Lobachevsky spline interpolant

must be fitted to the scattered, six-dimensional dataset in order to compute the conditional

expectation of Eq. (4.29). Given the number of realizations needed to sufficiently fill the

six-dimensional space, this proves to be exceptionally difficult. Through a combination

of memory required to store the sparse representation of the kernel matrix and numerical

precision issues when performing algebraic operations over large sets, for the purposes of

this work, this procedure is considered intractable.

To circumvent these issues, the desired gridded-structure of the solution space is lever-

aged to breakup the single, large problem of Eq. (4.35) into a set of smaller subproblems.

By first discretizing the range [zmin
t , zmax

t ] into Nt candidate transition altitudes, {z(i)
t }Nti=1,

the pull-back procedure using the Koopman operator and subsequent conditional expec-

tation computation (developed in Section 4.3.2) is performed for each unique z(i)
t using

the five-dimensional realizations {ω(i)}Ni=1. This results in a total of Nt × N BVPs to be

solved. The trajectories are used to construct a set of Nt conditional expectation functions,
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{g∗(i)xy (x, y)}Nti=1, using Lobachevsky splines on the five-dimensional datasets. Figure 4.5a

shows an example of a set of conditional expectation functions. The functions have been

evaluated on a set of xy-points and plotted against their corresponding transition altitudes

on the vertical axis. The red, dashed line is located at (0.475, 0.500) and serves as an

evaluation point for the set of functions. Figure 4.5b plots the conditional expected value

against transition altitude for the xy-evaluation point.

(a) Conditional expectation functions
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Figure 4.5: Conditional expectation set example. (left) The conditional expectation func-
tions indexed by their respective transition altitudes. (right) A curve showing Nt = 50
conditional expectation functions evaluated at (0.475, 0.500)

Given that the transition altitude must be a scalar value, the set of conditional expecta-

tion functions must be combined into a single entity. From a point-wise (x, y) perspective,

a selection procedure must be applied to the evaluation curve shown in Fig. 4.5b that, for

every xy-location, returns the best transition altitude and its corresponding conditional ex-

pectation. This procedure is given as

(
ζ(x, y), ḡ∗xy(x, y)

)
= Υ

(
g∗(1)
xy (x, y), . . . , g∗(Nt)xy (x, y)

)
∀x, y ∈ Dxy (4.36)

where Dxy is the x and y dimensions of the decision-space. The selection criteria Υ pro-

duces two functions. The first function, ζ , returns the best transition altitude, from the set
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{z(i)
t }Nti=1, for any (x, y) location. The second function, ḡ∗xy, is the composite conditional

expectation, returning conditional expectation of the best transition altitude for any (x, y)

location.

The definition of what is considered best in Eq. (4.36) is entirely dependent on the

construction of Υ. For the purposes of this work, the selection criteria is taken to be, for an

objective function,

ḡ∗xy(x, y) = max
(
g∗(1)
xy (x, y), . . . , g∗(Nt)xy (x, y)

)
∀x, y ∈ Dxy (4.37a)

ζ(x, y) = arg max
zt∈Z

(
g∗(1)
xy (x, y), . . . , g∗(Nt)xy (x, y)

)
∀x, y ∈ Dxy (4.37b)

where Z is the set of discretized transition altitudes. For a cost function, Eqs. (4.37a) and

(4.37b) would use min and arg min, respectively. Figure 4.6 shows an example of this se-

lection process using the conditional expectation function set from Figure 4.5. Comparing

Figure 4.6a to any single plot from Figure 4.5a, the operational benefit of allowing for an

optimized transition altitude can be easily seen.
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Figure 4.6: Selection criteria using max and arg max. (left) The composite conditional
expectation function ḡ∗xy(x, y). (right) Transition altitude schedule ζ(x, y). Dark blue
region scores below a threshold, any transition altitude will obtain an equally low score.

The selection criteria defined by Eqs. (4.37a) and (4.37b) can be considered an overall

ideal scenario and it assumes that the bundles will know their exact (x, y) location exiting

the aircraft. This may be handled operationally, for example, by equipping the bundles
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with a GPS receiver to supply their location. However, given that the GPS data is inher-

ently uncertain, Υ should be constructed using expected value integrals to more accurately

represent the real-world scenario. This is left to future research and elaborated on in Sec-

tion 6.2.4.

Using the composite conditional expectation, the functional relationship between a

CARP and run-in tuple, u, and the best expected objective function value may be ex-

pressed, similar to Eq. (4.33), as

Ez (u) =

∫
Ax

∫
Ay

fxy(x, y | u)ḡ∗xy(x, y) dx dy (4.38)

where fxy is the bundle-exit PDF, developed in Section 4.2.2. Equation (4.38) may be

evaluated in a similar fashion to Eq. (4.34).

Following the procedure developed in Section 4.3.3, the remaining dimensions of the

solution space, {xC , yC , Ψ}, are gridded to form a set candidate solutions. The total ex-

pected value is computed for each using Eq. (4.38). The optimal CARP and run-in may

then be found by querying the element in the grid with the maximal (or minimal) expected

value. The EOV/ECV maps described in Section 4.3.3 may be created from the candidate

solution grid.

In addition to providing an optimal CARP and run-in heading that are aware of the

ability to optimally select the transition altitude, the procedure developed above produces

the optimal transition altitude schedule (i.e. ζ : (x, y) 7→ z∗t ). While this schedule may be

used to plan the transition altitude a priori (before exiting the aircraft), by computing the

expected value of ζ for each candidate solution using the bundle-exit PDF, for this work it

is assumed that the optimal transition altitude is determined as the bundle exits the aircraft

by evaluating the optimal transition altitude schedule at its drop location.
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4.3.5 Extension to Multiple Bundles

The CARP location, run-in heading, and, possibly, transition altitude optimization prob-

lems have been, up to this point, with respect to a single bundle and in Section 4.3.2 the

bundle position k was removed from the bundle exit PDF f
(k)
xy for simplicity. By adding

k back in explicitly, the functional form of the expected value integral for a given control

selection becomes dependent on the bundle position,

E(k) (u) =

∫
Ax

∫
Ay

f (k)
xy (x, y | u)g∗xy(x, y) dx dy (4.39a)

E(k)
z (u) =

∫
Ax

∫
Ay

f (k)
xy (x, y | u)ḡ∗xy(x, y) dx dy (4.39b)

where Eqs. (4.39a) and (4.39b) are developed in Sections 4.3.2 and 4.3.4, respectively.

Since both equations may be evaluated using Eq. (4.34) for each bundle, the z subscript

will be dropped from Eq. (4.39b) for the following developments.

Considering a stick with nb bundles, the optimal CARP location and run-in heading

problem is extended to multiple bundles by

[x∗C , y
∗
C , Ψ∗]ᵀ = arg max

u∈U
β
(
E(1)(u), . . . , E(nb)(u)

)
(4.40)

where the function β creates a composite value for the entire stick from the individual

bundle expected values. The choice of β provides another input for tactical considerations

to be embedded into the planning procedure. In this work, β is taken to be a weighted sum,

β
(
E(1)(u), . . . , E(nb)(u)

)
=

nb∑
k=1

wk E
(k)(u) (4.41)

where wk = 1/nb would produce the arithmetic mean of the expected objective function

values for each bundle. The bundle weighting factors wk provide an operator with a mech-

anism to weight the importance of one bundle in a stick relative to others.
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Inequality constraints for multiple bundles may be handled in a similar fashion. Con-

sidering that E(k)
q (u) is the expected value of the constraint q for bundle k given u, then an

inequality constraint imposed on the stick may be written as

Γ
(
E(1)
q (u), . . . , E(nb)

q (u)
)
≤ λ (4.42)

where Γ creates a composite value for the stick. Considering the uncertain nature of the

system, probability of occurrence constraints are of interest in this work. In evaluating a

constraint over all nb bundles in a stick, De Morgan’s laws [45] may be used to properly

combine the probabilities of constraint violations from each package. In this case, let Ek

be the probability of bundle k causing a constraint violation. Then De Morgan’s law asserts

that the value of Γ, evaluated as

Γ
(
E(1)
q (u), . . . , E(nb)

q (u)
)

= 1−
nb∏
k=1

(
1− E(k)

q (u)
)

(4.43)

is the probability of any bundle in the stick initiating the constraint violation, and should

be used to evaluate whether a candidate CARP and run-in solution satisfies a probabilistic

inequality constraint.

