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Chapter 4

Introduction

Scientific computing has traditionally required the highest performance, yet domain experts have largely moved to

slower dynamic languages for daily work. We believe there are many good reasons to prefer dynamic languages for

these applications, andwedonot expect their use to diminish. Fortunately,modern language design and compiler tech-

niques make it possible to mostly eliminate the performance trade-off and provide a single environment productive

enough for prototyping and efficient enough for deploying performance-intensive applications. The Julia programming

language fills this role: it is a flexible dynamic language, appropriate for scientific and numerical computing, with per-

formance comparable to traditional statically-typed languages.

Because Julia’s compiler is different from the interpreters used for languages like Python or R, youmay find that Julia’s

performance is unintuitive at first. If you find that something is slow, we highly recommend reading through the Per-

formance Tips section before trying anything else. Once you understand how Julia works, it’s easy to write code that’s

nearly as fast as C.

Julia features optional typing, multiple dispatch, and good performance, achieved using type inference and just-in-

time (JIT) compilation, implementedusing LLVM. It ismulti-paradigm, combining features of imperative, functional, and

object-oriented programming. Julia provides ease and expressiveness for high-level numerical computing, in the same

way as languages such as R,MATLAB, and Python, but also supports general programming. To achieve this, Julia builds

upon the lineage of mathematical programming languages, but also borrows much from popular dynamic languages,

including Lisp, Perl, Python, Lua, and Ruby.

Themost significant departures of Julia from typical dynamic languages are:

• The core language imposes very little; the standard library iswritten in Julia itself, including primitive operations

like integer arithmetic

• A rich language of types for constructing and describing objects, that can also optionally be used to make type

declarations

• The ability to define function behavior across many combinations of argument types via multiple dispatch

• Automatic generation of efficient, specialized code for different argument types

• Good performance, approaching that of statically-compiled languages like C

Althoughonesometimes speaksofdynamic languagesasbeing ”typeless”, theyaredefinitelynot: everyobject,whether

primitive or user-defined, has a type. The lack of type declarations in most dynamic languages, however, means that

one cannot instruct the compiler about the types of values, and often cannot explicitly talk about types at all. In static

languages, on the other hand, while one can – and usually must – annotate types for the compiler, types exist only at

compile time and cannot bemanipulated or expressed at run time. In Julia, types are themselves run-time objects, and

can also be used to convey information to the compiler.

13
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While the casual programmer need not explicitly use types or multiple dispatch, they are the core unifying features

of Julia: functions are defined on different combinations of argument types, and applied by dispatching to the most

specific matching definition. This model is a good fit for mathematical programming, where it is unnatural for the first

argument to ”own” an operation as in traditional object-oriented dispatch. Operators are just functions with special

notation – to extend addition to new user-defined data types, you define newmethods for the function. Existing code

then seamlessly applies to the new data types.

Partly because of run-time type inference (augmented by optional type annotations), and partly because of a strong

focus on performance from the inception of the project, Julia’s computational efficiency exceeds that of other dynamic

languages, and even rivals that of statically-compiled languages. For large scale numerical problems, speed always has

been, continues to be, andprobably alwayswill be crucial: the amount of data being processedhas easily kept pacewith

Moore’s Law over the past decades.

Juliaaims tocreateanunprecedentedcombinationofease-of-use, power, andefficiency inasingle language. Inaddition

to the above, some advantages of Julia over comparable systems include:

• Free and open source (MIT licensed)

• User-defined types are as fast and compact as built-ins

• No need to vectorize code for performance; devectorized code is fast

• Designed for parallelism and distributed computation

• Lightweight ”green” threading (coroutines)

• Unobtrusive yet powerful type system

• Elegant and extensible conversions and promotions for numeric and other types

• Efficient support for Unicode, including but not limited to UTF-8

• Call C functions directly (no wrappers or special APIs needed)

• Powerful shell-like capabilities for managing other processes

• Lisp-likemacros and other metaprogramming facilities

https://github.com/JuliaLang/julia/blob/master/LICENSE.md
https://en.wikipedia.org/wiki/Coroutine
https://en.wikipedia.org/wiki/Unicode
https://en.wikipedia.org/wiki/UTF-8
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Getting Started

Julia installation is straightforward,whetherusingprecompiledbinariesorcompiling fromsource. Downloadand install

Julia by following the instructions at https://julialang.org/downloads/.

The easiest way to learn and experimentwith Julia is by starting an interactive session (also known as a read-eval-print

loop or ”repl”) by double-clicking the Julia executable or running from the command line:

To exit the interactive session, type – the control key together with the key or type . When run in interactive mode,

displays a banner and prompts the user for input. Once the user has entered a complete expression, such as , and hits

enter, the interactive session evaluates the expression and shows its value. If an expression is entered into an interac-

tive session with a trailing semicolon, its value is not shown. The variable is bound to the value of the last evaluated

expression whether it is shown or not. The variable is only bound in interactive sessions, not when Julia code is run in

other ways.

To evaluate expressions written in a source file , write .

To run code in a file non-interactively, you can give it as the first argument to the command:

As the example implies, the following command-line arguments to are taken as command-line arguments to the pro-

gram , passed in the global constant . The name of the script itself is passed in as the global . Note that is also set when

script code is given using the option on the command line (see the help output below) but will be empty. For example,

to just print the arguments given to a script, you could do this:

15
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Or you could put that code into a script and run it:

The delimiter can be used to separate command-line args to the scriptfile from args to Julia:

Julia can be started in parallel modewith either the or the options. will launch an additional worker processes, while

will launch aworker for each line in file . Themachines defined in must be accessible via a passwordless login, with Julia

installed at the same location as the current host. Each machine definition takes the form . defaults to current user,

to the standard ssh port. is the number of workers to spawn on the node, and defaults to 1. The optional specifies the

ip-address and port that other workers should use to connect to this worker.

If you have code that youwant executedwhenever Julia is run, you can put it in :

There are various ways to run Julia code and provide options, similar to those available for the and programs:
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5.1 Resources

In addition to this manual, there are various other resources that may help new users get started with Julia:

• Julia and IJulia cheatsheet

• Learn Julia in a fewminutes

• Learn Julia the HardWay

• Julia by Example

• Hands-on Julia

• Tutorial for Homer Reid’s numerical analysis class

• An introductory presentation

• Videos from the Julia tutorial atMIT

• YouTube videos from the JuliaCons

http://math.mit.edu/{~}stevenj/Julia-cheatsheet.pdf
https://learnxinyminutes.com/docs/julia/
https://github.com/chrisvoncsefalvay/learn-julia-the-hard-way
http://samuelcolvin.github.io/JuliaByExample/
https://github.com/dpsanders/hands_on_julia
http://homerreid.dyndns.org/teaching/18.330/JuliaProgramming.shtml
https://raw.githubusercontent.com/ViralBShah/julia-presentations/master/Fifth-Elephant-2013/Fifth-Elephant-2013.pdf
https://julialang.org/blog/2013/03/julia-tutorial-MIT
https://www.youtube.com/user/JuliaLanguage/playlists




Chapter 6

Variables

A variable, in Julia, is a name associated (or bound) to a value. It’s useful when you want to store a value (that you

obtained after somemath, for example) for later use. For example:

Julia provides an extremely flexible system for naming variables. Variable names are case-sensitive, and have no se-

mantic meaning (that is, the language will not treat variables differently based on their names).

Unicode names (in UTF-8 encoding) are allowed:
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In the Julia REPL and several other Julia editing environments, you can typemanyUnicodemath symbols by typing the

backslashedLaTeX symbol name followedby tab. For example, the variable name canbeenteredby typing -tab, or even

by -tab-- tab--tab. (If you find a symbol somewhere, e.g. in someone else’s code, that you don’t know how to type, the

REPL help will tell you: just type and then paste the symbol.)

Julia will even let you redefine built-in constants and functions if needed:

However, this is obviously not recommended to avoid potential confusion.

6.1 Allowed Variable Names

Variable namesmust beginwith a letter (A-Z or a-z), underscore, or a subset ofUnicode code points greater than 00A0;

in particular, Unicode character categories Lu/Ll/Lt/Lm/Lo/Nl (letters), Sc/So (currency and other symbols), and a few

other letter-like characters (e.g. a subset of the Smmath symbols) are allowed. Subsequent charactersmay also include

! and digits (0-9 and other characters in categories Nd/No), as well as other Unicode code points: diacritics and other

modifyingmarks (categoriesMn/Mc/Me/Sk), somepunctuation connectors (categoryPc), primes, anda fewother char-

acters.

Operators like are also valid identifiers, but are parsed specially. In some contexts, operators can be used just like

variables; for example refers to the addition function, and will reassign it. Most of the Unicode infix operators (in

category Sm), such as , are parsed as infix operators and are available for user-defined methods (e.g. you can use to

define as an infix Kronecker product).

The only explicitly disallowed names for variables are the names of built-in statements:

http://www.fileformat.info/info/unicode/category/index.htm
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Some Unicode characters are considered to be equivalent in identifiers. Different ways of entering Unicode combin-

ing characters (e.g., accents) are treated as equivalent (specifically, Julia identifiers are NFC-normalized). The Unicode

characters (U+025B:Latin small letteropene)and (U+00B5: microsign) are treatedasequivalent to thecorresponding

Greek letters, because the former are easily accessible via some input methods.

6.2 Stylistic Conventions

While Julia imposes few restrictions on valid names, it has become useful to adopt the following conventions:

• Names of variables are in lower case.

• Word separation can be indicated by underscores (), but use of underscores is discouraged unless the name

would be hard to read otherwise.

• Names of s and s begin with a capital letter and word separation is shown with upper camel case instead of un-

derscores.

• Names of s and s are in lower case, without underscores.

• Functions that write to their arguments have names that end in . These are sometimes called ”mutating” or ”in-

place” functions because they are intended to produce changes in their arguments after the function is called,

not just return a value.

For more information about stylistic conventions, see the Style Guide.





Chapter 7

Integers and Floating-Point Numbers

Integers andfloating-point values are the basic building blocks of arithmetic and computation. Built-in representations

of suchvaluesare callednumericprimitives,while representationsof integers andfloating-pointnumbersas immediate

values in code are known as numeric literals. For example, is an integer literal, while is a floating-point literal; their

binary in-memory representations as objects are numeric primitives.

Julia provides a broad range of primitive numeric types, and a full complement of arithmetic and bitwise operators as

well as standard mathematical functions are defined over them. These map directly onto numeric types and opera-

tions that are natively supported on modern computers, thus allowing Julia to take full advantage of computational

resources. Additionally, Julia provides software support for Arbitrary Precision Arithmetic, which can handle opera-

tions on numeric values that cannot be represented effectively in native hardware representations, but at the cost of

relatively slower performance.

The following are Julia’s primitive numeric types:

• Integer types:

Type Signed? Number of bits Smallest value Largest value

8 -2^7 2^7 - 1

  8 0 2^8 - 1

16 -2^15 2^15 - 1

  16 0 2^16 - 1

32 -2^31 2^31 - 1

  32 0 2^32 - 1

64 -2^63 2^63 - 1

  64 0 2^64 - 1

128 -2^127 2^127 - 1

  128 0 2^128 - 1

N/A 8 (0) (1)

• Floating-point types:

Additionally, full support forComplexandRationalNumbers isbuilt on topof theseprimitivenumeric types. All numeric

types interoperate naturally without explicit casting, thanks to a flexible, user-extensible type promotion system.

23
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Type Precision Number of bits

half 16

single 32

double 64

7.1 Integers

Literal integers are represented in the standardmanner:

The default type for an integer literal depends onwhether the target systemhas a 32-bit architecture or a 64-bit archi-

tecture:

The Julia internal variable indicates whether the target system is 32-bit or 64-bit:

Juliaalsodefines thetypes and ,whicharealiases for thesystem’ssignedandunsignednative integer typesrespectively:

Larger integer literals that cannot be represented using only 32 bits but can be represented in 64 bits always create

64-bit integers, regardless of the system type:

https://en.wikipedia.org/wiki/Half-precision_floating-point_format
https://en.wikipedia.org/wiki/Single_precision_floating-point_format
https://en.wikipedia.org/wiki/Double_precision_floating-point_format
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Unsigned integers are input and output using the prefix and hexadecimal (base 16) digits (the capitalized digits also

work for input). The size of the unsigned value is determined by the number of hex digits used:

This behavior is based on the observation that when one uses unsigned hex literals for integer values, one typically is

using them to represent a fixed numeric byte sequence, rather than just an integer value.

Recall that the variable is set to the value of the last expression evaluated in an interactive session. This does not occur

when Julia code is run in other ways.

Binary and octal literals are also supported:

The minimum and maximum representable values of primitive numeric types such as integers are given by the and

functions:
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The values returned by and are always of the given argument type. (The above expression uses several features we

have yet to introduce, including for loops, Strings, and Interpolation, but should be easy enough to understand for users

with some existing programming experience.)

Overflow behavior

In Julia, exceeding themaximum representable value of a given type results in a wraparound behavior:

Thus, arithmetic with Julia integers is actually a form of modular arithmetic. This reflects the characteristics of the un-

derlying arithmetic of integers as implemented on modern computers. In applications where overflow is possible, ex-

plicit checking forwraparoundproducedbyoverflow is essential; otherwise, the type inArbitraryPrecisionArithmetic

is recommended instead.

Division errors

Integer division (the function) has two exceptional cases: dividing by zero, and dividing the lowest negative number ()

by -1. Both of these cases throw a . The remainder andmodulus functions ( and ) throw a when their second argument

is zero.

7.2 Floating-Point Numbers

Literal floating-point numbers are represented in the standard formats:

https://en.wikipedia.org/wiki/Modular_arithmetic
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The above results are all values. Literal values can be entered bywriting an in place of :

Values can be converted to easily:

Hexadecimal floating-point literals are also valid, but only as values:

Half-precision floating-point numbers are also supported (), but they are implemented in software and use for calcula-

tions.



28 CHAPTER 7. INTEGERS AND FLOATING-POINT NUMBERS

The underscore can be used as digit separator:

Floating-point zero

Floating-pointnumbershave twozeros, positive zeroandnegative zero. Theyareequal toeachotherbuthavedifferent

binary representations, as can be seen using the function: :

Special floating-point values

There are three specified standard floating-point values that do not correspond to any point on the real number line:

Name Description

positive infinity a value greater than all finite floating-point values

negative infinity a value less than all finite floating-point values

not a number a value not to any floating-point value (including itself)

For further discussion of how these non-finite floating-point values are ordered with respect to each other and other

floats, seeNumeric Comparisons. By the IEEE754 standard, these floating-point values are the results of certain arith-

metic operations:

https://en.wikipedia.org/wiki/Signed_zero
https://en.wikipedia.org/wiki/IEEE_754-2008


7.2. FLOATING-POINT NUMBERS 29

The and functions also apply to floating-point types:

Machine epsilon

Most real numbers cannotbe representedexactlywithfloating-pointnumbers, andso formanypurposes it is important

to know the distance between two adjacent representable floating-point numbers, which is often known as machine

epsilon.

Julia provides , which gives the distance between and the next larger representable floating-point value:

These values are and as and values, respectively. The function can also take a floating-point value as an argument,

and gives the absolute difference between that value and the next representable floating point value. That is, yields a

value of the same type as such that is the next representable floating-point value larger than :

https://en.wikipedia.org/wiki/Machine_epsilon
https://en.wikipedia.org/wiki/Machine_epsilon
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The distance between two adjacent representable floating-point numbers is not constant, but is smaller for smaller

values and larger for larger values. In other words, the representable floating-point numbers are densest in the real

number line near zero, and grow sparser exponentially as onemoves farther away from zero. By definition, is the same

as since is a 64-bit floating-point value.

Julia also provides the and functionswhich return the next largest or smallest representable floating-point number to

the argument respectively:

This examplehighlights thegeneral principle that theadjacent representablefloating-pointnumbersalsohaveadjacent

binary integer representations.

Roundingmodes

If a number doesn’t have an exact floating-point representation, it must be rounded to an appropriate representable

value, however, if wanted, the manner in which this rounding is done can be changed according to the rounding modes

presented in the IEEE 754 standard.

https://en.wikipedia.org/wiki/IEEE_754-2008
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Thedefaultmodeused is always ,which rounds to thenearest representable value,with ties rounded towards thenear-

est value with an even least significant bit.

Warning

Rounding is generally only correct for basic arithmetic functions (, , , and ) and type conversionoperations.

Many other functions assume the default mode is set, and can give erroneous results when operating

under other roundingmodes.

Background and References

Floating-point arithmetic entailsmany subtletieswhich canbe surprising to userswhoare unfamiliarwith the low-level

implementation details. However, these subtleties are described in detail in most books on scientific computation, and

also in the following references:

• The definitive guide to floating point arithmetic is the IEEE 754-2008 Standard; however, it is not available for

free online.

• For a brief but lucid presentation of how floating-point numbers are represented, see John D. Cook’s article on

the subject as well as his introduction to some of the issues arising from how this representation differs in be-

havior from the idealized abstraction of real numbers.

• Also recommended is Bruce Dawson’s series of blog posts on floating-point numbers.

• For an excellent, in-depth discussion of floating-point numbers and issues of numerical accuracy encountered

when computing with them, see David Goldberg’s paper What Every Computer Scientist Should Know About

Floating-Point Arithmetic.

• For even more extensive documentation of the history of, rationale for, and issues with floating-point numbers,

as well as discussion of many other topics in numerical computing, see the collected writings ofWilliam Kahan,

commonly known as the ”Father of Floating-Point”. Of particular interestmay beAn Interviewwith theOldMan

of Floating-Point.

7.3 Arbitrary Precision Arithmetic

Toallow computationswith arbitrary-precision integers andfloating point numbers, Juliawraps theGNUMultiple Pre-

cision Arithmetic Library (GMP) and the GNU MPFR Library, respectively. The and types are available in Julia for

arbitrary precision integer and floating point numbers respectively.

Constructors exist to create these types from primitive numerical types, and can be used to construct them from s.

Once created, they participate in arithmetic with all other numeric types thanks to Julia’s type promotion and conver-

sionmechanism:

http://standards.ieee.org/findstds/standard/754-2008.html
https://www.johndcook.com/blog/2009/04/06/anatomy-of-a-floating-point-number/
https://www.johndcook.com/blog/2009/04/06/numbers-are-a-leaky-abstraction/
https://randomascii.wordpress.com/2012/05/20/thats-not-normalthe-performance-of-odd-floats/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.22.6768&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.22.6768&rep=rep1&type=pdf
https://people.eecs.berkeley.edu/{~}wkahan/
https://en.wikipedia.org/wiki/William_Kahan
https://people.eecs.berkeley.edu/{~}wkahan/ieee754status/754story.html
https://people.eecs.berkeley.edu/{~}wkahan/ieee754status/754story.html
https://gmplib.org
https://gmplib.org
http://www.mpfr.org
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However, type promotion between the primitive types above and / is not automatic andmust be explicitly stated.

The default precision (in number of bits of the significand) and roundingmode of operations can be changed globally by

calling and , and all further calculations will take these changes in account. Alternatively, the precision or the rounding

can be changed only within the execution of a particular block of code by using the same functions with a block:

7.4 Numeric Literal Coefficients

To make common numeric formulas and expressions clearer, Julia allows variables to be immediately preceded by a

numeric literal, implyingmultiplication. This makes writing polynomial expressionsmuch cleaner:
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It alsomakes writing exponential functionsmore elegant:

The precedence of numeric literal coefficients is the same as that of unary operators such as negation. So is parsed as ,

and is parsed as .

Numeric literals also work as coefficients to parenthesized expressions:

Additionally, parenthesized expressions can be used as coefficients to variables, implying multiplication of the expres-

sion by the variable:

Neither juxtapositionof twoparenthesizedexpressions, nor placing a variable before aparenthesizedexpression, how-

ever, can be used to imply multiplication:

Bothexpressions are interpretedas function application: anyexpression that is not anumeric literal, when immediately

followed by a parenthetical, is interpreted as a function applied to the values in parentheses (see Functions for more

about functions). Thus, in both of these cases, an error occurs since the left-hand value is not a function.

The above syntactic enhancements significantly reduce the visual noise incurred when writing commonmathematical

formulae. Note that nowhitespacemay come between a numeric literal coefficient and the identifier or parenthesized

expression which it multiplies.

Syntax Conflicts

Juxtaposed literal coefficient syntax may conflict with two numeric literal syntaxes: hexadecimal integer literals and

engineering notation for floating-point literals. Here are some situations where syntactic conflicts arise:

• The hexadecimal integer literal expression could be interpreted as the numeric literal multiplied by the variable

.
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• The floating-point literal expression could be interpreted as the numeric literal multiplied by the variable , and

similarly with the equivalent form.

In both cases, we resolve the ambiguity in favor of interpretation as a numeric literals:

• Expressions starting with are always hexadecimal literals.

• Expressions starting with a numeric literal followed by or are always floating-point literals.

7.5 Literal zero and one

Julia provides functions which return literal 0 and 1 corresponding to a specified type or the type of a given variable.

Function Description

Literal zero of type or type of variable

Literal one of type or type of variable

These functions are useful in Numeric Comparisons to avoid overhead from unnecessary type conversion.

Examples:
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Mathematical Operations and Elementary Functions

Julia provides a complete collection of basic arithmetic and bitwise operators across all of its numeric primitive types,

as well as providing portable, efficient implementations of a comprehensive collection of standardmathematical func-

tions.

8.1 Arithmetic Operators

The following arithmetic operators are supported on all primitive numeric types:

Expression Name Description

unary plus the identity operation

unaryminus maps values to their additive inverses

binary plus performs addition

binaryminus performs subtraction

times performsmultiplication

divide performs division

inverse divide equivalent to

power raises to the th power

remainder equivalent to

as well as the negation on types:

Expression Name Description

negation changes to and vice versa

Julia’s promotion system makes arithmetic operations on mixtures of argument types ”just work” naturally and auto-

matically. See Conversion and Promotion for details of the promotion system.

Here are some simple examples using arithmetic operators:
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https://en.wikipedia.org/wiki/Arithmetic#Arithmetic_operations
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(By convention,we tend to spaceoperatorsmore tightly if theyget appliedbeforeothernearbyoperators. For instance,

wewould generally write to reflect that first gets negated, and then is added to that result.)

8.2 Bitwise Operators

The following bitwise operators are supported on all primitive integer types:

Expression Name

bitwise not

bitwise and

bitwise or

bitwise xor (exclusive or)

logical shift right

arithmetic shift right

logical/arithmetic shift left

Here are some examples with bitwise operators:

8.3 Updating operators

Every binary arithmetic and bitwise operator also has an updating version that assigns the result of the operation back

into its left operand. The updating version of the binary operator is formedby placing a immediately after the operator.

For example, writing is equivalent to writing :

https://en.wikipedia.org/wiki/Bitwise_operation#Bitwise_operators
https://en.wikipedia.org/wiki/Logical_shift
https://en.wikipedia.org/wiki/Arithmetic_shift
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The updating versions of all the binary arithmetic and bitwise operators are:

Note

An updating operator rebinds the variable on the left-hand side. As a result, the type of the variable may

change.

8.4 Vectorized ”dot” operators

Foreverybinaryoperation like , there isacorresponding ”dot”operation that isautomaticallydefinedtoperform element-

by-elementonarrays. Forexample, is notdefined, since there isnostandardmathematicalmeaning to ”cubing”anarray,

but is defined as computing the elementwise (or ”vectorized”) result . Similarly for unary operators like or , there is a

corresponding that applies the operator elementwise.

More specifically, is parsed as the ”dot” call , which performs a broadcast operation: it can combine arrays and scalars,

arrays of the same size (performing the operation elementwise), and even arrays of different shapes (e.g. combining

row and column vectors to produce a matrix). Moreover, like all vectorized ”dot calls,” these ”dot operators” are fusing.

For example, if you compute (or equivalently , using the macro) for an array , it performs a single loop over , computing

for each element of . In particular, nested dot calls like are fused, and ”adjacent” binary operators like are equivalent to

nested dot calls .

Furthermore, ”dotted” updating operators like (or ) are parsed as , where is a fused in-place assignment operation (see

the dot syntax documentation).

Note the dot syntax is also applicable to user-defined operators. For example, if you define to give a convenient infix

syntax for Kronecker products (), then will compute with no additional coding.

Combiningdotoperatorswithnumeric literals canbeambiguous. Forexample, it is not clearwhether means or . There-

fore this syntax is disallowed, and spacesmust be used around the operator in such cases.

8.5 Numeric Comparisons

Standard comparison operations are defined for all the primitive numeric types:

Here are some simple examples:
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Operator Name

equality

, inequality

less than

, less than or equal to

greater than

, greater than or equal to

Integersarecompared in thestandardmanner–bycomparisonofbits. Floating-pointnumbersarecomparedaccording

to the IEEE 754 standard:

• Finite numbers are ordered in the usual manner.

• Positive zero is equal but not greater than negative zero.

• is equal to itself and greater than everything else except .

• is equal to itself and less then everything else except .

• is not equal to, not less than, and not greater than anything, including itself.

https://en.wikipedia.org/wiki/IEEE_754-2008
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The last point is potentially surprising and thus worth noting:

and can cause especial headaches with Arrays:

Julia provides additional functions to test numbers for special values, which can be useful in situations like hash key

comparisons:

Function Tests if

and are identical

is a finite number

is infinite

is not a number

considers s equal to each other:

can also be used to distinguish signed zeros:

Mixed-type comparisons between signed integers, unsigned integers, and floats can be tricky. A great deal of care has

been taken to ensure that Julia does them correctly.

For other types, defaults to calling , so if you want to define equality for your own types then you only need to add a

method. If you define your own equality function, you should probably define a corresponding method to ensure that

implies .
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Chaining comparisons

Unlikemost languages, with the notable exception of Python, comparisons can be arbitrarily chained:

Chaining comparisons is often quite convenient in numerical code. Chained comparisons use the operator for scalar

comparisons, and the operator for elementwise comparisons, which allows them towork on arrays. For example, gives

a boolean array whose entries are true where the corresponding elements of are between 0 and 1.

Note the evaluation behavior of chained comparisons:

Themiddle expression is only evaluated once, rather than twice as it would be if the expressionwerewritten as . How-

ever, the order of evaluations in a chained comparison is undefined. It is strongly recommended not to use expressions

with sideeffects (suchasprinting) in chainedcomparisons. If sideeffects are required, the short-circuit operator should

be used explicitly (see Short-Circuit Evaluation).

Elementary Functions

Julia provides a comprehensive collection of mathematical functions and operators. These mathematical operations

are defined over as broad a class of numerical values as permit sensible definitions, including integers, floating-point

numbers, rationals, and complex numbers, wherever such definitionsmake sense.

Moreover, these functions (like any Julia function) can be applied in ”vectorized” fashion to arrays and other collections

with the dot syntax , e.g. will compute the sine of each element of an array .

8.6 Operator Precedence

Julia applies the following order of operations, from highest precedence to lowest:

For a complete list of every Julia operator’s precedence, see the top of this file:

You can also find the numerical precedence for any given operator via the built-in function , where higher numbers take

precedence:

https://en.wikipedia.org/wiki/Python_syntax_and_semantics#Comparison_operators
https://github.com/JuliaLang/julia/blob/master/src/julia-parser.scm
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Category Operators

Syntax followed by

Exponentiation

Fractions

Multiplication

Bitshifts

Addition

Syntax followed by

Comparisons

Control flow followed by followed by

Assignments

8.7 Numerical Conversions

Julia supports three forms of numerical conversion, which differ in their handling of inexact conversions.

• The notation or converts to a value of type .

– If is a floating-point type, the result is the nearest representable value, which could be positive or negative

infinity.

– If is an integer type, an is raised if is not representable by .

• converts an integer to a value of integer type congruent to modulo , where is the number of bits in . In other

words, the binary representation is truncated to fit.

• The Rounding functions take a type as an optional argument. For example, is a shorthand for .

The following examples show the different forms.
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See Conversion and Promotion for how to define your own conversions and promotions.

Rounding functions

Function Description Return type

round to the nearest integer

round to the nearest integer

round towards

round towards

round towards

round towards

round towards zero

round towards zero

Division functions

Function Description

truncated division; quotient rounded towards zero

floored division; quotient rounded towards

ceiling division; quotient rounded towards

remainder; satisfies ; signmatches

modulus; satisfies ; signmatches

with offset 1; returns for or for , where

modulus with respect to 2pi;

returns

returns

greatest positive common divisor of , ,...

least positive commonmultiple of , ,...
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Function Description

a positive value with themagnitude of

the squaredmagnitude of

indicates the sign of , returning -1, 0, or +1

indicates whether the sign bit is on (true) or off (false)

a value with themagnitude of and the sign of

a value with themagnitude of and the sign of

Function Description

, square root of

, cube root of

hypotenuse of right-angled triangle with other sides of length and

natural exponential function at

accurate for near zero

computed efficiently for integer values of

natural logarithm of

base logarithm of

base 2 logarithm of

base 10 logarithm of

accurate for near zero

binary exponent of

binary significand (a.k.a. mantissa) of a floating-point number

Sign and absolute value functions

Powers, logs and roots

For an overview ofwhy functions like , , and are necessary and useful, see JohnD. Cook’s excellent pair of blog posts on

the subject: expm1, log1p, erfc, and hypot.

Trigonometric and hyperbolic functions

All the standard trigonometric and hyperbolic functions are also defined:

Theseareall single-argument functions,with theexceptionof atan2,whichgives theangle in radiansbetween the x-axis

and the point specified by its arguments, interpreted as x and y coordinates.

Additionally, and are provided for more accurate computations of and respectively.

In order to compute trigonometric functions with degrees instead of radians, suffix the function with . For example,

computes the sine of where is specified in degrees. The complete list of trigonometric functions with degree variants

is:

Special functions

https://www.johndcook.com/blog/2010/06/07/math-library-functions-that-seem-unnecessary/
https://www.johndcook.com/blog/2010/06/02/whats-so-hard-about-finding-a-hypotenuse/
https://en.wikipedia.org/wiki/Atan2
https://en.wikipedia.org/wiki/Radian
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Function Description

gamma function at

accurate for large

accurate for large ; same as for , zero otherwise

beta function at

accurate for large or

https://en.wikipedia.org/wiki/Gamma_function
https://en.wikipedia.org/wiki/Beta_function
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Complex and Rational Numbers

Julia ships with predefined types representing both complex and rational numbers, and supports all standard Mathe-

matical Operations and Elementary Functions on them. Conversion and Promotion are defined so that operations on

any combination of predefined numeric types, whether primitive or composite, behave as expected.

9.1 Complex Numbers

The global constant is bound to the complex number i, representing the principal square root of -1. It was deemed

harmful to co-opt the name for a global constant, since it is such a popular index variable name. Since Julia allows

numeric literals to be juxtaposed with identifiers as coefficients, this binding suffices to provide convenient syntax for

complex numbers, similar to the traditional mathematical notation:

You can perform all the standard arithmetic operations with complex numbers:

45
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The promotionmechanism ensures that combinations of operands of different types just work:

Note that , since a literal coefficient bindsmore tightly than division.

Standard functions tomanipulate complex values are provided:
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As usual, the absolute value () of a complex number is its distance from zero. gives the square of the absolute value,

and is of particular use for complex numbers where it avoids taking a square root. returns the phase angle in radians

(also known as the argument or arg function). The full gamut of other Elementary Functions is also defined for complex

numbers:

Note that mathematical functions typically return real values when applied to real numbers and complex values when

applied to complex numbers. For example, behaves differently when applied to versus even though :

The literal numeric coefficient notation does not work when constructing a complex number from variables. Instead,

themultiplicationmust be explicitly written out:

However, this is not recommended; Use the function instead to construct a complex value directly from its real and

imaginary parts:
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This construction avoids themultiplication and addition operations.

and propagate through complex numbers in the real and imaginary parts of a complex number as described in the

Special floating-point values section:

9.2 Rational Numbers

Julia has a rational number type to represent exact ratios of integers. Rationals are constructed using the operator:

If the numerator and denominator of a rational have common factors, they are reduced to lowest terms such that the

denominator is non-negative:

Thisnormalized formfora ratioof integers is unique, soequalityof rational values canbe testedbychecking forequality

of the numerator and denominator. The standardized numerator and denominator of a rational value can be extracted

using the and functions:

Direct comparison of the numerator and denominator is generally not necessary, since the standard arithmetic and

comparison operations are defined for rational values:
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Rationals can be easily converted to floating-point numbers:

Conversion from rational to floating-point respects the following identity for any integral values of and , with the ex-

ception of the case and :

Constructing infinite rational values is acceptable:

Trying to construct a rational value, however, is not:

As usual, the promotion systemmakes interactions with other numeric types effortless:
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Strings

Strings are finite sequences of characters. Of course, the real trouble comes when one asks what a character is. The

characters that English speakers are familiar with are the letters , , , etc., together with numerals and common punc-

tuation symbols. These characters are standardized together with a mapping to integer values between 0 and 127 by

the ASCII standard. There are, of course, many other characters used in non-English languages, including variants of

the ASCII characters with accents and other modifications, related scripts such as Cyrillic and Greek, and scripts com-

pletely unrelated to ASCII and English, including Arabic, Chinese, Hebrew, Hindi, Japanese, and Korean. The Unicode

standard tackles the complexities of what exactly a character is, and is generally accepted as the definitive standard

addressing this problem. Depending on your needs, you can either ignore these complexities entirely and just pretend

that only ASCII characters exist, or you canwrite code that can handle any of the characters or encodings that onemay

encounter when handling non-ASCII text. Julia makes dealing with plain ASCII text simple and efficient, and handling

Unicode is as simple and efficient as possible. In particular, you can write C-style string code to process ASCII strings,

and they will work as expected, both in terms of performance and semantics. If such code encounters non-ASCII text,

it will gracefully fail with a clear error message, rather than silently introducing corrupt results. When this happens,

modifying the code to handle non-ASCII data is straightforward.

There are a few noteworthy high-level features about Julia’s strings:

• The built-in concrete type used for strings (and string literals) in Julia is . This supports the full range of Unicode

characters via the UTF-8 encoding. (A function is provided to convert to/from other Unicode encodings.)

• All string types are subtypes of the abstract type , and external packages define additional subtypes (e.g. for

other encodings). If you define a function expecting a string argument, you should declare the type as in order

to accept any string type.

• Like C and Java, but unlike most dynamic languages, Julia has a first-class type representing a single character,

called . This is just a special kind of 32-bit primitive type whose numeric value represents a Unicode code point.

• As in Java, strings are immutable: the value of an object cannot be changed. To construct a different string value,

you construct a new string from parts of other strings.

• Conceptually, a string is a partial function from indices to characters: for some index values, no character value is

returned, and instead an exception is thrown. This allows for efficient indexing into strings by the byte index of

an encoded representation rather than by a character index, which cannot be implemented both efficiently and

simply for variable-width encodings of Unicode strings.

10.1 Characters

A value represents a single character: it is just a 32-bit primitive type with a special literal representation and appro-

priate arithmetic behaviors, whose numeric value is interpreted as a Unicode code point. Here is how values are input
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https://en.wikipedia.org/wiki/ASCII
https://en.wikipedia.org/wiki/Unicode
https://en.wikipedia.org/wiki/Unicode
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/Code_point
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and shown:

You can convert a to its integer value, i.e. code point, easily:

On 32-bit architectures, will be . You can convert an integer value back to a just as easily:

Not all integer values are valid Unicode code points, but for performance, the conversion does not check that every

character value is valid. If youwant to check that each converted value is a valid code point, use the function:

As of thiswriting, the validUnicode code points are through and through . These have not all been assigned intelligible

meanings yet, nor are they necessarily interpretable by applications, but all of these values are considered to be valid

Unicode characters.

You can input anyUnicode character in single quotes using followed by up to four hexadecimal digits or followed by up

to eight hexadecimal digits (the longest valid value only requires six):

Julia uses your system’s locale and language settings todeterminewhich characters canbeprintedas-is andwhichmust

be output using the generic, escaped or input forms. In addition to these Unicode escape forms, all of C’s traditional

escaped input forms can also be used:

https://en.wikipedia.org/wiki/C_syntax#Backslash_escapes
https://en.wikipedia.org/wiki/C_syntax#Backslash_escapes


10.2. STRING BASICS 53

You can do comparisons and a limited amount of arithmetic with values:

10.2 String Basics

String literals are delimited by double quotes or triple double quotes:

If youwant to extract a character from a string, you index into it:



54 CHAPTER 10. STRINGS

All indexing in Julia is 1-based: the first element of any integer-indexed object is found at index 1. (Aswewill see below,

this does not necessarily mean that the last element is found at index , where is the length of the string.)

In any indexing expression, the keyword can be used as a shorthand for the last index (computed by ). You can perform

arithmetic and other operations with , just like a normal value:

Using an index less than 1 or greater than raises an error:

You can also extract a substring using range indexing:

Notice that the expressions and do not give the same result:

The former is a single character value of type , while the latter is a string value that happens to contain only a single

character. In Julia these are very different things.
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10.3 Unicode andUTF-8

Julia fully supportsUnicodecharactersandstrings. Asdiscussedabove, in character literals,Unicodecodepoints canbe

represented using Unicode and escape sequences, as well as all the standard C escape sequences. These can likewise

be used to write string literals:

Whether theseUnicode characters are displayed as escapes or shown as special characters depends on your terminal’s

locale settings and its support for Unicode. String literals are encoded using the UTF-8 encoding. UTF-8 is a variable-

width encoding,meaning that not all characters are encoded in the samenumber of bytes. InUTF-8, ASCII characters –

i.e. thosewith code points less than 0x80 (128) – are encoded as they are inASCII, using a single byte, while code points

0x80 and above are encoded usingmultiple bytes – up to four per character. This means that not every byte index into

aUTF-8 string is necessarily a valid index for a character. If you index into a string at such an invalid byte index, an error

is thrown:

In this case, the character is a three-byte character, so the indices 2 and 3 are invalid and the next character’s index is

4; this next valid index can be computed by , and the next index after that by and so on.

Because of variable-length encodings, the number of characters in a string (given by ) is not always the same as the last

index. If you iterate through the indices 1 through and index into , the sequence of characters returned when errors

aren’t thrown is the sequence of characters comprising the string . Thuswe have the identity that , since each character

in a stringmust have its own index. The following is an inefficient and verboseway to iterate through the characters of :
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Theblank linesactuallyhavespacesonthem. Fortunately, theaboveawkward idiomisunnecessary for iterating through

the characters in a string, since you can just use the string as an iterable object, no exception handling required:

Julia uses the UTF-8 encoding by default, and support for new encodings can be added by packages. For example, the

LegacyStrings.jl package implements and types. Additional discussion of other encodings and how to implement sup-

port for them is beyond the scope of this document for the time being. For further discussion ofUTF-8 encoding issues,

see the section below on byte array literals. The function is provided to convert data between the various UTF-xx en-

codings, primarily for working with external data and libraries.

10.4 Concatenation

One of themost common and useful string operations is concatenation:

Julia also provides for string concatenation:

While may seem like a surprising choice to users of languages that provide for string concatenation, this use of has

precedent in mathematics, particularly in abstract algebra.

In mathematics, usually denotes a commutative operation, where the order of the operands does notmatter. An exam-

ple of this is matrix addition, where for any matrices and that have the same shape. In contrast, typically denotes a

noncommutative operation, where the order of the operands does matter. An example of this is matrix multiplication,

where in general . As with matrix multiplication, string concatenation is noncommutative: . As such, is a more natural

choice for an infix string concatenation operator, consistent with commonmathematical use.

Moreprecisely, the set of all finite-length strings S togetherwith the string concatenationoperator formsa freemonoid

(S, ). The identity element of this set is the empty string, . Whenever a freemonoid is not commutative, the operation is

typically represented as , , or a similar symbol, rather than , which as stated usually implies commutativity.

https://github.com/JuliaArchive/LegacyStrings.jl
https://en.wikipedia.org/wiki/Free_monoid
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10.5 Interpolation

Constructingstringsusingconcatenationcanbecomeabit cumbersome, however. Toreducetheneed for theseverbose

calls to or repeatedmultiplications, Julia allows interpolation into string literals using , as in Perl:

This is more readable and convenient and equivalent to the above string concatenation – the system rewrites this ap-

parent single string literal into a concatenation of string literals with variables.

The shortest complete expression after the is taken as the expressionwhose value is to be interpolated into the string.

Thus, you can interpolate any expression into a string using parentheses:

Both concatenation and string interpolation call to convert objects into string form. Most non- objects are converted

to strings closely corresponding to how they are entered as literal expressions:

is the identity for and values, so these are interpolated into strings as themselves, unquoted and unescaped:

To include a literal in a string literal, escape it with a backslash:

10.6 Triple-Quoted String Literals

When strings are created using triple-quotes () they have some special behavior that can be useful for creating longer

blocks of text. First, if the opening is followed by a newline, the newline is stripped from the resulting string.

is equivalent to
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but

will contain a literal newline at the beginning. Trailing whitespace is left unaltered. They can contain symbols without

escaping. Triple-quotedstringsarealsodedented to the levelof the least-indented line. This isuseful fordefiningstrings

within code that is indented. For example:

In this case the final (empty) line before the closing sets the indentation level.

Note that line breaks in literal strings, whether single- or triple-quoted, result in a newline (LF) character in the string,

even if your editor uses a carriage return (CR) or CRLF combination to end lines. To include a CR in a string, use an

explicit escape ; for example, you can enter the literal string .

10.7 CommonOperations

You can lexicographically compare strings using the standard comparison operators:

You can search for the index of a particular character using the function:
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You can start the search for a character at a given offset by providing a third argument:

You can use the function to check if a substring is contained in a string:

The last example shows that can also look for a character literal.

Two other handy string functions are and :

Some other useful functions include:

• gives themaximal (byte) index that can be used to index into .

• the number of characters in .

• gives the first valid index at which a character can be found in (typically 1).

• returns next character at or after the index and the next valid character index following that. With and , can be

used to iterate through the characters in .

• gives the number of characters in up to and including any at index .

• gives the index at which the th character in occurs.
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10.8 Non-Standard String Literals

Thereare situationswhenyouwant to construct a stringoruse string semantics, but thebehavior of the standard string

construct is not quite what is needed. For these kinds of situations, Julia provides non-standard string literals. A non-

standard string literal looks like a regular double-quoted string literal, but is immediately prefixed by an identifier, and

doesn’t behave quite like a normal string literal. Regular expressions, byte array literals and version number literals, as

describedbelow, are someexamplesof non-standard string literals. Other examples are given in theMetaprogramming

section.

10.9 Regular Expressions

Julia has Perl-compatible regular expressions (regexes), as provided by the PCRE library. Regular expressions are re-

lated to strings in two ways: the obvious connection is that regular expressions are used to find regular patterns in

strings; the other connection is that regular expressions are themselves input as strings, which are parsed into a state

machine that can be used to efficiently search for patterns in strings. In Julia, regular expressions are input using non-

standard string literals prefixedwith various identifiers beginningwith . Themost basic regular expression literal with-

out any options turned on just uses :

To check if a regexmatches a string, use :

As one can see here, simply returns true or false, indicating whether the given regex matches the string or not. Com-

monly, however, one wants to know not just whether a string matched, but also how it matched. To capture this infor-

mation about amatch, use the function instead:

If the regular expression does not match the given string, returns – a special value that does not print anything at the

interactive prompt. Other than not printing, it is a completely normal value and you can test for it programmatically:

http://www.pcre.org/
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If a regular expressiondoesmatch, the value returnedby is a object. Theseobjects recordhowtheexpressionmatches,

including the substring that the pattern matches and any captured substrings, if there are any. This example only cap-

tures the portion of the substring thatmatches, but perhapswewant to capture any non-blank text after the comment

character. We could do the following:

When calling , you have the option to specify an index at which to start the search. For example:

You can extract the following info from a object:

• the entire substringmatched:

• the captured substrings as an array of strings:

• the offset at which the wholematch begins:

• the offsets of the captured substrings as a vector:

For when a capture doesn’t match, instead of a substring, contains in that position, and has a zero offset (recall that

indices in Julia are 1-based, so a zero offset into a string is invalid). Here is a pair of somewhat contrived examples:
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It is convenient to have captures returned as an array so that one can use destructuring syntax to bind them to local

variables:

Captures can also be accessed by indexing the object with the number or name of the capture group:

Captures can be referenced in a substitution string when using by using to refer to the nth capture group and pre-

fixing the substitution string with . Capture group 0 refers to the entire match object. Named capture groups can be

referenced in the substitution with . For example:

Numbered capture groups can also be referenced as for disambiguation, as in:

You can modify the behavior of regular expressions by some combination of the flags , , , and after the closing double

quotemark. Theseflags have the samemeaning as they do inPerl, as explained in this excerpt from the perlremanpage:

http://perldoc.perl.org/perlre.html#Modifiers
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For example, the following regex has all three flags turned on:

Triple-quoted regex strings, of the form , are also supported (andmay be convenient for regular expressions containing

quotationmarks or newlines).

10.10 Byte Array Literals

Another useful non-standard string literal is the byte-array string literal: . This form lets you use string notation to

express literal byte arrays – i.e. arrays of values. The rules for byte array literals are the following:

• ASCII characters and ASCII escapes produce a single byte.

• and octal escape sequences produce the byte corresponding to the escape value.

• Unicode escape sequences produce a sequence of bytes encoding that code point in UTF-8.

There is some overlap between these rules since the behavior of and octal escapes less than 0x80 (128) are covered

by both of the first two rules, but here these rules agree. Together, these rules allow one to easily use ASCII characters,

arbitrary byte values, and UTF-8 sequences to produce arrays of bytes. Here is an example using all three:
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The ASCII string ”DATA” corresponds to the bytes 68, 65, 84, 65. produces the single byte 255. The Unicode escape is

encoded in UTF-8 as the three bytes 226, 136, 128. Note that the resulting byte array does not correspond to a valid

UTF-8 string – if you try to use this as a regular string literal, you will get a syntax error:

Also observe the significant distinction between and : the former escape sequence encodes the byte 255, whereas the

latter escape sequence represents the code point 255, which is encoded as two bytes in UTF-8:

In character literals, this distinction is glossed over and is allowed to represent the code point 255, because characters

always represent code points. In strings, however, escapes always represent bytes, not code points, whereas and es-

capes always represent code points, which are encoded in one ormore bytes. For code points less than , it happens that

the UTF-8 encoding of each code point is just the single byte produced by the corresponding escape, so the distinction

can safely be ignored. For the escapes through as compared to through , however, there is a major difference: the

former escapes all encode single bytes, which – unless followed by very specific continuation bytes – do not form valid

UTF-8 data, whereas the latter escapes all represent Unicode code points with two-byte encodings.

If this is all extremely confusing, try reading ”The AbsoluteMinimum Every Software Developer Absolutely, Positively

Must Know About Unicode and Character Sets”. It’s an excellent introduction to Unicode and UTF-8, and may help

alleviate some confusion regarding thematter.

10.11 Version Number Literals

Version numbers can easily be expressed with non-standard string literals of the form . Version number literals create

objects which follow the specifications of semantic versioning, and therefore are composed of major, minor and patch

numericvalues, followedbypre-releaseandbuildalpha-numericannotations. Forexample, isbroken intomajorversion

, minor version , patch version , pre-release and build . When entering a version literal, everything except the major

version number is optional, therefore e.g. is equivalent to (with empty pre-release/build annotations), is equivalent to

, and so on.

objects aremostly useful to easily and correctly compare two (ormore) versions. For example, the constant holds Julia

version number as a object, and therefore one can define some version-specific behavior using simple statements as:

https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
http://semver.org
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Note that in the above example the non-standard version number is used, with a trailing : this notation is a Julia exten-

sion of the standard, and it’s used to indicate a versionwhich is lower than any release, including all of its pre-releases.

So in the above example the code would only run with stable versions, and exclude such versions as . In order to also

allow for unstable (i.e. pre-release) versions, the lower bound check should bemodified like this: .

Another non-standard version specification extension allows one to use a trailing to express an upper limit on build

versions, e.g. can be used tomean any version above and any of its builds: it will return for version and for .

It is good practice to use such special versions in comparisons (particularly, the trailing should always be used on upper

bounds unless there’s a good reasonnot to), but theymust not be used as the actual version number of anything, as they

are invalid in the semantic versioning scheme.

Besides being used for the constant, objects are widely used in the module, to specify packages versions and their

dependencies.

10.12 Raw String Literals

Raw strings without interpolation or unescaping can be expressed with non-standard string literals of the form . Raw

string literals create ordinary objects which contain the enclosed contents exactly as entered with no interpolation or

unescaping. This is useful for strings which contain code or markup in other languages which use or as special charac-

ters. The exception is quotationmarks that still must be escaped, e.g. is equivalent to .
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Functions

In Julia, a function is an object that maps a tuple of argument values to a return value. Julia functions are not pure

mathematical functions, in the sense that functions can alter and be affected by the global state of the program. The

basic syntax for defining functions in Julia is:

There is a second,more terse syntax for defining a function in Julia. The traditional function declaration syntax demon-

strated above is equivalent to the following compact ”assignment form”:

In the assignment form, the body of the function must be a single expression, although it can be a compound expres-

sion (see Compound Expressions). Short, simple function definitions are common in Julia. The short function syntax is

accordingly quite idiomatic, considerably reducing both typing and visual noise.

A function is called using the traditional parenthesis syntax:

Without parentheses, the expression refers to the function object, and can be passed around like any value:

As with variables, Unicode can also be used for function names:
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11.1 Argument Passing Behavior

Julia function arguments follow a convention sometimes called ”pass-by-sharing”, which means that values are not

copied when they are passed to functions. Function arguments themselves act as new variable bindings (new locations

that can refer to values), but the values they refer to are identical to the passed values. Modifications tomutable values

(such as s) made within a function will be visible to the caller. This is the same behavior found in Scheme, most Lisps,

Python, Ruby and Perl, among other dynamic languages.

11.2 The Keyword

The value returned by a function is the value of the last expression evaluated, which, by default, is the last expression in

thebodyof the functiondefinition. In theexample function, , fromtheprevious section this is thevalueof theexpression

. As in C and most other imperative or functional languages, the keyword causes a function to return immediately,

providing an expression whose value is returned:

Since function definitions can be entered into interactive sessions, it is easy to compare these definitions:

Of course, in a purely linear function body like , the usage of is pointless since the expression is never evaluated andwe

could simplymake the last expression in the function and omit the . In conjunctionwith other control flow, however, is

of real use. Here, for example, is a function that computes the hypotenuse length of a right triangle with sides of length

and , avoiding overflow:
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There are three possible points of return from this function, returning the values of three different expressions, de-

pending on the values of and . The on the last line could be omitted since it is the last expression.

11.3 Operators Are Functions

In Julia, most operators are just functions with support for special syntax. (The exceptions are operators with special

evaluation semantics like and . These operators cannot be functions since Short-Circuit Evaluation requires that their

operands are not evaluated before evaluation of the operator.) Accordingly, you can also apply them using parenthe-

sized argument lists, just as youwould any other function:

The infix form isexactlyequivalent to the functionapplication form– in fact the former isparsed toproduce the function

call internally. This alsomeans that you canassign andpass aroundoperators suchas and just like youwouldwithother

function values:

Under the name , the function does not support infix notation, however.

11.4 OperatorsWith Special Names

A few special expressions correspond to calls to functions with non-obvious names. These are:

Expression Calls
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11.5 Anonymous Functions

Functions in Julia are first-class objects: they can be assigned to variables, and called using the standard function call

syntax fromthevariable theyhavebeenassigned to. Theycanbeusedasarguments, and theycanbe returnedasvalues.

They can also be created anonymously, without being given a name, using either of these syntaxes:

This creates a function taking one argument and returning the value of the polynomial at that value. Notice that the

result is a generic function, but with a compiler-generated name based on consecutive numbering.

The primary use for anonymous functions is passing them to functions which take other functions as arguments. A

classic example is , which applies a function to each value of an array and returns a new array containing the resulting

values:

This is fine if a named function effecting the transform already exists to pass as the first argument to . Often, however,

a ready-to-use, named function does not exist. In these situations, the anonymous function construct allows easy cre-

ation of a single-use function object without needing a name:

An anonymous function accepting multiple arguments can be written using the syntax . A zero-argument anonymous

function is written as . The idea of a function with no arguments may seem strange, but is useful for ”delaying” a com-

putation. In this usage, a block of code is wrapped in a zero-argument function, which is later invoked by calling it as

.

11.6 Multiple Return Values

In Julia, one returns a tupleof values to simulate returningmultiple values. However, tuples canbe createdanddestruc-

tured without needing parentheses, thereby providing an illusion that multiple values are being returned, rather than

a single tuple value. For example, the following function returns a pair of values:

https://en.wikipedia.org/wiki/First-class_citizen
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If you call it in an interactive session without assigning the return value anywhere, youwill see the tuple returned:

A typical usage of such a pair of return values, however, extracts each value into a variable. Julia supports simple tuple

”destructuring” that facilitates this:

You can also returnmultiple values via an explicit usage of the keyword:

This has the exact same effect as the previous definition of .

11.7 Varargs Functions

It is often convenient to be able to write functions taking an arbitrary number of arguments. Such functions are tra-

ditionally known as ”varargs” functions, which is short for ”variable number of arguments”. You can define a varargs

function by following the last argument with an ellipsis:

Thevariables and areboundto thefirst twoargumentvaluesasusual, and thevariable isbound toan iterablecollection

of the zero ormore values passed to after its first two arguments:
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In all these cases, is bound to a tuple of the trailing values passed to .

It ispossible toconstrain thenumberofvaluespassedasavariableargument; thiswill bediscussed later inParametrically-

constrained Varargs methods.

On theflip side, it is oftenhandy to ”splice” the values contained in an iterable collection into a function call as individual

arguments. To do this, one also uses but in the function call instead:

In this case a tuple of values is spliced into a varargs call precisely where the variable number of arguments go. This

need not be the case, however:

Furthermore, the iterable object spliced into a function call need not be a tuple:

Also, the function that arguments are spliced into need not be a varargs function (although it often is):
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As you can see, if the wrong number of elements are in the spliced container, then the function call will fail, just as it

would if toomany arguments were given explicitly.

11.8 Optional Arguments

In many cases, function arguments have sensible default values and thereforemight not need to be passed explicitly in

every call. For example, the library function interprets a string as a number in some base. The argument defaults to .

This behavior can be expressed concisely as:

With this definition, the function can be calledwith either two or three arguments, and is automatically passedwhen a

third argument is not specified:

Optional arguments are actually just a convenient syntax for writing multiple method definitions with different num-

bers of arguments (see Note onOptional and keyword Arguments).

11.9 Keyword Arguments

Some functions need a large number of arguments, or have a large number of behaviors. Remembering how to call such

functions can be difficult. Keyword arguments canmake these complex interfaces easier to use and extend by allowing

arguments to be identified by name instead of only by position.
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For example, consider a function that plots a line. This function might have many options, for controlling line style,

width, color, and soon. If it accepts keyword arguments, a possible callmight look like ,wherewehave chosen to specify

only line width. Notice that this serves two purposes. The call is easier to read, since we can label an argument with its

meaning. It also becomes possible to pass any subset of a large number of arguments, in any order.

Functions with keyword arguments are defined using a semicolon in the signature:

When the function is called, the semicolon is optional: one can either call or , but the former style is more common. An

explicit semicolon is required only for passing varargs or computed keywords as described below.

Keyword argument default values are evaluated onlywhen necessary (when a corresponding keyword argument is not

passed), and in left-to-right order. Therefore default expressionsmay refer to prior keyword arguments.

The types of keyword arguments can bemade explicit as follows:

Extra keyword arguments can be collected using , as in varargs functions:

Inside , will be a collection of tuples, where each is a symbol. Such collections can be passed as keyword arguments

using a semicolon in a call, e.g. . Dictionaries can also be used for this purpose.

One can also pass tuples, or any iterable expression (such as a pair) that can be assigned to such a tuple, explicitly after

a semicolon. For example, and are equivalent to . This is useful in situations where the keyword name is computed at

runtime.

The nature of keyword argumentsmakes it possible to specify the same argumentmore than once. For example, in the

call it is possible that the structure also contains a value for . In such a case the rightmost occurrence takes precedence;

in this example, is certain to have the value .

11.10 Evaluation Scope of Default Values

When optional and keyword argument default expressions are evaluated, only previous arguments are in scope. For

example, given this definition:

the in refers to a in an outer scope, not the subsequent argument .
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11.11 Do-Block Syntax for Function Arguments

Passing functionsasarguments toother functions is apowerful technique, but the syntax for it is not always convenient.

Such calls are especially awkward towritewhen the function argument requiresmultiple lines. As an example, consider

calling on a function with several cases:

Julia provides a reservedword for rewriting this codemore clearly:

The syntax creates an anonymous function with argument and passes it as the first argument to . Similarly, would

create a two-argument anonymous function, and a plain would declare that what follows is an anonymous function of

the form .

How these arguments are initializeddepends on the ”outer” function; here, will sequentially set to , , , calling the anony-

mous function on each, just as would happen in the syntax .

This syntaxmakes it easier to use functions to effectively extend the language, since calls look like normal code blocks.

There are many possible uses quite different from , such as managing system state. For example, there is a version of

that runs code ensuring that the opened file is eventually closed:

This is accomplished by the following definition:
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Here, first opens thefile forwriting and thenpasses the resultingoutput streamto theanonymous functionyoudefined

in the block. After your function exits, will make sure that the stream is properly closed, regardless of whether your

function exited normally or threw an exception. (The construct will be described in Control Flow.)

With the block syntax, it helps to check the documentation or implementation to know how the arguments of the user

function are initialized.

11.12 Dot Syntax for Vectorizing Functions

In technical-computing languages, it is common to have ”vectorized” versions of functions, which simply apply a given

function to each element of an array to yield a new array via . This kind of syntax is convenient for data processing,

but in other languages vectorization is also often required for performance: if loops are slow, the ”vectorized” version

of a function can call fast library code written in a low-level language. In Julia, vectorized functions are not required

for performance, and indeed it is often beneficial to write your own loops (see Performance Tips), but they can still be

convenient. Therefore, any Julia function can be applied elementwise to any array (or other collection) with the syntax

. For example can be applied to all elements in the vector , like so:

Of course, you can omit the dot if youwrite a specialized ”vector”method of , e.g. via , and this is just as efficient as . But

that approach requires you to decide in advance which functions youwant to vectorize.

More generally, is actually equivalent to , which allows you to operate onmultiple arrays (even of different shapes), or

a mix of arrays and scalars (see Broadcasting). For example, if you have , then will return a new array consisting of for

each in , and will return a new vector consisting of for each index (throwing an exception if the vectors have different

length).
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Moreover, nested calls are fused into a single loop. For example, is equivalent to , similar to : there is only a single loop

over , anda single array is allocated for the result. [In contrast, in a typical ”vectorized” languagewouldfirst allocateone

temporary array for , and then compute in a separate loop, allocating a second array.] This loop fusion is not a compiler

optimization that may or may not occur, it is a syntactic guaranteewhenever nested calls are encountered. Technically,

the fusion stops as soon as a ”non-dot” function call is encountered; for example, in the and loops cannot be merged

because of the intervening function.

Finally, the maximum efficiency is typically achieved when the output array of a vectorized operation is pre-allocated,

so that repeated calls do not allocate new arrays over and over again for the results (see Pre-allocating outputs). A

convenient syntax for this is , which is equivalent to except that, as above, the loop is fusedwith any nested ”dot” calls.

For example, is equivalent to , overwriting with in-place. If the left-hand side is an array-indexing expression, e.g. , then

it translates to on a , e.g. , so that the left-hand side is updated in-place.

Since adding dots to many operations and function calls in an expression can be tedious and lead to code that is diffi-

cult to read, the macro is provided to convert every function call, operation, and assignment in an expression into the

”dotted” version.

Binary (or unary) operators like are handledwith the samemechanism: they are equivalent to calls and are fusedwith

other nested ”dot” calls. etcetera is equivalent to and results in a fused in-place assignment; see also dot operators.

11.13 Further Reading

We should mention here that this is far from a complete picture of defining functions. Julia has a sophisticated type

systemand allowsmultiple dispatch on argument types. Noneof the examples givenhere provide any type annotations

on their arguments, meaning that they are applicable to all types of arguments. The type system is described in Types

and defining a function in terms of methods chosen by multiple dispatch on run-time argument types is described in

Methods.
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Control Flow

Julia provides a variety of control flow constructs:

• Compound Expressions: and .

• Conditional Evaluation: -- and (ternary operator).

• Short-Circuit Evaluation: , and chained comparisons.

• Repeated Evaluation: Loops: and .

• Exception Handling: -, and .

• Tasks (aka Coroutines): .

The first five control flow mechanisms are standard to high-level programming languages. s are not so standard: they

provide non-local control flow, making it possible to switch between temporarily-suspended computations. This is a

powerful construct: both exception handling and cooperative multitasking are implemented in Julia using tasks. Ev-

eryday programming requires no direct usage of tasks, but certain problems can be solved much more easily by using

tasks.

12.1 Compound Expressions

Sometimes it is convenient to have a single expression which evaluates several subexpressions in order, returning the

value of the last subexpression as its value. There are two Julia constructs that accomplish this: blocks and chains. The

value of both compound expression constructs is that of the last subexpression. Here’s an example of a block:

Since these are fairly small, simple expressions, they could easily be placed onto a single line, which is where the chain

syntax comes in handy:
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This syntax is particularly useful with the terse single-line function definition form introduced in Functions. Although it

is typical, there is no requirement that blocks bemultiline or that chains be single-line:

12.2 Conditional Evaluation

Conditional evaluation allows portions of code to be evaluated or not evaluated depending on the value of a boolean

expression. Here is the anatomy of the -- conditional syntax:

If the condition expression is , then the corresponding block is evaluated; otherwise the condition expression is evalu-

ated, and if it is , the corresponding block is evaluated; if neither expression is true, the block is evaluated. Here it is in

action:

The and blocks are optional, and as many blocks as desired can be used. The condition expressions in the -- construct

are evaluated until the first one evaluates to , after which the associated block is evaluated, and no further condition

expressions or blocks are evaluated.

blocks are ”leaky”, i.e. they do not introduce a local scope. Thismeans that newvariables defined inside the clauses can

be used after the block, even if they weren’t defined before. So, we could have defined the function above as
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The variable is declared inside the block, but used outside. However, when depending on this behavior, make sure all

possible codepathsdefineavalue for thevariable. The following change to theabove function results in a runtimeerror

blocks also return a value,whichmay seemunintuitive to users coming frommanyother languages. This value is simply

the return value of the last executed statement in the branch that was chosen, so

Note that very short conditional statements (one-liners) are frequently expressed using Short-Circuit Evaluation in Ju-

lia, as outlined in the next section.

Unlike C,MATLAB, Perl, Python, and Ruby – but like Java, and a few other stricter, typed languages – it is an error if the

value of a conditional expression is anything but or :
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This error indicates that the conditional was of the wrong type: rather than the required .

The so-called ”ternary operator”, , is closely related to the -- syntax, but is used where a conditional choice between

single expression values is required, as opposed to conditional execution of longer blocks of code. It gets its name from

being the only operator in most languages taking three operands:

The expression , before the , is a condition expression, and the ternary operation evaluates the expression , before the ,

if the condition is or the expression , after the , if it is . Note that the spaces around and aremandatory: an expression

like is not a valid ternary expression (but a newline is acceptable after both the and the ).

The easiestway to understand this behavior is to see an example. In the previous example, the call is shared by all three

branches: the only real choice is which literal string to print. This could be written more concisely using the ternary

operator. For the sake of clarity, let’s try a two-way version first:

If the expression is true, the entire ternary operator expression evaluates to the string and otherwise it evaluates to

the string . The original three-way example requires chainingmultiple uses of the ternary operator together:

To facilitate chaining, the operator associates from right to left.

It is significant that like --, the expressions before and after the are only evaluated if the condition expression evaluates

to or , respectively:
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12.3 Short-Circuit Evaluation

Short-circuit evaluation is quite similar to conditional evaluation. The behavior is found in most imperative program-

ming languages having the and boolean operators: in a series of boolean expressions connected by these operators,

only the minimum number of expressions are evaluated as are necessary to determine the final boolean value of the

entire chain. Explicitly, this means that:

• In the expression , the subexpression is only evaluated if evaluates to .

• In the expression , the subexpression is only evaluated if evaluates to .

The reasoning is that must be if is , regardless of the value of , and likewise, the value of must be true if is , regardless

of the value of . Both and associate to the right, but has higher precedence than does. It’s easy to experimentwith this

behavior:
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You can easily experiment in the same way with the associativity and precedence of various combinations of and op-

erators.

This behavior is frequently used in Julia to form an alternative to very short statements. Instead of , one can write

(which could be read as: <cond> and then <statement>). Similarly, instead of , one can write (which could be read as:

<cond> or else <statement>).

For example, a recursive factorial routine could be defined like this:

Booleanoperationswithout short-circuitevaluationcanbedonewith thebitwisebooleanoperators introduced inMath-

ematical Operations and Elementary Functions: and . These are normal functions, which happen to support infix oper-

ator syntax, but always evaluate their arguments:
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Just like condition expressions used in , or the ternary operator, the operands of or must be boolean values ( or ). Using

a non-boolean value anywhere except for the last entry in a conditional chain is an error:

On theotherhand, any typeof expression canbeusedat theendof a conditional chain. Itwill beevaluatedand returned

depending on the preceding conditionals:

12.4 Repeated Evaluation: Loops

There are two constructs for repeated evaluation of expressions: the loop and the loop. Here is an example of a loop:

The loop evaluates the condition expression ( in this case), and as long it remains , keeps also evaluating the body of the

loop. If the condition expression is when the loop is first reached, the body is never evaluated.

The loop makes common repeated evaluation idioms easier to write. Since counting up and down like the above loop

does is so common, it can be expressedmore concisely with a loop:

Here the is a object, representing the sequence of numbers 1, 2, 3, 4, 5. The loop iterates through these values, assign-

ing each one in turn to the variable . One rather important distinction between the previous loop form and the loop

form is the scope during which the variable is visible. If the variable has not been introduced in an other scope, in the

loop form, it is visible only inside of the loop, and not afterwards. You’ll either need a new interactive session instance

or a different variable name to test this:
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See Scope of Variables for a detailed explanation of variable scope and how it works in Julia.

In general, the loop construct can iterate over any container. In these cases, the alternative (but fully equivalent) key-

word or is typically used instead of , since it makes the code readmore clearly:

Various types of iterable containers will be introduced and discussed in later sections of the manual (see, e.g., Multi-

dimensional Arrays).

It is sometimes convenient to terminate the repetition of a before the test condition is falsified or stop iterating in a

loop before the end of the iterable object is reached. This can be accomplishedwith the keyword:
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Without the keyword, the above loopwould never terminate on its own, and the loopwould iterate up to 1000. These

loops are both exited early by using .

Inother circumstances, it is handy tobeable to stopan iterationandmoveon to thenextone immediately. The keyword

accomplishes this:

This is a somewhat contrivedexample sincewecouldproduce the samebehaviormore clearlybynegating the condition

and placing the call inside the block. In realistic usage there ismore code to be evaluated after the , and often there are

multiple points fromwhich one calls .

Multiple nested loops can be combined into a single outer loop, forming the cartesian product of its iterables:

A statement inside such a loop exits the entire nest of loops, not just the inner one.

12.5 Exception Handling

Whenanunexpected condition occurs, a functionmaybeunable to return a reasonable value to its caller. In such cases,

it may be best for the exceptional condition to either terminate the program, printing a diagnostic error message, or if

the programmer has provided code to handle such exceptional circumstances, allow that code to take the appropriate

action.

Built-in s

s are thrown when an unexpected condition has occurred. The built-in s listed below all interrupt the normal flow of

control.

For example, the function throws a if applied to a negative real value:
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Youmay define your own exceptions in the following way:

The function

Exceptions can be created explicitlywith . For example, a function defined only for nonnegative numbers could bewrit-

ten to a if the argument is negative:
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Note that without parentheses is not an exception, but a type of exception. It needs to be called to obtain an object:

Additionally, some exception types take one ormore arguments that are used for error reporting:

This mechanism can be implemented easily by custom exception types following the way is written:

Note

Whenwriting an error message, it is preferred tomake the first word lowercase. For example,

is preferred over

.

However, sometimes it makes sense to keep the uppercase first letter, for instance if an argument to a

function is a capital letter: .

Errors

The function is used to produce an that interrupts the normal flow of control.

Suppose we want to stop execution immediately if the square root of a negative number is taken. To do this, we can

define a fussy version of the function that raises an error if its argument is negative:
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If is called with a negative value from another function, instead of trying to continue execution of the calling function,

it returns immediately, displaying the error message in the interactive session:

Warnings and informational messages

Julia also provides other functions that write messages to the standard error I/O, but do not throw any s and hence do

not interrupt execution:

The statement

The statement allows for s to be tested for. For example, a customized square root function can bewritten to automat-

ically call either the real or complex square root method on demand using s :
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It is important to note that in real code computing this function, one would compare to zero instead of catching an

exception. The exception is much slower than simply comparing and branching.

statements also allow the to be saved in a variable. In this contrived example, the following example calculates the

square root of the second element of if is indexable, otherwise assumes is a real number and returns its square root:

Note that the symbol following will always be interpreted as a name for the exception, so care is neededwhenwriting

expressions on a single line. The following codewill notwork to return the value of in case of an error:

Instead, use a semicolon or insert a line break after :
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The clause is not strictly necessary; when omitted, the default return value is .

Thepowerof the construct lies in the ability tounwindadeeply nested computation immediately to amuchhigher level

in the stack of calling functions. There are situations where no error has occurred, but the ability to unwind the stack

and pass a value to a higher level is desirable. Julia provides the , and functions for more advanced error handling.

Clauses

In code that performs state changes or uses resources like files, there is typically clean-up work (such as closing files)

that needs to be done when the code is finished. Exceptions potentially complicate this task, since they can cause a

block of code to exit before reaching its normal end. The keyword provides away to run some codewhen a given block

of code exits, regardless of how it exits.

For example, here is howwe can guarantee that an opened file is closed:

When control leaves the block (for example due to a , or just finishing normally), will be executed. If the block exits due

to an exception, the exception will continue propagating. A block may be combined with and as well. In this case the

block will run after has handled the error.

12.6 Tasks (aka Coroutines)

Tasks are a control flow feature that allows computations to be suspended and resumed in a flexible manner. This fea-

ture is sometimes called by other names, such as symmetric coroutines, lightweight threads, cooperativemultitasking,

or one-shot continuations.

