The Algorithms Behind GAIO - Set Oriented
Numerical Methods for Dynamical Systems

Michael Dellnitz*, Gary Froyland and Oliver Junge

Department of Mathematics and Computer Science
University of Paderborn
D-33095 Paderborn

Abstract. In a given dynamical system there are essentially two different types of
information which could be of practical interest: on the one hand there is the need
to describe the behavior of single trajectories in detail. This information is helpful
for the analysis of transient behavior and also in the investigation of geometric prop-
erties of dynamical systems. On the other hand, if the underlying invariant set is
generated by complicated dynamics then the computation of single trajectories may
give misleading results. In this case there still exists important set related informa-
tion covering both topological and statistical aspects of the underlying dynamical
behavior. Within the DFG-Schwerpunkt we have focussed on the development of
set oriented methods for the numerical approximation of

— invariant sets (e.g. invariant manifolds, global attractors, chain recurrent sets);
— (natural) invariant measures;
— almost invariant sets.

The basic concept is a subdivision algorithm which is similar in spirit to the well
known cell mapping techniques but with the crucial difference that the numerical
effort mainly depends on the complexity of the dynamics rather than on the di-
mension of the underlying state space. First, the invariant set is covered by boxes
and then the dynamical behavior on the set is approximated by a Markov chain
based on transition probabilities between elements of this covering. The algorithms
have been implemented in the software package GAIO (Global Analysis of Invariant
Objects), and in this article we describe both the related numerical techniques to-
gether with their theoretical foundations and how to use them within GAIO. We
will also discuss details concerning the implementation such as adaptive versions of
the methods.

1 Introduction and Motivation

Our aim is to capture the global structure of a given dynamical system. This
will be done by using global set-oriented methods rather than by an approach
based on long term computations of single trajectories. At the topological
level, objects of interest are foremostly invariant sets, as these sets support
the dynamics of the system for all time. When the dynamics has some degree

* Research of the authors supported by the Deutsche Forschungsgemeinschaft un-
der Grants De 448/5-1 — De 448/5-4.

2 Michael Dellnitz, Gary Froyland and Oliver Junge

of smoothness and hyperbolicity, invariant manifolds provide insight into the
geometric structure of the system’s dynamics. At the level of statistics, invari-
ant measures quantitatively describe frequencies of visitation of trajectories
to different regions of phase space. These invariant measures are generalised
fixed eigenfunctions of a global transfer operator. Other eigenfunctions of this
operator provide information such as identifying almost invariant sets which
help to fine-tune the dynamical analysis. Based on the identification of these
eigenfunctions the groups of Deuflhard and Schiitte and co-workers have de-
rived a new approach to the identification of conformations of biomolecules
[8,30] within this DFG research program.

The above list gives a quick run-down of what our set-oriented methods set
out to find. How we do this is arguably of even greater importance. We will
begin each section with a concise introduction to the mathematical object
under consideration. We then give a description of the algorithm used to
approximate the object, followed by rigorous results concerning convergence.
The theoretical exposition will be paralleled by examples to demonstrate the
efficacy of the methods.

All of the algorithms described here have been coded in the software
package GAIO (Global Analysis of Invariant Objects). It is the existence of
this software package that makes the use of our techniques feasible, allowing
rapid computations and informative visualisations. Many figures in this paper
have been made using visualisation techniques which have been developed and
implemented within the software platform GRAPE by the group of Rumpf and
co-workers [29,5,7] within the DANSE program. To highlight the ease of use
of the software, we present actual GAIO commands applied to each of the
instructive examples. These commands will illustrate the use of the package
for real problems, and collectively will provide sufficient detail so as to act as
a concise tutorial for it.

2 The Computation of Invariant Sets

Our setting is that of a continuous mapping T : M — M on a compact
manifold M. We will call a set A C M forward invariant if T(A) C A,
backward invariant if T-1(A) C A and invariant if T(A) = T 1(4) = A.
There are various collections of invariant sets that one can talk about. The
largest invariant set may be defined as follows.

Definition 1. Let OF () = {..., T 'z,2,Tz,...} denote the full orbit of a
point € M. If T is non-invertible, then T%z = {y € M : T*y = z}. The
mazimal invariant set contained in a set) C M is defined as

Inv(Q) = {z € Q: 0F(z) C Q} (1)

It is straightforward (see e.g. [10]) to show the following properties of maximal
invariant sets.

The Algorithms Behind GAIO 3

Proposition 2. 1. Inv(Q) is an invariant set.

2. IfY C Q is an invariant set, then Y C Inv(Q).

3. If Q is forward invariant, then Inv(Q) = Ny T*(Q).

4. If T is a homeomorphism, then Inv(Q) = N, T*(Q).

The maximal invariant set is defined setwise and so it contains many points
which are not recurrent in the sense that under iteration they do not return
close to themselves infinitely often. This leads to:

Definition 3. A point ¢ €) belongs to the chain recurrent set of T in @ if
for every € > 0 there is an e-pseudoperiodic orbit containing ¢, that is, there
exists {¢ = qo,41,---,q0—1} C @ such that

IT(gi) — git1 mod ¢|| <€fori=0,...,0—1.
Also the following result follows immediately from the definitions.

Proposition 4. The chain recurrent set Rg(T) of T in Q is closed and
invariant. Furthermore we have the following inclusion:

Ro(T) C () TH(Q). (2)

k>0

Ezample 5. To illustrate the case where the inclusion of (2) is sharp, consider
the map T : [0,1] — [0, 1] defined by Tz = z*. Here, Rjo,1)(T) = {0,1}, while
Niso T*([0,1]) = [0,1].

This simple example illustrates the two qualitatively different types of
invariant sets that we intend to approximate.

2.1 Algorithm: Relative Global Attractor

We describe numerical methods to approximate the invariant sets Inv(Q) and
Rq(T). These methods are based on multilevel subdivision techniques. Let
us begin with an abstract algorithm of this type for the computation of the
relative global attractor Ag(T) = N0 TF(Q), where Q C M is an arbitrary
(not necessarily forward invariant) box, i.e. a generalized rectangle B(c,r)
with center ¢ and radius r.

The idea of the algorithm is to cover Ag(T') by a finite number of boxes
and to recursively tighten the covering by refining appropriately selected
boxes.

Algorithm 1 (Subdivision Algorithm to Compute Ag(T)). We start
with the collection By = {Q}. For k = 1,2,... compute By, from the col-
lection Bi_1 in two steps:

1. Subdivision: Bisect each box in the current collection Bj_; into two
smaller boxes of equal size (for d-dimensional boxes, the cutting plane
is cycled around the d coordinate directions).

4 Michael Dellnitz, Gary Froyland and Oliver Junge

2. Selection: Discard those refined boxes whose preimage does not intersect
any box of the current (refined) collection. The remaining boxes consti-
tute the collection By.

The following result is proved in [4].

Theorem 6. Set Qf = UBeBk B and Q= = ﬂkzo Q-

1. Ag(T) C Qx, for allk >0
2. T7'Qo0 C Qoo
3. Ag(T) = Quo

Since Ag(T) is the set of all points which stay inside) under backward
iteration, it follows immediately that

Inv(Q) = Ag(T) N Ag(T™1),
whenever T is invertible.

