The cutting-plane algorithm: synchronous and
asynchronous master-worker parallelism in
Julia

Miles Lubin
MIT Operations Research Center

Julia TAP Tutorial, January 15-16, 2013

1 The cutting plane algorithm

This section is meant to be a self-contained presentation of the cutting-plane
algorithm for convex optimization. It assumes only a background in calculus.
We present the one-dimensional case for simplicity. Most of this section can
be skipped or skimmed; the fun starts in the next section. The essential
parts of this section are the statement of Algorithm 1 and the paragraph
that follows it.

Definition. A function f : R — R is subdifferentiable if for all ' € R, there
exists a scalar g,/ such that for all z € R,

f(@) > go(z —2") + f(2') = gor + (f(2') = gw').
Any such g, is called a subderivative of f at z’.

The property of subdifferentiability is nearly equivalent to convexity. The
above definition means that at every point in the domain of f, we can draw
a line tangent to the graph of f which will remain under the graph at all
points. If f is also differentiable, then g, is exactly the derivative f’(x), but
the definition holds for functions which may not be differentiable everywhere.
An example is the absolute value function f(z) = |z|. For fun, you may want
to find the set of valid g,» for f(z) = |z| at 2’ = 0.

1

We move on immediately to the field of convex optimization. Let fi, fo,. ..
be given subdifferentiable functions. The problem we are interested in solving
is

minimize, e Z fi(z), (1)
i=1

that is, find a value of € R that minimizes the function f(z) := >, fi(z).
Suppose we have a black box procedure for each f; that, given any point
x, returns a tuple (f;(z), ¢;.); that is, it computes both the value of f at
x and a corresponding subderivative. Now suppose that we’ve called this
procedure at a sequence of points x!, 22, ..., 2% for each i. Using the set of

subderivatives, we build a model of each f;, which we define as

k

2)
This model is piecewise linear and is a lower estimate of f;. The idea of
the cutting-plane algorithm is to use the minimum of the model, something
which is easy to compute, as a guess for the minimum of f. In particular, the
next trial point " is set to the minimizer of > , m¥(x), the black boxes
are then called again, and we repeat until we're satisfied with our solution.
An iteration of the algorithm is illustrated in Figure 1, and the algorithm is
formally stated in Algorithm 1.

Algorithm 1 Cuting plane algorithm — Serial

Input: Subdifferentiable functions fi,..., f,. Starting point z.
1 k«+1
2: repeat
3: fori=1tondo

4 Compute function value and subderivative (fi(z*), g;) at z*.
5. end for

6: " <« argmin, >, mF(x), with m¥(z) defined by (2)

. k—k+1

8: until convergence

An important observation is that the computation of the function values
and subderivatives may be performed independently for each i in the for
loop. In many applications this computation is expensive, hence there is a
real potential for speedup if we parallelize this loop. We will now investigate
implementing and parallelizing this algorithm in Julia.

7fn

mf(2) = max{g; o (v—2')+ fi(2"), gia2 (r—2)+fi(2?), ., gige (x—2")+ fi(2")}.

Figure 1: An iteration of the cutting-plane algorithm applied to f = a2
(n = 1). The point ml. is the minimizer of the current model. We then
re-evaluate f and add a cut (dashed line) to the model corresponding to the
new (sub)derivative. The point m?2, minimizes the new model. The point
fimin is the true minimizer.

2 Julia implementation

In the previous section we presented the mathematical algorithm. Here
we’ll work with an actual implementation on a small toy problem and ex-
periment with parallel computing in Julia. First, retrieve the code from
here. The Tutorial. jl file contains the code we will be referring to, while
ExampleSolution. j1 contains potential solutions to some of the exercises.
Our toy problem will be based on the functions f;(z) = 1(z — i)2. With
f(xz) = >, filxz) as before, we have f'(z) = >." ,(x —). Using basic
calculus, we know already that the minimizer of f is at z = %Z?:li =
(n + 1)/2. Before running, install the Optim package, Pkg.add("Optim").
We can now run the the code by julia Tutorial.jl. The output should

appear as follows:

https://github.com/JuliaLang/IAP2013/tree/master/NumericalOptimization

Solving model with n = 10, initial solution: [0.5]
Optimal solutuon should be 5.5

Model minimizer: [10.0]

Model minimizer: [5.25]

Model minimizer: [7.625]

Model minimizer: [5.49995]
Converged in 15 iterations
elapsed time: 78.94296097755432 seconds

Let’s open up the code. The function £ implements the black-box cal-
culation of the subderivatives. Notice the line with sleep, which we use to
simulate a variably expensive black-box. The evalmodel function evaluates
>or,mF(z) at x given the stored subderivatives.

The cpserial function implements Algorithm 1 in serial. The param-
eter N is our cursive n. The line results = map(f, [(cur[1],i) for i
in 1:N]) corresponds to loop of lines 3-5 of the algorithm. The call to

Optim.optimize corresponds to line 6. Now for the fun stuff.

