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Abstract. A simple, lightweight, and fast, package in the programming language Julia for3
managing finite element mesh data structures is presented. The key role in the design of the data4
structures is granted to the incidence relation. This concept has some interesting implications for5
the simplicity and efficiency of the implementation. The entire library has less than 500 executable6
lines. The low memory requirements are also notable. The user of the library is given power over the7
decisions which mesh entities should be represented explicitly in the data structures, and which of8
the topological relationships should be computed and stored. This enables a small memory footprint,9
yet affords a sufficiently rich topology description capability.10
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1. Introduction. A number of mesh data structures have been proposed in the13

literature [2, 5, 16, 20, 4]: radial-edge, winged, half-edge and half-face, entity-based,14

etc. Usually with the goal of accommodating richer representations of functions on15

meshes, and supporting complex topological queries. Alas, flexibility and power to16

support mesh adaptation tend to increase the complexity of the implementation, and17

speed is hard-won in such designs. A common feature of these approaches is the18

use of pointers to objects in memory [1]. One disadvantage is of course that even19

when the indexes are 32-bit, the pointers on current machines are typically 64-bit.20

Consequently the memory used for such data structures is not insignificant.21

Hence, array-based structures geared towards efficient access, and parsimonious22

storage of static meshes, also find a receptive ground: STK [7] and MOAB [21, 6]23

are array-based mesh structures. An often-cited example is the mesh data structure24

implemented in FENiCS [14]. It seems also possible to include in this list the innova-25

tive and unusual Sieve [11], which in its high-performance incarnation is available as26

DMPlex [13].27

The goal of this paper is to present a simple, lightweight, and fast, package for28

managing finite element mesh data structures [17] in the programming language Ju-29

lia [22, 3]. There are one or two points which the readers may find of interest. The30

key role assigned to the incidence relation appears to be a novel idea, which has some31

interesting implications for the simplicity and efficiency of the implementation. The32

entire library has less than 500 executable lines. The low memory requirements are33

also of notice. The present library leaves to the user of the library the decisions on (a)34

of which of the of mesh entities of the four manifold dimensions (cells, faces, edges,35

and vertices) to represent explicitly in the data structures, and (b) which of the 1236

topological relationships to compute and store. This is in contrast to the usual “take37

it or leave it” design. Also, we do not use pointers to objects in memory. In fact, we38

believe that a major factor contributing to the efficiency and simplicity of our library39

is that it is not object-oriented. The implementation is simple and easy to understand40

thanks to the Julia programming language [22, 3].41

The paper is organized as follows: We present the essential ideas and concepts42

in Section 2, and we describe the basic objects and operations. Section 3 provides43
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2 P. KRYSL

some experimental data points concerning the usability, flexibility, and costs of the44

representation. Discussion and conclusions round off the paper in Section 4.45

2. Description of meshes. In finite element analysis there is no such thing as46

“the mesh”. Even the simplest finite element program will require two meshes: one47

for the evaluation of the integrals over the interior, and one for the evaluation of the48

boundary integrals. Complex finite element programs typically work with a multitude49

of meshes, depending on the requirements of the application. Super-convergent patch50

recovery, mixed methods, high-order finite element methods with degrees of freedom51

at the edges, faces, and interiors, in addition to the nodes [20], discontinuous and52

hybrid Galerkin methods [8], nodal integration methods [12], and so on, need access53

to mesh entities at various levels of mesh topology. The present mesh library provides54

enough support for these complex applications, as will be described below.55

On the other hand, many basic forms of the finite element method will require56

only the connectivity, enumerating for each element its nodes (i.e. a single downward57

adjacency). If that is so, for efficiency reasons there’s no point in constructing and58

storing additional topological information when it isn’t used. Hence, the present59

library can also attend to the needs of low complexity – low storage requirements60

cases.61

In the next section we describe the basic objects1 with which the library works:62

the shape descriptors, and the shape collections, the incidence relations, and the63

attributes. The reader may also find the Glossary in Appendix A to be of use.64

2.1. Shape descriptors, shapes, and shape collections. We consider finite65

elements here to be shapes, such as line elements, triangles, hexahedra, etc. The66

shapes are classified according to their manifold dimension, so that we work with the67

usual vertices (0-dimensional manifolds), line segments (1-dimensional manifolds),68

triangles and quadrilaterals (2-dimensional manifolds), tetrahedra and hexahedra (3-69