Remark 7. 1. Results on the speed of convergence can be obtained if Ag(T)
possesses a hyperbolic structure, see [4]. Roughly speaking the stronger
the contraction along the stable direction the better is the convergence
behaviour.

2. The algorithm has been adapted and successfully applied to the context
of random dynamical systems [21] by Keller and Ochs within this DFG
research program (project of L. Arnold).

2.2 Practicalities: Relative Global Attractor

In GAIOQ, the selection criterion in step (ii) of Algorithm 1 is tested using a
set of test points in each box. These test points are mapped forward one step
and if at least one of these image points lies inside the box B, then B is not
discarded. This procedure can be made rigorous (in the sense that Ag(T) is
always covered by the box collection) through knowledge of local Lipschitz
constants of T' [19]; see Appendix A.

To perform one step of the algorithm with GAIO, one simply types:

rga(tree)

(the mnemonic rga is a short hand for “relative global attractor”), where
tree is the data structure containing the current collection of boxes. In fact
the boxes are stored in a binary tree, where the children of a box at depth
k are the two boxes of half-size at depth k£ + 1 formed by dividing the box
at depth k into two equal pieces. This binary tree structure allows for rapid
searching of which box contains the images of test points, and reduces the
time for the subdivision procedure from O(n?) to O(nlogn), where n denotes
the number of boxes. Most of the algorithms we describe in this paper benefit
significantly from the tree structure.

The Algorithms Behind GAIO 5
2.3 Example: Relative Global Attractor of a Knotted Flow

Consider a flow of a three-dimensional ordinary differential equation through
an open-ended cylinder from top to bottom. On the mantle of the cylinder,
the flow proceeds directly downwards. Near the center of the cylinder, some
trajectories of the flow loop around to form a knot; see the red portion of
Figure 4. Using techniques from algebraic topology, it is possible to prove
that there is a non-trivial invariant set contained inside the cylinder (see [7]
for details). Obviously this invariant set is unstable, and therefore extremely
difficult, if not impossible, to be observed numerically via simulation of single
trajectories. Our set oriented approach is particularly suitable, as we cover
the entire cylinder with coarse boxes and then repeatedly refine and discard
boxes which are known not to contain a part of the invariant set.
In GAIO, one issues the commands

knot = Model(’Knot’)

rk4 = Integrator (’RungeKuttad’)
rk4.model = knot

rk4d.h = 0.1

rk4.tFinal = 1.5

tree = Tree(knot.center, knot.radius)
tree.integrator = rk4

tree.domain_points = Points(’Grid’, knot.dim, 125)
tree.image_points = Points(’Vertices’, knot.dim)

rga(tree, 20)

The first block of commands loads the model file Knot into GAIO (see Ap-
pendix B on how to define your own model), and sets the parameters for the
integration of the vector field defined in Knot. For instance here we use a
fourth-order Runge-Kutta scheme in the numerical integration. The variable
rk4.h determines the integration step-size, and rk4.tFinal indicates that
we will treat the ODE as a 1.5-time discrete map (one iteration of the discrete
map is defined by integration for 1.5 time units).

The second block of commands initialises the tree structure, and the set
of test points that will be used in the selection step (ii) of Algorithm 1.
Here we use a uniform grid of 125 test points (domain points) in each box.
Additionally we choose a set of image points (given here by the vertices of
a box); see Appendix A for an explanation on this.

We perform 20 subdivision steps on the initial collection given by the
box with center knot.center and radius knot.radius. The covering of the
corresponding backward invariant set consists of 267458 boxes; see Figures 1
and 2. This has to be viewed as an approximation of the unstable invariant
set together with its unstable manifold.

6 Michael Dellnitz, Gary Froyland and Oliver Junge

Fig. 1. Covering of the relative global Fig. 2. As for Figure 1, from another
attractor for the knotted flow. viewpoint.

2.4 Algorithm: Chain Recurrent Sets

Often the maximal invariant set contains many “transient” points which we
sometimes would like to eliminate. For instance, in Example 5, we would
additionally like to know that the two points x = 0 and = 1 are all of the
recurrent points, rather than simply state the obvious fact that the entire
interval [0, 1] is invariant. We now show how to modify Algorithm 1 in such a
way that we can approximate the chain recurrent set. As in Algorithm 1 we
construct a sequence By, B, ... of collections of boxes creating successively
tighter coverings of the desired object.

Algorithm 2 (Subdivision Algorithm to Compute Rg(T)). Set By =
{Q}. For k =1,2,... the collection By, is obtained from Bj_; in two steps:

1. Subdivision: Bisect each box in the current collection Bj_; into two
smaller boxes of equal size (for d-dimensional boxes, the cutting plane
is cycled around the d coordinate directions).

2. Selection: Construct a directed graph whose vertices are the boxes in the
refined collection and by defining an edge from vertex B to vertex B', if

T(B)N B' # 0. 3)

Compute the strongly connected components of this graph and discard
all boxes which are not contained in one of these components.

The Algorithms Behind GAIO 7

Remark 8. Recall that a subset W of the nodes of a directed graph is called
a strongly connected component of the graph, if for all w,w € W there is a
path from w to @w. The set of all strongly connected components of a given
directed graph can be computed in linear time [26].

Intuitively it is plausible that the sequence of box coverings By, converges
to the chain recurrent set of T'. Indeed, under mild assumptions on the box
coverings one can prove convergence, see [11,27].

2.5 Example: Chain Recurrent Set of the Knotted Flow

We return to the previous example (the flow through an open-ended cylinder).
The computations are prepared in the very same way as before. One step of
Algorithm 2 is now performed by executing

crs(tree)

(where crs is meant to be an abbreviation for “chain recurrent set”). Here
the domain_points and image points of the tree are used to compute the
directed graph in a way similar to the selection step of algorithm 1. The result
after 18 subdivision steps is shown in Figure 3, where the approximate chain
recurrent set is shown in blue (11567 boxes), overlaying the relative global
attractor. Figure 4, which has been produced by Robert Strzodka, shows a
covering of the chain recurrent set in dark blue after 30 subdivision steps.

Fig. 3. Coverings of the relative global attractor (red), and the chain recurrent set
(blue).

8 Michael Dellnitz, Gary Froyland and Oliver Junge

Fig. 4. Covering of the chain recurrent set (blue) at a deeper level of subdivision.
The knot trajectory that defines the flow is shown in red.

3 Invariant Manifolds

The set oriented techniques may be applied to provide rigorous coverings
of invariant manifolds within some prescribed box . For simplicity, we de-
scribe only the situation of unstable manifolds of hyperbolic fixed points of
diffeomorphisms. However we emphasise that in principle the algorithm can
be applied to general stable or unstable manifolds of arbitrary invariant sets.

Definition 9. Let g be a hyperbolic fixed point for the diffeomorphism
T : M — M. Let U be a neighbourhood of xg and define the local stable
manifold of z¢ by

W (20, U) = {y : TPy € U for j € Z* and d(Ty, z) "= 0} (4)
where d(-,-) is a metric on M. The local unstable manifold is defined as
W (20,U) ={y: Ty € U for j € Z* and d(T 7y, z0) 2 0}. (5)

We have the following simplified version of the stable manifold theorem, see
e.g. [28].