When a piece of computing work (in practice, executing a particular function) is designated as a , it becomes possible

to interrupt it by switching to another . The original can later be resumed, at which point it will pick up right where it

left off. At first, this may seem similar to a function call. However there are two key differences. First, switching tasks

does not use any space, so any number of task switches can occur without consuming the call stack. Second, switching

among tasks can occur in any order, unlike function calls, where the called functionmust finish executing before control

returns to the calling function.

This kind of control flow canmake it much easier to solve certain problems. In some problems, the various pieces of re-

quired work are not naturally related by function calls; there is no obvious ”caller” or ”callee” among the jobs that need

to be done. An example is the producer-consumer problem, where one complex procedure is generating values and

another complex procedure is consuming them. The consumer cannot simply call a producer function to get a value,

because the producer may have more values to generate and so might not yet be ready to return. With tasks, the pro-

ducer and consumer can both run as long as they need to, passing values back and forth as necessary.

Julia provides a mechanism for solving this problem. A is a waitable first-in first-out queue which can have multiple

tasks reading from andwriting to it.

Let’s define a producer task, which produces values via the call. To consume values, we need to schedule the producer

to run in a new task. A special constructor which accepts a 1-arg function as an argument can be used to run a task

bound to a channel. We can then values repeatedly from the channel object:
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Oneway to think of this behavior is that was able to returnmultiple times. Between calls to , the producer’s execution

is suspended and the consumer has control.

The returned canbeusedas an iterableobject in a loop, inwhich case the loopvariable takesonall theproducedvalues.

The loop is terminated when the channel is closed.

Note that we did not have to explicitly close the channel in the producer. This is because the act of binding a to a

associates the open lifetime of a channel with that of the bound task. The channel object is closed automatically when

the task terminates. Multiple channels can be bound to a task, and vice-versa.

While the constructor expects a 0-argument function, the methodwhich creates a channel bound task expects a func-

tion that accepts a single argument of type . A common pattern is for the producer to be parameterized, in which case

a partial function application is needed to create a 0 or 1 argument anonymous function.

For objects this can be done either directly or by use of a conveniencemacro:
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To orchestrate more advanced work distribution patterns, and can be used in conjunction with and constructors to

explicitly link a set of channels with a set of producer/consumer tasks.

Note that currently Julia tasksarenot scheduled to runonseparateCPUcores. Truekernel threadsarediscussedunder

the topic of Parallel Computing.

Core task operations

Let us explore the low level construct to underestand how task switching works. suspends the current task, switches

to the specified , and causes that task’s last call to return the specified . Notice that is the only operation required to

use task-style control flow; instead of calling and returning we are always just switching to a different task. This is why

this feature is also called ”symmetric coroutines”; each task is switched to and from using the samemechanism.

is powerful, but most uses of tasks do not invoke it directly. Consider why this might be. If you switch away from the

current task, you will probably want to switch back to it at some point, but knowing when to switch back, and knowing

which task has the responsibility of switching back, can require considerable coordination. For example, and are block-

ing operations, which, when used in the context of channels maintain state to remember who the consumers are. Not

needing tomanually keep track of the consuming task is what makes easier to use than the low-level .

In addition to , a few other basic functions are needed to use tasks effectively.

• gets a reference to the currently-running task.

• queries whether a task has exited.

• queries whether a task has run yet.

• manipulates a key-value store specific to the current task.

Tasks and events

Most task switches occur as a result of waiting for events such as I/O requests, and are performed by a scheduler in-

cluded in the standard library. The scheduler maintains a queue of runnable tasks, and executes an event loop that

restarts tasks based on external events such asmessage arrival.

The basic function forwaiting for an event is . Several objects implement ; for example, given a object, will wait for it to

exit. is often implicit; for example, a can happen inside a call to to wait for data to be available.

In all of these cases, ultimately operates on a object, which is in charge of queueing and restarting tasks. When a task

calls on a , the task is marked as non-runnable, added to the condition’s queue, and switches to the scheduler. The

scheduler will then pick another task to run, or block waiting for external events. If all goes well, eventually an event

handler will call on the condition, which causes tasks waiting for that condition to become runnable again.

A task created explicitly by calling is initially not known to the scheduler. This allows you to manage tasks manually

using if you wish. However, when such a task waits for an event, it still gets restarted automatically when the event

happens, as you would expect. It is also possible to make the scheduler run a task whenever it can, without necessarily

waiting for any events. This is done by calling , or using the or macros (see Parallel Computing for more details).

Task states

Tasks have a field that describes their execution status. A is one of the following symbols:
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Symbol Meaning

Currently running, or available to be switched to

Blockedwaiting for a specific event

In the scheduler’s run queue about to be restarted

Successfully finished executing

Finishedwith an uncaught exception
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Scope of Variables

The scope of a variable is the region of code within which a variable is visible. Variable scoping helps avoid variable

naming conflicts. The concept is intuitive: two functions can both have arguments called without the two ’s referring

to the same thing. Similarly there aremany other cases where different blocks of code can use the same namewithout

referring to the same thing. The rules forwhen the samevariablenamedoesordoesn’t refer to the same thingare called

scope rules; this section spells them out in detail.

Certain constructs in the language introduce scope blocks, which are regions of code that are eligible to be the scope

of some set of variables. The scope of a variable cannot be an arbitrary set of source lines; instead, it will always line

up with one of these blocks. There are two main types of scopes in Julia, global scope and local scope, the latter can be

nested. The constructs introducing scope blocks are:

Scope name block/construct introducing this kind of scope

Global Scope , , at interactive prompt (REPL)

Local Scope Soft Local Scope: , , comprehensions, try-catch-finally,

Local Scope Hard Local Scope: functions (either syntax, anonymous & do-blocks), ,

Notablymissing from this table are begin blocks and if blocks, which do not introduce new scope blocks. All three types

of scopes follow somewhat different rules which will be explained below as well as some extra rules for certain blocks.

Julia uses lexical scoping, meaning that a function’s scope does not inherit from its caller’s scope, but from the scope in

which the function was defined. For example, in the following code the inside refers to the in the global scope of its

module :

and not a in the scopewhere is used:

Thus lexical scopemeans that the scope of variables can be inferred from the source code alone.
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13.1 Global Scope

Eachmodule introducesanewglobal scope, separate fromtheglobal scopeofallothermodules; there isnoall-encompassing

global scope. Modulescan introducevariablesofothermodules into their scope through theusingor import statements

or throughqualifiedaccessusing thedot-notation, i.e. eachmodule is a so-callednamespace. Note thatvariablebindings

can only be changedwithin their global scope and not from an outsidemodule.

Note that the interactive prompt (aka REPL) is in the global scope of themodule .

13.2 Local Scope

A new local scope is introduced by most code-blocks, see above table for a complete list. A local scope usually inherits

all the variables from its parent scope, both for reading and writing. There are two subtypes of local scopes, hard and

soft, with slightly different rules concerning what variables are inherited. Unlike global scopes, local scopes are not

namespaces, thus variables in an inner scope cannot be retrieved from the parent scope through some sort of qualified

access.

The following rules andexamplespertain tobothhardand soft local scopes. Anewly introducedvariable in a local scope

does not back-propagate to its parent scope. For example, here the is not introduced into the top-level scope:

(Note, in this and all following examples it is assumed that their top-level is a global scope with a clean workspace, for

instance a newly started REPL.)
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Inside a local scope a variable can be forced to be a local variable using the keyword:

Inside a local scope a new global variable can be defined using the keyword :

The location of both the and keywords within the scope block is irrelevant. The following is equivalent to the last

example (although stylistically worse):

The and keywords can also be applied to destructuring assignments, e.g. . In this case the keyword affects all listed

variables.

Soft Local Scope

Ina soft local scope, all variablesare inherited from itsparent scopeunlessavariable is specificallymarked

with the keyword .

Soft local scopes are introduced by for-loops, while-loops, comprehensions, try-catch-finally-blocks, and let-blocks.

There are some extra rules for Let Blocks and for For Loops and Comprehensions.

In the following example the and refer always to the same variables as the soft local scope inherits both read andwrite

variables:
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Within soft scopes, the global keyword is never necessary, although allowed. The only case when it would change the

semantics is (currently) a syntax error:

Hard Local Scope

Hard local scopes are introduced by function definitions (in all their forms), struct type definition blocks, and macro-

definitions.

In a hard local scope, all variables are inherited from its parent scope unless:

• an assignment would result in amodified global variable, or

• a variable is specifically markedwith the keyword .

Thus global variables are only inherited for reading but not for writing:

An explicit is needed to assign to a global variable:
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Note thatnested functions canbehavedifferently to functionsdefined in theglobal scopeas theycanmodify their parent

scope’s local variables:

Thedistinctionbetween inheritingglobal and local variables forassignmentcan lead tosomeslightdifferencesbetween

functionsdefined in local vs. global scopes. Consider themodificationof the last examplebymoving to theglobal scope:

Note that above subtlety does not pertain to type and macro definitions as they can only appear at the global scope.

There are special scoping rules concerning the evaluation of default and keyword function arguments which are de-

scribed in the Function section.

An assignment introducing a variable used inside a function, type or macro definition need not come before its inner

usage:
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This behaviormay seem slightly odd for a normal variable, but allows for named functions –which are just normal vari-

ables holding function objects – to be used before they are defined. This allows functions to be defined in whatever

order is intuitive and convenient, rather than forcing bottom up ordering or requiring forward declarations, as long as

they are defined by the time they are actually called. As an example, here is an inefficient, mutually recursive way to

test if positive integers are even or odd:

Julia provides built-in, efficient functions to test for oddness and evenness called and so the above definitions should

only be taken as examples.

Hard vs. Soft Local Scope

Blocks which introduce a soft local scope, such as loops, are generally used to manipulate the variables in their parent

scope. Thus their default is to fully access all variables in their parent scope.

Conversely, the code inside blocks which introduce a hard local scope (function, type, and macro definitions) can be

executed at any place in a program. Remotely changing the state of global variables in other modules should be done

with care and thus this is an opt-in feature requiring the keyword.

The reason toallowmodifying localvariablesof parent scopes innested functions is to allowconstructing closureswhich

have a private state, for instance the variable in the following example:

See also the closures in the examples in the next two sections.

https://en.wikipedia.org/wiki/Closure_%28computer_programming%29
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Let Blocks

Unlike assignments to local variables, statements allocate new variable bindings each time they run. An assignment

modifies an existing value location, and creates new locations. This difference is usually not important, and is only

detectable in the case of variables that outlive their scope via closures. The syntax accepts a comma-separated series

of assignments and variable names:

The assignments are evaluated in order, with each right-hand side evaluated in the scope before the new variable on

the left-hand side has been introduced. Therefore it makes sense to write something like since the two variables are

distinct and have separate storage. Here is an example where the behavior of is needed:

Herewecreateandstore twoclosures that returnvariable . However, it is always the samevariable , so the twoclosures

behave identically. We can use to create a new binding for :

Since the construct does not introduce a new scope, it can be useful to use a zero-argument to just introduce a new

scope block without creating any new bindings:
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Since introduces a new scope block, the inner local is a different variable than the outer local .

For Loops and Comprehensions

loops andComprehensions have the following behavior: any new variables introduced in their body scopes are freshly

allocated for each loop iteration. This is in contrast to loopswhich reuse the variables for all iterations. Therefore these

constructs are similar to loops with blocks inside:

loops will reuse existing variables for its iteration variable:

However, comprehensions do not do this, and always freshly allocate their iteration variables:

13.3 Constants

A common use of variables is giving names to specific, unchanging values. Such variables are only assigned once. This

intent can be conveyed to the compiler using the keyword:



13.3. CONSTANTS 105

The declaration is allowed on both global and local variables, but is especially useful for globals. It is difficult for the

compiler to optimize code involving global variables, since their values (or even their types)might change at almost any

time. If a global variable will not change, adding a declaration solves this performance problem.

Local constants are quite different. The compiler is able to determine automatically when a local variable is constant,

so local constant declarations are not necessary for performance purposes.

Special top-level assignments, such as those performed by the and keywords, are constant by default.

Note that only affects the variable binding; the variable may be bound to a mutable object (such as an array), and that

object may still bemodified.
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Types

Type systems have traditionally fallen into two quite different camps: static type systems, where every program ex-

pressionmust have a type computable before the execution of the program, and dynamic type systems, where nothing

is known about types until run time, when the actual values manipulated by the program are available. Object orienta-

tion allows some flexibility in statically typed languages by letting code be written without the precise types of values

being known at compile time. The ability to write code that can operate on different types is called polymorphism. All

code in classic dynamically typed languages is polymorphic: only by explicitly checking types, or when objects fail to

support operations at run-time, are the types of any values ever restricted.

Julia’s type system is dynamic, but gains some of the advantages of static type systems bymaking it possible to indicate

that certain values are of specific types. This can be of great assistance in generating efficient code, but even more

significantly, it allows method dispatch on the types of function arguments to be deeply integrated with the language.

Method dispatch is explored in detail inMethods, but is rooted in the type system presented here.

Thedefault behavior in Juliawhen typesareomitted is toallowvalues tobeof any type. Thus, onecanwritemanyuseful

Julia programs without ever explicitly using types. When additional expressiveness is needed, however, it is easy to

gradually introduce explicit type annotations into previously ”untyped” code. Doing so will typically increase both the

performance and robustness of these systems, and perhaps somewhat counterintuitively, often significantly simplify

them.

Describing Julia in the lingo of type systems, it is: dynamic, nominative and parametric. Generic types can be param-

eterized, and the hierarchical relationships between types are explicitly declared, rather than implied by compatible

structure. One particularly distinctive feature of Julia’s type system is that concrete typesmay not subtype each other:

all concrete types are final andmay only have abstract types as their supertypes. While this might at first seem unduly

restrictive, it hasmany beneficial consequences with surprisingly few drawbacks. It turns out that being able to inherit

behavior is muchmore important than being able to inherit structure, and inheriting both causes significant difficulties

in traditional object-oriented languages. Other high-level aspects of Julia’s type system that should be mentioned up

front are:

• There is no division between object and non-object values: all values in Julia are true objects having a type that

belongs to a single, fully connected type graph, all nodes of which are equally first-class as types.

• There is no meaningful concept of a ”compile-time type”: the only type a value has is its actual type when the

program is running. This is called a ”run-time type” in object-oriented languageswhere the combination of static

compilation with polymorphismmakes this distinction significant.

• Only values, not variables, have types – variables are simply names bound to values.

• Both abstract and concrete types can be parameterized by other types. They can also be parameterized by sym-

bols, by values of any type for which returns true (essentially, things like numbers and bools that are stored like
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https://en.wikipedia.org/wiki/Type_system
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Ctypes or structswith nopointers to other objects), and also by tuples thereof. Typeparametersmaybeomitted

when they do not need to be referenced or restricted.

Julia’s type system is designed to be powerful and expressive, yet clear, intuitive and unobtrusive. Many Julia program-

mers may never feel the need to write code that explicitly uses types. Some kinds of programming, however, become

clearer, simpler, faster andmore robust with declared types.

14.1 TypeDeclarations

The operator can be used to attach type annotations to expressions and variables in programs. There are two primary

reasons to do this:

1. As an assertion to help confirm that your programworks the way you expect,

2. To provide extra type information to the compiler, which can then improve performance in some cases

Whenappended to anexpression computing a value, the operator is read as ”is an instanceof”. It canbeused anywhere

to assert that the value of the expression on the left is an instance of the type on the right. When the type on the right

is concrete, the value on the left must have that type as its implementation – recall that all concrete types are final, so

no implementation is a subtype of any other. When the type is abstract, it suffices for the value to be implemented by a

concrete type that is a subtype of the abstract type. If the type assertion is not true, an exception is thrown, otherwise,

the left-hand value is returned:

This allows a type assertion to be attached to any expression in-place.

When appended to a variable on the left-hand side of an assignment, or as part of a declaration, the operator means

something abit different: it declares the variable to alwayshave the specified type, like a typedeclaration in a statically-

typed language such as C. Every value assigned to the variable will be converted to the declared type using :

This feature isuseful foravoidingperformance”gotchas” thatcouldoccur ifoneof theassignments toavariablechanged

its type unexpectedly.

This ”declaration” behavior only occurs in specific contexts:
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and applies to the whole current scope, even before the declaration. Currently, type declarations cannot be used in

global scope, e.g. in the REPL, since Julia does not yet have constant-type globals.

Declarations can also be attached to function definitions:

Returning from this function behaves just like an assignment to a variable with a declared type: the value is always

converted to .

14.2 Abstract Types

Abstract types cannot be instantiated, and serve only as nodes in the type graph, thereby describing sets of related

concrete types: those concrete types which are their descendants. We begin with abstract types even though they

have no instantiation because they are the backbone of the type system: they form the conceptual hierarchy which

makes Julia’s type systemmore than just a collection of object implementations.

Recall that in Integers and Floating-Point Numbers, we introduced a variety of concrete types of numeric values: , , , , , ,

, , , , , , and . Although they have different representation sizes, , , , and all have in common that they are signed integer

types. Likewise , , , and are all unsigned integer types, while , and are distinct in being floating-point types rather than

integers. It is common for a piece of code to make sense, for example, only if its arguments are some kind of integer,

but not really depend on what particular kind of integer. For example, the greatest common denominator algorithm

works for all kinds of integers, but will not work for floating-point numbers. Abstract types allow the construction of a

hierarchy of types, providing a context intowhich concrete types can fit. This allows you, for example, to easily program

to any type that is an integer, without restricting an algorithm to a specific type of integer.

Abstract types are declared using the keyword. The general syntaxes for declaring an abstract type are:

The keyword introduces a new abstract type, whose name is given by . This name can be optionally followed by and an

already-existing type, indicating that the newly declared abstract type is a subtype of this ”parent” type.

When no supertype is given, the default supertype is – a predefined abstract type that all objects are instances of and

all types are subtypes of. In type theory, is commonly called ”top” because it is at the apex of the type graph. Julia also

has a predefined abstract ”bottom” type, at the nadir of the type graph, which is written as . It is the exact opposite of :

no object is an instance of and all types are supertypes of .

Let’s consider some of the abstract types that make up Julia’s numerical hierarchy:
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The type is a direct child type of , and is its child. In turn, has two children (it has more, but only two are shown here;

we’ll get to the others later): and , separating the world into representations of integers and representations of real

numbers. Representations of real numbers include, of course, floating-point types, but also include other types, such

as rationals. Hence, is a proper subtype of , including only floating-point representations of real numbers. Integers are

further subdivided into and varieties.

The operator in generalmeans ”is a subtype of”, and, used in declarations like this, declares the right-hand type to be an

immediate supertype of the newly declared type. It can also beused in expressions as a subtypeoperatorwhich returns

when its left operand is a subtype of its right operand:

An important use of abstract types is to provide default implementations for concrete types. To give a simple example,

consider:

The first thing to note is that the above argument declarations are equivalent to and . When this function is invoked,

say as , the dispatcher chooses the most specific method named that matches the given arguments. (See Methods for

more information onmultiple dispatch.)

Assuming nomethodmore specific than the above is found, Julia next internally defines and compiles a method called

specifically for two arguments based on the generic function given above, i.e., it implicitly defines and compiles:

and finally, it invokes this specificmethod.

Thus, abstract typesallowprogrammers towrite generic functions that can laterbeusedas thedefaultmethodbymany

combinations of concrete types. Thanks tomultiple dispatch, the programmer has full control overwhether the default

or more specificmethod is used.

An important point to note is that there is no loss in performance if the programmer relies on a function whose argu-

ments are abstract types, because it is recompiled for each tuple of argument concrete types with which it is invoked.

(There may be a performance issue, however, in the case of function arguments that are containers of abstract types;

see Performance Tips.)

14.3 Primitive Types

Aprimitive type is a concrete typewhose data consists of plain old bits. Classic examples of primitive types are integers

and floating-point values. Unlikemost languages, Julia lets you declare your own primitive types, rather than providing

only a fixed set of built-in ones. In fact, the standard primitive types are all defined in the language itself:
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The general syntaxes for declaring a primitive type are:

The number of bits indicates howmuch storage the type requires and the name gives the new type a name. A primitive

type can optionally be declared to be a subtype of some supertype. If a supertype is omitted, then the type defaults to

having as its immediate supertype. The declaration of above therefore means that a boolean value takes eight bits to

store, and has as its immediate supertype. Currently, only sizes that are multiples of 8 bits are supported. Therefore,

boolean values, although they really need just a single bit, cannot be declared to be any smaller than eight bits.

The types , and all have identical representations: they are eight-bit chunks of memory. Since Julia’s type system is

nominative, however, they are not interchangeable despite having identical structure. A fundamental difference be-

tween them is that they have different supertypes: ’s direct supertype is , ’s is , and ’s is . All other differences between

, , and are matters of behavior – the way functions are defined to act when given objects of these types as arguments.

This is why a nominative type system is necessary: if structure determined type, which in turn dictates behavior, then

it would be impossible tomake behave any differently than or .

14.4 Composite Types

Composite types are called records, structs, or objects in various languages. A composite type is a collection of named

fields, an instance of which can be treated as a single value. In many languages, composite types are the only kind of

user-definable type, and they are by far themost commonly used user-defined type in Julia as well.

In mainstream object oriented languages, such as C++, Java, Python and Ruby, composite types also have named func-

tions associated with them, and the combination is called an ”object”. In purer object-oriented languages, such as Ruby

or Smalltalk, all values are objectswhether they are composites or not. In less pure object oriented languages, including

C++ and Java, some values, such as integers and floating-point values, are not objects, while instances of user-defined

composite types are true objectswith associatedmethods. In Julia, all values are objects, but functions are not bundled

with the objects they operate on. This is necessary since Julia chooses which method of a function to use by multiple

dispatch, meaning that the types of all of a function’s arguments are considered when selecting a method, rather than

just the first one (see Methods for more information on methods and dispatch). Thus, it would be inappropriate for

functions to ”belong” to only their first argument. Organizing methods into function objects rather than having named

bags of methods ”inside” each object ends up being a highly beneficial aspect of the language design.

Composite types are introducedwith the keyword followed by a block of field names, optionally annotatedwith types

using the operator:

https://en.wikipedia.org/wiki/Composite_data_type
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Fields with no type annotation default to , and can accordingly hold any type of value.

New objects of type are created by applying the type object like a function to values for its fields:

When a type is applied like a function it is called a constructor. Two constructors are generated automatically (these

are called default constructors). One accepts any arguments and calls to convert them to the types of the fields, and the

other accepts arguments that match the field types exactly. The reason both of these are generated is that this makes

it easier to add new definitions without inadvertently replacing a default constructor.

Since the field is unconstrained in type, any value will do. However, the value for must be convertible to :

Youmay find a list of field names using the function.

You can access the field values of a composite object using the traditional notation:

Compositeobjects declaredwith are immutable; they cannotbemodifiedafter construction. Thismay seemoddatfirst,

but it has several advantages:

• It can bemore efficient. Some structs can bepacked efficiently into arrays, and in some cases the compiler is able

to avoid allocating immutable objects entirely.



14.5. MUTABLE COMPOSITE TYPES 113

• It is not possible to violate the invariants provided by the type’s constructors.

• Code using immutable objects can be easier to reason about.

An immutable object might contain mutable objects, such as arrays, as fields. Those contained objects will remain mu-

table; only the fields of the immutable object itself cannot be changed to point to different objects.

Where required, mutable composite objects can be declared with the keyword , to be discussed in the next section.

Composite types with no fields are singletons; there can be only one instance of such types:

The function confirms that the ”two” constructed instances of are actually one and the same. Singleton types are de-

scribed in further detail below.

There is much more to say about how instances of composite types are created, but that discussion depends on both

Parametric Types and onMethods, and is sufficiently important to be addressed in its own section: Constructors.

14.5 Mutable Composite Types

If a composite type is declared with instead of , then instances of it can bemodified:

In order to support mutation, such objects are generally allocated on the heap, and have stable memory addresses. A

mutable object is like a little container that might hold different values over time, and so can only be reliably identified

with its address. In contrast, an instance of an immutable type is associated with specific field values –- the field values

alone tell you everything about theobject. In decidingwhether tomakea typemutable, askwhether two instanceswith

the same field values would be considered identical, or if they might need to change independently over time. If they

would be considered identical, the type should probably be immutable.

To recap, two essential properties define immutability in Julia:

• Anobjectwithan immutable type is passedaround (both in assignment statements and in function calls) by copy-

ing, whereas amutable type is passed around by reference.

• It is not permitted tomodify the fields of a composite immutable type.
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It is instructive, particularly for readers whose background is C/C++, to consider why these two properties go hand

in hand. If they were separated, i.e., if the fields of objects passed around by copying could be modified, then it would

becomemore difficult to reason about certain instances of generic code. For example, suppose is a function argument

of an abstract type, and suppose that the function changes a field: . Depending on whether is passed by copying or by

reference, this statementmay ormay not alter the actual argument in the calling routine. Julia sidesteps the possibility

of creating functionswithunknowneffects in this scenario by forbiddingmodificationof fields of objects passed around

by copying.

14.6 Declared Types

The three kinds of types discussed in the previous three sections are actually all closely related. They share the same

key properties:

• They are explicitly declared.

• They have names.

• They have explicitly declared supertypes.

• Theymay have parameters.

Because of these shared properties, these types are internally represented as instances of the same concept, , which is

the type of any of these types:

A may be abstract or concrete. If it is concrete, it has a specified size, storage layout, and (optionally) field names. Thus

a primitive type is a with nonzero size, but no field names. A composite type is a that has field names or is empty (zero

size).

Every concrete value in the system is an instance of some .

14.7 Type Unions

A type union is a special abstract type which includes as objects all instances of any of its argument types, constructed

using the special function:

The compilers for many languages have an internal union construct for reasoning about types; Julia simply exposes it

to the programmer.
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14.8 Parametric Types

An important andpowerful featureof Julia’s type system is that it is parametric: types can takeparameters, so that type

declarations actually introduce a whole family of new types – one for each possible combination of parameter values.

There aremany languages that support some version of generic programming, wherein data structures and algorithms

to manipulate them may be specified without specifying the exact types involved. For example, some form of generic

programming exists inML,Haskell, Ada, Eiffel, C++, Java, C#, F#, and Scala, just to name a few. Someof these languages

support true parametric polymorphism (e.g. ML, Haskell, Scala), while others support ad-hoc, template-based styles of

generic programming (e.g. C++, Java). With so many different varieties of generic programming and parametric types

in various languages, we won’t even attempt to compare Julia’s parametric types to other languages, but will instead

focus on explaining Julia’s system in its own right. We will note, however, that because Julia is a dynamically typed

language and doesn’t need tomake all type decisions at compile time,many traditional difficulties encountered in static

parametric type systems can be relatively easily handled.

All declared types (the variety) canbeparameterized,with the samesyntax ineachcase. Wewill discuss them in the fol-

lowing order: first, parametric composite types, then parametric abstract types, and finally parametric primitive types.

Parametric Composite Types

Type parameters are introduced immediately after the type name, surrounded by curly braces:

This declaration defines a new parametric type, , holding two ”coordinates” of type .What, onemay ask, is ?Well, that’s

precisely the point of parametric types: it can be any type at all (or a value of any bits type, actually, although here it’s

clearly used as a type). is a concrete type equivalent to the type defined by replacing in the definition of with . Thus,

this single declaration actually declares an unlimited number of types: , , , etc. Each of these is now a usable concrete

type:

The type is a point whose coordinates are 64-bit floating-point values, while the type is a ”point” whose ”coordinates”

are string objects (see Strings).

itself is also a valid type object, containing all instances , , etc. as subtypes:

Other types, of course, are not subtypes of it:

https://en.wikipedia.org/wiki/Generic_programming
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Concrete types with different values of are never subtypes of each other:

Warning

This last point is very important: even though weDONOT have .

In otherwords, in the parlance of type theory, Julia’s type parameters are invariant, rather than being covariant (or even

contravariant). This is for practical reasons: while any instance of may conceptually be like an instance of as well, the

two types have different representations in memory:

• An instance of can be represented compactly and efficiently as an immediate pair of 64-bit values;

• An instanceof mustbeable toholdanypairof instancesof . Sinceobjects that are instancesof canbeofarbitrary

size and structure, in practice an instance of must be represented as a pair of pointers to individually allocated

objects.

Theefficiencygainedbybeingable to store objectswith immediatevalues ismagnifiedenormously in thecaseofarrays:

an canbe stored as a contiguousmemory block of 64-bit floating-point values, whereas an must be an array of pointers

to individually allocated objects – which may well be boxed 64-bit floating-point values, but also might be arbitrarily

large, complex objects, which are declared to be implementations of the abstract type.

Since is not a subtype of , the followingmethod can’t be applied to arguments of type :

A correct way to define amethod that accepts all arguments of type where is a subtype of is:

(Equivalently, one could define or ; see UnionAll Types.)

More examples will be discussed later inMethods.

How does one construct a object? It is possible to define custom constructors for composite types, which will be dis-

cussed in detail in Constructors, but in the absence of any special constructor declarations, there are two default ways

of creating new composite objects, one in which the type parameters are explicitly given and the other in which they

are implied by the arguments to the object constructor.

Since the type is a concrete type equivalent to declaredwith in place of , it can be applied as a constructor accordingly:

https://en.wikipedia.org/wiki/Covariance_and_contravariance_%28computer_science%29
https://en.wikipedia.org/wiki/Covariance_and_contravariance_%28computer_science%29
https://en.wikipedia.org/wiki/Object_type_%28object-oriented_programming%29#Boxing
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For the default constructor, exactly one argumentmust be supplied for each field:

Only one default constructor is generated for parametric types, since overriding it is not possible. This constructor

accepts any arguments and converts them to the field types.

Inmany cases, it is redundant to provide the type of object onewants to construct, since the types of arguments to the

constructor call already implicitly provide type information. For that reason, you can also apply itself as a constructor,

provided that the implied value of the parameter type is unambiguous:

In the case of , the type of is unambiguously implied if and only if the two arguments to have the same type. When this

isn’t the case, the constructor will fail with a :

Constructormethods to appropriately handle suchmixed cases can be defined, but thatwill not be discussed until later

on in Constructors.

Parametric Abstract Types

Parametric abstract type declarations declare a collection of abstract types, in much the sameway:
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With this declaration, is a distinct abstract type for each type or integer value of . As with parametric composite types,

each such instance is a subtype of :

Parametric abstract types are invariant, much as parametric composite types are:

The notation can be used to express the Julia analogue of a covariant type, while the analogue of a contravariant type,

but technically these represent sets of types (see UnionAll Types).

Much as plain old abstract types serve to create a useful hierarchy of types over concrete types, parametric abstract

types serve the same purposewith respect to parametric composite types. We could, for example, have declared to be

a subtype of as follows:

Given such a declaration, for each choice of , we have as a subtype of :

This relationship is also invariant:
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What purpose do parametric abstract types like serve? Consider if we create a point-like implementation that only

requires a single coordinate because the point is on the diagonal line x = y:

Now both and are implementations of the abstraction, and similarly for every other possible choice of type . This

allows programming to a common interface shared by all objects, implemented for both and . This cannot be fully

demonstrated, however, until we have introducedmethods and dispatch in the next section, Methods.

There are situations where it may not make sense for type parameters to range freely over all possible types. In such

situations, one can constrain the range of like so:

With such a declaration, it is acceptable to use any type that is a subtype of in place of , but not types that are not

subtypes of :

Type parameters for parametric composite types can be restricted in the samemanner:

To give a real-world example of how all this parametric type machinery can be useful, here is the actual definition of

Julia’s immutable type (except thatweomit the constructor here for simplicity), representing an exact ratio of integers:

It onlymakes sense to take ratios of integer values, so the parameter type is restricted to being a subtypeof , and a ratio

of integers represents a value on the real number line, so any is an instance of the abstraction.
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Tuple Types

Tuples are an abstraction of the arguments of a function –without the function itself. The salient aspects of a function’s

arguments are their order and their types. Therefore a tuple type is similar to a parameterized immutable type where

each parameter is the type of one field. For example, a 2-element tuple type resembles the following immutable type:

However, there are three key differences:

• Tuple typesmay have any number of parameters.

• Tuple types are covariant in their parameters: is a subtype of . Therefore is considered an abstract type, and

tuple types are only concrete if their parameters are.

• Tuples do not have field names; fields are only accessed by index.

Tuple values are written with parentheses and commas. When a tuple is constructed, an appropriate tuple type is gen-

erated on demand:

Note the implications of covariance:

Intuitively, this corresponds to the type of a function’s arguments being a subtype of the function’s signature (when the

signaturematches).

Vararg Tuple Types

The last parameter of a tuple type can be the special type , which denotes any number of trailing elements:
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Notice that corresponds to zero or more elements of type . Vararg tuple types are used to represent the arguments

accepted by varargs methods (see Varargs Functions).

The type corresponds toexactly elementsof type . is a convenientalias for , i.e. a tuple typecontainingexactly elements

of type .

Singleton Types

There is a special kind of abstract parametric type that must be mentioned here: singleton types. For each type, , the

”singleton type” is an abstract type whose only instance is the object . Since the definition is a little difficult to parse,

let’s look at some examples:

In otherwords, is true if and only if and are the same object and that object is a type. Without the parameter, is simply

an abstract type which has all type objects as its instances, including, of course, singleton types:

Any object that is not a type is not an instance of :

Until we discuss ParametricMethods and conversions, it is difficult to explain the utility of the singleton type construct,

but in short, it allows one to specialize function behavior on specific type values. This is useful for writing methods
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(especially parametric ones)whose behavior depends on a type that is given as an explicit argument rather than implied

by the type of one of its arguments.

A few popular languages have singleton types, including Haskell, Scala and Ruby. In general usage, the term ”singleton

type” refers to a typewhose only instance is a single value. Thismeaning applies to Julia’s singleton types, butwith that

caveat that only type objects have singleton types.

Parametric Primitive Types

Primitive types can also be declared parametrically. For example, pointers are represented as primitive types which

would be declared in Julia like this:

The slightly odd feature of these declarations as compared to typical parametric composite types, is that the type pa-

rameter is not used in the definition of the type itself – it is just an abstract tag, essentially defining an entire family of

types with identical structure, differentiated only by their type parameter. Thus, and are distinct types, even though

they have identical representations. And of course, all specific pointer types are subtypes of the umbrella type:

14.9 UnionAll Types

We have said that a parametric type like acts as a supertype of all its instances ( etc.). How does this work? itself

cannot be a normal data type, since without knowing the type of the referenced data the type clearly cannot be used

for memory operations. The answer is that (or other parametric types like ) is a different kind of type called a type.

Such a type expresses the iterated union of types for all values of some parameter.

types are usually written using the keyword . For example could be more accurately written as , meaning all values

whose type is for some value of . In this context, the parameter is also often called a ”type variable” since it is like a

variable that ranges over types. Each introduces a single type variable, so these expressions are nested for types with

multiple parameters, for example .

The type application syntax requires to be a type, and first substitutes for the outermost type variable in . The result

is expected to be another type, into which is then substituted. So is equivalent to . This explains why it is possible to

partially instantiate a type, as in : the first parameter value has been fixed, but the second still ranges over all possible

values. Using explicit syntax, any subset of parameters can be fixed. For example, the type of all 1-dimensional arrays

can bewritten as .

Type variables can be restricted with subtype relations. refers to all arrays whose element type is some kind of . The

syntax is a convenient shorthand for . Type variables can have both lower and upper bounds. refers to all arrays of s

that are able to contain s (since must be at least as big as ). The syntax also works to specify only the lower bound of a

type variable, and is equivalent to .

Since expressions nest, type variable bounds can refer to outer type variables. For example refers to 2-tuples whose

first element is some , andwhose second element is an of any kind of arraywhose element type contains the type of the

first tuple element.
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The keyword itself can be nested inside a more complex declaration. For example, consider the two types created by

the following declarations:

Type defines a 1-dimensional array of 1-dimensional arrays; each of the inner arrays consists of objects of the same

type, but this typemay vary from one inner array to the next. On the other hand, type defines a 1-dimensional array of

1-dimensional arrays all of whose inner arraysmust have the same type. Note that is an abstract type, e.g., , whereas is

a concrete type. As a consequence, can be constructed with a zero-argument constructor but cannot.

There is a convenient syntax for naming such types, similar to the short form of function definition syntax:

This is equivalent to . Writing is equivalent to writing , and the umbrella type has as instances all objects where the

second parameter – the number of array dimensions – is 1, regardless of what the element type is. In languages where

parametric types must always be specified in full, this is not especially helpful, but in Julia, this allows one to write just

for the abstract type including all one-dimensional dense arrays of any element type.

14.10 Type Aliases

Sometimes it is convenient to introduce a new name for an already expressible type. This can be done with a simple

assignment statement. For example, is aliased to either or as is appropriate for the size of pointers on the system:

This is accomplished via the following code in :

Of course, this depends onwhat is aliased to – but that is predefined to be the correct type – either or .

(Note that unlike , does not exist as a type alias for a specific sized . Unlike with integer registers, the floating point

register sizes are specified by the IEEE-754 standard. Whereas the size of reflects the size of a native pointer on that

machine.)
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14.11 Operations on Types

Since types inJuliaare themselvesobjects, ordinary functionscanoperateonthem. Somefunctions thatareparticularly

useful forworkingwithor exploring typeshavealreadybeen introduced, suchas the operator,which indicateswhether

its left hand operand is a subtype of its right hand operand.

The function tests if an object is of a given type and returns true or false:

The function, already used throughout themanual in examples, returns the type of its argument. Since, as noted above,

types are objects, they also have types, andwe can ask what their types are:

What if we repeat the process? What is the type of a type of a type? As it happens, types are all composite values and

thus all have a type of :

is its own type.

Another operation that applies to some types is , which reveals a type’s supertype. Only declared types () have unam-

biguous supertypes:

If you apply to other type objects (or non-type objects), a is raised:
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14.12 Custom pretty-printing

Often, onewants to customize how instances of a type are displayed. This is accomplished by overloading the function.

For example, suppose we define a type to represent complex numbers in polar form:

Here, we’ve added a custom constructor function so that it can take arguments of different types and promote them

to a common type (see Constructors andConversion and Promotion). (Of course, wewould have to define lots of other

methods, too, to make it act like a , e.g. , , , , promotion rules and so on.) By default, instances of this type display rather

simply, with information about the type name and the field values, as e.g. .

If we want it to display instead as , we would define the following method to print the object to a given output object

(representing a file, terminal, buffer, etcetera; see Networking and Streams):

More fine-grained control over display of objects is possible. In particular, sometimes onewants both a verbosemulti-

line printing format, used for displaying a single object in theREPL and other interactive environments, and also amore

compact single-line format used for or for displaying the object as part of another object (e.g. in an array). Although by

default the function is called in both cases, you can define a differentmulti-line format for displaying an object by over-

loading a three-argument form of that takes the MIME type as its second argument (seeMultimedia I/O), for example:

(Note that here will call the 2-argument method.) This results in:

where thesingle-line form is still used foranarrayof values. Technically, theREPLcalls todisplay theresultofexecuting

a line, which defaults to , which in turn defaults to , but you should not define new methods unless you are defining a

newmultimedia display handler (seeMultimedia I/O).
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Moreover, youcanalsodefine methods forotherMIMEtypes inorder toenable richerdisplay (HTML, images, etcetera)

of objects in environments that support this (e.g. IJulia). For example,wecandefine formattedHTMLdisplayof objects,

with superscripts and italics, via:

A object will then display automatically using HTML in an environment that supports HTML display, but you can call

manually to get HTML output if youwant:

As a rule of thumb, the single-line method should print a valid Julia expression for creating the shown object. When

this method contains infix operators, such as themultiplication operator () in our single-line method for above, it may

not parse correctly when printed as part of another object. To see this, consider the expression object (see Program

representation) which takes the square of a specific instance of our type:

Because theoperator hashigher precedence than (seeOperatorPrecedence), this output doesnot faithfully represent

the expression which should be equal to . To solve this issue, we must make a custom method for , which is called

internally by the expression object when printing:

The method defined above adds parentheses around the call to when the precedence of the calling operator is higher

than or equal to the precedence of multiplication. This check allows expressions which parse correctly without the

parentheses (such as and ) to omit themwhen printing:
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14.13 ”Value types”

In Julia, you can’t dispatch on a value such as or . However, you can dispatch on parametric types, and Julia allows

you to include ”plain bits” values (Types, Symbols, Integers, floating-point numbers, tuples, etc.) as type parameters. A

common example is the dimensionality parameter in , where is a type (e.g., ) but is just an .

Youcancreateyourowncustomtypes that takevaluesasparameters, anduse themtocontroldispatchof customtypes.

By way of illustration of this idea, let’s introduce a parametric type, , and a constructor , which serves as a customary

way to exploit this technique for cases where you don’t need amore elaborate hierarchy.

is defined as:

There is no more to the implementation of than this. Some functions in Julia’s standard library accept instances as

arguments, and you can also use it to write your own functions. For example:

For consistency across Julia, the call site should always pass a instance rather than using a type, i.e., use rather than .

It’s worth noting that it’s extremely easy to mis-use parametric ”value” types, including ; in unfavorable cases, you can

easily endupmaking theperformanceof your codemuchworse. In particular, youwouldneverwant towrite actual code

as illustrated above. For more information about the proper (and improper) uses of , please read the more extensive

discussion in the performance tips.

14.14 Nullable Types: RepresentingMissing Values

In many settings, you need to interact with a value of type that may or may not exist. To handle these settings, Julia

providesaparametric typecalled ,whichcanbe thoughtofasa specializedcontainer type that cancontaineither zeroor

one values. provides aminimal interface designed to ensure that interactions withmissing values are safe. At present,

the interface consists of several possible interactions:

• Construct a object.

• Check if a object has amissing value.

• Access the value of a object with a guarantee that a will be thrown if the object’s value is missing.
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• Access the value of a object with a guarantee that a default value of type will be returned if the object’s value is

missing.

• Performanoperationon thevalue (if it exists) of a object, gettinga result. The resultwill bemissing if theoriginal

value wasmissing.

• Performing a test on the value (if it exists) of a object, getting a result that is missing if either the itself was

missing, or the test failed.

• Perform general operations on single objects, propagating themissing data.

Constructing objects

To construct an object representing amissing value of type , use the function:

To construct an object representing a non-missing value of type , use the function:

Note the core distinction between these two ways of constructing a object: in one style, you provide a type, , as a

function parameter; in the other style, you provide a single value of type as an argument.

Checking if a object has a value

You can check if a object has any value using :

Safely accessing the value of a object

You can safely access the value of a object using :
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If the value is not present, as it would be for , a errorwill be thrown. The error-throwing nature of the function ensures

that any attempt to access amissing value immediately fails.

In cases for which a reasonable default value exists that could be used when a object’s value turns out to be missing,

you can provide this default value as a second argument to :

Tip

Make sure the type of the default value passed to and that of the object match to avoid type instability,

which could hurt performance. Use manually if needed.

Performing operations on objects

objects represent values that are possiblymissing, and it is possible towrite all code using these objects by first testing

to see if the value is missing with , and then doing an appropriate action. However, there are some common use cases

where the code could bemore concise or clear by using a higher-order function.

The function takes as arguments a function and a value . It produces a :

• If is a missing value, then it produces amissing value;

• If has a value, then it produces a containing as value.

This is useful for performing simple operations on values that might be missing if the desired behaviour is to simply

propagate themissing values forward.

The function takes as arguments a predicate function (that is, a function returning a boolean) and a value . It produces

a value:

• If is a missing value, then it produces amissing value;

• If is true, then it produces the original value ;

• If is false, then it produces amissing value.

In thisway, can be thought of as selecting only allowable values, and converting non-allowable values tomissing values.

While and are useful in specific cases, by far themost useful higher-order function is , which can handle a wide variety

of cases, including making existing operations work and propagate s. An example will motivate the need for . Suppose

we have a function that computes the greater of two real roots of a quadratic equation, using the quadratic formula:
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Wemay verify that the result of is , as we expect, since is the greater of two real roots of the quadratic equation.

Supposenowthatwewant tofindthegreatest real rootofaquadraticequationswhere thecoefficientsmightbemissing

values. Havingmissing values in datasets is a commonoccurrence in real-world data, and so it is important to be able to

deal with them. But we cannot find the roots of an equation if we do not know all the coefficients. The best solution to

thiswill dependon theparticularusecase; perhapsweshould throwanerror. However, for this example,wewill assume

that the best solution is to propagate the missing values forward; that is, if any input is missing, we simply produce a

missing output.

The functionmakes this task easy; we can simply pass the function wewrote to :

If one ormore of the inputs is missing, then the output of will bemissing.

There exists special syntactic sugar for the function using a dot notation:

In particular, the regular arithmetic operators can be conveniently using -prefixed operators:
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Methods

Recall from Functions that a function is an object that maps a tuple of arguments to a return value, or throws an ex-

ception if no appropriate value can be returned. It is common for the same conceptual function or operation to be

implemented quite differently for different types of arguments: adding two integers is very different from adding two

floating-point numbers, both of which are distinct from adding an integer to a floating-point number. Despite their im-

plementation differences, these operations all fall under the general concept of ”addition”. Accordingly, in Julia, these

behaviors all belong to a single object: the function.

To facilitate using many different implementations of the same concept smoothly, functions need not be defined all at

once, but can rather be defined piecewise by providing specific behaviors for certain combinations of argument types

and counts. A definition of one possible behavior for a function is called a method. Thus far, we have presented only

examples of functions defined with a single method, applicable to all types of arguments. However, the signatures of

method definitions can be annotated to indicate the types of arguments in addition to their number, and more than

a single method definition may be provided. When a function is applied to a particular tuple of arguments, the most

specificmethod applicable to those arguments is applied. Thus, the overall behavior of a function is a patchwork of the

behaviors of its various method definitions. If the patchwork is well designed, even though the implementations of the

methodsmay be quite different, the outward behavior of the function will appear seamless and consistent.

The choice of which method to execute when a function is applied is called dispatch. Julia allows the dispatch process

to choose which of a function’s methods to call based on the number of arguments given, and on the types of all of the

function’s arguments. This is different than traditional object-oriented languages, where dispatch occurs based only on

the first argument, which often has a special argument syntax, and is sometimes implied rather than explicitly written

as an argument. 1 Using all of a function’s arguments to choose which method should be invoked, rather than just the

first, is known asmultiple dispatch. Multiple dispatch is particularly useful formathematical code, where it makes little

sense to artificially deem the operations to ”belong” to one argument more than any of the others: does the addition

operation in belong to any more than it does to ? The implementation of a mathematical operator generally depends

on the types of all of its arguments. Even beyondmathematical operations, however, multiple dispatch ends up being a

powerful and convenient paradigm for structuring and organizing programs.

15.1 DefiningMethods

Until now,wehave, in our examples, definedonly functionswith a singlemethodhaving unconstrained argument types.

Such functions behave just like theywould in traditional dynamically typed languages. Nevertheless, wehaveusedmul-

tiple dispatch andmethods almost continuallywithout being aware of it: all of Julia’s standard functions and operators,

1InC++orJava, forexample, inamethodcall like , theobjectobj ”receives” themethodcall and is implicitlypassed to themethodvia the keyword,

rather than as an explicit method argument. When the current object is the receiver of amethod call, it can be omitted altogether, writing just , with

implied as the receiving object.
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like the aforementioned function, have many methods defining their behavior over various possible combinations of

argument type and count.

When defining a function, one can optionally constrain the types of parameters it is applicable to, using the type-

assertion operator, introduced in the section on Composite Types:

This function definition applies only to calls where and are both values of type :

Applying it to any other types of arguments will result in a :

As you can see, the arguments must be precisely of type . Other numeric types, such as integers or 32-bit floating-

point values, are not automatically converted to 64-bit floating-point, nor are strings parsed as numbers. Because is

a concrete type and concrete types cannot be subclassed in Julia, such a definition can only be applied to arguments

that are exactly of type . Itmay often be useful, however, towritemore generalmethodswhere the declared parameter

types are abstract:

This method definition applies to any pair of arguments that are instances of . They need not be of the same type, so

long as they are each numeric values. The problem of handling disparate numeric types is delegated to the arithmetic

operations in the expression .

To define a functionwithmultiplemethods, one simply defines the functionmultiple times, with different numbers and

types of arguments. The first method definition for a function creates the function object, and subsequent method
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definitions add newmethods to the existing function object. Themost specificmethod definitionmatching the number

and typesof theargumentswill beexecutedwhen the function is applied. Thus, the twomethoddefinitionsabove, taken

together, define the behavior for over all pairs of instances of the abstract type – butwith a different behavior specific

to pairs of values. If one of the arguments is a 64-bit float but the other one is not, then the method cannot be called

and themore general methodmust be used:

The definition is onlyused in thefirst case,while the definition is used in theothers. Noautomatic castingor conversion

of function arguments is ever performed: all conversion in Julia is non-magical and completely explicit. Conversion and

Promotion, however, shows how clever application of sufficiently advanced technology can be indistinguishable from

magic. 2

For non-numeric values, and for fewer or more than two arguments, the function remains undefined, and applying it

will still result in a :

You can easily see whichmethods exist for a function by entering the function object itself in an interactive session:

This output tells us that is a function object with two methods. To find out what the signatures of those methods are,

use the function:

which shows that has twomethods, one taking two arguments and one taking arguments of type . It also indicates the

file and line number where the methods were defined: because these methods were defined at the REPL, we get the

apparent line number .
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In the absenceof a typedeclarationwith , the typeof amethodparameter is bydefault,meaning that it is unconstrained

since all values in Julia are instances of the abstract type . Thus, we can define a catch-all method for like so:

This catch-all is less specific than any other possible method definition for a pair of parameter values, so it will only be

called on pairs of arguments to which no other method definition applies.

Although it seems a simple concept, multiple dispatch on the types of values is perhaps the single most powerful and

central feature of the Julia language. Core operations typically have dozens of methods:

Multiple dispatch togetherwith the flexible parametric type systemgive Julia its ability to abstractly express high-level

algorithms decoupled from implementation details, yet generate efficient, specialized code to handle each case at run

time.

15.2 Method Ambiguities

It is possible to define a set of function methods such that there is no unique most specific method applicable to some

combinations of arguments:
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Here the call could be handled by either the or the method, and neither is more specific than the other. In such cases,

Julia raises a rather than arbitrarily picking a method. You can avoid method ambiguities by specifying an appropriate

method for the intersection case:

It is recommended that the disambiguatingmethod be defined first, since otherwise the ambiguity exists, if transiently,

until themore specificmethod is defined.

Inmore complex cases, resolvingmethod ambiguities involves a certain element of design; this topic is explored further

below.

15.3 ParametricMethods

Method definitions can optionally have type parameters qualifying the signature:

Thefirstmethod applieswhenever both arguments are of the same concrete type, regardless ofwhat type that is, while

the secondmethod acts as a catch-all, covering all other cases. Thus, overall, this defines a boolean function that checks

whether its two arguments are of the same type:
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Such definitions correspond tomethods whose type signatures are types (see UnionAll Types).

This kind of definition of function behavior by dispatch is quite common – idiomatic, even – in Julia. Method type pa-

rameters are not restricted to being used as the types of arguments: they can be used anywhere a valuewould be in the

signature of the function or body of the function. Here’s an example where the method type parameter is used as the

type parameter to the parametric type in themethod signature:

As you can see, the type of the appended element must match the element type of the vector it is appended to, or else

a is raised. In the following example, themethod type parameter is used as the return value:
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Just as you can put subtype constraints on type parameters in type declarations (see Parametric Types), you can also

constrain type parameters of methods:

The function behavesmuch like the function defined above, but is only defined for pairs of numbers.

Parametric methods allow the same syntax as expressions used to write types (see UnionAll Types). If there is only a

single parameter, theenclosing curly braces (in ) canbeomitted, but areoftenpreferred for clarity. Multiple parameters

can be separatedwith commas, e.g. , or written using nested , e.g. .

15.4 RedefiningMethods

When redefining a method or adding new methods, it is important to realize that these changes don’t take effect im-

mediately. This is key to Julia’s ability to statically infer and compile code to run fast, without the usual JIT tricks and

overhead. Indeed, any newmethod definitionwon’t be visible to the current runtime environment, including Tasks and

Threads (and any previously defined functions). Let’s start with an example to see what this means:
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In this example, observe that the newdefinition for has been created, but can’t be immediately called. The newglobal is

immediately visible to the function, so you could write (without parentheses). But neither you, nor any of your callers,

nor the functions they call, or etc. can call this newmethod definition!

But there’s an exception: future calls to from the REPLwork as expected, being able to both see and call the new defini-

tion of .

However, future calls to will continue to see the definition of as it was at the previous statement at the REPL, and thus

before that call to .

Youmaywant to try this for yourself to see how it works.

The implementation of this behavior is a ”world age counter”. This monotonically increasing value tracks each method

definition operation. This allows describing ”the set of method definitions visible to a given runtime environment” as

a single number, or ”world age”. It also allows comparing the methods available in two worlds just by comparing their

ordinal value. In the example above, we see that the ”current world” (in which the method exists), is one greater than

the task-local ”runtimeworld” that was fixedwhen the execution of started.

Sometimes it is necessary to get around this (for example, if you are implementing the above REPL). Fortunately, there

is an easy solution: call the function using :

Finally, let’s take a look at some more complex examples where this rule comes into play. Define a function , which

initially has onemethod:

Start some other operations that use :

Nowwe add some newmethods to :
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Compare how these results differ:

15.5 Parametrically-constrained Varargsmethods

Functionparameterscanalsobeused toconstrain thenumberofarguments thatmaybesupplied toa ”varargs” function

(Varargs Functions). The notation is used to indicate such a constraint. For example:

More usefully, it is possible to constrain varargs methods by a parameter. For example:

would be called only when the number of matches the dimensionality of the array.

When only the type of supplied arguments needs to be constrained can be equivalently written as . For instance is a

shorthand for .

15.6 Note onOptional and keyword Arguments

Asmentioned briefly in Functions, optional arguments are implemented as syntax for multiple method definitions. For

example, this definition:
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translates to the following threemethods:

This means that calling is equivalent to calling . In this case the result is , because invokes the first method of above.

However, this need not always be the case. If you define a fourthmethod that is more specialized for integers:

then the result of both and is . In other words, optional arguments are tied to a function, not to any specific method of

that function. It depends on the types of the optional arguments which method is invoked. When optional arguments

are defined in terms of a global variable, the type of the optional argumentmay even change at run-time.

Keyword arguments behave quite differently fromordinary positional arguments. In particular, they do not participate

in method dispatch. Methods are dispatched based only on positional arguments, with keyword arguments processed

after thematchingmethod is identified.

15.7 Function-like objects

Methods are associated with types, so it is possible to make any arbitrary Julia object ”callable” by adding methods to

its type. (Such ”callable” objects are sometimes called ”functors.”)

For example, you can define a type that stores the coefficients of a polynomial, but behaves like a function evaluating

the polynomial:

Notice that the function is specified by type instead of by name. In the function body, will refer to the object that was

called. A can be used as follows:

This mechanism is also the key to how type constructors and closures (inner functions that refer to their surrounding

environment) work in Julia, discussed later in themanual.
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15.8 Empty generic functions

Occasionally it is useful to introduce a generic function without yet adding methods. This can be used to separate in-

terface definitions from implementations. It might also be done for the purpose of documentation or code readability.

The syntax for this is an empty block without a tuple of arguments:

15.9 Method design and the avoidance of ambiguities

Julia’smethod polymorphism is one of itsmost powerful features, yet exploiting this power can pose design challenges.

In particular, in more complexmethod hierarchies it is not uncommon for ambiguities to arise.

Above, it was pointed out that one can resolve ambiguities like

by defining amethod

This isoften the right strategy; however, therearecircumstanceswhere following this adviceblindly canbecounterpro-

ductive. In particular, the moremethods a generic function has, the more possibilities there are for ambiguities. When

your method hierarchies get more complicated than this simple example, it can be worth your while to think carefully

about alternative strategies.

Belowwe discuss particular challenges and some alternative ways to resolve such issues.

Tuple andNTuple arguments

(and ) arguments present special challenges. For example,

are ambiguous because of the possibility that : there are no elements to determine whether the or variant should be

called. To resolve the ambiguity, one approach is define amethod for the empty tuple:

Alternatively, for all methods but one you can insist that there is at least one element in the tuple:
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Orthogonalize your design

Whenyoumight be tempted todispatchon twoormore arguments, considerwhether a ”wrapper” functionmightmake

for a simpler design. For example, instead of writingmultiple variants:

youmight consider defining

where converts theargument to type . This is a very specificexampleof themoregeneral principleof orthogonal design,

in which separate concepts are assigned to separatemethods. Here, will most likely need a fallback definition

A related strategy exploits to bring and to a common type:

One risk with this design is the possibility that if there is no suitable promotion method converting and to the same

type, the second method will recurse on itself infinitely and trigger a stack overflow. The non-exported function can

be used as an alternative; when promotion fails it will still throw an error, but one that fails faster with a more specific

error message.

Dispatch on one argument at a time

If you need to dispatch on multiple arguments, and there are many fallbacks with too many combinations to make it

practical to define all possible variants, then consider introducing a ”name cascade” where (for example) you dispatch

on the first argument and then call an internal method:

Then the internal methods and can dispatch on without concern about ambiguities with each other with respect to .

Be aware that this strategy has at least one major disadvantage: in many cases, it is not possible for users to further

customize the behavior of by defining further specializations of your exported function . Instead, they have to define

specializations for your internal methods and , and this blurs the lines between exported and internal methods.

https://en.wikipedia.org/wiki/Orthogonality_(programming)
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Abstract containers and element types

Where possible, try to avoid defining methods that dispatch on specific element types of abstract containers. For ex-

ample,

generates ambiguities for anyonewho defines amethod

The best approach is to avoid defining either of these methods: instead, rely on a generic method and make sure this

method is implemented with generic calls (like and ) that do the right thing for each container type and element type

separately. This is just a more complex variant of the advice to orthogonalize yourmethods.

When this approach is not possible, it may be worth starting a discussion with other developers about resolving the

ambiguity; just because onemethodwas defined first does not necessarilymean that it can’t bemodified or eliminated.

As a last resort, one developer can define the ”band-aid” method

that resolves the ambiguity by brute force.

Complexmethod ”cascades” with default arguments

If you are defining amethod ”cascade” that supplies defaults, be careful about dropping any arguments that correspond

to potential defaults. For example, suppose you’re writing a digital filtering algorithm and you have amethod that han-

dles the edges of the signal by applying padding:

This will run afoul of a method that supplies default padding:

Together, these twomethods generate an infinite recursion with constantly growing bigger.

The better design would be to define your call hierarchy like this:
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is supplied in the sameargumentpositionas anyother kindof padding, so it keeps thedispatchhierarchywell organized

andwith reduced likelihoodof ambiguities. Moreover, it extends the ”public” interface: a userwhowants to control the

padding explicitly can call the variant directly.

2Arthur C. Clarke, Profiles of the Future (1961): Clarke’s Third Law.
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Constructors

Constructors 1 are functions that create new objects – specifically, instances of Composite Types. In Julia, type objects

also serve as constructor functions: they create new instances of themselves when applied to an argument tuple as a

function. This muchwas alreadymentioned briefly when composite types were introduced. For example:

Formany types, forming newobjects by binding their field values together is all that is ever needed to create instances.

Thereare, however, caseswheremore functionality is requiredwhencreatingcompositeobjects. Sometimes invariants

must be enforced, either by checking arguments or by transforming them. Recursive data structures, especially those

thatmay be self-referential, often cannot be constructed cleanlywithout first being created in an incomplete state and

then altered programmatically to be made whole, as a separate step from object creation. Sometimes, it’s just conve-

nient to be able to construct objects with fewer or different types of parameters than they have fields. Julia’s system

for object construction addresses all of these cases andmore.

16.1 Outer ConstructorMethods

A constructor is just like any other function in Julia in that its overall behavior is defined by the combined behavior of

itsmethods. Accordingly, you can add functionality to a constructor by simply defining newmethods. For example, let’s

say you want to add a constructor method for objects that takes only one argument and uses the given value for both

the and fields. This is simple:

1Nomenclature: while the term ”constructor” generally refers to the entire function which constructs objects of a type, it is common to abuse

terminology slightly and refer to specific constructor methods as ”constructors”. In such situations, it is generally clear from context that the term is

used tomean ”constructormethod” rather than ”constructor function”, especially as it is often used in the sense of singling out a particularmethod of

the constructor from all of the others.

145

https://en.wikipedia.org/wiki/Recursion_%28computer_science%29#Recursive_data_structures_.28structural_recursion.29
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You could also add a zero-argument constructor method that supplies default values for both of the and fields:

Here the zero-argument constructormethod calls the single-argument constructormethod, which in turn calls the au-

tomatically provided two-argument constructor method. For reasons that will become clear very shortly, additional

constructor methods declared as normal methods like this are called outer constructor methods. Outer constructor

methods can only ever create a new instance by calling another constructor method, such as the automatically pro-

vided default ones.

16.2 Inner ConstructorMethods

While outer constructor methods succeed in addressing the problem of providing additional conveniencemethods for

constructing objects, they fail to address the other twouse casesmentioned in the introduction of this chapter: enforc-

ing invariants, and allowing construction of self-referential objects. For these problems, one needs inner constructor

methods. An inner constructor method is much like an outer constructor method, with two differences:

1. It is declared inside the block of a type declaration, rather than outside of it like normal methods.

2. It has access to a special locally existent function called that creates objects of the block’s type.

For example, suppose one wants to declare a type that holds a pair of real numbers, subject to the constraint that the

first number is not greater than the second one. One could declare it like this:

Now objects can only be constructed such that :
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If the type were declared , you could reach in and directly change the field values to violate this invariant, but messing

around with an object’s internals uninvited is considered poor form. You (or someone else) can also provide additional

outer constructormethods at any later point, but once a type is declared, there is noway to addmore inner constructor

methods. Since outer constructor methods can only create objects by calling other constructor methods, ultimately,

some inner constructor must be called to create an object. This guarantees that all objects of the declared type must

come into existence by a call to one of the inner constructor methods provided with the type, thereby giving some de-

gree of enforcement of a type’s invariants.

If any inner constructor method is defined, no default constructor method is provided: it is presumed that you have

supplied yourself with all the inner constructors you need. The default constructor is equivalent to writing your own

inner constructormethod that takes all of the object’s fields as parameters (constrained to be of the correct type, if the

corresponding field has a type), and passes them to , returning the resulting object:

This declaration has the same effect as the earlier definition of the type without an explicit inner constructor method.

The following two types are equivalent – onewith a default constructor, the other with an explicit constructor:

It is considered good form to provide as few inner constructor methods as possible: only those taking all arguments

explicitly and enforcing essential error checking and transformation. Additional convenience constructor methods,

supplying default values or auxiliary transformations, should be provided as outer constructors that call the inner con-

structors to do the heavy lifting. This separation is typically quite natural.

16.3 Incomplete Initialization

Thefinal problemwhichhas still not beenaddressed is constructionof self-referential objects, ormoregenerally, recur-

sive data structures. Since the fundamental difficultymaynot be immediately obvious, let us briefly explain it. Consider

the following recursive type declaration:
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This typemay appear innocuous enough, until one considers how to construct an instance of it. If is an instance of , then

a second instance can be created by the call:

But how does one construct the first instance when no instance exists to provide as a valid value for its field? The only

solution is to allow creating an incompletely initialized instance of with an unassigned field, and using that incomplete

instance as a valid value for the field of another instance, such as, for example, itself.

To allow for the creation of incompletely initialized objects, Julia allows the function to be called with fewer than the

number of fields that the type has, returning an object with the unspecified fields uninitialized. The inner constructor

method can then use the incomplete object, finishing its initialization before returning it. Here, for example, we take

another crack at defining the type, with a zero-argument inner constructor returning instances having fields pointing

to themselves:

We can verify that this constructor works and constructs objects that are, in fact, self-referential:

Although it is generally a good idea to return a fully initialized object froman inner constructor, incompletely initialized

objects can be returned:

While youareallowed tocreateobjectswithuninitializedfields, anyaccess toanuninitialized reference is an immediate

error:
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This avoids the need to continually check for values. However, not all object fields are references. Julia considers some

types to be ”plain data”, meaning all of their data is self-contained and does not reference other objects. The plain data

types consist of primitive types (e.g. ) and immutable structs of other plain data types. The initial contents of a plain

data type is undefined:

Arrays of plain data types exhibit the same behavior.

You can pass incomplete objects to other functions from inner constructors to delegate their completion:

Aswith incompleteobjects returned fromconstructors, if or anyof its callees try toaccess the fieldof the object before

it has been initialized, an error will be thrown immediately.

16.4 Parametric Constructors

Parametric types add a fewwrinkles to the constructor story. Recall from Parametric Types that, by default, instances

of parametric composite types can be constructed eitherwith explicitly given type parameters orwith type parameters

implied by the types of the arguments given to the constructor. Here are some examples:
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As you can see, for constructor calls with explicit type parameters, the arguments are converted to the implied field

types: works, but raises an when converting to . When the type is implied by the arguments to the constructor call, as

in , then the types of the argumentsmust agree – otherwise the cannot be determined – but any pair of real arguments

withmatching typemay be given to the generic constructor.

What’s really goingonhere is that , and are all different constructor functions. In fact, is a distinct constructor function

for each type .Without any explicitly provided inner constructors, the declaration of the composite type automatically

provides an inner constructor, , for each possible type , that behaves just like non-parametric default inner constructors

do. It also provides a single general outer constructor that takes pairs of real arguments, which must be of the same

type. This automatic provision of constructors is equivalent to the following explicit declaration:

Notice that each definition looks like the form of constructor call that it handles. The call will invoke the definition

inside the block. The outer constructor declaration, on the other hand, defines a method for the general constructor

which only applies to pairs of values of the same real type. This declaration makes constructor calls without explicit

type parameters, like and , work. Since themethod declaration restricts the arguments to being of the same type, calls

like , with arguments of different types, result in ”nomethod” errors.

Suppose we wanted to make the constructor call work by ”promoting” the integer value to the floating-point value .

The simplest way to achieve this is to define the following additional outer constructor method:

This method uses the function to explicitly convert to and then delegates construction to the general constructor for

the case where both arguments are . With this method definition what was previously a now successfully creates a

point of type :

However, other similar calls still don’t work:
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For a more general way to make all such calls work sensibly, see Conversion and Promotion. At the risk of spoiling the

suspense, we can reveal here that all it takes is the following outer method definition to make all calls to the general

constructor work as onewould expect:

The function converts all its arguments to a common type – in this case . With this method definition, the constructor

promotes its arguments the sameway that numeric operators like do, andworks for all kinds of real numbers:

Thus, while the implicit type parameter constructors provided by default in Julia are fairly strict, it is possible to make

them behave in a more relaxed but sensible manner quite easily. Moreover, since constructors can leverage all of the

power of the type system, methods, andmultiple dispatch, defining sophisticated behavior is typically quite simple.

16.5 Case Study: Rational

Perhaps the best way to tie all these pieces together is to present a real world example of a parametric composite type

and its constructormethods. To that end, here is the (slightlymodified) beginning of , which implements Julia’s Rational

Numbers:

https://github.com/JuliaLang/julia/blob/master/base/rational.jl
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Thefirst line– –declares that takesone typeparameterof an integer type, and is itself a real type. Thefielddeclarations

and indicate that thedataheld in a object areapair of integersof type , one representing the rational value’s numerator

and the other representing its denominator.

Now things get interesting. has a single inner constructor method which checks that both of and aren’t zero and

ensures that every rational is constructed in ”lowest terms” with a non-negative denominator. This is accomplished by

dividing the given numerator and denominator values by their greatest common divisor, computed using the function.

Since returns the greatest common divisor of its arguments with sign matching the first argument ( here), after this

division the new value of is guaranteed to be non-negative. Because this is the only inner constructor for , we can be

certain that objects are always constructed in this normalized form.

also provides several outer constructor methods for convenience. The first is the ”standard” general constructor that

infers the type parameter from the type of the numerator and denominatorwhen they have the same type. The second

applies when the given numerator and denominator values have different types: it promotes them to a common type

and then delegates construction to the outer constructor for arguments of matching type. The third outer constructor

turns integer values into rationals by supplying a value of as the denominator.

Following the outer constructor definitions, we have a number of methods for the operator, which provides a syntax

for writing rationals. Before these definitions, is a completely undefined operator with only syntax and no meaning.

Afterwards, it behaves just as described in RationalNumbers – its entire behavior is defined in these few lines. The first

andmost basic definition justmakes construct a by applying the constructor to and when theyare integers. Whenone

of the operands of is already a rational number, we construct a new rational for the resulting ratio slightly differently;

this behavior is actually identical to division of a rational with an integer. Finally, applying to complex integral values

creates an instance of – a complex number whose real and imaginary parts are rationals:
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Thus, although the operator usually returns an instance of , if either of its arguments are complex integers, it will re-

turn an instance of instead. The interested reader should consider perusing the rest of : it is short, self-contained, and

implements an entire basic Julia type.

16.6 Constructors and Conversion

Constructors in Julia are implemented like other callable objects: methods are added to their types. The type of a type

is , so all constructormethods are stored in themethod table for the type. Thismeans that youcandeclaremoreflexible

constructors, e.g. constructors for abstract types, by explicitly definingmethods for the appropriate types.

However, in some cases you could consider addingmethods to insteadof defining a constructor, because Julia falls back

to calling if nomatching constructor is found. For example, if no constructor exists is called.

isusedextensively throughoutJuliawheneveronetypeneeds tobeconvertedtoanother (e.g. inassignment, , etcetera),

and should generally only be defined (or successful) if the conversion is lossless. For example, produces , but throws an

. If you want to define a constructor for a lossless conversion from one type to another, you should probably define a

method instead.

On theother hand, if your constructor does not represent a lossless conversion, or doesn’t represent ”conversion” at all,

it is better to leave it as a constructor rather than a method. For example, the constructor creates a zero-dimensional

of the type , but is not really a ”conversion” from to an .

16.7 Outer-only constructors

Aswe have seen, a typical parametric type has inner constructors that are calledwhen type parameters are known; e.g.

they apply to but not to . Optionally, outer constructors that determine type parameters automatically can be added,

for example constructing a from the call . Outer constructors call inner constructors to do the core work of making an

instance. However, in some cases one would rather not provide inner constructors, so that specific type parameters

cannot be requestedmanually.

For example, say we define a type that stores a vector along with an accurate representation of its sum:

The problem is that we want to be a larger type than , so that we can sum many elements with less information loss.