Exercise 1. Insert code to plot Y i, mF(z) versus D7 | fi(z) at each iter-
ation. You may use Winston or any other package.

Exercise 2. Review the Julia documentation on parallel computing. Modify
the code so that the subderivatives are computed in parallel. (Hint: it only
requires a small change.)

Now try running julia -p 2 Tutorial.jl. If you get an error like
From worker 2: exception on 2: f not defined

this means that £ was only defined on process 1, but you're trying to call it
on process 2. Check the documentation or ExampleSolution. j1 for a fix.

Exercise 3. Change n to 20 and run julia -p nproc Tutorial.jl for
nproc = 1, 2, 3, 5, 10 on a machine with sufficiently many cores. Because
of the explicit randomness in computing times, you may want to repeat
and take average execution times. Do you observe speedup? Compute the
parallel efficiency (observed speedup divided by perfect speedup) from 1 to
10 processes.

https://github.com/nolta/Winston.jl
http://docs.julialang.org/en/latest/manual/parallel-computing/

Exercise 4. With nproc = 1, record and print out the total time spent
in the serial bottleneck of calling Optim.optimize. Use Amdahl’s law to
compute the theoretical maximum possible speedup. Was this achieved in
the previous exercise?

Advanced Exercise. Replace Optim.optimize with a faster approach for
minimizing the model function. Hint: this problem can be solved efficiently
by using Linear Programming. (Note: you should complete the rest of the
tutorial before attempting this.)

Exercise 5. Change the random sleep time inside f to a deterministic time,
say 0.6 seconds. Repeat Exercise 3. Does the parallel efficiency change?

You should have observed that the imbalance in computation time does
have a significant effect on the parallel speedups observed. Let’s visualize
this effect.

Exercise 6. Modify the code so that each process records the intervals during
which it spends inside the function f. Plot these intervals in some reasonable
form, using Figure 2 as an example (source code in ExampleSolution. jl).
This figure could be improved by plotting the time spent inside Optim.optimize
as well.

Optional Exercise. Try using Base.pmap_static (take a look at its defi-
nition in julia/base/multi.jl). How does this affect performance and the
previous discussion?

3 Asynchronous algorithm

The asynchronous variant of the cutting-plane algorithm aims to reduce the
idle time of the worker processes by eliminating the bottleneck of resolving
the model. While previously the parallelism was hidden by high-level Julia
functions, now we will need to explicitly consider the master process and the
set of workers.

The idea of the asynchronous algorithm is to minimize the model func-
tion using incomplete information in order to generate new tasks to feed to
workers. That is, instead of waiting for all subderivatives to be computed
at a given candidate solution, we generate a new candidate solution (and a

http://en.wikipedia.org/wiki/Amdahl's_law

4 — ——————— _—_ 4 = e
3 — - - — e — - 3 e
2 - —=—- - - — 2 - e

Figure 2: Plots of process activity over time running on 5 processes (4 worker
processes). Variable subproblem evaluation time on left, deterministic on
right. Black lines denote intervals of activity, white space indicates inactivity.

full set of new subgradient evaluation tasks) once some proportion o of the
subderivatives have been computed. These tasks may be immediately fed to
workers, hence workers will spend less time waiting for new tasks. Further
description is beyond the scope of this tutorial; see [2].
The asynchronous algorithm is implemented as asyncversion in Tutorial. j1.

It is worth spending a few minutes trying to understand the code. The use of
Julia tasks with @spawnlocal and @sync is not intuitively obvious (at least

to me). As a starting point, compare with the implementation of pmap in
julia/base/multi. jl.

Exercise 7. Run both the original parallel code and the asynchronous code
with n = 100 and nprocs = 5, 10, 20, under the original random computation
time model (max(0.1,0.2+1*randn())). Is the asynchronous code faster?
Note that because less information is used to generate the iterates, the asyn-
chronous version typically requires more iterations. Compare both the total
execution time and the average rate of subproblems solved per second.

Exercise 8. Experiment with different random models for computation time.

http://docs.julialang.org/en/latest/manual/control-flow/#man-tasks

What happens if you increase or decrease the variance (the coefficient of
randn())?

Advanced Exercise. Currently Optim.optimize is called by the same pro-
cess that manages the workers. Modify the code so that new tasks can be
distributed in the middle of calls to Optim.optimize.

References

[1] J. B. Hiriart-Urruty and C. Lemaréchal. Conver Analysis and Minimiza-
tion Algorithms, volume I-II. Springer-Verlag, Germany, 1993.

2] Jeff Linderoth and Stephen Wright. Decomposition algorithms for
stochastic programming on a computational grid. Computational Op-
timization and Applications, 24(2):207-250, 2003.

	The cutting plane algorithm
	Julia implementation
	Asynchronous algorithm