The Algorithms Behind GAIO 9

Theorem 10. Let xo be a hyperbolic fixed point for the C* diffeomorphism
T : M — M. Then there is a neighbourhood U' C U such that the sets
WU, 20) and WU, zo) are C* embedded disks.

The global stable and unstable manifolds may be obtained by

W (o) = | T7W*(x0,U") and W"(mo) = | T?"W"(20,U"), (6)

J20 i20

respectively.

3.1 Algorithm: Invariant Manifolds

The rough idea behind covering the unstable manifold is as follows. Firstly,
use GAIO to identify small regions containing fixed points (assuming that
the fixed points are not known a priori). This can be done via a cycle of
subdividing and throwing away all boxes whose image does not intersect
itself. Remaining boxes cover all fixed points.

Once a fixed point has been located with sufficient precision, we apply
Algorithm 1 to a small box containing the fixed point. Beginning with the
obtained collection of boxes, these are mapped forward one iteration, and the
boxes that they “hit” are added to the collection. These new included boxes
are then mapped forward, and the procedure is repeated. In this way we
obtain a covering (which can be made rigorous using Lipschitz estimates on
the map as before; see Appendix A) of part of the global unstable manifold.
Formally, the algorithm consists of two main steps:

Algorithm 3 (Continuation Algorithm to Compute W*(x)).

1. Initialisation: Apply Algorithm 1 to a small box containing the hyperbolic
fixed point xg. Let the resulting collection be part of a partition of Q.
Repeat the following step until no more boxes are added to the current
collection:

2. Continuation: Map the obtained collection of boxes forward and note
which other boxes of the partition are hit by these images. Add these
boxes to the collection.

Remark 11.

1. It can be shown that Algorithm 3 indeed converges to part of the unstable
manifold. For a detailed description of this convergence result see [3].

2. Recently there have also been results obtained on the speed of conver-
gence in case where the unstable manifold is contained in a hyperbolic
attractor, see [18]. As expected like in the case of the Subdivision Algo-
rithm 1 the speed of convergence crucially depends on the contraction
rate along the stable direction.

3. Observe that in the realisation it is not necessary to partition) a priori
into small boxes. Rather we use the same hierarchical data structure as
for Algorithm 1 and just add leaves to the tree when the corresponding
boxes are hit.

10 Michael Dellnitz, Gary Froyland and Oliver Junge

4. In order to cover the stable manifolds, the continuation algorithm may
be applied to the inverse map 7'~ !.

3.2 Practicalities

To initialise the computations in GAIO we construct a single small box B
around the fixed point z¢ within the tree data structure:

tree.insert(x_0, depth)

Here depth specifies at which depth of the tree the box will be generated. A
higher depth corresponds to a smaller box. We may then apply Algorithm 1
in order to obtain a covering of the local unstable manifold of x¢ in B:

steps = 6
rga(tree, steps)

Finally we prepare the current collection

inserted = 2
tree.set_flags(’all’, inserted)

and apply several steps of Algorithm 3:

steps = 4
gum(tree, tree.depth, steps)

(here the mnemonic gum abbreviates ” global unstable manifold”). The above
tree.set_flags command (which just “marks” all boxes in the current col-
lection with the flag “2”) is necessary as a preparatory step since only newly
inserted boxes are mapped forward in each step of the procedure gum.

3.3 Example: Computation of a Stable Manifold in the Lorenz
System

We consider the problem of covering the two-dimensional stable manifold of
the origin for the Lorenz system governed by the system of ODFE’s:

& =o(y—=)
Yy=pr—y—2x2
Z=2xy— Pz

with o = 10, p = 28, and 3 = 8/3. Figure 5 was produced with the following
commands:

The Algorithms Behind GAIO 11

Fig. 5. Covering of the two-dimensional stable manifold of the steady state (0,0, 0).

lorenz = Model(’lorenz’)

rk4 = Integrator (’RungeKutta4’)
rk4.model = lorenz

rk4.tFinal = -0.1

rk4.h = -0.01

tree = Tree([0, O, 0], [120, 120, 160])
tree.integrator = rk4

tree.domain_points = Points(’Edges’, 3, 100)
tree.image_points = Points(’Center’, 3)

x = [0; 0; O]
depth = 21
tree.insert(x, depth)

steps = 10
gum(tree, depth, steps)

As usual we load the model, define the integration scheme and set up
the tree object. Note that rk4.tFinal = -0.1 and rk4.h = -0.01; so we
integrate the ODE backwards in time. The unstable manifold of the time-

12 Michael Dellnitz, Gary Froyland and Oliver Junge

reversed system is equal to the stable manifold of the forward time system.
In the second block of commands we insert the box containing the origin into
the tree at depth 21. Then we apply 10 steps of the continuation algorithm.
Note that here we do not need to issue the tree.set_flags command since
we inserted a single box into the tree and did not perform the subdivision
algorithm on this box.

3.4 Example: Rigorous Covering of an Unstable Manifold of the
Hénon System

The algorithm for generating a rigorous covering of invariant manifolds will
be illustrated with the Hénon mapping T : R? — R?, given by T(z,y) =
(1 — az?® + y,bx), with a = 1.0 and b = 0.54. Using the outer box Q =
[-2.2,3.8] x [—2.6,3.4] the lightly shaded boxes in Figure 6 were produced
by the following commands:

0.8

0.6

0.4r

0.2

Fig. 6. Rigorous (light) and non-rigorous (dark) continuation applied to cover the
unstable manifold of one of the fixed points of the Hénon map (6 continuation
steps).

henon = Model(’henon’)
=1.0
0.54

henon.

a
henon.b

map = Integrator(’Map’)
map.model = henon

The Algorithms Behind GAIO 13

tree = Tree(henon.center, henon.radius)
tree.integrator = map

tree.domain_points = Points(’Lipschitz’, 2)
tree.image_points = Points(’Vertices’, 2)

depth = 16
x = henon.fixed_point
tree.insert(x, depth)

steps = 6
gum(tree, depth, steps)

Note the use of the point styles Lipschitz and Vertices; this option
tells GAIO that the rigorous box intersection procedure (see Appendix A) is
to be used. We insert the fixed point of the Hénon map into the tree at depth
16 and perform six continuation steps to extend the manifold.

The dark boxes in Figure 6 were produced by repeating the commands
given above, but replacing the commands

tree.domain_points = Points(’Lipschitz’, 2)
tree.image_points = Points(’Vertices’, 2)

by

tree.domain_points = Points(’Edges’, 2, 100)
tree.image_points = Points(’Center’, 2)

yielding a non-rigorous computation of box intersections. Figure 7 shows both
manifold coverings (rigorous and non-rigorous) extended by a further three
steps, making a total of nine continuation steps. Finally, we perform the
rigorous continuation method at depth 24 for a total of 19 steps; the result
is shown in Figure 8.