Considering the case of optimizing the transition altitude for multiple bundles, given

that the optimal transition altitude schedule is developed using the set of conditional expec-

tation functions, before the k-dependent bundle-exit PDF is used, it is valid for all bundles

in a stick and is assumed to be used for each.

4.3.6 Implementation

The probabilistic planning procedure presented in this Section, while leveraging many ben-

efits provided by the Koopman operator, still presents a difficult and computationally com-

plex problem to implement. In addition to the InterpCL library, which provides a gener-

alized framework for the kernel-based approximation methods discussed in Section 2.2.2,
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a code-base containing various simulation and computation routines was developed for–

and fundamental to–this work. The core functionality of the code-base is twofold. First,

it provides a generalized simulation toolkit that may be used to numerically solve a sys-

tem of ODEs given a large set of initial conditions. This is needed when representing

the Frobenius-Perron and Koopman operators generated by the ODEs (the semidynamical

system) numerically and when running Monte Carlo simulations for comparison purposes.

Second, various precision airdrop specific programs and subroutines implement the plan-

ning procedures developed in the preceding Sections.

The simulation toolkit is written in C++ and implements a fourth-order Runge-Kutta

(RK4) forward-integrator [93, 94] with comprehensive event detection. To make solving a

large number (on the order of 106) of trajectories tractable, the toolkit is designed to target

GPU devices using VexCL2, a C++ vector expression template library [95, 96]. In addition

to abstracting memory management away from the user, VexCL provides convenient mech-

anisms to build GPU-kernels (used by the forward integrator and for event detection) using

just-in-time (JIT) compilation, providing a means for run-time specific improvements. The

forward-intergator kernel is generated from the fixed time-step RK4 given by Odeint3, a

modern library for solving ODEs numerically [97]. This differs from the adaptive time-

step scheme used by default in MATLAB’s well-known ode45 [98], choosing the tighter

control provided by the former when dealing with event detection.

Events are a fundamental part of the toolkit and represent a structure with which to input

and output data, e.g. initial conditions, final conditions, and observables. Used to imple-

ment the decision and objective spaces, and possibly constraint spaces, from Section 3.1, an

event is said to occur when its equality he(t, x) = 0 is satisfied and its derivative ḣe(t, x)

2https://github.com/ddemidov/vexcl
3http://www.odeint.com
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is positive or negative as specified. Numerically, the zero-crossing is identified by

he (tk, xk)

he (tk−1, xk−1)
≤ 0 (4.44)

he (tk, xk) ∆h ≥ 0 (4.45)

where k ≥ 1 specifies the current time-step and ∆h is 1, −1, or 0 and specifies whether

the crossing in the positive, negative, or either direction, respectively, is sought. When

Eqs. (4.44) and (4.45) are satisfied, the state of the system at the event is approximated by

linear interpolation between (tk−1, xk−1) and (tk, xk) and recorded.

For the precision airdrop problem, three event types are used frequently: Constant Slice,

2D Surface, and Variable Slice. Figure 4.7 shows an example of each, respectively, with

x ∈ R3. The Constant Slice and Variable Slice events are similar considering they are

both defined by he(t, x) = z − ze = 0 (where z is a state in x) but differ in that ze is

constant across all particles for the Constant Slice event and may vary between particles

for the Variable Slice event. Given that the event equation he is evaluated at every time-

step for every particle, its execution must be efficient. If the function is known analytically,

which it is for the Constant and Variable slice events, it may be easily made into a GPU-

kernel using VexCL. For the 2D Surface event, whose event equation may be written as

he(t, x) = z − hz(x, y) = 0, where x = [x, y, z]ᵀ, the function hz may not be known

analytically, as is the case when it represents real-world terrain, such as in the form of

Digital Terrain and Elevation Data (DTED) [99]. In this scenario, the terrain data is stored

on the GPU as an image in what is known as texture memory, which allows for extremely

fast bilinear interpolation. Using this memory type, the GPU-kernel performs the function

evaluation via interpolation with negligible overhead.

Using the parachute-payload system, a full trajectory from the drop altitude to ter-

rain impact is implemented in stages, similar to the spring-mass-damper system in Sec-

tion 3.5. The full descent, introduced in Section 4.1, is partitioned into three stages: drogue
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(a) Constant Slice (b) 2D Surface (c) Variable Slice

Figure 4.7: Simulation toolkit event examples. Black lines represent trajectories from ini-
tial conditions and red dots signify the event for each.

parachute descent, main parachute inflation, and main parachute descent. These stages are

defined by four key events: the initial condition event at the drop altitude, the transition

altitude event initiating main parachute inflation, the main parachute inflation event signal-

ing the parachute is fully inflated, and the terrain impact event terminating the trajectory.

Table 4.1 shows these stages and their corresponding initial and final events. For the drogue

and main parachute descent stages, the system is defined by the ODEs in Eq. (4.5b), which

do not include the instantaneous parachute radius in the state vector. During the inflation

stage the parachute radius is explicitly included and the system is defined by the ODEs in

Eq. (4.6b).

Events
Initial Transition Inflation Impact
Drogue Parachute Descent

Main Parachute Inflation
Main Parachute Descent

Table 4.1: Parachute-Payload stages defined by key events

Figure 4.8 shows examples of trajectories, events, and stages used in the optimization

procedures described in the preceding sections. Figure 4.8a shows the scenario when the

CARP and run-in are to be optimized with a predetermined transition altitude. As such, all

particles begin their inflation stages at the same altitude. However, given differing velocities
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and parameters at the start of the event, the time–or altitude change–to fully inflate will

vary between the particles. Figure 4.8b shows the scenario when the transition altitude is

to be optimized alongside the CARP and run-in. Discussed in Section 4.3.4, the transition

altitude is included as a parameter and defines the slice event uniquely for each particle.

The terminating event for both scenarios is impact with non-flat terrain.

(a) Constant Transition Altitude (b) Variable Transition Altitude

Figure 4.8: Parachute-payload model descent (solid lines) and inflation (dashed lines)
stages for constant transition altitude across all particles (left) and variable transition al-
titude (right). The three stages are defined by four key events (red dots).

The MOC ODEs for the Frobenius-Perron and Koopman operators are solved along-

side the system ODEs using an arbitrary initial condition as it is shown in [89] that the

values may be rescaled later. With the trajectories of the parachute-payload system cap-

tured by its events, the objective function may be evaluated on the terrain impact event

and the Koopman operator values of the other events set accordingly. This procedure, and

many supporting functions, are implemented in Python as it allows for fast prototyping of
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possible objective functions and the inclusion of other, advanced libraries. After the nu-

merical application of the Koopman operator, the InterpCL library is used to perform the

conditional expectation computations.

The evaluation of the full expected value using the condition expectation, Eq. (4.34), is

a computationally intensive task given a large number candidate solutions (fine resolution),

number of bundles, and number of Monte Carlo integration points. As such, the corre-

sponding program is written in C++ and targets GPUs using OpenCL. The use of local and

texture memory spaces are used to improve run-times. The program produces data in a

per-bundle format so that it may be combined according to Section 4.3.5 and is saved in

case of re-planning. Considering an 8-bundle mission with 60 candidate run-in headings,

the size of the saved file is 1-2GB depending on the CARP resolution.

4.3.7 Real-Time Transition Altitude Optimization

Previous work by Leonard et al. additionally considered the problem of optimizing the

transition altitude during descent under the drogue parachute and is developed in detail

in [20]. Instead of pulling an objective or cost function back to the drop altitude, the

algorithm pulls them back to the set of candidate transition altitudes. The conditional

expectation functions are then constructed for each and transferred to a computer onboard

the package that is responsible for real-time transition altitude optimization. In [20], the

conditional expectation functions are called marginal slices.

The transition altitude optimization algorithm executed onboard the package proceeds

as follows. During descent under the drogue, the current state of the bundle is measured and

the package trajectory is then propagated from this measured state to an altitude of zmin
t un-

der drogue parachute dynamics only. This propagation makes use of an analytical descent

solution that predicts the drogue trajectory using a radial basis function approximation [19].