dimensional manifolds).70

The topology of an instance of the shape, which comprises information such as71

how many nodes are connected together, how many bounding facets there are and72

their definition, is described by shape descriptors. An example of a shape descriptor73

is provided in Figure 1 which shows the local topological description of a hexahedron74

shape. The encoding of the topological information into a shape descriptor allows for75

the functions constructing the incidence relations to work for any shape, no matter76

what the manifold dimension or order of the element.77

The tables in Figure 1 introduce the concept of facets and ridges [15]: A facet78

is a bounding entity: faces for three-dimensional cells, edges for two-dimensional face79

elements, and vertices for one-dimensional line elements. A ridge is the “bounding80

entity of the bounding entity”. So edges are the ridges of the three-dimensional cells,81

and vertices are the ridges of the faces. Edges and vertices have no ridges. A good82

visual picture of facets and ridges may be provided by a finely cut diamond on the83

reader’s ring.84

The shape itself is not oriented. However, the definition of the facets and ridges85

in terms of the vertices defines an inherent orientation (orientability) of the same.86

Therefore, our algorithms store the orientation of the uses of the facets and ridges in87

order to facilitate geometric queries. For instance, for the hexahedron the facets are88

1We wish to emphasize that we use the term object not in the sense of “object-oriented”. The
programming language Julia [22, 3] itself is not object-oriented, and our implementation does not
attempt graft itself upon the object-oriented tree.
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Fig. 1. The shape descriptor for an eight-node hexahedron element.

numbered so that when viewed from the outside of the hexahedron, each facet vertices89

are numbered counterclockwise. The ridges are numbered arbitrarily, as there is no90

intrinsic choice of numbering.91

The shapes are considered in the form of collections: Shape collections are92

homogeneous collections of shapes. Collections of shapes do not hold any information93

about how the individual shapes are defined. That is the role of the incidence relations.94

The shape collections only provide information about the shape descriptor and the95

attributes of the shape collection, such as geometry (discussed below).96

Finally, Figure 1 introduces the so-called first-order vertices. This concept97

is useful for applications of the library to high-order nodal elements, for instance.98

As introduced above, when computing relationships between three-dimensional cells99

and faces or between two dimensional cells (faces) and edges, it is useful to compute100

the orientation of the uses of the entity. As an example, a quadratic serendipity101

quadrilateral has eight vertices, but in order to figure out its orientation it is sufficient102

to refer to its four corner vertices. We call these the first-order vertices: they are the103

vertices of the first-order versions of the shapes.104

2.2. Incidence relation. First, when do we consider entities of the mesh to be105

incident? An entity E of manifold dimension d1 is considered to be incident on an106

entity e of manifold dimension d2 ≤ d1, if e is contained in the topological cover107

of the entity E. So, as an example, a tetrahedron is incident on its faces, edges, and108

vertices. Due to our definition, a tetrahedron is also incident upon itself, but this last109

relation is hardly of any use, as is the case for all relations between entities d2 = d1.110

Conversely, an entity e of manifold dimension d2 ≤ d1 is incident on an entity E111

of manifold dimension d1 if e belongs to E’s cover. So a vertex e is incident on all112

edges, faces, and cells that share it.113

By incidence relation we mean here the relationship between two shape col-114

lections. We write115

(2.1) (dL, dR)116

where dL is the manifold dimension of the shape collection on the left of the relation,117

and dR is the manifold dimension of the shape collection on the right of the relation.118

The relationship can be understood as a function which takes as input a serial number119

of an entity from the shape collection on the left and produces as output a list of serial120
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Table 1
Table of incidence relations. Assuming that the initial mesh is three-dimensional, the first

relationship to be established is the connectivity (3, 0), as indicated by the box. The surface repre-
sentation of the boundary, (2, 0), would be a derived incidence relation. Other incidence relations
may be subsequently computed as discussed in the text. MD= Manifold dimension.