For example, when is , we would like to be . Therefore we want to avoid an interface that allows the user to construct

instances of the type . Oneway todo this is to provide a constructor only for , but inside the definitionblock to suppress

generation of default constructors:

https://github.com/JuliaLang/julia/blob/master/base/rational.jl
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This constructorwill be invokedby the syntax . The syntax allows specifying parameters for the type to be constructed,

i.e. this call will return a . can be used in any constructor definition, but for convenience the parameters to are auto-

matically derived from the type being constructed when possible.
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Conversion and Promotion

Julia has a system for promoting arguments of mathematical operators to a common type, which has been mentioned

in various other sections, including Integers and Floating-Point Numbers, Mathematical Operations and Elementary

Functions, Types, andMethods. In this section, we explain how this promotion systemworks, as well as how to extend

it to new types and apply it to functions besides built-inmathematical operators. Traditionally, programming languages

fall into two campswith respect to promotion of arithmetic arguments:

• Automatic promotion for built-in arithmetic types and operators. In most languages, built-in numeric types,

when used as operands to arithmetic operators with infix syntax, such as , , , and , are automatically promoted

to a common type to produce the expected results. C, Java, Perl, and Python, to name a few, all correctly com-

pute the sum as the floating-point value , even though one of the operands to is an integer. These systems are

convenient and designed carefully enough that they are generally all-but-invisible to the programmer: hardly

anyone consciously thinks of this promotion taking place when writing such an expression, but compilers and

interpreters must perform conversion before addition since integers and floating-point values cannot be added

as-is. Complex rules for such automatic conversions are thus inevitably part of specifications and implementa-

tions for such languages.

• Noautomatic promotion. This camp includes Ada andML– very ”strict” statically typed languages. In these lan-

guages, every conversion must be explicitly specified by the programmer. Thus, the example expression would

beacompilationerror inbothAdaandML. Insteadonemustwrite , explicitly converting the integer toafloating-

point value before performing addition. Explicit conversion everywhere is so inconvenient, however, that even

Ada has some degree of automatic conversion: integer literals are promoted to the expected integer type auto-

matically, and floating-point literals are similarly promoted to appropriate floating-point types.

In a sense, Julia falls into the ”no automatic promotion” category: mathematical operators are just functions with spe-

cial syntax, and theargumentsof functionsareneverautomatically converted. However, onemayobserve that applying

mathematical operations to awide variety ofmixed argument types is just an extreme case of polymorphicmultiple dis-

patch – something which Julia’s dispatch and type systems are particularly well-suited to handle. ”Automatic” promo-

tion ofmathematical operands simply emerges as a special application: Julia comeswith pre-defined catch-all dispatch

rules for mathematical operators, invoked when no specific implementation exists for some combination of operand

types. These catch-all rulesfirst promoteall operands toa common typeusinguser-definablepromotion rules, and then

invoke a specialized implementation of the operator in question for the resulting values, now of the same type. User-

defined types can easily participate in this promotion system by defining methods for conversion to and from other

types, and providing a handful of promotion rules defining what types they should promote to when mixed with other

types.
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17.1 Conversion

Conversion of values to various types is performed by the function. The function generally takes two arguments: the

first is a type object while the second is a value to convert to that type; the returned value is the value converted to an

instance of given type. The simplest way to understand this function is to see it in action:

Conversion isn’t alwayspossible, inwhichcaseanomethoderror is thrown indicating that doesn’tknowhowtoperform

the requested conversion:

Some languages considerparsing strings asnumbersor formattingnumbers as strings tobeconversions (manydynamic

languages will even perform conversion for you automatically), however Julia does not: even though some strings can

be parsed as numbers, most strings are not valid representations of numbers, and only a very limited subset of them

are. Therefore in Julia the dedicated functionmust be used to perform this operation, making it more explicit.

Defining NewConversions

To define a new conversion, simply provide a newmethod for . That’s really all there is to it. For example, themethod to

convert a real number to a boolean is this:
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The typeof thefirst argument of thismethod is a singleton type, , the only instanceofwhich is . Thus, thismethod is only

invokedwhen the first argument is the type value . Notice the syntax used for the first argument: the argument name is

omitted prior to the symbol, and only the type is given. This is the syntax in Julia for a function argumentwhose type is

specified but whose value is never used in the function body. In this example, since the type is a singleton, there would

never be any reason to use its value within the body. When invoked, the method determines whether a numeric value

is true or false as a boolean, by comparing it to one and zero:

The method signatures for conversion methods are often quite a bit more involved than this example, especially for

parametric types. The example above ismeant to be pedagogical, and is not the actual Julia behaviour. This is the actual

implementation in Julia:

Case Study: Rational Conversions

To continue our case study of Julia’s type, here are the conversions declared in , right after the declaration of the type

and its constructors:

https://github.com/JuliaLang/julia/blob/master/base/rational.jl
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The initial four convert methods provide conversions to rational types. The first method converts one type of rational

to another type of rational by converting the numerator and denominator to the appropriate integer type. The sec-

ondmethod does the same conversion for integers by taking the denominator to be 1. The third method implements a

standard algorithm for approximating a floating-point number by a ratio of integers towithin a given tolerance, and the

fourthmethod applies it, usingmachine epsilon at the given value as the threshold. In general, one should have .

The last two convert methods provide conversions from rational types to floating-point and integer types. To convert

to floating point, one simply converts both numerator and denominator to that floating point type and then divides. To

convert to integer, one can use the operator for truncated integer division (rounded towards zero).

17.2 Promotion

Promotion refers to converting values of mixed types to a single common type. Although it is not strictly necessary, it

is generally implied that the common type to which the values are converted can faithfully represent all of the original

values. In this sense, the term ”promotion” is appropriate since the values are converted to a ”greater” type – i.e. one

which can represent all of the input values in a single common type. It is important, however, not to confuse this with

object-oriented (structural) super-typing, or Julia’s notion of abstract super-types: promotion has nothing to do with

the type hierarchy, and everything to do with converting between alternate representations. For instance, although

every value can also be represented as a value, is not a subtype of .

Promotion to a common ”greater” type is performed in Julia by the function,which takes anynumber of arguments, and

returns a tuple of the same number of values, converted to a common type, or throws an exception if promotion is not

possible. Themost common use case for promotion is to convert numeric arguments to a common type:

Floating-point values are promoted to the largest of the floating-point argument types. Integer values are promoted to

the largerofeither thenativemachinewordsizeor the largest integerargument type. Mixturesof integersandfloating-

point values are promoted to a floating-point type big enough to hold all the values. Integers mixed with rationals are

promoted to rationals. Rationals mixed with floats are promoted to floats. Complex values mixed with real values are

promoted to the appropriate kind of complex value.

That is really all there is to using promotions. The rest is just a matter of clever application, the most typical ”clever”

application being the definition of catch-all methods for numeric operations like the arithmetic operators , , and . Here

are some of the catch-all method definitions given in :

https://github.com/JuliaLang/julia/blob/master/base/promotion.jl
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Thesemethod definitions say that in the absence ofmore specific rules for adding, subtracting,multiplying and dividing

pairs of numeric values, promote the values to a common type and then try again. That’s all there is to it: nowhere else

does one ever need to worry about promotion to a common numeric type for arithmetic operations – it just happens

automatically. There aredefinitionsof catch-all promotionmethods for anumberof other arithmetic andmathematical

functions in , but beyond that, there are hardly any calls to required in the Julia standard library. The most common

usages of occur in outer constructors methods, provided for convenience, to allow constructor calls with mixed types

to delegate to an inner typewith fields promoted to an appropriate common type. For example, recall that provides the

following outer constructor method:

This allows calls like the following to work:

For most user-defined types, it is better practice to require programmers to supply the expected types to constructor

functions explicitly, but sometimes, especially for numeric problems, it can be convenient to do promotion automati-

cally.

Defining Promotion Rules

Although one could, in principle, define methods for the function directly, this would require many redundant defini-

tions forall possiblepermutationsofargument types. Instead, thebehaviorof isdefined in termsofanauxiliary function

called , which one can provide methods for. The function takes a pair of type objects and returns another type object,

such that instances of the argument types will be promoted to the returned type. Thus, by defining the rule:

one declares that when 64-bit and 32-bit floating-point values are promoted together, they should be promoted to 64-

bitfloating-point. Thepromotiontypedoesnotneedtobeoneof theargument types, however; the followingpromotion

rules both occur in Julia’s standard library:

In the latter case, the result type is since is the only type large enough to hold integers for arbitrary-precision integer

arithmetic. Also note that one does not need to define both and – the symmetry is implied by the way is used in the

promotion process.

The function is used as a building block to define a second function called , which, given any number of type objects,

returns the common type to which those values, as arguments to should be promoted. Thus, if one wants to know, in

absence of actual values, what type a collection of values of certain types would promote to, one can use :

https://github.com/JuliaLang/julia/blob/master/base/promotion.jl
https://github.com/JuliaLang/julia/blob/master/base/rational.jl
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Internally, is used inside of to determine what type argument values should be converted to for promotion. It can,

however, be useful in its own right. The curious reader can read the code in , which defines the complete promotion

mechanism in about 35 lines.

Case Study: Rational Promotions

Finally, we finish off our ongoing case study of Julia’s rational number type, whichmakes relatively sophisticated use of

the promotionmechanismwith the following promotion rules:

The first rule says that promoting a rational number with any other integer type promotes to a rational type whose

numerator/denominator type is the result of promotionof its numerator/denominator typewith theother integer type.

Thesecondruleapplies thesame logic to twodifferent typesof rationalnumbers, resulting ina rationalof thepromotion

of their respectivenumerator/denominator types. The third andfinal rule dictates that promoting a rationalwith afloat

results in the same type as promoting the numerator/denominator type with the float.

This small handful of promotion rules, togetherwith the conversionmethodsdiscussedabove, are sufficient tomake ra-

tional numbers interoperate completely naturally with all of Julia’s other numeric types – integers, floating-point num-

bers, and complex numbers. By providing appropriate conversion methods and promotion rules in the same manner,

any user-defined numeric type can interoperate just as naturally with Julia’s predefined numerics.

https://github.com/JuliaLang/julia/blob/master/base/promotion.jl
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Interfaces

A lot of the power and extensibility in Julia comes from a collection of informal interfaces. By extending a few specific

methods to work for a custom type, objects of that type not only receive those functionalities, but they are also able to

be used in other methods that are written to generically build upon those behaviors.

18.1 Iteration

Requiredmethods   Brief description

  Returns the initial iteration state

  Returns the current item and the next state

  Tests if there are any items remaining

Important optional methods Default definition Brief description

One of , , , or as appropriate

Either or as appropriate

The type the items returned by

(undefined) The number of items, if known

(undefined) The number of items in each dimension, if known

Value returned by RequiredMethods

and

(none)

(none)

Value returned by RequiredMethods

(none)

Sequential iteration is implemented by the methods , , and . Instead of mutating objects as they are iterated over, Julia

provides these three methods to keep track of the iteration state externally from the object. The method returns the

initial state for the iterable object . That state gets passed along to , which tests if there are any elements remaining,

and ,which returns a tuple containing the current element and anupdated . The object canbe anything, and is generally

considered to be an implementation detail private to the iterable object.

Any object defines these threemethods is iterable and can be used in themany functions that rely upon iteration. It can

also be used directly in a loop since the syntax:
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is translated into:

A simple example is an iterable sequence of square numbers with a defined length:

With only , , and definitions, the type is already pretty powerful. We can iterate over all the elements:

We can usemany of the builtin methods that work with iterables, like , and :
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There are a few more methods we can extend to give Julia more information about this iterable collection. We know

that the elements in a sequence will always be . By extending the method, we can give that information to Julia and

help it make more specialized code in the more complicated methods. We also know the number of elements in our

sequence, so we can extend , too.

Now, whenwe ask Julia to all the elements into an array it can preallocate a of the right size instead of blindly ing each

element into a :

While we can rely upon generic implementations, we can also extend specific methods where we know there is a sim-

pler algorithm. For example, there’s a formula to compute the sum of squares, so we can override the generic iterative

version with amore performant solution:

This is a very common pattern throughout the Julia standard library: a small set of required methods define an infor-

mal interface that enable many fancier behaviors. In some cases, types will want to additionally specialize those extra

behaviors when they know amore efficient algorithm can be used in their specific case.

18.2 Indexing

Methods to implement Brief description

, indexed element access

, indexed assignment

The last index, used in

For the iterable above, we can easily compute the th element of the sequence by squaring it. We can expose this as an

indexing expression . To opt into this behavior, simply needs to define :

Additionally, to support the syntax , wemust define to specify the last valid index:
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Note, though, that the above only defines with one integer index. Indexing with anything other than an will throw a

saying that there was nomatching method. In order to support indexing with ranges or vectors of s, separate methods

must be written:

While this is starting to support more of the indexing operations supported by some of the builtin types, there’s still

quite a number of behaviors missing. This sequence is starting to look more and more like a vector as we’ve added

behaviors to it. Instead of defining all these behaviors ourselves, we can officially define it as a subtype of an .

18.3 Abstract Arrays

Methods to

implement

  Brief description

  Returns a tuple containing the dimensions of

  (if ) Linear scalar indexing

  (if , where ) N-dimensional scalar indexing

  (if ) Scalar indexed assignment

  (if , where ) N-dimensional scalar indexed assignment

Optional methods Default definition Brief description

Returns either or . See the description below.

defined in terms of

scalar

Multidimensional and nonscalar indexing

defined in terms of

scalar

Multidimensional and nonscalar indexed assignment

// defined in terms of

scalar

Iteration

Number of elements

Return amutable array with the same shape and element type

Return amutable array with the same shape and the specified

element type

Return amutable array with the same element type and size dims

Return amutable array with the specified element type and size

Non-traditional

indices

Default definition Brief description

Return the of valid indices

Return amutable array with the specified indices (see below)

Return an array similar to with the specified indices (see below)

If a type is defined as a subtype of , it inherits a very large set of rich behaviors including iteration andmultidimensional

indexing built on top of single-element access. See the arrays manual page and standard library section for more sup-

portedmethods.
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A key part in defining an subtype is . Since indexing is such an important part of an array and often occurs in hot loops,

it’s important tomakeboth indexing and indexed assignment as efficient as possible. Array data structures are typically

defined in one of two ways: either it most efficiently accesses its elements using just one index (linear indexing) or it

intrinsically accesses the elements with indices specified for every dimension. These two modalities are identified by

Julia as and . Converting a linear index to multiple indexing subscripts is typically very expensive, so this provides a

traits-basedmechanism to enable efficient generic code for all array types.

This distinction determines which scalar indexingmethods the typemust define. arrays are simple: just define . When

the array is subsequently indexed with a multidimensional set of indices, the fallback efficiently converts the indices

into one linear index and then calls the above method. arrays, on the other hand, require methods to be defined for

each supported dimensionality with indices. For example, the built-in type only supports two dimensions, so it just

defines . The same holds for .

Returning to the sequence of squares from above, we could instead define it as a subtype of an :

Note that it’s very important to specify the two parameters of the ; the first defines the , and the second defines the

. That supertype and those three methods are all it takes for to be an iterable, indexable, and completely functional

array:

As amore complicated example, let’s define our own toy N-dimensional sparse-like array type built on top of :
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Notice that this is an array, so wemustmanually define and at the dimensionality of the array. Unlike the , we are able

to define , and so we canmutate the array:

Theresultof indexingan can itselfbeanarray (for instancewhen indexingbya ). The fallbackmethodsuse toallocatean

of the appropriate size and element type, which is filled in using the basic indexingmethod described above. However,

when implementing an array wrapper you often want the result to be wrapped as well:

In this example it is accomplished by defining to create the appropriate wrapped array. (Note that while supports 1-

and 2-argument forms, in most case you only need to specialize the 3-argument form.) For this to work it’s important

that is mutable (supports ). Defining , and for alsomakes it possible to the array:
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In addition to all the iterable and indexable methods from above, these types can also interact with each other and use

most of themethods defined in the standard library for :

If you are defining an array type that allows non-traditional indexing (indices that start at something other than 1), you

should specialize . You should also specialize so that the argument (ordinarily a size-tuple) can accept objects, perhaps

range-types of your own design. For more information, see Arrays with custom indices.
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Modules

Modules in Julia are separate variable workspaces, i.e. they introduce a new global scope. They are delimited syntac-

tically, inside . Modules allow you to create top-level definitions (aka global variables) without worrying about name

conflicts when your code is used together with somebody else’s. Within a module, you can control which names from

other modules are visible (via importing), and specify which of your names are intended to be public (via exporting).

The following example demonstrates themajor features of modules. It is not meant to be run, but is shown for illustra-

tive purposes:

Note that the style is not to indent the body of themodule, since thatwould typically lead towhole files being indented.

This module defines a type , and two functions. Function and type are exported, and so will be available for importing

into other modules. Function is private to .

The statement means that a module called will be available for resolving names as needed. When a global variable is

encountered that has no definition in the current module, the system will search for it among variables exported by

and import it if it is found there. This means that all uses of that global within the current module will resolve to the

definition of that variable in .

The statement is a syntactic shortcut for .

169
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The keyword supports all the same syntax as , but only operates on a single name at a time. It does not add modules

to be searched the way does. also differs from in that functions must be imported using to be extended with new

methods.

In above we wanted to add a method to the standard function, so we had to write . Functions whose names are only

visible via cannot be extended.

The keyword explicitly imports all names exported by the specifiedmodule, as if were individually used on all of them.

Onceavariable ismadevisible via or , amodulemaynot create its ownvariablewith the samename. Importedvariables

are read-only; assigning to a global variable always affects a variable owned by the current module, or else raises an

error.

19.1 Summary ofmodule usage

To load amodule, twomain keywords can be used: and . To understand their differences, consider the following exam-

ple:

In this module we export the and functions (with the keyword ), and also have the non-exported function . There are

several different ways to load theModule and its inner functions into the current workspace:

Import Command What is brought into scope Available for method extension

All ed names ( and ), , and , and

and  

and  

, and , and

and and

and and

All ed names ( and ) and

Modules and files

Files and file names are mostly unrelated to modules; modules are associated only with module expressions. One can

havemultiple files per module, andmultiple modules per file:
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Including the samecode indifferentmodulesprovidesmixin-likebehavior. Onecoulduse this to run the samecodewith

different base definitions, for example testing code by running it with ”safe” versions of some operators:

Standardmodules

There are three important standardmodules: Main, Core, and Base.

Main is the top-level module, and Julia starts withMain set as the current module. Variables defined at the prompt go

inMain, and lists variables inMain.

Core contains all identifiers considered ”built in” to the language, i.e. part of the core language and not libraries. Every

module implicitly specifies , since you can’t do anything without those definitions.

Base is the standard library (the contents of base/). All modules implicitly contain , since this is needed in the vast ma-

jority of cases.

Default top-level definitions and baremodules

In addition to , modules also automatically contain a definition of the function, which evaluates expressions within the

context of that module.

If these default definitions are not wanted, modules can be defined using the keyword instead (note: is still imported,

as per above). In terms of , a standard looks like this:

Relative and absolutemodule paths

Given the statement , the system looks for within . If themodule does not exist, the systemattempts to , which typically

results in loading code from an installed package.

However, somemodules contain submodules, whichmeans you sometimes need to access amodule that is not directly

available in . There are two ways to do this. The first is to use an absolute path, for example . The second is to use a

relative path, whichmakes it easier to import submodules of the current module or any of its enclosingmodules:
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Heremodule contains a submodule , and code in wants the contents of to be visible. This is done by starting the path

with aperiod. Addingmore leadingperiodsmovesupadditional levels in themodule hierarchy. For example would look

for in ’s enclosingmodule rather than in itself.

Note that relative-import qualifiers are only valid in and statements.

Module file paths

The global variable contains the directories Julia searches for modules when calling . It can be extended using :

Putting this statement in thefile will extend onevery Julia startup. Alternatively, themodule loadpath canbeextended

by defining the environment variable .

Namespacemiscellanea

If a name is qualified (e.g. ), then it can be accessed even if it is not exported. This is often useful when debugging. It can

also havemethods added to it by using the qualified name as the function name. However, due to syntactic ambiguities

that arise, if you wish to add methods to a function in a different module whose name contains only symbols, such as

an operator, for example, you must use to refer to it. If the operator is more than one character in length you must

surround it in brackets, such as: .

Macro names are written with in import and export statements, e.g. . Macros in other modules can be invoked as or .

The syntax does not work to assign a global in another module; global assignment is alwaysmodule-local.

A variable can be ”reserved” for the current module without assigning to it by declaring it as at the top level. This can

be used to prevent name conflicts for globals initialized after load time.

Module initialization and precompilation

Largemodules can take several seconds to loadbecause executing all of the statements in amodule often involves com-

piling a large amount of code. Julia provides the ability to create precompiled versions of modules to reduce this time.

To create an incremental precompiledmodule file, add at the top of yourmodule file (before the starts). Thiswill cause

it to be automatically compiled the first time it is imported. Alternatively, you can manually call . The resulting cache

files will be stored in . Subsequently, the module is automatically recompiled upon whenever any of its dependencies

change; dependencies are modules it imports, the Julia build, files it includes, or explicit dependencies declared by in

themodule file(s).

Forfiledependencies, a change isdeterminedbyexaminingwhether themodification time (mtime)of eachfile loadedby

oraddedexplicitlyby isunchanged, orequal to themodification time truncated to thenearest second (toaccommodate

systems that can’t copymtimewith sub-second accuracy). It also takes into accountwhether the path to the file chosen

by the search logic in matches the path that had created the precompile file.

It also takes into account the set of dependencies already loaded into the current process and won’t recompile those

modules, even if their files changeor disappear, in order to avoid creating incompatibilities between the running system
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and the precompile cache. If you want to have changes to the source reflected in the running system, you should call

on themodule you changed, and anymodule that depended on it in which youwant to see the change reflected.

Precompiling a module also recursively precompiles any modules that are imported therein. If you know that it is not

safe to precompile yourmodule (for the reasons described below), you should put in themodule file to cause to throw

an error (and thereby prevent themodule from being imported by any other precompiledmodule).

should not be used in a module unless all of its dependencies are also using . Failure to do so can result in a runtime

error when loading themodule.

In order to make your module work with precompilation, however, you may need to change your module to explicitly

separate any initialization steps that must occur at runtime from steps that can occur at compile time. For this purpose,

Julia allows you to define an function in your module that executes any initialization steps that must occur at runtime.

This functionwill not be called during compilation ( or ). Youmay, of course, call it manually if necessary, but the default

is to assume this function deals with computing state for the local machine, which does not need to be – or even should

not be – captured in the compiled image. It will be called after themodule is loaded into a process, including if it is being

loaded into an incremental compile (), but not if it is being loaded into a full-compilation process.

In particular, if you define a in a module, then Julia will call immediately after the module is loaded (e.g., by , , or ) at

runtime for the first time (i.e., is only called once, and only after all statements in the module have been executed).

Because it is called after themodule is fully imported, any submodules or other importedmodules have their functions

called before the of the enclosingmodule.

Two typical uses of are calling runtime initialization functions of external C libraries and initializing global constants

that involve pointers returned by external libraries. For example, suppose that we are calling a C library that requires

us to call a initialization functionat runtime. Suppose thatwealsowant todefineaglobal constant thatholds the return

value of a function defined by – this constant must be initialized at runtime (not at compile time) because the pointer

address will change from run to run. You could accomplish this by defining the following function in yourmodule:

Notice that it isperfectlypossible todefineaglobal insidea function like ; this isoneof theadvantagesofusingadynamic

language. But bymaking it a constant at global scope, we can ensure that the type is known to the compiler and allow it

to generate better optimized code. Obviously, any other globals in yourmodule that depends on would also have to be

initialized in .

Constants involving most Julia objects that are not produced by do not need to be placed in : their definitions can be

precompiled and loaded from the cached module image. This includes complicated heap-allocated objects like arrays.

However, any routine that returns a rawpointer valuemust be called at runtime for precompilation towork (Ptr objects

will turn into null pointers unless they are hidden inside an isbits object). This includes the return values of the Julia

functions and .

Dictionary and set types, or in general anything that depends on the output of a method, are a trickier case. In the

common casewhere the keys are numbers, strings, symbols, ranges, , or compositions of these types (via arrays, tuples,

sets, pairs, etc.) they are safe to precompile. However, for a few other key types, such as or and generic user-defined

types where you haven’t defined a method, the fallback method depends on the memory address of the object (via its

) and hence may change from run to run. If you have one of these key types, or if you aren’t sure, to be safe you can

initialize this dictionary from within your function. Alternatively, you can use the dictionary type, which is specially

handled by precompilation so that it is safe to initialize at compile-time.

When using precompilation, it is important to keep a clear sense of the distinction between the compilation phase and

the execution phase. In this mode, it will often be much more clearly apparent that Julia is a compiler which allows

execution of arbitrary Julia code, not a standalone interpreter that also generates compiled code.
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Other known potential failure scenarios include:

1. Global counters (for example, for attempting to uniquely identify objects) Consider the following code snippet:

while the intent of this code was to give every instance a unique id, the counter value is recorded at the end

of compilation. All subsequent usages of this incrementally compiled module will start from that same counter

value.

Note that (which works by hashing thememory pointer) has similar issues (see notes on usage below).

One alternative is to use amacro to capture and store it alonewith the current value, however, it may be better

to redesign the code to not depend on this global state.

2. Associative collections (such as and ) need to be re-hashed in . (In the future, a mechanism may be provided to

register an initializer function.)

3. Depending on compile-time side-effects persisting through load-time. Example include: modifying arrays or

other variables in other Julia modules; maintaining handles to open files or devices; storing pointers to other

system resources (includingmemory);

4. Creating accidental ”copies” of global state from another module, by referencing it directly instead of via its

lookup path. For example, (in global scope):

Several additional restrictions are placed on the operations that can be done while precompiling code to help the user

avoid other wrong-behavior situations:

1. Calling to cause a side-effect in another module. This will also cause a warning to be emitted when the incre-

mental precompile flag is set.

2. statements from local scope after has been started (see issue #12010 for plans to add an error for this)

3. Replacing amodule (or calling ) is a runtime error while doing an incremental precompile.

A few other points to be aware of:

1. Nocodereload/cache invalidation isperformedafterchangesaremadetothesourcefiles themselves, (including

by ), and no cleanup is done after

2. Thememory sharingbehavior of a reshapedarray is disregardedbyprecompilation (eachviewgets its owncopy)

3. Expecting the filesystem to be unchanged between compile-time and runtime e.g. / to find resources at runtime,

or the BinDeps macro. Sometimes this is unavoidable. However, when possible, it can be good practice to copy

resources into themodule at compile-time so they won’t need to be found at runtime.
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4. objects and finalizers are not currently handled properly by the serializer (this will be fixed in an upcoming re-

lease).

5. It is usually best to avoid capturing references to instances of internalmetadata objects such as , , , , and fields of

those objects, as this can confuse the serializer andmay not lead to the outcome you desire. It is not necessarily

anerror todo this, but yousimplyneed tobeprepared that the systemwill try tocopysomeof theseand tocreate

a single unique instance of others.

It is sometimes helpful duringmodule development to turn off incremental precompilation. The command line flag en-

ables you to togglemodule precompilation on and off. When Julia is startedwith the serializedmodules in the compile

cache are ignored when loading modules and module dependencies. can still be called manually and it will respect di-

rectives for themodule. The state of this command line flag is passed to to disable automatic precompilation triggering

when installing, updating, and explicitly building packages.
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Documentation

Julia enables package developers and users to document functions, types and other objects easily via a built-in docu-

mentation system since Julia 0.4.

The basic syntax is very simple: any string appearing at the top-level right before an object (function, macro, type or

instance) will be interpreted as documenting it (these are called docstrings). Here is a very simple example:

Documentation is interpreted asMarkdown, so you can use indentation and code fences to delimit code examples from

text. Technically, any object can be associated with any other as metadata; Markdown happens to be the default, but

one can construct other stringmacros and pass them to the macro just as well.

Here is a more complex example, still usingMarkdown:

As in the example above, we recommend following some simple conventions whenwriting documentation:

1. Always show the signature of a function at the top of the documentation, with a four-space indent so that it is

printed as Julia code.

This can be identical to the signature present in the Julia code (like ), or a simplified form. Optional arguments

should be represented with their default values (i.e. ) when possible, following the actual Julia syntax. Optional

arguments which do not have a default value should be put in brackets (i.e. and ). An alternative solution is

to use several lines: one without optional arguments, the other(s) with them. This solution can also be used to

document several relatedmethods of a given function. When a function acceptsmany keyword arguments, only

include a placeholder in the signature (i.e. ), and give the complete list under an section (see point 4 below).
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2. Include a single one-line sentence describing what the function does or what the object represents after the

simplified signature block. If needed, providemore details in a second paragraph, after a blank line.

The one-line sentence should use the imperative form (”Do this”, ”Return that”) instead of the third person (do

not write ”Returns the length...”) when documenting functions. It should end with a period. If the meaning of a

function cannot be summarized easily, splitting it into separate composable parts could be beneficial (this should

not be taken as an absolute requirement for every single case though).

3. Do not repeat yourself.

Since the function name is given by the signature, there is no need to start the documentationwith ”The function

...”: go straight to the point. Similarly, if the signature specifies the types of the arguments, mentioning them in

the description is redundant.

4. Only provide an argument list when really necessary.

For simple functions, it is often clearer to mention the role of the arguments directly in the description of the

function’s purpose. An argument list would only repeat information already provided elsewhere. However, pro-

viding an argument list can be a good idea for complex functions with many arguments (in particular keyword

arguments). In that case, insert it after the general description of the function, under an header, with one bullet

for each argument. The list shouldmention the types and default values (if any) of the arguments:

5. Include any code examples in an section.

Examples should, whenever possible, be written as doctests. A doctest is a fenced code block (see Code blocks)

starting with and contains any number of prompts together with inputs and expected outputs that mimic the

Julia REPL.

For example in the following docstring a variable is defined and the expected result, as printed in a Julia REPL,

appears afterwards:

Warning

Calling and other RNG-related functions should be avoided in doctests since they will not produce

consistent outputs during different Julia sessions. If you would like to show some random number

generation related functionality, one option is to explicitly construct and seed your own (or other

pseudorandom number generator) and pass it to the functions you are doctesting.
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Operating system word size ( or ) as well as path separator differences ( or ) will also affect the re-

producibility of some doctests.

Note that whitespace in your doctest is significant! The doctest will fail if youmisalign the output of

pretty-printing an array, for example.

You can then run to run all the doctests in the JuliaManual, which will ensure that your example works.

Examples that are untestable should be written within fenced code blocks starting with so that they are high-

lighted correctly in the generated documentation.

Tip

Wherever possible examples should be self-contained and runnable so that readers are able to try

them out without having to include any dependencies.

6. Use backticks to identify code and equations.

Julia identifiers and code excerpts should always appear between backticks to enable highlighting. Equations

in the LaTeX syntax can be inserted between double backticks . Use Unicode characters rather than their LaTeX

escape sequence, i.e. rather than .

7. Place the starting and ending characters on lines by themselves.

That is, write:

rather than:

This makes it more clear where docstrings start and end.

8. Respect the line length limit used in the surrounding code.

Docstrings are edited using the same tools as code. Therefore, the same conventions should apply. It it advised

to add line breaks after 92 characters.

20.1 Accessing Documentation

Documentation can be accessed at the REPL or in IJulia by typing followed by the name of a function or macro, and

pressing . For example,

will bring up docs for the relevant function, macro or stringmacro respectively. In Juno using will bring up documenta-

tion for the object under the cursor.

https://github.com/JuliaLang/IJulia.jl
http://junolab.org
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20.2 Functions &Methods

Functions in Juliamayhavemultiple implementations, knownasmethods. While it’s goodpractice for generic functions

to have a single purpose, Julia allows methods to be documented individually if necessary. In general, only the most

generic method should be documented, or even the function itself (i.e. the object created without any methods by ).

Specific methods should only be documented if their behaviour differs from the more generic ones. In any case, they

should not repeat the information provided elsewhere. For example:

When retrieving documentation for a generic function, the metadata for each method is concatenated with the func-

tion, which can of course be overridden for custom types.

20.3 Advanced Usage

The macro associates its first argument with its second in a per-module dictionary called . By default, documentation

is expected to be written in Markdown, and the string macro simply creates an object representing the Markdown

content. In the future it is likely to domore advanced things such as allowing for relative image or link paths.

When used for retrieving documentation, the macro (or equally, the function) will search all dictionaries formetadata

relevant to the given object and return it. The returned object (some Markdown content, for example) will by default

display itself intelligently. This design also makes it easy to use the doc system in a programmatic way; for example, to

re-use documentation between different versions of a function:
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Or for use with Julia’s metaprogramming functionality:

Documentation written in non-toplevel blocks, such as , , , and , is added to the documentation system as blocks are

evaluated. For example:

will add documentation to when the condition is . Note that even if goes out of scope at the end of the block, its docu-

mentation will remain.

Dynamic documentation

Sometimes the appropriate documentation for an instance of a type depends on the field values of that instance, rather

than juston the type itself. In thesecases, youcanaddamethod to foryourcustomtype that returns thedocumentation

on a per-instance basis. For instance,

will display ”Documentation forMyTypewith value x” while will display ”Documentation forMyTypewith value y”.

20.4 Syntax Guide

A comprehensive overview of all documentable Julia syntax.

In the following examples is used to illustrate an arbitrary docstring which may be one of the follow four variants and

contain arbitrary text:
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should only be usedwhen the docstring contains or characters that should not be parsed by Julia such as LaTeX syntax

or Julia source code examples containing interpolation.

Functions andMethods

Adds docstring to . The first version is the preferred syntax, however both are equivalent.

Adds docstring to .

Adds docstring to two s, namely and .

Macros

Adds docstring to the macro definition.

Adds docstring to themacro named .
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Types

Adds the docstring to types , , and .

Adds docstring to type , to field and to field . Also applicable to types.

Modules

Adds docstring to the . Adding the docstring above the is the preferred syntax, however both are equivalent.

Documentinga byplacingadocstringabove theexpressionautomatically imports into themodule. These importsmust

be donemanually when themodule expression is not documented. Empty s cannot be documented.
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Global Variables

Adds docstring to the s , , and .

s are used to store a reference to a particular in a without storing the referenced value itself.

Note

Whena definition is only used to define an alias of another definition, such as is the casewith the function

and its alias in , do not document the alias and instead document the actual function.

If the alias is documented and not the real definition then the docsystem ( mode) will not return the doc-

string attached to the alias when the real definition is searched for.

For example you should write

rather than

Adds docstring to the value associated with . Users should prefer documenting at it’s definition.

Multiple Objects

Adds docstring to and each of which should be a documentable expression. This syntax is equivalent to

Any number of expressions many be documented together in this way. This syntax can be useful when two functions

are related, such as non-mutating andmutating versions and .
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Macro-generated code

Adds docstring to expression generated by expanding . This allows for expressions decorated with , , , or any other

macro to be documented in the sameway as undecorated expressions.

Macro authors should take note that only macros that generate a single expression will automatically support doc-

strings. If a macro returns a block containing multiple subexpressions then the subexpression that should be docu-

mentedmust bemarked using the macro.

The macromakes use of to allow for documenting s. Examining it’s definition should serve as an example of how to use

correctly.

–Macro.

Low-level macro used to mark expressions returned by a macro that should be documented. If more than one ex-

pression is marked then the same docstring is applied to each expression.

has no effect when amacro that uses it is not documented.

20.5 Markdown syntax

The followingmarkdown syntax is supported in Julia.

Inline elements

Here ”inline” refers to elements that can be found within blocks of text, i.e. paragraphs. These include the following

elements.

Bold

Surroundwords with two asterisks, , to display the enclosed text in boldface.

Italics

Surroundwords with one asterisk, , to display the enclosed text in italics.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/Docs.jl#L583-L598
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Literals

Surround text that should be displayed exactly as written with single backticks, .

Literals should be usedwhenwriting text that refers to names of variables, functions, or other parts of a Julia program.

Tip

To include a backtick character within literal text use three backticks rather than one to enclose the text.

By extension any odd number of backticks may be used to enclose a lesser number of backticks.

LATEX

Surround text that should be displayed asmathematics using LATEXsyntax with double backticks, .

Tip

As with literals in the previous section, if literal backticks need to be written within double backticks

use an even number greater than two. Note that if a single literal backtick needs to be included within

LATEXmarkup then two enclosing backticks is sufficient.

Links

Links to either external or internal addresses can be written using the following syntax, where the text enclosed in

square brackets, , is the name of the link and the text enclosed in parentheses, , is the URL.

It’s also possible to add cross-references to other documented functions/methods/variableswithin the Julia documen-

tation itself. For example:

Thiswill createa link in thegenerateddocs to the documentation (whichhasmore informationaboutwhat this function

actually does). It’s good to include cross references to mutating/non-mutating versions of a function, or to highlight a

difference between two similar-seeming functions.

Note

Theabovecross referencing isnot aMarkdown feature, and relies onDocumenter.jl, which is used tobuild

base Julia’s documentation.

https://github.com/JuliaDocs/Documenter.jl
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Footnote references

Named andnumbered footnote references can bewritten using the following syntax. A footnote namemust be a single

alphanumeric word containing no punctuation.

Note

The text associatedwith a footnote can bewritten anywherewithin the same page as the footnote refer-

ence. The syntax used to define the footnote text is discussed in the Footnotes section below.

Toplevel elements

The following elements can bewritten either at the ”toplevel” of a document or within another ”toplevel” element.

Paragraphs

A paragraph is a block of plain text, possibly containing any number of inline elements defined in the Inline elements

section above, with one ormore blank lines above and below it.

Headers

A document can be split up into different sections using headers. Headers use the following syntax:

A header line can contain any inline syntax in the sameway as a paragraph can.

Tip

Try to avoid using toomany levels of headerwithin a single document. A heavily nested documentmay be

indicative of a need to restructure it or split it into several pages covering separate topics.

Code blocks

Source code can be displayed as a literal block using an indent of four spaces as shown in the following example.
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Additionally, code blocks can be enclosed using triple backticks with an optional ”language” to specify how a block of

code should be highlighted.

Note

”Fenced” code blocks, as shown in the last example, should be prefered over indented code blocks since

there is no way to specify what language an indented code block is written in.

Block quotes

Text from external sources, such as quotations from books or websites, can be quoted using characters prepended to

each line of the quote as follows.

Note that a single space must appear after the character on each line. Quoted blocks may themselves contain other

toplevel or inline elements.

Images

The syntax for images is similar to the link syntax mentioned above. Prepending a character to a link will display an

image from the specified URL rather than a link to it.

Lists

Unordered lists can bewritten by prepending each item in a list with either , , or .
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Note the two spaces before each and the single space after each one.

Lists can contain other nested toplevel elements such as lists, code blocks, or quoteblocks. A blank line should be left

between each list itemwhen including any toplevel elements within a list.

Note

The contents of each item in the list must line up with the first line of the item. In the above example the

fenced code blockmust be indented by four spaces to align with the in .

Ordered lists are written by replacing the ”bullet” character, either , , or , with a positive integer followed by either or .

Anordered listmay start fromanumberother thanone, as in the second list of the aboveexample,where it is numbered

from five. As with unordered lists, ordered lists can contain nested toplevel elements.

Display equations

Large LATEXequations that do not fit inline within a paragraph may be written as display equations using a fenced code

block with the ”language” as in the example below.

Footnotes

This syntax is paired with the inline syntax for Footnote references. Make sure to read that section as well.

Footnote text is defined using the following syntax, which is similar to footnote reference syntax, aside from the char-

acter that is appended to the footnote label.
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Note

No checks are done during parsing tomake sure that all footnote references havematching footnotes.

Horizontal rules

The equivalent of an HTML tag can bewritten using the following syntax:

Tables

Basic tables can be written using the syntax described below. Note that markdown tables have limited features and

cannot contain nested toplevel elements unlike other elements discussed above – only inline elements are allowed.

Tables must always contain a header rowwith column names. Cells cannot spanmultiple rows or columns of the table.

Note

As illustrated in the above example each column of characters must be aligned vertically.

A characteroneitherendofacolumn’sheaderseparator (therowcontaining characters) specifieswhether

the row is left-aligned, right-aligned, or (when appears on both ends) center-aligned. Providing no char-

acters will default to right-aligning the column.

Admonitions

Specially formattedblockswith titles suchas ”Notes”, ”Warning”, or ”Tips” are knownas admonitions andareusedwhen

some part of a document needs special attention. They can be defined using the following syntax:
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Admonitions, likemost other toplevel elements, can contain other toplevel elements. Whenno title text, specified after

the admonition type in double quotes, is included then the title usedwill be the type of the block, i.e. in the case of the

admonition.

20.6 Markdown Syntax Extensions

Julia’smarkdown supports interpolation in a very similarway tobasic string literals, with thedifference that itwill store

theobject itself in theMarkdowntree (asopposed toconverting it toa string). When theMarkdowncontent is rendered

theusual methodswill be called, and these canbeoverriddenasusual. This designallows theMarkdowntobeextended

with arbitrarily complex features (such as references) without cluttering the basic syntax.

In principle, the Markdown parser itself can also be arbitrarily extended by packages, or an entirely custom flavour of

Markdown can be used, but this should generally be unnecessary.
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Metaprogramming

The strongest legacy of Lisp in the Julia language is its metaprogramming support. Like Lisp, Julia represents its own

codeas adata structureof the language itself. Since code is representedbyobjects that canbe createdandmanipulated

fromwithin the language, it is possible for a program to transform and generate its own code. This allows sophisticated

code generationwithout extra build steps, and also allows true Lisp-stylemacros operating at the level of abstract syn-

tax trees. In contrast, preprocessor ”macro” systems, like that of C and C++, perform textual manipulation and substi-

tution before any actual parsing or interpretation occurs. Because all data types and code in Julia are represented by

Julia data structures, powerful reflection capabilities are available to explore the internals of a program and its types

just like any other data.

21.1 Program representation

Every Julia program starts life as a string:

What happens next?

The next step is to parse each string into an object called an expression, represented by the Julia type :

objects contain two parts:

• a identifying the kind of expression. A symbol is an interned string identifier (more discussion below).

• the expression arguments, whichmay be symbols, other expressions, or literal values:
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Expressionsmay also be constructed directly in prefix notation:

The two expressions constructed above – by parsing and by direct construction – are equivalent:

The key point here is that Julia code is internally represented as a data structure that is accessible from the language

itself.

The function provides indented and annotated display of objects:

objects may also be nested:

Anotherway to view expressions is withMeta.show_sexpr, which displays the S-expression form of a given , whichmay

look very familiar to users of Lisp. Here’s an example illustrating the display on a nested :

Symbols

The characterhas twosyntacticpurposes in Julia. Thefirst formcreatesa , an internedstringusedasonebuilding-block

of expressions:

https://en.wikipedia.org/wiki/Polish_notation
https://en.wikipedia.org/wiki/S-expression
https://en.wikipedia.org/wiki/String_interning
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The constructor takes any number of arguments and creates a new symbol by concatenating their string representa-

tions together:

In the context of an expression, symbols are used to indicate access to variables; when an expression is evaluated, a

symbol is replacedwith the value bound to that symbol in the appropriate scope.

Sometimes extra parentheses around the argument to are needed to avoid ambiguity in parsing.:

21.2 Expressions and evaluation

Quoting

The second syntactic purpose of the character is to create expression objects without using the explicit constructor.

This is referred to as quoting. The character, followed by paired parentheses around a single statement of Julia code,

produces an object based on the enclosed code. Here is example of the short form used to quote an arithmetic expres-

sion:

(to view the structure of this expression, try and , or use as above or )

Note that equivalent expressionsmay be constructed using or the direct form:

Expressions provided by the parser generally only have symbols, other expressions, and literal values as their args,

whereas expressions constructed by Julia code can have arbitrary run-time values without literal forms as args. In this

specific example, and are symbols, is a subexpression, and is a literal 64-bit signed integer.

There is a second syntactic form of quoting for multiple expressions: blocks of code enclosed in . Note that this form

introduces elements to the expression tree, which must be considered when directly manipulating an expression tree

generated from blocks. For other purposes, and blocks are treated identically.
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Interpolation

Direct constructionof objectswithvaluearguments is powerful, but constructors canbe tedious compared to ”normal”

Julia syntax. As an alternative, Julia allows ”splicing” or interpolation of literals or expressions into quoted expressions.

Interpolation is indicated by the prefix.

In this example, the literal value of is interpolated:

Interpolating into an unquoted expression is not supported andwill cause a compile-time error:

In this example, the tuple is interpolated as an expression into a conditional test:

Interpolating symbols into a nested expression requires enclosing each symbol in an enclosing quote block:

The use of for expression interpolation is intentionally reminiscent of string interpolation and command interpolation.

Expression interpolation allows convenient, readable programmatic construction of complex Julia expressions.
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and effects

Given an expression object, one can cause Julia to evaluate (execute) it at global scope using :

Everymodule has its own function that evaluates expressions in its global scope. Expressions passed to are not limited

to returning values – they can also have side-effects that alter the state of the enclosingmodule’s environment:

Here, the evaluation of an expression object causes a value to be assigned to the global variable .

Since expressions are just objects which can be constructed programmatically and then evaluated, it is possible to dy-

namically generate arbitrary codewhich can then be run using . Here is a simple example:

The value of is used to construct the expression which applies the function to the value 1 and the variable . Note the

important distinction between the way and are used:
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• The value of the variable at expression construction time is used as an immediate value in the expression. Thus,

the value of when the expression is evaluated no longer matters: the value in the expression is already , inde-

pendent of whatever the value of might be.

• On the other hand, the symbol is used in the expression construction, so the value of the variable at that time is

irrelevant – is just a symbol and the variable need not even be defined. At expression evaluation time, however,

the value of the symbol is resolved by looking up the value of the variable .

Functions on essions

Ashintedabove, oneextremelyuseful featureof Julia is thecapability togenerateandmanipulateJulia codewithin Julia

itself. Wehavealready seenoneexampleof a function returning objects: the function,which takes a stringof Julia code

and returns the corresponding . A function can also take one or more objects as arguments, and return another . Here

is a simple, motivating example:

As another example, here is a function that doubles any numeric argument, but leaves expressions alone:

21.3 Macros

Macros provide amethod to include generated code in the final body of a program. Amacromaps a tuple of arguments

to a returned expression, and the resulting expression is compiled directly rather than requiring a runtime call. Macro

arguments may include expressions, literal values, and symbols.
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Basics

Here is an extraordinarily simplemacro:

Macros have a dedicated character in Julia’s syntax: the (at-sign), followed by the unique name declared in a block. In

this example, the compiler will replace all instances of with:

When is entered in the REPL, the expression executes immediately, thus we only see the evaluation result:

Now, consider a slightly more complexmacro:

This macro takes one argument: . When is encountered, the quoted expression is expanded to interpolate the value of

the argument into the final expression:

We can view the quoted return expression using the function (important note: this is an extremely useful tool for de-

buggingmacros):

We can see that the literal has been interpolated into the expression.

There also exists a macro that is perhaps a bit more convenient than the function:
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Hold up: whymacros?

Wehave already seen a function in a previous section. In fact, is also such a function. So, why domacros exist?

Macros are necessary because they execute when code is parsed, therefore, macros allow the programmer to gener-

ate and include fragments of customized code before the full program is run. To illustrate the difference, consider the

following example:

The first call to is executedwhen is called. The resulting expression contains only the second :

Macro invocation

Macros are invokedwith the following general syntax:

Note the distinguishing before themacro name and the lack of commas between the argument expressions in the first

form, and the lack ofwhitespace after in the second form. The two styles should not bemixed. For example, the follow-

ing syntax is different from the examples above; it passes the tuple as one argument to themacro:

It is important toemphasize thatmacrosreceivetheirargumentsasexpressions, literals, or symbols. Onewaytoexplore

macro arguments is to call the function within themacro body:
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In addition to the given argument list, everymacro is passed extra arguments named and .

The argument provides information (in the form of a object) about the parser location of the sign from the macro

invocation. This allowsmacros to include better error diagnostic information, and is commonly used by logging, string-

parser macros, and docs, for example, as well as to implement the , , and macros.

The location information can be accessed by referencing and :

The argument provides information (in the formof a object) about the expansion context of themacro invocation. This

allows macros to look up contextual information, such as existing bindings, or to insert the value as an extra argument

to a runtime function call doing self-reflection in the current module.

Building an advancedmacro

Here is a simplified definition of Julia’s macro:

This macro can be used like this:

Inplaceof thewrittensyntax, themacrocall isexpandedatparse timeto its returnedresult. This isequivalent towriting:

That is, in thefirst call, theexpression is spliced into the test conditionslot,while thevalueof is spliced into theassertion

message slot. The entire expression, thus constructed, is placed into the syntax treewhere the macro call occurs. Then

at execution time, if the test expression evaluates to true, then is returned, whereas if the test is false, an error is raised

indicating the asserted expression that was false. Notice that it would not be possible to write this as a function, since
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only the value of the condition is available and it would be impossible to display the expression that computed it in the

error message.

The actual definition of in the standard library is more complicated. It allows the user to optionally specify their own

errormessage, instead of just printing the failed expression. Just like in functionswith a variable number of arguments,

this is specifiedwith an ellipses following the last argument:

Now has twomodes of operation, depending upon the number of arguments it receives! If there’s only one argument,

the tuple of expressions captured by will be empty and it will behave the same as the simpler definition above. But

now if the user specifies a second argument, it is printed in themessage body instead of the failing expression. You can

inspect the result of a macro expansion with the aptly named macro:

There is yet another case that the actual macro handles: what if, in addition to printing ”a should equal b,” we wanted

to print their values? Onemight naively try to use string interpolation in the custommessage, e.g., , but this won’t work

as expected with the above macro. Can you see why? Recall from string interpolation that an interpolated string is

rewritten to a call to . Compare:
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Sonow instead of getting a plain string in , themacro is receiving a full expression thatwill need to be evaluated in order

to display as expected. This can be spliced directly into the returned expression as an argument to the call; see for the

complete implementation.

The macro makes great use of splicing into quoted expressions to simplify the manipulation of expressions inside the

macro body.

Hygiene

An issue that arises in more complex macros is that of hygiene. In short, macros must ensure that the variables they

introduce in their returned expressions do not accidentally clash with existing variables in the surrounding code they

expand into. Conversely, the expressions that are passed into a macro as arguments are often expected to evaluate in

the context of the surrounding code, interactingwith andmodifying theexisting variables. Another concernarises from

the fact that amacromay be called in a differentmodule fromwhere it was defined. In this casewe need to ensure that

all global variables are resolved to the correctmodule. Julia already has amajor advantage over languageswith textual

macro expansion (like C) in that it only needs to consider the returned expression. All the other variables (such as in

above) follow the normal scoping block behavior.

To demonstrate these issues, let us considerwriting a macro that takes an expression as its argument, records the time,

evaluates the expression, records the time again, prints the difference between the before and after times, and then

has the value of the expression as its final value. Themacromight look like this:

Here,wewant , , and tobeprivate temporary variables, andwewant to refer to the function in the standard library, not

to any variable the usermight have (the same applies to ). Imagine the problems that could occur if the user expression

also contained assignments to a variable called , or defined its own variable. We might get errors, or mysteriously

incorrect behavior.

Julia’smacroexpander solves theseproblems in the followingway. First, variableswithin amacro result are classifiedas

either local or global. A variable is considered local if it is assigned to (andnot declared global), declared local, or used as

a function argument name. Otherwise, it is considered global. Local variables are then renamed to be unique (using the

function, which generates new symbols), and global variables are resolved within the macro definition environment.

Therefore both of the above concerns are handled; themacro’s locals will not conflict with any user variables, and and

will refer to the standard library definitions.

One problem remains however. Consider the following use of this macro:

https://github.com/JuliaLang/julia/blob/master/base/error.jl
https://en.wikipedia.org/wiki/Hygienic_macro
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Here the user expression is a call to , but not the same function that themacro uses. It clearly refers to . Therefore we

must arrange for the code in to be resolved in the macro call environment. This is done by ”escaping” the expression

with :

An expressionwrapped in this manner is left alone by themacro expander and simply pasted into the output verbatim.

Therefore it will be resolved in themacro call environment.

This escaping mechanism can be used to ”violate” hygiene when necessary, in order to introduce or manipulate user

variables. For example, the followingmacro sets to zero in the call environment:

This kind of manipulation of variables should be used judiciously, but is occasionally quite handy.

Getting the hygiene rules correct can be a formidable challenge. Before using a macro, you might want to consider

whether a function closurewould be sufficient. Another useful strategy is to defer asmuchwork as possible to runtime.

For example, many macros simply wrap their arguments in a QuoteNode or other similar Expr. Some examples of this

include which simply returns , and , which simply returns .

To demonstrate, wemight rewrite the example above as:

However, we don’t do this for a good reason: wrapping the in a new scope block (the anonymous function) also slightly

changes the meaning of the expression (the scope of any variables in it), while we want to be usable with minimum

impact on the wrapped code.
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21.4 Code Generation

When a significant amount of repetitive boilerplate code is required, it is common to generate it programmatically to

avoid redundancy. In most languages, this requires an extra build step, and a separate program to generate the repeti-

tive code. In Julia, expression interpolation and allow such code generation to take place in the normal course of pro-

gram execution. For example, the following code defines a series of operators on three arguments in terms of their

2-argument forms:

In thismanner, Julia acts as its ownpreprocessor, and allows code generation from inside the language. The above code

could bewritten slightly more tersely using the prefix quoting form:

This sort of in-language code generation, however, using the pattern, is common enough that Julia comeswith amacro

to abbreviate this pattern:

The macro rewrites this call to be precisely equivalent to the above longer versions. For longer blocks of generated

code, the expression argument given to can be a block:

21.5 Non-Standard String Literals

Recall from Strings that string literals prefixed by an identifier are called non-standard string literals, and can have dif-

ferent semantics than un-prefixed string literals. For example:

• produces a regular expression object rather than a string

• is a byte array literal for .

Perhaps surprisingly, these behaviors are not hard-coded into the Julia parser or compiler. Instead, they are custom

behaviors provided by a generalmechanism that anyone can use: prefixed string literals are parsed as calls to specially-

namedmacros. For example, the regular expressionmacro is just the following:

https://en.wikipedia.org/wiki/Preprocessor
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That’s all. This macro says that the literal contents of the string literal should be passed to the macro and the result

of that expansion should be placed in the syntax tree where the string literal occurs. In other words, the expression is

equivalent to placing the following object directly into the syntax tree:

Not only is the string literal form shorter and farmore convenient, but it is alsomore efficient: since the regular expres-

sion is compiled and the object is actually created when the code is compiled, the compilation occurs only once, rather

than every time the code is executed. Consider if the regular expression occurs in a loop:

Since the regular expression is compiled and inserted into the syntax tree when this code is parsed, the expression is

only compiled once instead of each time the loop is executed. In order to accomplish this without macros, one would

have to write this loop like this:

Moreover, if the compiler could not determine that the regex object was constant over all loops, certain optimizations

might not be possible, making this version still less efficient than the more convenient literal form above. Of course,

there are still situations where the non-literal form is more convenient: if one needs to interpolate a variable into the

regular expression, one must take this more verbose approach; in cases where the regular expression pattern itself is

dynamic, potentially changing upon each loop iteration, a new regular expression object must be constructed on each

iteration. In the vast majority of use cases, however, regular expressions are not constructed based on run-time data.

In this majority of cases, the ability to write regular expressions as compile-time values is invaluable.

Like non-standard string literals, non-standard command literals exist using a prefixed variant of the command literal

syntax. Thecommand literal is parsedas . Julia itself doesnot containanynon-standardcommand literals, butpackages

canmakeuseof this syntax. Aside fromthedifferent syntax and the suffix insteadof the suffix, non-standard command

literals behave exactly like non-standard string literals.

In the event that two modules provide non-standard string or command literals with the same name, it is possible to

qualify the string or command literal with amodule name. For instance, if both and provide non-standard string literal

, then one canwrite or to disambiguate between the two.

The mechanism for user-defined string literals is deeply, profoundly powerful. Not only are Julia’s non-standard liter-

als implemented using it, but also the command literal syntax () is implemented with the following innocuous-looking

macro:
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Of course, a large amount of complexity is hidden in the functions used in this macro definition, but they are just func-

tions, written entirely in Julia. You can read their source and see precisely what they do – and all they do is construct

expression objects to be inserted into your program’s syntax tree.

21.6 Generated functions

A very special macro is , which allows you to define so-called generated functions. These have the capability to generate

specialized code depending on the types of their arguments with more flexibility and/or less code than what can be

achieved with multiple dispatch. While macros work with expressions at parsing-time and cannot access the types of

their inputs, a generated function gets expanded at a timewhen the types of the arguments are known, but the function

is not yet compiled.

Instead of performing some calculation or action, a generated function declaration returns a quoted expression which

then forms the body for themethod corresponding to the types of the arguments. When called, the body expression is

first evaluatedand compiled, then the returnedexpression is compiled and run. Tomake this efficient, the result is often

cached. And tomake this inferable, only a limited subset of the language is usable. Thus, generated functions provide a

flexible framework tomovework fromrun-time to compile-time, at theexpenseof greater restrictions on the allowable

constructs.

When defining generated functions, there are four main differences to ordinary functions:

1. You annotate the function declaration with the macro. This adds some information to the AST that lets the

compiler know that this is a generated function.

2. In the body of the generated function you only have access to the types of the arguments – not their values – and

any function that was defined before the definition of the generated function.

3. Instead of calculating something or performing some action, you return a quoted expressionwhich, when evalu-

ated, does what youwant.

4. Generated functionsmust notmutate or observe any non-constant global state (including, for example, IO, locks,

non-local dictionaries, or using ). This means they can only read global constants, and cannot have any side ef-

fects. In other words, they must be completely pure. Due to an implementation limitation, this also means that

they currently cannot define a closure or untyped generator.

It’s easiest to illustrate this with an example. We can declare a generated function as

Note that the body returns a quoted expression, namely , rather than just the value of .

From the caller’s perspective, they are very similar to regular functions; in fact, you don’t have to know if you’re calling

a regular or generated function - the syntax and result of the call is just the same. Let’s see how behaves:
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So, we see that in the body of the generated function, is the type of the passed argument, and the value returned by

the generated function, is the result of evaluating the quoted expressionwe returned from the definition, nowwith the

value of .

What happens if we evaluate again with a type that we have already used?

Note that there is no printout of . We can see that the body of the generated functionwas only executed once here, for

the specific set of argument types, and the resultwas cached. After that, for this example, the expression returned from

the generated function on the first invocation was re-used as the method body. However, the actual caching behavior

is an implementation-defined performance optimization, so it is invalid to depend too closely on this behavior.

The number of times a generated function is generatedmight be only once, but itmight also be more often, or appear

to not happen at all. As a consequence, you should never write a generated function with side effects - when, and how

often, the side effects occur is undefined. (This is true formacros too - and just like formacros, the use of in a generated

function is a sign that you’re doing something the wrong way.) However, unlike macros, the runtime system cannot

correctly handle a call to , so it is disallowed.

It is also important to see how functions interactwithmethod redefinition. Following the principle that a correct func-

tionmust not observe anymutable state or cause anymutation of global state, we see the following behavior. Observe

that the generated function cannot call anymethod thatwas not definedprior to the definitionof the generated function

itself.

Initially has one definition

Define other operations that use :

We now add some new definitions for :



21.6. GENERATED FUNCTIONS 209

and compare how these results differ:

Eachmethod of a generated function has its own view of defined functions:

The example generated function above did not do anything a normal function could not do (except printing the type

on the first invocation, and incurring higher overhead). However, the power of a generated function lies in its ability to

compute different quoted expressions depending on the types passed to it:

(although of course this contrived example would bemore easily implemented usingmultiple dispatch...)

Abusing this will corrupt the runtime system and cause undefined behavior:
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Since the body of the generated function is non-deterministic, its behavior, and the behavior of all subsequent code is

undefined.

Don’t copy these examples!

These examples are hopefully helpful to illustrate how generated functions work, both in the definition end and at the

call site; however, don’t copy them, for the following reasons:

• the function has side-effects (the call to ), and it is undefined exactly when, how often or howmany times these

side-effects will occur

• the function solves a problem that is better solvedwithmultiple dispatch - defining and will do the same thing,

but it is both simpler and faster.

• the function is pathologically insane

Note that the set of operations that should not be attempted in a generated function is unbounded, and the runtime

system can currently only detect a subset of the invalid operations. There are many other operations that will simply

corrupt the runtime system without notification, usually in subtle ways not obviously connected to the bad definition.

Because the function generator is run during inference, it must respect all of the limitations of that code.

Some operations that should not be attempted include:

1. Caching of native pointers.

2. Interacting with the contents or methods of Core.Inference in any way.

3. Observing anymutable state.

– Inference on the generated function may be run at any time, including while your code is attempting to

observe ormutate this state.

4. Taking any locks: C code you call out to may use locks internally, (for example, it is not problematic to call , even

thoughmost implementations require locks internally) but don’t attempt to hold or acquire anywhile executing

Julia code.

5. Callinganyfunctionthat isdefinedafter thebodyof thegeneratedfunction. Thiscondition is relaxedfor incrementally-

loaded precompiledmodules to allow calling any function in themodule.

Alright, now that we have a better understanding of how generated functions work, let’s use them to build somemore

advanced (and valid) functionality...

An advanced example

Julia’s base library has a function to calculate a linear index into an n-dimensional array, based on a set of nmultilinear

indices - in other words, to calculate the index that can be used to index into an array using , instead of . One possible

implementation is the following:
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The same thing can be done using recursion:

Both these implementations, although different, do essentially the same thing: a runtime loop over the dimensions of

the array, collecting the offset in each dimension into the final index.

However, all the informationwe need for the loop is embedded in the type information of the arguments. Thus, we can

utilize generated functions to move the iteration to compile-time; in compiler parlance, we use generated functions to

manually unroll the loop. The body becomes almost identical, but instead of calculating the linear index, we build up an

expression that calculates the index:

What codewill this generate?

An easy way to find out is to extract the body into another (regular) function:
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We can now execute and examine the expression it returns:

So, themethod body thatwill be used here doesn’t include a loop at all - just indexing into the two tuples, multiplication

and addition/subtraction. All the looping is performed compile-time, and we avoid looping during execution entirely.

Thus, we only loop once per type, in this case once per (except in edge cases where the function is generatedmore than

once - see disclaimer above).
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Multi-dimensional Arrays

Julia, like most technical computing languages, provides a first-class array implementation. Most technical computing

languages pay a lot of attention to their array implementation at the expense of other containers. Julia does not treat

arrays in any specialway. The array library is implemented almost completely in Julia itself, and derives its performance

from the compiler, just like any other code written in Julia. As such, it’s also possible to define custom array types by

inheriting from See the manual section on the AbstractArray interface for more details on implementing a custom

array type.

An array is a collection of objects stored in a multi-dimensional grid. In the most general case, an array may contain

objects of type . For most computational purposes, arrays should contain objects of a more specific type, such as or .

In general, unlike many other technical computing languages, Julia does not expect programs to be written in a vector-

ized style for performance. Julia’s compiler uses type inference and generates optimized code for scalar array indexing,

allowing programs to be written in a style that is convenient and readable, without sacrificing performance, and using

less memory at times.

In Julia, all arguments to functions are passed by reference. Some technical computing languages pass arrays by value,

and this is convenient in many cases. In Julia, modifications made to input arrays within a function will be visible in the

parent function. The entire Julia array library ensures that inputs are not modified by library functions. User code, if it

needs to exhibit similar behavior, should take care to create a copy of inputs that it maymodify.

22.1 Arrays

Basic Functions

Function Description

the type of the elements contained in

the number of elements in

the number of dimensions of

a tuple containing the dimensions of

the size of along dimension

a tuple containing the valid indices of

a range expressing the valid indices along dimension

an efficient iterator for visiting each position in

the stride (linear index distance between adjacent elements) along dimension

a tuple of the strides in each dimension

213
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Construction and Initialization

Many functions for constructing and initializing arrays are provided. In the following list of such functions, calls with a

argument can either take a single tuple of dimension sizes or a series of dimension sizes passed as a variable number

of arguments. Most of these functions also accept a first input , which is the element type of the array. If the type is

omitted it will default to .

Func-

tion

Description

an uninitialized dense

an of all zeros

an array of all zeros with the same type, element type and shape as

an of all ones

an array of all ones with the same type, element type and shape as

a with all values

a with all values and the same shape as

a with all values

a with all values and the same shape as

an array containing the same data as , but with different dimensions

copy

copy , recursively copying its elements

an uninitialized array of the same type as (dense, sparse, etc.), but with the specified element type and

dimensions. The second and third arguments are both optional, defaulting to the element type and

dimensions of if omitted.

an array with the same binary data as , but with element type

an with random, iid 1 and uniformly distributed values in the half-open interval [0, 1)
an with random, iid and standard normally distributed values

-by- identity matrix

-by- identity matrix

range of linearly spaced elements from to

fill the array with the value

an filled with the value

The syntax constructs a 1-d array (vector) of its arguments. If all arguments have a common promotion type then they

get converted to that type using .

Concatenation

Arrays can be constructed and also concatenated using the following functions:

Function Description

concatenate input n-d arrays along the dimension

shorthand for

shorthand for

Scalar values passed to these functions are treated as 1-element arrays.

The concatenation functions are used so often that they have special syntax:

concatenates in both dimension 1 (with semicolons) and dimension 2 (with spaces).

1 iid, independently and identically distributed.
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Expression Calls

Typed array initializers

An arraywith a specific element type can be constructed using the syntax . This will construct a 1-d arraywith element

type , initialized to contain elements , , , etc. For example constructs a heterogeneous array that can contain any values.

Concatenation syntax can similarly be prefixedwith a type to specify the element type of the result.

Comprehensions

Comprehensions provide a general and powerful way to construct arrays. Comprehension syntax is similar to set con-

struction notation inmathematics:

The meaning of this form is that is evaluated with the variables , , etc. taking on each value in their given list of values.

Values can be specified as any iterable object, but will commonly be ranges like or , or explicit arrays of values like . The

result is an N-d dense array with dimensions that are the concatenation of the dimensions of the variable ranges , , etc.

and each evaluation returns a scalar.

The following example computes a weighted average of the current element and its left and right neighbor along a 1-d

grid. :
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The resulting array type depends on the types of the computed elements. In order to control the type explicitly, a type

canbeprepended to the comprehension. For example,wecouldhave requested the result in single precisionbywriting:

Generator Expressions

Comprehensions can also bewrittenwithout the enclosing square brackets, producing an object known as a generator.

This object canbe iterated toproduce values ondemand, insteadof allocating an array and storing them in advance (see

Iteration). For example, the following expression sums a series without allocatingmemory:

Whenwriting a generator expressionwithmultiple dimensions inside an argument list, parentheses are needed to sep-

arate the generator from subsequent arguments:

All comma-separated expressions after are interpreted as ranges. Adding parentheses lets us add a third argument to :

Ranges in generators and comprehensions can depend on previous ranges by writingmultiple keywords:

In such cases, the result is always 1-d.

Generated values can be filtered using the keyword:
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Indexing

The general syntax for indexing into an n-dimensional array A is:

where each may be a scalar integer, an array of integers, or any other supported index. This includes () to select all

indices within the entire dimension, ranges of the form or to select contiguous or strided subsections, and arrays of

booleans to select elements at their indices.

If all the indices are scalars, then the result is a single element from the array . Otherwise, is an array with the same

number of dimensions as the sum of the dimensionalities of all the indices.

If all indices are vectors, for example, then the shape of would be , with location of containing the value . If is changed

to a two-dimensionalmatrix, then becomes an -dimensional array of shape . Thematrix adds a dimension. The location

contains the value at . All dimensions indexedwith scalars are dropped. For example, the result of is an arraywith size

. Its th element is populated by .

As a special part of this syntax, the keyword may be used to represent the last index of each dimension within the

indexingbrackets, asdeterminedbythesizeof the innermostarraybeing indexed. Indexingsyntaxwithout the keyword

is equivalent to a call to :

Example:

Empty ranges of the form are sometimes used to indicate the inter-index location between and . For example, the

function uses this convention to indicate the insertion point of a value not found in a sorted array:

Assignment

The general syntax for assigning values in an n-dimensional array A is:
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where each may be a scalar integer, an array of integers, or any other supported index. This includes () to select all

indices within the entire dimension, ranges of the form or to select contiguous or strided subsections, and arrays of

booleans to select elements at their indices.

If is an array, it must have the same number of elements as the product of the lengths of the indices: . The value in

location of is overwritten with the value . If is not an array, its value is written to all referenced locations of .

Just as in Indexing, the keywordmaybeused to represent the last indexof eachdimensionwithin the indexingbrackets,

as determined by the size of the array being assigned into. Indexed assignment syntax without the keyword is equiva-

lent to a call to :

Example:

Supported index types

In the expression , each may be a scalar index, an array of scalar indices, or an object that represents an array of scalar

indices and can be converted to such by :

1. A scalar index. By default this includes:

– Non-boolean integers

– s, which behave like an -tuple of integers spanningmultiple dimensions (see below for more details)

2. An array of scalar indices. This includes:

– Vectors andmultidimensional arrays of integers

– Empty arrays like , which select no elements

– s of the form or , which select contiguous or strided subsections from to (inclusive)

– Any custom array of scalar indices that is a subtype of

– Arrays of (see below for more details)

3. An object that represents an array of scalar indices and can be converted to such by . By default this includes:

– (), which represents all indices within an entire dimension or across the entire array

– Arrays of booleans, which select elements at their indices (see below for more details)
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Cartesian indices

The special object represents a scalar index that behaves like an -tuple of integers spanning multiple dimensions. For

example:

Considered alone, thismay seemrelatively trivial; simply gathersmultiple integers together into oneobject that repre-

sents a single multidimensional index. When combined with other indexing forms and iterators that yield es, however,

this can lead directly to very elegant and efficient code. See Iteration below, and for some more advanced examples,

see this blog post onmultidimensional algorithms and iteration.

Arrays of are also supported. They represent a collection of scalar indices that each span dimensions, enabling a form

of indexing that is sometimes referred toaspointwise indexing. For example, it enables accessing thediagonal elements

from the first ”page” of from above:

This canbeexpressedmuchmore simplywithdot broadcasting andby combining itwith anormal integer index (instead

of extracting the first from as a separate step). It can even be combinedwith a to extract both diagonals from the two

pages at the same time:

https://julialang.org/blog/2016/02/iteration
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Warning

and arrays of are not compatiblewith the keyword to represent the last index of a dimension. Donot use

in indexing expressions that may contain either or arrays thereof.