The benefit of this analytical trajectory propagator is that the solution time is deterministic

and several orders of magnitude faster than that achieved through numerical integration,
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making it practical for a real-time implementation on a low-cost embedded computer. A

key assumption in the development of the analytical solution in [19] is that winds do not

vary spatially in x or y. However, because the analytical model is used to propagate the

drogue descent only, this assumption results in minimal errors since the package exhibits

little total translation in the x and y directions under the drogue compared to its motion

under the main parachute. A complete description of this analytical descent propagator, as

well as an exploration of the errors introduced by the spatially-varying wind assumption, is

provided in [19] and omitted here for brevity.

Evaluating each conditional expectation function at the (x, y) location where the pre-

dicted trajectory intersects its corresponding altitude z-plane, a real-time expected value

versus transition altitude relationship, similar to Figure 4.5b, generated. This curve is con-

tinually recomputed based on feedback from onboard position and velocity sensors. The

work in [20] investigates two optimal transition altitude selection methods. The first is sim-

ilar to the selection process described in Section 4.3.4, where the optimal transition altitude

is taken to be the arg max of the real-time expected value curve.

The second method investigates shaping the bundle impact dispersion into a desired

distribution. In this case, the objective function on the ground is a two-dimensional PDF in

x and y defining how the user would like the bundle terrain impacts to be distributed. As

an example of when this may be useful, consider a humanitarian operation in which aid is

to be distributed over a certain area. To accomplish this, the optimal transition altitude is

taken to be a random sample drawn from the conditional expectation curve. When using

this method, packages will probabilistically achieve the desired ground distribution (along

their line of control on the ground) given a large enough number of drops.

In practice, the selection process–using either method–is performed each time a new

state measurement is received and the conditional expectation curve is recomputed.The

main parachute is inflated when the measured altitude, z, crosses over the current optimal

transition altitude, z∗t . This recalculation process allows the optimal transition altitude to be
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updated as unexpected winds and dynamic model errors cause the actual descent trajectory

to depart from the predicted trajectory.
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CHAPTER 5

RESULTS

To demonstrate the capabilities of the proposed planning algorithm, simulation examples

are presented. The examples consider three real-world scenarios. The first example is a

simple scenario in which the cost function is defined by the radial distance from a desired

impact location, and is intended to provide a useful comparison against standard deter-

ministic planning schemes. Next, a scenario with non-flat terrain and a complex objective

function is considered, highlighting the operational flexibility of the proposed planning

methodology and its benefits over deterministic planning. Finally, a scenario is considered

in which the planner minimizes an expected workload value while enforcing a probabilis-

tic obstacle impact constraint. This type of scenario would traditionally require an operator

to manually plan a mission and iteratively verify the obstacle impact probability through

Monte Carlo, while in this case the probabilistic planning algorithm can solve the con-

strained optimization problem directly in a single planning cycle. The final scenario is

considered for the CARP and run-in optimization only, and the full CARP, run-in, and

transition altitude optimization is left for future work.

All cases in this section consider a HALO airdrop with a drop altitude of 10,000 ft,

unless stated otherwise. For each scenario, a three-dimensional, spatially-varying wind

field generated by the Weather Research and Forecasting Model [100] is used. The specific

wind field used is detailed in [101]. Additionally, the random parameters (variables) during

descent are taken to be Gaussian as described by the statistics in Table 5.1. The statistics

for the main parachute Cd uncertainty are taken from [19]. The random variables used

to construct the bundle exit PDF, needed to quantify the uncertainty in x and y at aircraft

release, are also considered to be Gaussian and described by the statistics in Table 5.2. The

release condition uncertainty in Table 5.2 is derived from the information provided in [19].
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Table 5.1: Random variables during descent

Variable µ σ

Main parachute coefficient of drag (Cd) 1.0487 0.0422
Wind magnitude perturbation (ŵm) 1.00 0.0500
Wind direction perturbation (ŵψ) 0.00 rad 0.0873 rad

Table 5.2: Random variables used in bundle exit PDF

Variable µ σ

CARP longitudinal miss (X̂C) 0.00 m 62.897 m
CARP lateral miss (ŶC) 0.00 m 26.777 m
Package release time (Te) 0.18 s 0.0300 s

An additional example demonstrating the real-time transition altitude optimization us-

ing the algorithm from Section 4.3.7 is included at the end of chapter. The scenario con-

siders uncertainty during descent only from the random variables listed in Table 5.1. The

focus of the simulation example is to shape the bundle dispersion into a desired distribution.

Various additional examples of the methodology may be found in the work by Leonard et

al. [20].

5.1 Solution Set: CARP & Run-in Optimization

A solution set to the three example scenarios using optimized CARP location and run-in

heading with a predetermined transition altitude is presented first. A transition altitude of

1,640ft (500m), unless otherwise stated, is used for every bundle.

From a practical perspective, it is important to briefly characterize the computational

performance of the above algorithm given the planning time constraints of airdrop missions.

The trajectory simulation portion of the algorithm is implemented in a parallelized manner

for graphics processing units (GPUs) through the OpenCL framework. The implementation

used here is able to compute 2 million trajectories in approximately 200 sec on an AMD

Radeon Pro 560 GPU. Using a more capable NVIDIA K40, the same 2 million trajectories

can be found in approximately 71 sec. Runtime of the remainder of the planning process
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is dependent on many parameters such as the spline approximation parameters, xy-CARP

resolution, number of run-in discretizations, and number of bundles in a stick. In general,

the time required to perform a full probabilistic planning process is approximately 1 to 2

hours on a desktop computer with a 3.5 GHz 6-core Intel Xeon processor, 64 GB of RAM,

and two NVIDIA Tesla K-series GPUs.

5.1.1 Radial Case

This example scenario considers a radial distance cost map where impact locations are

penalized by their radial distance from the intended point of impact (IPI): x = 5000 m,

y = 5000 m. Figure 5.1a shows the workload (cost) map generated by,

gR(x, y) =

√
(x− 5000)2 + (y − 5000)2 (5.1)

where the radial distances are saturated at 500 m (as depicted by the dashed black line).

The cost function is inverted according to Eq. (2.16a). The corresponding objective func-

tion is pulled-back through the parachute-payload system dynamics using N = 512, 000

realizations. The total EOV for each control decision is computed considering a stick of

nb = 8 bundles and then reverted to expected workload (cost) using Eq. (2.16b).

Figure 5.1b shows the expected radial distance for every xy-CARP location for the

optimal run-in of 12 deg. Two CARP locations are indicated. The first is the deterministic

CARP. This is determined by solving a single BVP for the CARP location such that a

package released from this location with mean system parameters lands with a score of

500 (the maximum achievable). An aircraft heading into the predominant wind is used

for this calculation. The second location in Fig. 5.1b is the fully probabilistically optimal

CARP. It can be seen that the xy-locations are nearly the same, which is not surprising with

this scenario since in the case of relatively simple objective functions and low-complexity

wind fields the mean solution will not differ substantially from that which maximizes the
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(b) Expected radial workload map

Figure 5.1: (left) Radial workload function at ground (0ft). The workload is saturated at
500m. (right) Expected workload at drop altitude (10,000ft), optimal CARP and run-in are
shown.

expected value.

Monte Carlo simulations were performed for each CARP (250,000 8-bundle sticks, 2M

total simulations), where the uncertain descent parameters were sampled from the distri-

butions in Table 5.1 and the initial xy-locations were sampled for each package using the

bundle exit PDF, described in Section 4.2.2, and Table 5.2. Figure 5.2 shows an empirical

cumulative density function (CDF) created from the mean radial distance for each stick,

for both the probabilistic and deterministic Monte Carlo results. The probabilistic CARP

and run-in solution results in roughly the same 50% circular error probable (CEP) as the

deterministic solution, 155.4 m versus 156.1 m, respectively. These similar results, as well

as the almost identical shapes of the two CDFs (Figure 5.2), show that the probabilistic

planner, in this baseline scenario, will perform similar to current deterministic planning

methods.

For the probabilistic solution, the planning methodology returns an expected workload

of 158.9 m. Compared with the mean of the Monte Carlo results of 157.8 m, this represents

a difference of 1.1 m, or a relative error of 0.69%. Considering the xy-CARP locations
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Figure 5.2: Empirical CDF of average radial workload for each stick.

were discretized on a 2 m grid, this error is within expected tolerances and provides con-

fidence that, if the uncertainty distributions are correct, the planner can accurately predict

the expected performance of the system.