MD 0 1 2 3
0 (0, 0) (0, 1) (0, 2) (0, 3)
1 (1, 0) (1, 1) (1, 2) (1, 3)
2 (2, 0) (2, 1) (2, 2) (2, 3)

3 (3, 0) (3, 1) (3, 2) (3, 3)

numbers of entities from the shape collection on the right, iL → [jR,1, . . . jR,M ]. Com-121

pare with Table 1 which lists the incidence relations that can be defined unambigu-122

ously between entities of the four manifold dimensions. The downward relationships123

are contained in the lower triangle of the matrix, moving from the bottom of the table124

upwards, and the upward relationships are listed top to bottom in the upper triangle125

of the matrix.126

The relation (0, 0) between two shape collections that consist of the same set of127

vertices, possibly in different order, is “trivial”: Vertex from the collection on the left128

is incident on itself in the collection on the right. This mapping may be a permutation,129

change of numbering. It is probably not worthwhile to actually create this relation,130

but it is included in Table 1 for completeness: it closes the computation of the skeleton131

(see below). The other relations between two shape collections (d, d) are included to132

complete the table, but the author is yet to find utility in these incidence relations.133

134

Computational workflows typically start by creating a collection of d-dimensional135

shapes, where d > 0, such as a tetrahedral mesh produced by a mesh generator,136

and the collection of shapes is described by the connectivity (incidence relation)137

(d, 0). This becomes the starting point for the computation of the required topological138

relations, as dictated by the needs of the particular finite element method (refer to139

Table 1). For definiteness, in the following we assume that we start with a three140

dimensional mesh (shown boxed in Table 1), so the basic data structure consists of141

the incidence relation (3, 0). Should the initial mesh be two-dimensional, the table142

would be pruned by removing the fourth row and column.143

2.3. Derived Incidence Relations. Here we address the issue of generating144

any of the other incidence relations of the table on the demand. For instance, the145

incidence relation (2, 0) can be derived by application of the skeleton procedure to146

the incidence relation (3, 0). Table 2 lists how the incidence relations in the rows147

and columns of the table are derived by listing the operation and its arguments. The148

relations on the diagonal for d ≥ 1 are omitted, as they result by trivial permutation149

of the shape collection on the left into the shape collection of the right.150

151

2.4. skt: Skeleton. The incidence relation (2, 0) can be derived by applica-152

tion of the procedure “skeleton”. Repeated application of the skeleton will yield the153

relation (1, 0), and finally (0, 0). Note that at difference to other definitions of the in-154

cidence relation (0, 0) (the paper of Logg comes to mind [14]) we consider this relation155

to be one-to-one, not one-to-many.156

The skeleton procedure can be implemented in different ways. In our library we157
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Table 2
Operations to populate the table of incidence relations, starting from (3, 0). skt=skeleton,

trp=transpose, bbf= bounded-by facets, bbr= bounded-by ridges. MD= Manifold dimension.

MD 0 1 2 3
0 skt[(1, 0)] trp[(1, 0)] trp[(2, 0)] trp[(3, 0)]
1 skt[(2, 0)] – trp[(2, 1)] trp[(3, 1)]
2 skt[(3, 0)] bbf[(2, 0), (1, 0), (0, 1)] – trp[(3, 2)]
3 (3, 0) bbr[(3, 0), (1, 0), (0, 1)] bbf[(3, 0), (2, 0), (0, 2)] –

use sorting of the connectivity of the entities of the skeleton as a two dimensional158

array in order to arrive at unique entities, eliminating duplicates (shared) entities.159

2.5. bbf: Bounded-by-facets. The incidence relations (3, 2) and (2, 1) are ob-160

tained by the application of the “bounded-by-facets” procedure. In our implementa-161

tion the process draws upon three entity relations: the incidence of the mesh entities162

upon the vertices, and then bidirectional links between the facets and the vertices.163

The facets are orientable. Therefore, our incidence relation stores signed entity164

numbers of the facets: when the facet use traverses the vertices of the facet in the165

same way in which the facet itself is stored, the orientation is positive (plus sign), and166

vice versa.167

2.6. bbr: Bounded-by-ridges. The incidence relation (3, 1) is obtained by the168

application of the “bounded-by-ridges” procedure. The process again draws upon169

three entity relations: the incidence of the cells upon the vertices, and then bidirec-170

tional links between the ridges and the vertices.171

The ridges are orientable. Therefore, our incidence relation stores signed entity172

numbers of the ridges: when the ridge use traverses the vertices of the ridge in the173

same way in which the ridge itself is stored, the orientation is positive (plus sign),174

and vice versa.175

As an aside, it would also be possible to generate the incidence relation (2, 0) by176

the “bounded-by-ridges” procedure. It is of course also available by application of the177