Logical indexing

Often referred to as logical indexing or indexingwith a logicalmask, indexing by a boolean array selects elements at the

indices where its values are . Indexing by a boolean vector is effectively the same as indexing by the vector of integers

that is returned by . Similarly, indexing by a -dimensional boolean array is effectively the same as indexing by the vector

of s where its values are . A logical index must be a vector of the same length as the dimension it indexes into, or it

must be the only index provided andmatch the size and dimensionality of the array it indexes into. It is generally more

efficient to use boolean arrays as indices directly instead of first calling .

Iteration

The recommendedways to iterate over a whole array are
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The first construct is usedwhen you need the value, but not index, of each element. In the second construct, will be an

if is an array type with fast linear indexing; otherwise, it will be a :

In contrast with , iterating with provides an efficient way to iterate over any array type.

Array traits

If youwrite a custom type, you can specify that it has fast linear indexing using

This setting will cause iteration over a to use integers. If you don’t specify this trait, the default value is used.

Array and VectorizedOperators and Functions

The following operators are supported for arrays:

1. Unary arithmetic – ,

2. Binary arithmetic – , , , , ,

3. Comparison – , , (),

Most of the binary arithmetic operators listed above also operate elementwise when one argument is scalar: , , and

when either argument is scalar, and and when the denominator is scalar. For example, and .

Additionally, to enable convenient vectorization of mathematical and other operations, Julia provides the dot syntax ,

e.g. or , for elementwiseoperationsover arrays ormixtures of arrays and scalars (aBroadcastingoperation); thesehave

the additional advantage of ”fusing” into a single loopwhen combinedwith other dot calls, e.g. .

Also, every binary operator supports a dot version that can be applied to arrays (and combinations of arrays and scalars)

in such fused broadcasting operations, e.g. .

Note that comparisons such as operate on whole arrays, giving a single boolean answer. Use dot operators like for

elementwise comparisons. (For comparison operations like , only the elementwise version is applicable to arrays.)

Also notice the difference between , which s elementwise over and , and , which finds the largest value within . The

same relationship holds for and .
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Broadcasting

It is sometimes useful to perform element-by-element binary operations on arrays of different sizes, such as adding a

vector to each columnof amatrix. An inefficientway to do thiswould be to replicate the vector to the size of thematrix:

This is wasteful when dimensions get large, so Julia offers , which expands singleton dimensions in array arguments

to match the corresponding dimension in the other array without using extra memory, and applies the given function

elementwise:

Dottedoperators suchas and areequivalent to calls (except that they fuse, asdescribedbelow). There isalsoa function

to specify an explicit destination (which can also be accessed in a fusing fashion by assignment), and functions and that

broadcast the indices before indexing. Moreover, is equivalent to , providing a convenient syntax to broadcast any

function (dot syntax). Nested ”dot calls” (including calls to etcetera) automatically fuse into a single call.

Additionally, is not limited to arrays (see the function documentation), it also handles tuples and treats any argument

that is not an array, tuple or (except for ) as a ”scalar”.
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Implementation

The base array type in Julia is the abstract type . It is parametrized by the number of dimensions and the element type .

and are aliases for the 1-d and 2-d cases. Operations on objects are defined using higher level operators and functions,

in a way that is independent of the underlying storage. These operations generally work correctly as a fallback for any

specific array implementation.

The type includes anything vaguely array-like, and implementations of it might be quite different from conventional

arrays. For example, elements might be computed on request rather than stored. However, any concrete type should

generally implement at least (returning an tuple), and ; mutable arrays should also implement . It is recommended

that these operations have nearly constant time complexity, or technically Õ(1) complexity, as otherwise some array

functions may be unexpectedly slow. Concrete types should also typically provide a method, which is used to allocate

a similar array for and other out-of-place operations. Nomatter how an is represented internally, is the type of object

returned by integer indexing (, when is not empty) and should be the length of the tuple returned by .

is an abstract subtype of intended to include all arrays that are laid out at regular offsets in memory, and which can

therefore be passed to external C and Fortran functions expecting this memory layout. Subtypes should provide a

method that returns the ”stride” of dimension : increasing the index of dimension by should increase the index of

by . If a pointer conversionmethod is provided, thememory layout should correspond in the sameway to these strides.

The type isa specific instanceof whereelementsarestored incolumn-majororder (seeadditionalnotes inPerformance

Tips). and are aliases for the 1-d and2-d cases. Specific operations such as scalar indexing, assignment, and a fewother

basic storage-specific operations are all that have to be implemented for , so that the rest of the array library can be

implemented in a generic manner.

is a specialization of that performs indexing by reference rather than by copying. A is createdwith the function, which

is called the sameway as (with an array and a series of index arguments). The result of looks the same as the result of ,

except the data is left in place. stores the input index vectors in a object, which can later be used to index the original

array indirectly. By putting the macro in front of an expression or block of code, any slice in that expression will be

converted to create a view instead.

and are convenient aliases defined tomake it possible for Julia to call a wider range of BLAS and LAPACK functions by

passing them either or objects, and thus saving inefficiencies frommemory allocation and copying.

The following example computes the QR decomposition of a small section of a larger array, without creating any tem-

poraries, and by calling the appropriate LAPACK function with the right leading dimension size and stride parameters.
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22.2 Sparse Vectors andMatrices

Julia has built-in support for sparse vectors and sparse matrices. Sparse arrays are arrays that contain enough zeros

that storing them in a special data structure leads to savings in space and execution time, compared to dense arrays.

Compressed Sparse Column (CSC) SparseMatrix Storage

In Julia, sparsematrices are stored in theCompressedSparseColumn (CSC) format. Julia sparsematrices have the type

,where is the typeof the storedvalues, and is the integer type for storing columnpointers and row indices. The internal

representation of is as follows:

The compressed sparse column storage makes it easy and quick to access the elements in the column of a sparse ma-

trix, whereas accessing the sparse matrix by rows is considerably slower. Operations such as insertion of previously

unstored entries one at a time in the CSC structure tend to be slow. This is because all elements of the sparse matrix

that are beyond the point of insertion have to bemoved one place over.

All operations on sparsematrices are carefully implemented to exploit the CSC data structure for performance, and to

avoid expensive operations.

If you have data in CSC format from a different application or library, and wish to import it in Julia, make sure that you

use 1-based indexing. The row indices in every column need to be sorted. If your object contains unsorted row indices,

one quick way to sort them is by doing a double transpose.

In some applications, it is convenient to store explicit zero values in a . These are accepted by functions in (but there is

no guarantee that they will be preserved inmutating operations). Such explicitly stored zeros are treated as structural

nonzeros bymany routines. The function returns the number of elements explicitly stored in the sparse data structure,

including structural nonzeros. In order to count the exact number of numerical nonzeros, use , which inspects every

stored element of a sparsematrix. , and the in-place , can be used to remove stored zeros from the sparsematrix.

https://en.wikipedia.org/wiki/Sparse_matrix
https://en.wikipedia.org/wiki/Sparse_matrix#Compressed_sparse_column_.28CSC_or_CCS.29
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Sparse Vector Storage

Sparse vectors are stored in a close analog to compressed sparse column format for sparse matrices. In Julia, sparse

vectors have the type where is the type of the stored values and the integer type for the indices. The internal repre-

sentation is as follows:

As for , the type can also contain explicitly stored zeros. (See SparseMatrix Storage.).

Sparse Vector andMatrix Constructors

The simplest way to create sparse arrays is to use functions equivalent to the and functions that Julia provides for

working with dense arrays. To produce sparse arrays instead, you can use the same names with an prefix:

The function is often a handyway to construct sparse arrays. For example, to construct a sparsematrix we can input a

vector of row indices, a vector of column indices, and a vector of stored values (this is also known as the COO (coordi-

nate) format). then constructs a sparsematrix such that . The equivalent sparse vector constructor is , which takes the

(row) index vector and the vector with the stored values and constructs a sparse vector such that .

https://en.wikipedia.org/wiki/Sparse_matrix#Coordinate_list_.28COO.29
https://en.wikipedia.org/wiki/Sparse_matrix#Coordinate_list_.28COO.29
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The inverse of the and functions is , which retrieves the inputs used to create the sparse array. There is also a function

which only returns the index vectors.

Another way to create a sparse array is to convert a dense array into a sparse array using the function:

You can go in the other direction using the constructor. The function can be used to query if a matrix is sparse.

Sparsematrix operations

Arithmetic operations on sparse matrices also work as they do on dense matrices. Indexing of, assignment into, and

concatenation of sparsematrices work in the sameway as densematrices. Indexing operations, especially assignment,

are expensive, when carried out one element at a time. Inmany cases itmay be better to convert the sparsematrix into

format using , manipulate the values or the structure in the dense vectors , and then reconstruct the sparsematrix.
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Correspondence of dense and sparsemethods

Thefollowingtablegivesacorrespondencebetweenbuilt-inmethodsonsparsematricesandtheircorrespondingmeth-

ods on dense matrix types. In general, methods that generate sparse matrices differ from their dense counterparts in

that the resultingmatrix follows the same sparsity pattern as a given sparsematrix , or that the resulting sparsematrix

has density , i.e. eachmatrix element has a probability of being non-zero.

Details can be found in the Sparse Vectors andMatrices section of the standard library reference.

Sparse Dense Description

Creates am-by-nmatrix of zeros. ( is empty.)

Creates amatrix filled with ones. Unlike the dense version, has the same sparsity pattern as S.

Creates a n-by-n identity matrix.

Interconverts between dense and sparse formats.

Creates am-by-n randommatrix (of density d) with iid non-zero elements distributed uniformly on

the half-open interval [0, 1).
Creates am-by-n randommatrix (of density d) with iid non-zero elements distributed according to

the standard normal (Gaussian) distribution.

Creates am-by-n randommatrix (of density d) with iid non-zero elements distributed according to

the X distribution. (Requires the package.)
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Linear algebra

In addition to (and as part of) its support for multi-dimensional arrays, Julia provides native implementations of many

common and useful linear algebra operations. Basic operations, such as , , and are all supported:

As well as other useful operations, such as finding eigenvalues or eigenvectors:
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In addition, Julia provides many factorizations which can be used to speed up problems such as linear solve or matrix

exponentiation by pre-factorizing a matrix into a form more amenable (for performance or memory reasons) to the

problem. See the documentation on for more information. As an example:

Since is not Hermitian, symmetric, triangular, tridiagonal, or bidiagonal, an LU factorizationmay be the best we can do.

Compare with:

Here, Juliawas able to detect that is in fact symmetric, andused amore appropriate factorization. Often it’s possible to

write more efficient code for a matrix that is known to have certain properties e.g. it is symmetric, or tridiagonal. Julia

provides some special types so that you can ”tag” matrices as having these properties. For instance:
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has been tagged as amatrix that’s (real) symmetric, so for later operationswemight performon it, such as eigenfactor-

ization or computingmatrix-vector products, efficiencies can be found by only referencing half of it. For example:

The operation here performs the linear solution. Julia’s parser provides convenient dispatch to specialized methods

for the transpose of amatrix left-divided by a vector, or for the various combinations of transpose operations inmatrix-

matrix solutions. Many of these are further specialized for certain specialmatrix types. For example, will end up calling

while will end up calling , even thoughwe used the same left-division operator. Thisworks formatrices too: would call

. The left-division operator is pretty powerful and it’s easy to write compact, readable code that is flexible enough to

solve all sorts of systems of linear equations.

23.1 Special matrices

Matriceswith special symmetries and structures ariseoften in linear algebraandare frequently associatedwithvarious

matrix factorizations. Julia features a rich collection of special matrix types, which allow for fast computation with

specialized routines that are specially developed for particular matrix types.

The following tables summarize the types of special matrices that have been implemented in Julia, as well as whether

hooks to various optimizedmethods for them in LAPACK are available.

Elementary operations

Legend:

http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=3274
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Type Description

Symmetric matrix

Hermitianmatrix

Upper triangular matrix

Lower triangular matrix

Tridiagonal matrix

Symmetric tridiagonal matrix

Upper/lower bidiagonal matrix

Diagonal matrix

Uniform scaling operator

Matrix type Other functions with optimizedmethods

MV , ,

MV , ,

MV MV ,

MV MV ,

M M MS MV ,

M M MS MV

M M MS MV

M M MV MV , , ,

M M MVS MVS

Key Description

M (matrix) An optimizedmethod for matrix-matrix operations is available

V (vector) An optimizedmethod for matrix-vector operations is available

S (scalar) An optimizedmethod for matrix-scalar operations is available

Matrix factorizations

Legend:

The uniform scaling operator

A operator represents a scalar times the identity operator, . The identity operator is defined as a constant and is an

instance of . The size of these operators are generic and match the other matrix in the binary operations , , and . For

and this means that must be square. Multiplication with the identity operator is a noop (except for checking that the

scaling factor is one) and therefore almost without overhead.

23.2 Matrix factorizations

Matrix factorizations (a.k.a. matrix decompositions) compute the factorization of a matrix into a product of matrices,

and are one of the central concepts in linear algebra.

The following table summarizes the types ofmatrix factorizations that have been implemented in Julia. Details of their

associatedmethods can be found in the Linear Algebra section of the standard library documentation.

https://en.wikipedia.org/wiki/Symmetric_matrix
https://en.wikipedia.org/wiki/Hermitian_matrix
https://en.wikipedia.org/wiki/Triangular_matrix
https://en.wikipedia.org/wiki/Triangular_matrix
https://en.wikipedia.org/wiki/Tridiagonal_matrix
https://en.wikipedia.org/wiki/Bidiagonal_matrix
https://en.wikipedia.org/wiki/Diagonal_matrix
https://en.wikipedia.org/wiki/Uniform_scaling
https://en.wikipedia.org/wiki/Matrix_decomposition
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Matrix type LAPACK

SY   ARI      

HE   ARI      

TR A A A    

TR A A A    

ST A ARI AV    

GT          

BD       A A

DI   A      

Key Description Exam-

ple

A (all) An optimizedmethod to find all the characteristic values and/or vectors is available e.g.

R (range) An optimizedmethod to find the th through the th characteristic values are available

I (inter-

val)

An optimizedmethod to find the characteristic values in the interval [, ] is available

V

(vectors)

An optimizedmethod to find the characteristic vectors corresponding to the characteristic

values is available

Type Description

Cholesky factorization

Pivoted Cholesky factorization

LU factorization

LU factorization for matrices

LU factorization for sparsematrices (computed by UMFPack)

QR factorization

CompactWY form of theQR factorization

PivotedQR factorization

Hessenberg decomposition

Spectral decomposition

Singular value decomposition

Generalized SVD

https://en.wikipedia.org/wiki/Cholesky_decomposition
https://en.wikipedia.org/wiki/Pivot_element
https://en.wikipedia.org/wiki/LU_decomposition
https://en.wikipedia.org/wiki/QR_decomposition
https://en.wikipedia.org/wiki/QR_decomposition
http://mathworld.wolfram.com/HessenbergDecomposition.html
https://en.wikipedia.org/wiki/Eigendecomposition_(matrix)
https://en.wikipedia.org/wiki/Singular_value_decomposition
https://en.wikipedia.org/wiki/Generalized_singular_value_decomposition#Higher_order_version
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Networking and Streams

Julia provides a rich interface to deal with streaming I/O objects such as terminals, pipes and TCP sockets. This in-

terface, though asynchronous at the system level, is presented in a synchronous manner to the programmer and it is

usually unnecessary to think about the underlying asynchronous operation. This is achieved by making heavy use of

Julia cooperative threading (coroutine) functionality.

24.1 Basic Stream I/O

All Julia streams expose at least a and a method, taking the stream as their first argument, e.g.:

Note that returns 11, the number of bytes (in ) written to , but this return value is suppressedwith the .

Here Enter was pressed again so that Julia would read the newline. Now, as you can see from this example, takes the

data to write as its second argument, while takes the type of the data to be read as the second argument.

For example, to read a simple byte array, we could do:

However, since this is slightly cumbersome, there are several convenience methods provided. For example, we could

havewritten the above as:
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or if we hadwanted to read the entire line instead:

Note that depending on your terminal settings, your TTY may be line buffered and might thus require an additional

enter before the data is sent to Julia.

To read every line from you can use :

or if youwanted to read by character instead:

24.2 Text I/O

Note that the method mentioned above operates on binary streams. In particular, values do not get converted to any

canonical text representation but are written out as is:

Note that is written to by the function and that the returned value is (since is one byte).

For text I/O, use the or methods, depending on your needs (see the standard library reference for a detailed discussion

of the difference between the two):

24.3 IOOutput Contextual Properties

Sometimes IO output can benefit from the ability to pass contextual information into showmethods. The object pro-

vides this framework for associating arbitrary metadata with an IO object. For example, adds a hinting parameter to

the IO object that the invoked showmethod should print a shorter output (if applicable).
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24.4 Workingwith Files

Likemany other environments, Julia has an function, which takes a filename and returns an object that you can use to

read andwrite things from the file. For example if we have a file, , whose contents are :

If youwant to write to a file, you can open it with the write () flag:

If you examine the contents of at this point, you will notice that it is empty; nothing has actually been written to disk

yet. This is because the must be closed before the write is actually flushed to disk:

Examining again will show its contents have been changed.

Opening a file, doing something to its contents, and closing it again is a very common pattern. Tomake this easier, there

exists another invocation of which takes a function as its first argument and filename as its second, opens the file, calls

the function with the file as an argument, and then closes it again. For example, given a function:

You can call:

to open , call , close and return the capitalized contents.

To avoid even having to define a named function, you can use the syntax, which creates an anonymous function on the

fly:
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24.5 A simple TCP example

Let’s jump right in with a simple example involving TCP sockets. Let’s first create a simple server:

To those familiar with theUnix socket API, themethod nameswill feel familiar, though their usage is somewhat simpler

than the rawUnix socketAPI. Thefirst call to will create a serverwaiting for incoming connections on the specifiedport

(2000) in this case. The same functionmay also be used to create various other kinds of servers:

Note that the return type of the last invocation is different. This is because this server does not listen onTCP, but rather

on a named pipe (Windows) or UNIX domain socket. Also note that Windows named pipe format has to be a specific

pattern such that the name prefix () uniquely identifies the file type. The difference between TCP and named pipes or

UNIX domain sockets is subtle and has to do with the and methods. The method retrieves a connection to the client

that is connecting on the server we just created, while the function connects to a server using the specified method.

The function takes the same arguments as , so, assuming the environment (i.e. host, cwd, etc.) is the same you should

be able to pass the same arguments to as you did to listen to establish the connection. So let’s try that out (after having

created the server above):

https://msdn.microsoft.com/en- us/library/windows/desktop/aa365783(v=vs.85).aspx
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Asexpectedwe saw ”HelloWorld” printed. So, let’s actually analyzewhat happenedbehind the scenes. Whenwecalled

, we connect to the server we had just created. Meanwhile, the accept function returns a server-side connection to the

newly created socket and prints ”HelloWorld” to indicate that the connection was successful.

A great strength of Julia is that since the API is exposed synchronously even though the I/O is actually happening asyn-

chronously, we didn’t have toworry callbacks or evenmaking sure that the server gets to run. Whenwe called the cur-

rent task waited for the connection to be established and only continued executing after that was done. In this pause,

the server task resumedexecution (because a connection requestwas nowavailable), accepted the connection, printed

themessage andwaited for the next client. Reading andwritingworks in the sameway. To see this, consider the follow-

ing simple echo server:

As with other streams, use to disconnect the socket:

24.6 Resolving IP Addresses

One of the methods that does not follow the methods is , which will attempt to connect to the host given by the pa-

rameter on the port given by the port parameter. It allows you to do things like:

At the base of this functionality is , which will do the appropriate address resolution:
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Parallel Computing

Most modern computers possess more than one CPU, and several computers can be combined together in a cluster.

Harnessing the power of thesemultiple CPUs allowsmany computations to be completedmore quickly. There are two

major factors that influence performance: the speed of the CPUs themselves, and the speed of their access tomemory.

In a cluster, it’s fairly obvious that a given CPU will have fastest access to the RAM within the same computer (node).

Perhaps more surprisingly, similar issues are relevant on a typical multicore laptop, due to differences in the speed of

mainmemory and the cache. Consequently, a goodmultiprocessing environment should allowcontrol over the ”owner-

ship”of a chunkofmemorybyaparticularCPU. Juliaprovidesamultiprocessingenvironmentbasedonmessagepassing

to allow programs to run onmultiple processes in separatememory domains at once.

Julia’s implementation of message passing is different from other environments such asMPI 1. Communication in Julia

is generally ”one-sided”, meaning that the programmer needs to explicitly manage only one process in a two-process

operation. Furthermore, these operations typically do not look like ”message send” and ”message receive” but rather

resemble higher-level operations like calls to user functions.

Parallel programming in Julia is built on two primitives: remote references and remote calls. A remote reference is an

object that can be used from any process to refer to an object stored on a particular process. A remote call is a request

by one process to call a certain function on certain arguments on another (possibly the same) process.

Remote references come in two flavors: and .

A remote call returns a to its result. Remote calls return immediately; the process that made the call proceeds to its

next operationwhile the remote call happens somewhere else. You canwait for a remote call to finish by calling on the

returned , and you can obtain the full value of the result using .

On the other hand, s are rewritable. For example, multiple processes can co-ordinate their processing by referencing

the same remote .

Each process has an associated identifier. The process providing the interactive Julia prompt always has an equal to

1. The processes used by default for parallel operations are referred to as ”workers”. When there is only one process,

process 1 is considered a worker. Otherwise, workers are considered to be all processes other than process 1.

Let’s try this out. Starting with provides worker processes on the local machine. Generally it makes sense for to equal

the number of CPU cores on themachine.
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https://www.akkadia.org/drepper/cpumemory.pdf
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Thefirst argument to is the function to call. Most parallel programming in Julia does not reference specific processes or

thenumberof processes available, but is considereda low-level interfaceprovidingfiner control. The secondargument

to is the of the process that will do the work, and the remaining arguments will be passed to the function being called.

As you can see, in the first linewe asked process 2 to construct a 2-by-2 randommatrix, and in the second linewe asked

it to add 1 to it. The result of both calculations is available in the two futures, and . The macro evaluates the expression

in the second argument on the process specified by the first argument.

Occasionally you might want a remotely-computed value immediately. This typically happens when you read from a

remote object to obtain data needed by the next local operation. The function exists for this purpose. It is equivalent

to but is more efficient.

Remember that is equivalent to , so this call fetches the first element of the future .

The syntax of is not especially convenient. The macro makes things easier. It operates on an expression rather than a

function, and picks where to do the operation for you:

Note thatweused insteadof . This is becausewedonot knowwhere the codewill run, so in general a might be required

tomove to theprocess doing the addition. In this case, is smart enough toperform the computationon theprocess that

owns , so the will be a no-op (no work is done).

(It is worth noting that is not built-in but defined in Julia as amacro. It is possible to define your own such constructs.)

An important thing to remember is that, once fetched, a will cache its value locally. Further calls donot entail a network

hop. Once all referencing s have fetched, the remote stored value is deleted.

25.1 Code Availability and Loading Packages

Your codemust be available on any process that runs it. For example, type the following into the Julia prompt:
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Process 1 knew about the function , but process 2 did not.

Most commonly you’ll be loading code from files or packages, and you have a considerable amount of flexibility in con-

trolling which processes load code. Consider a file, , containing the following code:

Starting Julia with , you can use this to verify the following:

• loads the file on just a single process (whichever one executes the statement).

• causes the module to be loaded on all processes; however, the module is brought into scope only on the one

executing the statement.

• As long as is loaded on process 2, commands like

allow you to store an object of type on process 2 even if is not in scope on process 2.

You can force a command to run on all processes using the macro. For example, can also be used to directly define a

function on all processes:

A file can also be preloaded onmultiple processes at startup, and a driver script can be used to drive the computation:
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The Julia process running the driver script in the example above has an equal to 1, just like a process providing an

interactive prompt.

The base Julia installation has in-built support for two types of clusters:

• A local cluster specifiedwith the option as shown above.

• A cluster spanning machines using the option. This uses a passwordless login to start Julia worker processes

(from the same path as the current host) on the specifiedmachines.

Functions , , , and others are available as a programmatic means of adding, removing and querying the processes in a

cluster.

Note that workers do not run a startup script, nor do they synchronize their global state (such as global variables, new

method definitions, and loadedmodules) with any of the other running processes.

Other types of clusters can be supported by writing your own custom , as described below in the ClusterManagers

section.

25.2 DataMovement

Sending messages and moving data constitute most of the overhead in a parallel program. Reducing the number of

messages and the amount of data sent is critical to achieving performance and scalability. To this end, it is important to

understand the datamovement performed by Julia’s various parallel programming constructs.

can be considered an explicit data movement operation, since it directly asks that an object be moved to the local ma-

chine. (and a few related constructs) also moves data, but this is not as obvious, hence it can be called an implicit data

movement operation. Consider these two approaches to constructing and squaring a randommatrix:

Method 1:

Method 2:

The difference seems trivial, but in fact is quite significant due to the behavior of . In the first method, a randommatrix

is constructed locally, then sent to another process where it is squared. In the secondmethod, a randommatrix is both

constructed and squared on another process. Therefore the secondmethod sendsmuch less data than the first.

In this toyexample, the twomethodsareeasy todistinguishandchoose from. However, in a real programdesigningdata

movement might require more thought and likely some measurement. For example, if the first process needs matrix

then the first methodmight be better. Or, if computing is expensive and only the current process has it, thenmoving it
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to another process might be unavoidable. Or, if the current process has very little to do between the and , it might be

better to eliminate the parallelism altogether. Or imagine is replaced with a more expensive operation. Then it might

make sense to add another statement just for this step.
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Global variables

Expressions executed remotely via , or closures specified for remote execution using may refer to global variables.

Global bindings under module are treated a little differently compared to global bindings in other modules. Consider

the following code snippet:

In this case is a function that takes 2D array as a parameter, andMUSTbe defined in the remote process. You could use

any function other than as long as it is defined in the remote process and accepts the appropriate parameter.

Note that is a global variable defined in the local workspace. Worker 2 does not have a variable called under . The act

of shipping the closure to worker 2 results in being defined on 2. continues to exist on worker 2 even after the call

returns. Remote calls with embedded global references (under module only) manage globals as follows:

• New global bindings are created on destination workers if they are referenced as part of a remote call.

• Global constants are declared as constants on remote nodes too.

• Globals are re-sent to a destination worker only in the context of a remote call, and then only if its value has

changed. Also, the cluster does not synchronize global bindings across nodes. For example:

Executing the above snippet results in onworker 2 having a different value from onworker 3, while the value of

on node 1 is set to .

As you may have realized, while memory associated with globals may be collected when they are reassigned on the

master, no such action is taken on the workers as the bindings continue to be valid. can be used to manually reassign

specific globals on remote nodes to once they are no longer required. This will release any memory associated with

them as part of a regular garbage collection cycle.

Thus programs should be careful referencing globals in remote calls. In fact, it is preferable to avoid them altogether if

possible. If youmust reference globals, consider using blocks to localize global variables.

For example:
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As can be seen, global variable is defined on worker 2, but is captured as a local variable and hence a binding for does

not exist on worker 2.

26.1 ParallelMap and Loops

Fortunately, many useful parallel computations do not require data movement. A common example is a Monte Carlo

simulation,wheremultiple processes canhandle independent simulation trials simultaneously. We canuse toflip coins

on two processes. First, write the following function in :

The function simply adds together random bits. Here is how we can perform some trials on two machines, and add

together the results:

This example demonstrates a powerful and often-used parallel programming pattern. Many iterations run indepen-

dently over several processes, and then their results are combined using some function. The combination process is

called a reduction, since it is generally tensor-rank-reducing: a vector of numbers is reduced to a single number, or a

matrix is reduced to a single row or column, etc. In code, this typically looks like the pattern , where is the accumulator,
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is the reduction function, and the are the elements being reduced. It is desirable for to be associative, so that it does

not matter what order the operations are performed in.

Notice that our use of this pattern with can be generalized. We used two explicit statements, which limits the paral-

lelism to two processes. To run on any number of processes, we can use a parallel for loop, which can be written in Julia

using like this:

This construct implements the pattern of assigning iterations to multiple processes, and combining themwith a speci-

fied reduction (in this case ). The result of each iteration is taken as the value of the last expression inside the loop. The

whole parallel loop expression itself evaluates to the final answer.

Note that although parallel for loops look like serial for loops, their behavior is dramatically different. In particular, the

iterations do not happen in a specified order, andwrites to variables or arrayswill not be globally visible since iterations

run on different processes. Any variables used inside the parallel loopwill be copied and broadcast to each process.

For example, the following codewill not work as intended:

This codewill not initialize all of , since each process will have a separate copy of it. Parallel for loops like thesemust be

avoided. Fortunately, Shared Arrays can be used to get around this limitation:

Using ”outside” variables in parallel loops is perfectly reasonable if the variables are read-only:

Here each iteration applies to a randomly-chosen sample from a vector shared by all processes.

Asyoucouldsee, thereductionoperatorcanbeomitted if it isnotneeded. In thatcase, the loopexecutesasynchronously,

i.e. it spawns independent tasks on all available workers and returns an array of immediately without waiting for com-

pletion. The caller canwait for the completions at a later point by calling on them, or wait for completion at the end of

the loop by prefixing it with , like .

In some cases no reduction operator is needed, andwemerelywish to apply a function to all integers in some range (or,

more generally, to all elements in some collection). This is another useful operation called parallel map, implemented in

Julia as the function. For example, we could compute the singular values of several large randommatrices in parallel as

follows:
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Julia’s is designed for the casewhere each function call does a large amount ofwork. In contrast, can handle situations

where each iteration is tiny, perhaps merely summing two numbers. Only worker processes are used by both and for

the parallel computation. In case of , the final reduction is done on the calling process.

26.2 SynchronizationWith Remote References

26.3 Scheduling

Julia’s parallel programming platform uses Tasks (aka Coroutines) to switch among multiple computations. Whenever

code performs a communication operation like or , the current task is suspended and a scheduler picks another task to

run. A task is restarted when the event it is waiting for completes.

For many problems, it is not necessary to think about tasks directly. However, they can be used to wait for multiple

events at the same time, which provides for dynamic scheduling. In dynamic scheduling, a programdecideswhat to com-

puteorwhere to compute it basedonwhenother jobsfinish. This is needed forunpredictableorunbalancedworkloads,

where wewant to assignmore work to processes only when they finish their current tasks.

As an example, consider computing the singular values of matrices of different sizes:

If one process handles both 800×800 matrices and another handles both 600×600 matrices, we will not get as much

scalability aswe could. The solution is tomake a local task to ”feed”work to each processwhen it completes its current

task. For example, consider a simple implementation:
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is similar to , but only runs tasks on the local process. We use it to create a ”feeder” task for each process. Each task

picks the next index that needs to be computed, then waits for its process to finish, then repeats until we run out of

indexes. Note that the feeder tasks do not begin to execute until the main task reaches the end of the block, at which

point it surrenders control and waits for all the local tasks to complete before returning from the function. The feeder

tasks are able to share state via because they all run on the same process. No locking is required, since the threads are

scheduled cooperatively and not preemptively. This means context switches only occur at well-defined points: in this

case, when is called.

26.4 Channels

The section on s in Control Flow discussed the execution of multiple functions in a co-operativemanner. s can be quite

useful to pass data between running tasks, particularly those involving I/O operations.

Examples of operations involving I/O include reading/writing to files, accessing web services, executing external pro-

grams, etc. In all these cases, overall execution time can be improved if other tasks can be run while a file is being read,

or while waiting for an external service/program to complete.

A channel can be visualized as a pipe, i.e., it has a write end and read end.

• Multiple writers in different tasks can write to the same channel concurrently via calls.

• Multiple readers in different tasks can read data concurrently via calls.

• As an example:

• Channels are created via the constructor. The channel will only hold objects of type . If the type is not specified,

the channel can hold objects of any type. refers to the maximum number of elements that can be held in the

channel at any time. For example, creates a channel that can hold a maximum of 32 objects of any type. A can

hold up to 64 objects of at any time.

• If a is empty, readers (on a call) will block until data is available.
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• If a is full, writers (on a call) will block until space becomes available.

• tests for the presence of any object in the channel, while waits for an object to become available.

• A is in an open state initially. This means that it can be read from and written to freely via and calls. closes a .

On a closed , will fail. For example:

• and (which retrieves but does not remove the value) on a closed channel successfully return any existing values

until it is emptied. Continuing the above example:

A can be used as an iterable object in a loop, in which case the loop runs as long as the has data or is open. The loop

variable takes on all values added to the . The loop is terminated once the is closed and emptied.

For example, the following would cause the loop to wait for more data:

while this will return after reading all data:
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Consider a simple example using channels for inter-task communication. We start 4 tasks to process data from a single

channel. Jobs, identified by an id (), are written to the channel. Each task in this simulation reads a , waits for a random

amout of time andwrites back a tuple of and the simulated time to the results channel. Finally all the are printed out.
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The current version of Julia multiplexes all tasks onto a single OS thread. Thus, while tasks involving I/O operations

benefit from parallel execution, compute bound tasks are effectively executed sequentially on a single OS thread. Fu-

ture versions of Julia may support scheduling of tasks onmultiple threads, in which case compute bound tasks will see

benefits of parallel execution too.

26.5 Remote References and AbstractChannels

Remote references always refer to an implementation of an .

A concrete implementation of an (like ), is required to implement , , , and . The remote object referred to by a is stored

in a , i.e., a of size 1 capable of holding objects of type.

, which is rewritable, can point to any type and size of channels, or any other implementation of an .

The constructor allows us to construct references to channels holding more than one value of a specific type. is a

function executed on and it must return an .

For example, , will return a reference to a channel of type and size 10. The channel exists on worker .

Methods , , , and on a are proxied onto the backing store on the remote process.

can thus be used to refer to user implemented objects. A simple example of this is provided in which uses a dictionary

as its remote store.

26.6 Channels and RemoteChannels

• A is local to a process. Worker 2 cannot directly refer to a onworker 3 and vice-versa. A , however, can put and

take values across workers.

• A can be thought of as a handle to a .

• The process id, , associated with a identifies the process where the backing store, i.e., the backing exists.

• Any process with a reference to a can put and take items from the channel. Data is automatically sent to (or

retrieved from) the process a is associated with.

• Serializing a also serializes any data present in the channel. Deserializing it therefore effectively makes a copy

of the original object.

• On the other hand, serializing a only involves the serialization of an identifier that identifies the location and

instance of referred to by the handle. A deserialized object (on any worker), therefore also points to the same

backing store as the original.

The channels example from above can bemodified for interprocess communication, as shown below.

We start 4 workers to process a single remote channel. Jobs, identified by an id (), are written to the channel. Each

remotely executing task in this simulation reads a , waits for a random amount of time and writes back a tuple of , time

taken and its own to the results channel. Finally all the are printed out on themaster process.
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26.7 Remote References andDistributed Garbage Collection

Objects referred to by remote references can be freed only when all held references in the cluster are deleted.

The node where the value is stored keeps track of which of the workers have a reference to it. Every time a or a (un-

fetched) is serialized to aworker, the node pointed to by the reference is notified. And every time a or a (unfetched) is

garbage collected locally, the node owning the value is again notified. This is implemented in an internal cluster aware

serializer. Remote references are only valid in the context of a running cluster. Serializing and deserializing references

to and from regular objects is not supported.

Thenotificationsaredoneviasendingof ”tracking”messages–an”addreference”messagewhenareference is serialized

to a different process and a ”delete reference” message when a reference is locally garbage collected.

Since s are write-once and cached locally, the act of ing a also updates reference tracking information on the node

owning the value.
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The nodewhich owns the value frees it once all references to it are cleared.

With s, serializing an already fetched to a different node also sends the value since the original remote storemay have

collected the value by this time.

It is important to note thatwhen an object is locally garbage collected depends on the size of the object and the current

memory pressure in the system.

In case of remote references, the size of the local reference object is quite small, while the value stored on the remote

node may be quite large. Since the local object may not be collected immediately, it is a good practice to explicitly call

on local instances of a , or on unfetched s. Since calling on a also removes its reference from the remote store, this is

not required on fetched s. Explicitly calling results in an immediate message sent to the remote node to go ahead and

remove its reference to the value.

Once finalized, a reference becomes invalid and cannot be used in any further calls.

26.8 Shared Arrays

Shared Arrays use system shared memory to map the same array across many processes. While there are some simi-

larities to a , the behavior of a is quite different. In a , each process has local access to just a chunk of the data, and no

two processes share the same chunk; in contrast, in a each ”participating” process has access to the entire array. A is

a good choice when you want to have a large amount of data jointly accessible to two or more processes on the same

machine.

indexing (assignment and accessing values) works just as with regular arrays, and is efficient because the underlying

memory is available to the local process. Therefore, most algorithmswork naturally on s, albeit in single-processmode.

In caseswhereanalgorithm insists onan input, theunderlying array canbe retrieved froma bycalling . Forother types,

just returns the object itself, so it’s safe to use on any -type object.

The constructor for a shared array is of the form:

which creates an -dimensional shared arrayof a bits type and size across theprocesses specifiedby . Unlike distributed

arrays, a shared array is accessible only from those participating workers specified by the named argument (and the

creating process too, if it is on the same host).

If an function, of signature , is specified, it is called on all the participating workers. You can specify that each worker

runs the function on a distinct portion of the array, thereby parallelizing initialization.

Here’s a brief example:

https://github.com/JuliaParallel/DistributedArrays.jl
https://github.com/JuliaParallel/DistributedArrays.jl
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provides disjoint one-dimensional ranges of indexes, and is sometimes convenient for splitting up tasks among pro-

cesses. You can, of course, divide the work anyway youwish:

Since all processes have access to the underlying data, you do have to be careful not to set up conflicts. For example:

would result in undefined behavior. Because each process fills the entire array with its own , whichever process is the

last to execute (for any particular element of ) will have its retained.

As amore extended and complex example, consider running the following ”kernel” in parallel:

In this case, if we try to split up the work using a one-dimensional index, we are likely to run into trouble: if is near the

end of the block assigned to one worker and is near the beginning of the block assigned to another, it’s very likely that

will not be ready at the time it’s needed for computing . In such cases, one is better off chunking the array manually.

Let’s split along the second dimension. Define a function that returns the indexes assigned to this worker:

Next, define the kernel:
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We also define a convenience wrapper for a implementation

Now let’s compare three different versions, one that runs in a single process:

one that uses :

and one that delegates in chunks:

If we create s and time these functions, we get the following results (with ):

Run the functions once to JIT-compile and them on the second run:
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Thebiggest advantage of is that itminimizes traffic among theworkers, allowing each to compute for an extended time

on the assigned piece.

26.9 Shared Arrays andDistributed Garbage Collection

Like remote references, shared arrays are also dependent on garbage collection on the creating node to release ref-

erences from all participating workers. Code which creates many short lived shared array objects would benefit from

explicitly finalizing these objects as soon as possible. This results in both memory and file handles mapping the shared

segment being released sooner.

26.10 ClusterManagers

The launching, management and networking of Julia processes into a logical cluster is done via cluster managers. A is

responsible for

• launching worker processes in a cluster environment

• managing events during the lifetime of each worker

• optionally, providing data transport

A Julia cluster has the following characteristics:

• The initial Julia process, also called the , is special and has an of 1.

• Only the process can add or removeworker processes.

• All processes can directly communicate with each other.

Connections betweenworkers (using the in-built TCP/IP transport) is established in the followingmanner:

• is called on themaster process with a object.

• calls the appropriate methodwhich spawns required number of worker processes on appropriate machines.

• Eachworker starts listening on a free port andwrites out its host and port information to .

• The cluster manager captures the of each worker andmakes it available to themaster process.
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• Themaster process parses this information and sets up TCP/IP connections to eachworker.

• Every worker is also notified of other workers in the cluster.

• Eachworker connects to all workers whose is less than the worker’s own .

• In this way amesh network is established, wherein every worker is directly connected with every other worker.

While the default transport layer uses plain , it is possible for a Julia cluster to provide its own transport.

Julia provides two in-built cluster managers:

• , usedwhen or are called

• , usedwhen is called with a list of hostnames

is used to launch additional workers on the same host, thereby leveragingmulti-core andmulti-processor hardware.

Thus, a minimal cluster manager would need to:

• be a subtype of the abstract

• implement , a method responsible for launching newworkers

• implement , which is called at various events during aworker’s lifetime (for example, sending an interrupt signal)

requires to implement:

As an example let us see how the , themanager responsible for starting workers on the same host, is implemented:

The method takes the following arguments:

• : the cluster manager that is called with
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• : all the keyword arguments passed to

• : the array to append one ormore objects to

• : the condition variable to be notified as andwhenworkers are launched

The method is called asynchronously in a separate task. The termination of this task signals that all requestedworkers

have been launched. Hence the functionMUST exit as soon as all the requested workers have been launched.

Newly launched workers are connected to each other and the master process in an all-to-all manner. Specifying the

command line argument results in the launchedprocesses initializing themselves asworkers and connections being set

up via TCP/IP sockets.

All workers in a cluster share the same cookie as the master. When the cookie is unspecified, i.e, with the option, the

worker tries to read it from its standard input. and both pass the cookie to newly launchedworkers via their standard

inputs.

By default a worker will listen on a free port at the address returned by a call to . A specific address to listen onmay be

specified by optional argument . This is useful for multi-homed hosts.

As an example of a non-TCP/IP transport, an implementationmay choose to useMPI, in which case must NOT be spec-

ified. Instead, newly launchedworkers should call before using any of the parallel constructs.

For every worker launched, the methodmust add a object (with appropriate fields initialized) to

Most of the fields in are used by the inbuilt managers. Custom cluster managers would typically specify only or / :

• If is specified, it is used to read host/port information. A Julia worker prints out its bind address and port at

startup. This allows Julia workers to listen on any free port available instead of requiring worker ports to be

configuredmanually.
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• If is not specified, and are used to connect.

• , and are relevant for launching additional workers from aworker. For example, a clustermanagermay launch a

single worker per node, and use that to launch additional workers.

– with an integer value will launch a total of workers.

– with a value of will launch asmanyworkers as the number of cores on that machine.

– is the name of the executable including the full path.

– should be set to the required command line arguments for newworkers.

• , , and are usedwhen a ssh tunnel is required to connect to the workers from themaster process.

• is provided for custom cluster managers to store their ownworker-specific information.

is called at different times during the worker’s lifetimewith appropriate values:

• with / when aworker is added / removed from the Julia worker pool.

• with when is called. The should signal the appropriate worker with an interrupt signal.

• with for cleanup purposes.

26.11 ClusterManagers with Custom Transports

Replacing the default TCP/IP all-to-all socket connections with a custom transport layer is a little more involved. Each

Julia process has as many communication tasks as the workers it is connected to. For example, consider a Julia cluster

of 32 processes in an all-to-all mesh network:

• Each Julia process thus has 31 communication tasks.

• Each task handles all incomingmessages from a single remote worker in amessage-processing loop.

• Themessage-processing loopwaits on an object (for example, a in the default implementation), reads an entire

message, processes it andwaits for the next one.

• Sending messages to a process is done directly from any Julia task–not just communication tasks–again, via the

appropriate object.

Replacing the default transport requires the new implementation to set up connections to remoteworkers and to pro-

vide appropriate objects that the message-processing loops can wait on. The manager-specific callbacks to be imple-

mented are:

The default implementation (which uses TCP/IP sockets) is implemented as .

should return a pair of objects, one for reading data sent from worker , and the other to write data that needs to be

sent to worker . Custom cluster managers can use an in-memory as the plumbing to proxy data between the custom,

possibly non- transport and Julia’s in-built parallel infrastructure.

A is an in-memory which behaves like an –it is a streamwhich can be handled asynchronously.
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Folder contains an example of using ZeroMQ to connect Julia workers in a star topology with a 0MQ broker in the

middle. Note: The Julia processes are still all logically connected to each other–any worker can message any other

worker directly without any awareness of 0MQbeing used as the transport layer.

When using custom transports:

• Julia workers must NOT be started with . Starting with will result in the newly launched workers defaulting to

the TCP/IP socket transport implementation.

• For every incoming logical connection with a worker, must be called. This launches a new task that handles

reading andwriting of messages from/to the worker represented by the objects.

• MUST be called as part of worker process initialization.

• Field in can be set by the cluster manager when is called. The value of this field is passed in in all callbacks.

Typically, it carries information on how to connect to aworker. For example, the TCP/IP socket transport uses this

field to specify the tuple at which to connect to a worker.

is called to remove aworker from the cluster. On themaster process, the corresponding objectsmust be closed by the

implementation to ensure proper cleanup. The default implementation simply executes an call on the specified remote

worker.

is an example that shows a simple implementation using UNIX domain sockets for cluster setup.

26.12 Network Requirements for LocalManager and SSHManager

Julia clusters are designed to be executed on already secured environments on infrastructure such as local laptops,

departmental clusters, or even the cloud. This section covers network security requirements for the inbuilt and :

• Themaster process does not listen on any port. It only connects out to the workers.

• Each worker binds to only one of the local interfaces and listens on an ephemeral port number assigned by the

OS.

• , used by , by default binds only to the loopback interface. Thismeans thatworkers started later on remote hosts

(or by anyone with malicious intentions) are unable to connect to the cluster. An followed by an will fail. Some

users may need to create a cluster comprising their local system and a few remote systems. This can be done by

explicitly requesting to bind to an external network interface via the keyword argument: .

• , used by , launchesworkers on remote hosts via SSH. By default SSH is only used to launch Juliaworkers. Subse-

quentmaster-worker andworker-worker connections use plain, unencryptedTCP/IP sockets. The remote hosts

must have passwordless login enabled. Additional SSH flags or credentials may be specified via keyword argu-

ment .

• is usefulwhenwewish to use SSHconnections formaster-worker too. A typical scenario for this is a local laptop

running the Julia REPL (i.e., the master) with the rest of the cluster on the cloud, say on Amazon EC2. In this

case only port 22 needs to be opened at the remote cluster coupledwith SSH client authenticated via public key

infrastructure (PKI). Authentication credentials can be supplied via , for example .

In an all-to-all topology (the default), all workers connect to each other via plain TCP sockets. The security policy

on the cluster nodes must thus ensure free connectivity between workers for the ephemeral port range (varies

byOS).

Securing and encrypting all worker-worker traffic (via SSH) or encrypting individual messages can be done via a

customClusterManager.
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26.13 Cluster Cookie

All processes in a cluster share the same cookiewhich, by default, is a randomly generated string on themaster process:

• returns the cookie, while sets it and returns the new cookie.

• All connections are authenticated on both sides to ensure that only workers started by the master are allowed

to connect to each other.

• The cookie may be passed to the workers at startup via argument . If argument is specified without the cookie,

the worker tries to read the cookie from its standard input (STDIN). The STDIN is closed immediately after the

cookie is retrieved.

• ClusterManagerscanretrieve thecookieonthemasterbycalling . Clustermanagersnotusing thedefaultTCP/IP

transport (and hence not specifying ) must call with the same cookie as on themaster.

Note that environments requiring higher levels of security can implement this via a custom . For example, cookies can

be pre-shared and hence not specified as a startup argument.

26.14 Specifying Network Topology (Experimental)

The keyword argument passed to is used to specify how theworkers must be connected to each other:

• , the default: all workers are connected to each other.

• : only the driver process, i.e. 1, has connections to the workers.

• : the method of the cluster manager specifies the connection topology via the fields and in . A worker with a

cluster-manager-provided identity will connect to all workers specified in .

Keyword argument only affects option . If , the cluster starts off with the master connected to all workers. Specific

worker-worker connections are established at the first remote invocation between twoworkers. This helps in reducing

initial resources allocated for intra-cluster communication. Connections are setup depending on the runtime require-

ments of a parallel program. Default value for is .

Currently, sending amessage between unconnectedworkers results in an error. This behaviour, aswith the functional-

ity and interface, should be considered experimental in nature andmay change in future releases.

26.15 Multi-Threading (Experimental)

In addition to tasks, remote calls, and remote references, Julia from forwards will natively support multi-threading.

Note that this section is experimental and the interfaces may change in the future.

Setup

By default, Julia starts up with a single thread of execution. This can be verified by using the command :

The number of threads Julia starts upwith is controlled by an environment variable called .Now, let’s start up Juliawith

4 threads:
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(The above command works on bourne shells on Linux and OSX. Note that if you’re using a C shell on these platforms,

you should use the keyword instead of . If you’re on Windows, start up the command line in the location of and use

instead of .)

Let’s verify there are 4 threads at our disposal.

But we are currently on themaster thread. To check, we use the command

The Macro

Let’s work a simple example using our native threads. Let us create an array of zeros:

Letusoperateon thisarraysimultaneouslyusing4 threads. We’ll haveeach threadwrite its thread ID intoeach location.

Julia supports parallel loops using the macro. This macro is affixed in front of a loop to indicate to Julia that the loop is

a multi-threaded region:

The iteration space is split amongst the threads, after which each threadwrites its thread ID to its assigned locations:
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Note that does not have an optional reduction parameter like .

26.16 @threadcall (Experimental)

All I/O tasks, timers, REPL commands, etc aremultiplexed onto a single OS thread via an event loop. A patched version

of libuv (http://docs.libuv.org/en/v1.x/) provides this functionality. Yield points provide for co-operatively scheduling

multiple tasksonto the sameOS thread. I/O tasks and timers yield implicitlywhilewaiting for theevent tooccur. Calling

explicitly allows for other tasks to be scheduled.

Thus, a task executing a effectively prevents the Julia scheduler fromexecuting anyother tasks till the call returns. This

is true for all calls into external libraries. Exceptions are calls into custom C code that call back into Julia (which may

then yield) or C code that calls (C equivalent of ).

Note that while Julia code runs on a single thread (by default), libraries used by Julia may launch their own internal

threads. For example, the BLAS librarymay start as many threads as there are cores on amachine.

The macro addresses scenarios where we do not want a to block the main Julia event loop. It schedules a C function

for execution in a separate thread. A threadpool with a default size of 4 is used for this. The size of the threadpool is

controlled via environment variable . While waiting for a free thread, and during function execution once a thread is

available, the requesting task (on the main Julia event loop) yields to other tasks. Note that does not return till the

execution is complete. From a user point of view, it is therefore a blocking call like other Julia APIs.

It is very important that the called function does not call back into Julia.

may be removed/changed in future versions of Julia.

1In this context,MPI refers to theMPI-1 standard. BeginningwithMPI-2, theMPI standards committee introduced anewset of communication

mechanisms, collectively referred to as Remote Memory Access (RMA). The motivation for adding RMA to the MPI standard was to facilitate one-

sided communication patterns. For additional information on the latestMPI standard, see http://mpi-forum.org/docs.

http://docs.libuv.org/en/v1.x/
http://mpi-forum.org/docs/
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Date andDateTime

The module provides two types forworkingwith dates: and , representing day andmillisecond precision, respectively;

bothare subtypesof theabstract . Themotivation fordistinct types is simple: someoperationsaremuchsimpler, both in

termsofcodeandmental reasoning,whenthecomplexitiesofgreaterprecisiondon’thavetobedealtwith. Forexample,

since the type only resolves to the precision of a single date (i.e. no hours, minutes, or seconds), normal considerations

for time zones, daylight savings/summer time, and leap seconds are unnecessary and avoided.

Both and are basically immutable wrappers. The single field of either type is actually a type, which represents a

continuously increasing machine timeline based on the UT second 1. The type is not aware of time zones (naive, in

Python parlance), analogous to a LocalDateTime in Java 8. Additional time zone functionality can be added through the

TimeZones.jl package, which compiles the IANA time zone database. Both and are based on the ISO 8601 standard,

which follows the proleptic Gregorian calendar. One note is that the ISO 8601 standard is particular about BC/BCE

dates. In general, the last day of the BC/BCE era, 1-12-31 BC/BCE, was followed by 1-1-1 AD/CE, thus no year zero

exists. The ISO standard, however, states that 1 BC/BCE is year zero, so is the day before , and year (yes, negative one

for the year) is 2 BC/BCE, year is 3 BC/BCE, etc.

27.1 Constructors

and types can be constructed by integer or types, by parsing, or through adjusters (more on those later):

1The notion of the UT second is actually quite fundamental. There are basically two different notions of time generally accepted, one based on

the physical rotation of the earth (one full rotation = 1 day), the other based on the SI second (a fixed, constant value). These are radically different!

Think about it, a ”UT second”, as defined relative to the rotation of the earth, may have a different absolute length depending on the day! Anyway, the

fact that and are based onUT seconds is a simplifying, yet honest assumption so that things like leap seconds and all their complexity can be avoided.

This basis of time is formally called UT or UT1. Basing types on the UT second basically means that every minute has 60 seconds and every day has

24 hours and leads tomore natural calculations whenworking with calendar dates.

267

https://github.com/JuliaTime/TimeZones.jl/
http://www.iana.org/time-zones
https://en.wikipedia.org/wiki/ISO_8601
https://en.wikipedia.org/wiki/Universal_Time
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or parsing is accomplished by the use of format strings. Format stringswork by the notion of defining delimitedor fixed-

width ”slots” that contain a period to parse and passing the text to parse and format string to a or constructor, of the

form or .

Delimited slots are marked by specifying the delimiter the parser should expect between two subsequent periods; so

lets the parser know that between the first and second slots in a date string like , it should find the character. The , , and

characters let the parser knowwhich periods to parse in each slot.

Fixed-width slots are specified by repeating the period character the number of times corresponding to thewidthwith

no delimiter between characters. So would correspond to a date string like . The parser distinguishes a fixed-width slot

by the absence of a delimiter, noting the transition from one period character to the next.

Support for text-form month parsing is also supported through the and characters, for abbreviated and full-length

month names, respectively. By default, only English month names are supported, so corresponds to ”Jan”, ”Feb”, ”Mar”,

etc. And corresponds to ”January”, ”February”, ”March”, etc. Similar to other name=>value mapping functions and ,

custom locales can be loaded by passing in the mapping to the and dicts for abbreviated and full-namemonth names,

respectively.

One note on parsing performance: using the function is fine if only called a few times. If there are many similarly for-

matted date strings to parse however, it is much more efficient to first create a , and pass it instead of a raw format

string.

You can also use the stringmacro. Thismacro creates the object oncewhen themacro is expanded and uses the same

object even if a code snippet is runmultiple times.
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A full suite of parsing and formatting tests and examples is available in .

27.2 Durations/Comparisons

Finding the length of time between two or is straightforward given their underlying representation as and , respec-

tively. The difference between is returned in the number of , and in the number of . Similarly, comparing is a simple

matter of comparing the underlyingmachine instants (which in turn compares the internal values).

https://github.com/JuliaLang/julia/blob/master/test/dates/io.jl
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27.3 Accessor Functions

Because the and types are stored as single values, date parts or fields can be retrieved through accessor functions.

The lowercase accessors return the field as an integer:

While propercase return the same value in the corresponding type:

Compoundmethods are provided, as theyprovide ameasureof efficiency ifmultiple fields are neededat the same time:

Onemay also access the underlying or integer value:
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27.4 Query Functions

Query functions provide calendrical information about a . They include information about the day of the week:

Month of the year:

As well as information about the ’s year and quarter:

The and methods can also take an optional keyword that can be used to return the name of the day or month of the

year for other languages/locales. There are also versions of these functions returning the abbreviated names, namely

and . First themapping is loaded into the variable:
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The abovementioned functions can then be used to perform the queries:

Since the abbreviated versions of the days are not loaded, trying to use the function will error.

27.5 TimeType-Period Arithmetic

It’s good practice when using any language/date framework to be familiar with how date-period arithmetic is handled

as there are some tricky issues to deal with (thoughmuch less so for day-precision types).

The module approach tries to follow the simple principle of trying to change as little as possiblewhendoing arithmetic.

This approach is also often known as calendrical arithmetic or what you would probably guess if someone were to ask

you the same calculation in a conversation. Why all the fuss about this? Let’s take a classic example: add 1 month to

January 31st, 2014. What’s the answer? Javascriptwill sayMarch 3 (assumes 31 days). PHP saysMarch 2 (assumes 30

days). The fact is, there is no right answer. In the module, it gives the result of February 28th. How does it figure that

out? I like to think of the classic 7-7-7 gambling game in casinos.

Now just imagine that instead of 7-7-7, the slots are Year-Month-Day, or in our example, 2014-01-31. When you ask to

add1month to this date, themonth slot is incremented, sonowwehave2014-02-31. Then thedaynumber is checked if

it is greater than the last valid dayof thenewmonth; if it is (as in the case above), thedaynumber is adjusteddown to the

last validday (28). What are the ramificationswith this approach? Goaheadandaddanothermonth toourdate, . What?

Were you expecting the last day of March? Nope, sorry, remember the 7-7-7 slots. As few slots as possible are going

to change, so we first increment the month slot by 1, 2014-03-28, and boom, we’re done because that’s a valid date.

On the other hand, if we were to add 2 months to our original date, 2014-01-31, then we end up with 2014-03-31, as

expected. The other ramification of this approach is a loss in associativity when a specific ordering is forced (i.e. adding

things in different orders results in different outcomes). For example:

https://codeblog.jonskeet.uk/2010/12/01/the-joys-of-date-time-arithmetic/
http://www.markhneedham.com/blog/2009/01/07/javascript-add-a-month-to-a-date/
http://stackoverflow.com/questions/5760262/php-adding-months-to-a-date-while-not-exceeding-the-last-day-of-the-month
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What’s going on there? In the first line, we’re adding 1 day to January 29th, which results in 2014-01-30; then we add

1month, so we get 2014-02-30, which then adjusts down to 2014-02-28. In the second example, we add 1month first,

where we get 2014-02-29, which adjusts down to 2014-02-28, and then add 1 day, which results in 2014-03-01. One

design principle that helps in this case is that, in the presence ofmultiple Periods, the operations will be ordered by the

Periods’ types, not their value or positional order; this means will always be added first, then , then , etc. Hence the

following does result in associativity and JustWorks:

Tricky? Perhaps. What is an innocent user to do? The bottom line is to be aware that explicitly forcing a certain as-

sociativity, when dealing withmonths, may lead to some unexpected results, but otherwise, everything should work as

expected. Thankfully, that’s pretty much the extent of the odd cases in date-period arithmetic when dealing with time

in UT (avoiding the ”joys” of dealing with daylight savings, leap seconds, etc.).

As a bonus, all period arithmetic objects work directly with ranges:

27.6 Adjuster Functions

As convenient as date-period arithmetics are, often the kinds of calculations needed on dates take on a calendrical or

temporalnature rather thanafixednumberofperiods. Holidaysareaperfectexample;most followrules suchas ”Memo-

rial Day = Last Monday of May”, or ”Thanksgiving = 4th Thursday of November”. These kinds of temporal expressions
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deal with rules relative to the calendar, like first or last of the month, next Tuesday, or the first and thirdWednesdays,

etc.

The module provides the adjusterAPI through several convenientmethods that aid in simply and succinctly expressing

temporal rules. The first group of adjuster methods deal with the first and last of weeks, months, quarters, and years.

They each take a single as input and return or adjust to the first or last of the desired period relative to the input.

The next two higher-ordermethods, , and , generalizeworkingwith temporal expressions by taking a as first argument,

along with a starting . A is just a function, usually anonymous, that takes a single as input and returns a , indicating a

satisfied adjustment criterion. For example:

This is useful with the do-block syntax for more complex temporal expressions:

The method can be used to obtain all valid dates/moments in a specified range:
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Additional examples and tests are available in .

27.7 Period Types

Periods are a human view of discrete, sometimes irregular durations of time. Consider 1 month; it could represent, in

days, a value of 28, 29, 30, or 31 depending on the year andmonth context. Or a year could represent 365 or 366 days

in the case of a leap year. types are simple wrappers and are constructed by wrapping any convertible type, i.e. or .

Arithmetic between of the same type behave like integers, and limited arithmetic is available.

27.8 Rounding

and values can be rounded to a specified resolution (e.g., 1 month or 15minutes) with , , or :

https://github.com/JuliaLang/julia/blob/master/test/dates/adjusters.jl
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Unlike thenumeric method,whichbreaks ties toward theevennumberbydefault, the methoduses the roundingmode.

(It’s difficult to guesswhat breaking ties to nearest ”even” would entail.) Further details on the available s can be found

in the API reference.

Roundingshouldgenerallybehaveasexpected, but therearea fewcases inwhich theexpectedbehaviour isnotobvious.

Rounding Epoch

Inmany cases, the resolution specified for rounding (e.g., ) divides evenly into the next largest period (in this case, ). But

rounding behaviour in cases in which this is not true may lead to confusion. What is the expected result of rounding a

to the nearest 10 hours?

That may seem confusing, given that the hour (12) is not divisible by 10. The reason that was chosen is that it is

17,676,660 hours after , and 17,676,660 is divisible by 10.

As Julia and values are represented according to the ISO 8601 standard, was chosen as base (or ”rounding epoch”)

from which to begin the count of days (and milliseconds) used in rounding calculations. (Note that this differs slightly

from Julia’s internal representation of s using Rata Die notation; but since the ISO 8601 standard is most visible to the

end user, was chosen as the rounding epoch instead of the used internally tominimize confusion.)

The only exception to the use of as the rounding epoch is when rounding to weeks. Rounding to the nearest week will

always return aMonday (the first day of theweek as specified by ISO8601). For this reason, we use (the first day of the

first week of year 0000, as defined by ISO 8601) as the base when rounding to a number of weeks.

Here is a related case inwhich the expected behaviour is not necessarily obvious: What happenswhenwe round to the

nearest , where is a type? In some cases (specifically, when ) the answer is clear:

This seems obvious, because two of each of these periods still divides evenly into the next larger order period. But in

the case of twomonths (which still divides evenly into one year), the answermay be surprising:

Why round to the first day in July, even though it ismonth 7 (an odd number)? The key is thatmonths are 1-indexed (the

first month is assigned 1), unlike hours, minutes, seconds, andmilliseconds (the first of which are assigned 0).

Thismeans that rounding a to anevenmultiple of seconds,minutes, hours, or years (because the ISO8601specification

includes a year zero) will result in a with an even value in that field, while rounding a to an evenmultiple ofmonthswill

result in themonthsfield having anoddvalue. Becausebothmonths andyearsmay contain an irregular numberof days,

whether rounding to an even number of days will result in an even value in the days field is uncertain.

See the API reference for additional information onmethods exported from the module.
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InteractingWith Julia

Julia comeswitha full-featured interactive command-lineREPL (read-eval-print loop)built into the executable. In addi-

tion to allowing quick and easy evaluation of Julia statements, it has a searchable history, tab-completion, many helpful

keybindings, and dedicated help and shell modes. The REPL can be started by simply calling with no arguments or

double-clicking on the executable:

To exit the interactive session, type – the control key together with the key on a blank line – or type followed by the

return or enter key. The REPL greets youwith a banner and a prompt.

28.1 The different promptmodes

The Julianmode

The REPL has four main modes of operation. The first and most common is the Julian prompt. It is the default mode

of operation; each new line initially starts with . It is here that you can enter Julia expressions. Hitting return or enter

after a complete expression has been enteredwill evaluate the entry and show the result of the last expression.

There are a number useful features unique to interactive work. In addition to showing the result, the REPL also binds

the result to the variable . A trailing semicolon on the line can be used as a flag to suppress showing the result.
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In Juliamode, theREPL supports something called prompt pasting. This activateswhenpasting text that startswith into

the REPL. In that case, only expressions startingwith are parsed, others are removed. Thismakes it is possible to paste

a chunk of code that has been copied from a REPL session without having to scrub away prompts and outputs. This

feature is enabled by default but can be disabled or enabled atwill with . If it is enabled, you can try it out by pasting the

codeblock above this paragraph straight into theREPL. This featuredoesnotworkon the standardWindows command

prompt due to its limitation at detecting when a paste occurs.

Helpmode

When the cursor is at the beginning of the line, the prompt can be changed to a helpmode by typing . Julia will attempt

to print help or documentation for anything entered in helpmode:

Macros, types and variables can also be queried:

Helpmode can be exited by pressing backspace at the beginning of the line.

Shell mode

Just ashelpmode isuseful forquickaccess todocumentation, another commontask is touse the systemshell toexecute

systemcommands. Just as enteredhelpmodewhenat thebeginningof the line, a semicolon ()will enter the shellmode.

And it can be exited by pressing backspace at the beginning of the line.
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Searchmodes

In all of the abovemodes, the executed lines get saved to a history file, which canbe searched. To initiate an incremental

search through the previous history, type – the control key together with the key. The prompt will change to , and as

you type the search query will appear in the quotes. The most recent result that matches the query will dynamically

update to the right of the colon asmore is typed. To find an older result using the same query, simply type again.

Just as is a reverse search, is a forward search, with the prompt . The twomay be used in conjunction with each other

tomove through the previous or next matching results, respectively.

28.2 Key bindings

The Julia REPL makes great use of key bindings. Several control-key bindings were already introduced above ( to exit,

and for searching), but there are many more. In addition to the control-key, there are also meta-key bindings. These

varymore by platform, butmost terminals default to using alt- or option- held downwith a key to send themeta-key (or

can be configured to do so).

Customizing keybindings

Julia’s REPL keybindingsmaybe fully customized to a user’s preferences by passing a dictionary to . The keys of this dic-

tionarymaybe characters or strings. Thekey refers to thedefault action. Control plus character bindings are indicated

with . Meta plus canbewritten . The values of the customkeymapmust be (indicating that the input should be ignored)

or functions that accept the signature . The function must be called before the REPL is initialized, by registering the

operation with . For example, to bind the up and down arrow keys to move through history without prefix search, one

could put the following code in :

Users should refer to to discover the available actions on key input.

28.3 Tab completion

In both the Julian andhelpmodesof theREPL, one canenter thefirst fewcharacters of a functionor typeand thenpress

the tab key to get a list all matches:
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Keybinding Description

Program control  

Exit (when buffer is empty)

Interrupt or cancel

Clear console screen

Return/Enter, New line, executing if it is complete

meta-Return/Enter Insert new line without executing it

or Enter help or shell mode (when at start of a line)

, Incremental history search, described above

Cursormovement  

Right arrow, Move right one character

Left arrow, Move left one character

Home, Move to beginning of line

End, Move to end of line

Change to the previous or next history entry

Change to the next history entry

Up arrow Move up one line (or to the previous history entry)

Down arrow Move down one line (or to the next history entry)

Page-up Change to the previous history entry that matches the text before the cursor

Page-down Change to the next history entry that matches the text before the cursor

Move right oneword

Move left one word

Change to the first history entry

Change to the last history entry

Editing  

Backspace, Delete the previous character

Delete, Forward delete one character (when buffer has text)

meta-Backspace Delete the previous word

Forward delete the next word

Delete previous text up to the nearest whitespace

”Kill” to end of line, placing the text in a buffer

”Yank” insert the text from the kill buffer

Transpose the characters about the cursor

Write a number in REPL and press to open editor at corresponding stackframe ormethod

The tab key can also be used to substitute LaTeX math symbols with their Unicode equivalents, and get a list of LaTeX

matches as well:
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A full list of tab-completions can be found in the Unicode Input section of themanual.

Completion of paths works for strings and julia’s shell mode:

Tab completion can help with investigation of the available methodsmatching the input arguments:

Keywords are also displayed in the suggestedmethods, see second line after where and are keyword arguments:
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The completionof themethodsuses type inference and can therefore see if the argumentsmatch even if the arguments

are output from functions. The function needs to be type stable for the completion to be able to remove non-matching

methods.

Tab completion can also help completing fields:

Fields for output from functions can also be completed:

The completion of fields for output from functions uses type inference, and it can only suggest fields if the function is

type stable.

28.4 Customizing Colors

The colors used by Julia and the REPL can be customized, as well. To change the color of the Julia prompt you can add

something like the following to your file, which is to be placed inside your home directory:

The available color keys can be seen by typing in the help mode of the REPL. In addition, the integers 0 to 255 can be

used as color keys for terminals with 256 color support.

You can also change the colors for the help and shell prompts and input and answer text by setting the appropriate field

of in the function above (respectively, , , , and ). For the latter two, be sure that the field is also set to false.

It is also possible to apply boldface formatting by using as a color. For instance, to print answers in boldface font, one

can use the following as a :

You can also customize the color used to render warning and informational messages by setting the appropriate envi-

ronment variables. For instance, to render error, warning, and informationalmessages respectively inmagenta, yellow,

and cyan you can add the following to your file:



Chapter 29

Running External Programs

Julia borrows backtick notation for commands from the shell, Perl, and Ruby. However, in Julia, writing

differs in several aspects from the behavior in various shells, Perl, or Ruby:

• Instead of immediately running the command, backticks create a object to represent the command. You can use

this object to connect the command to others via pipes, run it, and read or write to it.

• When the command is run, Julia does not capture its output unless you specifically arrange for it to. Instead, the

output of the command by default goes to as it would using ’s call.

• The command is never run with a shell. Instead, Julia parses the command syntax directly, appropriately inter-

polating variables and splitting onwords as the shellwould, respecting shell quoting syntax. The command is run

as ’s immediate child process, using and calls.

Here’s a simple example of running an external program:

The is the output of the command, sent to . The runmethod itself returns , and throws an if the external command fails

to run successfully.

If youwant to read the output of the external command, can be used instead:
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More generally, you can use to read from or write to an external command.

The program name and the individual arguments in a command can be accessed and iterated over as if the command

were an array of strings:

29.1 Interpolation

Suppose youwant to do something a bit more complicated and use the name of a file in the variable as an argument to

a command. You can use for interpolationmuch as youwould in a string literal (see Strings):

A common pitfall when running external programs via a shell is that if a file name contains characters that are special to

the shell, they may cause undesirable behavior. Suppose, for example, rather than , we wanted to sort the contents of

the file . Let’s try it:

How did the file name get quoted? Julia knows that is meant to be interpolated as a single argument, so it quotes the

word for you. Actually, that is not quite accurate: the value of is never interpreted by a shell, so there’s no need for

actual quoting; the quotes are inserted only for presentation to the user. This will even work if you interpolate a value

as part of a shell word:
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As you can see, the space in the variable is appropriately escaped. But what if youwant to interpolate multiple words?

In that case, just use an array (or any other iterable container):

If you interpolate an array as part of a shell word, Julia emulates the shell’s argument generation:

Moreover, if you interpolate multiple arrays into the same word, the shell’s Cartesian product generation behavior is

emulated:

Since you can interpolate literal arrays, you can use this generative functionality without needing to create temporary

array objects first:
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29.2 Quoting

Inevitably, one wants to write commands that aren’t quite so simple, and it becomes necessary to use quotes. Here’s a

simple example of a Perl one-liner at a shell prompt:

ThePerl expressionneeds tobe in single quotes for two reasons: so that spacesdon’t break theexpression intomultiple

shell words, and so that uses of Perl variables like (yes, that’s the name of a variable in Perl), don’t cause interpolation.