5.1.2 Valley Case

To demonstrate the level of complexity that the proposed planning methodology can han-

dle, this example considers a scenario involving non-flat terrain and a more complex cost

function. Figure 5.3a shows an elevation map of a notional valley of interest. The objective

function is constructed by first considering an IPI at (5000 m, 5000 m), then using Dijsk-

tra’s algorithm to compute the minimal travel cost from the IPI to every point in the set

{xi, yi, zi = hv(xi, yi)}nx×nyi=0 , where x and y are gridded with nx and ny unique values,

respectively, and hv is the valley function depicted in Figure 5.3a. The travel costs between

each point is a composite function of distance and slope, penalizing steep vertical travel

heavily. The cost function is constrained and normalized such that the IPI has a cost of

zero and high-elevation regions have a maximum cost of 100, shown in Figure 5.3b.
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(a) Elevation data. IPI at (5000m, 5000m)
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(b) Cost function. Minimum score at IPI

Figure 5.3: Complex, non-flat terrain scenario and associated workload function

Using N = 512, 000 realizations, the cost function is pulled-back through the dynam-

ics using a predetermined transition altitude of 400m. Note that when evaluating the cost

function, the three-dimensional locations of the samples on the terrain are considered (i.e.,

the trajectory simulations account for impact on non-flat terrain). To demonstrate the capa-

bility of the probabilistic planner to adapt to varying levels of uncertainty, the cost function

is pulled back to two different candidate drop altitudes, 3,000 ft and 10,000 ft.

Figure 5.4a shows the ECV map of the optimal run-in (−6 deg.) for a drop altitude of

3,000 ft, as well as the deterministic and probabilistic CARP solutions. It is evident once

again that the deterministic and probabilistic solutions do not vary drastically. Although

uncertainty is present in the drop procedure and during descent, given the relatively low

drop altitude the system is not exposed to uncertain winds for a significant period of time.

As a result, the expected workload value is quite low, and the induced dispersion is small

enough so that the planner targets the IPI in the narrow valley. Using the probabilistic

solution, the user should expect to recover an average ECV of 14.67 for an 8-bundle stick.

While low drop altitudes reduce sensitivity to uncertainty during descent, it may also

pose more operational risk to the aircraft and thus higher drop altitudes are generally pre-

ferred. When dropping at higher altitudes, however, greater dispersion is induced. Fig-

ure 5.4b shows the ECV map for the optimal run-in for the 10,000 ft drop altitude case.
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(a) ECV map for 3,000ft drop altitude
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(b) ECV map for 10,000ft drop altitude

Figure 5.4: Expected workload maps of optimal headings for 3,000ft and 10,000ft drop
altitudes

This figure shows that, given the increased dispersion, targeting the high-valued narrow

valley is no longer the optimal solution. According to the user-supplied cost function, the

possibility of landing near the desired IPI no longer outweighs the risk of landing on the

mountain-tops, which incurs a large penalty. The probabilistic planning methodology auto-

matically adapts the optimal CARP and run-in solution to target the higher-cost, but wider

northern region to minimize the expected workload under the increased uncertainty without

any user interaction. This stands in contrast to the deterministic planner, which continues to

target the IPI since it has no mechanism to condition the CARP and run-in solution on the

underlying uncertainty distributions. This ability to adapt to varying levels of uncertainty

is one of the key strengths of the probabilistic planner over deterministic methods.

To compare the probabilistic and deterministic solutions for a 10,000 ft drop altitude,

Monte Carlo simulations were performed. For both CARP and run-in solutions, 250,000

8-bundle sticks were simulated from the drop altitude to ground with their terrain-impact

locations and workload function values recorded. Figure 5.5a shows the terrain-impacts of

the two solutions, with the deterministic solution still targeting the valley and the proba-

bilistic solution targeting the northern region. The average cost function value for every
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stick is computed and used to create the empirical CDF shown in Figure 5.5b.

(a) Monte Carlo impact locations
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(b) CDF for Probabilistic and Determinis-
tic solutions

Figure 5.5: Terrain impact locations and resulting empirical CDFs for 10,000ft drop altitude

Important statistics from Figure 5.5b are listed in Table 5.3 and show the trade-offs

between the two solutions. First, considering minimum values, the probabilistic solution’s

lowest impact value is 24.4 while 20% of the deterministic solution’s impacts obtained a

lower workload function value than that. More generally, the top (lowest) 10th percentile

of the deterministic solution’s impacts is a full 10 units less than that of the probabilistic

solution. However, when considering the bottom (greatest) 10th percentile, the probabilistic

solution outperforms the deterministic solution by over 27 units. This near-elimination

of the higher-valued tails pushes the probabilistic solution’s mean lower than that of the

deterministic solution. In other words, the probabilistic scheme naturally trades the ability

to minimize its score in a low number drops for increased robustness of the overall mission.

Table 5.3: Deterministic and Probabilistic MC impact statistics

Solution 10th Percentile Mean 90th Percentile
Deterministic 16.73 36.99 57.32
Probabilistic 26.96 28.42 29.95
Change: +10.23 -8.57 -27.37

The Monte Carlo simulations also provide a method to check the accuracy of the mis-
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sion planner given this complex scenario. The planner computed an expected objective

function value of 73.75 for the optimal CARP and run-in while the Monte Carlo objective

function results show an average value of 71.58, producing a relative error of 3.0%. When

comparing the cost function values, 26.25 from the planner and 28.42 from Monte Carlo,

the relative error is increased to 7.6% through the reversion process.

5.1.3 Constrained Case

A final example explores the planning methodology’s ability to handle probabilistic con-

straints. In this scenario, the packages should land so as to minimize the travel distance

from an IPI while avoiding an obstacle or exclude region near the IPI. The allowable prob-

ability that any bundle in the stick lands within the obstacle will be given by a tolerance

between 0 and 1. For this example, a drop altitude of 10,000 ft and transition altitude of

1,640 ft (500 m) for an 8-bundle stick is used.
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Figure 5.6: Exclude region mission scenario: width 60 m, height 100 m

Figure 5.6 shows the mission scenario. An IPI is located at (5000 m, 5000 m) and the

distance traveled (workload) to retrieve the bundles is to be minimized. Additionally, the
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(a) Objective function, max value 500

4500 4600 4700 4800 4900 5000 5100 5200 5300 5400 5500

4500

4600

4700

4800

4900

5000

5100

5200

5300

5400

5500

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Constraint function

Figure 5.7: Exclude region case objective and constraint functions

exclude region is a 60 m× 100 m area near the IPI that cannot be traversed and as such the

probability that a package lands in the area is included as a constraint. The optimal CARP

and run-in decision is formulated using an inequality constraint as defined in Eq. (4.42).

The inequality constraint function is to describe the probability that any bundle in the stick

lands in the exclude region. As such, DeMorgan’s law (Eq. (4.43)) is used to compute the

stick’s composite value.

The cost function g, shown in Figure 5.7a, is constructed by computing the geodesic

travel distance from the IPI, given that the exclude region cannot be traversed. It is then

inverted using a maximum allowable cost of 500 m. The constraint function c, shown in

Figure 5.7b, represents the probability of being within the exclude region at ground level

and is therefore 1 inside the region and 0 outside the region. The user’s tolerance to a

bundle landing within the exclude region is quantified by λe.

To compute the optimal CARP and run-in in this constrained case, both the objective

(inverted cost) and constraint functions must be pulled-back. The objective function is

pulled-back using 512,000 realizations uniformly distributed over the uncertainty space us-

ing a 5-dimensional Halton sequence. The constraint function is pulled-back using 614,400

particles, half of which are uniformly distributed over the landing area and half of which
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are distributed within a ±5 m band around the exclude region’s border. As discussed in Sec-

tion 4.3.2, there is no requirement for the discretized particles to be located in any specific

area of the uncertainty space. Given the sharp changes of the constraint function, and the

fact that the spline interpolation suffers from Gibbs phenomena [62], additional particles

around the jump help to mitigate overshoot effects and result in improved accuracy of the

spline fitting (and subsequent integration) process.

Figure 5.8 shows the ECV map with overlaid contour lines of the expected constraint

function value map for a single heading. The contour lines depict the values of the inequal-

ity constraint function–to satisfy the probabilistic constraint for a given λe value, the CARP

would need to be located outside the contour. Naturally, as the constraint becomes more

strict the area of the drop-zone that violates the constraint increases. However, considering

that the expected constraint value map has a maximum value of 43.8%, if the mission des-

ignated that the probability of a package landing in the exclude region be less than 50%, for

example, the constraint never restricts the solution and can be neglected. If the constraint

is ignored, the planner identifies that a minimum average retrieval distance of 195m per

stick is possible with an optimal CARP selection. As the constraint is made more strict, the

operator will need to accept that the average expected workload will increase as the CARP

is moved farther away from the unconstrained optimal location.