skeleton procedure from the relation (3, 0).178

2.7. trp: Transpose. All the incidence relations below the diagonal of the179

matrix of Table 2 yield lists of entities of fixed cardinality. For example, the number180

of faces, edges, and vertices for hexahedron is always 6, 12, 8 respectively. On the181

contrary, the relationships in the upper triangle of the matrix are always of variable182

cardinality. For example, the number of tetrahedra around an edge [i.e. the incidence183

relation (1, 3)] depends very much upon which edge it is. All the relations above184

the diagonal are obtained from the relations below the diagonal by the “transpose”185

operation.186

2.8. Constructing the full “one-level” representation. The full “one-level”187

representation (refer, for example, to [9]), namely the incidence relations downward188

(3, 2), (2, 1), (1, 0), and upward (0, 1), (1, 2), and (2, 3) can be constructed by our189

library from the input (3, 0) using the sequence of operations190
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(2.2)

(2, 0) = skt[(3, 0)]
(0, 2) = trp[(2, 0)]
(3, 2) = bbf[(3, 0), (2, 0), (0, 2)]
(1, 0) = skt[(2, 0)]
(0, 1) = trp[(1, 0)]
(2, 1) = bbf[(2, 0), (1, 0), (0, 1)]
(1, 2) = trp[(2, 1)]
(2, 3) = trp[(3, 2)]

191

2.9. Incidence relations on the diagonal: (d, d). Logg [14] defines the inci-192

dence relations (d, d), where d > 1, as being one-to-many. For instance, the relation193

(3, 3) in [14] consists of all three-dimensional cells that are share a vertex with the cell194

on the left. Such incidence relations do not fit our definition of incidence of Section 2.2.195

Even if we extend the definition of what we mean by “incident”, there are problems.196

The definition of such a relation is not unique: In addition to the collections of shapes197

on the left and on the right, it needs to refer to a connecting shape to make sense,198

and hence it doesn’t fit Table 2. For instance, the relationship between faces, (2, 2),199

needs to state through which shape the incidence occurs: is it through a common200

vertex? Is it through a common edge? Similarly, for cells the incidence relationship201

(3, 3) will be different for the incidences that follow from a common vertex, from a202

common edge, or from a common face. This is one of the reasons we keep in Table 2203

only the incidence relation (0, 0). It fits the definition of incidence, and it is needed204

as a closure of the skeleton operation.205

2.10. Mesh. Meshes are understood here simply as incidence relations. At206

the starting point of a computation, initial meshes are defined by the connectivity207

of the finite elements and the finite element nodes, i.e. the incidence relation (d, 0),208

where d ≥ 0, linking a d-dimensional shape to a collection of vertices as shapes in the209

form of 0-dimensional manifolds. Any other mesh can be derived by the operations210

of Table 2.211

2.10.1. Attributes. At a minimum, the geometry of the mesh needs to be de-212

fined by specifying the locations of the vertices. In our library we handle this data as213

attributes of the shape collections. So the locations of the vertices are an attribute of214

the shape collection of the vertices.215

2.11. Implementation notes. Most mesh databases in current use favor the216

storage of entity identifiers as 32-bit integers. This allows for substantial ranges of217

approximately 2 billion positive and 2 billion negative identifiers (which may be useful218

when storing orientation together with the serial number). If this is not enough, the219

identifiers may be stored as 64-bit integers. This practically doubles the requisite220

memory, but considerably expands the range. The present library accommodates221

storage of the incidence relations with both and either integer types not only in the222

same library, but also in the same running program: such is the magic of generic223

programming as implemented in Julia [3] that in the same running program some224

of the incidence relations may be stored as 32-bit integers while others are stored as225

64-bit integers. This mixing is entirely transparent to the user. To get this to work226

does not require anything beyond specifying parametric types.227

As outlined above, the incidence relations below the diagonal differ from the inci-228

dence relations above the diagonal by being of fixed cardinality. The implementation229
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(a) (b)

Fig. 2. (a) Storage of variable-cardinality vector of vectors on the left. (b) Storage of fixed-
cardinality vector of vectors on the right.

in Julia can take proper advantage of this fact while maintaining a single interface230

to the incidence relations. The incidence relation is stored as a vector of vectors.231

