Skip to content
Rigorous function approximation using Taylor models in Julia
Branch: master
Clone or download
lbenet Implement shrink-wrap method of Buenger (#45)
* Add constant_term and linear_polynomial with tests

* Add shrink_wrapping! (Buenger algorithm)

* Solve broadcasting problems

* Use dom (instead of I)

* Fixes in shrink_wrapping!, time step and initial conditions; clean up

* Revert to use  absorb_remainder

* Add tests for shrink-wrapping

* Include shrink wrapping tests in runtest.jl

* Fix a typo
Latest commit f51a27d Jul 12, 2019
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
benchmark [#35] Add daisy benchmark suite (#50) Jul 1, 2019
docs
examples Improve show for TaylorN Aug 13, 2018
src Implement shrink-wrap method of Buenger (#45) Jul 12, 2019
test Implement shrink-wrap method of Buenger (#45) Jul 12, 2019
.codecov Generated files Oct 26, 2017
.gitignore
.travis.yml
LICENSE.md Update License.md, REQUIRE and README.md Jan 24, 2019
Project.toml Update functions to work with TaylorIntegration v0.5.0 (#54) Jul 3, 2019
README.md Add documentation badges to README and fix docs (#36) Apr 4, 2019
appveyor.yml Drop support to Julia 0.7, add Project.toml and delete REQUIRE files (#… Jun 11, 2019

README.md

TaylorModels

travis badge appveyor badge codecov badge

docs stable docs latest

This package combines the IntervalArithmetic.jl and TaylorSeries.jl packages to provide Taylor models, i.e. Taylor polynomials with guaranteed error bounds to approximate functions.

An introduction is available in this video from JuliaCon 2018.

Authors

  • Luis Benet, Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México (UNAM)
  • David P. Sanders, Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM)

Bibliography

Acknowledgements

Financial support is acknowledged from DGAPA-UNAM PAPIIT grants IN-117117, IG-100616 and IG-100819. DPS acknowledges support through a Cátedra Marcos Moshinsky (2018).

You can’t perform that action at this time.