To show the trade-off between a stricter exclude region impact tolerance and the ex-

pected workload, the planner is used to compute the optimal probabilistic solution for λe

= 10%, 5%, and 1%. Figure 5.9 shows the resulting ECV maps of the optimal run-in for

each tolerance value and corresponding Monte Carlo results. For each scenario, 250,000

8-bundle sticks are simulated from the 10,000 ft drop altitude to terrain impact (flat terrain,

in this case). At ground, the cost function is evaluated at the impact locations. If any bun-

dle in the stick lands in the exclude region an impact counter is incremented and the eight

xy-impact locations for that stick are plotted in blue. On the left-hand-side of Fig. 5.9, the

green circle denotes the optimal CARP solution if no constraint is enforced for the heading
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Figure 5.8: ECV map with overlaid expected constraint value contours, for a single heading

shown by the red arrow. The red point and arrow show the optimal CARP and run-in for the

constrained case. Note that in the constrained cases, the CARP is located at the lowest ex-

pected value of the cost function outside of the area eliminated due to the constraint, which

turns out to be on the border of the region. As the region in black grows (as λe is reduced by

the user), the constrained solution for the CARP becomes farther from the unconstrained

solution. This is corroborated by the Monte Carlo impacts on the right of Fig. 5.9, which

show the dispersion pattern moving away from the IPI (and also the obstacle area) as the

risk tolerance is decreased.

The Monte Carlo impact percentages and expected workloads for these cases are shown

in Table 5.3. Note that the percentage of impacts inside the obstacle observed in Monte

Carlo is very close to that predicted by the planner. Also note that the percent error be-

tween the expected workload predicted by the planner and that observed in Monte Carlo

is quite low considering the computational process of interpolating and integrating high-

dimensional, scattered data of functions with sharp jumps, as found in both the constraint

and cost functions. For each tolerance value λe, the planning methodology was able to

automatically find an optimal CARP and run-in that achieves the lowest expected work-
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load while satisfying the probabilistic constraint. With all of the required data computed

up-front, the probabilistic solution for any λe can be quickly found by querying a new mini-

mum argument of the cost data masked by λe without the need to entirely re-plan or include

a human-in-the-loop to verify the resulting dispersion pattern. This ability to re-plan the

mission quickly as new levels of risk are established is another key strength of the proposed

algorithm.

Table 5.4: Planner and Monte Carlo comparison

λe % Impact Inside Constraint Workload (planner, MC) % Error
10% 9.90% (24752 / 250000) 220.9m, 214.0m 3.2%
5% 5.01% (12515 / 250000) 237.6m, 230.8m 2.9%
1% 1.02% (2560 / 250000) 272.2m, 266.4m 2.2%

The example cases shown in this section highlight some important features of the plan-

ning methodology introduced in this work. First, all three example cases demonstrate

how mission objectives are quantified within the planner through the cost and constraint

functions, and how the probabilistic solution is conditioned on these inputs. By explicitly

including the objectives in the planning stage, the user is provided with greater levels of in-

formation as an output in the form of the expected workload maps. Secondly, the developed

methodology possesses the ability to incorporate a wide variety of uncertainty which af-

fects the airdrop mission planning process, from uncertainty in wind fields to uncertainty in

drop location caused by variation in the time that a loadmaster releases the bundles. Finally,

by computing and storing the expected value maps offline, planners may react quickly to

changing scenarios and risk tolerances without the need to completely replan the mission.
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Figure 5.9: ECV map with constraint and associated Monte Carlo results for λe = 10%,
5%, 1%
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5.2 Solution Set: CARP, Run-in, & Transition Altitude Optimization

The example scenarios presented in the preceding Section assumed a constant, predeter-

mined transition altitude. Presented now is a solution set where the full CARP, run-in

heading, and transition altitude optimization procedure is performed. A range of transi-

tion altitudes, consistent with each example scenario, are considered. These ranges are

representative of real-world missions and taken from [22, 19].

Given the added complexity of the transition altitude optimization, the probabilistic

planning procedure requires more time. While dependent on a number of factors (includ-

ing number of realizations used, CARP locations and headings considered, number of bun-

dles, etc.), the largest run-time factor is the number of candidate transition altitudes. The

kernel-based interpolation and integration procedure must be applied to each and may take

upwards of an hour to compute. Fortunately, this process may be run in parallel, leveraging

multiple devices. Using a K40 and K20 GPU in combination, the average time to compute

50 conditional expectation functions for the three example cases is roughly 12-18 hours.

The remaining planning steps then take an additional 1-2 hours.

5.2.1 Radial Case

This example scenario is identical to the mission presented in Section 5.1.1. The radial

distance cost function, defined in Eq. (5.1) and shown in Fig. 5.1a, is used with an IPI of

x = 5000m, y = 5000m and is saturated at a workload of 400m. A total of 50 candidate

transition altitudes are considered ranging from 228.6m to 914.4m (750ft to 3000ft), giving

a resolution of approximately 14m (46ft). At the steady-state descent under the drogue

parachute, this corresponds to an approximate 2Hz update rate and is considered sufficient.

Using N = 350,000 realizations per transition altitude, for a total of Nt × N =

50 × 350,000 = 17,500,000 trajectories, the radial cost function is pulled-back to a drop

altitude of 10,000ft using the Koopman operator. A conditional expectation function is
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computed for each candidate transition altitude and aggregated into a set. Figure 5.10a

shows a selection of these functions. It can be seen that as the transition altitude increases,

the area of minimal workload (blue) moves into the dominant wind, blowing north to south.

Figure 5.10b shows that, in addition to the translation of the minimum workload location,

the minimum workload value increases with increasing transition altitudes. Given the un-

certainty during descent under the main parachute, any additional time (or altitude) spent in

the uncertain winds, for example, will increase dispersion and, in turn, increase the minimal

expected conditional cost.
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Figure 5.10: Radial distance cost function scenario. Dominant wind is from north to south.

A composite conditional expectation function and corresponding optimal transition al-

titude schedule are constructed using the max and arg max functions, discussed in Sec-

tion 4.3.4, respectively. Figure 5.11a shows the radial composite conditional expectation

function. The area of minimal workload is stretched back, into the dominant wind, from

the global minimum location, forming a shape much different than the function defined

on the ground. Figure 5.11b shows the corresponding optimal transition altitude sched-

ule. The optimal transition altitude increases linearly when moving directly north, into the

dominant wind. This is due to the bundle’s line of control, investigated in [20], being pri-

marily influenced by the wind field. This is also investigated deterministically in [22] as the

Wind-Drift coefficient. The dark-blue regions in Fig. 5.11b, showing a transition altitude of
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0m, correspond to the saturated workload value and will score equally using any transition

altitude.
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(a) Composite conditional expectation
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(b) Transition altitude schedule

Figure 5.11: Radial cost function scenario composite conditional expectation function and
corresponding transition altitude schedule selected using max and arg max, respectively.

Figure 5.12 shows the ECV map for every xy-CARP location for the optimal run-in

heading of 0 deg for an nb = 8 bundle drop. Figure 5.13a shows the CARP and flightpath

(red line), where the length of the flightpath is taken to be the 95% confidence interval

of the bundle-exit PDF, overlaid on the transition altitude schedule. The optimal CARP

location assumes a transition altitude of 350ft, the lowest value in the range. The transition

altitude schedule is evaluated along the flightpath and shown in Figure 5.13b. The red lines

mark the transition altitudes of the 8 bundles in the stick assuming nominal performance

(no CARP miss or release-time variations).

To quantify the improvements over the constant, predetermined transition altitude sce-

nario from Section 5.1.1 Monte Carlo simulations were run from the optimized CARP,

run-in heading, and transition altitude schedule. Considering the added level of complex-

ity, 1,000,000 8-bundle sticks (8M simulations total) were drawn from the bundle-exit PDF,
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Figure 5.12: Expected Cost function Value (ECV) map with optimal CARP and run-in.
Run-in heading is directly into the dominant wind.

conditioned on the CARP and run-in, using the distributions listed in Table 5.2 and the de-

scent parameters drawn from the distributions listed in Table 5.1. The transition altitude

of each sample is assigned by evaluating the optimal transition altitude schedule at its xy-

location at drop altitude.