Variable-cardinality incidence relations (above the diagonal of the matrix of Table 2)232

are stored as shown on the left. This is not as efficient as storing a fixed-cardinality233

vector of vectors: If all the vectors stored in the master vector are of fixed size, the234

package StaticArrays [10] can be used to enable operations on vectors that can be235

stored on the stack and that can be in-lined in a vector of vectors as shown in Figure 2.236

In the fixed-length case, each incidence vector is stored contiguously within one big237

array (on the right of the figure). Clearly, this saves memory as no storage of pointers238

for an indirection is needed.239

The efficient storage of the fixed-cardinality vector of factors is enabled by Julia240

compiler’s ability to reason about the code, producing optimized implementation that241

can take advantage of any information that is known at compile time. At the same242

time, the programmer sees a uniform interface to the vector of vectors. This is the243

complete definition of the type of the incidence relation in our library:244

245
1 struct IncRel{LEFT <: AbsShapeDesc , RIGHT <: AbsShapeDesc , T}246

2 left:: ShapeColl{LEFT} # left shape coll. (L, .)247

3 right:: ShapeColl{RIGHT} # right shape coll. (., R)248

4 _v:: Vector{T} # vec. of vec.s: shape num.s249

5 name:: String # name of the inc. relation250

6 end251252

For instance, to find out how many entities in the shape collection on the right are253

linked to the j−th entity in the shape collection on the left we use the definition of254

the function255

256
1 nentities(ir::IncRel , j) = length(ir._v[j])257258

Clearly, this function does not distinguish between fixed-cardinality and variable-259

cardinality vector of vectors.260
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3. Results. The computations described below were implemented in the Julia261

programming language [22, 3]. The mesh-topology library is implemented as the262

MeshCore.jl Julia package [17], and the computations referred to in this paper are263

available to the reader as part of the package PaperMeshTopo.jl [18].264

An interesting comparison of the memory usage for the data structures can be265

gleaned from Figure 6 of [9]. The mesh is unfortunately not available directly, it is266

only known that it consists of 100,000 tetrahedra. Hence in the present system we267

simply generate a tetrahedral mesh of approximately 102,000 elements and compare268

the resulting storage requirements.269

In Figure 3 we compare with the following systems: The MDS database of [9]270

was the full array representation. MDS-RED referred to as the “reduced array” was271

the element-to-vertex representation, both using 32-bit indices. Both MDS versions272

were storing vertex coordinates, geometric model classification, and coordinates of273

vertices. The MOAB database included element-to-vertex downward and upward274

adjacency. Apparently only element connectivities and vertices were stored in STK.275

All of these data bases stored 32-bit indices.276

First our database was constructed to hold all of the incidence relations that277

correspond to the full one-level storage of MDS. That is we computed and stored278

the (3, 2), (2, 1), (1, 0) and (0, 1), (1, 2), and (2, 3) incidence relations. “MeshCore279

32” refers to this structure with indices stored as 32-bit integers, and “MeshCore280

64” refers to the equivalent topology structure with indices stored as 64-bit integers.281

When we store this information in 32-bit integers, we use only 68% of the memory282

compared to the MDS.283

Next, our database was constructed to hold the incidence relations that corre-284

spond to the MOAB database with element-to-vertex downward and upward adja-285

cency. “MeshCore D/U” refers to this structure with indices stored as 32-bit integers.286

Hence we use only 39% of the storage of MOAB, and 61% of the storage for the287

MDS-RED.288

Finally, a third data structure using our library, “MeshCore D”, stores only the289

(3, 0) incidence relation. The storage requirement is an order of magnitude smaller290

than MDS, and amounts to around five times less memory than MOAB. It may not291

be an appropriate comparison in situations requiring more voluminous topological292

information, but if the finite element program has no use for the additional incidence293

relations, there’s no point in storing them, and a mesh storage scheme that can avoid294

this cost can win big. Our design can freely choose which incidence relations to store,295

and therefore we have fine control over the amount of stored information. That is296

the advantage of the structure of the data not being committed to by the design: the297

amount of information to be stored is left up to the user.298

4. Conclusions. The library MeshCore.jl implements a storage model for meshes299

composed of common shapes such as triangles and quadrilaterals, tetrahedra and hex-300

ahedra. All incidence relations (sometimes known as adjacencies) that are commonly301

encountered in the literature can be produced by the library, which implements the302

four operations (skeleton, bounded-by-facets, bounded-by-ridges, and transpose) that303

can derive for instance the full one-level downward adjacencies (or downward and304

upward adjacencies, if desired). We avoid hardwiring the definition of the topological305

model in the implementation, at difference to common mesh databases. Our sep-306

aration of the data model and the implementation allows for a nimble and flexible307

computation of just the incidence relations that are actually needed. Consequently,308

the library is very conservative in terms of memory consumption.309
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Fig. 3. Comparison of the required memory to store various data structures. Legends are
discussed in the text.