4 Invariant Measures

An invariant measure describes the distribution of points on long trajecto-
ries, with regions that are visited more often being given higher “weight” or
measure. Deterministic dynamical systems typically support many invariant
measures. Under mild conditions on the dynamical system, it may be shown
that by adding smooth localised dynamical noise, the resulting system has a
unique invariant measure. Numerically, this “noisy” measure appears to be
similar to the distribution of long trajectories for the original system for a
large set of initial points in a neighbourhood of the chain recurrent set. In
fact there are results [23] that prove that this is true for certain types of noise
added to uniformly hyperbolic diffeomorphisms.

14 Michael Dellnitz, Gary Froyland and Oliver Junge

0.8

0.6

0.4

0.2

Fig. 7. Rigorous (light) and non-rigorous (dark) continuation applied to cover the
unstable manifold of one of the fixed points of the Hénon map (9 continuation
steps).

Definition 12. A probability measure g on M is called T-invariant if p o
T—' = u. We are particularly interested in the situation where there is an
invariant measure u with the property that

#{O0<E<N-1:Tkz € A}/N - u(4) as N = o0 (7)

for every measurable A C M and for Lebesgue almost all in a neighbour-
hood of the chain recurrent set. Such an (obviously unique) invariant measure
will be called a physical measure or natural invariant measure for T.

One iteration of our noisy system will be an application of T followed by a
small perturbation; that is, — Tz + e, where e € R? is small and of order
€. We formalise this by considering the noisy process to be a Markov chain.
This Markov chain is completely defined by a transition function Q(-,-) :
M x B(M) — [0,1], where B(M) denotes the collection of Borel sets on M.

Ezample 13. 1. Let B(x,¢€) denote the density of the uniform distribution
restricted to B¢(z), an € ball about z. If x — Tz + e with e selected
from the density B(0, e) then the corresponding transition function is
Qc(z, A) = [, B(Tx,€) dm(zx), where m is Lebesgue measure. Similarly if
B(z, e) is replaced by the multidimensional Gaussian distribution G(z, €)
with mean z and variance € then the corresponding transition function
is Q(z,A) = [, G(Tz,e) dm(x).

The Algorithms Behind GAIO 15

0.8

0.6

0.4

0.2

Fig. 8. The rigorous continuation algorithm applied to cover the unstable manifold
of a fixed point of the Hénon map: 19 continuation steps at depth 24.

2. The transition function Q(z,A) = 1 if Tz € A and Q(z,A) = 0 oth-
erwise, describes the (deterministic) Markov chain corresponding to the
unperturbed map 7.

Definition 14. Let M(M) denote the space of Borel probability measures
on M. Given a transition function Q., we may define a linear operator on
M(M) that describes how probability measures are “pushed forward” under
one step of the Markov chain. Define

(Par)(4) = /M Q.(z, A) dv(z) (8)

where v € M(M). In cases where we use the deterministic transition function
Q of Example 13 (ii), we denote the deterministic operator by P and call it
the Perron-Frobenius operator. The operators P, will be called noisy Perron-
Frobenius operators.

Theorem 15 ([24]). Suppose that for all x € M, Qc(z,-) is an absolutely

continuous probability measure. Let ng) denote the transition function for

k steps of the Markov chain. If, additionally, there exists a ko such that the
probability measure [, ng")(a:, -) dm(x) has a strictly positive density, then
P. has a unique fixed point, denoted p.. Furthermore ue is an everywhere
positive absolutely continuous probability measure, and is the unique invariant
measure for the noisy system.

16 Michael Dellnitz, Gary Froyland and Oliver Junge

Remark 16. As an example, one can choose
Qua.4) = (@) [expl(=|Ta = yI1/2€) dm(y).

where N (z) is a normalising factor. Such a class of perturbations are consid-
ered in [31], and this provides a very readable introduction to this “noising-
up” approach. In this case, kg = 1 in the above theorem.

Theorem 15 holds for very general transition functions Q.; they do not need
to be connected in any way to a deterministic mapping 7. However, we
are implicitly considering only those Q. which define Markov chains whose
dynamics is “close” to that of T. We now make this precise.

Definition 17 ([22,23]). We will say that a family of transition functions
{Qc}e>0 represents a small random perturbation of a continuous map T if

Qc(z,") = dr(y) weakly as e — 0 (9)
uniformly in z. Here J, denotes the Dirac measure at y.

Theorem 18 ([22,23]). Suppose that Q. represents a small random pertur-
bation of T and satisfies the conditions of Theorem 15. Let [i be a weak limit
of {pe} as € = 0, where a subsequence is selected if necessary. Then fi is
T-invariant.

In the case where Qc(z,-) is absolutely continuous for all z our noisy
Perron-Frobenius operators may be considered as operators on L. They map
the space of densities D = {f € L' : f >0, [,, f dm = 1} into itself. One may
think of D as representing all absolutely continuous probability measures. For
technical reasons, it is often advantageous for P, to be a compact operator
on L'(M,m), the space of integrable functions on M. Under some further
mild conditions on Q, this is also true.

Theorem 19 ([18]). Suppose that Q(z,-) has a Lipschitz density for all
x € M. Then P, is compact as an operator on L'.

4.1 Algorithm: Natural Invariant Measures

The box coverings introduced earlier will form the backbone of our finite-
dimensional approximation of the infinite-dimensional operator P. More pre-
cisely, for a given box collection {Bj, . .., By} we form the (column stochastic)
transition matrix

m(Bj n TﬁlBi)

Pi' = 3
m(B;)

(10)
i,j = 1,...,n. One computes the (assumed, unique) fixed right eigenvector
p of P = (P;;), representing the invariant distribution for the finite-state
Markov chain defined by P. An approximate invariant measure pu,, is defined
by assigning ., (B;) = p;.

The Algorithms Behind GAIO 17

Algorithm 4 (Computation of Natural Invariant Measures).
1. Compute the matrix P above.

2. Find the (right) Perron eigenvector p of P.

3. Set pun(B;) =pi,i=1,...,n.

In general for the deterministic case it is not clear whether or not this
measure 4, is a good approximation of the physical measure. However under
certain assumptions it can be shown that the measures yu,, indeed converge
to a natural invariant measure, see e.g. [25,13,14,9]. Moreover the following
convergence result for the stochastically perturbed context has been shown
in [6]. Here we denote by uf, the approximate invariant measure obtained by
computing the Perron eigenvector of the transition matrix for the stochasti-
cally perturbed system.

Theorem 20. Suppose that the diffeomorphism T has o hyperbolic attractor
A, and that there exists an open set Uy D A such that for the densities q. of
the transition functions Qc(x,A) = [, ¢.(Tx,y) dm(y) we have

ge(z,y) =0 ifx € T(Uy) andy & Uy.

Then the transition function Q. has a unique invariant measure [with
support on A and the approximating measures us, converge to the natural
measure i of T as e = 0 and n — oo,

lim lim pé = p.
e—0 n—oo Hn H

4.2 Practicalities

The crucial algorithmic step is to compute the transition probabilities be-
tween boxes, i.e. the entries of the matrix P. In GAIO, this is carried out in
two ways:

Computation of P Using Test Points The first method is to select a
collection of m test points within each box. The points {z1,...,zm} € B;
are mapped forward by T and we set

H]' = #{SE S {ZUl,...,SUm} :Tx € B,}/m

For example, to use a set of m points distributed randomly according to a
uniform distribution in each box one would use:

mc = Points(’MonteCarlo’, dim, m)
P = tree.matrix(mc, depth)

where dim denotes the dimension of phase space and depth specifies on which
depth of the tree the transition matrix is to be computed. The variable depth
may also be set to —1 in which case the transition matrix is computed on the
leaves of the tree. This is useful in situations where we use adapted partitions
(i-e. not all of the boxes are of the same size).