Figure 5.14a shows the resulting dispersion of the simulations, overlaid on the Monte

Carlo simulation impacts of the predetermined transition scenario (Section 5.1.1). It can

be seen that, by allowing the transition altitude to be optimized on a per-bundle case, the

resulting dispersion may be decreased. This is most apparent in the region north of the IPI

(5000m, 5000m). Given that the dominant wind blows north-to-south, there is not much

that can be done to decrease dispersion in the lateral, east-west direction. The total improve-

ment of the optimized transition altitude may be quantified by an empirical CDF, shown

in Figure 5.14b. The optimized transition altitude case produces a 50% CEP of 105.1m,

an over 30% improvement to the 155.4m CEP produced by the predetermined transition
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(a) CARP transition altitude schedule
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Figure 5.13: (left) CARP and flightpath overlaid on transition altitude schedule. (right) The
transition altitude schedule evaluated along the flightpath, with the nominal bundle release
locations marked.

altitude case. Additionally, the planner predicted an expected workload of 110.6m which,

when compared to the Monte Carlo simulation result of 106.9m, represents a relative error

of 3.5%.
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(a) Monte Carlo xy-impacts
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(b) Empirical workload CDF

Figure 5.14: Monte Carlo simulation results for optimized transition altitude of radial work-
load cost function, IPI = (5000m, 5000m). (left) Impact locations of constant zt (black) and
optimized zt (red). (right) Empirical CDFs of constant and optimized zt cases.
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5.2.2 Valley Case

In this section, the transition altitude aware CARP and run-in optimization is applied to

the complex valley scenario outlined in Section 5.1.2. This scenario, with non-flat terrain

and a complex cost function, highlights again the applicability of the developed planning

framework to real-world scenarios. Given the non-flat terrain, the transition altitudes are

referenced from the z = 0 plane. To compensate for the terrain, and to ensure that there

is sufficient altitude for the main parachute to fully inflate, the lowest transition altitude

is increased to 1300ft above the zero-plane. The maximum transition altitude is kept at

3000ft.

Figure 5.15: Conditional expectation functions for 5 of 50 transition altitudes. Dominant
wind is from north to south.

Discretizing the transition altitude range into 50 candidate altitudes, the workload cost

function is pulled-back to the drop altitude plane using 350,000 trajectories each (17.5M

total). Figure 5.15 shows the conditional expectation functions generated from the sets of

trajectories. Like the radial workload case, as the transition altitude increases the minimal

workload regions translate against the dominant wind and their expected values increase.
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(a) Composite conditional expectation
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(b) Transition altitude schedule

Figure 5.16: Complex valley scenario with non-flat terrain composite conditional expec-
tation function and corresponding transition altitude schedule selected using max and
arg max, respectively.

The composite conditional expectation function and its corresponding optimal transition

altitude schedule are constructed using the max and arg max functions, shown in Fig-

ures 5.16a and 5.16b, respectively.

Figure 5.17a shows the ECV map for the optimal run-in heading of -6 deg. The length

of the red arrow, the flightpath, is again taken to be the 95% confidence interval to release

the 8 bundles. The optimal transition altitude schedule is evaluated along the flightpath and

shown in Figure 5.17b. Similar to the radial workload case, the later bundles, i.e. 7 and 8,

are scheduled to open earlier (higher) and leverage the dominant wind to be pushed (along

their line of control) towards a lower cost area.

To quantify the dispersion, Monte Carlo simulations of 1,000,000 8-bundle sticks (8M

simulations in total) were run. Figure 5.18a shows the terrain impacts of the optimized

transition altitude case (red) overlaid on the predetermined transition altitude Monte Carlo

impacts. While a slight reduction in dispersion can be seen in the northern region of Fig-

ure 5.18a, the decrease in the mean workload when including optimized transition altitude
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(a) Expected cost function value map
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Figure 5.17: (left) ECV map of optimal run-in heading, -6 deg, with CARP and flight-
path overlaid. (right) Optimal transition altitude schedule evaluated along flightpath with
nominal-performance bundle release points in red.

is only 0.3 units–down to 28.1 from 28.4. Figure 5.18b shows the empirical CDF of the

optimized transition altitude case against that of the predetermined case, the two are nearly

identical. Given the relative flatness of the workload cost function in the wide, northern

valley, there is not much that may be done to improve the mean workload of the current

scenario. However, if the cost function were reconfigured with an IPI in the northern valley,

there would be a stronger relationship between the transition altitude and expected cost for

the optimization procedure to operate on.

Comparing the planners expected workload, 23.7, to the mean workload from the

Monte Carlo simulations, 28.1, shows that the planner underestimated the expected value.

The relative error between the two is a sizable 15.7%. However, when using their scores

(used primarily in intermediate steps) as opposed to cost, the relative error is 6.1%. While

there are numerous factors that could contribute to this error, the most probable stems

from the steps involving the kernel-based interpolation and integration. As shown in Sec-

tion 2.2.5, the Lobachevsky spline numerical example, the kernel-based method suffers
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(b) Empirical workload CDF

Figure 5.18: Monte Carlo simulation results for optimized transition altitude of the complex
valley scenario. (left) Impact locations of constant zt (black) and optimized zt (red). (right)
Empirical CDFs of constant and optimized zt cases.

from Gibbs phenomenon [81]. Given the sharp increase of the cost function at the valley

wall, the interpolated function–and its integrated conditional expectation–would be suscep-

tible to overshoot/undershoot in these regions.

The amount of overshoot/undershoot that the interpolant exhibits can be influenced by

the shape parameter α, which can be tuned to help mitigate the phenomenon. However, this

is difficult in the optimized transition altitude case as 50 different data-sets, and therefore

50 α values, are considered. The development of an algorithm to intelligently and robustly

choose α is left to future research, described in further detail in Section 6.2.2.
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5.3 Solution Set: Real-Time Transition Altitude Optimization

Consider a scenario in which packages are to be dispersed to multiple areas, perhaps sev-

eral nearby operating bases or several nearby areas for humanitarian aid delivery. In such

cases, it is desirable that packages distribute themselves amongst the multiple drop zones

according to some pre-specified statistical distribution. To explore this scenario, con-

sider the desired impact PDF to be the union of two disjoint uniform distributions, i.e.

U1(x, y) ∪ U2(x, y), where the magnitude of U1 is twice that of U2. Translated into an

objective function, the mission objective are represented by

g(x) =



2
3

(x, y) ∈ A1

1
3

(x, y) ∈ A2

0 (x, y) ∈ R2 \ (A1 ∪ A2)

(5.2)

where A1 and A2 are the supports of U1 and U2, respectively. Using Lebesque integration,

the PDF of Eq. (5.2) integrates to 1 and is therefore a valid PDF. However, when integrat-

ing over R2 using the Borel measure, the PDF must be renormalized considering the size

(measure) of the supports A1 and A2. The PDF, which is treated as an objective function,

is pulled-back through a constant wind field of wx = 0m/s and wy = 7m/s to transition

altitudes ranging from 240m to 1000m using only the main parachute descent system. The

conditional expectation functions are constructed by the methodology presented in [20].

Figure 5.19 shows the results for two different variations in the supports A1 (blue) and

A2 (red). A Monte Carlo simulations are performed for each, with the drop location taken

to be xC = 0m yC = −1016m and random parameters sampled from Table 5.1. The first

example considers A1 and A2 to be equal in size and adjacent to each other. As such, 2/3

of the packages should be expected to land in A1 and 1/3 to land in A2. The Monte Carlo

simulations, shown in Figure 5.19a, yielded 202 out of 300 impacts inside A1 (67.3%) and

98 out of 300 impacts inside A2 (32.7%). For comparison purposes, a similar Monte Carlo
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(a) Scenario 1 (b) Scenario 2

Figure 5.19: Impact dispersion shaping using real-time transition altitude optimization ex-
ample. Monte Carlo simulation impacts are shown for two examples.

simulation of 300 runs was performed using a constant transition altitude of zt = 773m

for all packages. The impact dispersion pattern for this constant zt case was approximately

Gaussian centered at x = y = 0, and yielded 158 impacts (52.7%) inside A1 and 142

impacts (47.3%) inside A2.