Importantly, we also avoid the use of pointers to memory, which is typical with310

object-oriented mesh databases [1]. Hence we avoid the penalty associated with stor-311

ing pointers at 64-bits, which is the norm on current computer architectures. Our312

Julia implementation stores the database in contiguous arrays whenever possible, and313

transparently switches to vector of vectors for variable-length data.314

The current limitations include:315

• The data structures may allow for adaptivity, but the current implementation316

of the library is static. At least in the sense that if the mesh changed, the317

incidence relations could be recalculated, but not in an incremental fashion.318

• Homogeneous meshes are implemented. Mixed-shape meshes appear feasible,319

but have not been implemented yet.320

• Support for non-manifold geometries is possible, but so far no effort was321

expended to reach this goal.322

• No consideration has been given at this point to an extension for distributed323

databases for parallel computations.324

The implementation in the Julia language produces code that can be at the same325

time flexible, powerful, and concise –– the entire library has only around 490 exe-326

cutable lines, and with copious comments it clocks in at around 1000 lines. This may327

be contrasted with for instance the current version of MOAB which consists of two328

orders of magnitude larger number of lines of code. Of course, MOAB is much more329

powerful (it provides import/export, mesh modification, parallel execution). But the330

point could be made that that leaves open some room at the other end of the spec-331

trum: something flexible, easy to understand, and small in footprint. We believe that332

our library fits in that opening quite well.333

An interesting opportunity for considerably expanding the usefulness of this li-334

brary has been identified by Rypl [19]: due to the generic form of the library, it335
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is suitable for operating on four-dimensional (for instance time space) meshes. The336

needed modification entails the addition of a shape descriptor for the four-dimensional337

cell. The three-dimensional cell would then become a facet, and the faces would be-338

come ridges. The tables of incidence relations would acquire a fifth row and column.339
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Appendix A. Glossary.406

Topological cover: A cover of a set X is a collection of sets whose union contains407

X as a subset.408

Shape: Topological shape of any manifold dimension, 0 for vertices, 1 for edges, 2409

for faces, and 3 for cells.410

Shape descriptor: Description of the type of the shape, such as the number of411

vertices, facets, ridges, and so on.412

Shape collection: Set of shapes of a particular shape description.413

Facet: Shape bounding another shape. A shape is bounded by facets: The facet is a414

d− 1 -dimensional face of a d-dimensional entity.415

Facet use: Facets are orientable. The incidence relation stores facet uses: when a416

facet use orders the vertices in the same way (modulo circular shift) as the417

referenced entity, the facet use is stored as a positive entity number; otherwise418

it is stored as a negative entity number.419

Ridge: Shape one manifold dimension lower than the facet. For instance a tetrahe-420

dron is bounded by facets, which in turn are bounded by edges. These edges421

are the “ridges” of the tetrahedron. The ridges can also be thought of as a422

”leaky” bounding shapes of 3-D cells. The ridge is a d− 2 -dimensional face423

of a d-dimensional entity.424

Ridge use: Ridges are orientable. The incidence relation stores ridge uses: when a425

ridge use orders the vertices in the same way (modulo circular shift) as the426

referenced entity, the ridge use is stored as a positive entity number; otherwise427

it is stored as a negative entity number.428

Incidence relation: Map from one shape collection to another shape collection. For429

instance, three-dimensional finite elements (cells) are typically linked to the430

vertices by the incidence relation (3, 0), i. e. for each tetrahedron the four431

vertices are listed. Some incidence relations link a shape to a fixed number432

of other shapes, other incidence relations are of variable arity. This is what433

is usually understood as a ”mesh”.434

Incidence relation operations: The operations defined in the library are: the435

skeleton operation, the transpose operation, the bounded-by-facets opera-436

tion, and the bounded-by-ridges operation. All topological relations between437

the shapes of the four manifold dimensions that are uniquely defined can be438

constructed using the sequence of these operations.439

Mesh topology: The mesh topology can be understood as an incidence relation440

between two shape collections.441
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