18 Michael Dellnitz, Gary Froyland and Oliver Junge

Computation of P Using an Exhaustion Technique The second method
is to use an approach called “exhaustion”, similar to the exhaustion tech-
niques pioneered by Eudoxus [12]. To estimate the d-dimensional volume of
B;NT~!'B,, the box B, is repeatedly subdivided into smaller boxes until the
forward image of a smaller box is known to fit completely inside B;. This
criterion is tested on the basis of Lipschitz estimates on the right hand side
of the underlying model. At this point, subdivision of the sub-box stops. We
also stop subdividing the sub-box when its volume has decreased beyond a
certain threshold. A complete description of this method can be found in [16].
In GAIO, the transition matrix is created via the command:

P = tree.matrix(’exhaustion’, depth [, err])

In this command, the optional integer err is related to the volume threshold
mentioned before. The subdivision of a sub-box stops, when its volume is
smaller than 27° times the volume of B;. The default value of err is 16.

Computing Eigenvalues and Eigenvectors of P To compute the fixed
right eigenvector of the transition matrix P in GAIO, one types:

[v, 1] = eigs(P, 1)

and the variable 1 will contain the largest real eigenvalue of P, with v con-
taining the corresponding eigenvector.

Adaptive Partitioning Schemes So far, we have described how to com-
pute transition matrices on a certain depth of the tree. Usually the corre-
sponding collection will have been obtained by one of the algorithms described
so far. They always lead to coverings with boxes of equal size. However, using
information from the approximate invariant measure, it is possible to produce
more efficient partitioning schemes. There are different strategies of how to
use the information from the invariant measure, however, the basic algorithm
has the following structure:

Algorithm 5 (Adaptive Subdivision Algorithm). From a box collec-
tion By_1 and a corresponding approximate invariant measure py_; compute
By, and puy, in two steps:

1. Subdivision: Based on information from the approximate invariant mea-
sure, identify boxes which should be subdivided. Bisect each of those
boxes into two smaller boxes of equal size (for d-dimensional boxes, the
cutting plane is cycled around the d coordinate directions).

2. Selection: Compute the transition matrix and approximate the invariant
measure uy for the refined box collection. Discard boxes for which the
approximate measure is zero. The resulting collection constitutes By.

The Algorithms Behind GAIO 19

We are now going to explain different identification procedures for step 1
of Algorithm 5 which are available in GAIO. For example one may

(a) subdivide boxes B for which pr_1(B) > 1/n, where n is the number of
boxes in By_1;

(b) estimate a local approximation error from the (piecewise constant) den-
sity of the approximate invariant measure. Refine those boxes for which
this estimated local error exceeds its average over all boxes (see [17] for
a description of this approach).

The convergence of these adaptive schemes is analysed in detail in [18].
In GAIO, adaptive algorithm (a) is accessible via the commands

aim_hm(tree, method)

which performs one step of Algorithm 5 using subdivision procedure (a). The
variable method determines which of the two above described methods is used
in order to computed the transition matrices: it can be either a points object
or the string ’exhaustion’.

aim_lip(tree, method)

implements subdivision procedure (b). Note that for this approach to make
sense we need a rather accurate result for the approximate invariant density,
so in most cases one would exclusively choose the method to be ’exhaustion’
here.

4.3 Example: Bouncing Ball

We consider a discrete dynamical system that models a ball bouncing on a
sinusoidally forced table. The approximate equations of motion are given by:

G411 = G + vy,
Vi41 = QU — 7COS(¢t + ’Ut),

with @ = 0.9 and v = 16. Here ¢; € [0,27) denotes the phase of the table
at impact #t, and v; € IR denotes the exit velocity of the ball at impact
#t. Figure 9 shows a plot of a numerical orbit of length 10° with initial
conditions ¢g = 0, vg = 0; that is, the points {(¢¢,v;)}12, have been plotted
on the phase space M = S x [-100, 100].

Darker regions of Figure 9 contain more points, and therefore are vis-
ited more frequently by the numerical trajectory than lighter regions. Our
estimate of the physical invariant measure will approximate the long term dis-
tribution of points in Figure 9 that arises in the ¢ — oo limit. Figure 10 is a
gray scale plot of the density of an approximate invariant measure computed
using the techniques described above.

Figure 11 shows the graph of this density in three dimensions. It can
clearly be seen that this invariant density has a certain spatial structure

20 Michael Dellnitz, Gary Froyland and Oliver Junge

100

Fig. 9. A numerical trajectory of length 10° for the bouncing ball system.

which is reminiscent of the symmetry on average of attractors as described
in [2].
To compute this approximation, we issued the following commands:

bb = Model(’bouncingball’)

map = Integrator(’Map’)
map.model = bb

tree = Tree(bb.center, bb.radius)
tree.integrator = map

to_be_subdivided = 8

for i=1:15
tree.set_flags(’all’, to_be_subdivided)
tree.subdivide (to_be_subdivided)

end

ig = Points(’InnerGrid’, 2, 1000)
P = tree.matrix(ig)
[v, 1] = eigs(P, 1)

Note that because we subdivide all boxes at each step, we do not set the
domain and image points in the first block (we don’t need to worry about
computing intersections of boxes). The decision to subdivide all boxes is only

The Algorithms Behind GAIO 21

Fig. 10. Density of an approximate invariant measure using 65536 boxes (16 sub-
divisions). Darker areas correspond to higher density.

a little inefficient (from the data storage point of view) in this instance, as
the positive density region occupies most of the phase space. We chose to
subdivide all boxes purely because it is then easier to use the MATLAB visu-
alisation function used to produce Figure 11. Normally instead of subdividing
all boxes we would use one of the Subdivision Algorithms 1, 2 or 5.

In the for-loop we repeatedly mark all boxes with the flag “8” and then
subdivide all boxes which have this flag set (i.e. all boxes are subdivded). Once
the box collection at depth 16 has been produced by the for-loop, we set the
variable ig to determine how to select test points for the computation of the
transition matrix P. In this example, we use 1000 points per box, arranged in
a uniform grid (set slightly away from the boundary of the boxes, as indicated
by InnerGrid). We then generate the 2'¢ x 26 sparse matrix P and compute
its Perron eigenvector as the approximate invariant measure.

5 Almost Invariant Sets and the Isolated Spectrum

Often one observes that in transitive systems, there are regions in which
orbits stay for very long times before moving to other regions, only to return
some longer time later. A well-known example are the two “wings” of the
Lorenz attractor. Trajectories tend to stay on each wing for quite a long time
before switching to the other wing. It is not just purely of dynamical interest
to identify such “almost invariant sets”; the concept of “almost invariance”
has recently also successfully been used for the identification of conformations
for molecules (see [8,30]).