In other instances, youmaywant to use double quotes so that interpolation does occur:

In general, the Julia backtick syntax is carefully designed so that you can just cut-and-paste shell commands as is into

backticks and they will work: the escaping, quoting, and interpolation behaviors are the same as the shell’s. The only

difference is that the interpolation is integrated and aware of Julia’s notion of what is a single string value, and what is

a container for multiple values. Let’s try the above two examples in Julia:

The results are identical, and Julia’s interpolation behavior mimics the shell’s with some improvements due to the fact

that Julia supports first-class iterable objects while most shells use strings split on spaces for this, which introduces

ambiguities. When trying to port shell commands to Julia, try cut and pasting first. Since Julia shows commands to you

before running them, you can easily and safely just examine its interpretation without doing any damage.

29.3 Pipelines

Shell metacharacters, such as , , and , need to be quoted (or escaped) inside of Julia’s backticks:
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This expression invokes the commandwith threewords as arguments: , , and . The result is that a single line is printed:

. How, then, does one construct a pipeline? Instead of using inside of backticks, one uses :

This pipes the output of the command to the command. Of course, this isn’t terribly interesting since there’s only one

line to sort, but we can certainly domuchmore interesting things:

Thisprints thehighestfiveuser IDsonaUNIXsystem. The , and commandsareall spawnedas immediatechildrenof the

current process, with no intervening shell process. Julia itself does thework to setup pipes and connect file descriptors

that is normally done by the shell. Since Julia does this itself, it retains better control and can do some things that shells

cannot.

Julia can runmultiple commands in parallel:

The order of the output here is non-deterministic because the two processes are started nearly simultaneously, and

race tomake the first write to the descriptor they sharewith each other and the parent process. Julia lets you pipe the

output from both of these processes to another program:

In terms of UNIX plumbing, what’s happening here is that a single UNIX pipe object is created and written to by both

processes, and the other end of the pipe is read from by the command.

IO redirection can be accomplished by passing keyword arguments stdin, stdout, and stderr to the function:
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Avoiding Deadlock in Pipelines

When reading andwriting to both ends of a pipeline from a single process, it is important to avoid forcing the kernel to

buffer all of the data.

For example, when reading all of the output from a command, call , not , since the formerwill actively consume all of the

data written by the process, whereas the latter will attempt to store the data in the kernel’s buffers while waiting for a

reader to be connected.

Another common solution is to separate the reader andwriter of the pipeline into separate Tasks:

Complex Example

Thecombinationof ahigh-level programming language, afirst-class commandabstraction, andautomatic setupofpipes

between processes is a powerful one. To give some sense of the complex pipelines that can be created easily, here are

somemore sophisticated examples, with apologies for the excessive use of Perl one-liners:

This is a classic example of a single producer feeding two concurrent consumers: one process generates lines with the

numbers 0 through 9 on them, while two parallel processes consume that output, one prefixing lines with the letter ”A”,

the other with the letter ”B”. Which consumer gets the first line is non-deterministic, but once that race has been won,

the lines are consumed alternately by one process and then the other. (Setting in Perl causes each print statement to

flush the handle, which is necessary for this example to work. Otherwise all the output is buffered and printed to the

pipe at once, to be read by just one consumer process.)

Here is an evenmore complexmulti-stage producer-consumer example:
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This example is similar to the previous one, except there are two stages of consumers, and the stages have different

latency so they use a different number of parallel workers, to maintain saturated throughput.

We strongly encourage you to try all these examples to see how theywork.
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Calling C and Fortran Code

Thoughmost codecanbewritten in Julia, therearemanyhigh-quality,mature libraries fornumerical computingalready

written in C and Fortran. To allow easy use of this existing code, Julia makes it simple and efficient to call C and Fortran

functions. Julia has a ”no boilerplate” philosophy: functions can be called directly from Julia without any ”glue” code,

codegeneration, or compilation–even fromthe interactiveprompt. This is accomplished just bymaking anappropriate

call with syntax, which looks like an ordinary function call.

Thecode tobecalledmustbeavailable as a shared library. MostCandFortran libraries ship compiledas shared libraries

already, but if you are compiling the code yourself using GCC (or Clang), you will need to use the and options. The

machine instructions generated by Julia’s JIT are the same as a native C call would be, so the resulting overhead is the

same as calling a library function from C code. (Non-library function calls in both C and Julia can be inlined and thus

may have even less overhead than calls to shared library functions. When both libraries and executables are generated

by LLVM, it is possible to performwhole-program optimizations that can even optimize across this boundary, but Julia

does not yet support that. In the future, however, it may do so, yielding even greater performance gains.)

Shared libraries and functions are referenced by a tuple of the form or where is the C-exported function name. refers

to the shared library name: shared libraries available in the (platform-specific) load path will be resolved by name, and

if necessary a direct pathmay be specified.

A function name may be used alone in place of the tuple (just or ). In this case the name is resolved within the current

process. This form can be used to call C library functions, functions in the Julia runtime, or functions in an application

linked to Julia.

By default, Fortran compilers generate mangled names (for example, converting function names to lowercase or up-

percase, often appending an underscore), and so to call a Fortran function via you must pass the mangled identifier

corresponding to the rule followed by your Fortran compiler. Also, when calling a Fortran function, all inputs must be

passed by reference.

Finally, you can use to actually generate a call to the library function. Arguments to are as follows:

1. A pair, whichmust be written as a literal constant,

OR

a function pointer (for example, from ).

2. Return type (see below for mapping the declared C type to Julia)

– This argument will be evaluated at compile-time, when the containingmethod is defined.

3. A tupleof input types. The input typesmustbewrittenasa literal tuple, not a tuple-valuedvariableorexpression.

– This argument will be evaluated at compile-time, when the containingmethod is defined.
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4. The following arguments, if any, are the actual argument values passed to the function.

As a complete but simple example, the following calls the function from the standard C library:

takes no arguments and returns an . One common gotcha is that a 1-tuple must be written with a trailing comma. For

example, to call the function to get a pointer to the value of an environment variable, onemakes a call like this:

Note that the argument type tuple must be written as , rather than . This is because is just the expression surrounded

by parentheses, rather than a 1-tuple containing :

In practice, especially when providing reusable functionality, one generally wraps uses in Julia functions that set up

arguments and then check for errors in whatever manner the C or Fortran function indicates them, propagating to the

Julia caller as exceptions. This is especially important since C and Fortran APIs are notoriously inconsistent about how

they indicate error conditions. For example, the C library function is wrapped in the following Julia function, which is a

simplified version of the actual definition from :

TheC function indicates anerror by returning , but other standardC functions indicate errors in variousdifferentways,

includingby returning -1, 0, 1 andother special values. Thiswrapper throwsanexception clearly indicating theproblem

if the caller tries to get a non-existent environment variable:

https://github.com/JuliaLang/julia/blob/master/base/env.jl
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Here is a slightly more complex example that discovers the local machine’s hostname:

This example first allocates an array of bytes, then calls the C library function to fill the array in with the hostname,

takes a pointer to the hostname buffer, and converts the pointer to a Julia string, assuming that it is a NUL-terminated

C string. It is common for C libraries to use this pattern of requiring the caller to allocate memory to be passed to the

callee and filled in. Allocation ofmemory from Julia like this is generally accomplished by creating an uninitialized array

and passing a pointer to its data to the C function. This is why we don’t use the type here: as the array is uninitialized,

it could contain NUL bytes. Converting to a as part of the checks for contained NUL bytes and could therefore throw

a conversion error.

30.1 Creating C-Compatible Julia Function Pointers

It is possible to pass Julia functions to nativeC functions that accept functionpointer arguments. For example, tomatch

C prototypes of the form:

The function generates the C-compatible function pointer for a call to a Julia function. Arguments to are as follows:

1. A Julia Function

2. Return type

3. A tuple of input types

Only platform-default C calling convention is supported. -generated pointers cannot be used in calls where WINAPI

expects function on 32-bit windows, but can be used onWIN64 (where is unifiedwith C calling convention).

A classic example is the standard C library function, declared as:

The argument is a pointer to anarrayof length ,with elements of bytes each. is a callback functionwhich takespointers

to two elements and and returns an integer less/greater than zero if should appear before/after (or zero if any order

is permitted). Now, suppose that we have a 1d array of values in Julia that we want to sort using the function (rather

than Julia’s built-in function). Before we worry about calling and passing arguments, we need to write a comparison

function that works for some arbitrary type T:
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Notice thatwe have to be careful about the return type: expects a function returning aC , sowemust be sure to return

via a call to and a .

In order to pass this function to C, we obtain its address using the function :

accepts three arguments: the Julia function (), the return type (), and a tuple of the argument types, in this case to sort

an array of () elements.

The final call to looks like this:

As can be seen, is changed to the sorted array . Note that Julia knows how to convert an array into a , how to compute

the size of a type in bytes (identical to C’s operator), and so on. For fun, try inserting a line into , whichwill allow you to

see the comparisons that is performing (and to verify that it is really calling the Julia function that you passed to it).

30.2 Mapping C Types to Julia

It is critical to exactlymatch the declaredC typewith its declaration in Julia. Inconsistencies can cause code thatworks

correctly on one system to fail or produce indeterminate results on a different system.

Note that noCheader files are used anywhere in the process of callingC functions: you are responsible formaking sure

that your Julia types and call signatures accurately reflect those in the C header file. (TheClang package can be used to

auto-generate Julia code from a C header file.)

Auto-conversion:

Julia automatically inserts calls to the function to convert each argument to the specified type. For example, the fol-

lowing call:

https://github.com/ihnorton/Clang.jl
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will behave as if the following were written:

normally just calls , but can be defined to return an arbitrary new objectmore appropriate for passing to C. This should

be used to perform all allocations of memory that will be accessed by the C code. For example, this is used to convert

an of objects (e.g. strings) to an array of pointers.

handles conversion to types. It is consideredunsafebecauseconvertinganobject toanativepointer canhide theobject

from the garbage collector, causing it to be freed prematurely.

Type Correspondences:

First, a review of some relevant Julia type terminology:

Syntax /

Keyword

Ex-

am-

ple

Description

”Leaf Type” :: A group of related data that includes a type-tag, is managed by the Julia GC, and

is defined by object-identity. The type parameters of a leaf typemust be fully defined (no are

allowed) in order for the instance to be constructed.

, , ”Super Type” :: A super-type (not a leaf-type) that cannot be instantiated, but can be used to

describe a group of types.

”Type Parameter” :: A specialization of a type (typically used for dispatch or storage

optimization).

”TypeVar” :: The in the type parameter declaration is referred to as a TypeVar (short for type

variable).

, ”Primitive Type” :: A type with no fields, but a size. It is stored and defined by-value.

”Struct” :: A type with all fields defined to be constant. It is defined by-value, andmay be

storedwith a type-tag.

() ”Is-Bits” :: A , or a type where all fields are other types. It is defined by-value, and is stored

without a type-tag.

”Singleton” :: a Leaf Type or Struct with no fields.

or ”Tuple” :: an immutable data-structure similar to an anonymous struct type, or a constant

array. Represented as either an array or a struct.

Bits Types:

There are several special types to be aware of, as no other type can be defined to behave the same:

•

Exactly corresponds to the type in C (or in Fortran).

•

Exactly corresponds to the type in C (or in Fortran).

•

Exactly corresponds to the type in C (or in Fortran).
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•

Exactly corresponds to the type in C (or in Fortran).

•

Exactly corresponds to the type annotation in C (or any type in Fortran). Any Julia type that is not a subtype of

is assumed to be unsigned.

•

Behaves like a that canmanage its memory via the Julia GC.

•

When an array is passed toC as a argument, it is not reinterpret-cast: Julia requires that the element type of the

arraymatches , and the address of the first element is passed.

Therefore, if an contains data in the wrong format, it will have to be explicitly converted using a call such as .

To pass an array as a pointer of a different typewithout converting the data beforehand (for example, to pass a

array to a function that operates on uninterpreted bytes), you can declare the argument as .

If an array of eltype is passed as a argument, will attempt to first make a null-terminated copy of the arraywith

each element replaced by its version. This allows, for example, passing an pointer array of type to an argument

of type .

On all systemswe currently support, basic C/C++ value typesmay be translated to Julia types as follows. Every C type

also has a corresponding Julia type with the same name, prefixed by C. This can help for writing portable code (and

remembering that an in C is not the same as an in Julia).

System Independent:

The type isessentiallyasynonymfor , except theconversionto throwsanerror if theJulia stringcontainsanyembedded

NUL characters (whichwould cause the string to be silently truncated if the C routine treats NUL as the terminator). If

you are passing a to a C routine that does not assumeNUL termination (e.g. because you pass an explicit string length),

or if you know for certain that your Julia string does not contain NUL and want to skip the check, you can use as the

argument type. can also be used as the return type, but in that case it obviously does not introduce any extra checks

and is only meant to improve readability of the call.

System-dependent:

Note

WhencallingaFortran function, all inputsmustbepassedbyreference, soall typecorrespondencesabove

should contain an additional or wrapper around their type specification.

Warning

For string arguments () the Julia type should be (if NUL- terminated data is expected) or either or oth-

erwise (these two pointer types have the same effect), as described above, not . Similarly, for array argu-

ments ( or ), the Julia type should again be , not .

Warning

Julia’s type is 32 bits, which is not the same as the wide character type ( or ) on all platforms.
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C name Fortran

name

Standard

Julia Alias

Julia Base Type

(only in C++)

,

 

, (C, typical) ,

 

,

 

 

 

 

 

 

   

and or    

   

(where T represents an

appropriately defined type)

   

(or , e.g. a string)   if NUL-terminated, or if not

(or )    

(any Julia Type)    

(a reference to a Julia Type)    

    Not supported

(variadic function

specification)

    (where is one of the above types, variadic functions of

different argument types are not supported)

C name Standard Julia Alias Julia Base Type

(x86, x86_64), (powerpc, arm)

(UNIX), (Windows)

(UNIX), (Windows)

(UNIX), (Windows)

Warning

A return type of means the function will not return i.e. C++11 or C11 (e.g. or ). Do not use this for

functions that return no value () but do return, use instead.

Note

For arguments, the Julia type should be (if the C routine expects a NUL-terminated string) or otherwise.

Note also that UTF-8 string data in Julia is internally NUL-terminated, so it can be passed to C functions

expectingNUL-terminateddatawithoutmakingacopy (butusing the typewill causeanerror tobethrown

if the string itself contains NUL characters).

Note
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C functions that take an argument of the type can be called by using a type within Julia. For example, C

functions of the form:

can be called via the following Julia code:

Note

AC function declared to return will return the value in Julia.

Struct Type correspondences

Composite types, aka inCor inFortran90 (or / in somevariantsofF77), canbemirrored in Juliabycreatinga definition

with the same field layout.

When used recursively, types are stored inline. All other types are stored as a pointer to the data. When mirroring a

struct used by-value inside another struct in C, it is imperative that you do not attempt tomanually copy the fields over,

as this will not preserve the correct field alignment. Instead, declare an struct type and use that instead. Unnamed

structs are not possible in the translation to Julia.

Packed structs and union declarations are not supported by Julia.

You canget anear approximationof a if youknow, apriori, thefield thatwill have thegreatest size (potentially including

padding). When translating your fields to Julia, declare the Julia field to be only of that type.

Arrays of parameters can be expressedwith :

Arrays of unknown size (C99-compliant variable length structs specified by or ) are not directly supported. Often the

best way to deal with these is to deal with the byte offsets directly. For example, if a C library declared a proper string

type and returned a pointer to it:

In Julia, we can access the parts independently tomake a copy of that string:
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Type Parameters

The type arguments to are evaluated statically, when the method containing the ccall is defined. They therefore must

take the form of a literal tuple, not a variable, and cannot reference local variables.

This may sound like a strange restriction, but remember that since C is not a dynamic language like Julia, its functions

can only accept argument types with a statically-known, fixed signature.

However, while the type layoutmust be known statically to compute the ABI, the static parameters of the function are

considered to be part of this static environment. The static parameters of the functionmay be used as type parameters

in the signature, as long as they don’t affect the layout of the type. For example, is valid, since is always a word-size

primitive type. But, is not valid, since the type layout of is not known statically.

SIMDValues

Note: This feature is currently implemented on 64-bit x86 and AArch64 platforms only.

If a C/C++ routine has an argument or return value that is a native SIMD type, the corresponding Julia type is a homo-

geneous tuple of that naturally maps to the SIMD type. Specifically:

• The tuple must be the same size as the SIMD type. For example, a tuple representing an on x86

must have a size of 16 bytes.

• The element type of the tuple must be an instance of where is a primitive type that is 1, 2, 4 or 8

bytes.

For instance, consider this C routine that uses AVX intrinsics:

The following Julia code calls using :

The host machinemust have the requisite SIMD registers. For example, the code abovewill not work on hosts without

AVX support.

MemoryOwnership

malloc/free
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Memory allocation and deallocation of such objectsmust be handled by calls to the appropriate cleanup routines in the

libraries being used, just like in anyCprogram. Donot try to free an object received fromaC librarywith in Julia, as this

may result in the function being called via the wrong library and cause Julia to crash. The reverse (passing an object

allocated in Julia to be freed by an external library) is equally invalid.

When to use T, Ptr{T} and Ref{T}

In Julia code wrapping calls to external C routines, ordinary (non-pointer) data should be declared to be of type inside

the , as they are passed by value. For C code accepting pointers, should generally be used for the types of input argu-

ments, allowing the use of pointers to memory managed by either Julia or C through the implicit call to . In contrast,

pointers returned by theC function called should be declared to be of output type , reflecting that thememory pointed

to ismanaged byC only. Pointers contained in C structs should be represented as fields of type within the correspond-

ing Julia struct types designed tomimic the internal structure of corresponding C structs.

In Julia code wrapping calls to external Fortran routines, all input arguments should be declared as of type , as Fortran

passes all variables by reference. The return type should either be for Fortran subroutines, or a for Fortran functions

returning the type .

30.3 Mapping C Functions to Julia

/ argument translation guide

For translating a C argument list to Julia:

• , where is one of the primitive types: , , , , , , , or any of their equivalents

– , where is an equivalent Julia Bits Type (per the table above)

– if is an , the argument type should be equivalent to or

– argument value will be copied (passed by value)

• (including typedef to a struct)

– , where is a Julia leaf type

– argument value will be copied (passed by value)

•

– depends on how this parameter is used, first translate this to the intended pointer type, then determine

the Julia equivalent using the remaining rules in this list

– this argumentmay be declared as , if it really is just an unknown pointer

•

–

– argument valuemust be a valid Julia object

– currently unsupported by

•

–

– argument valuemust be a valid Julia object (or )
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– currently unsupported by

•

– , where is the Julia type corresponding to

– argument value will be copied if it is an type otherwise, the valuemust be a valid Julia object

• (e.g. a pointer to a function)

– (youmay need to use explicitly to create this pointer)

• (e.g. a vararg)

– , where is the Julia type

•

– not supported

/ return type translation guide

For translating a C return type to Julia:

•

– (this will return the singleton instance )

• , where is one of the primitive types: , , , , , , , or any of their equivalents

– , where is an equivalent Julia Bits Type (per the table above)

– if is an , the argument type should be equivalent to or

– argument value will be copied (returned by-value)

• (including typedef to a struct)

– , where is a Julia Leaf Type

– argument value will be copied (returned by-value)

•

– depends on how this parameter is used, first translate this to the intended pointer type, then determine

the Julia equivalent using the remaining rules in this list

– this argumentmay be declared as , if it really is just an unknown pointer

•

–

– argument valuemust be a valid Julia object

•

–

– argument valuemust be a valid Julia object (or )
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•

– If thememory is already owned by Julia, or is an type, and is known to be non-null:

* , where is the Julia type corresponding to

* a return type of is invalid, it should either be (corresponding to ) or (corresponding to )

* CMUSTNOTmodify thememory returned via if is an type

– If thememory is owned by C:

* , where is the Julia type corresponding to

• (e.g. a pointer to a function)

– (youmay need to use explicitly to create this pointer)

Passing Pointers forModifying Inputs

Because C doesn’t support multiple return values, often C functions will take pointers to data that the function will

modify. To accomplish this within a , you need to first encapsulate the value inside an of the appropriate type. When

you pass this object as an argument, Julia will automatically pass a C pointer to the encapsulated data:

Upon return, the contents of and can be retrieved (if they were changed by ) by and ; that is, they act like zero-

dimensional arrays.

Special Reference Syntax for ccall (deprecated):

The syntax is deprecated, use the argument type instead.

A prefix is used on an argument to to indicate that a pointer to a scalar argument should be passed instead of the

scalar value itself (required for all Fortran function arguments, as noted above). The following example computes a dot

product using a BLAS function.

The meaning of prefix is not quite the same as in C. In particular, any changes to the referenced variables will not be

visible in Julia unless the type ismutable (declared via ). However, even for immutable structs it will not cause any harm

for called functions toattempt suchmodifications (that is,writing through thepassedpointers). Moreover, maybeused

with any expression, such as or .

When a scalar value is passedwith as an argument of type , the value will first be converted to type .
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30.4 Some Examples of CWrappers

Here is a simple example of a Cwrapper that returns a type:

The GNU Scientific Library (here assumed to be accessible through ) defines an opaque pointer, , as the return type of

the C function . As user code never has to look inside the struct, the corresponding Julia wrapper simply needs a new

type declaration, , that has no internal fields and whose sole purpose is to be placed in the type parameter of a type.

The return type of the is declared as , since thememory allocated and pointed to by is controlled by C (and not Julia).

The input is passed by value, and so the function’s input signature is simply declared as without any or necessary. (If

thewrapperwas calling a Fortran function instead, the corresponding function input signature should instead be , since

Fortranvariables arepassedby reference.) Furthermore, canbeany type that is convertable to a integer; the implicitly

calls .

Here is a second example wrapping the corresponding destructor:

Here, the input is declared to be of type , meaning that the memory that points to may be managed by Julia or by C.

A pointer to memory allocated by C should be of type , but it is convertable using and therefore can be used in the

same (covariant) context of the input argument to a . A pointer tomemory allocated by Juliamust be of type , to ensure

that thememory address pointed to is valid and that Julia’s garbage collectormanages the chunk ofmemory pointed to

correctly. Therefore, the declaration allows pointers managed by C or Julia to be used.

If the C wrapper never expects the user to pass pointers to memory managed by Julia, then using for the method sig-

nature of the wrapper and similarly in the is also acceptable.

Here is a third example passing Julia arrays:

https://www.gnu.org/software/gsl/
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TheC functionwrapped returns an integer error code; the results of the actual evaluation of the Bessel J function pop-

ulate the Julia array . This variable can only be used with corresponding input type declaration , since its memory is

allocated andmanaged by Julia, not C. The implicit call to unpacks the Julia pointer to a Julia array data structure into

a form understandable by C.

Note that for this code to work correctly, must be declared to be of type and not . The memory is managed by Julia

and the signature alerts Julia’s garbage collector to keep managing the memory for while the executes. If were used

instead, the may still work, but Julia’s garbage collectorwould not be aware that thememorydeclared for is being used

by theexternalC function. As a result, the codemayproduceamemory leak if never gets freedby thegarbage collector,

or if the garbage collector prematurely frees , the C functionmay end up throwing an invalidmemory access exception.

30.5 Garbage Collection Safety

When passing data to a , it is best to avoid using the function. Instead define a convert method and pass the variables

directly to the . automatically arranges that all of its arguments will be preserved from garbage collection until the call

returns. If a C API will store a reference to memory allocated by Julia, after the returns, you must arrange that the

object remains visible to the garbage collector. The suggestedway to handle this is tomake a global variable of type to

hold these values, until the C library notifies you that it is finishedwith them.

Whenever you have created a pointer to Julia data, you must ensure the original data exists until you are done with

using the pointer. Manymethods in Julia such as and make copies of data instead of taking ownership of the buffer, so

that it is safe to free (or alter) the original data without affecting Julia. A notable exception is which, for performance

reasons, shares (or can be told to take ownership of) the underlying buffer.

The garbage collector does not guarantee any order of finalization. That is, if contained a reference to and both and

are due for garbage collection, there is no guarantee that would be finalized after . If proper finalization of depends on

being valid, it must be handled in other ways.

30.6 Non-constant Function Specifications

A function specification must be a constant expression. However, it is possible to use computed values as function

names by staging through as follows:
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This expression constructs a name using , then substitutes this name into a new expression, which is then evaluated.

Keep in mind that only operates at the top level, so within this expression local variables will not be available (unless

their values are substitutedwith ). For this reason, is typically only used to form top-level definitions, for examplewhen

wrapping libraries that contain many similar functions.

If your usage is more dynamic, use indirect calls as described in the next section.

30.7 Indirect Calls

The first argument to can also be an expression evaluated at run time. In this case, the expression must evaluate to a ,

which will be used as the address of the native function to call. This behavior occurs when the first argument contains

references to non-constants, such as local variables, function arguments, or non-constant globals.

For example, youmight look up the function via , then cache it in a shared reference for that session. For example:

30.8 Calling Convention

The second argument to can optionally be a calling convention specifier (immediately preceding return type). Without

any specifier, the platform-default C calling convention is used. Other supported conventions are: , , , and (no-op on

64-bitWindows). For example (from ) we see the same as above, but with the correct signature forWindows:

Formore information, please see the LLVM Language Reference.

There is one additional special calling convention , which allows inserting calls to LLVM intrinsics directly. This can be

especially useful when targeting unusual platforms such as GPGPUs. For example, for CUDA, we need to be able to

read the thread index:

As with any , it is essential to get the argument signature exactly correct. Also, note that there is no compatibility layer

that ensures the intrinsic makes sense and works on the current target, unlike the equivalent Julia functions exposed

by .

http://llvm.org/docs/LangRef.html#calling-conventions
http://llvm.org/docs/NVPTXUsage.html
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30.9 Accessing Global Variables

Global variables exported by native libraries can be accessed by name using the function. The arguments to are a

symbol specification identical to that used by , and a type describing the value stored in the variable:

The result is a pointer giving the address of the value. The value can bemanipulated through this pointer using and .

30.10 Accessing Data through a Pointer

The followingmethods are described as ”unsafe” because a bad pointer or type declaration can cause Julia to terminate

abruptly.

Given a , the contents of type can generally be copied from the referencedmemory into a Julia object using . The index

argument is optional (default is 1), and follows the Julia-convention of 1-based indexing. This function is intentionally

similar to the behavior of and (e.g. access syntax).

The return valuewill be a new object initialized to contain a copy of the contents of the referencedmemory. The refer-

encedmemory can safely be freed or released.

If is , then the memory is assumed to contain a reference to a Julia object (a ), the result will be a reference to this

object, and the object will not be copied. You must be careful in this case to ensure that the object was always visible

to the garbage collector (pointers do not count, but the new reference does) to ensure the memory is not prematurely

freed. Note that if theobjectwasnotoriginallyallocatedbyJulia, thenewobjectwill neverbefinalizedbyJulia’s garbage

collector. If the itself is actually a , it canbe convertedback to a Julia object referenceby . (Julia values canbe converted

to pointers, as , by calling .)

The reverse operation (writing data to a ), can be performed using . Currently, this is only supported for primitive types

or other pointer-free () immutable struct types.

Any operation that throws an error is probably currently unimplemented and should be posted as a bug so that it can

be resolved.

If the pointer of interest is a plain-data array (primitive type or immutable struct), the function may be more useful.

The final parameter should be true if Julia should ”take ownership” of the underlying buffer and call when the returned

object is finalized. If the parameter is omitted or false, the caller must ensure the buffer remains in existence until all

access is complete.

Arithmetic on the type in Julia (e.g. using ) does not behave the same as C’s pointer arithmetic. Adding an integer to a

in Julia always moves the pointer by some number of bytes, not elements. This way, the address values obtained from

pointer arithmetic do not depend on the element types of pointers.

30.11 Thread-safety

Some C libraries execute their callbacks from a different thread, and since Julia isn’t thread-safe you’ll need to take

some extra precautions. In particular, you’ll need to set up a two-layered system: the C callback should only schedule

(via Julia’s event loop) the execution of your ”real” callback. To do this, create a object andwait on it:

The callback you pass to C should only execute a to , passing as the argument, taking care to avoid any allocations or

other interactions with the Julia runtime.

Note that events may be coalesced, somultiple calls to may result in a single wakeup notification to the condition.
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30.12 More About Callbacks

Formore details on how to pass callbacks to C libraries, see this blog post.

30.13 C++

For direct C++ interfacing, see the Cxx package. For tools to create C++ bindings, see the CxxWrap package.

https://julialang.org/blog/2013/05/callback
https://github.com/Keno/Cxx.jl
https://github.com/JuliaInterop/CxxWrap.jl
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HandlingOperating SystemVariation

When dealing with platform libraries, it is often necessary to provide special cases for various platforms. The variable

can be used to write these special cases. There are several functions in the module intended to make this easier: , , , ,

and . Thesemay be used as follows:

Note that and are mutually exclusive subsets of . Additionally, there is a macro which makes it possible to use these

functions to conditionally hide invalid code, as demonstrated in the following examples.

Simple blocks:

Complex blocks:

Whenchainingconditionals (including //), the mustbe repeated foreach level (parenthesesoptional, but recommended

for readability):
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Environment Variables

Juliamay be configuredwith a number of environment variables, either in the usualway of the operating system, or in a

portable way fromwithin Julia. Suppose youwant to set the environment variable to , then either type for instance in

the REPL to make this change on a case by case basis, or add the same to the user configuration file in the user’s home

directory to have a permanent effect. The current value of the same environment variable is determined by evaluating

.

Theenvironment variables that Julia uses generally startwith . If is calledwith equal to , then theoutputwill list defined

environment variables relevant for Julia, including those for which appears in the name.

32.1 File locations

Theabsolute pathof thedirectory containing the Julia executable,which sets the global variable . If is not set, then Julia

determines the value at run-time.

The executable itself is one of

by default.

The global variable determines a relative path from to the data directory associated with Julia. Then the path

determines the directory in which Julia initially searches for source files (via ).

Likewise, the global variable determines a relative path to the configuration file directory. Then Julia searches for a file

at

by default (via ).

For example, a Linux installationwith a Julia executable located at , a of , and a of will have set to , a source-file search

path of

and a global configuration search path of
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A separated list of absolute paths that are to be appended to the variable . (In Unix-like systems, the path separator is ;

inWindows systems, the path separator is .) The variable is where and look for code; it defaults to the absolute paths

so that, e.g., version 0.6 of Julia on a Linux systemwith a Julia executable at will have a default of

The path of the parent directory for the version-specific Julia package repositories. If the path is relative, then it is

takenwith respect to the working directory. If is not set, then defaults to

Then the repository location for a given Julia version is

For example, for a Linux user whose home directory is , the directory containing the package repositories would by

default be

and the package repository for version 0.6 of Julia would be

The absolute path of the REPL’s history file. If is not set, then defaults to

A positive that determines howmuch time the max-sum subroutine of the package dependency resolver will devote

to attempting satisfying constraints before giving up: this value is by default , and larger values correspond to larger

amounts of time.

Suppose the value of is . Then

• the number of pre-decimation iterations is ,

• the number of iterations between decimation steps is , and

• at decimation steps, at most one in every packages is decimated.
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32.2 External applications

The absolute path of the shell with which Julia should execute external commands (via ). Defaults to the environment

variable , and falls back to if is unset.

Note

OnWindows, this environment variable is ignored, and external commands are executed directly.

The editor returned by and used in, e.g., , referring to the command of the preferred editor, for instance .

takes precedence over , which in turn takes precedence over . If none of these environment variables is set, then the

editor is taken to be onWindows andOS X, or if it exists, or otherwise.

Note

is not used in the determination of the editor for : this function checks and alone.

32.3 Parallelization

Overrides the global variable , the number of logical CPU cores available.

A that sets the value of (default: ). This function gives the number of seconds a worker process will wait for a master

process to establish a connection before dying.

An unsigned 64-bit integer () that sets the maximum number of threads available to Julia. If exceeds the number of

available physical CPU cores, then the number of threads is set to the number of cores. If is not positive or is not set, or

if the number of CPU cores cannot be determined through system calls, then the number of threads is set to .

If set to a string that starts with the case-insensitive substring , then spinning threads never sleep. Otherwise, is in-

terpreted as an unsigned 64-bit integer () and gives, in nanoseconds, the amount of time after which spinning threads

should sleep.

If set to anything besides , then Julia’s thread policy is consistent with running on a dedicated machine: the master

thread is on proc 0, and threads are affinitized. Otherwise, Julia lets the operating system handle thread policy.

32.4 REPL formatting

Environment variables that determine how REPL output should be formatted at the terminal. Generally, these vari-

ables should be set to ANSI terminal escape sequences. Julia provides a high-level interface with much of the same

functionality: see the section on InteractingWith Julia.

http://ascii-table.com/ansi-escape-sequences.php
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The formatting (default: light red, ) that errors should have at the terminal.

The formatting (default: yellow, ) that warnings should have at the terminal.

The formatting (default: cyan, ) that info should have at the terminal.

The formatting (default: normal, ) that input should have at the terminal.

The formatting (default: normal, ) that output should have at the terminal.

The formatting (default: bold, ) that line info should have during a stack trace at the terminal.

The formatting (default: bold, ) that function calls should have during a stack trace at the terminal.

32.5 Debugging and profiling

, ,

If set, these environment variables take strings that optionally start with the character , followed by a string interpola-

tionofacolon-separated listof threesigned64-bit integers (). This tripleof integers represents thearithmetic sequence

, , , ... .

• If it’s the th time that has been called, and belongs to the arithmetic sequence represented by , then garbage

collection is forced.

• If it’s the th time that has been called, and belongs to the arithmetic sequence represented by , then garbage

collection is forced.

• If it’s the th time that has been called, and belongs to the arithmetic sequence represented by , then counts for

the number of calls to and are printed.

If the value of the environment variable beginswith the character , then the interval between garbage collection events

is randomized.

Note

These environment variables only have an effect if Juliawas compiledwith garbage-collection debugging

(that is, if is set to in the build configuration).
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If set to anything besides , then the Julia garbage collector never performs ”quick sweeps” of memory.

Note

Thisenvironmentvariableonlyhasaneffect if Juliawascompiledwithgarbage-collectiondebugging (that

is, if is set to in the build configuration).

If set to anything besides , then the Julia garbage collector will wait for a debugger to attach instead of aborting when-

ever there’s a critical error.

Note

Thisenvironmentvariableonlyhasaneffect if Juliawascompiledwithgarbage-collectiondebugging (that

is, if is set to in the build configuration).

If set to anything besides , then the compiler will create and register an event listener for just-in-time (JIT) profiling.

Note

This environment variable only has an effect if Julia was compiled with JIT profiling support, using either

• Intel’s VTune™Amplifier ( set to in the build configuration), or

• OProfile ( set to in the build configuration).

Arguments to be passed to the LLVMbackend.

Note

This environment variable has an effect only if Juliawas compiledwith set— in particular, the executable

is always compiled with this build variable.

If set, then Julia prints detailed information about the cache in the loading process of .

https://software.intel.com/en-us/intel-vtune-amplifier-xe
http://oprofile.sourceforge.net/news/
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Embedding Julia

As we have seen in Calling C and Fortran Code, Julia has a simple and efficient way to call functions written in C. But

there are situations where the opposite is needed: calling Julia function from C code. This can be used to integrate

Julia code into a larger C/C++ project, without the need to rewrite everything in C/C++. Julia has a C API to make this

possible. As almost all programming languages have some way to call C functions, the Julia C API can also be used to

build further language bridges (e.g. calling Julia from Python or C#).

33.1 High-Level Embedding

We start with a simple C program that initializes Julia and calls some Julia code:

In order to build this program you have to put the path to the Julia header into the include path and link against . For

instance, when Julia is installed to , one can compile the above test program with using:

Then if the environment variable is set to , the output program can be executed.

Alternatively, look at the program in the Julia source tree in the folder. The file program is another simple example of

how to set options while linking against .
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The first thing that has to be done before calling any other Julia C function is to initialize Julia. This is done by calling ,

which tries to automatically determine Julia’s install location. If you need to specify a custom location, or specify which

system image to load, use instead.

The second statement in the test program evaluates a Julia statement using a call to .

Before the program terminates, it is strongly recommended to call . The above example program calls this before re-

turning from .

Note

Currently, dynamically linking with the shared library requires passing the option. In Python, this looks

like:

Note

If the julia program needs to access symbols from themain executable, it may be necessary to add linker

flag at compile time on Linux in addition to the ones generated by described below. This is not necessary

when compiling a shared library.

Using julia-config to automatically determine build parameters

The script was created to aid in determining what build parameters are required by a program that uses embedded

Julia. This script uses the build parameters and system configuration of the particular Julia distribution it is invoked by

toexport thenecessary compilerflags for anembeddingprogramto interactwith thatdistribution. This script is located

in the Julia shared data directory.

Example

On the command line

A simple use of this script is from the command line. Assuming that is located in , it can be invoked on the command line

directly and takes any combination of 3 flags:

If the above example source is saved in the file , then the following command will compile it into a running program on

Linux andWindows (MSYS2 environment), or if onOS/X, then substitute for .:
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Use inMakefiles

But in general, embedding projectswill bemore complicated than the above, and so the following allows generalmake-

file support as well – assumingGNUmake because of the use of the shellmacro expansions. Additionally, thoughmany

times maybe found in thedirectory , this is not necessarily the case, but Julia canbeused to locate too, and themakefile

can be used to take advantage of that. The above example is extended to use aMakefile:

Now the build command is simply .

33.2 Converting Types

Real applications will not just need to execute expressions, but also return their values to the host program. returns a

, which is a pointer to a heap-allocated Julia object. Storing simple data types like in this way is called , and extracting

the stored primitive data is called . Our improved sample program that calculates the square root of 2 in Julia and reads

back the result in C looks as follows:

In order to checkwhether is of a specific Julia type, we can use the , , or functions. By typing into the Julia shell we can

see that the return type is ( inC). To convert the boxed Julia value into aCdouble the function is used in the above code

snippet.

Corresponding functions are used to convert the other way:

As wewill see next, boxing is required to call Julia functions with specific arguments.

33.3 Calling Julia Functions

While allows C to obtain the result of a Julia expression, it does not allow passing arguments computed in C to Julia.

For this youwill need to invoke Julia functions directly, using :



320 CHAPTER 33. EMBEDDING JULIA

In the first step, a handle to the Julia function is retrieved by calling . The first argument passed to is a pointer to the

module inwhich is defined. Then, the double value is boxed using . Finally, in the last step, the function is called using . ,

, and functions also exist, to conveniently handle different numbers of arguments. To pass more arguments, use :

Its second argument is an array of arguments and is the number of arguments.

33.4 MemoryManagement

Aswehave seen, Julia objects are represented inCaspointers. This raises thequestionofwho is responsible for freeing

these objects.

Typically, Juliaobjectsare freedbyagarbagecollector (GC), but theGCdoesnotautomaticallyknowthatweareholding

a reference to a Julia value fromC. This means the GC can free objects out from under you, rendering pointers invalid.

TheGC can only runwhen Julia objects are allocated. Calls like perform allocation, and allocationmight also happen at

any point in running Julia code. However, it is generally safe to use pointers in between calls. But in order tomake sure

that values can survive calls, we have to tell Julia that we hold a reference to a Julia value. This can be done using the

macros:

The call releases the references established by the previous . Note that is working on the stack, so it must be exactly

paired with a before the stack frame is destroyed.

Several Julia values can be pushed at once using the , , and macros. To push an array of Julia values one can use the

macro, which can be used as follows:

The garbage collector also operates under the assumption that it is aware of every old-generation object pointing to a

young-generationone. Any timeapointer is updatedbreaking that assumption, itmust be signaled to the collectorwith

the (write barrier) function like so:

It is in general impossible to predict which values will be old at runtime, so the write barrier must be inserted after all

explicit stores. One notable exception is if the object was just allocated and garbage collection was not run since then.

Remember that most functions can sometimes invoke garbage collection.

The write barrier is also necessary for arrays of pointers when updating their data directly. For example:
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Manipulating the Garbage Collector

There are some functions to control the GC. In normal use cases, these should not be necessary.

Function Description

Force a GC run

Disable the GC, return previous state as int

Enable the GC, return previous state as int

Return current state as int

33.5 Workingwith Arrays

Julia and C can share array data without copying. The next example will show how this works.

Julia arrays are represented in C by the datatype . Basically, is a struct that contains:

• Information about the datatype

• A pointer to the data block

• Information about the sizes of the array

To keep things simple, we start with a 1D array. Creating an array containing Float64 elements of length 10 is done by:

Alternatively, if you have already allocated the array you can generate a thin wrapper around its data:

The last argument is a boolean indicatingwhether Julia should take ownership of the data. If this argument is non-zero,

the GCwill call on the data pointer when the array is no longer referenced.

In order to access the data of x, we can use :

Nowwe can fill the array:

Now let us call a Julia function that performs an in-place operation on :

By printing the array, one can verify that the elements of are now reversed.

Accessing Returned Arrays

If a Julia function returns an array, the return value of and can be cast to a :

Now the content of can be accessed as before using . As always, be sure to keep a reference to the array while it is in

use.
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Multidimensional Arrays

Julia’smultidimensional arrays are stored inmemory in column-major order. Here is some code that creates a 2D array

and accesses its properties:

Notice that while Julia arrays use 1-based indexing, the CAPI uses 0-based indexing (for example in calling ) in order to

read as idiomatic C code.

33.6 Exceptions

Julia code can throw exceptions. For example, consider:

This call will appear to do nothing. However, it is possible to check whether an exception was thrown:

If you are using the Julia C API from a language that supports exceptions (e.g. Python, C#, C++), it makes sense to wrap

each call into with a function that checks whether an exception was thrown, and then rethrows the exception in the

host language.

Throwing Julia Exceptions

When writing Julia callable functions, it might be necessary to validate arguments and throw exceptions to indicate

errors. A typical type check looks like:

General exceptions can be raised using the functions:

takes a C string, and is called like :

where in this example is assumed to be an integer.
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Packages

Julia has a built-in package manager for installing add-on functionality written in Julia. It can also install external li-

braries using your operating system’s standard system for doing so, or by compiling from source. The list of registered

Julia packages can be found at http://pkg.julialang.org. All package manager commands are found in the module, in-

cluded in Julia’s install.

First we’ll go over the mechanics of the family of commands and then we’ll provide some guidance on how to get your

package registered. Be sure to read the section belowonpackage naming conventions, tagging versions and the impor-

tance of a file for when you’re ready to add your code to the curatedMETADATA repository.

34.1 Package Status

The functionprintsouta summaryof thestateofpackagesyouhave installed. Initially, you’ll havenopackages installed:

Your package directory is automatically initialized the first time you run a command that expects it to exist – which

includes . Here’s an example non-trivial set of required and additional packages:

These packages are all on registered versions, managed by . Packages can be in more complicated states, indicated by

annotations to the right of the installed package version; wewill explain these states and annotations as we encounter

them. For programmatic usage, returns a dictionary, mapping installed package names to the version of that package

which is installed:
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34.2 Adding and Removing Packages

Julia’s package manager is a little unusual in that it is declarative rather than imperative. This means that you tell it

what you want and it figures out what versions to install (or remove) to satisfy those requirements optimally – and

minimally. So rather than installing a package, you just add it to the list of requirements and then ”resolve” what needs

to be installed. In particular, this means that if some package had been installed because it was needed by a previous

version of something you wanted, and a newer version doesn’t have that requirement anymore, updating will actually

remove that package.

Your package requirements are in the file . You can edit this file by hand and then call to install, upgrade or remove

packages to optimally satisfy the requirements, or you can do , which will open in your editor (configured via the or

environment variables), and then automatically call afterwards if necessary. If you only want to add or remove the

requirement for a single package, you can also use the non-interactive and commands, which add or remove a single

requirement to and then call .

Youcanaddapackage to the list of requirementswith the function, and thepackageandall thepackages that it depends

onwill be installed:

What this is doing is first adding to your file:

It then runs using these new requirements, which leads to the conclusion that the package should be installed since it

is required but not installed. As stated before, you can accomplish the same thing by editing your file by hand and then

running yourself:
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This is functionally equivalent to calling , except that doesn’t change until after installation has completed, so if there

are problems, will be left as it was before calling . The format of the file is described in Requirements Specification; it

allows, among other things, requiring specific ranges of versions of packages.

When you decide that you don’t want to have a package around anymore, you can use to remove the requirement for

it from the file:

Once again, this is equivalent to editing the file to remove the linewith each packagenameon it then running to update

the set of installed packages to match. While and are convenient for adding and removing requirements for a single

package, when youwant to add or removemultiple packages, you can call tomanually change the contents of and then

update your packages accordingly. does not roll back the contents of if fails – rather, you have to run again to fix the

files contents yourself.

Becausethepackagemanageruses libgit2 internally tomanagethepackagegit repositories, usersmayrun intoprotocol

issues (if behind a firewall, for example), when running . By default, all GitHub-hosted packages wil be accessed via

’https’; this default can be modified by calling . The following command can be run from the command line in order to

tell git to use ’https’ instead of the ’git’ protocol when cloning all repositories, wherever they are hosted:

However, this changewill be system-wide and thus the use of is preferable.

Note

The package manager functions also accept the suffix on package names, though the suffix is stripped

internally. For example:
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34.3 Offline Installation of Packages

Formachines with no Internet connection, packagesmay be installed by copying the package root directory (given by )

from amachine with the same operating system and environment.

does the following within the package root directory:

1. Adds the name of the package to .

2. Downloads the package to , then copies the package to the package root directory.

3. Recursively performs step 2 against all the packages listed in the package’s file.

4. Runs

Warning

Copying installed packages from a different machine is brittle for packages requiring binary external de-

pendencies. Such packages may break due to differences in operating system versions, build environ-

ments, and/or absolute path dependencies.

34.4 Installing Unregistered Packages

Julia packages are simply git repositories, clonable via any of the protocols that git supports, and containing Julia code

that follows certain layout conventions. Official Julia packages are registered in theMETADATA.jl repository, available

at awell-known location 1. The and commands in the previous section interactwith registered packages, but the pack-

age manager can install and work with unregistered packages too. To install an unregistered package, use , where is a

git URL fromwhich the package can be cloned:

By convention, Julia repository names end with (the additional indicates a ”bare” git repository), which keeps them

fromcollidingwith repositories for other languages, andalsomakes Julia packages easy tofind in searchengines. When

packages are installed in your directory, however, the extension is redundant so we leave it off.

If unregistered packages contain a file at the top of their source tree, that file will be used to determine which regis-

tered packages the unregistered package depends on, and they will automatically be installed. Unregistered packages

participate in the same version resolution logic as registered packages, so installed package versionswill be adjusted as

necessary to satisfy the requirements of both registered and unregistered packages.

1The official set of packages is at https://github.com/JuliaLang/METADATA.jl, but individuals and organizations can easily use a different meta-

data repository. This allows control which packages are available for automatic installation. One can allow only audited and approved package ver-

sions, andmake private packages or forks available. See CustomMETADATARepository for details.

https://www.kernel.org/pub/software/scm/git/docs/git-clone.html#URLS
https://github.com/JuliaLang/METADATA.jl
https://github.com/JuliaLang/METADATA.jl
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34.5 Updating Packages

When package developers publish new registered versions of packages that you’re using, you will, of course, want the

new shiny versions. To get the latest and greatest versions of all your packages, just do :

The first step of updating packages is to pull new changes to and see if any new registered package versions have been

published. After this, attempts to update packages that are checked out on a branch and not dirty (i.e. no changes have

been made to files tracked by git) by pulling changes from the package’s upstream repository. Upstream changes will

only be applied if no merging or rebasing is necessary – i.e. if the branch can be ”fast-forwarded”. If the branch cannot

be fast-forwarded, it is assumed that you’re working on it andwill update the repository yourself.

Finally, the update process recomputes an optimal set of package versions to have installed to satisfy your top-level

requirements and the requirements of ”fixed” packages. A package is considered fixed if it is one of the following:

1. Unregistered: the package is not in – you installed it with .

2. Checked out: the package repo is on a development branch.

3. Dirty: changes have beenmade to files in the repo.

If any of these are the case, the package manager cannot freely change the installed version of the package, so its re-

quirements must be satisfied by whatever other package versions it picks. The combination of top-level requirements

in and the requirement of fixed packages are used to determine what should be installed.

You can also update only a subset of the installed packages, by providing arguments to the function. In that case, only

the packages provided as arguments and their dependencies will be updated:

This partial update process still computes the new set of package versions according to top-level requirements and

”fixed” packages, but it additionally considers all other packages except those explicitly provided, and their dependen-

cies, as fixed.

34.6 Checkout, Pin and Free

Youmay want to use the version of a package rather than one of its registered versions. There might be fixes or func-

tionality onmaster that you need that aren’t yet published in any registered versions, or youmay be a developer of the

package and need to make changes on or some other development branch. In such cases, you can do to checkout the

branch of or to checkout some other branch:

https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging
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Immediately after installing with it is on the current most recent registered version – at the time of writing this. Then

after running , you can see fromtheoutputof that is onanunregisteredversiongreater than , indicatedby the ”pseudo-

version” number .

When you checkout an unregistered version of a package, the copy of the file in the package repo takes precedence

over any requirements registered in , so it is important that developers keep this file accurate and up-to-date, reflecting

the actual requirements of the current version of the package. If the file in the package repo is incorrect or missing,

dependencies may be removed when the package is checked out. This file is also used to populate newly published

versions of the package if you use the API that provides for this (described below).

Whenyoudecide thatyouno longerwant tohaveapackagecheckedoutonabranch, youcan ”free” itback to thecontrol

of the packagemanager with :

After this, since the package is on a registered version andnot on a branch, its versionwill be updated as new registered

versions of the package are published.

If youwant to pin a package at a specific version so that calling won’t change the version the package is on, you can use

the function:
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After this, the package will remain pinned at version – or more specifically, at commit , but since versions are perma-

nently associated a given git hash, this is the same thing. works by creating a throw-away branch for the commit you

want to pin the package at and then checking that branch out. By default, it pins a package at the current commit, but

you can choose a different version by passing a second argument:

Now the package is pinned at commit , which corresponds to version . When you decide to ”unpin” a package and let

the packagemanager update it again, you can use like youwould tomove off of any branch:

After this, the package is managed by the package manager again, and future calls to will upgrade it to newer ver-

sions when they are published. The throw-away branch remains in your local repo, but since git branches are ex-

tremely lightweight, this doesn’t really matter; if you feel like cleaning them up, you can go into the repo and delete

those branches 2.

34.7 CustomMETADATARepository

Bydefault, Julia assumesyouwill beusing theofficialMETADATA.jl repository for downloading and installingpackages.

You can also provide a different metadata repository location. A common approach is to keep your branch up to date

with the Julia official branch and add another branchwith your custompackages. You can initialize your localmetadata

repository using that custom location and branch and then periodically rebase your custom branch with the official

branch. In order to use a custom repository and branch, issue the following command:

2Packages that aren’t on branches will also bemarked as dirty if youmake changes in the repo, but that’s a less common thing to do.

https://github.com/JuliaLang/METADATA.jl
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The branch argument is optional and defaults to . Once initialized, a file named in your path will track the branch that

yourMETADATA repositorywas initializedwith. If youwant to change branches, youwill need to eithermodify the file

directly (be careful!) or remove the directory and re-initialize yourMETADATA repository using the command.
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Package Development

Julia’s package manager is designed so that when you have a package installed, you are already in a position to look at

its source code and full development history. You are also able to make changes to packages, commit them using git,

and easily contribute fixes and enhancements upstream. Similarly, the system is designed so that if you want to create

a new package, the simplest way to do so is within the infrastructure provided by the packagemanager.

35.1 Initial Setup

Since packages are git repositories, before doing any package development you should setup the following standard

global git configuration settings:

where is your actual full name (spaces are allowed between the double quotes) and is your actual email address. Al-

though it isn’t necessary to use GitHub to create or publish Julia packages, most Julia packages as of writing this are

hosted on GitHub and the package manager knows how to format origin URLs correctly and otherwise work with the

service smoothly. We recommend that you create a free account on GitHub and then do:

where is your actual GitHub user name. Once you do this, the packagemanager knows yourGitHub user name and can

configure things accordingly. You should also upload your public SSH key to GitHub and set up an SSH agent on your

developmentmachine so that you can push changeswithminimal hassle. In the future, wewill make this system exten-

sible and support other common git hosting options like BitBucket and allow developers to choose their favorite. Since

the package development functions has been moved to the PkgDev package, you need to run to access the functions

starting with in the document below.

35.2 Making changes to an existing package

Documentation changes

If youwant to improve the online documentation of a package, the easiest approach (at least for small changes) is to use

GitHub’s online editing functionality. First, navigate to the repository’s GitHub ”home page,” find the file (e.g., ) within

the repository’s folder structure, and click on it. You’ll see the contents displayed, along with a small ”pencil” icon in

the upper right hand corner. Clicking that icon opens the file in edit mode. Make your changes, write a brief summary

describing the changes youwant tomake (this is your commitmessage), and then hit ”Propose file change.” Your changes

will be submitted for consideration by the package owner(s) and collaborators.

For larger documentation changes–and especially ones that you expect to have to update in response to feedback–you

might find it easier to use the procedure for code changes described below.
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https://github.com/
https://github.com/join
https://github.com/login?return_to=https%3A%2F%2Fgithub.com%2Fsettings%2Fssh
https://linux.die.net/man/1/ssh-agent
https://bitbucket.org
https://github.com/JuliaLang/PkgDev.jl
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Code changes

Executive summary

Here we assume you’ve already set up git on your local machine and have a GitHub account (see above). Let’s imagine

you’re fixing a bug in the Images package:

The last line will present youwith a link to submit a pull request to incorporate your changes.

Detailed description

If you want to fix a bug or add new functionality, you want to be able to test your changes before you submit them for

consideration. Youalsoneed tohaveaneasyway toupdate your proposal in response to thepackageowner’s feedback.

Consequently, in this case the strategy is towork locally onyourownmachine; onceyouare satisfiedwith your changes,

you submit themfor consideration. This process is calledapull requestbecauseyouareasking to ”pull” your changes into

the project’s main repository. Because the online repository can’t see the code on your private machine, you first push

your changes to a publicly-visible location, your own online fork of the package (hosted on your own personal GitHub

account).

Let’s assume you already have the package installed. In the description below, anything startingwith or ismeant to be

typed at the Julia prompt; anything startingwith ismeant to be typed in julia’s shell mode (or using the shell that comes

with your operating system). Within Julia, you can combine these twomodes:

Now suppose you’re ready to make some changes to . While there are several possible approaches, here is one that is

widely used:

• From the Julia prompt, type . This ensures you’re running the latest code (the branch), rather than justwhatever

”official release” version you have installed. (If you’re planning to fix a bug, at this point it’s a good idea to check

againwhether thebughasalreadybeenfixedbysomeoneelse. If it has, youcanrequest thatanewofficial release

be taggedso that thefixgetsdistributed to the restof thecommunity.) If you receiveanerror , seeDirtypackages

below.

• Create a branch for your changes: navigate to the package folder (the one that Julia reports from ) and (in shell

mode) create a new branch using , where might be some descriptive name (e.g., ). By creating a branch, you

ensure that you can easily go back and forth between your new work and the current branch (see https://git-

scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell).

If you forget to do this step until after you’ve already made some changes, don’t worry: see more detail about

branching below.

https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell
https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell
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• Make your changes. Whether it’s fixing a bug or adding new functionality, in most cases your change should

include updates to both the and folders. If you’re fixing a bug, add your minimal example demonstrating the

bug (on the current code) to the test suite; by contributing a test for the bug, you ensure that the bug won’t

accidentally reappear at some later time due to other changes. If you’re adding new functionality, creating tests

demonstrates to the package owner that you’vemade sure your codeworks as intended.

• Run the package’s tests andmake sure they pass. There are several ways to run the tests:

– From Julia, run : this will run your tests in a separate (new) process.

– From Julia, from the package’s folder (it’s possible the file has a different name, look for one that runs all

the tests): this allows you to run the tests repeatedly in the same sessionwithout reloading all the package

code; for packages that take awhile to load, this can bemuch faster. With this approach, you do have to do

some extra work tomake changes in the package code.

– From the shell, run fromwithin the package’s folder.

• Commit your changes: see https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository.

• Submit your changes: From the Julia prompt, type . This will push your changes to your GitHub fork, creating it

if it doesn’t already exist. (If you encounter an error, make sure you’ve set up your SSH keys.) Julia will then give

you a hyperlink; open that link, edit the message, and then click ”submit.” At that point, the package owner will

be notified of your changes and may initiate discussion. (If you are comfortable with git, you can also do these

stepsmanually from the shell.)

• The package owner may suggest additional improvements. To respond to those suggestions, you can easily up-

date the pull request (this only works for changes that have not already beenmerged; for merged pull requests,

make new changes by starting a new branch):

– If you’ve changed branches in the meantime, make sure you go back to the same branch with (from shell

mode) or (from the Julia prompt).

– As above, make your changes, run the tests, and commit your changes.

– Fromtheshell, type . Thiswill addyournewcommit(s) to thesamepull request; youshouldseethemappear

automatically on the page holding the discussion of your pull request.

One potential type of change the ownermay request is that you squash your commits. See Squashing below.

Dirty packages

If youcan’t changebranchesbecause thepackagemanager complains that yourpackage isdirty, itmeansyouhave some

changes that have not been committed. From the shell, use to seewhat these changes are; you can either discard them

() or commit them before switching branches. If you can’t easily resolve the problemsmanually, as a last resort you can

delete the entire folder and reinstall a fresh copywith . Naturally, this deletes any changes you’vemade.

Making a branch post hoc

Especially for newcomers to git, one often forgets to create a new branch until after some changes have already been

made. If you haven’t yet staged or committed your changes, you can create a new branch with just as usual–git will

kindly show you that some files have been modified and create the new branch for you. Your changes have not yet been

committed to this new branch, so the normal work rules still apply.

However, if you’ve alreadymade a commit to but wish to go back to the official (called ), use the following procedure:

• Create a new branch. This branchwill hold your changes.

https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository
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• Make sure everything is committed to this branch.

• . If this fails, do not proceed further until you have resolved the problems, or youmay lose your changes.

• Reset (your current branch) back to an earlier statewith (see https://git-scm.com/blog/2011/07/11/reset.html).

This requires a bit more familiarity with git, so it’s much better to get in the habit of creating a branch at the outset.

Squashing and rebasing

Depending on the tastes of the package owner (s)he may ask you to ”squash” your commits. This is especially likely if

your change is quite simple but your commit history looks like this:

Thisgets into the territoryofmoreadvancedgitusage, andyou’reencouragedtodosomereading (https://git-scm.com/-

book/en/v2/Git-Branching-Rebasing). However, a brief summary of the procedure is as follows:

• To protect yourself from error, start from your branch and create a new branch with . Since you started from ,

this will be a copy. Now go back to the one you intend tomodify with .

• From the shell, type .

• To combine commits, change to (for additional options, consult other sources). Save the file and close the editor

window.

• Edit the combined commit message.

If the rebase goes badly, you can go back to the beginning to try again like this:

Now let’s assume you’ve rebased successfully. Since your repository has now diverged from the one in your GitHub

fork, you’re going to have to do a force push:

• Tomake it easy to refer to your GitHub fork, create a ”handle” for it with , where the URL comes from the ”clone

URL” on your GitHub fork’s page.

• Force-push to your fork with . The indicates that this should replace the branch found at .

35.3 Creating a newPackage

REQUIRE speaks for itself

You should have a file in your package repository, with a bareminimum directive of what Julia version you expect your

users to be running for the package to work. Putting a floor on what Julia version your package supports is done by

simply adding in this file. While this line is partly informational, it also has the consequenceofwhether will update code

https://git-scm.com/blog/2011/07/11/reset.html
https://git-scm.com/book/en/v2/Git-Branching-Rebasing
https://git-scm.com/book/en/v2/Git-Branching-Rebasing
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found in version directories. It will not update code found in version directories beneath the floor of what’s specified

in your .

As the development version matures, you may find yourself using it more frequently, and wanting your package to

support it. Be warned, the development branch of Julia is the land of breakage, and you can expect things to break.

When you go about fixing whatever broke your package in the development branch, you will likely find that you just

broke your package on the stable version.

There is amechanism found in theCompat package thatwill enable you to support both the stable version andbreaking

changes found in the development version. Should you decide to use this solution, you will need to add to your file. In

this case, youwill still have in your . The is the floor version of what your package supports.

Youmight alsohaveno interest in supporting thedevelopment versionof Julia. Just as you canaddafloor to the version

you expect your users to be on, you can set an upper bound. In this case, you would put in your file. The at the end of

the version number means pre-release versions of that specific version from the very first commit. By setting it as the

ceiling, youmean the code supports everything up to but not including the ceiling version.

Another scenario is that you arewriting the bulk of the code for your packagewith Julia and donotwant to support the

current stable version of Julia. If you choose to do this, simply add to your . Just remember to change the to in your file

once is officially released. If you don’t edit the dash cruft you are suggesting that you support both the development

and stable versions of the same version number! That would be madness. See the Requirements Specification for the

full format of .

Lastly, in many cases you may need extra packages for testing. Additional packages which are only required for tests

should be specified in the file. This file has the same specification as the standard file.

Guidelines for naming a package

Package names should be sensible to most Julia users, even to those who are not domain experts. When you submit your

package toMETADATA, you can expect a little back and forth about the package namewith collaborators, especially if

it’s ambiguous or can be confused with something other than what it is. During this bike-shedding, it’s not uncommon

to get a range of different name suggestions. These are only suggestions though, with the intent being to keep a tidy

namespace in the curated METADATA repository. Since this repository belongs to the entire community, there will

likely be a few collaborators who care about your package name. Here are some guidelines to follow in naming your

package:

1. Avoid jargon. In particular, avoid acronyms unless there is minimal possibility of confusion.

– It’s ok to say if you’re talking about the USA.

– It’s not ok to say , even if you’re talking about positivemental attitude.

2. Avoid using in your package name.

– It is usually clear from context and to your users that the package is a Julia package.

– Having Julia in the name can imply that the package is connected to, or endorsed by, contributors to the

Julia language itself.

3. Packages that providemost of their functionality in association with a new type should have pluralized names.

– provides the type.

– provides the type.

– In contrast, provides no new type, but instead new functionality in the function.

4. Err on the side of clarity, even if clarity seems long-winded to you.

https://github.com/JuliaLang/Compat.jl
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– is a less ambiguous name than or , even though the latter are shorter.

5. A less systematic namemay suit a package that implements one of several possible approaches to its domain.

– Julia does not have a single comprehensive plotting package. Instead, , , and other packages each imple-

ment a unique approach based on a particular design philosophy.

– In contrast, provides a consistent interface to usemanywell-established sorting algorithms.

6. Packages that wrap external libraries or programs should be named after those libraries or programs.

– wraps the library, which can be identified easily in a web search.

– provides an interface to call theMATLAB engine fromwithin Julia.

Generating the package

Suppose you want to create a new Julia package called . To get started, do where is the new package name and is the

name of a license that the package generator knows about:

This creates the directory , initializes it as a git repository, generates a bunch of files that all packages should have, and

commits them to the repository:
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At the moment, the package manager knows about theMIT ”Expat” License, indicated by , the Simplified BSD License,

indicated by , and version 2.0 of the Apache Software License, indicated by . If you want to use a different license, you

can ask us to add it to the package generator, or just pick one of these three and then modify the file after it has been

generated.

If you created a GitHub account and configured git to know about it, will set an appropriate origin URL for you. It will

also automatically generate a file for using the Travis automated testing service, and an file for using AppVeyor. You

will have to enable testing on the Travis andAppVeyorwebsites for your package repository, but once you’ve done that,

it will already haveworking tests. Of course, all the default testing does is verify that in Julia works.

Loading Static Non-Julia Files

If your package code needs to load static files which are not Julia code, e.g. an external library or data files, and are

locatedwithin the package directory, use the macro to determine the directory of the current source file. For example

if needs to load , use the following code:

Making Your Package Available

Once you’vemade some commits and you’re happywith how isworking, youmaywant to get some other people to try

it out. First you’ll need to create the remote repository and push your code to it; we don’t yet automatically do this for

you, butwewill in the future and it’s not too hard to figure out 3. Once you’ve done this, letting people try out your code

is as simple as sending them the URL of the published repo – in this case:

For your package, itwill be yourGitHubuser nameand the nameof your package, but you get the idea. People you send

this URL to can use to install the package and try it out:

Tagging and Publishing Your Package

Tip

If you are hosting your package on GitHub, you can use the attobot integration to handle package regis-

tration, tagging and publishing.

Once you’ve decided that is ready to be registered as an official package, you can add it to your local copy of using :

3Installing and usingGitHub’s ”hub” tool is highly recommended. It allows you to do things like run in the package repo and have it automatically

created via GitHub’s API.

https://travis-ci.org
https://www.appveyor.com
https://github.com/attobot/attobot
https://github.com/github/hub
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This creates a commit in the repo:

This commit is only locally visible, however. To make it visible to the Julia community, you need to merge your local

upstream into the official repo. The commandwill fork the repository on GitHub, push your changes to your fork, and

open a pull request:

Tip

If fails with error:

then youmay have encountered an issue from using the GitHub API on multiple systems. The solution is

to delete the ”Julia PackageManager” personal access token from your Github account and try again.

Other failuresmayrequireyoutocircumvent bycreatingapull requestonGitHub. See: PublishingMETA-

DATAmanually below.

Once the package URL for is registered in the official repo, people know where to clone the package from, but there

still aren’t any registered versions available. You can tag and register it with the command:

https://github.com/login?return_to=https%3A%2F%2Fgithub.com%2Fsettings%2Ftokens
https://help.github.com/articles/creating-a-pull-request/
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This tags in the repo:

It also creates a new version entry in your local repo for :

The command takes an optional second argument that is either an explicit version number object like or one of the

symbols , or . These increment the patch, minor or major version number of your package intelligently.

Adding a tagged version of your package will expedite the official registration into METADATA.jl by collaborators. It

is strongly recommended that you complete this process, regardless if your package is completely ready for an official

release.

As a general rule, packages should be tagged first. Since Julia itself hasn’t achieved status, it’s best to be conservative

in your package’s tagged versions.

As with , these changes to aren’t available to anyone else until they’ve been included upstream. Again, use the com-

mand,whichfirstmakes sure that individual package repos havebeen tagged, pushes them if theyhaven’t alreadybeen,

and then opens a pull request to :

PublishingMETADATAmanually

If fails you can follow these instructions tomanually publish your package.

By ”forking” themainMETADATA repository, you can create a personal copy (ofMETADATA.jl) under your GitHub ac-

count. Once that copy exists, you can push your local changes to your copy (just like any other GitHub project).

1. gotohttps://github.com/login?return_to=https%3A%2F%2Fgithub.com%2FJuliaLang%2FMETADATA.jl%2Ffork

and create your own fork.

https://github.com/login?return_to=https%3A%2F%2Fgithub.com%2FJuliaLang%2FMETADATA.jl%2Ffork
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2. add your fork as a remote repository for theMETADATA repository on your local computer (in

the terminal where USERNAME is your github username):

1. push your changes to your fork:

2. If all of that works, then go back to the GitHub page for your fork, and click the ”pull request”

link.

35.4 Fixing Package Requirements

If you need to fix the registered requirements of an already-published package version, you can do so just by editing the

metadata for that version,whichwill still have the same commit hash– thehash associatedwith a version is permanent:

Since the commit hash stays the same, the contents of the file that will be checked out in the repo will notmatch the

requirements in after such a change; this is unavoidable. When you fix the requirements in for a previous version of a

package, however, you should also fix the file in the current version of the package.

35.5 Requirements Specification

The file, the file inside packages, and the package files use a simple line-based format to express the ranges of package

versions which need to be installed. Package and files should also include the range of versions of the package is

expected toworkwith. Additionally, packages can include a file to specify additional packageswhich are only required

for testing.

Here’s how these files are parsed and interpreted.

• Everything after a mark is stripped from each line as a comment.

• If nothing but whitespace is left, the line is ignored.

• If there are non-whitespace characters remaining, the line is a requirement and the is split on whitespace into

words.

The simplest possible requirement is just the name of a package name on a line by itself:

This requirement is satisfied by any version of the package. The package name can be followed by zero ormore version

numbers in ascending order, indicating acceptable intervals of versions of that package. One version opens an interval,

while the next closes it, and the next opens a new interval, and so on; if an odd number of version numbers are given,

then arbitrarily large versionswill satisfy; if an even number of version numbers are given, the last one is an upper limit

on acceptable version numbers. For example, the line:
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is satisfied by any version of greater than or equal to . Suffixing a version with allows any pre-release versions as well.

For example:

is satisfied by pre-release versions such as or , or by any version greater than or equal to .

This requirement entry:

is satisfied by versions from up to, but not including . If you want to indicate that any version will do, you will want to

write:

If youwant to start accepting versions after , you canwrite:

If a requirement line has leading words that begin with , it is a system-dependent requirement. If your systemmatches

these system conditionals, the requirement is included, if not, the requirement is ignored. For example:

will require the package only on systemswhere the operating system isOSX. The system conditions that are currently

supported are (hierarchically):

•

–

–

*

•

The condition is satisfiedonallUNIXsystems, includingLinuxandBSD.Negatedsystemconditionalsarealsosupported

by adding a after the leading . Examples:

The first condition applies to any system but Windows and the second condition applies to any UNIX system besides

OS X.

Runtime checks for the current version of Julia can be made using the built-in variable, which is of type . Such code is

occasionally necessary to keep track of newor deprecated functionality between various releases of Julia. Examples of

runtime checks:

See the section on version number literals for amore complete description.
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Profiling

The module provides tools to help developers improve the performance of their code. When used, it takes measure-

ments on running code, and produces output that helps you understand how much time is spent on individual line(s).

Themost common usage is to identify ”bottlenecks” as targets for optimization.

implements what is known as a ”sampling” or statistical profiler. It works by periodically taking a backtrace during the

executionof any task. Eachbacktrace captures the currently-running function and linenumber, plus the complete chain

of function calls that led to this line, and hence is a ”snapshot” of the current state of execution.