The second example considers two non-adjacent distributions with slightly smaller sup-

ports. When re-normalizing Eq. (5.2) for the size of the supports, the resulting impact dis-

tribution should yield 75% of impacts within A1 and 25% within A2. The Monte Carlo

simulations, shown in Figure 5.19b, yielded 166 out of 250 impacts inside A1 (66.4%) and

59 out of 250 impacts inside A2 (23.6%), with the rest falling outside of both supports.

A similar Monte Carlo simulation with constant zt = 773m yielded 127 impacts (50.8%)

inside A1 , 48 impacts (19.2%) inside A2, and the remaining 30% outside both supports.

Comparing the optimized zt case with the constant zt case, the optimized zt results pro-

duced a dispersion pattern much more similar to the desired one. Furthermore, the number

of impacts outside of both regions is reduced from 30% in the constant zt case to 10% in the

optimized zt case. Potentially, the percentage of impacts that missed both supports may be

reduced further by increasing N . Overall, the two examples demonstrate the ability of the

proposed algorithm to realize desired impact distributions as precisely as possible under a
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given degree of uncertainty and computational restrictions.
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CHAPTER 6

CONCLUSION

6.1 Contributions

The fundamental work of this thesis is the development of a probabilistic planning method-

ology with a targeted application of unguided precision airdrop missions. In doing so, a

number of novel contributions to the general field of probabilistic, optimal decision making

and to the airdrop community have been made. These contributions range from bridging

the divide between applied mathematics literature and engineering applications, the de-

velopment of a generalized decision making framework and its successful application to

a real-world problem, and even the creation of unique numerical tools to solve problems

otherwise considered intractable.

While the use of the Frobenius-Perron operator has been leveraged in a number of en-

gineering applications [38, 43, 50, 52], the use of the Koopman operator is still limited [33,

34]. Even more notable is that the Frobenius-Perron and Koopman operators’ adjoint prop-

erty has not found use outside of the applied mathematics community. However, for a class

of problems considering optimal decision making in the presence of uncertainty, leveraging

the Koopman operator through the adjoint property proves to be a valuable tool and a novel

contribution of this work.

The generalized optimization procedure developed in Chapter 3.1 shows that when the

cost, or objective, function to be optimized is at a future time, the Frobenius-Perron op-

erator may be used to push-forward the initial uncertainty for use in an expected value

calculation to probabilistically evaluate the function. Equivalently, the Koopman operator

may be used to pull-back the function for use in an expected value calculation at the initial

time; where the results are identical. Additionally, using the Method of Characteristics,
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the two operators may be applied numerically to nonlinear systems with, possibly, non-

Gaussian uncertainty in both states and parameters. However, as detailed in Chapter 3.1,

this is where equivalence of the Frobenius-Perron and Koopman approaches begin to di-

verge. When implemented numerically using the Method of Characteristics, the Frobenius-

Perron operator suffers from numerical precision issues given sufficient time [20, 39, 41].

Additionally, when considering a variable other than time as the independent variable, the

re-parameterization procedure presented in Section 3.4 is non-trivial for the Frobenius-

Perron operator. Through the adjoint relationship leveraged in this work, the Koopman

operator approach circumvents both of these issues while returning an equivalent solution,

as demonstrated in a spring-mass-damper system simulation example, highlighting again

the benefits of this novel approach.

When applied to the unguided precision airdrop problem, the optimization procedure

represents a novel planning methodology to determine the optimal CARP, run-in heading,

and transition altitude schedule for complex HALO missions. Given the inherent uncer-

tainty in parachute-payload system dynamics and the flight environment, the problem is

formulated probabilistically and solved using the Koopman operator approach and the com-

putational benefits it affords. The developed algorithms leverage the adjoint relationship

between the Koopman and Frobenius-Perron operators to explicitly compute an expected

value characterizing a measure of success, defined by the user, given the uncertainty in the

system. The user is returned not only a single optimal answer, but also expected value maps

relating all possible CARP and run-in tuples to their expected measure of success for use

in decision making, possible re-planning, and overall situational awareness. The planning

methodology is differentiated from standard deterministic planners in that the solution is

conditioned on the generalized uncertainty in each phase of the mission, and can easily be

expanded to new dimensions of uncertainty. In the case of allowing for the transition alti-

tude of the bundles to be optimized alongside the CARP and run-in, the dimension of the

control decision vector is carefully increased to ensure that the problem remains tractable.
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To assert the feasibility of the developed methodologies through efficient implementa-

tion, two numerical toolkits have been developed through this work. The first provides a

GPU-accelerated implementation of the kernel-based interpolation and integration meth-

ods presented in Section 2.2. In the context of this work, this toolkit is of great benefit for

computing conditional expectations and marginals of the high-dimensional, scattered-data.

From other work in the field of uncertainty propagation and quantification [52, 51, 41, 39],

these problems have been identified but no tractable solutions for high-dimensional prob-

lems are presented. The second toolkit provides a GPU-accelerated simulation environment

to numerically represent the Frobenius-Perron and Koopman operators through the use of

the Method of Characteristics. While demanding less trajectories than Monte Carlo meth-

ods, given the dimensionality of the unguided precision airdrop problem, the ability to run

hundred of thousands to millions of trajectories, in tractable run-time, is needed.

A variety of simulation results demonstrate the practical utility of the planner and pro-

vide a quantitative comparison to results generated by a standard deterministic algorithm.

Three example scenarios are considered, ranging from a nominal radial-workload case to

complex valley and exclude-region cases highlighting th planning methodology’s ability

to handle complex terrain and constraint elements, respectively. Overall, results show that

the proposed probabilistic planner is a promising methodology that can provide operational

flexibility and improved outcomes for real-world airdrop missions.

6.2 Recommended Future Research

As is the case with most research, the solving of one problem often leads to new questions

to be investigated, or more problems to be solved. The work in this thesis is no different.

This Section provides three avenues of research that have arisen during the development of

this work. While the included list is not exhaustive, they are considered the open questions

that are most interesting to the author and, possibly, the most influential.
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6.2.1 Probability-Flux Approach

The definition of the Frobenius-Perron operator enforces the conservation of the probability

measure (probability mass) of an element of the state-space, A, as it is mapped by S to

S(A), also an element of A. This measure is induced, using a density, from a known

measure, e.g. the Borel measure (the volume of A in the state-space). As the mapping is

continually applied, the element travels through the state-space, with its volume contracting

or expanding, increasing or decreasing the value of the density on that element as defined

by the system dynamics, S. Using the Method of Characteristics, this process is captured

along the trajectory of the element.

In the work of Li et al. this is called the random event description of the principle

of preservation of probability as it is rooted on the trajectory of a random initial condi-

tion through the state-space [32]. The authors, however, emphasize another view of phe-

nomenon called the state space description. In the state space description, the elements

are fixed in their location in the state-space for all time. The element and corresponding

boundary are denoted as Afixed ∈ A and ∂Afixed, respectively. The change in probability of

Afixed as a function of time is now quantified by the total flux through the boundary ∂Afixed.

This description of the problem could prove to be convenient for a number of reasons.

First, the set of fixed elements could be chosen to provide a representation of a marginal

probability, or conditional expectation, from the outset of the problem. That is, for example,

if a problem is defined in R3 but a conditional expectation across the xy-dimensions is de-

sired, then a set of xy-domains could be defined with their boundaries extending infinitely

into the z-dimension creating, in essence, an xy-marginal to be used in the computation of

the conditional expectation.

Alternatively, and possibly more interestingly, is defining the elements B in an observ-

able space where z ∈ B such that z = β(x) ∀x ∈ A. For example, given a system

whose state vector x contains the velocities ẋ and ẏ, the total velocity may be defined as

V = β(x) =
√
ẋ2 + ẏ2. Assuming zero initial velocity, the probability that the total ve-
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locity is greater than λ > 0 would be equal to the net flux through the surface defined by

V − λ = 0, or equivalently, the net flux through ẋ2 − ẏ2 − λ2 = 0.

While the state space description (flux), as it is derived in [32], focuses solely on prob-

abilities, the use of observables, and corresponding integrals required to enforce conser-

vation, presents an interesting possibility that the approach may be viewed through the

Koopman operator.

6.2.2 Robust Selection of Shape Parameter

The use of kernel-based methods for scattered-data interpolation, and more importantly

integration, have provided a rigorous, yet convenient, means to computing conditional

expectations–an integral component of this work. However, with any data-based method,

numerical error is introduced and typically dependent on a characteristic value of the pro-

cess.