22 Michael Dellnitz, Gary Froyland and Oliver Junge

Fig.11. A three-dimensional version of Figure 10 with the density plotted in the
z-coordinate, and coloured according to the density.

We return to the operator P and consider its action on M¢(M), the
space of (possibly complex-valued) Borel measures (recall that P is defined
by equation (8) using Q defined in Example 13 (ii)). Suppose that there is a
real eigenvalue 0 < A < 1, with corresponding real eigenmeasure v € Mag(M)
such that Pv = Av. We assume that v is normalised so that |v|(M) = 1 (this
means that there are two disjoint subsets A;, As such that v(4;) = 1/2,
v(A2) = —1/2, and A; U Ay = M). We will say that the two disjoint subsets
Ay, A, partition M into two almost-invariant sets. The following result [6]
lends weight to this assertion.

Theorem 21. Define
6= I/(A]_ N T_lAl)/I/(A]_) and o= V(A2 N T_IAQ)/I/(AQ).
Then § + 0 = A+ 1.

The numbers § and ¢ represent the amount of v-mass that stays inside A;
and As, respectively, under one iteration of T'. Thus, if A; and As are close
to being invariant, § and o should be both close to one; this implies that A is
close to one also. If almost all of the v-mass leaves A; in one iteration (and
likewise for Ay), then both § and o should be close to zero; and A should be
close to —1. Thus A close to —1 suggests that the two sets A; and A form
part of an almost two-cycle. Further generalisations are possible, and identical
results hold for the noisy operator P, see [6,15] for a detailed description.

The Algorithms Behind GAIO 23

5.1 Algorithm: Almost Invariant Sets

The transition matrix P constructed in the previous section provides a dis-
crete approximation of the smooth dynamics. For motivational purposes let
us suppose that the transition matrix is reducible, in the sense that there are
two invariant subspaces V; and V5 of dimension n —r and r respectively, and
that P restricted two each of V; and V5 is irreducible. The eigenvalue one for
the matrix P has geometric multiplicity two, and the spaces Vi and V» can
be extracted from the two fixed vectors of P (by using information on the
positive and negative parts of the eigenvectors); see [6].

Suppose now that the system is perturbed, resulting in one of the eigenval-
ues moving away from one (one of the eigenvalues must stay at unity because
the matrix remains stochastic). Then the matrix P becomes irreducible, but
still close to being reducible. By continuity, the positive and negative parts
of the eigenvectors corresponding to the second eigenvalue (the eigenvalue
that moved away from unity) will approximate invariant sets. We call these
almost-invariant sets.

To search for almost invariant sets, we look for eigenvalues of P (or P.)
close to unity (or close to —1 when looking for almost two-cycles). We as-
sume that the eigenmeasures and eigenvalues of P are well-approximated by
eigenvectors and eigenvalues of the matrix P; at least for eigenvalues close
to the unit circle. Such good approximation has been made precise for the
noiseless operator P in one-dimension [20] and also for the compact operator
P. in higher dimensions [6]. Moreover, the existence of isolated eigenvalues
and their dynamical relevance has recently been analytically studied for a
certain class of one-dimensional maps, [1].

The algorithm for the computation of almost invariant sets is summarised
below in the case where the second largest eigenvalue of P (in magnitude)
is positive and real. The case of a large negative eigenvalue — leading to an
almost invariant two-cycle — can be treated analogously.

Algorithm 6 (Computation of Almost Invariant Sets).
1. Compute the eigenvector v corresponding to the second largest real eigen-
value of P.
2. Create two index sets Z; = {i € {1,...,n} :v; > 0} and I, = {i €
{1,...,n}:v; <0}. _
3. Denote the i" box by B;. The box collections 4; := |J
U;cz, Bi approximate A; and Ay in Theorem 21.

icz, Bi and Zg =

Note that the construction of Z; and 7, in step 2 is somewhat arbitrary, see
[15] for a more detailed exposition on this.

5.2 Practicalities

In GAIO, we calculate the matrix P as described in §4.2. To find the s largest
(in absolute value) eigenvalues, we type

[v, lambda] = eigs(P, s)

24 Michael Dellnitz, Gary Froyland and Oliver Junge

5.3 Example: Chua’s Circuit

We consider the set of differential equations

= a(y — moz — (1/3)m12°)
=r—y+z
==Py

with the parameter values a = 16,8 = 33, mg = —0.2, and m; = 0.01.

A covering of the unstable manifold of one of the fixed points is first com-
puted using the continuation algorithm. There is numerical evidence that this
leads to a covering of an attracting set of the underlying ordinary differential
equation.

ISS ST R

chua = Model(’chua’)

rk4 = Integrator (’RungeKutta4’)
rk4.model = chua

tree = Tree(chua.center, chua.radius)
tree.integrator = rk4

tree.domain_points = Points(’Edges’, 3, 100)
tree.image_points = Points(’Center’, 3)

depth = 21
x = chua.fixed_point
tree.insert(x, depth)

steps = 100
gum(tree, depth, steps)

We load the model, set the integrator to be used, and define the points
to be used in the intersection tests. We then insert a single box containing
one of the fixed points into the tree data structure at depth 21, and apply
the continuation algorithm for 100 steps (at most; the routine gum will stop
if no more boxes are added to the collection).

We compute the transition matrix

ig = Points(’InnerGrid’, 3, 1000)
P = tree.matrix(ig)

and using the eigs command described above, we compute the leading eigen-
values of P, and find there is a positive, real eigenvalue close to one. The cor-
responding eigenvector v of this second largest eigenvalue has positive and
negative parts and), v; = 0; we consider v as a discrete approximation of
the signed measure v introduced earlier. We choose zero as a “separator”,
and consider the two sets of indices Z; = {i € {1,...,n} : v; > 0} and

The Algorithms Behind GAIO 25

Fig. 12. Separation of the invariant set into two almost-invariant pieces.

I, = {i € {1,...,n} : v; < 0} to partition our box-covering into two almost
invariant pieces, approximating the two sets A; and As. It can be numer-
ically verified that the two sets of indices I; and I, satisfy a probabilistic
version of Theorem 21 (replacing the action of T with the matrix P, and the
eigenmeasure v with the eigenvector v). These two sets are shown in red and
blue, respectively, in Figure 12.

6 Acknowledgements

The authors would like to thank Michaela Schlér, Stefan Sertl, and Bianca
Thiere for assistance in creating the example figures.

They gratefully acknowledge Kathrin Padberg’s assistance in implement-
ing the MATLAB interface to GAIO.

Figures 1-5 have been produced using the software platform GRAPE.

A Rigorous Calculation of Box Intersections

Because a finite number of test points is used to compute intersections of sets
in Algorithms 1, 2 and 3, it is possible to miss some intersections, and there-
fore possibly not have a complete covering of an invariant set or manifold. By
using information on the Lipschitz constants of the mapping (for simplicity
we describe only the discrete-time case), it is possible to produce a rigorous
covering of an invariant set or manifold, in the sense that the invariant object
is completely contained inside the resulting collection of boxes.