Ifmuchof your run time is spent executing aparticular lineof code, this linewill showup frequently in the set of all back-

traces. In other words, the ”cost” of a given line–or really, the cost of the sequence of function calls up to and including

this line–is proportional to how often it appears in the set of all backtraces.

A sampling profiler does not provide complete line-by-line coverage, because the backtraces occur at intervals (by de-

fault, 1ms onUnix systems and 10ms onWindows, although the actual scheduling is subject to operating system load).

Moreover, as discussed further below, because samples are collected at a sparse subset of all execution points, the data

collected by a sampling profiler is subject to statistical noise.

Despite these limitations, sampling profilers have substantial strengths:

• You do not have to make any modifications to your code to take timing measurements (in contrast to the alter-

native instrumenting profiler).

• It can profile into Julia’s core code and even (optionally) into C and Fortran libraries.

• By running ”infrequently” there is very little performance overhead; while profiling, your code can run at nearly

native speed.

For these reasons, it’s recommended that you try using the built-in sampling profiler before considering any alterna-

tives.

36.1 Basic usage

Let’s work with a simple test case:

343

https://en.wikipedia.org/wiki/Profiling_(computer_programming)
https://github.com/timholy/IProfile.jl
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It’s a good idea to first run the code you intend to profile at least once (unless youwant to profile Julia’s JIT-compiler):

Nowwe’re ready to profile this function:

To see the profiling results, there is a graphical browser available, but here we’ll use the text-based display that comes

with the standard library:

Each line of this display represents a particular spot (line number) in the code. Indentation is used to indicate thenested

sequence of function calls, with more-indented lines being deeper in the sequence of calls. In each line, the first ”field”

is the number of backtraces (samples) taken at this line or in any functions executed by this line. The second field is the file

name and line number and the third field is the function name. Note that the specific line numbersmay change as Julia’s

code changes; if youwant to follow along, it’s best to run this example yourself.

In thisexample,wecanseethat thetop level functioncalled is in thefile . This is the functionthat runs theREPLwhenyou

launch Julia. If you examine line 97 of , you’ll see this is where the function is called. This is the function that evaluates

what you type at the REPL, and since we’re working interactively these functions were invokedwhenwe entered . The

next line reflects actions taken in the macro.

The first line shows that 80 backtraceswere taken at line 73 of , but it’s not that this linewas ”expensive” on its own: the

third line reveals that all 80 of these backtraces were actually triggered inside its call to , and so on. To find out which

operations are actually taking the time, we need to look deeper in the call chain.

The first ”important” line in this output is this one:

refers to the fact that we defined in the REPL, rather than putting it in a file; if we had used a file, this would show the

file name. The shows that the function was the first expression evaluated in this REPL session. Line 2 of contains the

call to , and there were 52 (out of 80) backtraces that occurred at this line. Below that, you can see a call to inside .

A little further down, you see:

https://github.com/timholy/ProfileView.jl
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Line 3 of contains the call to , and therewere 28 (out of 80) backtraces taken here. Below that, you can see the specific

places in that carry out the time-consuming operations in the function for this type of input data.

Overall,wecantentativelyconcludethatgenerating therandomnumbers isapproximately twiceasexpensiveasfinding

themaximum element. We could increase our confidence in this result by collectingmore samples:

In general, if you have samples collected at a line, you can expect an uncertainty on the order of (barring other sources

of noise, like how busy the computer is with other tasks). The major exception to this rule is garbage collection, which

runs infrequently but tends to be quite expensive. (Since Julia’s garbage collector is written in C, such events can be

detected using the output mode described below, or by using ProfileView.jl.)

This illustrates thedefault ”tree”dump; analternative is the ”flat”dump,whichaccumulates counts independentof their

nesting:

If your codehas recursion, onepotentially-confusingpoint is that a line in a ”child” function canaccumulatemore counts

than there are total backtraces. Consider the following function definitions:

https://github.com/timholy/ProfileView.jl
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If youwere to profile , and a backtrace was takenwhile it was executing , the backtrace would look like this:

Consequently, this child function gets 3 counts, even though the parent only gets one. The ”tree” representationmakes

this much clearer, and for this reason (among others) is probably themost useful way to view the results.

36.2 Accumulation and clearing

Results from accumulate in a buffer; if you runmultiple pieces of code under , then will showyou the combined results.

This can be very useful, but sometimes youwant to start fresh; you can do sowith .

36.3 Options for controlling the display of profile results

hasmore options thanwe’ve described so far. Let’s see the full declaration:

Let’s first discuss the two positional arguments, and later the keyword arguments:

• – Allows you to save the results to a buffer, e.g. a file, but the default is to print to (the console).

• – Contains the data you want to analyze; by default that is obtained from , which pulls out the backtraces from

a pre-allocated buffer. For example, if youwant to profile the profiler, you could say:

The keyword arguments can be any combination of:

• – Introduced above, determines whether backtraces are printed with (default, ) or without () indentation indi-

cating tree structure.

• – If , backtraces from C and Fortran code are shown (normally they are excluded). Try running the introduc-

tory example with . This can be extremely helpful in deciding whether it’s Julia code or C code that is causing a

bottleneck; setting also improves the interpretability of the nesting, at the cost of longer profile dumps.

• – Some lines of code contain multiple operations; for example, contains both an array reference () and a sum

operation. These correspond to different lines in the generated machine code, and hence there may be two or

more different addresses captured during backtraces on this line. lumps them together, and is probably what

you typically want, but you can generate an output separately for each unique instruction pointer with .

• – Limits frames at a depth higher than in the format.
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• –Controls the order in format. (default) sorts by the source line, whereas sorts in order of number of collected

samples.

• – Limits frames that are below the heuristic noise floor of the sample (only applies to format ). A suggested value

to try for this is 2.0 (the default is 0). This parameter hides samples for which , where is the number of samples

on this line, and is the number of samples for the callee.

• – Limits frames with less than occurrences.

File/function names are sometimes truncated (with ), and indentation is truncated with a at the beginning, where is

the number of extra spaces that would have been inserted, had there been room. If you want a complete profile of

deeply-nested code, often a good idea is to save to a file using a wide in an :

36.4 Configuration

just accumulates backtraces, and the analysis happens when you call . For a long-running computation, it’s entirely

possible that the pre-allocated buffer for storing backtraces will be filled. If that happens, the backtraces stop but your

computation continues. As a consequence, you may miss some important profiling data (you will get a warning when

that happens).

You can obtain and configure the relevant parameters this way:

is the total number of instruction pointers you can store, with a default value of . If your typical backtrace is 20 instruc-

tion pointers, then you can collect 50000 backtraces, which suggests a statistical uncertainty of less than 1%. Thismay

be good enough for most applications.

Consequently, you are more likely to need to modify , expressed in seconds, which sets the amount of time that Julia

gets between snapshots to perform the requested computations. A very long-running job might not need frequent

backtraces. The default setting is . Of course, you can decrease the delay as well as increase it; however, the overhead

of profiling grows once the delay becomes similar to the amount of time needed to take a backtrace (~30microseconds

on the author’s laptop).
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Memory allocation analysis

One of the most common techniques to improve performance is to reduce memory allocation. The total amount of

allocation can be measured with and , and specific lines triggering allocation can often be inferred from profiling via

the cost of garbage collection that these lines incur. However, sometimes it is more efficient to directly measure the

amount of memory allocated by each line of code.

To measure allocation line-by-line, start Julia with the command-line option, for which you can choose (the default,

do not measure allocation), (measure memory allocation everywhere except Julia’s core code), or (measure memory

allocation at each line of Julia code). Allocation gets measured for each line of compiled code. When you quit Julia,

the cumulative results are written to text files with appended after the file name, residing in the same directory as the

source file. Each line lists the total number of bytes allocated. The package contains some elementary analysis tools,

for example to sort the lines in order of number of bytes allocated.

In interpreting the results, there are a few important details. Under the setting, the first line of any function directly

called from the REPL will exhibit allocation due to events that happen in the REPL code itself. More significantly, JIT-

compilation also adds to allocation counts, becausemuch of Julia’s compiler is written in Julia (and compilation usually

requires memory allocation). The recommended procedure is to force compilation by executing all the commands you

want toanalyze, thencall to reset all allocationcounters. Finally, execute thedesiredcommandsandquit Julia to trigger

the generation of the files.

349

https://github.com/JuliaCI/Coverage.jl
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Stack Traces

The module provides simple stack traces that are both human readable and easy to use programmatically.

38.1 Viewing a stack trace

The primary function used to obtain a stack trace is :

Calling returns a vector of s. For ease of use, the alias can be used in place of . (Examples with indicate that output

may vary depending on how the code is run.)
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Note thatwhen calling you’ll typically see a framewith . When calling from theREPL you’ll also have a fewextra frames

in the stack from , usually looking something like this:

38.2 Extracting useful information

Each contains the function name, file name, line number, lambda info, a flag indicating whether the frame has been

inlined, aflag indicatingwhether it is aC function (bydefaultC functionsdonot appear in the stack trace), andan integer

representation of the pointer returned by :

This makes stack trace information available programmatically for logging, error handling, andmore.

38.3 Error handling

While having easy access to information about the current state of the callstack can be helpful inmany places, themost

obvious application is in error handling and debugging.
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Youmay notice that in the example above the first stack framepoints points at line 4, where is called, rather than line 2,

wherebad_function is called, and ’s frame ismissingentirely. This is understandable, given that is called fromthecontext

of the catch. While in this example it’s fairly easy to find the actual source of the error, in complex cases tracking down

the source of the error becomes nontrivial.

This can be remedied by calling instead of . Instead of returning callstack information for the current context, returns

stack information for the context of themost recent exception:

Notice that the stack trace now indicates the appropriate line number and themissing frame.
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38.4 Comparisonwith

A call to returns a vector of , whichmay then be passed into for translation:

Notice that the vector returnedby had21pointers, while the vector returnedby only has 5. This is because, by default,

removes any lower-level C functions from the stack. If you want to include stack frames fromC calls, you can do it like

this:
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Individual pointers returned by can be translated into s by passing them into :
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Performance Tips

In the following sections, we briefly go through a few techniques that can help make your Julia code run as fast as pos-

sible.

39.1 Avoid global variables

A global variable might have its value, and therefore its type, change at any point. This makes it difficult for the com-

piler to optimize code using global variables. Variables should be local, or passed as arguments to functions, whenever

possible.

Any code that is performance critical or being benchmarked should be inside a function.

We find that global names are frequently constants, and declaring them as such greatly improves performance:

Uses of non-constant globals can be optimized by annotating their types at the point of use:

Writing functions is better style. It leads tomore reusable code and clarifies what steps are being done, andwhat their

inputs and outputs are.

Note

All code in the REPL is evaluated in global scope, so a variable defined and assigned at toplevel will be a

global variable.

In the following REPL session:

is equivalent to:

so all the performance issues discussed previously apply.
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39.2 Measure performancewith and pay attention tomemory allocation

A useful tool for measuring performance is the macro. The following example illustrates goodworking style:

On the first call (), gets compiled. (If you’ve not yet used in this session, it will also compile functions needed for timing.)

You should not take the results of this run seriously. For the second run, note that in addition to reporting the time, it

also indicated that a large amount of memory was allocated. This is the single biggest advantage of vs. functions like

and , which only report time.

Unexpected memory allocation is almost always a sign of some problem with your code, usually a problem with type-

stability. Consequently, in addition to the allocation itself, it’s very likely that the code generated for your function is far

from optimal. Take such indications seriously and follow the advice below.

For more serious benchmarking, consider the BenchmarkTools.jl package which evaluates the function multiple times

in order to reduce noise.

As a teaser, an improved version of this function allocates no memory (the allocation reported below is due to running

the macro in global scope) and has an order of magnitude faster execution after the first call:

Below you’ll learn how to spot the problemwith and how to fix it.

In some situations, your function may need to allocate memory as part of its operation, and this can complicate the

simple picture above. In such cases, consider using one of the tools below to diagnose problems, or write a version of

your function that separates allocation from its algorithmic aspects (see Pre-allocating outputs).

39.3 Tools

Julia and its package ecosystem includes tools that may help you diagnose problems and improve the performance of

your code:

https://github.com/JuliaCI/BenchmarkTools.jl
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• Profiling allows you to measure the performance of your running code and identify lines that serve as bottle-

necks. For complex projects, the ProfileView package can help you visualize your profiling results.

• Unexpectedly-largememory allocations–as reportedby , , or theprofiler (through calls to the garbage-collection

routines)–hint that there might be issues with your code. If you don’t see another reason for the allocations,

suspecta typeproblem. Youcanalsostart Juliawith the optionandexamine theresulting files tosee information

about where those allocations occur. SeeMemory allocation analysis.

• generates a representationof your code that canbehelpful in finding expressions that result in typeuncertainty.

See below.

• The Lint package can also warn you of certain types of programming errors.

39.4 Avoid containers with abstract type parameters

Whenworkingwith parameterized types, including arrays, it is best to avoid parameterizingwith abstract typeswhere

possible.

Consider the following:

Because is a an array of abstract type , it must be able to hold any value. Since objects can be of arbitrary size and

structure, must be represented as an array of pointers to individually allocated objects. Because will always be a , we

should instead, use:

which will create a contiguous block of 64-bit floating-point values that can bemanipulated efficiently.

See also the discussion under Parametric Types.

39.5 Type declarations

In many languages with optional type declarations, adding declarations is the principal way to make code run faster.

This is not the case in Julia. In Julia, the compiler generally knows the types of all function arguments, local variables,

and expressions. However, there are a few specific instances where declarations are helpful.

Avoid fields with abstract type

Types can be declared without specifying the types of their fields:

This allows to be of any type. This can often be useful, but it does have a downside: for objects of type , the compiler

will not be able to generate high-performance code. The reason is that the compiler uses the types of objects, not their

values, to determine how to build code. Unfortunately, very little can be inferred about an object of type :

https://github.com/timholy/ProfileView.jl
https://github.com/tonyhffong/Lint.jl
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and have the same type, yet their underlying representation of data inmemory is very different. Even if you stored just

numeric values in field , the fact that thememory representation of a differs from a alsomeans that the CPU needs to

handle them using two different kinds of instructions. Since the required information is not available in the type, such

decisions have to bemade at run-time. This slows performance.

You can do better by declaring the type of . Here, we are focused on the case where might be any one of several types,

in which case the natural solution is to use parameters. For example:

This is a better choice than

because the first version specifies the type of from the type of the wrapper object. For example:

The type of field can be readily determined from the type of , but not from the type of . Indeed, in it’s possible to change

the type of field :
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In contrast, once is constructed, the type of cannot change:

The fact that the type of is known from ’s type–coupled with the fact that its type cannot changemid-function–allows

the compiler to generate highly-optimized code for objects like but not for objects like .

Of course, all of this is true only if we construct with a concrete type. We can break this by explicitly constructing it

with an abstract type:

For all practical purposes, such objects behave identically to those of .

It’s quite instructive to compare the sheer amount code generated for a simple function

using

For reasons of length the results are not shown here, but you may wish to try this yourself. Because the type is fully-

specified in the first case, the compiler doesn’t need to generate any code to resolve the type at run-time. This results

in shorter and faster code.

Avoid fields with abstract containers

The same best practices also work for container types:
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For example:

For , the object is fully-specified by its type and parameters, so the compiler can generate optimized functions. In most

instances, this will probably suffice.

While the compiler can now do its job perfectly well, there are cases where you might wish that your code could do

different things dependingon the element typeof . Usually thebestway to achieve this is towrapyour specific operation

(here, ) in a separate function:

This keeps things simple, while allowing the compiler to generate optimized code in all cases.

However, there are caseswhere youmay need to declare different versions of the outer function for different element

types of . You could do it like this:

This works fine for , but we’d also have to write explicit versions for or other abstract types. To prevent such tedium,

you can use two parameters in the declaration of :
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Note the somewhat surprising fact that doesn’t appear in the declaration of field , a point that we’ll return to in a mo-

ment. With this approach, one canwrite functions such as:

Note

Because we can only define for , and any unspecified parameters are arbitrary, the first function above

could have beenwrittenmore succinctly as

As you can see, with this approach it’s possible to specialize on both the element type and the array type .

However, there’s one remaining hole: we haven’t enforced that has element type , so it’s perfectly possible to construct

an object like this:
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To prevent this, we can add an inner constructor:

The inner constructor requires that the element type of be .

Annotate values taken from untyped locations

It is often convenient to work with data structures that may contain values of any type (arrays of type ). But, if you’re

using one of these structures and happen to know the type of an element, it helps to share this knowledge with the

compiler:

Here, we happened to know that the first element of would be an . Making an annotation like this has the added benefit

that it will raise a run-time error if the value is not of the expected type, potentially catching certain bugs earlier.

In the case that the type of is not known precisely, can be declared via . The use of the function allows to be any object

convertible to an (such as ), thus increasing the genericity of the code by loosening the type requirement. Notice that

itself needs a type annotation in this context in order to achieve type stability. This is because the compiler cannot

deduce the type of the return value of a function, even , unless the types of all the function’s arguments are known.

Declare types of keyword arguments

Keyword arguments can have declared types:

Functions are specialized on the types of keyword arguments, so these declarationswill not affect performance of code

inside the function. However, they will reduce the overhead of calls to the function that include keyword arguments.

Functions with keyword arguments have near-zero overhead for call sites that pass only positional arguments.

Passing dynamic lists of keyword arguments, as in , can be slow and should be avoided in performance-sensitive code.
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39.6 Break functions intomultiple definitions

Writing a function asmany small definitions allows the compiler to directly call themost applicable code, or even inline

it.

Here is an example of a ”compound function” that should really be written asmultiple definitions:

This can bewrittenmore concisely and efficiently as:

39.7 Write ”type-stable” functions

When possible, it helps to ensure that a function always returns a value of the same type. Consider the following defi-

nition:

Although this seems innocent enough, the problem is that is an integer (of type ) and might be of any type. Thus, de-

pending on the value of , this functionmight return a value of either of two types. This behavior is allowed, andmay be

desirable in some cases. But it can easily be fixed as follows:

There is also a function, and amore general function, which returns converted to the type of .

39.8 Avoid changing the type of a variable

An analogous ”type-stability” problem exists for variables used repeatedly within a function:

Local variable starts asan integer, andafterone loop iterationbecomesafloating-pointnumber (the resultof operator).

This makes it more difficult for the compiler to optimize the body of the loop. There are several possible fixes:
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• Initialize with

• Declare the type of :

• Use an explicit conversion:

• Initialize with the first loop iteration, to , then loop

39.9 Separate kernel functions (aka, function barriers)

Many functions follow a pattern of performing some set-up work, and then running many iterations to perform a core

computation. Where possible, it is a good idea to put these core computations in separate functions. For example, the

following contrived function returns an array of a randomly-chosen type:

This should bewritten as:

Julia’s compiler specializes code for argument types at function boundaries, so in the original implementation it does

not know the type of during the loop (since it is chosen randomly). Therefore the second version is generally faster

since the inner loop can be recompiled as part of for different types of .
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The second form is also often better style and can lead tomore code reuse.

This pattern is used in several places in the standard library. For example, see in , or the function, whichwe could have

used instead of writing our own .

Functions like occur when dealing with data of uncertain type, for example data loaded from an input file that might

contain either integers, floats, strings, or something else.

39.10 Typeswith values-as-parameters

Let’s say youwant to create an -dimensional array that has size 3 along each axis. Such arrays can be created like this:

This approach works very well: the compiler can figure out that is an because it knows the type of the fill value () and

the dimensionality (). This implies that the compiler can generate very efficient code for any future usage of in the same

function.

But now let’s say youwant towrite a function that creates a3×3×... array in arbitrarydimensions; youmight be tempted

to write a function

This works, but (as you can verify for yourself using ) the problem is that the output type cannot be inferred: the argu-

ment is a value of type , and type-inference does not (and cannot) predict its value in advance. This means that code

using the output of this function has to be conservative, checking the type on each access of ; such code will be very

slow.

Now, one very goodway to solve such problems is by using the function-barrier technique. However, in some cases you

might want to eliminate the type-instability altogether. In such cases, one approach is to pass the dimensionality as a

parameter, for example through (see ”Value types”):

https://github.com/JuliaLang/julia/blob/master/base/abstractarray.jl
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Julia has a specialized version of that accepts a instance as the second parameter; by passing as a type-parameter, you

make its ”value” known to the compiler. Consequently, this version of allows the compiler to predict the return type.

However, making use of such techniques can be surprisingly subtle. For example, it would be of no help if you called

from a function like this:

Here, you’ve created the same problem all over again: the compiler can’t guess what is, so it doesn’t know the type of .

Attempting to use , but doing so incorrectly, can easily make performanceworse in many situations. (Only in situations

where you’re effectively combining with the function-barrier trick, to make the kernel function more efficient, should

code like the above be used.)

An example of correct usage of would be:

In this example, is passed as a parameter, so its ”value” is known to the compiler. Essentially, works onlywhen is either

hard-coded/literal () or already specified in the type-domain.

39.11 The dangers of abusingmultiple dispatch (aka, more on types with values-as-parameters)

Once one learns to appreciate multiple dispatch, there’s an understandable tendency to go crazy and try to use it for

everything. For example, youmight imagine using it to store information, e.g.

and then dispatch on objects like .

This might be worthwhile when the following are true:

• You require CPU-intensive processing on each , and it becomes vastly more efficient if you know the and at

compile time.

• You have homogenous lists of the same type of to process, so that you can store them all in an .

When the latter holds, a function processing such a homogenous array can be productively specialized: Julia knows the

type of each element in advance (all objects in the container have the same concrete type), so Julia can ”look up” the

correct method calls when the function is being compiled (obviating the need to check at run-time) and thereby emit

efficient code for processing the whole list.

When these donot hold, then it’s likely that you’ll get nobenefit; worse, the resulting ”combinatorial explosionof types”

will be counterproductive. If has a different type than , Julia has to look up the type at run-time, search for the appro-

priate method in method tables, decide (via type intersection) which one matches, determine whether it has been JIT-

compiledyet (anddoso if not), and thenmakethecall. Inessence, you’reasking the full type- systemandJIT-compilation

machinery to basically execute the equivalent of a switch statement or dictionary lookup in your own code.
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Somerun-timebenchmarkscomparing (1) typedispatch, (2)dictionary lookup, and (3)a ”switch”statementcanbefound

on themailing list.

Perhaps even worse than the run-time impact is the compile-time impact: Julia will compile specialized functions for

each different ; if you have hundreds or thousands of such types, then every function that accepts such an object as

a parameter (from a custom function you might write yourself, to the generic function in the standard library) will

have hundreds or thousands of variants compiled for it. Each of these increases the size of the cache of compiled code,

the length of internal lists of methods, etc. Excess enthusiasm for values-as-parameters can easily waste enormous

resources.

39.12 Access arrays inmemory order, along columns

Multidimensional arrays in Julia are stored in column-major order. This means that arrays are stacked one column at a

time. This can be verified using the function or the syntax as shown below (notice that the array is ordered , not ):

This convention for ordering arrays is common in many languages like Fortran, Matlab, and R (to name a few). The al-

ternative to column-major ordering is row-major ordering, which is the convention adopted by C and Python () among

other languages. Remembering the ordering of arrays can have significant performance effects when looping over ar-

rays. A rule of thumb to keep inmind is that with column-major arrays, the first index changesmost rapidly. Essentially

this means that looping will be faster if the inner-most loop index is the first to appear in a slice expression.

Consider the following contrived example. Imagine wewanted to write a function that accepts a and returns a square

with either the rows or the columns filled with copies of the input vector. Assume that it is not important whether

rows or columns are filledwith these copies (perhaps the rest of the code can be easily adapted accordingly). We could

conceivably do this in at least four ways (in addition to the recommended call to the built-in ):

https://groups.google.com/forum/#!msg/julia-users/jUMu9A3QKQQ/qjgVWr7vAwAJ
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Nowwewill time each of these functions using the same random by input vector:

Notice that is much faster than . This is expected because respects the column-based memory layout of the and fills

it one column at a time. Additionally, is much faster than because it follows our rule of thumb that the first element to

appear in a slice expression should be coupled with the inner-most loop.

39.13 Pre-allocating outputs

If your function returns an or some other complex type, it may have to allocate memory. Unfortunately, oftentimes

allocation and its converse, garbage collection, are substantial bottlenecks.

Sometimes you can circumvent the need to allocate memory on each function call by preallocating the output. As a

trivial example, compare
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with

Timing results:

Preallocation has other advantages, for example by allowing the caller to control the ”output” type from an algorithm.

In the example above, we could have passed a rather than an , hadwe so desired.

Taken to its extreme, pre-allocation canmake your code uglier, so performancemeasurements and some judgmentmay

be required. However, for ”vectorized” (element-wise) functions, the convenient syntax can be used for in-place oper-

ations with fused loops and no temporary arrays (see the dot syntax for vectorizing functions).

39.14 More dots: Fuse vectorized operations

Julia has a special dot syntax that converts any scalar function into a ”vectorized” function call, and any operator into a

”vectorized” operator, with the special property that nested ”dot calls” are fusing: they are combined at the syntax level

into a single loop, without allocating temporary arrays. If you use and similar assignment operators, the result can also

be stored in-place in a pre-allocated array (see above).

In a linear-algebra context, this means that even though operations like and are defined, it can be advantageous to

instead use and because the resulting loops can be fused with surrounding computations. For example, consider the

two functions:
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Both and compute the same thing. However, (defined with the help of the macro) is significantly faster when applied

to an array:

That is, is three times fasterandallocates1/7 thememoryof , becauseeach and operation in allocatesanewtemporary

array and executes in a separate loop. (Of course, if you just do then it is as fast as in this example, but inmany contexts

it is more convenient to just sprinkle some dots in your expressions rather than defining a separate function for each

vectorized operation.)

39.15 Consider using views for slices

In Julia, an array ”slice” expression like creates a copy of that data (except on the left-hand side of an assignment, where

assigns in-place to that portion of ). If you are doing many operations on the slice, this can be good for performance

because it is more efficient to work with a smaller contiguous copy than it would be to index into the original array. On

the other hand, if you are just doing a few simple operations on the slice, the cost of the allocation and copy operations

can be substantial.

An alternative is to create a ”view” of the array, which is an array object (a ) that actually references the data of the

original array in-place, without making a copy. (If you write to a view, it modifies the original array’s data as well.) This

can be done for individual slices by calling , or more simply for a whole expression or block of code by putting in front

of that expression. For example:

Notice both the 3× speedup and the decreasedmemory allocation of the version of the function.

39.16 Copying data is not always bad

Arrays are stored contiguously in memory, lending themselves to CPU vectorization and fewer memory accesses due

to caching. These are the same reasons that it is recommended to access arrays in column-major order (see above).

Irregular access patterns and non-contiguous views can drastically slow down computations on arrays because of non-

sequential memory access.
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Copying irregularly-accesseddata into a contiguous arraybeforeoperatingon it can result in a large speedup, such as in

theexamplebelow. Here, amatrix andavector arebeing accessedat800,000of their randomly-shuffled indices before

beingmultiplied. Copying the views into plain arrays speeds themultiplication bymore than a factor of 2 evenwith the

cost of the copying operation.

Provided there is enoughmemory for the copies, the cost of copying the view to an array is far outweighedby the speed

boost from doing thematrix multiplication on a contiguous array.

39.17 Avoid string interpolation for I/O

Whenwriting data to a file (or other I/O device), forming extra intermediate strings is a source of overhead. Instead of:

use:

The first version of the code forms a string, then writes it to the file, while the second version writes values directly to

the file. Also notice that in some cases string interpolation can be harder to read. Consider:

versus:
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39.18 Optimize network I/O during parallel execution

When executing a remote function in parallel:

is faster than:

The former results in a single network round-trip to everyworker, while the latter results in two network calls - first by

the and the second due to the (or even a ). The / is also being executed serially resulting in an overall poorer perfor-

mance.

39.19 Fix deprecationwarnings

A deprecated function internally performs a lookup in order to print a relevant warning only once. This extra lookup

can cause a significant slowdown, so all uses of deprecated functions should bemodified as suggested by thewarnings.

39.20 Tweaks

These are someminor points that might help in tight inner loops.

• Avoid unnecessary arrays. For example, instead of use .

• Use instead of for complex . In general, try to rewrite code to use instead of for complex arguments.

• Use for truncating division of integers instead of , instead of , and instead of .

39.21 Performance Annotations

Sometimes you can enable better optimization by promising certain program properties.

• Use to eliminate array bounds checking within expressions. Be certain before doing this. If the subscripts are

ever out of bounds, youmay suffer crashes or silent corruption.

• Use to allowfloating point optimizations that are correct for real numbers, but lead to differences for IEEEnum-

bers. Be careful when doing this, as this may change numerical results. This corresponds to the option of clang.

• Write in front of loops that are amenable to vectorization. This feature is experimental and could change or

disappear in future versions of Julia.
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Note: While needs to be placed directly in front of a loop, both and can be applied to several statements at once, e.g.

using ... , or even to a whole function.

Here is an example with both and markup:

On a computer with a 2.4GHz Intel Core i5 processor, this produces:

(measures theperformance, and larger numbers are better.) The range for a loop should be aone-dimensional range. A

variable used for accumulating, such as in the example, is called a reduction variable. By using , you are asserting several

properties of the loop:

• It is safe toexecute iterations inarbitraryoroverlappingorder,withspecial consideration for reductionvariables.

• Floating-point operations on reduction variables can be reordered, possibly causing different results thanwith-

out .

• No iteration ever waits on another iteration tomake forward progress.

A loop containing , , or will cause a compile-time error.

Using merely gives the compiler license to vectorize. Whether it actually does so depends on the compiler. To actually

benefit from the current implementation, your loop should have the following additional properties:
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• The loopmust be an innermost loop.

• The loop body must be straight-line code. This is why is currently needed for all array accesses. The compiler

can sometimes turn short , , and expressions into straight-line code, if it is safe to evaluate all operands uncon-

ditionally. Consider using instead of in the loop if it is safe to do so.

• Accesses must have a stride pattern and cannot be ”gathers” (random-index reads) or ”scatters” (random-index

writes).

• The stride should be unit stride.

• In some simple cases, for example with 2-3 arrays accessed in a loop, the LLVM auto-vectorization may kick in

automatically, leading to no further speedupwith .

Here isanexamplewithall threekindsofmarkup. Thisprogramfirstcalculates thefinitedifferenceofaone-dimensional

array, and then evaluates the L2-norm of the result:
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On a computer with a 2.7 GHz Intel Core i7 processor, this produces:

Here, the option disables the macro, so that we can compare results.

In this case, the speedup due to is a factor of about 3.7. This is unusually large – in general, the speedupwill be smaller.

(In this particular example, the working set of the benchmark is small enough to fit into the L1 cache of the processor,

so thatmemory access latency does not play a role, and computing time is dominated byCPUusage. Inmany realworld

programs this is not the case.) Also, in this case this optimization does not change the result – in general, the result will

be slightly different. In some cases, especially for numerically unstable algorithms, the result can be very different.

The annotation re-arranges floating point expressions, e.g. changing the order of evaluation, or assuming that certain

special cases (inf, nan) cannot occur. In this case (and on this particular computer), the main difference is that the ex-

pression in the function is hoisted out of the loop (i.e. calculated outside the loop), as if one had written . In the loop,

the expression then becomes , which is much faster to evaluate. Of course, both the actual optimization that is applied

by the compiler as well as the resulting speedup depend very much on the hardware. You can examine the change in

generated code by using Julia’s function.

39.22 Treat Subnormal Numbers as Zeros

Subnormal numbers, formerly called denormal numbers, are useful in many contexts, but incur a performance penalty

on somehardware. A call grants permission for floating-point operations to treat subnormal inputs or outputs as zeros,

whichmay improve performance on some hardware. A call enforces strict IEEE behavior for subnormal numbers.

Below is an example where subnormals noticeably impact performance on some hardware:

https://en.wikipedia.org/wiki/Denormal_number
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This example generates many subnormal numbers because the values in become an exponentially decreasing curve,

which slowly flattens out over time.

Treating subnormals as zeros should be usedwith caution, because doing so breaks some identities, such as implies :

In some applications, an alternative to zeroing subnormal numbers is to inject a tiny bit of noise. For example, instead

of initializing with zeros, initialize it with:

39.23

Themacro (or its function variant ) can sometimes be helpful in diagnosing type-related problems. Here’s an example:
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Interpreting the output of , like that of its cousins , , , and , takes a little practice. Your code is being presented in form

thathasbeenpartially digestedon itsway togenerating compiledmachine code. Mostof theexpressions are annotated

by a type, indicated by the (where might be , for example). The most important characteristic of is that non-concrete

types are displayed in red; in the above example, such output is shown in all-caps.

The top part of the output summarizes the type information for the different variables internal to the function. You can

see that , one of the variables you created, is a , due to the type-instability of . There is another variable, , which you can

see also has the same type.

The next lines represent the body of . The lines starting with a number followed by a colon (, ) are labels, and represent

targets for jumps (via ) in your code. Looking at the body, you can see that has been inlined into –everything before

comes from code defined in .

Startingat , thevariable isdefined, andagainannotatedasa type. Next,wesee that thecompiler created the temporary

variable to hold the result of . Because a times either an or yields a , all type-instability ends here. The net result is that

will not be type-unstable in its output, even if some of the intermediate computations are type-unstable.

How you use this information is up to you. Obviously, it would be far and away best to fix to be type-stable: if you did

so, all of the variables in would be concrete, and its performance would be optimal. However, there are circumstances

where this kind of ephemeral type instability might not matter too much: for example, if is never used in isolation, the

fact that ’s output is type-stable (for inputs) will shield later code from the propagating effects of type instability. This

is particularly relevant in cases where fixing the type instability is difficult or impossible: for example, currently it’s not

possible to infer the return type of an anonymous function. In such cases, the tips above (e.g., adding type annotations

and/or breaking up functions) are your best tools to contain the ”damage” from type instability.

The following examples may help you interpret expressionsmarked as containing non-leaf types:

• Function body ending in
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– Interpretation: function with unstable return type

– Suggestion: make the return value type-stable, even if you have to annotate it

•

– Interpretation: call to a type-unstable function

– Suggestion: fix the function, or if necessary annotate the return value

•

– Interpretation: accessing elements of poorly-typed arrays

– Suggestion: use arrays with better-defined types, or if necessary annotate the type of individual element

accesses

•

– Interpretation: getting a field that is of non-leaf type. In this case, had a field . But needs the dimension ,

too, to be a concrete type.

– Suggestion: use concrete types like or , where is now a parameter of
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WorkflowTips

Here are some tips for working with Julia efficiently.

40.1 REPL-basedworkflow

As already elaborated in Interacting With Julia, Julia’s REPL provides rich functionality that facilitates an efficient in-

teractive workflow. Here are some tips that might further enhance your experience at the command line.

A basic editor/REPLworkflow

The most basic Julia workflows involve using a text editor in conjunction with the command line. A common pattern

includes the following elements:

• Put code under development in a temporarymodule. Create a file, say , and include within it

• Put your test code in another file. Create another file, say , which begins with

and includes tests for the contents of . The value of using versus is that you can call instead of having to restart

the REPL when your definitions change. Of course, the cost is the need to prepend to uses of names defined in

yourmodule. (You can lower that cost by keeping yourmodule name short.)

Alternatively, you canwrap the contents of your test file in amodule, as

The advantage is that you can now do in your test code and can therefore avoid prepending everywhere. The

disadvantage is that code can no longer be selectively copied to the REPLwithout some tweaking.

381
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• Lather. Rinse. Repeat. Explore ideas at the command prompt. Save good ideas in . Occasionally restart the

REPL, issuing

Simplify initialization

To simplify restarting the REPL, put project-specific initialization code in a file, say , which you can run on startup by

issuing the command:

If you further add the following to your file

then calling from that directory will run the initialization codewithout the additional command line argument.

40.2 Browser-basedworkflow

It is also possible to interact with a Julia REPL in the browser via IJulia. See the package home for details.

https://github.com/JuliaLang/IJulia.jl
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Style Guide

The following sections explain a few aspects of idiomatic Julia coding style. None of these rules are absolute; they are

only suggestions to help familiarize youwith the language and to help you choose among alternative designs.

41.1 Write functions, not just scripts

Writing code as a series of steps at the top level is a quick way to get started solving a problem, but you should try to

divide a program into functions as soon as possible. Functions are more reusable and testable, and clarify what steps

arebeingdoneandwhat their inputs andoutputs are. Furthermore, code inside functions tends to runmuch faster than

top level code, due to how Julia’s compiler works.

It is also worth emphasizing that functions should take arguments, instead of operating directly on global variables

(aside from constants like ).

41.2 Avoidwriting overly-specific types

Code should be as generic as possible. Instead of writing:

it’s better to use available generic functions:

The second version will convert to an appropriate type, instead of always the same type.

This style point is especially relevant to function arguments. For example, don’t declare an argument to be of type or if

it really could be any integer, expressed with the abstract type . In fact, in many cases you can omit the argument type

altogether, unless it is needed to disambiguate from other method definitions, since a will be thrown anyway if a type

is passed that does not support any of the requisite operations. (This is known as duck typing.)

For example, consider the following definitions of a function that returns one plus its argument:

383
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The last definition of handles any type supporting (which returns 1 in the same type as , which avoids unwanted type

promotion) and the function with those arguments. The key thing to realize is that there is no performance penalty to

defining only the general , because Julia will automatically compile specialized versions as needed. For example, the

first time you call , Juliawill automatically compile a specialized function for arguments, with the call to replaced by its

inlined value . Therefore, the first three definitions of above are completely redundant with the fourth definition.

41.3 Handle excess argument diversity in the caller

Instead of:

use:

This is better style because does not really accept numbers of all types; it really needs s.

One issue here is that if a function inherently requires integers, it might be better to force the caller to decide how

non-integers should be converted (e.g. floor or ceiling). Another issue is that declaringmore specific types leavesmore

”space” for futuremethod definitions.

41.4 Append to names of functions thatmodify their arguments

Instead of:

use:

The Julia standard library uses this convention throughout and contains examples of functions with both copying and

modifying forms (e.g., and ), and others which are just modifying (e.g., , , ). It is typical for such functions to also return

themodified array for convenience.
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41.5 Avoid strange type s

Types such as are often a sign that some design could be cleaner.

41.6 Avoid type Unions in fields

When creating a type such as:

ask whether the option for to be (of type ) is really necessary. Here are some alternatives to consider:

• Find a safe default value to initialize with

• Introduce another type that lacks

• If there aremany fields like , store them in a dictionary

• Determinewhether there is a simple rule forwhen is . For example, often the fieldwill start as but get initialized

at somewell-defined point. In that case, consider leaving it undefined at first.

• If really needs to hold no value at some times, define it as instead, as this guarantees type-stability in the code

accessing this field (see Nullable types).

41.7 Avoid elaborate container types

It is usually not much help to construct arrays like the following:

In this case is better. It is also more helpful to the compiler to annotate specific uses (e.g. ) than to try to pack many

alternatives into one type.

41.8 Use naming conventions consistent with Julia’s

• modules and type names use capitalization and camel case: , .

• functions are lowercase (, ) and, when readable, withmultiplewords squashed together (, ). When necessary, use

underscores as word separators. Underscores are also used to indicate a combination of concepts ( as a more

efficient implementation of ) or as modifiers ().

• conciseness is valued, but avoidabbreviation ( rather than ) as it becomesdifficult to rememberwhether andhow

particular words are abbreviated.

If a function name requires multiple words, consider whether it might represent more than one concept and might be

better split into pieces.



386 CHAPTER 41. STYLE GUIDE

41.9 Don’t overuse try-catch

It is better to avoid errors than to rely on catching them.

41.10 Don’t parenthesize conditions

Julia doesn’t require parens around conditions in and . Write:

instead of:

41.11 Don’t overuse

Splicing function arguments can be addictive. Instead of , use simply , which already concatenates arrays. is better than

, but since is already iterable it is often even better to leave it alone, and not convert it to an array.

41.12 Don’t use unnecessary static parameters

A function signature:

should bewritten as:

instead, especially if is not used in the function body. Even if is used, it can be replaced with if convenient. There is no

performance difference. Note that this is not a general caution against static parameters, just against uses where they

are not needed.

Note also that container types, specifically may need type parameters in function calls. See the FAQ Avoid fields with

abstract containers for more information.

41.13 Avoid confusion about whether something is an instance or a type

Sets of definitions like the following are confusing:

Decide whether the concept in question will be written as or , and stick to it.

The preferred style is to use instances by default, and only add methods involving later if they become necessary to

solve some problem.

If a type is effectively an enumeration, it should be defined as a single (ideally immutable struct or primitive) type, with

the enumeration values being instances of it. Constructors and conversions can check whether values are valid. This

design is preferred over making the enumeration an abstract type, with the ”values” as subtypes.
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41.14 Don’t overusemacros

Be aware of when amacro could really be a function instead.

Calling inside a macro is a particularly dangerous warning sign; it means the macro will only work when called at the

top level. If such amacro is written as a function instead, it will naturally have access to the run-time values it needs.

41.15 Don’t expose unsafe operations at the interface level

If you have a type that uses a native pointer:

don’t write definitions like the following:

The problem is that users of this type can write without realizing that the operation is unsafe, and then be susceptible

tomemory bugs.

Such a function should either check the operation to ensure it is safe, or have somewhere in its name to alert callers.

41.16 Don’t overloadmethods of base container types

It is possible to write definitions like the following:

Thiswouldprovidecustomshowingofvectorswitha specificnewelement type. While tempting, this shouldbeavoided.

The trouble is that users will expect a well-known type like to behave in a certain way, and overly customizing its be-

havior canmake it harder to work with.

41.17 Avoid type piracy

”Typepiracy” refers to thepracticeof extendingor redefiningmethods inBaseorother packageson types that youhave

not defined. In some cases, you can get away with type piracy with little ill effect. In extreme cases, however, you can

even crash Julia (e.g. if your method extension or redefinition causes invalid input to be passed to a ). Type piracy can

complicate reasoning about code, andmay introduce incompatibilities that are hard to predict and diagnose.

As an example, suppose youwanted to definemultiplication on symbols in amodule:
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The problem is that now any other module that uses will also see this definition. Since is defined in Base and is used

by other modules, this can change the behavior of unrelated code unexpectedly. There are several alternatives here,

including using a different function name, or wrapping the s in another type that you define.

Sometimes, coupled packages may engage in type piracy to separate features from definitions, especially when the

packages were designed by collaborating authors, and when the definitions are reusable. For example, one package

might provide some types useful for working with colors; another package could define methods for those types that

enable conversions between color spaces. Another examplemight be a package that acts as a thin wrapper for some C

code, which another packagemight then pirate to implement a higher-level, Julia-friendly API.

41.18 Be careful with type equality

You generally want to use and for testing types, not . Checking types for exact equality typically only makes sense

when comparing to a known concrete type (e.g. ), or if you really, really knowwhat you’re doing.

41.19 Do not write

Since higher-order functions are often called with anonymous functions, it is easy to conclude that this is desirable or

even necessary. But any function can be passed directly, without being ”wrapped” in an anonymous function. Instead

of writing , write .

41.20 Avoid using floats for numeric literals in generic codewhen possible

If you write generic code which handles numbers, and which can be expected to run with many different numeric type

arguments, try using literals of a numeric type that will affect the arguments as little as possible through promotion.

For example,

while
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As you can see, the second version, where we used an literal, preserved the type of the input argument, while the first

didn’t. This is because e.g. , and promotion happens with the multiplication. Similarly, literals are less type disruptive

than literals, but more disruptive than s:

Thus, use literals when possible, with for literal non-integer numbers, in order tomake it easier to use your code.
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Frequently AskedQuestions

42.1 Sessions and the REPL

Howdo I delete an object inmemory?

Julia does not have an analog of MATLAB’s function; once a name is defined in a Julia session (technically, in module ),

it is always present.

If memory usage is your concern, you can always replace objects with ones that consume less memory. For example, if

is a gigabyte-sized array that you no longer need, you can free thememorywith . Thememorywill be released the next

time the garbage collector runs; you can force this to happenwith .

How can I modify the declaration of a type inmy session?

Perhaps you’ve defined a type and then realize you need to add a newfield. If you try this at theREPL, you get the error:

Types in module cannot be redefined.

While this can be inconvenient when you are developing new code, there’s an excellent workaround. Modules can be

replaced by redefining them, and so if youwrap all your newcode inside amodule you can redefine types and constants.

You can’t import the type names into and then expect to be able to redefine them there, but you can use the module

name to resolve the scope. In other words, while developing youmight use a workflow something like this:

42.2 Functions

I passed an argument to a function, modified it inside that function, but on the outside, the variable is still

unchanged. Why?

Suppose you call a function like this:

391
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In Julia, the binding of a variable cannot be changedbypassing as an argument to a function. When calling in the above

example, is a newly created variable, bound initially to the value of , i.e. ; then is rebound to the constant , while the

variable of the outer scope is left untouched.

But here is a thing you should pay attention to: suppose is bound to an object of type (or any othermutable type). From

within the function, you cannot ”unbind” from this Array, but you can change its content. For example:

Here we created a function , that assigns to the first element of the passed array (bound to at the call site, and bound

to within the function). Notice that, after the function call, is still bound to the same array, but the content of that array

changed: the variables and were distinct bindings refering to the samemutable object.

Can I use or inside a function?

No, youarenotallowed tohavea or statement insidea function. If youwant to import amodulebutonlyuse its symbols

inside a specific function or set of functions, you have two options:

1. Use :
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This loads the module and defines a variable that refers to the module, but does not import any of the other

symbols from themodule into the current namespace. You refer to the symbols by their qualified names etc.

2. Wrap your function in amodule:

This imports all the symbols from , but only inside themodule .

What does the operator do?

The two uses of the operator: slurping and splatting

Many newcomers to Julia find the use of operator confusing. Part of what makes the operator confusing is that it

means two different things depending on context.

combinesmany arguments into one argument in function definitions

In the contextof functiondefinitions, the operator is used to combinemanydifferent arguments into a single argument.

This use of for combiningmany different arguments into a single argument is called slurping:

If Julia were a language that mademore liberal use of ASCII characters, the slurping operator might have beenwritten

as instead of .

splits one argument intomany different arguments in function calls

In contrast to the use of the operator to denote slurpingmany different arguments into one argumentwhen defining a

function, the operator is also used to cause a single function argument to be split apart intomany different arguments

when used in the context of a function call. This use of is called splatting:
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If Julia were a language thatmademore liberal use of ASCII characters, the splatting operatormight have beenwritten

as instead of .

42.3 Types, type declarations, and constructors

What does ”type-stable” mean?

It means that the type of the output is predictable from the types of the inputs. In particular, it means that the type of

the output cannot vary depending on the values of the inputs. The following code is not type-stable:

It returns either an or a depending on the value of its argument. Since Julia can’t predict the return typeof this function

at compile-time, any computation that uses it will have to guard against both types possibly occurring, making genera-

tion of fast machine code difficult.

Why does Julia give a for certain seemingly-sensible operations?

Certain operationsmakemathematical sense but result in errors:
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This behavior is an inconvenient consequence of the requirement for type-stability. In the case of , most users want to

give a real number, and would be unhappy if it produced the complex number . One could write the function to switch

to a complex-valued output only when passed a negative number (which is what does in some other languages), but

then the result would not be type-stable and the function would have poor performance.

In these and other cases, you can get the result you want by choosing an input type that conveys your willingness to

accept an output type in which the result can be represented:

Why does Julia use nativemachine integer arithmetic?

Julia uses machine arithmetic for integer computations. This means that the range of values is bounded and wraps

around at either end so that adding, subtracting and multiplying integers can overflow or underflow, leading to some

results that can be unsettling at first:

Clearly, this is far from thewaymathematical integers behave, and youmight think it less than ideal for a high-level pro-

gramming language to expose this to the user. For numericalworkwhere efficiency and transparency are at a premium,

however, the alternatives are worse.

Onealternative toconsiderwouldbe tocheckeach integeroperation foroverflowandpromoteresults tobigger integer

types such as or in the case of overflow. Unfortunately, this introduces major overhead on every integer operation

(think incrementing a loop counter) – it requires emitting code to perform run-time overflow checks after arithmetic

instructions and branches to handle potential overflows. Worse still, this would cause every computation involving

integers to be type-unstable. Aswementioned above, type-stability is crucial for effective generation of efficient code.

If you can’t count on the results of integer operations being integers, it’s impossible to generate fast, simple code the

way C and Fortran compilers do.
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A variation on this approach, which avoids the appearance of type instability is to merge the and types into a single

hybrid integer type, that internally changes representation when a result no longer fits into the size of a machine inte-

ger. While this superficially avoids type-instability at the level of Julia code, it just sweeps the problemunder the rug by

foisting all of the same difficulties onto the C code implementing this hybrid integer type. This approach can be made

towork and can even bemade quite fast inmany cases, but has several drawbacks. One problem is that the in-memory

representation of integers and arrays of integers no longer match the natural representation used by C, Fortran and

other languages with native machine integers. Thus, to interoperate with those languages, we would ultimately need

to introduce native integer types anyway. Any unbounded representation of integers cannot have a fixed number of

bits, and thus cannot be stored inline in an array with fixed-size slots – large integer values will always require sep-

arate heap-allocated storage. And of course, no matter how clever a hybrid integer implementation one uses, there

are always performance traps – situations where performance degrades unexpectedly. Complex representation, lack

of interoperability with C and Fortran, the inability to represent integer arrays without additional heap storage, and

unpredictable performance characteristics make even the cleverest hybrid integer implementations a poor choice for

high-performance numerical work.

An alternative to using hybrid integers or promoting to BigInts is to use saturating integer arithmetic, where adding

to the largest integer value leaves it unchanged and likewise for subtracting from the smallest integer value. This is

precisely whatMatlab™ does:

At first blush, this seems reasonable enough since 9223372036854775807 ismuch closer to 9223372036854775808

than -9223372036854775808 is and integers are still representedwith a fixed size in a natural way that is compatible

with C and Fortran. Saturated integer arithmetic, however, is deeply problematic. The first and most obvious issue

is that this is not the way machine integer arithmetic works, so implementing saturated operations requires emitting

instructions after each machine integer operation to check for underflow or overflow and replace the result with or

as appropriate. This alone expands each integer operation from a single, fast instruction into half a dozen instructions,

probably including branches. Ouch. But it gets worse – saturating integer arithmetic isn’t associative. Consider this

Matlab computation:
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This makes it hard to write many basic integer algorithms since a lot of common techniques depend on the fact that

machine additionwith overflow is associative. Consider finding themidpoint between integer values and in Julia using

the expression :

See? Noproblem. That’s thecorrectmidpointbetween2^62and2^63,despite the fact that is -4611686018427387904.

Now try it inMatlab:

Oops. Adding a operator to Matlab wouldn’t help, because saturation that occurs when adding and has already de-

stroyed the information necessary to compute the correct midpoint.

Not only is lack of associativity unfortunate for programmers who cannot rely it for techniques like this, but it also

defeats almost anything compilers might want to do to optimize integer arithmetic. For example, since Julia integers

use normal machine integer arithmetic, LLVM is free to aggressively optimize simple little functions like . The machine

code for this function is just this:

The actual bodyof the function is a single instruction,which computes the integermultiply andaddat once. This is even

more beneficial when gets inlined into another function:



398 CHAPTER 42. FREQUENTLY ASKEDQUESTIONS

Since the call to gets inlined, the loop body ends up being just a single instruction. Next, consider what happens if we

make the number of loop iterations fixed:

Because the compiler knows that integer addition andmultiplication are associative and thatmultiplication distributes

over addition – neither of which is true of saturating arithmetic – it can optimize the entire loop down to just amultiply

and an add. Saturated arithmetic completely defeats this kind of optimization since associativity and distributivity can

fail at each loop iteration, causing different outcomes depending on which iteration the failure occurs in. The compiler

can unroll the loop, but it cannot algebraically reducemultiple operations into fewer equivalent operations.

Themost reasonable alternative to having integer arithmetic silently overflow is to do checked arithmetic everywhere,

raising errors when adds, subtracts, and multiplies overflow, producing values that are not value-correct. In this blog

post, Dan Luu analyzes this and finds that rather than the trivial cost that this approach should in theory have, it ends

http://danluu.com/integer-overflow/
http://danluu.com/integer-overflow/
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up having a substantial cost due to compilers (LLVM and GCC) not gracefully optimizing around the added overflow

checks. If this improves in the future, we could consider defaulting to checked integer arithmetic in Julia, but for now,

we have to live with the possibility of overflow.

What are the possible causes of an during remote execution?

As the error states, an immediate cause of an on a remote node is that a binding by that name does not exist. Let us

explore some of the possible causes.

The closure carries a reference to , and since is unavailable on node 2, an is thrown.

Globals under modules other than are not serialized by value to the remote node. Only a reference is sent. Functions

which create global bindings (except under ) may cause an to be thrown later.

In the above example, defined on all nodes. However the call to created a new global binding on the local node, but

this was not found on node 2 resulting in an error.

Note that this does not apply to globals created undermodule . Globals undermodule are serialized and new bindings

created under on the remote node.
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This does not apply to or declarations. However, anonymous functions bound to global variables are serialized as can

be seen below.

42.4 Packages andModules

What is the difference between ”using” and ”importall”?

There is only one difference, and on the surface (syntax-wise) it may seem very minor. The difference between and is

that with you need to say to extend module Foo’s function bar with a newmethod, but with or , you only need to say

and it automatically extendsmodule Foo’s function bar.

If you use , then and become equivalent. If you use , then they are different.

The reason this is important enough to have been given separate syntax is that you don’t want to accidentally extend

a function that you didn’t know existed, because that could easily cause a bug. This is most likely to happen with a

method that takes a common type like a string or integer, becauseboth youand theothermodule could defineamethod

to handle such a common type. If you use , then you’ll replace the other module’s implementation of with your new

implementation, which could easily do something completely different (and break all/many future usages of the other

functions in module Foo that depend on calling bar).

42.5 Nothingness andmissing values

Howdoes ”null” or ”nothingness” work in Julia?

Unlike many languages (for example, C and Java), Julia does not have a ”null” value. When a reference (variable, object

field, or array element) is uninitialized, accessing itwill immediately throwanerror. This situation canbedetectedusing

the function.

Some functions are used only for their side effects, and do not need to return a value. In these cases, the convention

is to return the value , which is just a singleton object of type . This is an ordinary type with no fields; there is nothing

special about it except for this convention, and that the REPL does not print anything for it. Some language constructs

that would not otherwise have a value also yield , for example .

For situationswhereavalueexistsonly sometimes (forexample,missing statistical data), it is best touse the type,which

allows specifying the type of amissing value.

The empty tuple () is another form of nothingness. But, it should not really be thought of as nothing but rather a tuple

of zero values.

In codewritten for Julia prior to version 0.4 youmay occasionally see , which is quite different. It is the empty (or ”bot-

tom”) type, a type with no values and no subtypes (except itself). This is nowwritten as (an empty union type). Youwill

generally not need to use this type.
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42.6 Memory

Why does allocatememorywhen and are arrays?

In Julia, gets replaced during parsing by . For arrays, this has the consequence that, rather than storing the result in the

same location inmemory as , it allocates a new array to store the result.

While this behaviormight surprise some, the choice is deliberate. Themain reason is thepresenceof immutable objects

within Julia, which cannot change their value once created. Indeed, a number is an immutable object; the statements

do not modify the meaning of , they modify the value bound to . For an immutable, the only way to change the value is

to reassign it.

To amplify a bit further, consider the following function:

After a call like , you would get the expected result: . However, now suppose that , when used with matrices, instead

mutated the left hand side. There would be two problems:

• For general squarematrices, cannot be implementedwithout temporary storage: gets computed and stored on

the left hand side before you’re done using it on the right hand side.

• Suppose youwerewilling to allocate a temporary for the computation (which would eliminatemost of the point

ofmaking work in-place); if you took advantage of themutability of , then this functionwould behave differently

for mutable vs. immutable inputs. In particular, for immutable , after the call you’d have (in general) , but for

mutable you’d have .

Because supporting generic programming is deemed more important than potential performance optimizations that

can be achieved by other means (e.g., using explicit loops), operators like and work by rebinding new values.

42.7 Asynchronous IO and concurrent synchronouswrites

Why do concurrent writes to the same stream result in inter-mixed output?

While the streaming I/O API is synchronous, the underlying implementation is fully asynchronous.

Consider the printed output from the following:

This ishappeningbecause,while the call is synchronous, thewritingofeachargumentyields toother taskswhilewaiting

for that part of the I/O to complete.

and ”lock” the stream during a call. Consequently changing to in the above example results in:
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You can lock your writes with a like this:

42.8 Julia Releases

Do I want to use a release, beta, or nightly version of Julia?

You may prefer the release version of Julia if you are looking for a stable code base. Releases generally occur every 6

months, giving you a stable platform for writing code.

Youmay prefer the beta version of Julia if you don’t mind being slightly behind the latest bugfixes and changes, but find

the slightly faster rate of changes more appealing. Additionally, these binaries are tested before they are published to

ensure they are fully functional.

Youmayprefer the nightly version of Julia if youwant to take advantage of the latest updates to the language, and don’t

mind if the version available today occasionally doesn’t actually work.

Finally, youmay also consider building Julia from source for yourself. This option ismainly for those individualswho are

comfortable at the command line, or interested in learning. If this describes you, youmay also be interested in reading

our guidelines for contributing.

Links to each of these download types can be found on the download page at https://julialang.org/downloads/. Note

that not all versions of Julia are available for all platforms.

When are deprecated functions removed?

Deprecated functions are removed after the subsequent release. For example, functions marked as deprecated in the

0.1 release will not be available starting with the 0.2 release.

https://github.com/JuliaLang/julia/blob/master/CONTRIBUTING.md
https://julialang.org/downloads/
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Noteworthy Differences from other Languages

43.1 Noteworthy differences fromMATLAB

Although MATLAB users may find Julia’s syntax familiar, Julia is not a MATLAB clone. There are major syntactic and

functional differences. The followingare somenoteworthydifferences thatmay tripupJuliausers accustomed toMAT-

LAB:

• Julia arrays are indexedwith square brackets, .

• Julia arrays are assigned by reference. After , changing elements of will modify as well.

• Julia values are passed and assigned by reference. If a function modifies an array, the changes will be visible in

the caller.

• Julia does not automatically grow arrays in an assignment statement. Whereas inMATLAB can create the array

and can grow it into , the corresponding Julia statement throws an error if the length of is less than 5 or if this

statement is the first use of the identifier . Julia has and , which grow smuchmore efficiently thanMATLAB’s .

• The imaginary unit is represented in Julia as , not or as inMATLAB.

• In Julia, literal numbers without a decimal point (such as ) create integers instead of floating point numbers. Ar-

bitrarily large integer literals are supported. As a result, some operations such as will throw a domain error as

the result is not an integer (see the FAQ entry on domain errors for details).

• In Julia, multiple values are returned and assigned as tuples, e.g. or . MATLAB’s , which is often used in MAT-

LAB to do optional work based on the number of returned values, does not exist in Julia. Instead, users can use

optional and keyword arguments to achieve similar capabilities.

• Julia has true one-dimensional arrays. Column vectors are of size , not . For example, makes a 1-dimensional

array.

• In Julia, will always construct a 3-element array containing , and .

– To concatenate in the first (”vertical”) dimension use either or separate with semicolons ().

– To concatenate in the second (”horizontal”) dimension use either or separate with spaces ().

– To construct blockmatrices (concatenating in the first two dimensions), use either or combine spaces and

semicolons ().

• In Julia, and construct objects. To construct a full vector like inMATLAB, use . Generally, there is no need to call

though. will act like a normal array inmost cases but is more efficient because it lazily computes its values. This

pattern of creating specialized objects instead of full arrays is used frequently, and is also seen in functions such

as , or with iterators such as , and . The special objects canmostly be used as if they were normal arrays.

403



404 CHAPTER 43. NOTEWORTHYDIFFERENCES FROMOTHER LANGUAGES

• Functions in Julia returnvalues fromtheir lastexpressionor the keyword insteadof listing thenamesofvariables

to return in the function definition (see The return Keyword for details).

• A Julia script may contain any number of functions, and all definitions will be externally visible when the file is

loaded. Function definitions can be loaded from files outside the current working directory.

• In Julia, reductions such as , , and are performed over every element of an array when called with a single argu-

ment, as in , even if has more than one dimension.

• In Julia, functions such as that operate column-wise by default ( is equivalent to ) do not have special behavior

for arrays; the argument is returned unmodified since it still performs . To sort a matrix like a vector, use .

• In Julia, parenthesesmust be used to call a function with zero arguments, like in and .

• Julia discourages the used of semicolons to end statements. The results of statements are not automatically

printed (except at the interactive prompt), and lines of code do not need to endwith semicolons. or can be used

to print specific output.

• In Julia, if and are arrays, logical comparison operations like do not return an array of booleans. Instead, use ,

and similarly for the other boolean operators like , and .

• In Julia, the operators , , and () perform the bitwise operations equivalent to , , and respectively in MATLAB,

and have precedence similar to Python’s bitwise operators (unlike C). They can operate on scalars or element-

wise across arrays and can be used to combine logical arrays, but note the difference in order of operations:

parenthesesmay be required (e.g., to select elements of equal to 1 or 2 use ).

• In Julia, the elements of a collection can be passed as arguments to a function using the splat operator , as in .

• Julia’s returns singular values as a vector instead of as a dense diagonal matrix.

• In Julia, is not used to continue lines of code. Instead, incomplete expressions automatically continue onto the

next line.

• In both Julia andMATLAB, the variable is set to the value of the last expression issued in an interactive session.

In Julia, unlikeMATLAB, is not set when Julia code is run in non-interactivemode.

• Julia’s s do not support dynamically adding fields at runtime, unlikeMATLAB’s es. Instead, use a .

• In Julia eachmodule has its own global scope/namespace, whereas inMATLAB there is just one global scope.

• In MATLAB, an idiomatic way to remove unwanted values is to use logical indexing, like in the expression or in

the statement to modify in-place. In contrast, Julia provides the higher order functions and , allowing users to

write and as alternatives to the corresponding transliterations and . Using reduces theuseof temporary arrays.

• The analogue of extracting (or ”dereferencing”) all elements of a cell array, e.g. in in MATLAB, is written using

the splat operator in Julia, e.g. as .

43.2 Noteworthy differences fromR

One of Julia’s goals is to provide an effective language for data analysis and statistical programming. For users coming

to Julia fromR, these are some noteworthy differences:

• Julia’s single quotes enclose characters, not strings.

• Julia can create substrings by indexing into strings. In R, stringsmust be converted into character vectors before

creating substrings.
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• In Julia, like Python but unlike R, strings can be created with triple quotes . This syntax is convenient for con-

structing strings that contain line breaks.

• In Julia, varargsare specifiedusing thesplatoperator ,whichalways follows thenameofa specificvariable, unlike

R, for which can occur in isolation.

• In Julia, modulus is , not . in Julia is the remainder operator.

• In Julia, not all data structures support logical indexing. Furthermore, logical indexing in Julia is supported only

with vectors of length equal to the object being indexed. For example:

– In R, is equivalent to .

– In R, is equivalent to .

– In Julia, throws a .

– In Julia, produces .

• Like many languages, Julia does not always allow operations on vectors of different lengths, unlike R where the

vectors only need to share a common index range. For example, is valid R but the equivalent will throw an error

in Julia.

• Julia’s takes the function first, then its arguments, unlike in R. Similarly Julia’s equivalent of in R is where the

function is the first argument.

• Multivariate apply in R, e.g. , can be written as in Julia. Equivalently Julia offers a shorter dot syntax for vector-

izing functions .

• Julia uses to denote the end of conditional blocks, like , loop blocks, like / , and functions. In lieu of the one-line

, Julia allows statements of the form , and . Assignment statements in the latter two syntaxes must be explicitly

wrapped in parentheses, e.g. .

• In Julia, , and are not assignment operators.

• Julia’s creates an anonymous function, like Python.

• Julia constructs vectors using brackets. Julia’s is the equivalent of R’s .

• Julia’s operator can performmatrixmultiplication, unlike in R. If and arematrices, then denotes amatrixmulti-

plication in Julia, equivalent toR’s . InR, this samenotationwouldperformanelement-wise (Hadamard) product.

To get the element-wisemultiplication operation, you need to write in Julia.

• Julia performsmatrix transposition using the operator and conjugated transposition using the operator. Julia’s

is therefore equivalent to R’s .

• Julia does not require parentheses whenwriting statements or / loops: use instead of and instead of .

• Julia does not treat the numbers and as Booleans. You cannot write in Julia, because statements accept only

booleans. Instead, you canwrite , , or .

• Julia does not provide and . Instead, use for and for .

• Julia is careful to distinguish scalars, vectors andmatrices. In R, and are the same. In Julia, they can not be used

interchangeably. One potentially confusing result of this is that for vectors and is a 1-element vector, not a

scalar. To get a scalar, use .

• Julia’s and are not like R’s.
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• Julia cannot assign to the results of function calls on the left hand side of an assignment operation: you cannot

write .

• Julia discourages populating themain namespacewith functions. Most statistical functionality for Julia is found

in packages under the JuliaStats organization. For example:

– Functions pertaining to probability distributions are provided by the Distributions package.

– TheDataFrames package provides data frames.

– Generalized linear models are provided by the GLMpackage.

• Julia provides tuples and real hash tables, but not R-style lists. When returning multiple items, you should typi-

cally use a tuple: instead of , use .

• Julia encourages users towrite their own types,which are easier to use than S3or S4objects inR. Julia’smultiple

dispatch systemmeans that and act like R’s and .

• In Julia, values are passed and assigned by reference. If a functionmodifies an array, the changeswill be visible in

the caller. This is very different fromR and allows new functions to operate on large data structuresmuchmore

efficiently.

• In Julia, vectors andmatrices are concatenated using , and , not , and like in R.

• In Julia, a range like is not shorthand for a vector like in R, but is a specialized that is used for iteration without

highmemory overhead. To convert a range into a vector, use .

• Julia’s and are the equivalent of and respectively in R, but both arguments need to have the same dimensions.

While and replace and in R, there are important differences.

• Julia’s , , , and aredifferent fromtheir counterparts inR.Theyall acceptoneor twoarguments. Thefirst argument

is an iterable collection such as an array. If there is a second argument, then this argument indicates the dimen-

sions, over which the operation is carried out. For instance, let in Julia and be the samematrix in R. Then gives

the same result as , but is a row vector containing the sum over each column and is a column vector containing

the sum over each row. This contrasts to the behavior of R, where and . If the second argument is a vector, then

it specifies all the dimensions over which the sum is performed, e.g., . It should be noted that there is no error

checking regarding the second argument.

• Julia has several functions that canmutate their arguments. For example, it has both and .

• In R, performance requires vectorization. In Julia, almost the opposite is true: the best performing code is often

achieved by using devectorized loops.

• Julia is eagerly evaluated and does not support R-style lazy evaluation. Formost users, thismeans that there are

very few unquoted expressions or column names.

• Julia does not support the type.

• Julia lacks the equivalent of R’s or .

• In Julia, does not require parentheses.

• In R, an idiomaticway to remove unwanted values is to use logical indexing, like in the expression or in the state-

ment tomodify in-place. In contrast, Julia provides the higher order functions and , allowing users towrite and

as alternatives to the corresponding transliterations and . Using reduces the use of temporary arrays.

http://pkg.julialang.org/
https://github.com/JuliaStats
https://github.com/JuliaStats/Distributions.jl
https://github.com/JuliaStats/DataFrames.jl
https://github.com/JuliaStats/GLM.jl
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43.3 Noteworthy differences fromPython

• Julia requires to end a block. Unlike Python, Julia has no keyword.

• In Julia, indexing of arrays, strings, etc. is 1-based not 0-based.

• Julia’s slice indexing includes the last element, unlike in Python. in Julia is in Python.

• Julia does not support negative indexes. In particular, the last element of a list or array is indexed with in Julia,

not as in Python.

• Julia’s , , , etc. blocks are terminated by the keyword. Indentation level is not significant as it is in Python.

• Julia has no line continuation syntax: if, at the end of a line, the input so far is a complete expression, it is consid-

ereddone; otherwise the inputcontinues. Onewayto forceanexpressiontocontinue is towrap it inparentheses.

• Julia arrays are columnmajor (Fortran ordered)whereasNumPyarrays are rowmajor (C-ordered) by default. To

get optimal performancewhen looping over arrays, the order of the loops should be reversed in Julia relative to

NumPy (see relevant section of Performance Tips).

• Julia’s updating operators (e.g. , , ...) are not in-placewhereas NumPy’s are. This means doesn’t change values in ,

it rather rebinds the name to the result of the right-hand side , which is a new array. For in-place operation, use

(see also dot operators), explicit loops, or .

• Julia evaluates default values of function arguments every time the method is invoked, unlike in Python where

thedefault values are evaluatedonly oncewhen the function is defined. For example, the function returns a new

random number every time it is invokedwithout argument. On the other hand, the function returns every time

it is called as .

• In Julia is the remainder operator, whereas in Python it is themodulus.

43.4 Noteworthy differences fromC/C++

• Julia arrays are indexed with square brackets, and can have more than one dimension . This syntax is not just

syntactic sugar for a reference to a pointer or address as in C/C++. See the Julia documentation for the syntax

for array construction (it has changed between versions).

• In Julia, indexing of arrays, strings, etc. is 1-based not 0-based.

• Julia arrays are assigned by reference. After , changing elements of will modify as well. Updating operators like

do not operate in-place, they are equivalent to which rebinds the left-hand side to the result of the right-hand

side expression.

• Julia arrays are column major (Fortran ordered) whereas C/C++ arrays are row major ordered by default. To

get optimal performancewhen looping over arrays, the order of the loops should be reversed in Julia relative to

C/C++ (see relevant section of Performance Tips).

• Julia values are passed and assigned by reference. If a function modifies an array, the changes will be visible in

the caller.

• In Julia, whitespace is significant, unlike C/C++, so care must be taken when adding/removing whitespace from

a Julia program.
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• In Julia, literal numberswithout a decimal point (such as ) create signed integers, of type , but literals too large to

fit in themachineword sizewill automatically be promoted to a larger size type, such as (if is ), , or the arbitrarily

large type. There are no numeric literal suffixes, such as , , , , to indicate unsigned and/or signed vs. unsigned.