Much of the error associated with the method can be attributed to the choice of α, the

shape parameter. This parameter, essentially, controls the flatness of the basic function.

In this case of compactly support kernels, like the Lobachevsky spline kernel, it controls

the size of the compact support. It is shown in the kernel-based approximation literature

that, in general, increasing α (leading to a flatter function), decreases the error between

the true and interpolated function [62, 61, 71, 72, 73]. However, it is also shown that this

increases the condition number, and for compactly supported kernels decreases the sparsity,

of the corresponding kernel matrix, K, used in the linear system of equations Kc = g

(Section 2.2.2). As such, there exists a trade-off between the quality of the solution and

the ability to actually compute it [62, 61]. In addition to the shape parameter, the average

fill distance (the smallest sphere of radius d about a data-site that does not include another

data-site) of all data-sites, is used when quantifying the error in an interpolant.

In its current form, using the compactly supported Lobachevsky spline kernel, this inter-

play is more complex given their construction using arcs of parabolas of differing degrees,
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Figure 6.1: (left) Lobachevsky L4 (n = 4) basic function for r > 0 with compact support at
r = 1. The third derivative is discontinuous at r = 0.5. (right) RMSE and condition num-
ber when interpolating a 1D Gaussian function using N = 51 data-sites against compact
support radius.

leading to finite smoothness. Figure 6.1a shows the Lobachevsky L4 function (n = 4),

where discontinuous jumps can be seen in the third derivative at r = 0.5 and 1.0. To vi-

sualize this relationship, an interpolant was fit using the L4 kernel to a fixed, gridded 1D

data-set (constant fill distance between nodes) for a range of shape parameters and the root

mean square error (RMSE) and condition number recorded, shown in Figure 6.1b. At α

values where the basis function discontinuity occurs in close proximity to a data-site, while

the condition number peaks, the RMSE of the interpolant dips. Figure 6.1b shows that

even with smaller compact support radii, an approximately constant level of accuracy may

be achieved while making the problem computationally easier to solve (smaller condition

number).

Based on these 1D trends, data-based heuristics for the best selection of α could be

developed. Additionally, given the univariate nature of the Lobachevsky kernel, the se-

lection could be applied to each dimension independently. Given that the data is assumed

to be scattered, one such algorithm could leverage a frequency plot of the fill distances to

compute the α that would maximize the occurrence of placing a discontinuity in close prox-
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imity to a data-site. These algorithms would, additionally, help automate the scattered-data

interpolation problem by removing the burden of tuning α from the user.

6.2.3 Constrained Transition Altitude Optimization

The optimized CARP, run-in heading, and transition altitude methodology has been shown

to produce improvements over a predetermined transition altitude for the radial workload

scenario and it is expected to improve the constrained, exclude region scenario as well.

However, given that the transition altitude control decision is embedded in the system dy-

namics, whereas the CARP and run-in decisions are found only in the initial condition

PDF, the optimal transition altitude selection process must be aware of both the set of ob-

jective conditional expectation functions and the set of constraint conditional expectation

functions.

(a) Workload cost (b) Exclude region constraint

Figure 6.2: Pulled-back cost function (left) and constraint function (right) for the con-
strained exclude region problem.

Previously, in the predetermined transition altitude case, the full expected value calcula-

tion for the cost and constraint functions were able to be computed independently and then

overlaid, as shown in Figure 5.8 from Section 5.1.3. However, during the optimal transition

altitude selection process, for an arbitrary xy-location the candidate transition altitude with

the lowest conditional expected cost may also violate the constraint and therefore must be
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disregarded. Selecting instead the candidate transition altitude with the lowest expected

cost that also satisfies the constraint probabilistically.

For example, considering the constrained scenario presented in Section 5.1.3, Fig-

ures 6.2a and 6.2b show the sets conditional expectation functions for the pulled-back cost

function and constraint function, respectively. Rather than reducing both sets down to sin-

gle functions and then merging them, they must first be merged–slice for slice– and then

reduced. This presents a difficult task. For the unconstrained cases, the optimal transition

altitude selection process allowed for an increase in the dimension of the solution space

to be mitigated. With the inclusion of the constraint, an algorithm to rigorously, and ef-

ficiently, merge the two sets of conditional expectation functions must be developed such

that the problem does not become intractable.

Another approach that may be taken is to solve the method of characteristics trajectories

using realizations taken at the drop altitude rather than at ground (using a BVP solution).

A single set of drop altitude realizations may be used to generate trajectories for each can-

didate transition altitude along which the objective and constraint functions may be pulled

back using the Koopman operator. As such, the optimal transition altitude selection–with

knowledge of the constraint–may therefore be applied before the conditional expectation

procedure. However, this presents a number of potential problems. First, given that the re-

alizations are taken at the drop altitude, it must be ensured that the corresponding impacts

result in a full coverage of the objective space. And second, the selection process may

produce an optimal pulled-back objective function that contains jumps, i.e. it is not con-

tinuous. Given that this function must be integrated to produce a conditional expectation,

this could create difficulties, especially when using the kernel-based methods, e.g. Gibbs

phenomenon.
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6.2.4 Real-World Airdrop Algorithms

The planning methodology in this work, when applied to the precision airdrop problem,

relies on being able to adequately represent the release and descent processes, and their

corresponding uncertainty, mathematically. Given the generality of the methodology, im-

provements in the models or uncertainty distributions may be easily included without much

modification. These improvements would help push the planning procedure closer to real-

world airdrop missions.

One assumption made in this work is the instantaneous inflation of the drogue parachute

as the bundle is released from the aircraft, neglecting the roll-out procedure. Using the

developments found in [22], the release process may be included as another stage in the

bundles full trajectory to terrain impact. Alternatively, the Frobenius-Perron operator may

be used to push forward the bundle exit PDF (Section 4.2.2) through the release dynamics.

This propagated quantity could then be used in an expected value equation. Either approach

presents an opportunity to capture additional sources of uncertainty in the planning process.

Another opportunity to more closely align the planning procedure with real-world air-

drop missions is through the optimal transition altitude selection process (Section 4.3.4).

In this work, while system and environmental uncertainty is handled rigorously, it is as-

sumed that the associated densities perfectly represent the uncertainty. In practice, this is

not the case, and real-time transition altitude feedback algorithms have been developed to

address this [19, 20]. The planning procedure may be made aware of these feedback al-

gorithms by capturing their feedback laws in Υ, the optimal transition altitude selection

process. While, in simulation, these selection criteria will be suboptimal when compared

to the max, arg max pair used in this work, they incorporate the physical limitations of

real-world airdrop platforms into the planning process.
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6.2.5 Experimental Validation and Data

The control selection methodology developed in this work is formulated such that the re-

sults and benefits will be seen in a statistical sense. As such, to experimentally validate

the algorithm a large number of trials must be run; much like the simulations performed

during Monte Carlo validation. This is typical for stochastic optimization problems and is

often difficult to accomplish. For the methodology’s application to precision airdrop, this is

largely impractical due to constraints such as time, costs, and repeatability. However, on a

simpler systems, such as the spring-mass-damper system presented in Section 3.5, it could

be feasible to experimentally validate the methodology itself and against other solutions,

e.g. deterministic.

The collection of experimental data does present another possible avenue of research

in the form investigating the use of dynamic mode decomposition [33, 34] as a part of the

optimization methodology. In this work, the Koopman operator of a system is represented

by evaluating its method of characteristics solution along a number of simulated trajecto-

ries. Alternatively, dynamic mode decomposition (DMD) is a data-driven approach that

seeks to represent the Koopman operator numerically by leveraging its linearity property.

The linearity property states that while US, from USg(x) = g(S(x)), may be infinite di-

mensional it is always linear [31]. By truncating to its dominant modes, the operator may

be represented by a matrix using DMD.

While DMD is derived using the Koopman operator (Koopman theory), it does not

use, nor make mention of, its adjoint relationship to the Frobenius-Perron operator. It

would therefore be an interesting pursuit to develop a methodology leveraging both, by

substituting a Koopman operator developed from experimental data using DMD in place of

the simulated MOC trajectories for use in the control selection under uncertainty problem.

This would provide a means to apply the methodology developed in this work to complex,

real-world systems where accurate modeling is difficult but experimental data is available

or able to be collected.
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