26 Michael Dellnitz, Gary Froyland and Oliver Junge

The problem is as follows: Given a box B in a collection B, find all boxes in
B that intersect T'(B). Roughly speaking, the solution is this: Choose a finite
grid of test points {z1,...,24} in B in such a way that the distance between
the images T'(x;) and T'(x;) of two neighbouring points z; and x; is less than
the diameter of the boxes in B. The set of all boxes in B intersected by the
union of box-sized neighbourhoods centered at each T'(z;) (i = 1,...,q) is
then guaranteed to contain the collection of all boxes intersecting T'(B).

In order to impose an upper bound on the distance between T'(z;) and
T(x;), one needs information on the Lipschitz constants of T restricted to B.
Let r € IR? denote the radius of the boxes in B (recall that all boxes are of the
same size). We need to know a dxd matrix L such that |T'(z)—T(y)| < L|z—y|
for z,y € B. If T is differentiable, then L;; = max¢cp |0,;T;(£)| does the job,
where T; is the i*" component map of T. We now arrange test points in B
lying on a d-dimensional grid G = {x € B : z;—c¢; € h;Z,i =1,...,d}, where
¢ = (c1,...,cq) denotes the center of the box B and the vector h € R%, h > 0,
satisfies Lh < 2r.

Proposition 22. Let B(x,r) denote a box of radius v centered at x € M.

g

Define the box collection T(B) = {B' € B: B'NJ,cq B(Tx,r) # 0}. Then

o~

{B'e B:B'NT(B) # 0} Cc T(B).

X

Fig. 13. Illustration of Proposition 22.

—

The collection T'(B) is constructed by placing a box of radius r, centered
at every Tz, z € GG, and checking which boxes in B are intersected by these
boxes, see also Figurel{i This check is very simple, as one only needs to
include all boxes into T'(B) which contain a vertex of the boxes B(T'(z;),r),
1=1,...,q.

In GAIO this construction is realized by a special choice of the test points
which have to assigned to a Tree object. Recall that for the non-rigorous
approach one may chose

The Algorithms Behind GAIO 27

tree.domain_points = Points(’Edges’, dim, m)
tree.image_points = Points(’Center’, dim)

where dim denotes the dimension of phase space and m the suggested number
of points. Now for the rigorous approach we instead use the commands

tree.domain_points = Points(’Lipschitz’, dim)
tree.image_points = Points(’Vertices’, dim)

An alternative, even more efficient way of constructing a grid of test points
is to align the points within B along directions given by the right singular
vectors of the matrix L, with the components of h directly related to the
singular values. This approach reduces the required number of test points for
the determination of a covering of the image of B under T'. For a detailed
description of the methods mentioned in this section see [18].

B Example Model Files

Each model is defined in a single C—file which is compiled into object code
by a C—compiler and then transformed into a shared object by the linker of
the machine. This shared object can then be loaded into GAIO.

We give two example model files to show how one produces a model in
practice. There are two main situations; the first is where our dynamical
system is governed by a discrete map, and the second is where our system is
a flow generated by a vector field. In the former case, the map will form the
“right hand side” in our model files, while in the latter case, it is the vector
field.

B.1 Map

The following is the code of henon.c, a Cfile that produces a model file for
the Hénon map.

char *name = "My Henon map";

char *typ = "map";

int dim = 2;

int paramDim = 2;
]

char *paramNames[] = { "a", "b" };
double a = 1.3, b = 0.2;

double c[2] = { 0, 0 };

double r[2] = { 3, 3 };

double tFinal = 1;

’

void rhs(double *x, double *u, double *y) {
y[0] = 1 - a*xx[0]*x[0] + x[1];
y[1] = bx*x[0];

}

28 Michael Dellnitz, Gary Froyland and Oliver Junge

Except for a and b, which are obviously specific to the Hénon map, these are
the variables and function(s) that have to present in each model file. The file
now has to be compiled into object code by the command

cc —-c henon.c

and the resulting object file henon. o has to be converted into a shared object
by issuing

1d -shared -o henon.so henon.o

Note that the linker flag -shared is platform dependent. Some specific choices
are given in the following table:

Linux -shared
Solaris -G
OSF or Irix|-shared -expect_unresolved

Additionally one has to provide a Lipschitz estimate on the right hand
side if one wants to use the Lipschitz test points as mentioned in section 2.2
and explained in Appendix A. The corresponding function must be called 1ip
as in the following example for the Hénon map.

#define max(x,y) (x>y 7 x : y)
void lip(double *c, double *r, double *L) {

L[0] = 2.0xfabs(a)*max(fabs(c[0] + r[0]), fabs(c[0] - r[0]));
L[1] = 1.0;
L[2] = fabs(b);
L[3] = 0.0;
}

Finally it is possible to additionally supply some special point in state
space via the function fixed point. In most cases this will be a fixed point
of the underlying dynamical system. For the Hénon map we define:

#include <math.h> /* defines sqrt() */

void fixed_point(double *x) {
double t = (b-1)/(2xa);
x[0] = t + sqrt(t*xt + 1/a);
x[1] b*x[0];

}

B.2 Flow

The following is a C—file that produces a model file for the Lorenz flow, with
three free parameters.

The Algorithms Behind GAIO 29

#include <math.h>

char *name = "The Lorenz system";

char *typ = "ode";

int dim = 3;

int paramDim = 3;

char *paramNames[] = { "sigma", "rho", "beta" };
double sigma = 10, rho = 28, beta = 2.666666666;

double c[3] = { 0, 0, 27 };
double r[3] = { 30, 30, 40 };
double tFinal = 0.2;

void rhs(double *x, double *u, double *y) {
y[0] = sigma*x(x[1]1-x[0]1);
y[11 = rho*x[0] - x[1] - x[0]1*x[2];
y[2] = x[0]*x[1] - betaxx[2];

}

void fixed_point(double *x) {
x[0] = sqrt(betax*(rho-1));
x[1] = x[0];
x[2] rho-1;

}

C Frequently Used GAIO Commands

Here we give a short summary of more frequently used commands. A complete
description is distributed together with the software.

C.1 General Commands
model = Model(’name’)

Loads the model object from the file name. so.
integ = Integrator(’Map’)

Loads the Map integrator (always used with discrete systems). For
flows there are different Runge-Kutta schemes available, including
’Euler’, ’RungeKutta4’, ’DormandPrince853’, ’MidpointRule’ or
’Gauss6’.

tree = Tree(center, radius)

Constructs a tree object; center and radius determine the outer
box Q.

30

Michael Dellnitz, Gary Froyland and Oliver Junge

tree.depth

Returns the current maximal depth of tree.

tree.count (depth)

Returns the number of boxes in the tree at the given depth.

points = Points(’InnerGrid’, dim, m)

Loads a set of m test points of dimension dim. The type ’ InnerGrid’
sets the points in a uniform grid covering the box, but with all
points in the interior of the box. Other possible point types are
’Grid’, where points are also placed around the boundary of the
box, ’MonteCarlo’, which randomly distributes points (chosen from
a uniform distribution) over the box and ’Edges’ which refers to test
points placed on the boundary of the boxes. To use rigorous covering
algorithms, one has to use the point type ’Lipschitz’ for the do-
main points (this is currently restricted to maps; also note that the
model has to supply the function 1ip in this case).

tree.domain_points = points

Defines the domain test points for each box.

tree.image points = points

Defines the image test points as explained in Appendix A. If one
wishes to use rigorous covering algorithms, the point style *Vertices’
has to be used for the image points.

tree.boxes(depth)

Returns a (2d + 2) x n matrix representing the box collection on the
given depth of the tree, where n is the number of boxes on this depth
and d is the dimension of state space (as defined by the model). Each
column of this matrix corresponds to one box, where the first d rows
specify the center, the second d the radius of the box, the (2d+1)st
row its flags and the last its color.

C.2 Commands for Invariant Sets and Global Attractors

rga(tree [, steps])

Performs steps (default = 1) steps of the subdivision algorithm for
the computation of the relative global attractor (Algorithm 1).

crs(tree [, steps])

Performs several steps of the subdivision algorithm for the computa-
tion of the chain recurrent set (Algorithm 2).

The Algorithms Behind GAIO

C.3 Commands for Invariant Manifolds
tree.insert(x, depth)

Inserts the box containing the point x at the given depth into the
tree.

gum(tree, depth [, steps])

Performs several steps of the continuation algorithm for the compu-
tation of global unstable manifolds (Algorithm 3) at the given depth.

C.4 Commands for Transfer Operators, Invariant measures
and Almost Invariant Sets

P = tree.matrix(method, depth)

Computes the transition matrix as a finite-dimensional approxima-
tion of the Perron-Frobenius operator on the given depth of the tree
using

1. test points, if method is a points object;

2. the exhaustion method, if method=’exhaustion’.

[v, lambda] = eigs(P, n)

Finds the n eigenvectors v and eigenvalues lambda of P with the
largest modulus. See the documentation to eigs for further options
and details.

References

31

1. M. Dellnitz, G. Froyland, and S. Sertl. On the isolated spectrum of the Perron-

Frobenius operator. Nonlinearity, 13(4):1171-1188, 2000.

2. M. Dellnitz, M. Golubitsky, and M. Nicol. Symmetry of attractors and the
Karhunen-Loéve decomposition, pages 73—108. Number 100 in Applied Math-

ematical Sciences. Springer-Verlag, 1994.

3. M. Dellnitz and A. Hohmann. The computation of unstable manifolds using
subdivision and continuation. In H.W. Broer, S.A. van Gils, I. Hoveijn, and
F. Takens, editors, Nonlinear Dynamical Systems and Chaos, pages 449-459.

Birkh&user, PNLDE 19, 1996.

4. M. Dellnitz and A. Hohmann. A subdivision algorithm for the computation of
unstable manifolds and global attractors. Numerische Mathematik, 75:293-317,

1997.

5. M. Dellnitz, A. Hohmann, O. Junge, and M. Rumpf. Exploring invariant sets
and invariant measures. CHAOS: An Interdisciplinary Journal of Nonlinear

Science, 7(2):221, 1997.

6. M. Dellnitz and O. Junge. On the approximation of complicated dynamical

behavior. SIAM J. Numer. Anal., 36(2):491-515, 1999.

32

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26

Michael Dellnitz, Gary Froyland and Oliver Junge

M. Dellnitz, O. Junge, M. Rumpf, and R. Strzodka. The computation of an
unstable invariant set inside a cylinder containing a knotted flow. In Proceedings
of Equadiff ’99, Berlin, 2000.

P. Deuflhard, M. Dellnitz, O. Junge, and Ch. Schiitte. Computation of essen-
tial molecular dynamics by subdivision techniques, pages 98-115. Number 4
in Lecture Notes in Computational Science and Engineering. Springer-Verlag,
1998.

J. Ding and A. Zhou. Finite approximations of Frobenius-Perron operators.
A solution of Ulam’s conjecture to multi-dimensional transformations. Physica
D, 92(1-2):61-68, 1996.

R.W. Easton. Geometric Methods for Discrete Dynamical Systems. Number 50
in Oxford engineering science. Oxford University Press, New York, 1998.

M. Eidenschink. Ezploring Global Dynamics: A Numerical Algorithm Based on
the Conley Index Theory. PhD thesis, Georgia Institute of Technology, 1995.
Euclid. Elements. Book X, (first Proposition).

G. Froyland. Finite approximation of Sinai-Bowen-Ruelle measures of Anosov
systems in two dimensions. Random & Computational Dynamics, 3(4):251-264,
1995.

G. Froyland. Approximating physical invariant measures of mixing dynam-
ical systems in higher dimensions. Nonlinear Analysis, Theory, Methods, &
Applications, 32(7):831-860, 1998.

G. Froyland and M. Dellnitz. Detecting and locating near-optimal almost-
invariant sets and cycles. In preparation.

R. Guder, M. Dellnitz, and E. Kreuzer. An adaptive method for the approxima-
tion of the generalized cell mapping. Chaos, Solitons and Fractals, 8(4):525-534,
1997.

R. Guder and E. Kreuzer. Control of an adaptive refinement technique of
generalized cell mapping by system dynamics. J. Nonl. Dyn., 20(1):21-32,
1999.

O. Junge. Mengenorientierte Methoden zur numerischen Analyse dynamischer
Systeme. PhD thesis, University of Paderborn, 1999.

O. Junge. Rigorous discretization of subdivision techniques. In Proceedings of
Equadiff ’99, Berlin, 2000.

G. Keller and C. Liverani. Stability of the spectrum for transfer operators.
Preprint, 1998.

H. Keller and G. Ochs. Numerical approximation of random attractors. In
Stochastic dynamics, pages 93-115. Springer, 1999.

R.Z. Khas’minskii. Principle of averaging for parabolic and elliptic differential
equations and for Markov processes with small diffusion. Theory of Probability
and its Applications, 8(1):1-21, 1963.

Y. Kifer. Random Perturbations of Dynamical Systems, volume 16 of Progress
in Probability and Statistics. Birkhduser, Boston, 1988.

A. Lasota and M.C. Mackey. Chaos, Fractals, and Noise. Stochastic Aspects of
Dynamics, volume 97 of Applied Mathematical Sciences. Springer-Verlag, New
York, second edition, 1994.

T.-Y. Li. Finite approximation for the Frobenius-Perron operator. A solution
to Ulam’s conjecture. Journal of Approzimation Theory, 17:177-186, 1976.

K. Mehlhorn. Data Structures and Algorithms. Springer, 1984.

27

28.

29.

30.

31.

The Algorithms Behind GAIO 33

. G. Osipenko. Construction of attractors and filtrations. In K. Mischaikow,
M. Mrozek, and P. Zgliczynski, editors, Conley Indexr Theory, pages 173-191.
Banach Center Publications 47, 1999.

C. Robinson. Dynamical Systems: Stability, Symbolic Dynamics, and Chaos.
CRC, Boca Raton, 1995.

M. Rumpf and A. Wierse. GRAPE, eine objektorientierte Visualisierungs— und
Numerikplattform. Informatik, Forschung und Entwicklung, 7:145-151, 1992.
Ch. Schiitte. Conformational Dynamics: Modelling, Theory, Algorithm, and
Application to Biomolecules. Habilitation thesis, Freie Universitit Berlin, 1999.
E.C. Zeeman. Stability of dynamical systems. Nonlinearity, 1:115-155, 1988.