Decimal literals are always signed, and hexadecimal literals (which start with like C/C++), are unsigned. Hex-

adecimal literals also, unlike C/C++/Java and unlike decimal literals in Julia, have a type based on the length of

the literal, including leading 0s. For example, and have type , and have type , then literals with 5 to 8 hex dig-

its have type , 9 to 16 hex digits type and 17 to 32 hex digits type . This needs to be taken into account when

defining hexadecimal masks, for example is very different from . 64 bit and 32 bit bit literals are expressed as

and respectively. Floating point literals are rounded (and not promoted to the type) if they can not be exactly

represented. Floating point literals are closer in behavior to C/C++. Octal (prefixed with ) and binary (prefixed

with ) literals are also treated as unsigned.

• String literals can be delimited with either or , delimited literals can contain characters without quoting it like

String literals can have values of other variables or expressions interpolated into them, indicated by or , which

evaluates the variable name or the expression in the context of the function.

• indicates a number, and not a single-line comment (which is in Julia)

• indicates the start of a multiline comment, and ends it.

• Functions in Julia return values from their last expression(s) or the keyword. Multiple values can be returned

from functions and assigned as tuples, e.g. or , instead of having to pass pointers to values as one would have to

do in C/C++ (i.e. .

• Julia does not require the use of semicolons to end statements. The results of expressions are not automatically

printed (except at the interactive prompt, i.e. theREPL), and lines of codedonot need to endwith semicolons. or

can be used to print specific output. In the REPL, can be used to suppress output. also has a different meaning

within , something to watch out for. can be used to separate expressions on a single line, but are not strictly

necessary in many cases, and aremore an aid to readability.

• In Julia, the operator () performs the bitwise XOR operation, i.e. in C/C++. Also, the bitwise operators do not

have the same precedence as C/++, so parenthesis may be required.

• Julia’s is exponentiation (pow), not bitwise XOR as in C/C++ (use , or , in Julia)

• Julia has two right-shift operators, and . performs an arithmetic shift, always performs a logical shift, unlike

C/C++, where themeaning of depends on the type of the value being shifted.

• Julia’s creates an anonymous function, it does not access amember via a pointer.

• Julia does not require parentheses whenwriting statements or / loops: use instead of and instead of .

• Julia does not treat the numbers and as Booleans. You cannot write in Julia, because statements accept only

booleans. Instead, you canwrite , , or .

• Julia uses to denote the end of conditional blocks, like , loop blocks, like / , and functions. In lieu of the one-line

, Julia allows statements of the form , and . Assignment statements in the latter two syntaxes must be explicitly

wrapped in parentheses, e.g. , because of the operator precedence.

• Julia has no line continuation syntax: if, at the end of a line, the input so far is a complete expression, it is consid-

ereddone; otherwise the inputcontinues. Onewayto forceanexpressiontocontinue is towrap it inparentheses.

• Julia macros operate on parsed expressions, rather than the text of the program, which allows them to perform

sophisticated transformationsof Julia code. Macronames startwith the character, andhavebotha function-like

syntax, , and a statement-like syntax, . The forms are interchangable; the function-like form is particularly useful

if the macro appears within another expression, and is often clearest. The statement-like form is often used to

annotate blocks, as in the parallel construct: . Where the end of the macro construct may be unclear, use the

function-like form.
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• Julia now has an enumeration type, expressed using themacro For example:

• By convention, functions that modify their arguments have a at the end of the name, for example .

• In C++, by default, you have static dispatch, i.e. you need to annotate a function as virtual, in order to have dy-

namic dispatch. On the other hand, in Julia every method is ”virtual” (although it’s more general than that since

methods are dispatched on every argument type, not only , using themost-specific-declaration rule).





Chapter 44

Unicode Input

The following table lists Unicode characters that can be entered via tab completion of LaTeX-like abbreviations in the

JuliaREPL (and invariousothereditingenvironments). Youcanalsoget informationonhowtotypeasymbolbyentering

it in the REPL help, i.e. by typing and then entering the symbol in the REPL (e.g., by copy-paste from somewhere you

saw the symbol).

Warning

This table may appear to contain missing characters in the second column, or even show characters that

are inconsistent with the characters as they are rendered in the Julia REPL. In these cases, users are

stronglyadvised tocheck their choiceof fonts in theirbrowserandREPLenvironment, as thereareknown

issues with glyphs in many fonts.

Code

point(s)

Char-

ac-

ter(s)

Tab completion

sequence(s)

Unicode name(s)

U+000A1 ¡ \textexclamdown Inverted ExclamationMark

U+000A3 £ \sterling Pound Sign

U+000A5 ¥ \yen Yen Sign

U+000A6 ¦ \textbrokenbar Broken Bar / Broken Vertical Bar

U+000A7 § \S Section Sign

U+000A8 ¨ \textasciidieresis Diaeresis / Spacing Diaeresis

U+000A9 © \copyright, \:copyright: Copyright Sign

U+000AA ª \textordfeminine FeminineOrdinal Indicator

U+000AC ¬ \neg Not Sign

U+000AE ® \circledR, \:registered: Registered Sign / Registered TradeMark Sign

U+000AF ¯ \textasciimacron Macron / SpacingMacron

U+000B0 ° \degree Degree Sign

U+000B1 ± \pm Plus-minus Sign / Plus-or-minus Sign

U+000B2 ² \^2 Superscript Two / Superscript Digit Two

U+000B3 ³ \^3 Superscript Three / Superscript Digit Three

U+000B4 ´ \textasciiacute Acute Accent / Spacing Acute

U+000B6 ¶ \P Pilcrow Sign / Paragraph Sign

U+000B7 · \cdotp Middle Dot

U+000B9 ¹ \^1 Superscript One / Superscript Digit One

U+000BA º \textordmasculine Masculine Ordinal Indicator

U+000BC ¼ \textonequarter Vulgar FractionOneQuarter / FractionOneQuarter

U+000BD ½ \textonehalf Vulgar FractionOneHalf / FractionOneHalf

U+000BE ¾ \textthreequarters Vulgar Fraction ThreeQuarters / Fraction ThreeQuarters

U+000BF ¿ \textquestiondown InvertedQuestionMark

U+000C5 Å \AA Latin Capital Letter AWith Ring Above / Latin Capital

Letter A Ring

U+000C6 Æ \AE Latin Capital Letter Ae / Latin Capital Letter A E

U+000D0 Ð \DH Latin Capital Letter Eth

U+000D7 × \times Multiplication Sign

U+000D8 Ø \O Latin Capital Letter OWith Stroke / Latin Capital Letter O

Slash

U+000DE Þ \TH Latin Capital Letter Thorn

U+000DF ß \ss Latin Small Letter Sharp S

U+000E5 å \aa Latin Small Letter AWith Ring Above / Latin Small Letter A

Ring

U+000E6 æ \ae Latin Small Letter Ae / Latin Small Letter A E

U+000F0 ð \eth Latin Small Letter Eth

U+000F7 ÷ \div Division Sign

U+000F8 ø \o Latin Small Letter OWith Stroke / Latin Small Letter O

Slash

U+000FE þ \th Latin Small Letter Thorn

U+00110 \DJ Latin Capital Letter DWith Stroke / Latin Capital Letter D

Bar

U+00111 \dj Latin Small Letter DWith Stroke / Latin Small Letter D Bar

U+00127 \Elzxh, \hbar Latin Small Letter HWith Stroke / Latin Small Letter H Bar

U+00141 Ł \L Latin Capital Letter LWith Stroke / Latin Capital Letter L

Slash

U+00142 ł \l Latin Small Letter LWith Stroke / Latin Small Letter L Slash

U+0014A \NG Latin Capital Letter Eng

U+0014B \ng Latin Small Letter Eng

U+00152 Œ \OE Latin Capital Ligature Oe / Latin Capital Letter O E

U+00153 œ \oe Latin Small Ligature Oe / Latin Small Letter O E

U+00195 \texthvlig Latin Small Letter Hv / Latin Small Letter H V

U+0019E \textnrleg Latin Small Letter NWith Long Right Leg

U+001B5 \Zbar Latin Capital Letter ZWith Stroke / Latin Capital Letter Z

Bar

U+001C2 \textdoublepipe Latin Letter Alveolar Click / Latin Letter Pipe Double Bar

U+00250 \Elztrna Latin Small Letter Turned A

U+00252 \Elztrnsa Latin Small Letter Turned Alpha / Latin Small Letter Turned

Script A

U+00254 \Elzopeno Latin Small Letter OpenO

U+00256 \Elzrtld Latin Small Letter DWith Tail / Latin Small Letter D

Retroflex Hook

U+00259 \Elzschwa Latin Small Letter Schwa

U+00263 \Elzpgamma Latin Small Letter Gamma

U+00264 \Elzpbgam Latin Small Letter RamsHorn / Latin Small Letter Baby

Gamma

U+00265 \Elztrnh Latin Small Letter TurnedH

U+0026C \Elzbtdl Latin Small Letter LWith Belt / Latin Small Letter L Belt

U+0026D \Elzrtll Latin Small Letter LWith Retroflex Hook / Latin Small

Letter L Retroflex Hook

U+0026F \Elztrnm Latin Small Letter TurnedM

U+00270 \Elztrnmlr Latin Small Letter TurnedMWith Long Leg

U+00271 \Elzltlmr Latin Small LetterMWith Hook / Latin Small LetterM

Hook

U+00272 \Elzltln Latin Small Letter NWith Left Hook / Latin Small Letter N

Hook

U+00273 \Elzrtln Latin Small Letter NWith Retroflex Hook / Latin Small

Letter N Retroflex Hook

U+00277 \Elzclomeg Latin Small Letter ClosedOmega

U+00278 \textphi Latin Small Letter Phi

U+00279 \Elztrnr Latin Small Letter Turned R

U+0027A \Elztrnrl Latin Small Letter Turned RWith Long Leg

U+0027B \Elzrttrnr Latin Small Letter Turned RWith Hook / Latin Small Letter

Turned RHook

U+0027C \Elzrl Latin Small Letter RWith Long Leg

U+0027D \Elzrtlr Latin Small Letter RWith Tail / Latin Small Letter RHook

U+0027E \Elzfhr Latin Small Letter RWith Fishhook / Latin Small Letter

Fishhook R

U+00282 \Elzrtls Latin Small Letter SWith Hook / Latin Small Letter S Hook

U+00283 \Elzesh Latin Small Letter Esh

U+00287 \Elztrnt Latin Small Letter Turned T

U+00288 \Elzrtlt Latin Small Letter TWith Retroflex Hook / Latin Small

Letter T Retroflex Hook

U+0028A \Elzpupsil Latin Small Letter Upsilon

U+0028B \Elzpscrv Latin Small Letter VWithHook / Latin Small Letter Script V

U+0028C \Elzinvv Latin Small Letter Turned V

U+0028D \Elzinvw Latin Small Letter TurnedW

U+0028E \Elztrny Latin Small Letter Turned Y

U+00290 \Elzrtlz Latin Small Letter ZWith Retroflex Hook / Latin Small

Letter Z Retroflex Hook

U+00292 \Elzyogh Latin Small Letter Ezh / Latin Small Letter Yogh

U+00294 \Elzglst Latin Letter Glottal Stop

U+00295 \Elzreglst Latin Letter Pharyngeal Voiced Fricative / Latin Letter

Reversed Glottal Stop

U+00296 \Elzinglst Latin Letter Inverted Glottal Stop

U+0029E \textturnk Latin Small Letter Turned K

U+002A4 \Elzdyogh Latin Small Letter DezhDigraph / Latin Small Letter DYogh

U+002A7 \Elztesh Latin Small Letter Tesh Digraph / Latin Small Letter T Esh

U+002B0 \^h Modifier Letter Small H

U+002B2 \^j Modifier Letter Small J

U+002B3 \^r Modifier Letter Small R

U+002B7 \^w Modifier Letter SmallW

U+002B8 \^y Modifier Letter Small Y

U+002BC \rasp Modifier Letter Apostrophe

U+002C7 ˇ \textasciicaron Caron /Modifier Letter Hacek

U+002C8 \Elzverts Modifier Letter Vertical Line

U+002CC \Elzverti Modifier Letter LowVertical Line

U+002D0 \Elzlmrk Modifier Letter Triangular Colon

U+002D1 \Elzhlmrk Modifier Letter Half Triangular Colon

U+002D2 \Elzsbrhr Modifier Letter Centred Right Half Ring /Modifier Letter

Centered Right Half Ring

U+002D3 \Elzsblhr Modifier Letter Centred Left Half Ring /Modifier Letter

Centered Left Half Ring

U+002D4 \Elzrais Modifier Letter Up Tack

U+002D5 \Elzlow Modifier Letter Down Tack

U+002D8 ˘ \u Breve / Spacing Breve

U+002DC ˜ \texttildelow Small Tilde / Spacing Tilde

U+002E1 \^l Modifier Letter Small L

U+002E2 \^s Modifier Letter Small S

U+002E3 \^x Modifier Letter Small X

U+00300    \grave Combining Grave Accent / Non-spacing Grave

U+00301    \acute Combining Acute Accent / Non-spacing Acute

U+00302    \hat Combining Circumflex Accent / Non-spacing Circumflex

U+00303    \tilde Combining Tilde / Non-spacing Tilde

U+00304    \bar CombiningMacron / Non-spacingMacron

U+00305    \overbar CombiningOverline / Non-spacing Overscore

U+00306    \breve Combining Breve / Non-spacing Breve

U+00307    \dot Combining Dot Above / Non-spacing Dot Above

U+00308    \ddot Combining Diaeresis / Non-spacing Diaeresis

U+00309    \ovhook Combining Hook Above / Non-spacing Hook Above

U+0030A    \ocirc Combining Ring Above / Non-spacing Ring Above

U+0030B    \H Combining Double Acute Accent / Non-spacing Double

Acute

U+0030C    \check Combining Caron / Non-spacing Hacek

U+00310    \candra Combining Candrabindu / Non-spacing Candrabindu

U+00312    \oturnedcomma Combining Turned CommaAbove / Non-spacing Turned

CommaAbove

U+00315    \ocommatopright Combining CommaAbove Right / Non-spacing Comma

Above Right

U+0031A    \droang Combining Left Angle Above / Non-spacing Left Angle

Above

U+00321    \Elzpalh Combining Palatalized Hook Below / Non-spacing

Palatalized Hook Below

U+00322    \Elzrh Combining Retroflex Hook Below / Non-spacing Retroflex

Hook Below

U+00327    \c Combining Cedilla / Non-spacing Cedilla

U+00328    \k CombiningOgonek / Non-spacing Ogonek

U+0032A    \Elzsbbrg Combining Bridge Below / Non-spacing Bridge Below

U+00330    \wideutilde Combining Tilde Below / Non-spacing Tilde Below

U+00332    \underbar Combining Low Line / Non-spacing Underscore

U+00335    \Elzxl Combining Short StrokeOverlay / Non-spacing Short Bar

Overlay

U+00336    \Elzbar, \sout Combining Long StrokeOverlay / Non-spacing Long Bar

Overlay

U+00338    \not Combining Long Solidus Overlay / Non-spacing Long Slash

Overlay

U+0034D    \underleftrightarrow Combining Left Right Arrow Below

U+00391 \Alpha Greek Capital Letter Alpha

U+00392 \Beta Greek Capital Letter Beta

U+00393 \Gamma Greek Capital Letter Gamma

U+00394 \Delta Greek Capital Letter Delta

U+00395 \Epsilon Greek Capital Letter Epsilon

U+00396 \Zeta Greek Capital Letter Zeta

U+00397 \Eta Greek Capital Letter Eta

U+00398 \Theta Greek Capital Letter Theta

U+00399 \Iota Greek Capital Letter Iota

U+0039A \Kappa Greek Capital Letter Kappa

U+0039B \Lambda Greek Capital Letter Lamda / Greek Capital Letter Lambda

U+0039C \upMu Greek Capital LetterMu

U+0039D \upNu Greek Capital Letter Nu

U+0039E \Xi Greek Capital Letter Xi

U+0039F \upOmicron Greek Capital Letter Omicron

U+003A0 \Pi Greek Capital Letter Pi

U+003A1 \Rho Greek Capital Letter Rho

U+003A3 \Sigma Greek Capital Letter Sigma

U+003A4 \Tau Greek Capital Letter Tau

U+003A5 \Upsilon Greek Capital Letter Upsilon

U+003A6 \Phi Greek Capital Letter Phi

U+003A7 \Chi Greek Capital Letter Chi

U+003A8 \Psi Greek Capital Letter Psi

U+003A9 \Omega Greek Capital Letter Omega

U+003B1 \alpha Greek Small Letter Alpha

U+003B2 \beta Greek Small Letter Beta

U+003B3 \gamma Greek Small Letter Gamma

U+003B4 \delta Greek Small Letter Delta

U+003B5 \upepsilon, \varepsilon Greek Small Letter Epsilon

U+003B6 \zeta Greek Small Letter Zeta

U+003B7 \eta Greek Small Letter Eta

U+003B8 \theta Greek Small Letter Theta

U+003B9 \iota Greek Small Letter Iota

U+003BA \kappa Greek Small Letter Kappa

U+003BB \lambda Greek Small Letter Lamda / Greek Small Letter Lambda

U+003BC \mu Greek Small LetterMu

U+003BD \nu Greek Small Letter Nu

U+003BE \xi Greek Small Letter Xi

U+003BF \upomicron Greek Small Letter Omicron

U+003C0 π \pi Greek Small Letter Pi

U+003C1 \rho Greek Small Letter Rho

U+003C2 \varsigma Greek Small Letter Final Sigma

U+003C3 \sigma Greek Small Letter Sigma

U+003C4 \tau Greek Small Letter Tau

U+003C5 \upsilon Greek Small Letter Upsilon

U+003C6 \varphi Greek Small Letter Phi

U+003C7 \chi Greek Small Letter Chi

U+003C8 \psi Greek Small Letter Psi

U+003C9 \omega Greek Small Letter Omega

U+003D0 \upvarbeta Greek Beta Symbol / Greek Small Letter Curled Beta

U+003D1 \vartheta Greek Theta Symbol / Greek Small Letter Script Theta

U+003D5 \phi Greek Phi Symbol / Greek Small Letter Script Phi

U+003D6 \varpi Greek Pi Symbol / Greek Small Letter Omega Pi

U+003D8 \upoldKoppa Greek Letter Archaic Koppa

U+003D9 \upoldkoppa Greek Small Letter Archaic Koppa

U+003DA \Stigma Greek Letter Stigma / Greek Capital Letter Stigma

U+003DB \upstigma Greek Small Letter Stigma

U+003DC \Digamma Greek Letter Digamma / Greek Capital Letter Digamma

U+003DD \digamma Greek Small Letter Digamma

U+003DE \Koppa Greek Letter Koppa / Greek Capital Letter Koppa

U+003DF \upkoppa Greek Small Letter Koppa

U+003E0 \Sampi Greek Letter Sampi / Greek Capital Letter Sampi

U+003E1 \upsampi Greek Small Letter Sampi

U+003F0 \varkappa Greek Kappa Symbol / Greek Small Letter Script Kappa

U+003F1 \varrho Greek Rho Symbol / Greek Small Letter Tailed Rho

U+003F4 \textTheta Greek Capital Theta Symbol

U+003F5 \epsilon Greek Lunate Epsilon Symbol

U+003F6 \backepsilon Greek Reversed Lunate Epsilon Symbol

U+01D2C \^A Modifier Letter Capital A

U+01D2E \^B Modifier Letter Capital B

U+01D30 \^D Modifier Letter Capital D

U+01D31 \^E Modifier Letter Capital E

U+01D33 \^G Modifier Letter Capital G

U+01D34 \^H Modifier Letter Capital H

U+01D35 \^I Modifier Letter Capital I

U+01D36 \^J Modifier Letter Capital J

U+01D37 \^K Modifier Letter Capital K

U+01D38 \^L Modifier Letter Capital L

U+01D39 \^M Modifier Letter Capital M

U+01D3A \^N Modifier Letter Capital N

U+01D3C \^O Modifier Letter Capital O

U+01D3E \^P Modifier Letter Capital P

U+01D3F \^R Modifier Letter Capital R

U+01D40 \^T Modifier Letter Capital T

U+01D41 \^U Modifier Letter Capital U

U+01D42 \^W Modifier Letter CapitalW

U+01D43 \^a Modifier Letter Small A

U+01D45 \^alpha Modifier Letter Small Alpha

U+01D47 \^b Modifier Letter Small B

U+01D48 \^d Modifier Letter Small D

U+01D49 \^e Modifier Letter Small E

U+01D4B \^epsilon Modifier Letter Small Open E

U+01D4D \^g Modifier Letter Small G

U+01D4F \^k Modifier Letter Small K

U+01D50 \^m Modifier Letter Small M

U+01D52 \^o Modifier Letter Small O

U+01D56 \^p Modifier Letter Small P

U+01D57 \^t Modifier Letter Small T

U+01D58 \^u Modifier Letter Small U

U+01D5B \^v Modifier Letter Small V

U+01D5D \^beta Modifier Letter Small Beta

U+01D5E \^gamma Modifier Letter Small Greek Gamma

U+01D5F \^delta Modifier Letter Small Delta

U+01D60 \^phi Modifier Letter Small Greek Phi

U+01D61 \^chi Modifier Letter Small Chi

U+01D62 \_i Latin Subscript Small Letter I

U+01D63 \_r Latin Subscript Small Letter R

U+01D64 \_u Latin Subscript Small Letter U

U+01D65 \_v Latin Subscript Small Letter V

U+01D66 \_beta Greek Subscript Small Letter Beta

U+01D67 \_gamma Greek Subscript Small Letter Gamma

U+01D68 \_rho Greek Subscript Small Letter Rho

U+01D69 \_phi Greek Subscript Small Letter Phi

U+01D6A \_chi Greek Subscript Small Letter Chi

U+01D9C \^c Modifier Letter Small C

U+01DA0 \^f Modifier Letter Small F

U+01DA5 \^iota Modifier Letter Small Iota

U+01DB2 \^Phi Modifier Letter Small Phi

U+01DBB \^z Modifier Letter Small Z

U+01DBF \^theta Modifier Letter Small Theta

U+02002 \enspace En Space

U+02003 \quad Em Space

U+02005 \thickspace Four-per-em Space

U+02009 \thinspace Thin Space

U+0200A \hspace Hair Space

U+02013 – \endash EnDash

U+02014 — \emdash EmDash

U+02016 \Vert Double Vertical Line / Double Vertical Bar

U+02018 ‘ \lq Left Single QuotationMark / Single Turned Comma

QuotationMark

U+02019 ’ \rq Right Single QuotationMark / Single CommaQuotation

Mark

U+0201B \Elzreapos Single High-reversed-9QuotationMark / Single Reversed

CommaQuotationMark

U+0201C “ \textquotedblleft Left Double QuotationMark / Double Turned Comma

QuotationMark

U+0201D ” \textquotedblright Right Double QuotationMark / Double CommaQuotation

Mark

U+02020 † \dagger Dagger

U+02021 ‡ \ddagger Double Dagger

U+02022 • \bullet Bullet

U+02026 … \dots, \ldots Horizontal Ellipsis

U+02030 ‰ \textperthousand PerMille Sign

U+02031 \textpertenthousand Per Ten Thousand Sign

U+02032 \prime Prime

U+02033 \pprime Double Prime

U+02034 \ppprime Triple Prime

U+02035 \backprime Reversed Prime

U+02036 \backpprime Reversed Double Prime

U+02037 \backppprime Reversed Triple Prime

U+02039 ‹ \guilsinglleft Single Left-pointing Angle QuotationMark / Left Pointing

Single Guillemet

U+0203A › \guilsinglright Single Right-pointing Angle QuotationMark / Right

Pointing Single Guillemet

U+0203C \:bangbang: Double ExclamationMark

U+02040 \tieconcat Character Tie

U+02049 \:interrobang: ExclamationQuestionMark

U+02057 \pppprime Quadruple Prime

U+02060 \nolinebreak Word Joiner

U+02070 \^0 Superscript Zero / Superscript Digit Zero

U+02071 \^i Superscript Latin Small Letter I

U+02074 \^4 Superscript Four / Superscript Digit Four

U+02075 \^5 Superscript Five / Superscript Digit Five

U+02076 \^6 Superscript Six / Superscript Digit Six

U+02077 \^7 Superscript Seven / Superscript Digit Seven

U+02078 \^8 Superscript Eight / Superscript Digit Eight

U+02079 \^9 Superscript Nine / Superscript Digit Nine

U+0207A \^+ Superscript Plus Sign

U+0207B \^- SuperscriptMinus / Superscript Hyphen-minus

U+0207C \^= Superscript Equals Sign

U+0207D \^( Superscript Left Parenthesis / Superscript Opening

Parenthesis

U+0207E \^) Superscript Right Parenthesis / Superscript Closing

Parenthesis

U+0207F \^n Superscript Latin Small Letter N

U+02080 \_0 Subscript Zero / Subscript Digit Zero

U+02081 \_1 Subscript One / Subscript Digit One

U+02082 \_2 Subscript Two / Subscript Digit Two

U+02083 \_3 Subscript Three / Subscript Digit Three

U+02084 \_4 Subscript Four / Subscript Digit Four

U+02085 \_5 Subscript Five / Subscript Digit Five

U+02086 \_6 Subscript Six / Subscript Digit Six

U+02087 \_7 Subscript Seven / Subscript Digit Seven

U+02088 \_8 Subscript Eight / Subscript Digit Eight

U+02089 \_9 Subscript Nine / Subscript Digit Nine

U+0208A \_+ Subscript Plus Sign

U+0208B \_- SubscriptMinus / Subscript Hyphen-minus

U+0208C \_= Subscript Equals Sign

U+0208D \_( Subscript Left Parenthesis / SubscriptOpening Parenthesis

U+0208E \_) Subscript Right Parenthesis / Subscript Closing

Parenthesis

U+02090 \_a Latin Subscript Small Letter A

U+02091 \_e Latin Subscript Small Letter E

U+02092 \_o Latin Subscript Small Letter O

U+02093 \_x Latin Subscript Small Letter X

U+02094 \_schwa Latin Subscript Small Letter Schwa

U+02095 \_h Latin Subscript Small Letter H

U+02096 \_k Latin Subscript Small Letter K

U+02097 \_l Latin Subscript Small Letter L

U+02098 \_m Latin Subscript Small LetterM

U+02099 \_n Latin Subscript Small Letter N

U+0209A \_p Latin Subscript Small Letter P

U+0209B \_s Latin Subscript Small Letter S

U+0209C \_t Latin Subscript Small Letter T

U+020A7 \Elzpes Peseta Sign

U+020AC € \euro Euro Sign

U+020D0    \leftharpoonaccent Combining Left Harpoon Above / Non-spacing Left

Harpoon Above

U+020D1    \rightharpoonaccent Combining Right Harpoon Above / Non-spacing Right

Harpoon Above

U+020D2    \vertoverlay Combining Long Vertical Line Overlay / Non-spacing Long

Vertical Bar Overlay

U+020D6    \overleftarrow Combining Left ArrowAbove / Non-spacing Left Arrow

Above

U+020D7    \vec Combining Right ArrowAbove / Non-spacing Right Arrow

Above

U+020DB    \dddot Combining Three Dots Above / Non-spacing Three Dots

Above

U+020DC    \ddddot Combining Four Dots Above / Non-spacing Four Dots

Above

U+020DD    \enclosecircle Combining Enclosing Circle / Enclosing Circle

U+020DE    \enclosesquare Combining Enclosing Square / Enclosing Square

U+020DF    \enclosediamond Combining Enclosing Diamond / Enclosing Diamond

U+020E1    \overleftrightarrow Combining Left Right ArrowAbove / Non-spacing Left

Right ArrowAbove

U+020E4    \enclosetriangle Combining Enclosing Upward Pointing Triangle

U+020E7    \annuity Combining Annuity Symbol

U+020E8    \threeunderdot Combining Triple Underdot

U+020E9    \widebridgeabove CombiningWide Bridge Above

U+020EC    \underrightharpoondown Combining Rightwards HarpoonWith Barb Downwards

U+020ED    \underleftharpoondown Combining Leftwards HarpoonWith Barb Downwards

U+020EE    \underleftarrow Combining Left Arrow Below

U+020EF    \underrightarrow Combining Right Arrow Below

U+020F0    \asteraccent Combining Asterisk Above

U+02102 \BbbC Double-struck Capital C / Double-struck C

U+02107 \Eulerconst Euler Constant / Eulers

U+0210A \mscrg Script Small G

U+0210B \mscrH Script Capital H / Script H

U+0210C \mfrakH Black-letter Capital H / Black-letter H

U+0210D \BbbH Double-struck Capital H / Double-struck H

U+0210E \Planckconst Planck Constant

U+0210F \hslash Planck Constant Over Two Pi / Planck Constant Over 2 Pi

U+02110 \mscrI Script Capital I / Script I

U+02111 \Im Black-letter Capital I / Black-letter I

U+02112 \mscrL Script Capital L / Script L

U+02113 \ell Script Small L

U+02115 \BbbN Double-struck Capital N / Double-struck N

U+02116 \textnumero Numero Sign / Numero

U+02118 \wp Script Capital P / Script P

U+02119 \BbbP Double-struck Capital P / Double-struck P

U+0211A \BbbQ Double-struck Capital Q / Double-struckQ

U+0211B \mscrR Script Capital R / Script R

U+0211C \Re Black-letter Capital R / Black-letter R

U+0211D \BbbR Double-struck Capital R / Double-struck R

U+0211E \Elzxrat Prescription Take

U+02122 ™ \texttrademark, \:tm: TradeMark Sign / Trademark

U+02124 \BbbZ Double-struck Capital Z / Double-struck Z

U+02127 \mho InvertedOhm Sign /Mho

U+02128 \mfrakZ Black-letter Capital Z / Black-letter Z

U+02129 \turnediota Turned Greek Small Letter Iota

U+0212B \Angstrom Angstrom Sign / AngstromUnit

U+0212C \mscrB Script Capital B / Script B

U+0212D \mfrakC Black-letter Capital C / Black-letter C

U+0212F \mscre Script Small E

U+02130 \mscrE Script Capital E / Script E

U+02131 \mscrF Script Capital F / Script F

U+02132 \Finv Turned Capital F / Turned F

U+02133 \mscrM Script Capital M / ScriptM

U+02134 \mscro Script Small O

U+02135 \aleph Alef Symbol / First Transfinite Cardinal

U+02136 \beth Bet Symbol / Second Transfinite Cardinal

U+02137 \gimel Gimel Symbol / Third Transfinite Cardinal

U+02138 \daleth Dalet Symbol / Fourth Transfinite Cardinal

U+02139 \:information_source: Information Source

U+0213C \Bbbpi Double-struck Small Pi

U+0213D \Bbbgamma Double-struck Small Gamma

U+0213E \BbbGamma Double-struck Capital Gamma

U+0213F \BbbPi Double-struck Capital Pi

U+02140 \bbsum Double-struck N-ary Summation

U+02141 \Game Turned Sans-serif Capital G

U+02142 \sansLturned Turned Sans-serif Capital L

U+02143 \sansLmirrored Reversed Sans-serif Capital L

U+02144 \Yup Turned Sans-serif Capital Y

U+02145 \mitBbbD Double-struck Italic Capital D

U+02146 \mitBbbd Double-struck Italic Small D

U+02147 \mitBbbe Double-struck Italic Small E

U+02148 \mitBbbi Double-struck Italic Small I

U+02149 \mitBbbj Double-struck Italic Small J

U+0214A \PropertyLine Property Line

U+0214B \upand Turned Ampersand

U+02190 \leftarrow Leftwards Arrow / Left Arrow

U+02191 \uparrow Upwards Arrow / Up Arrow

U+02192 \to, \rightarrow Rightwards Arrow / Right Arrow

U+02193 \downarrow Downwards Arrow / DownArrow

U+02194 \leftrightarrow,

\:left_right_arrow:

Left Right Arrow

U+02195 \updownarrow,

\:arrow_up_down:

UpDownArrow

U+02196 \nwarrow,

\:arrow_upper_left:

NorthWest Arrow / Upper Left Arrow

U+02197 \nearrow,

\:arrow_upper_right:

North East Arrow / Upper Right Arrow

U+02198 \searrow,

\:arrow_lower_right:

South East Arrow / Lower Right Arrow

U+02199 \swarrow,

\:arrow_lower_left:

SouthWest Arrow / Lower Left Arrow

U+0219A \nleftarrow Leftwards ArrowWith Stroke / Left ArrowWith Stroke

U+0219B \nrightarrow Rightwards ArrowWith Stroke / Right ArrowWith Stroke

U+0219C \leftwavearrow LeftwardsWave Arrow / LeftWave Arrow

U+0219D \rightwavearrow RightwardsWave Arrow / RightWave Arrow

U+0219E \twoheadleftarrow Leftwards TwoHeaded Arrow / Left TwoHeaded Arrow

U+0219F \twoheaduparrow Upwards TwoHeaded Arrow / Up TwoHeaded Arrow

U+021A0 \twoheadrightarrow Rightwards TwoHeaded Arrow / Right TwoHeaded Arrow

U+021A1 \twoheaddownarrow Downwards TwoHeaded Arrow / Down TwoHeaded

Arrow

U+021A2 \leftarrowtail Leftwards ArrowWith Tail / Left ArrowWith Tail

U+021A3 \rightarrowtail Rightwards ArrowWith Tail / Right ArrowWith Tail

U+021A4 \mapsfrom Leftwards Arrow FromBar / Left Arrow FromBar

U+021A5 \mapsup Upwards Arrow FromBar / Up Arrow FromBar

U+021A6 \mapsto Rightwards Arrow FromBar / Right Arrow FromBar

U+021A7 \mapsdown Downwards Arrow FromBar / DownArrow FromBar

U+021A8 \updownarrowbar UpDownArrowWith Base

U+021A9 \hookleftarrow, \:left-

wards_arrow_with_hook:

Leftwards ArrowWith Hook / Left ArrowWith Hook

U+021AA \hookrightarrow,

\:arrow_right_hook:

Rightwards ArrowWith Hook / Right ArrowWith Hook

U+021AB \looparrowleft Leftwards ArrowWith Loop / Left ArrowWith Loop

U+021AC \looparrowright Rightwards ArrowWith Loop / Right ArrowWith Loop

U+021AD \leftrightsquigarrow Left RightWave Arrow

U+021AE \nleftrightarrow Left Right ArrowWith Stroke

U+021AF \downzigzagarrow Downwards Zigzag Arrow / Down Zigzag Arrow

U+021B0 \Lsh Upwards ArrowWith Tip Leftwards / Up ArrowWith Tip

Left

U+021B1 \Rsh Upwards ArrowWith Tip Rightwards / Up ArrowWith Tip

Right

U+021B2 \Ldsh Downwards ArrowWith Tip Leftwards / DownArrow

With Tip Left

U+021B3 \Rdsh Downwards ArrowWith Tip Rightwards / DownArrow

With Tip Right

U+021B4 \linefeed Rightwards ArrowWith Corner Downwards / Right Arrow

With Corner Down

U+021B5 \carriagereturn Downwards ArrowWith Corner Leftwards / DownArrow

With Corner Left

U+021B6 \curvearrowleft Anticlockwise Top Semicircle Arrow

U+021B7 \curvearrowright Clockwise Top Semicircle Arrow

U+021B8 \barovernorthwestarrow NorthWest Arrow To Long Bar / Upper Left Arrow To Long

Bar

U+021B9 \barleftarrowrightarrow-

bar

Leftwards Arrow To Bar Over Rightwards Arrow To Bar /

Left Arrow To Bar Over Right Arrow To Bar

U+021BA \circlearrowleft Anticlockwise Open Circle Arrow

U+021BB \circlearrowright Clockwise Open Circle Arrow

U+021BC \leftharpoonup Leftwards HarpoonWith Barb Upwards / Left Harpoon

With Barb Up

U+021BD \leftharpoondown Leftwards HarpoonWith Barb Downwards / Left Harpoon

With Barb Down

U+021BE \upharpoonleft Upwards HarpoonWith Barb Rightwards / UpHarpoon

With Barb Right

U+021BF \upharpoonright Upwards HarpoonWith Barb Leftwards / UpHarpoon

With Barb Left

U+021C0 \rightharpoonup Rightwards HarpoonWith Barb Upwards / Right Harpoon

With Barb Up

U+021C1 \rightharpoondown Rightwards HarpoonWith Barb Downwards / Right

HarpoonWith Barb Down

U+021C2 \downharpoonright Downwards HarpoonWith Barb Rightwards / Down

HarpoonWith Barb Right

U+021C3 \downharpoonleft Downwards HarpoonWith Barb Leftwards / Down

HarpoonWith Barb Left

U+021C4 \rightleftarrows Rightwards ArrowOver Leftwards Arrow / Right Arrow

Over Left Arrow

U+021C5 \dblarrowupdown Upwards Arrow Leftwards Of Downwards Arrow / Up

Arrow Left Of DownArrow

U+021C6 \leftrightarrows Leftwards ArrowOver Rightwards Arrow / Left Arrow

Over Right Arrow

U+021C7 \leftleftarrows Leftwards Paired Arrows / Left Paired Arrows

U+021C8 \upuparrows Upwards Paired Arrows / Up Paired Arrows

U+021C9 \rightrightarrows Rightwards Paired Arrows / Right Paired Arrows

U+021CA \downdownarrows Downwards Paired Arrows / Down Paired Arrows

U+021CB \leftrightharpoons Leftwards HarpoonOver Rightwards Harpoon / Left

HarpoonOver Right Harpoon

U+021CC \rightleftharpoons Rightwards HarpoonOver Leftwards Harpoon / Right

HarpoonOver Left Harpoon

U+021CD \nLeftarrow Leftwards Double ArrowWith Stroke / Left Double Arrow

With Stroke

U+021CE \nLeftrightarrow Left Right Double ArrowWith Stroke

U+021CF \nRightarrow Rightwards Double ArrowWith Stroke / Right Double

ArrowWith Stroke

U+021D0 \Leftarrow Leftwards Double Arrow / Left Double Arrow

U+021D1 \Uparrow Upwards Double Arrow / UpDouble Arrow

U+021D2 \Rightarrow Rightwards Double Arrow / Right Double Arrow

U+021D3 \Downarrow Downwards Double Arrow / DownDouble Arrow

U+021D4 \Leftrightarrow Left Right Double Arrow

U+021D5 \Updownarrow UpDownDouble Arrow

U+021D6 \Nwarrow NorthWest Double Arrow / Upper Left Double Arrow

U+021D7 \Nearrow North East Double Arrow / Upper Right Double Arrow

U+021D8 \Searrow South East Double Arrow / Lower Right Double Arrow

U+021D9 \Swarrow SouthWest Double Arrow / Lower Left Double Arrow

U+021DA \Lleftarrow Leftwards Triple Arrow / Left Triple Arrow

U+021DB \Rrightarrow Rightwards Triple Arrow / Right Triple Arrow

U+021DC \leftsquigarrow Leftwards Squiggle Arrow / Left Squiggle Arrow

U+021DD \rightsquigarrow Rightwards Squiggle Arrow / Right Squiggle Arrow

U+021DE \nHuparrow Upwards ArrowWith Double Stroke / Up ArrowWith

Double Stroke

U+021DF \nHdownarrow Downwards ArrowWith Double Stroke / DownArrow

With Double Stroke

U+021E0 \leftdasharrow Leftwards Dashed Arrow / Left Dashed Arrow

U+021E1 \updasharrow Upwards Dashed Arrow / UpDashed Arrow

U+021E2 \rightdasharrow Rightwards Dashed Arrow / Right Dashed Arrow

U+021E3 \downdasharrow Downwards Dashed Arrow / DownDashed Arrow

U+021E4 \barleftarrow Leftwards Arrow To Bar / Left Arrow To Bar

U+021E5 \rightarrowbar Rightwards Arrow To Bar / Right Arrow To Bar

U+021E6 \leftwhitearrow LeftwardsWhite Arrow /White Left Arrow

U+021E7 \upwhitearrow UpwardsWhite Arrow /White Up Arrow

U+021E8 \rightwhitearrow RightwardsWhite Arrow /White Right Arrow

U+021E9 \downwhitearrow DownwardsWhite Arrow /White DownArrow

U+021EA \whitearrowupfrombar UpwardsWhite Arrow FromBar /White Up Arrow From

Bar

U+021F4 \circleonrightarrow Right ArrowWith Small Circle

U+021F5 \DownArrowUpArrow Downwards Arrow Leftwards Of Upwards Arrow

U+021F6 \rightthreearrows Three Rightwards Arrows

U+021F7 \nvleftarrow Leftwards ArrowWith Vertical Stroke

U+021F8 \nvrightarrow Rightwards ArrowWith Vertical Stroke

U+021F9 \nvleftrightarrow Left Right ArrowWith Vertical Stroke

U+021FA \nVleftarrow Leftwards ArrowWith Double Vertical Stroke

U+021FB \nVrightarrow Rightwards ArrowWith Double Vertical Stroke

U+021FC \nVleftrightarrow Left Right ArrowWith Double Vertical Stroke

U+021FD \leftarrowtriangle Leftwards Open-headed Arrow

U+021FE \rightarrowtriangle Rightwards Open-headed Arrow

U+021FF \leftrightarrowtriangle Left Right Open-headed Arrow

U+02200 \forall For All

U+02201 \complement Complement

U+02202 ∂ \partial Partial Differential

U+02203 \exists There Exists

U+02204 \nexists There Does Not Exist

U+02205 \varnothing, \emptyset Empty Set

U+02206 ∆ \increment Increment

U+02207 \del, \nabla Nabla

U+02208 \in Element Of

U+02209 \notin Not An Element Of

U+0220A \smallin Small Element Of

U+0220B \ni Contains AsMember

U+0220C \nni Does Not Contain AsMember

U+0220D \smallni Small Contains AsMember

U+0220E \QED EndOf Proof

U+0220F ∏ \prod N-ary Product

U+02210 \coprod N-ary Coproduct

U+02211 ∑ \sum N-ary Summation

U+02212 − \minus Minus Sign

U+02213 \mp Minus-or-plus Sign

U+02214 \dotplus Dot Plus

U+02216 \setminus SetMinus

U+02217 \ast Asterisk Operator

U+02218 \circ RingOperator

U+02219 \vysmblkcircle Bullet Operator

U+0221A √ \surd, \sqrt Square Root

U+0221B \cbrt Cube Root

U+0221C \fourthroot Fourth Root

U+0221D \propto Proportional To

U+0221E ∞ \infty Infinity

U+0221F \rightangle Right Angle

U+02220 \angle Angle

U+02221 \measuredangle Measured Angle

U+02222 \sphericalangle Spherical Angle

U+02223 \mid Divides

U+02224 \nmid Does Not Divide

U+02225 \parallel Parallel To

U+02226 \nparallel Not Parallel To

U+02227 \wedge Logical And

U+02228 \vee Logical Or

U+02229 \cap Intersection

U+0222A \cup Union

U+0222B ∫ \int Integral

U+0222C \iint Double Integral

U+0222D \iiint Triple Integral

U+0222E \oint Contour Integral

U+0222F \oiint Surface Integral

U+02230 \oiiint Volume Integral

U+02231 \clwintegral Clockwise Integral

U+02232 \varointclockwise Clockwise Contour Integral

U+02233 \ointctrclockwise Anticlockwise Contour Integral

U+02234 \therefore Therefore

U+02235 \because Because

U+02237 \Colon Proportion

U+02238 \dotminus DotMinus

U+0223A \dotsminusdots Geometric Proportion

U+0223B \kernelcontraction Homothetic

U+0223C \sim Tilde Operator

U+0223D \backsim Reversed Tilde

U+0223E \lazysinv Inverted Lazy S

U+0223F \sinewave SineWave

U+02240 \wr Wreath Product

U+02241 \nsim Not Tilde

U+02242 \eqsim Minus Tilde

U+02242 +

U+00338

\neqsim Minus Tilde + Combining Long Solidus Overlay /

Non-spacing Long SlashOverlay

U+02243 \simeq Asymptotically Equal To

U+02244 \nsime Not Asymptotically Equal To

U+02245 \cong Approximately Equal To

U+02246 \approxnotequal Approximately But Not Actually Equal To

U+02247 \ncong Neither Approximately Nor Actually Equal To

U+02248 ≈ \approx Almost Equal To

U+02249 \napprox Not Almost Equal To

U+0224A \approxeq Almost Equal Or Equal To

U+0224B \tildetrpl Triple Tilde

U+0224C \allequal All Equal To

U+0224D \asymp Equivalent To

U+0224E \Bumpeq Geometrically Equivalent To

U+0224E +

U+00338

\nBumpeq Geometrically Equivalent To + Combining Long Solidus

Overlay / Non-spacing Long SlashOverlay

U+0224F \bumpeq Difference Between

U+0224F +

U+00338

\nbumpeq Difference Between + Combining Long Solidus Overlay /

Non-spacing Long SlashOverlay

U+02250 \doteq Approaches The Limit

U+02251 \Doteq Geometrically Equal To

U+02252 \fallingdotseq Approximately Equal ToOr The ImageOf

U+02253 \risingdotseq ImageOfOr Approximately Equal To

U+02254 \coloneq Colon Equals / Colon Equal

U+02255 \eqcolon Equals Colon / Equal Colon

U+02256 \eqcirc Ring In Equal To

U+02257 \circeq Ring Equal To

U+02258 \arceq Corresponds To

U+02259 \wedgeq Estimates

U+0225A \veeeq Equiangular To

U+0225B \starequal Star Equals

U+0225C \triangleq Delta Equal To

U+0225D \eqdef Equal To ByDefinition

U+0225E \measeq Measured By

U+0225F \questeq Questioned Equal To

U+02260 ≠ \ne Not Equal To

U+02261 \equiv Identical To

U+02262 \nequiv Not Identical To

U+02263 \Equiv Strictly Equivalent To

U+02264 ≤ \le Less-thanOr Equal To / Less ThanOr Equal To

U+02265 ≥ \ge Greater-thanOr Equal To / Greater ThanOr Equal To

U+02266 \leqq Less-thanOver Equal To / Less ThanOver Equal To

U+02267 \geqq Greater-thanOver Equal To / Greater ThanOver Equal To

U+02268 \lneqq Less-than But Not Equal To / Less Than But Not Equal To

U+02268 +

U+0FE00

\lvertneqq Less-than But Not Equal To / Less Than But Not Equal To +

Variation Selector-1

U+02269 \gneqq Greater-than But Not Equal To / Greater Than But Not

Equal To

U+02269 +

U+0FE00

\gvertneqq Greater-than But Not Equal To / Greater Than But Not

Equal To + Variation Selector-1

U+0226A \ll Much Less-than /Much Less Than

U+0226A +

U+00338

\NotLessLess Much Less-than /Much Less Than + Combining Long

Solidus Overlay / Non-spacing Long SlashOverlay

U+0226B \gg MuchGreater-than /Much Greater Than

U+0226B +

U+00338

\NotGreaterGreater Much Greater-than /Much Greater Than + Combining

Long Solidus Overlay / Non-spacing Long SlashOverlay

U+0226C \between Between

U+0226D \nasymp Not Equivalent To

U+0226E \nless Not Less-than / Not Less Than

U+0226F \ngtr Not Greater-than / Not Greater Than

U+02270 \nleq Neither Less-than Nor Equal To / Neither Less ThanNor

Equal To

U+02271 \ngeq Neither Greater-than Nor Equal To / Neither Greater Than

Nor Equal To

U+02272 \lesssim Less-thanOr Equivalent To / Less ThanOr Equivalent To

U+02273 \gtrsim Greater-thanOr Equivalent To / Greater ThanOr

Equivalent To

U+02274 \nlesssim Neither Less-than Nor Equivalent To / Neither Less Than

Nor Equivalent To

U+02275 \ngtrsim Neither Greater-than Nor Equivalent To / Neither Greater

ThanNor Equivalent To

U+02276 \lessgtr Less-thanOr Greater-than / Less ThanOr Greater Than

U+02277 \gtrless Greater-thanOr Less-than / Greater ThanOr Less Than

U+02278 \notlessgreater Neither Less-than Nor Greater-than / Neither Less Than

Nor Greater Than

U+02279 \notgreaterless Neither Greater-than Nor Less-than / Neither Greater

ThanNor Less Than

U+0227A \prec Precedes

U+0227B \succ Succeeds

U+0227C \preccurlyeq Precedes Or Equal To

U+0227D \succcurlyeq Succeeds Or Equal To

U+0227E \precsim Precedes Or Equivalent To

U+0227E +

U+00338

\nprecsim Precedes Or Equivalent To + Combining Long Solidus

Overlay / Non-spacing Long SlashOverlay

U+0227F \succsim Succeeds Or Equivalent To

U+0227F +

U+00338

\nsuccsim Succeeds Or Equivalent To + Combining Long Solidus

Overlay / Non-spacing Long SlashOverlay

U+02280 \nprec Does Not Precede

U+02281 \nsucc Does Not Succeed

U+02282 \subset Subset Of

U+02283 \supset Superset Of

U+02284 \nsubset Not A Subset Of

U+02285 \nsupset Not A Superset Of

U+02286 \subseteq Subset Of Or Equal To

U+02287 \supseteq Superset Of Or Equal To

U+02288 \nsubseteq Neither A Subset Of Nor Equal To

U+02289 \nsupseteq Neither A Superset Of Nor Equal To

U+0228A \subsetneq Subset OfWith Not Equal To / Subset Of Or Not Equal To

U+0228A +

U+0FE00

\varsubsetneqq Subset OfWith Not Equal To / Subset Of Or Not Equal To +

Variation Selector-1

U+0228B \supsetneq Superset OfWith Not Equal To / Superset Of Or Not Equal

To

U+0228B +

U+0FE00

\varsupsetneq Superset OfWith Not Equal To / Superset Of Or Not Equal

To + Variation Selector-1

U+0228D \cupdot MultisetMultiplication

U+0228E \uplus Multiset Union

U+0228F \sqsubset Square ImageOf

U+0228F +

U+00338

\NotSquareSubset Square ImageOf + Combining Long Solidus Overlay /

Non-spacing Long SlashOverlay

U+02290 \sqsupset SquareOriginal Of

U+02290 +

U+00338

\NotSquareSuperset SquareOriginal Of + Combining Long Solidus Overlay /

Non-spacing Long SlashOverlay

U+02291 \sqsubseteq Square ImageOfOr Equal To

U+02292 \sqsupseteq SquareOriginal Of Or Equal To

U+02293 \sqcap Square Cap

U+02294 \sqcup Square Cup

U+02295 \oplus Circled Plus

U+02296 \ominus CircledMinus

U+02297 \otimes Circled Times

U+02298 \oslash Circled Division Slash

U+02299 \odot Circled Dot Operator

U+0229A \circledcirc Circled RingOperator

U+0229B \circledast Circled Asterisk Operator

U+0229C \circledequal Circled Equals

U+0229D \circleddash Circled Dash

U+0229E \boxplus Squared Plus

U+0229F \boxminus SquaredMinus

U+022A0 \boxtimes Squared Times

U+022A1 \boxdot Squared Dot Operator

U+022A2 \vdash Right Tack

U+022A3 \dashv Left Tack

U+022A4 \top Down Tack

U+022A5 \bot Up Tack

U+022A7 \models Models

U+022A8 \vDash True

U+022A9 \Vdash Forces

U+022AA \Vvdash Triple Vertical Bar Right Turnstile

U+022AB \VDash Double Vertical Bar Double Right Turnstile

U+022AC \nvdash Does Not Prove

U+022AD \nvDash Not True

U+022AE \nVdash Does Not Force

U+022AF \nVDash Negated Double Vertical Bar Double Right Turnstile

U+022B0 \prurel Precedes Under Relation

U+022B1 \scurel Succeeds Under Relation

U+022B2 \vartriangleleft Normal SubgroupOf

U+022B3 \vartriangleright Contains As Normal Subgroup

U+022B4 \trianglelefteq Normal SubgroupOfOr Equal To

U+022B5 \trianglerighteq Contains As Normal SubgroupOr Equal To

U+022B6 \original Original Of

U+022B7 \image ImageOf

U+022B8 \multimap Multimap

U+022B9 \hermitconjmatrix Hermitian ConjugateMatrix

U+022BA \intercal Intercalate

U+022BB \veebar, \xor Xor

U+022BC \barwedge Nand

U+022BD \barvee Nor

U+022BE \rightanglearc Right AngleWith Arc

U+022BF \varlrtriangle Right Triangle

U+022C0 \bigwedge N-ary Logical And

U+022C1 \bigvee N-ary Logical Or

U+022C2 \bigcap N-ary Intersection

U+022C3 \bigcup N-ary Union

U+022C4 \diamond DiamondOperator

U+022C5 \cdot Dot Operator

U+022C6 \star Star Operator

U+022C7 \divideontimes Division Times

U+022C8 \bowtie Bowtie

U+022C9 \ltimes Left Normal Factor Semidirect Product

U+022CA \rtimes Right Normal Factor Semidirect Product

U+022CB \leftthreetimes Left Semidirect Product

U+022CC \rightthreetimes Right Semidirect Product

U+022CD \backsimeq Reversed Tilde Equals

U+022CE \curlyvee Curly Logical Or

U+022CF \curlywedge Curly Logical And

U+022D0 \Subset Double Subset

U+022D1 \Supset Double Superset

U+022D2 \Cap Double Intersection

U+022D3 \Cup Double Union

U+022D4 \pitchfork Pitchfork

U+022D5 \equalparallel Equal And Parallel To

U+022D6 \lessdot Less-thanWith Dot / Less ThanWith Dot

U+022D7 \gtrdot Greater-thanWith Dot / Greater ThanWith Dot

U+022D8 \verymuchless VeryMuch Less-than / VeryMuch Less Than

U+022D9 \ggg VeryMuchGreater-than / VeryMuch Greater Than

U+022DA \lesseqgtr Less-than Equal ToOr Greater-than / Less Than Equal To

Or Greater Than

U+022DB \gtreqless Greater-than Equal ToOr Less-than / Greater Than Equal

ToOr Less Than

U+022DC \eqless Equal ToOr Less-than / Equal ToOr Less Than

U+022DD \eqgtr Equal ToOr Greater-than / Equal ToOr Greater Than

U+022DE \curlyeqprec Equal ToOr Precedes

U+022DF \curlyeqsucc Equal ToOr Succeeds

U+022E0 \npreccurlyeq Does Not PrecedeOr Equal

U+022E1 \nsucccurlyeq Does Not SucceedOr Equal

U+022E2 \nsqsubseteq Not Square ImageOfOr Equal To

U+022E3 \nsqsupseteq Not SquareOriginal Of Or Equal To

U+022E4 \sqsubsetneq Square ImageOfOr Not Equal To

U+022E5 \Elzsqspne SquareOriginal Of Or Not Equal To

U+022E6 \lnsim Less-than But Not Equivalent To / Less Than But Not

Equivalent To

U+022E7 \gnsim Greater-than But Not Equivalent To / Greater Than But

Not Equivalent To

U+022E8 \precnsim Precedes But Not Equivalent To

U+022E9 \succnsim Succeeds But Not Equivalent To

U+022EA \ntriangleleft Not Normal SubgroupOf

U+022EB \ntriangleright Does Not Contain As Normal Subgroup

U+022EC \ntrianglelefteq Not Normal SubgroupOfOr Equal To

U+022ED \ntrianglerighteq Does Not Contain As Normal SubgroupOr Equal

U+022EE \vdots Vertical Ellipsis

U+022EF \cdots Midline Horizontal Ellipsis

U+022F0 \adots Up Right Diagonal Ellipsis

U+022F1 \ddots Down Right Diagonal Ellipsis

U+022F2 \disin Element OfWith Long Horizontal Stroke

U+022F3 \varisins Element OfWith Vertical Bar At EndOf Horizontal Stroke

U+022F4 \isins Small Element OfWith Vertical Bar At EndOf Horizontal

Stroke

U+022F5 \isindot Element OfWith Dot Above

U+022F6 \varisinobar Element OfWithOverbar

U+022F7 \isinobar Small Element OfWithOverbar

U+022F8 \isinvb Element OfWith Underbar

U+022F9 \isinE Element OfWith TwoHorizontal Strokes

U+022FA \nisd ContainsWith Long Horizontal Stroke

U+022FB \varnis ContainsWith Vertical Bar At EndOf Horizontal Stroke

U+022FC \nis Small ContainsWith Vertical Bar At EndOf Horizontal

Stroke

U+022FD \varniobar ContainsWithOverbar

U+022FE \niobar Small ContainsWithOverbar

U+022FF \bagmember ZNotation BagMembership

U+02300 \diameter Diameter Sign

U+02302 \house House

U+02305 \varbarwedge Projective

U+02306 \vardoublebarwedge Perspective

U+02308 \lceil Left Ceiling

U+02309 \rceil Right Ceiling

U+0230A \lfloor Left Floor

U+0230B \rfloor Right Floor

U+02310 \invnot Reversed Not Sign

U+02311 \sqlozenge Square Lozenge

U+02312 \profline Arc

U+02313 \profsurf Segment

U+02315 \recorder Telephone Recorder

U+02317 \viewdata Viewdata Square

U+02319 \turnednot TurnedNot Sign

U+0231A \:watch: Watch

U+0231B \:hourglass: Hourglass

U+0231C \ulcorner Top Left Corner

U+0231D \urcorner Top Right Corner

U+0231E \llcorner Bottom Left Corner

U+0231F \lrcorner BottomRight Corner

U+02322 \frown Frown

U+02323 \smile Smile

U+0232C \varhexagonlrbonds Benzene Ring

U+02332 \conictaper Conical Taper

U+02336 \topbot Apl Functional Symbol I-beam

U+0233D \obar Apl Functional Symbol Circle Stile

U+0233F \APLnotslash Apl Functional Symbol Slash Bar

U+02340 \APLnotbackslash Apl Functional Symbol Backslash Bar

U+02353 \APLboxupcaret Apl Functional Symbol Quad Up Caret

U+02370 \APLboxquestion Apl Functional Symbol QuadQuestion

U+02394 \hexagon Software-function Symbol

U+023A3 \Elzdlcorn Left Square Bracket Lower Corner

U+023B0 \lmoustache Upper Left Or Lower Right Curly Bracket Section

U+023B1 \rmoustache Upper Right Or Lower Left Curly Bracket Section

U+023B4 \overbracket Top Square Bracket

U+023B5 \underbracket Bottom Square Bracket

U+023B6 \bbrktbrk Bottom Square Bracket Over Top Square Bracket

U+023B7 \sqrtbottom Radical Symbol Bottom

U+023B8 \lvboxline Left Vertical Box Line

U+023B9 \rvboxline Right Vertical Box Line

U+023CE \varcarriagereturn Return Symbol

U+023DE \overbrace Top Curly Bracket

U+023DF \underbrace BottomCurly Bracket

U+023E2 \trapezium White Trapezium

U+023E3 \benzenr Benzene RingWith Circle

U+023E4 \strns Straightness

U+023E5 \fltns Flatness

U+023E6 \accurrent Ac Current

U+023E7 \elinters Electrical Intersection

U+023E9 \:fast_forward: Black Right-pointing Double Triangle

U+023EA \:rewind: Black Left-pointing Double Triangle

U+023EB \:arrow_double_up: Black Up-pointing Double Triangle

U+023EC \:arrow_double_down: Black Down-pointing Double Triangle

U+023F0 \:alarm_clock: AlarmClock

U+023F3 \:hourglass_flowing_sand: HourglassWith Flowing Sand

U+02422 \blanksymbol Blank Symbol / Blank

U+02423 \textvisiblespace Open Box

U+024C2 \:m: Circled Latin Capital LetterM

U+024C8 \circledS Circled Latin Capital Letter S

U+02506 \Elzdshfnc Box Drawings Light Triple Dash Vertical / Forms Light

Triple Dash Vertical

U+02519 \Elzsqfnw BoxDrawings Up Light And Left Heavy / Forms Up Light

And Left Heavy

U+02571 \diagup BoxDrawings Light Diagonal Upper Right To Lower Left /

Forms Light Diagonal Upper Right To Lower Left

U+02572 \diagdown BoxDrawings Light Diagonal Upper Left To Lower Right /

Forms Light Diagonal Upper Left To Lower Right

U+02580 \blockuphalf Upper Half Block

U+02584 \blocklowhalf Lower Half Block

U+02588 \blockfull Full Block

U+0258C \blocklefthalf Left Half Block

U+02590 \blockrighthalf Right Half Block

U+02591 \blockqtrshaded Light Shade

U+02592 \blockhalfshaded Medium Shade

U+02593 \blockthreeqtrshaded Dark Shade

U+025A0 \blacksquare Black Square

U+025A1 \square White Square

U+025A2 \squoval White SquareWith Rounded Corners

U+025A3 \blackinwhitesquare White Square Containing Black Small Square

U+025A4 \squarehfill SquareWith Horizontal Fill

U+025A5 \squarevfill SquareWith Vertical Fill

U+025A6 \squarehvfill SquareWithOrthogonal Crosshatch Fill

U+025A7 \squarenwsefill SquareWith Upper Left To Lower Right Fill

U+025A8 \squareneswfill SquareWith Upper Right To Lower Left Fill

U+025A9 \squarecrossfill SquareWith Diagonal Crosshatch Fill

U+025AA \smblksquare,

\:black_small_square:

Black Small Square

U+025AB \smwhtsquare,

\:white_small_square:

White Small Square

U+025AC \hrectangleblack Black Rectangle

U+025AD \hrectangle White Rectangle

U+025AE \vrectangleblack Black Vertical Rectangle

U+025AF \Elzvrecto White Vertical Rectangle

U+025B0 \parallelogramblack Black Parallelogram

U+025B1 \parallelogram White Parallelogram

U+025B2 \bigblacktriangleup Black Up-pointing Triangle / Black Up Pointing Triangle

U+025B3 \bigtriangleup White Up-pointing Triangle /White Up Pointing Triangle

U+025B4 \blacktriangle Black Up-pointing Small Triangle / Black Up Pointing Small

Triangle

U+025B5 \vartriangle White Up-pointing Small Triangle /White Up Pointing

Small Triangle

U+025B6 \blacktriangleright,

\:arrow_forward:

Black Right-pointing Triangle / Black Right Pointing

Triangle

U+025B7 \triangleright White Right-pointing Triangle /White Right Pointing

Triangle

U+025B8 \smallblacktriangleright Black Right-pointing Small Triangle / Black Right Pointing

Small Triangle

U+025B9 \smalltriangleright White Right-pointing Small Triangle /White Right Pointing

Small Triangle

U+025BA \blackpointerright Black Right-pointing Pointer / Black Right Pointing Pointer

U+025BB \whitepointerright White Right-pointing Pointer /White Right Pointing

Pointer

U+025BC \bigblacktriangledown Black Down-pointing Triangle / Black Down Pointing

Triangle

U+025BD \bigtriangledown White Down-pointing Triangle /White Down Pointing

Triangle

U+025BE \blacktriangledown Black Down-pointing Small Triangle / Black Down Pointing

Small Triangle

U+025BF \triangledown White Down-pointing Small Triangle /White Down

Pointing Small Triangle

U+025C0 \blacktriangleleft,

\:arrow_backward:

Black Left-pointing Triangle / Black Left Pointing Triangle

U+025C1 \triangleleft White Left-pointing Triangle /White Left Pointing Triangle

U+025C2 \smallblacktriangleleft Black Left-pointing Small Triangle / Black Left Pointing

Small Triangle

U+025C3 \smalltriangleleft White Left-pointing Small Triangle /White Left Pointing

Small Triangle

U+025C4 \blackpointerleft Black Left-pointing Pointer / Black Left Pointing Pointer

U+025C5 \whitepointerleft White Left-pointing Pointer /White Left Pointing Pointer

U+025C6 \mdlgblkdiamond Black Diamond

U+025C7 \mdlgwhtdiamond White Diamond

U+025C8 \blackinwhitediamond White Diamond Containing Black Small Diamond

U+025C9 \fisheye Fisheye

U+025CA ◊ \lozenge Lozenge

U+025CB \bigcirc White Circle

U+025CC \dottedcircle Dotted Circle

U+025CD \circlevertfill CircleWith Vertical Fill

U+025CE \bullseye Bullseye

U+025CF \mdlgblkcircle Black Circle

U+025D0 \Elzcirfl CircleWith Left Half Black

U+025D1 \Elzcirfr CircleWith Right Half Black

U+025D2 \Elzcirfb CircleWith Lower Half Black

U+025D3 \circletophalfblack CircleWith Upper Half Black

U+025D4 \circleurquadblack CircleWith Upper Right Quadrant Black

U+025D5 \blackcircleulquadwhite CircleWith All But Upper Left Quadrant Black

U+025D6 \blacklefthalfcircle Left Half Black Circle

U+025D7 \blackrighthalfcircle Right Half Black Circle

U+025D8 \Elzrvbull Inverse Bullet

U+025D9 \inversewhitecircle InverseWhite Circle

U+025DA \invwhiteupperhalfcircle Upper Half InverseWhite Circle

U+025DB \invwhitelowerhalfcircle Lower Half InverseWhite Circle

U+025DC \ularc Upper Left Quadrant Circular Arc

U+025DD \urarc Upper Right Quadrant Circular Arc

U+025DE \lrarc Lower Right Quadrant Circular Arc

U+025DF \llarc Lower Left Quadrant Circular Arc

U+025E0 \topsemicircle Upper Half Circle

U+025E1 \botsemicircle Lower Half Circle

U+025E2 \lrblacktriangle Black Lower Right Triangle

U+025E3 \llblacktriangle Black Lower Left Triangle

U+025E4 \ulblacktriangle Black Upper Left Triangle

U+025E5 \urblacktriangle Black Upper Right Triangle

U+025E6 \smwhtcircle White Bullet

U+025E7 \Elzsqfl SquareWith Left Half Black

U+025E8 \Elzsqfr SquareWith Right Half Black

U+025E9 \squareulblack SquareWith Upper Left Diagonal Half Black

U+025EA \Elzsqfse SquareWith Lower Right Diagonal Half Black

U+025EB \boxbar White SquareWith Vertical Bisecting Line

U+025EC \trianglecdot White Up-pointing TriangleWith Dot /White Up Pointing

TriangleWith Dot

U+025ED \triangleleftblack Up-pointing TriangleWith Left Half Black / Up Pointing

TriangleWith Left Half Black

U+025EE \trianglerightblack Up-pointing TriangleWith Right Half Black / Up Pointing

TriangleWith Right Half Black

U+025EF \lgwhtcircle Large Circle

U+025F0 \squareulquad White SquareWith Upper Left Quadrant

U+025F1 \squarellquad White SquareWith Lower Left Quadrant

U+025F2 \squarelrquad White SquareWith Lower Right Quadrant

U+025F3 \squareurquad White SquareWith Upper Right Quadrant

U+025F4 \circleulquad White CircleWith Upper Left Quadrant

U+025F5 \circlellquad White CircleWith Lower Left Quadrant

U+025F6 \circlelrquad White CircleWith Lower Right Quadrant

U+025F7 \circleurquad White CircleWith Upper Right Quadrant

U+025F8 \ultriangle Upper Left Triangle

U+025F9 \urtriangle Upper Right Triangle

U+025FA \lltriangle Lower Left Triangle

U+025FB \mdwhtsquare,

\:white_medium_square:

WhiteMedium Square

U+025FC \mdblksquare,

\:black_medium_square:

BlackMedium Square

U+025FD \mdsmwhtsquare,

\:white_medium_small_square:

WhiteMedium Small Square

U+025FE \mdsmblksquare,

\:black_medium_small_square:

BlackMedium Small Square

U+025FF \lrtriangle Lower Right Triangle

U+02600 \:sunny: Black SunWith Rays

U+02601 \:cloud: Cloud

U+02605 \bigstar Black Star

U+02606 \bigwhitestar White Star

U+02609 \astrosun Sun

U+0260E \:phone: Black Telephone

U+02611 \:ballot_box_with_check: Ballot BoxWith Check

U+02614 \:umbrella: UmbrellaWith Rain Drops

U+02615 \:coffee: Hot Beverage

U+0261D \:point_up: White Up Pointing Index

U+02621 \danger Caution Sign

U+0263A \:relaxed: White Smiling Face

U+0263B \blacksmiley Black Smiling Face

U+0263C \sun White SunWith Rays

U+0263D \rightmoon First QuarterMoon

U+0263E \leftmoon Last QuarterMoon

U+0263F \mercury Mercury

U+02640 \venus, \female Female Sign

U+02642 \male, \mars Male Sign

U+02643 \jupiter Jupiter

U+02644 \saturn Saturn

U+02645 \uranus Uranus

U+02646 \neptune Neptune

U+02647 \pluto Pluto

U+02648 \aries, \:aries: Aries

U+02649 \taurus, \:taurus: Taurus

U+0264A \gemini, \:gemini: Gemini

U+0264B \cancer, \:cancer: Cancer

U+0264C \leo, \:leo: Leo

U+0264D \virgo, \:virgo: Virgo

U+0264E \libra, \:libra: Libra

U+0264F \scorpio, \:scorpius: Scorpius

U+02650 \sagittarius, \:sagittarius: Sagittarius

U+02651 \capricornus, \:capricorn: Capricorn

U+02652 \aquarius, \:aquarius: Aquarius

U+02653 \pisces, \:pisces: Pisces

U+02660 \spadesuit, \:spades: Black Spade Suit

U+02661 \heartsuit White Heart Suit

U+02662 \diamondsuit White Diamond Suit

U+02663 \clubsuit, \:clubs: Black Club Suit

U+02664 \varspadesuit White Spade Suit

U+02665 \varheartsuit, \:hearts: Black Heart Suit

U+02666 \vardiamondsuit,

\:diamonds:

Black Diamond Suit

U+02667 \varclubsuit White Club Suit

U+02668 \:hotsprings: Hot Springs

U+02669 ♩ \quarternote Quarter Note

U+0266A \eighthnote Eighth Note

U+0266B \twonotes Beamed Eighth Notes / Barred Eighth Notes

U+0266D \flat Music Flat Sign / Flat

U+0266E \natural Music Natural Sign / Natural

U+0266F \sharp Music Sharp Sign / Sharp

U+0267B \:recycle: Black Universal Recycling Symbol

U+0267E \acidfree Permanent Paper Sign

U+0267F \:wheelchair: Wheelchair Symbol

U+02680 \dicei Die Face-1

U+02681 \diceii Die Face-2

U+02682 \diceiii Die Face-3

U+02683 \diceiv Die Face-4

U+02684 \dicev Die Face-5

U+02685 \dicevi Die Face-6

U+02686 \circledrightdot White CircleWith Dot Right

U+02687 \circledtwodots White CircleWith TwoDots

U+02688 \blackcircledrightdot Black CircleWithWhite Dot Right

U+02689 \blackcircledtwodots Black CircleWith TwoWhite Dots

U+02693 \:anchor: Anchor

U+026A0 \:warning: Warning Sign

U+026A1 \:zap: High Voltage Sign

U+026A5 \Hermaphrodite Male And Female Sign

U+026AA \mdwhtcircle,

\:white_circle:

MediumWhite Circle

U+026AB \mdblkcircle,

\:black_circle:

MediumBlack Circle

U+026AC \mdsmwhtcircle Medium SmallWhite Circle

U+026B2 \neuter Neuter

U+026BD \:soccer: Soccer Ball

U+026BE \:baseball: Baseball

U+026C4 \:snowman: SnowmanWithout Snow

U+026C5 \:partly_sunny: Sun Behind Cloud

U+026CE \:ophiuchus: Ophiuchus

U+026D4 \:no_entry: No Entry

U+026EA \:church: Church

U+026F2 \:fountain: Fountain

U+026F3 \:golf: Flag In Hole

U+026F5 \:boat: Sailboat

U+026FA \:tent: Tent

U+026FD \:fuelpump: Fuel Pump

U+02702 \:scissors: Black Scissors

U+02705 \:white_check_mark: White Heavy CheckMark

U+02708 \:airplane: Airplane

U+02709 \:email: Envelope

U+0270A \:fist: Raised Fist

U+0270B \:hand: Raised Hand

U+0270C \:v: Victory Hand

U+0270F \:pencil2: Pencil

U+02712 \:black_nib: Black Nib

U+02713 \checkmark CheckMark

U+02714 \:heavy_check_mark: Heavy CheckMark

U+02716 \:heavy_multiplication_x: HeavyMultiplication X

U+02720 \maltese Maltese Cross

U+02728 \:sparkles: Sparkles

U+0272A \circledstar CircledWhite Star

U+02733 \:eight_spoked_asterisk: Eight Spoked Asterisk

U+02734 \:eight_pointed_black_star: Eight Pointed Black Star

U+02736 \varstar Six Pointed Black Star

U+0273D \dingasterisk Heavy Teardrop-spoked Asterisk

U+02744 \:snowflake: Snowflake

U+02747 \:sparkle: Sparkle

U+0274C \:x: CrossMark

U+0274E \:nega-

tive_squared_cross_mark:

Negative Squared CrossMark

U+02753 \:question: BlackQuestionMarkOrnament

U+02754 \:grey_question: White QuestionMarkOrnament

U+02755 \:grey_exclamation: White ExclamationMarkOrnament

U+02757 \:exclamation: Heavy ExclamationMark Symbol

U+02764 \:heart: Heavy Black Heart

U+02795 \:heavy_plus_sign: Heavy Plus Sign

U+02796 \:heavy_minus_sign: HeavyMinus Sign

U+02797 \:heavy_division_sign: Heavy Division Sign

U+0279B \draftingarrow Drafting Point Rightwards Arrow / Drafting Point Right

Arrow

U+027A1 \:arrow_right: Black Rightwards Arrow / Black Right Arrow

U+027B0 \:curly_loop: Curly Loop

U+027BF \:loop: Double Curly Loop

U+027C0 \threedangle Three Dimensional Angle

U+027C1 \whiteinwhitetriangle White Triangle Containing SmallWhite Triangle

U+027C2 \perp Perpendicular

U+027C8 \bsolhsub Reverse Solidus Preceding Subset

U+027C9 \suphsol Superset Preceding Solidus

U+027D1 \wedgedot AndWith Dot

U+027D2 \upin Element Of Opening Upwards

U+027D5 \leftouterjoin Left Outer Join

U+027D6 \rightouterjoin Right Outer Join

U+027D7 \fullouterjoin Full Outer Join

U+027D8 \bigbot Large Up Tack

U+027D9 \bigtop Large Down Tack

U+027E6 \llbracket,

\openbracketleft

Mathematical LeftWhite Square Bracket

U+027E7 \openbracketright,

\rrbracket

Mathematical RightWhite Square Bracket

U+027E8 \langle Mathematical Left Angle Bracket

U+027E9 \rangle Mathematical Right Angle Bracket

U+027F0 \UUparrow Upwards Quadruple Arrow

U+027F1 \DDownarrow Downwards Quadruple Arrow

U+027F5 \longleftarrow Long Leftwards Arrow

U+027F6 \longrightarrow Long Rightwards Arrow

U+027F7 \longleftrightarrow Long Left Right Arrow

U+027F8 \impliedby,

\Longleftarrow

Long Leftwards Double Arrow

U+027F9 \implies, \Longrightarrow Long Rightwards Double Arrow

U+027FA \Longleftrightarrow, \iff Long Left Right Double Arrow

U+027FB \longmapsfrom Long Leftwards Arrow FromBar

U+027FC \longmapsto Long Rightwards Arrow FromBar

U+027FD \Longmapsfrom Long Leftwards Double Arrow FromBar

U+027FE \Longmapsto Long Rightwards Double Arrow FromBar

U+027FF \longrightsquigarrow Long Rightwards Squiggle Arrow

U+02900 \nvtwoheadrightarrow Rightwards Two-headed ArrowWith Vertical Stroke

U+02901 \nVtwoheadrightarrow Rightwards Two-headed ArrowWith Double Vertical

Stroke

U+02902 \nvLeftarrow Leftwards Double ArrowWith Vertical Stroke

U+02903 \nvRightarrow Rightwards Double ArrowWith Vertical Stroke

U+02904 \nvLeftrightarrow Left Right Double ArrowWith Vertical Stroke

U+02905 \twoheadmapsto Rightwards Two-headed Arrow FromBar

U+02906 \Mapsfrom Leftwards Double Arrow FromBar

U+02907 \Mapsto Rightwards Double Arrow FromBar

U+02908 \downarrowbarred Downwards ArrowWith Horizontal Stroke

U+02909 \uparrowbarred Upwards ArrowWith Horizontal Stroke

U+0290A \Uuparrow Upwards Triple Arrow

U+0290B \Ddownarrow Downwards Triple Arrow

U+0290C \leftbkarrow Leftwards Double Dash Arrow

U+0290D \bkarow Rightwards Double Dash Arrow

U+0290E \leftdbkarrow Leftwards Triple Dash Arrow

U+0290F \dbkarow Rightwards Triple Dash Arrow

U+02910 \drbkarrow Rightwards Two-headed Triple Dash Arrow

U+02911 \rightdotarrow Rightwards ArrowWith Dotted Stem

U+02912 \UpArrowBar Upwards Arrow To Bar

U+02913 \DownArrowBar Downwards Arrow To Bar

U+02914 \nvrightarrowtail Rightwards ArrowWith TailWith Vertical Stroke

U+02915 \nVrightarrowtail Rightwards ArrowWith TailWith Double Vertical Stroke

U+02916 \twoheadrightarrowtail Rightwards Two-headed ArrowWith Tail

U+02917 \nvtwoheadrightarrowtail Rightwards Two-headed ArrowWith TailWith Vertical

Stroke

U+02918 \nVtwoheadrightarrow-

tail

Rightwards Two-headed ArrowWith TailWith Double

Vertical Stroke

U+0291D \diamondleftarrow Leftwards Arrow To Black Diamond

U+0291E \rightarrowdiamond Rightwards Arrow To Black Diamond

U+0291F \diamondleftarrowbar Leftwards Arrow FromBar To Black Diamond

U+02920 \barrightarrowdiamond Rightwards Arrow FromBar To Black Diamond

U+02925 \hksearow South East ArrowWith Hook

U+02926 \hkswarow SouthWest ArrowWith Hook

U+02927 \tona NorthWest ArrowAndNorth East Arrow

U+02928 \toea North East ArrowAnd South East Arrow

U+02929 \tosa South East ArrowAnd SouthWest Arrow

U+0292A \towa SouthWest ArrowAndNorthWest Arrow

U+0292B \rdiagovfdiag Rising Diagonal Crossing Falling Diagonal

U+0292C \fdiagovrdiag Falling Diagonal Crossing Rising Diagonal

U+0292D \seovnearrow South East ArrowCrossing North East Arrow

U+0292E \neovsearrow North East ArrowCrossing South East Arrow

U+0292F \fdiagovnearrow Falling Diagonal Crossing North East Arrow

U+02930 \rdiagovsearrow Rising Diagonal Crossing South East Arrow

U+02931 \neovnwarrow North East ArrowCrossing NorthWest Arrow

U+02932 \nwovnearrow NorthWest ArrowCrossing North East Arrow

U+02934 \:arrow_heading_up: Arrow Pointing Rightwards Then Curving Upwards

U+02935 \:arrow_heading_down: Arrow Pointing Rightwards Then Curving Downwards

U+02942 \ElzRlarr Rightwards ArrowAbove Short Leftwards Arrow

U+02944 \ElzrLarr Short Rightwards ArrowAbove Leftwards Arrow

U+02945 \rightarrowplus Rightwards ArrowWith Plus Below

U+02946 \leftarrowplus Leftwards ArrowWith Plus Below

U+02947 \Elzrarrx Rightwards Arrow Through X

U+02948 \leftrightarrowcircle Left Right Arrow Through Small Circle

U+02949 \twoheaduparrowcircle Upwards Two-headed Arrow From Small Circle

U+0294A \leftrightharpoonupdown Left Barb Up Right Barb DownHarpoon

U+0294B \leftrightharpoondownup Left Barb Down Right Barb UpHarpoon

U+0294C \updownharpoonrightleft Up Barb Right Down Barb Left Harpoon

U+0294D \updownharpoonleftright Up Barb Left Down Barb Right Harpoon

U+0294E \LeftRightVector Left Barb Up Right Barb UpHarpoon

U+0294F \RightUpDownVector Up Barb Right Down Barb Right Harpoon

U+02950 \DownLeftRightVector Left Barb Down Right Barb DownHarpoon

U+02951 \LeftUpDownVector Up Barb Left Down Barb Left Harpoon

U+02952 \LeftVectorBar Leftwards HarpoonWith Barb Up To Bar

U+02953 \RightVectorBar Rightwards HarpoonWith Barb Up To Bar

U+02954 \RightUpVectorBar Upwards HarpoonWith Barb Right To Bar

U+02955 \RightDownVectorBar Downwards HarpoonWith Barb Right To Bar

U+02956 \DownLeftVectorBar Leftwards HarpoonWith Barb Down To Bar

U+02957 \DownRightVectorBar Rightwards HarpoonWith Barb Down To Bar

U+02958 \LeftUpVectorBar Upwards HarpoonWith Barb Left To Bar

U+02959 \LeftDownVectorBar Downwards HarpoonWith Barb Left To Bar

U+0295A \LeftTeeVector Leftwards HarpoonWith Barb Up FromBar

U+0295B \RightTeeVector Rightwards HarpoonWith Barb Up FromBar

U+0295C \RightUpTeeVector Upwards HarpoonWith Barb Right FromBar

U+0295D \RightDownTeeVector Downwards HarpoonWith Barb Right FromBar

U+0295E \DownLeftTeeVector Leftwards HarpoonWith Barb Down FromBar

U+0295F \DownRightTeeVector Rightwards HarpoonWith Barb Down FromBar

U+02960 \LeftUpTeeVector Upwards HarpoonWith Barb Left FromBar

U+02961 \LeftDownTeeVector Downwards HarpoonWith Barb Left FromBar

U+02962 \leftharpoonsupdown Leftwards HarpoonWith Barb Up Above Leftwards

HarpoonWith Barb Down

U+02963 \upharpoonsleftright Upwards HarpoonWith Barb Left Beside Upwards

HarpoonWith Barb Right

U+02964 \rightharpoonsupdown Rightwards HarpoonWith Barb Up Above Rightwards

HarpoonWith Barb Down

U+02965 \downharpoonsleftright Downwards HarpoonWith Barb Left Beside Downwards

HarpoonWith Barb Right

U+02966 \leftrightharpoonsup Leftwards HarpoonWith Barb Up Above Rightwards

HarpoonWith Barb Up

U+02967 \leftrightharpoonsdown Leftwards HarpoonWith Barb DownAbove Rightwards

HarpoonWith Barb Down

U+02968 \rightleftharpoonsup Rightwards HarpoonWith Barb Up Above Leftwards

HarpoonWith Barb Up

U+02969 \rightleftharpoonsdown Rightwards HarpoonWith Barb DownAbove Leftwards

HarpoonWith Barb Down

U+0296A \leftharpoonupdash Leftwards HarpoonWith Barb Up Above Long Dash

U+0296B \dashleftharpoondown Leftwards HarpoonWith Barb Down Below LongDash

U+0296C \rightharpoonupdash Rightwards HarpoonWith Barb Up Above Long Dash

U+0296D \dashrightharpoondown Rightwards HarpoonWith Barb Down Below LongDash

U+0296E \UpEquilibrium Upwards HarpoonWith Barb Left Beside Downwards

HarpoonWith Barb Right

U+0296F \ReverseUpEquilibrium Downwards HarpoonWith Barb Left Beside Upwards

HarpoonWith Barb Right

U+02970 \RoundImplies Right Double ArrowWith RoundedHead

U+02980 \Vvert Triple Vertical Bar Delimiter

U+02986 \Elroang RightWhite Parenthesis

U+02999 \Elzddfnc Dotted Fence

U+0299B \measuredangleleft Measured Angle Opening Left

U+0299C \Angle Right Angle VariantWith Square

U+0299D \rightanglemdot Measured Right AngleWith Dot

U+0299E \angles AngleWith S Inside

U+0299F \angdnr Acute Angle

U+029A0 \Elzlpargt Spherical Angle Opening Left

U+029A1 \sphericalangleup Spherical Angle Opening Up

U+029A2 \turnangle Turned Angle

U+029A3 \revangle Reversed Angle

U+029A4 \angleubar AngleWith Underbar

U+029A5 \revangleubar Reversed AngleWith Underbar

U+029A6 \wideangledown Oblique Angle Opening Up

U+029A7 \wideangleup Oblique Angle Opening Down

U+029A8 \measanglerutone Measured AngleWithOpen Arm Ending In Arrow Pointing

Up And Right

U+029A9 \measanglelutonw Measured AngleWithOpen Arm Ending In Arrow Pointing

Up And Left

U+029AA \measanglerdtose Measured AngleWithOpen Arm Ending In Arrow Pointing

DownAnd Right

U+029AB \measangleldtosw Measured AngleWithOpen Arm Ending In Arrow Pointing

DownAnd Left

U+029AC \measangleurtone Measured AngleWithOpen Arm Ending In Arrow Pointing

Right AndUp

U+029AD \measangleultonw Measured AngleWithOpen Arm Ending In Arrow Pointing

Left And Up

U+029AE \measangledrtose Measured AngleWithOpen Arm Ending In Arrow Pointing

Right AndDown

U+029AF \measangledltosw Measured AngleWithOpen Arm Ending In Arrow Pointing

Left AndDown

U+029B0 \revemptyset Reversed Empty Set

U+029B1 \emptysetobar Empty SetWithOverbar

U+029B2 \emptysetocirc Empty SetWith Small Circle Above

U+029B3 \emptysetoarr Empty SetWith Right ArrowAbove

U+029B4 \emptysetoarrl Empty SetWith Left ArrowAbove

U+029B7 \circledparallel Circled Parallel

U+029B8 \obslash Circled Reverse Solidus

U+029BC \odotslashdot Circled Anticlockwise-rotated Division Sign

U+029BE \circledwhitebullet CircledWhite Bullet

U+029BF \circledbullet Circled Bullet

U+029C0 \olessthan Circled Less-than

U+029C1 \ogreaterthan Circled Greater-than

U+029C4 \boxdiag Squared Rising Diagonal Slash

U+029C5 \boxbslash Squared Falling Diagonal Slash

U+029C6 \boxast Squared Asterisk

U+029C7 \boxcircle Squared Small Circle

U+029CA \ElzLap TriangleWith Dot Above

U+029CB \Elzdefas TriangleWith Underbar

U+029CF \LeftTriangleBar Left Triangle Beside Vertical Bar

U+029CF +

U+00338

\NotLeftTriangleBar Left Triangle Beside Vertical Bar + Combining Long Solidus

Overlay / Non-spacing Long SlashOverlay

U+029D0 \RightTriangleBar Vertical Bar Beside Right Triangle

U+029D0 +

U+00338

\NotRightTriangleBar Vertical Bar Beside Right Triangle + Combining Long

Solidus Overlay / Non-spacing Long SlashOverlay

U+029DF \dualmap Double-endedMultimap

U+029E1 \lrtriangleeq Increases As

U+029E2 \shuffle Shuffle Product

U+029E3 \eparsl Equals Sign And Slanted Parallel

U+029E4 \smeparsl Equals Sign And Slanted ParallelWith Tilde Above

U+029E5 \eqvparsl Identical To And Slanted Parallel

U+029EB \blacklozenge Black Lozenge

U+029F4 \RuleDelayed Rule-delayed

U+029F6 \dsol SolidusWithOverbar

U+029F7 \rsolbar Reverse SolidusWith Horizontal Stroke

U+029FA \doubleplus Double Plus

U+029FB \tripleplus Triple Plus

U+02A00 \bigodot N-ary Circled Dot Operator

U+02A01 \bigoplus N-ary Circled Plus Operator

U+02A02 \bigotimes N-ary Circled TimesOperator

U+02A03 \bigcupdot N-ary UnionOperatorWith Dot

U+02A04 \biguplus N-ary UnionOperatorWith Plus

U+02A05 \bigsqcap N-ary Square IntersectionOperator

U+02A06 \bigsqcup N-ary Square UnionOperator

U+02A07 \conjquant Two Logical AndOperator

U+02A08 \disjquant Two Logical OrOperator

U+02A09 \bigtimes N-ary TimesOperator

U+02A0A \modtwosum Modulo Two Sum

U+02A0B \sumint SummationWith Integral

U+02A0C \iiiint Quadruple Integral Operator

U+02A0D \intbar Finite Part Integral

U+02A0E \intBar IntegralWith Double Stroke

U+02A0F \clockoint Integral AverageWith Slash

U+02A10 \cirfnint Circulation Function

U+02A11 \awint Anticlockwise Integration

U+02A12 \rppolint Line IntegrationWith Rectangular Path Around Pole

U+02A13 \scpolint Line IntegrationWith Semicircular Path Around Pole

U+02A14 \npolint Line Integration Not Including The Pole

U+02A15 \pointint Integral Around A Point Operator

U+02A16 \sqrint Quaternion Integral Operator

U+02A18 \intx IntegralWith Times Sign

U+02A19 \intcap IntegralWith Intersection

U+02A1A \intcup IntegralWith Union

U+02A1B \upint IntegralWithOverbar

U+02A1C \lowint IntegralWith Underbar

U+02A1D \Join Join

U+02A22 \ringplus Plus SignWith Small Circle Above

U+02A23 \plushat Plus SignWith Circumflex Accent Above

U+02A24 \simplus Plus SignWith Tilde Above

U+02A25 \plusdot Plus SignWith Dot Below

U+02A26 \plussim Plus SignWith Tilde Below

U+02A27 \plussubtwo Plus SignWith Subscript Two

U+02A28 \plustrif Plus SignWith Black Triangle

U+02A29 \commaminus Minus SignWith CommaAbove

U+02A2A \minusdot Minus SignWith Dot Below

U+02A2B \minusfdots Minus SignWith Falling Dots

U+02A2C \minusrdots Minus SignWith Rising Dots

U+02A2D \opluslhrim Plus Sign In Left Half Circle

U+02A2E \oplusrhrim Plus Sign In Right Half Circle

U+02A2F \ElzTimes Vector Or Cross Product

U+02A30 \dottimes Multiplication SignWith Dot Above

U+02A31 \timesbar Multiplication SignWith Underbar

U+02A32 \btimes Semidirect ProductWith BottomClosed

U+02A33 \smashtimes Smash Product

U+02A34 \otimeslhrim Multiplication Sign In Left Half Circle

U+02A35 \otimesrhrim Multiplication Sign In Right Half Circle

U+02A36 \otimeshat CircledMultiplication SignWith Circumflex Accent

U+02A37 \Otimes Multiplication Sign In Double Circle

U+02A38 \odiv Circled Division Sign

U+02A39 \triangleplus Plus Sign In Triangle

U+02A3A \triangleminus Minus Sign In Triangle

U+02A3B \triangletimes Multiplication Sign In Triangle

U+02A3C \intprod Interior Product

U+02A3D \intprodr Righthand Interior Product

U+02A3F \amalg AmalgamationOr Coproduct

U+02A40 \capdot IntersectionWith Dot

U+02A41 \uminus UnionWithMinus Sign

U+02A42 \barcup UnionWithOverbar

U+02A43 \barcap IntersectionWithOverbar

U+02A44 \capwedge IntersectionWith Logical And

U+02A45 \cupvee UnionWith Logical Or

U+02A4A \twocups Union Beside And JoinedWith Union

U+02A4B \twocaps Intersection Beside And JoinedWith Intersection

U+02A4C \closedvarcup Closed UnionWith Serifs

U+02A4D \closedvarcap Closed IntersectionWith Serifs

U+02A4E \Sqcap Double Square Intersection

U+02A4F \Sqcup Double Square Union

U+02A50 \closedvarcupsmashprod Closed UnionWith Serifs And Smash Product

U+02A51 \wedgeodot Logical AndWith Dot Above

U+02A52 \veeodot Logical OrWith Dot Above

U+02A53 \ElzAnd Double Logical And

U+02A54 \ElzOr Double Logical Or

U+02A55 \wedgeonwedge Two Intersecting Logical And

U+02A56 \ElOr Two Intersecting Logical Or

U+02A57 \bigslopedvee Sloping LargeOr

U+02A58 \bigslopedwedge Sloping Large And

U+02A5A \wedgemidvert Logical AndWithMiddle Stem

U+02A5B \veemidvert Logical OrWithMiddle Stem

U+02A5C \midbarwedge Logical AndWith Horizontal Dash

U+02A5D \midbarvee Logical OrWith Horizontal Dash

U+02A5E \perspcorrespond Logical AndWith Double Overbar

U+02A5F \Elzminhat Logical AndWith Underbar

U+02A60 \wedgedoublebar Logical AndWith Double Underbar

U+02A61 \varveebar Small VeeWith Underbar

U+02A62 \doublebarvee Logical OrWith Double Overbar

U+02A63 \veedoublebar Logical OrWith Double Underbar

U+02A66 \eqdot Equals SignWith Dot Below

U+02A67 \dotequiv IdenticalWith Dot Above

U+02A6A \dotsim Tilde OperatorWith Dot Above

U+02A6B \simrdots Tilde OperatorWith Rising Dots

U+02A6C \simminussim SimilarMinus Similar

U+02A6D \congdot CongruentWith Dot Above

U+02A6E \asteq EqualsWith Asterisk

U+02A6F \hatapprox Almost Equal ToWith Circumflex Accent

U+02A70 \approxeqq Approximately Equal Or Equal To

U+02A71 \eqqplus Equals Sign Above Plus Sign

U+02A72 \pluseqq Plus Sign Above Equals Sign

U+02A73 \eqqsim Equals Sign Above Tilde Operator

U+02A74 \Coloneq Double Colon Equal

U+02A75 \Equal Two Consecutive Equals Signs

U+02A76 \eqeqeq Three Consecutive Equals Signs

U+02A77 \ddotseq Equals SignWith TwoDots Above And TwoDots Below

U+02A78 \equivDD EquivalentWith Four Dots Above

U+02A79 \ltcir Less-thanWith Circle Inside

U+02A7A \gtcir Greater-thanWith Circle Inside

U+02A7B \ltquest Less-thanWithQuestionMark Above

U+02A7C \gtquest Greater-thanWithQuestionMark Above

U+02A7D \leqslant Less-thanOr Slanted Equal To

U+02A7D

+U+00338

\nleqslant Less-thanOr Slanted Equal To + Combining Long Solidus

Overlay / Non-spacing Long SlashOverlay

U+02A7E \geqslant Greater-thanOr Slanted Equal To

U+02A7E +

U+00338

\ngeqslant Greater-thanOr Slanted Equal To + Combining Long

Solidus Overlay / Non-spacing Long SlashOverlay

U+02A7F \lesdot Less-thanOr Slanted Equal ToWith Dot Inside

U+02A80 \gesdot Greater-thanOr Slanted Equal ToWith Dot Inside

U+02A81 \lesdoto Less-thanOr Slanted Equal ToWith Dot Above

U+02A82 \gesdoto Greater-thanOr Slanted Equal ToWith Dot Above

U+02A83 \lesdotor Less-thanOr Slanted Equal ToWith Dot Above Right

U+02A84 \gesdotol Greater-thanOr Slanted Equal ToWith Dot Above Left

U+02A85 \lessapprox Less-thanOr Approximate

U+02A86 \gtrapprox Greater-thanOr Approximate

U+02A87 \lneq Less-than And Single-line Not Equal To

U+02A88 \gneq Greater-than And Single-line Not Equal To

U+02A89 \lnapprox Less-than AndNot Approximate

U+02A8A \gnapprox Greater-than AndNot Approximate

U+02A8B \lesseqqgtr Less-than Above Double-line Equal Above Greater-than

U+02A8C \gtreqqless Greater-than Above Double-line Equal Above Less-than

U+02A8D \lsime Less-than Above Similar Or Equal

U+02A8E \gsime Greater-than Above Similar Or Equal

U+02A8F \lsimg Less-than Above Similar Above Greater-than

U+02A90 \gsiml Greater-than Above Similar Above Less-than

U+02A91 \lgE Less-than Above Greater-than Above Double-line Equal

U+02A92 \glE Greater-than Above Less-than Above Double-line Equal

U+02A93 \lesges Less-than Above Slanted Equal Above Greater-than Above

Slanted Equal

U+02A94 \gesles Greater-than Above Slanted Equal Above Less-than Above

Slanted Equal

U+02A95 \eqslantless Slanted Equal ToOr Less-than

U+02A96 \eqslantgtr Slanted Equal ToOr Greater-than

U+02A97 \elsdot Slanted Equal ToOr Less-thanWith Dot Inside

U+02A98 \egsdot Slanted Equal ToOr Greater-thanWith Dot Inside

U+02A99 \eqqless Double-line Equal ToOr Less-than

U+02A9A \eqqgtr Double-line Equal ToOr Greater-than

U+02A9B \eqqslantless Double-line Slanted Equal ToOr Less-than

U+02A9C \eqqslantgtr Double-line Slanted Equal ToOr Greater-than

U+02A9D \simless Similar Or Less-than

U+02A9E \simgtr Similar Or Greater-than

U+02A9F \simlE Similar Above Less-than Above Equals Sign

U+02AA0 \simgE Similar Above Greater-than Above Equals Sign

U+02AA1 \NestedLessLess Double Nested Less-than

U+02AA1 +

U+00338

\NotNestedLessLess Double Nested Less-than + Combining Long Solidus

Overlay / Non-spacing Long SlashOverlay

U+02AA2 \NestedGreaterGreater Double Nested Greater-than

U+02AA2 +

U+00338

\NotNestedGreater-

Greater

Double Nested Greater-than + Combining Long Solidus

Overlay / Non-spacing Long SlashOverlay

U+02AA3 \partialmeetcontraction Double Nested Less-thanWith Underbar

U+02AA4 \glj Greater-thanOverlapping Less-than

U+02AA5 \gla Greater-than Beside Less-than

U+02AA6 \ltcc Less-than Closed By Curve

U+02AA7 \gtcc Greater-than Closed By Curve

U+02AA8 \lescc Less-than Closed By Curve Above Slanted Equal

U+02AA9 \gescc Greater-than Closed By Curve Above Slanted Equal

U+02AAA \smt Smaller Than

U+02AAB \lat Larger Than

U+02AAC \smte Smaller ThanOr Equal To

U+02AAD \late Larger ThanOr Equal To

U+02AAE \bumpeqq Equals SignWith Bumpy Above

U+02AAF \preceq Precedes Above Single-line Equals Sign

U+02AAF +

U+00338

\npreceq Precedes Above Single-line Equals Sign + Combining Long

Solidus Overlay / Non-spacing Long SlashOverlay

U+02AB0 \succeq Succeeds Above Single-line Equals Sign

U+02AB0 +

U+00338

\nsucceq Succeeds Above Single-line Equals Sign + Combining Long

Solidus Overlay / Non-spacing Long SlashOverlay

U+02AB1 \precneq Precedes Above Single-line Not Equal To

U+02AB2 \succneq Succeeds Above Single-line Not Equal To

U+02AB3 \preceqq Precedes Above Equals Sign

U+02AB4 \succeqq Succeeds Above Equals Sign

U+02AB5 \precneqq Precedes AboveNot Equal To

U+02AB6 \succneqq Succeeds AboveNot Equal To

U+02AB7 \precapprox Precedes Above Almost Equal To

U+02AB8 \succapprox Succeeds Above Almost Equal To

U+02AB9 \precnapprox Precedes AboveNot Almost Equal To

U+02ABA \succnapprox Succeeds AboveNot Almost Equal To

U+02ABB \Prec Double Precedes

U+02ABC \Succ Double Succeeds

U+02ABD \subsetdot SubsetWith Dot

U+02ABE \supsetdot SupersetWith Dot

U+02ABF \subsetplus SubsetWith Plus Sign Below

U+02AC0 \supsetplus SupersetWith Plus Sign Below

U+02AC1 \submult SubsetWithMultiplication Sign Below

U+02AC2 \supmult SupersetWithMultiplication Sign Below

U+02AC3 \subedot Subset Of Or Equal ToWith Dot Above

U+02AC4 \supedot Superset Of Or Equal ToWith Dot Above

U+02AC5 \subseteqq Subset Of Above Equals Sign

U+02AC5 +

U+00338

\nsubseteqq Subset Of Above Equals Sign + Combining Long Solidus

Overlay / Non-spacing Long SlashOverlay

U+02AC6 \supseteqq Superset Of Above Equals Sign

U+02AC6 +

U+00338

\nsupseteqq Superset Of Above Equals Sign + Combining Long Solidus

Overlay / Non-spacing Long SlashOverlay

U+02AC7 \subsim Subset Of Above Tilde Operator

U+02AC8 \supsim Superset Of Above Tilde Operator

U+02AC9 \subsetapprox Subset Of Above Almost Equal To

U+02ACA \supsetapprox Superset Of Above Almost Equal To

U+02ACB \subsetneqq Subset Of Above Not Equal To

U+02ACC \supsetneqq Superset Of Above Not Equal To

U+02ACD \lsqhook Square Left Open BoxOperator

U+02ACE \rsqhook Square Right Open BoxOperator

U+02ACF \csub Closed Subset

U+02AD0 \csup Closed Superset

U+02AD1 \csube Closed Subset Or Equal To

U+02AD2 \csupe Closed Superset Or Equal To

U+02AD3 \subsup Subset Above Superset

U+02AD4 \supsub Superset Above Subset

U+02AD5 \subsub Subset Above Subset

U+02AD6 \supsup Superset Above Superset

U+02AD7 \suphsub Superset Beside Subset

U+02AD8 \supdsub Superset Beside And Joined ByDashWith Subset

U+02AD9 \forkv Element Of Opening Downwards

U+02ADB \mlcp Transversal Intersection

U+02ADC \forks Forking

U+02ADD \forksnot Nonforking

U+02AE3 \dashV Double Vertical Bar Left Turnstile

U+02AE4 \Dashv Vertical Bar Double Left Turnstile

U+02AF4 \interleave Triple Vertical Bar Binary Relation

U+02AF6 \Elztdcol Triple ColonOperator

U+02AF7 \lllnest Triple Nested Less-than

U+02AF8 \gggnest Triple Nested Greater-than

U+02AF9 \leqqslant Double-line Slanted Less-thanOr Equal To

U+02AFA \geqqslant Double-line Slanted Greater-thanOr Equal To

U+02B05 \:arrow_left: Leftwards Black Arrow

U+02B06 \:arrow_up: Upwards Black Arrow

U+02B07 \:arrow_down: Downwards Black Arrow

U+02B12 \squaretopblack SquareWith TopHalf Black

U+02B13 \squarebotblack SquareWith BottomHalf Black

U+02B14 \squareurblack SquareWith Upper Right Diagonal Half Black

U+02B15 \squarellblack SquareWith Lower Left Diagonal Half Black

U+02B16 \diamondleftblack DiamondWith Left Half Black

U+02B17 \diamondrightblack DiamondWith Right Half Black

U+02B18 \diamondtopblack DiamondWith TopHalf Black

U+02B19 \diamondbotblack DiamondWith BottomHalf Black

U+02B1A \dottedsquare Dotted Square

U+02B1B \lgblksquare,

\:black_large_square:

Black Large Square

U+02B1C \lgwhtsquare,

\:white_large_square:

White Large Square

U+02B1D \vysmblksquare Black Very Small Square

U+02B1E \vysmwhtsquare White Very Small Square

U+02B1F \pentagonblack Black Pentagon

U+02B20 \pentagon White Pentagon

U+02B21 \varhexagon White Hexagon

U+02B22 \varhexagonblack Black Hexagon

U+02B23 \hexagonblack Horizontal Black Hexagon

U+02B24 \lgblkcircle Black Large Circle

U+02B25 \mdblkdiamond BlackMediumDiamond

U+02B26 \mdwhtdiamond WhiteMediumDiamond

U+02B27 \mdblklozenge BlackMedium Lozenge

U+02B28 \mdwhtlozenge WhiteMedium Lozenge

U+02B29 \smblkdiamond Black Small Diamond

U+02B2A \smblklozenge Black Small Lozenge

U+02B2B \smwhtlozenge White Small Lozenge

U+02B2C \blkhorzoval Black Horizontal Ellipse

U+02B2D \whthorzoval White Horizontal Ellipse

U+02B2E \blkvertoval Black Vertical Ellipse

U+02B2F \whtvertoval White Vertical Ellipse

U+02B30 \circleonleftarrow Left ArrowWith Small Circle

U+02B31 \leftthreearrows Three Leftwards Arrows

U+02B32 \leftarrowonoplus Left ArrowWith Circled Plus

U+02B33 \longleftsquigarrow Long Leftwards Squiggle Arrow

U+02B34 \nvtwoheadleftarrow Leftwards Two-headed ArrowWith Vertical Stroke

U+02B35 \nVtwoheadleftarrow Leftwards Two-headed ArrowWith Double Vertical Stroke

U+02B36 \twoheadmapsfrom Leftwards Two-headed Arrow FromBar

U+02B37 \twoheadleftdbkarrow Leftwards Two-headed Triple Dash Arrow

U+02B38 \leftdotarrow Leftwards ArrowWith Dotted Stem

U+02B39 \nvleftarrowtail Leftwards ArrowWith TailWith Vertical Stroke

U+02B3A \nVleftarrowtail Leftwards ArrowWith TailWith Double Vertical Stroke

U+02B3B \twoheadleftarrowtail Leftwards Two-headed ArrowWith Tail

U+02B3C \nvtwoheadleftarrowtail Leftwards Two-headed ArrowWith TailWith Vertical

Stroke

U+02B3D \nVtwoheadleftarrowtail Leftwards Two-headed ArrowWith TailWith Double

Vertical Stroke

U+02B3E \leftarrowx Leftwards Arrow Through X

U+02B3F \leftcurvedarrow Wave Arrow Pointing Directly Left

U+02B40 \equalleftarrow Equals Sign Above Leftwards Arrow

U+02B41 \bsimilarleftarrow Reverse Tilde Operator Above Leftwards Arrow

U+02B42 \leftarrowbackapprox Leftwards ArrowAbove Reverse Almost Equal To

U+02B43 \rightarrowgtr Rightwards Arrow Through Greater-than

U+02B44 \rightarrowsupset Rightwards Arrow Through Superset

U+02B45 \LLeftarrow Leftwards Quadruple Arrow

U+02B46 \RRightarrow Rightwards Quadruple Arrow

U+02B47 \bsimilarrightarrow Reverse Tilde Operator Above Rightwards Arrow

U+02B48 \rightarrowbackapprox Rightwards ArrowAbove Reverse Almost Equal To

U+02B49 \similarleftarrow Tilde Operator Above Leftwards Arrow

U+02B4A \leftarrowapprox Leftwards ArrowAbove Almost Equal To

U+02B4B \leftarrowbsimilar Leftwards ArrowAbove Reverse Tilde Operator

U+02B4C \rightarrowbsimilar Rightwards ArrowAbove Reverse Tilde Operator

U+02B50 \medwhitestar, \:star: WhiteMedium Star

U+02B51 \medblackstar Black Small Star

U+02B52 \smwhitestar White Small Star

U+02B53 \rightpentagonblack Black Right-pointing Pentagon

U+02B54 \rightpentagon White Right-pointing Pentagon

U+02B55 \:o: Heavy Large Circle

U+02C7C \_j Latin Subscript Small Letter J

U+02C7D \^V Modifier Letter Capital V

U+03012 \postalmark Postal Mark

U+03030 \:wavy_dash: WavyDash

U+0303D \:part_alternation_mark: Part AlternationMark

U+03297 \:congratulations: Circled Ideograph Congratulation

U+03299 \:secret: Circled Ideograph Secret

U+1D400 \mbfA Mathematical Bold Capital A

U+1D401 \mbfB Mathematical Bold Capital B

U+1D402 \mbfC Mathematical Bold Capital C

U+1D403 \mbfD Mathematical Bold Capital D

U+1D404 \mbfE Mathematical Bold Capital E

U+1D405 \mbfF Mathematical Bold Capital F

U+1D406 \mbfG Mathematical Bold Capital G

U+1D407 \mbfH Mathematical Bold Capital H

U+1D408 \mbfI Mathematical Bold Capital I

U+1D409 \mbfJ Mathematical Bold Capital J

U+1D40A \mbfK Mathematical Bold Capital K

U+1D40B \mbfL Mathematical Bold Capital L

U+1D40C \mbfM Mathematical Bold Capital M

U+1D40D \mbfN Mathematical Bold Capital N

U+1D40E \mbfO Mathematical Bold Capital O

U+1D40F \mbfP Mathematical Bold Capital P

U+1D410 \mbfQ Mathematical Bold Capital Q

U+1D411 \mbfR Mathematical Bold Capital R

U+1D412 \mbfS Mathematical Bold Capital S

U+1D413 \mbfT Mathematical Bold Capital T

U+1D414 \mbfU Mathematical Bold Capital U

U+1D415 \mbfV Mathematical Bold Capital V

U+1D416 \mbfW Mathematical Bold CapitalW

U+1D417 \mbfX Mathematical Bold Capital X

U+1D418 \mbfY Mathematical Bold Capital Y

U+1D419 \mbfZ Mathematical Bold Capital Z

U+1D41A \mbfa Mathematical Bold Small A

U+1D41B \mbfb Mathematical Bold Small B

U+1D41C \mbfc Mathematical Bold Small C

U+1D41D \mbfd Mathematical Bold Small D

U+1D41E \mbfe Mathematical Bold Small E

U+1D41F \mbff Mathematical Bold Small F

U+1D420 \mbfg Mathematical Bold Small G

U+1D421 \mbfh Mathematical Bold Small H

U+1D422 \mbfi Mathematical Bold Small I

U+1D423 \mbfj Mathematical Bold Small J

U+1D424 \mbfk Mathematical Bold Small K

U+1D425 \mbfl Mathematical Bold Small L

U+1D426 \mbfm Mathematical Bold Small M

U+1D427 \mbfn Mathematical Bold Small N

U+1D428 \mbfo Mathematical Bold Small O

U+1D429 \mbfp Mathematical Bold Small P

U+1D42A \mbfq Mathematical Bold Small Q

U+1D42B \mbfr Mathematical Bold Small R

U+1D42C \mbfs Mathematical Bold Small S

U+1D42D \mbft Mathematical Bold Small T

U+1D42E \mbfu Mathematical Bold Small U

U+1D42F \mbfv Mathematical Bold Small V

U+1D430 \mbfw Mathematical Bold SmallW

U+1D431 \mbfx Mathematical Bold Small X

U+1D432 \mbfy Mathematical Bold Small Y

U+1D433 \mbfz Mathematical Bold Small Z

U+1D434 \mitA Mathematical Italic Capital A

U+1D435 \mitB Mathematical Italic Capital B

U+1D436 \mitC Mathematical Italic Capital C

U+1D437 \mitD Mathematical Italic Capital D

U+1D438 \mitE Mathematical Italic Capital E

U+1D439 \mitF Mathematical Italic Capital F

U+1D43A \mitG Mathematical Italic Capital G

U+1D43B \mitH Mathematical Italic Capital H

U+1D43C \mitI Mathematical Italic Capital I

U+1D43D \mitJ Mathematical Italic Capital J

U+1D43E \mitK Mathematical Italic Capital K

U+1D43F \mitL Mathematical Italic Capital L

U+1D440 \mitM Mathematical Italic Capital M

U+1D441 \mitN Mathematical Italic Capital N

U+1D442 \mitO Mathematical Italic Capital O

U+1D443 \mitP Mathematical Italic Capital P

U+1D444 \mitQ Mathematical Italic Capital Q

U+1D445 \mitR Mathematical Italic Capital R

U+1D446 \mitS Mathematical Italic Capital S

U+1D447 \mitT Mathematical Italic Capital T

U+1D448 \mitU Mathematical Italic Capital U

U+1D449 \mitV Mathematical Italic Capital V

U+1D44A \mitW Mathematical Italic CapitalW

U+1D44B \mitX Mathematical Italic Capital X

U+1D44C \mitY Mathematical Italic Capital Y

U+1D44D \mitZ Mathematical Italic Capital Z

U+1D44E \mita Mathematical Italic Small A

U+1D44F \mitb Mathematical Italic Small B

U+1D450 \mitc Mathematical Italic Small C

U+1D451 \mitd Mathematical Italic Small D

U+1D452 \mite Mathematical Italic Small E

U+1D453 \mitf Mathematical Italic Small F

U+1D454 \mitg Mathematical Italic Small G

U+1D456 \miti Mathematical Italic Small I

U+1D457 \mitj Mathematical Italic Small J

U+1D458 \mitk Mathematical Italic Small K

U+1D459 \mitl Mathematical Italic Small L

U+1D45A \mitm Mathematical Italic Small M

U+1D45B \mitn Mathematical Italic Small N

U+1D45C \mito Mathematical Italic Small O

U+1D45D \mitp Mathematical Italic Small P

U+1D45E \mitq Mathematical Italic Small Q

U+1D45F \mitr Mathematical Italic Small R

U+1D460 \mits Mathematical Italic Small S

U+1D461 \mitt Mathematical Italic Small T

U+1D462 \mitu Mathematical Italic Small U

U+1D463 \mitv Mathematical Italic Small V

U+1D464 \mitw Mathematical Italic SmallW

U+1D465 \mitx Mathematical Italic Small X

U+1D466 \mity Mathematical Italic Small Y

U+1D467 \mitz Mathematical Italic Small Z

U+1D468 \mbfitA Mathematical Bold Italic Capital A

U+1D469 \mbfitB Mathematical Bold Italic Capital B

U+1D46A \mbfitC Mathematical Bold Italic Capital C

U+1D46B \mbfitD Mathematical Bold Italic Capital D

U+1D46C \mbfitE Mathematical Bold Italic Capital E

U+1D46D \mbfitF Mathematical Bold Italic Capital F

U+1D46E \mbfitG Mathematical Bold Italic Capital G

U+1D46F \mbfitH Mathematical Bold Italic Capital H

U+1D470 \mbfitI Mathematical Bold Italic Capital I

U+1D471 \mbfitJ Mathematical Bold Italic Capital J

U+1D472 \mbfitK Mathematical Bold Italic Capital K

U+1D473 \mbfitL Mathematical Bold Italic Capital L

U+1D474 \mbfitM Mathematical Bold Italic Capital M

U+1D475 \mbfitN Mathematical Bold Italic Capital N

U+1D476 \mbfitO Mathematical Bold Italic Capital O

U+1D477 \mbfitP Mathematical Bold Italic Capital P

U+1D478 \mbfitQ Mathematical Bold Italic Capital Q

U+1D479 \mbfitR Mathematical Bold Italic Capital R

U+1D47A \mbfitS Mathematical Bold Italic Capital S

U+1D47B \mbfitT Mathematical Bold Italic Capital T

U+1D47C \mbfitU Mathematical Bold Italic Capital U

U+1D47D \mbfitV Mathematical Bold Italic Capital V

U+1D47E \mbfitW Mathematical Bold Italic CapitalW

U+1D47F \mbfitX Mathematical Bold Italic Capital X

U+1D480 \mbfitY Mathematical Bold Italic Capital Y

U+1D481 \mbfitZ Mathematical Bold Italic Capital Z

U+1D482 \mbfita Mathematical Bold Italic Small A

U+1D483 \mbfitb Mathematical Bold Italic Small B

U+1D484 \mbfitc Mathematical Bold Italic Small C

U+1D485 \mbfitd Mathematical Bold Italic Small D

U+1D486 \mbfite Mathematical Bold Italic Small E

U+1D487 \mbfitf Mathematical Bold Italic Small F

U+1D488 \mbfitg Mathematical Bold Italic Small G

U+1D489 \mbfith Mathematical Bold Italic Small H

U+1D48A \mbfiti Mathematical Bold Italic Small I

U+1D48B \mbfitj Mathematical Bold Italic Small J

U+1D48C \mbfitk Mathematical Bold Italic Small K

U+1D48D \mbfitl Mathematical Bold Italic Small L

U+1D48E \mbfitm Mathematical Bold Italic Small M

U+1D48F \mbfitn Mathematical Bold Italic Small N

U+1D490 \mbfito Mathematical Bold Italic Small O

U+1D491 \mbfitp Mathematical Bold Italic Small P

U+1D492 \mbfitq Mathematical Bold Italic Small Q

U+1D493 \mbfitr Mathematical Bold Italic Small R

U+1D494 \mbfits Mathematical Bold Italic Small S

U+1D495 \mbfitt Mathematical Bold Italic Small T

U+1D496 \mbfitu Mathematical Bold Italic Small U

U+1D497 \mbfitv Mathematical Bold Italic Small V

U+1D498 \mbfitw Mathematical Bold Italic SmallW

U+1D499 \mbfitx Mathematical Bold Italic Small X

U+1D49A \mbfity Mathematical Bold Italic Small Y

U+1D49B \mbfitz Mathematical Bold Italic Small Z

U+1D49C \mscrA Mathematical Script Capital A

U+1D49E \mscrC Mathematical Script Capital C

U+1D49F \mscrD Mathematical Script Capital D

U+1D4A2 \mscrG Mathematical Script Capital G

U+1D4A5 \mscrJ Mathematical Script Capital J

U+1D4A6 \mscrK Mathematical Script Capital K

U+1D4A9 \mscrN Mathematical Script Capital N

U+1D4AA \mscrO Mathematical Script Capital O

U+1D4AB \mscrP Mathematical Script Capital P

U+1D4AC \mscrQ Mathematical Script Capital Q

U+1D4AE \mscrS Mathematical Script Capital S

U+1D4AF \mscrT Mathematical Script Capital T

U+1D4B0 \mscrU Mathematical Script Capital U

U+1D4B1 \mscrV Mathematical Script Capital V

U+1D4B2 \mscrW Mathematical Script CapitalW

U+1D4B3 \mscrX Mathematical Script Capital X

U+1D4B4 \mscrY Mathematical Script Capital Y

U+1D4B5 \mscrZ Mathematical Script Capital Z

U+1D4B6 \mscra Mathematical Script Small A

U+1D4B7 \mscrb Mathematical Script Small B

U+1D4B8 \mscrc Mathematical Script Small C

U+1D4B9 \mscrd Mathematical Script Small D

U+1D4BB \mscrf Mathematical Script Small F

U+1D4BD \mscrh Mathematical Script Small H

U+1D4BE \mscri Mathematical Script Small I

U+1D4BF \mscrj Mathematical Script Small J

U+1D4C0 \mscrk Mathematical Script Small K

U+1D4C1 \mscrl Mathematical Script Small L

U+1D4C2 \mscrm Mathematical Script Small M

U+1D4C3 \mscrn Mathematical Script Small N

U+1D4C5 \mscrp Mathematical Script Small P

U+1D4C6 \mscrq Mathematical Script Small Q

U+1D4C7 \mscrr Mathematical Script Small R

U+1D4C8 \mscrs Mathematical Script Small S

U+1D4C9 \mscrt Mathematical Script Small T

U+1D4CA \mscru Mathematical Script Small U

U+1D4CB \mscrv Mathematical Script Small V

U+1D4CC \mscrw Mathematical Script SmallW

U+1D4CD \mscrx Mathematical Script Small X

U+1D4CE \mscry Mathematical Script Small Y

U+1D4CF \mscrz Mathematical Script Small Z

U+1D4D0 \mbfscrA Mathematical Bold Script Capital A

U+1D4D1 \mbfscrB Mathematical Bold Script Capital B

U+1D4D2 \mbfscrC Mathematical Bold Script Capital C

U+1D4D3 \mbfscrD Mathematical Bold Script Capital D

U+1D4D4 \mbfscrE Mathematical Bold Script Capital E

U+1D4D5 \mbfscrF Mathematical Bold Script Capital F

U+1D4D6 \mbfscrG Mathematical Bold Script Capital G

U+1D4D7 \mbfscrH Mathematical Bold Script Capital H

U+1D4D8 \mbfscrI Mathematical Bold Script Capital I

U+1D4D9 \mbfscrJ Mathematical Bold Script Capital J

U+1D4DA \mbfscrK Mathematical Bold Script Capital K

U+1D4DB \mbfscrL Mathematical Bold Script Capital L

U+1D4DC \mbfscrM Mathematical Bold Script Capital M

U+1D4DD \mbfscrN Mathematical Bold Script Capital N

U+1D4DE \mbfscrO Mathematical Bold Script Capital O

U+1D4DF \mbfscrP Mathematical Bold Script Capital P

U+1D4E0 \mbfscrQ Mathematical Bold Script Capital Q

U+1D4E1 \mbfscrR Mathematical Bold Script Capital R

U+1D4E2 \mbfscrS Mathematical Bold Script Capital S

U+1D4E3 \mbfscrT Mathematical Bold Script Capital T

U+1D4E4 \mbfscrU Mathematical Bold Script Capital U

U+1D4E5 \mbfscrV Mathematical Bold Script Capital V

U+1D4E6 \mbfscrW Mathematical Bold Script CapitalW

U+1D4E7 \mbfscrX Mathematical Bold Script Capital X

U+1D4E8 \mbfscrY Mathematical Bold Script Capital Y

U+1D4E9 \mbfscrZ Mathematical Bold Script Capital Z

U+1D4EA \mbfscra Mathematical Bold Script Small A

U+1D4EB \mbfscrb Mathematical Bold Script Small B

U+1D4EC \mbfscrc Mathematical Bold Script Small C

U+1D4ED \mbfscrd Mathematical Bold Script Small D

U+1D4EE \mbfscre Mathematical Bold Script Small E

U+1D4EF \mbfscrf Mathematical Bold Script Small F

U+1D4F0 \mbfscrg Mathematical Bold Script Small G

U+1D4F1 \mbfscrh Mathematical Bold Script Small H

U+1D4F2 \mbfscri Mathematical Bold Script Small I

U+1D4F3 \mbfscrj Mathematical Bold Script Small J

U+1D4F4 \mbfscrk Mathematical Bold Script Small K

U+1D4F5 \mbfscrl Mathematical Bold Script Small L

U+1D4F6 \mbfscrm Mathematical Bold Script Small M

U+1D4F7 \mbfscrn Mathematical Bold Script Small N

U+1D4F8 \mbfscro Mathematical Bold Script Small O

U+1D4F9 \mbfscrp Mathematical Bold Script Small P

U+1D4FA \mbfscrq Mathematical Bold Script Small Q

U+1D4FB \mbfscrr Mathematical Bold Script Small R

U+1D4FC \mbfscrs Mathematical Bold Script Small S

U+1D4FD \mbfscrt Mathematical Bold Script Small T

U+1D4FE \mbfscru Mathematical Bold Script Small U

U+1D4FF \mbfscrv Mathematical Bold Script Small V

U+1D500 \mbfscrw Mathematical Bold Script SmallW

U+1D501 \mbfscrx Mathematical Bold Script Small X

U+1D502 \mbfscry Mathematical Bold Script Small Y

U+1D503 \mbfscrz Mathematical Bold Script Small Z

U+1D504 \mfrakA Mathematical Fraktur Capital A

U+1D505 \mfrakB Mathematical Fraktur Capital B

U+1D507 \mfrakD Mathematical Fraktur Capital D

U+1D508 \mfrakE Mathematical Fraktur Capital E

U+1D509 \mfrakF Mathematical Fraktur Capital F

U+1D50A \mfrakG Mathematical Fraktur Capital G

U+1D50D \mfrakJ Mathematical Fraktur Capital J

U+1D50E \mfrakK Mathematical Fraktur Capital K

U+1D50F \mfrakL Mathematical Fraktur Capital L

U+1D510 \mfrakM Mathematical Fraktur Capital M

U+1D511 \mfrakN Mathematical Fraktur Capital N

U+1D512 \mfrakO Mathematical Fraktur Capital O

U+1D513 \mfrakP Mathematical Fraktur Capital P

U+1D514 \mfrakQ Mathematical Fraktur Capital Q

U+1D516 \mfrakS Mathematical Fraktur Capital S

U+1D517 \mfrakT Mathematical Fraktur Capital T

U+1D518 \mfrakU Mathematical Fraktur Capital U

U+1D519 \mfrakV Mathematical Fraktur Capital V

U+1D51A \mfrakW Mathematical Fraktur CapitalW

U+1D51B \mfrakX Mathematical Fraktur Capital X

U+1D51C \mfrakY Mathematical Fraktur Capital Y

U+1D51E \mfraka Mathematical Fraktur Small A

U+1D51F \mfrakb Mathematical Fraktur Small B

U+1D520 \mfrakc Mathematical Fraktur Small C

U+1D521 \mfrakd Mathematical Fraktur Small D

U+1D522 \mfrake Mathematical Fraktur Small E

U+1D523 \mfrakf Mathematical Fraktur Small F

U+1D524 \mfrakg Mathematical Fraktur Small G

U+1D525 \mfrakh Mathematical Fraktur Small H

U+1D526 \mfraki Mathematical Fraktur Small I

U+1D527 \mfrakj Mathematical Fraktur Small J

U+1D528 \mfrakk Mathematical Fraktur Small K

U+1D529 \mfrakl Mathematical Fraktur Small L

U+1D52A \mfrakm Mathematical Fraktur Small M

U+1D52B \mfrakn Mathematical Fraktur Small N

U+1D52C \mfrako Mathematical Fraktur Small O

U+1D52D \mfrakp Mathematical Fraktur Small P

U+1D52E \mfrakq Mathematical Fraktur Small Q

U+1D52F \mfrakr Mathematical Fraktur Small R

U+1D530 \mfraks Mathematical Fraktur Small S

U+1D531 \mfrakt Mathematical Fraktur Small T

U+1D532 \mfraku Mathematical Fraktur Small U

U+1D533 \mfrakv Mathematical Fraktur Small V

U+1D534 \mfrakw Mathematical Fraktur SmallW

U+1D535 \mfrakx Mathematical Fraktur Small X

U+1D536 \mfraky Mathematical Fraktur Small Y

U+1D537 \mfrakz Mathematical Fraktur Small Z

U+1D538 \BbbA Mathematical Double-struck Capital A

U+1D539 \BbbB Mathematical Double-struck Capital B

U+1D53B \BbbD Mathematical Double-struck Capital D

U+1D53C \BbbE Mathematical Double-struck Capital E

U+1D53D \BbbF Mathematical Double-struck Capital F

U+1D53E \BbbG Mathematical Double-struck Capital G

U+1D540 \BbbI Mathematical Double-struck Capital I

U+1D541 \BbbJ Mathematical Double-struck Capital J

U+1D542 \BbbK Mathematical Double-struck Capital K

U+1D543 \BbbL Mathematical Double-struck Capital L

U+1D544 \BbbM Mathematical Double-struck Capital M

U+1D546 \BbbO Mathematical Double-struck Capital O

U+1D54A \BbbS Mathematical Double-struck Capital S

U+1D54B \BbbT Mathematical Double-struck Capital T

U+1D54C \BbbU Mathematical Double-struck Capital U

U+1D54D \BbbV Mathematical Double-struck Capital V

U+1D54E \BbbW Mathematical Double-struck CapitalW

U+1D54F \BbbX Mathematical Double-struck Capital X

U+1D550 \BbbY Mathematical Double-struck Capital Y

U+1D552 \Bbba Mathematical Double-struck Small A

U+1D553 \Bbbb Mathematical Double-struck Small B

U+1D554 \Bbbc Mathematical Double-struck Small C

U+1D555 \Bbbd Mathematical Double-struck Small D

U+1D556 \Bbbe Mathematical Double-struck Small E

U+1D557 \Bbbf Mathematical Double-struck Small F

U+1D558 \Bbbg Mathematical Double-struck Small G

U+1D559 \Bbbh Mathematical Double-struck Small H

U+1D55A \Bbbi Mathematical Double-struck Small I

U+1D55B \Bbbj Mathematical Double-struck Small J

U+1D55C \Bbbk Mathematical Double-struck Small K

U+1D55D \Bbbl Mathematical Double-struck Small L

U+1D55E \Bbbm Mathematical Double-struck Small M

U+1D55F \Bbbn Mathematical Double-struck Small N

U+1D560 \Bbbo Mathematical Double-struck Small O

U+1D561 \Bbbp Mathematical Double-struck Small P

U+1D562 \Bbbq Mathematical Double-struck Small Q

U+1D563 \Bbbr Mathematical Double-struck Small R

U+1D564 \Bbbs Mathematical Double-struck Small S

U+1D565 \Bbbt Mathematical Double-struck Small T

U+1D566 \Bbbu Mathematical Double-struck Small U

U+1D567 \Bbbv Mathematical Double-struck Small V

U+1D568 \Bbbw Mathematical Double-struck SmallW

U+1D569 \Bbbx Mathematical Double-struck Small X

U+1D56A \Bbby Mathematical Double-struck Small Y

U+1D56B \Bbbz Mathematical Double-struck Small Z

U+1D56C \mbffrakA Mathematical Bold Fraktur Capital A

U+1D56D \mbffrakB Mathematical Bold Fraktur Capital B

U+1D56E \mbffrakC Mathematical Bold Fraktur Capital C

U+1D56F \mbffrakD Mathematical Bold Fraktur Capital D

U+1D570 \mbffrakE Mathematical Bold Fraktur Capital E

U+1D571 \mbffrakF Mathematical Bold Fraktur Capital F

U+1D572 \mbffrakG Mathematical Bold Fraktur Capital G

U+1D573 \mbffrakH Mathematical Bold Fraktur Capital H

U+1D574 \mbffrakI Mathematical Bold Fraktur Capital I

U+1D575 \mbffrakJ Mathematical Bold Fraktur Capital J

U+1D576 \mbffrakK Mathematical Bold Fraktur Capital K

U+1D577 \mbffrakL Mathematical Bold Fraktur Capital L

U+1D578 \mbffrakM Mathematical Bold Fraktur Capital M

U+1D579 \mbffrakN Mathematical Bold Fraktur Capital N

U+1D57A \mbffrakO Mathematical Bold Fraktur Capital O

U+1D57B \mbffrakP Mathematical Bold Fraktur Capital P

U+1D57C \mbffrakQ Mathematical Bold Fraktur Capital Q

U+1D57D \mbffrakR Mathematical Bold Fraktur Capital R

U+1D57E \mbffrakS Mathematical Bold Fraktur Capital S

U+1D57F \mbffrakT Mathematical Bold Fraktur Capital T

U+1D580 \mbffrakU Mathematical Bold Fraktur Capital U

U+1D581 \mbffrakV Mathematical Bold Fraktur Capital V

U+1D582 \mbffrakW Mathematical Bold Fraktur CapitalW

U+1D583 \mbffrakX Mathematical Bold Fraktur Capital X

U+1D584 \mbffrakY Mathematical Bold Fraktur Capital Y

U+1D585 \mbffrakZ Mathematical Bold Fraktur Capital Z

U+1D586 \mbffraka Mathematical Bold Fraktur Small A

U+1D587 \mbffrakb Mathematical Bold Fraktur Small B

U+1D588 \mbffrakc Mathematical Bold Fraktur Small C

U+1D589 \mbffrakd Mathematical Bold Fraktur Small D

U+1D58A \mbffrake Mathematical Bold Fraktur Small E

U+1D58B \mbffrakf Mathematical Bold Fraktur Small F

U+1D58C \mbffrakg Mathematical Bold Fraktur Small G

U+1D58D \mbffrakh Mathematical Bold Fraktur Small H

U+1D58E \mbffraki Mathematical Bold Fraktur Small I

U+1D58F \mbffrakj Mathematical Bold Fraktur Small J

U+1D590 \mbffrakk Mathematical Bold Fraktur Small K

U+1D591 \mbffrakl Mathematical Bold Fraktur Small L

U+1D592 \mbffrakm Mathematical Bold Fraktur Small M

U+1D593 \mbffrakn Mathematical Bold Fraktur Small N

U+1D594 \mbffrako Mathematical Bold Fraktur Small O

U+1D595 \mbffrakp Mathematical Bold Fraktur Small P

U+1D596 \mbffrakq Mathematical Bold Fraktur Small Q

U+1D597 \mbffrakr Mathematical Bold Fraktur Small R

U+1D598 \mbffraks Mathematical Bold Fraktur Small S

U+1D599 \mbffrakt Mathematical Bold Fraktur Small T

U+1D59A \mbffraku Mathematical Bold Fraktur Small U

U+1D59B \mbffrakv Mathematical Bold Fraktur Small V

U+1D59C \mbffrakw Mathematical Bold Fraktur SmallW

U+1D59D \mbffrakx Mathematical Bold Fraktur Small X

U+1D59E \mbffraky Mathematical Bold Fraktur Small Y

U+1D59F \mbffrakz Mathematical Bold Fraktur Small Z

U+1D5A0 \msansA Mathematical Sans-serif Capital A

U+1D5A1 \msansB Mathematical Sans-serif Capital B

U+1D5A2 \msansC Mathematical Sans-serif Capital C

U+1D5A3 \msansD Mathematical Sans-serif Capital D

U+1D5A4 \msansE Mathematical Sans-serif Capital E

U+1D5A5 \msansF Mathematical Sans-serif Capital F

U+1D5A6 \msansG Mathematical Sans-serif Capital G

U+1D5A7 \msansH Mathematical Sans-serif Capital H

U+1D5A8 \msansI Mathematical Sans-serif Capital I

U+1D5A9 \msansJ Mathematical Sans-serif Capital J

U+1D5AA \msansK Mathematical Sans-serif Capital K

U+1D5AB \msansL Mathematical Sans-serif Capital L

U+1D5AC \msansM Mathematical Sans-serif Capital M

U+1D5AD \msansN Mathematical Sans-serif Capital N

U+1D5AE \msansO Mathematical Sans-serif Capital O

U+1D5AF \msansP Mathematical Sans-serif Capital P

U+1D5B0 \msansQ Mathematical Sans-serif Capital Q

U+1D5B1 \msansR Mathematical Sans-serif Capital R

U+1D5B2 \msansS Mathematical Sans-serif Capital S

U+1D5B3 \msansT Mathematical Sans-serif Capital T

U+1D5B4 \msansU Mathematical Sans-serif Capital U

U+1D5B5 \msansV Mathematical Sans-serif Capital V

U+1D5B6 \msansW Mathematical Sans-serif CapitalW

U+1D5B7 \msansX Mathematical Sans-serif Capital X

U+1D5B8 \msansY Mathematical Sans-serif Capital Y

U+1D5B9 \msansZ Mathematical Sans-serif Capital Z

U+1D5BA \msansa Mathematical Sans-serif Small A

U+1D5BB \msansb Mathematical Sans-serif Small B

U+1D5BC \msansc Mathematical Sans-serif Small C

U+1D5BD \msansd Mathematical Sans-serif Small D

U+1D5BE \msanse Mathematical Sans-serif Small E

U+1D5BF \msansf Mathematical Sans-serif Small F

U+1D5C0 \msansg Mathematical Sans-serif Small G

U+1D5C1 \msansh Mathematical Sans-serif Small H

U+1D5C2 \msansi Mathematical Sans-serif Small I

U+1D5C3 \msansj Mathematical Sans-serif Small J

U+1D5C4 \msansk Mathematical Sans-serif Small K

U+1D5C5 \msansl Mathematical Sans-serif Small L

U+1D5C6 \msansm Mathematical Sans-serif Small M

U+1D5C7 \msansn Mathematical Sans-serif Small N

U+1D5C8 \msanso Mathematical Sans-serif Small O

U+1D5C9 \msansp Mathematical Sans-serif Small P

U+1D5CA \msansq Mathematical Sans-serif Small Q

U+1D5CB \msansr Mathematical Sans-serif Small R

U+1D5CC \msanss Mathematical Sans-serif Small S

U+1D5CD \msanst Mathematical Sans-serif Small T

U+1D5CE \msansu Mathematical Sans-serif Small U

U+1D5CF \msansv Mathematical Sans-serif Small V

U+1D5D0 \msansw Mathematical Sans-serif SmallW

U+1D5D1 \msansx Mathematical Sans-serif Small X

U+1D5D2 \msansy Mathematical Sans-serif Small Y

U+1D5D3 \msansz Mathematical Sans-serif Small Z

U+1D5D4 \mbfsansA Mathematical Sans-serif Bold Capital A

U+1D5D5 \mbfsansB Mathematical Sans-serif Bold Capital B

U+1D5D6 \mbfsansC Mathematical Sans-serif Bold Capital C

U+1D5D7 \mbfsansD Mathematical Sans-serif Bold Capital D

U+1D5D8 \mbfsansE Mathematical Sans-serif Bold Capital E

U+1D5D9 \mbfsansF Mathematical Sans-serif Bold Capital F

U+1D5DA \mbfsansG Mathematical Sans-serif Bold Capital G

U+1D5DB \mbfsansH Mathematical Sans-serif Bold Capital H

U+1D5DC \mbfsansI Mathematical Sans-serif Bold Capital I

U+1D5DD \mbfsansJ Mathematical Sans-serif Bold Capital J

U+1D5DE \mbfsansK Mathematical Sans-serif Bold Capital K

U+1D5DF \mbfsansL Mathematical Sans-serif Bold Capital L

U+1D5E0 \mbfsansM Mathematical Sans-serif Bold Capital M

U+1D5E1 \mbfsansN Mathematical Sans-serif Bold Capital N

U+1D5E2 \mbfsansO Mathematical Sans-serif Bold Capital O

U+1D5E3 \mbfsansP Mathematical Sans-serif Bold Capital P

U+1D5E4 \mbfsansQ Mathematical Sans-serif Bold Capital Q

U+1D5E5 \mbfsansR Mathematical Sans-serif Bold Capital R

U+1D5E6 \mbfsansS Mathematical Sans-serif Bold Capital S

U+1D5E7 \mbfsansT Mathematical Sans-serif Bold Capital T

U+1D5E8 \mbfsansU Mathematical Sans-serif Bold Capital U

U+1D5E9 \mbfsansV Mathematical Sans-serif Bold Capital V

U+1D5EA \mbfsansW Mathematical Sans-serif Bold CapitalW

U+1D5EB \mbfsansX Mathematical Sans-serif Bold Capital X

U+1D5EC \mbfsansY Mathematical Sans-serif Bold Capital Y

U+1D5ED \mbfsansZ Mathematical Sans-serif Bold Capital Z

U+1D5EE \mbfsansa Mathematical Sans-serif Bold Small A

U+1D5EF \mbfsansb Mathematical Sans-serif Bold Small B

U+1D5F0 \mbfsansc Mathematical Sans-serif Bold Small C

U+1D5F1 \mbfsansd Mathematical Sans-serif Bold Small D

U+1D5F2 \mbfsanse Mathematical Sans-serif Bold Small E

U+1D5F3 \mbfsansf Mathematical Sans-serif Bold Small F

U+1D5F4 \mbfsansg Mathematical Sans-serif Bold Small G

U+1D5F5 \mbfsansh Mathematical Sans-serif Bold Small H

U+1D5F6 \mbfsansi Mathematical Sans-serif Bold Small I

U+1D5F7 \mbfsansj Mathematical Sans-serif Bold Small J

U+1D5F8 \mbfsansk Mathematical Sans-serif Bold Small K

U+1D5F9 \mbfsansl Mathematical Sans-serif Bold Small L

U+1D5FA \mbfsansm Mathematical Sans-serif Bold Small M

U+1D5FB \mbfsansn Mathematical Sans-serif Bold Small N

U+1D5FC \mbfsanso Mathematical Sans-serif Bold Small O

U+1D5FD \mbfsansp Mathematical Sans-serif Bold Small P

U+1D5FE \mbfsansq Mathematical Sans-serif Bold Small Q

U+1D5FF \mbfsansr Mathematical Sans-serif Bold Small R

U+1D600 \mbfsanss Mathematical Sans-serif Bold Small S

U+1D601 \mbfsanst Mathematical Sans-serif Bold Small T

U+1D602 \mbfsansu Mathematical Sans-serif Bold Small U

U+1D603 \mbfsansv Mathematical Sans-serif Bold Small V

U+1D604 \mbfsansw Mathematical Sans-serif Bold SmallW

U+1D605 \mbfsansx Mathematical Sans-serif Bold Small X

U+1D606 \mbfsansy Mathematical Sans-serif Bold Small Y

U+1D607 \mbfsansz Mathematical Sans-serif Bold Small Z

U+1D608 \mitsansA Mathematical Sans-serif Italic Capital A

U+1D609 \mitsansB Mathematical Sans-serif Italic Capital B

U+1D60A \mitsansC Mathematical Sans-serif Italic Capital C

U+1D60B \mitsansD Mathematical Sans-serif Italic Capital D

U+1D60C \mitsansE Mathematical Sans-serif Italic Capital E

U+1D60D \mitsansF Mathematical Sans-serif Italic Capital F

U+1D60E \mitsansG Mathematical Sans-serif Italic Capital G

U+1D60F \mitsansH Mathematical Sans-serif Italic Capital H

U+1D610 \mitsansI Mathematical Sans-serif Italic Capital I

U+1D611 \mitsansJ Mathematical Sans-serif Italic Capital J

U+1D612 \mitsansK Mathematical Sans-serif Italic Capital K

U+1D613 \mitsansL Mathematical Sans-serif Italic Capital L

U+1D614 \mitsansM Mathematical Sans-serif Italic Capital M

U+1D615 \mitsansN Mathematical Sans-serif Italic Capital N

U+1D616 \mitsansO Mathematical Sans-serif Italic Capital O

U+1D617 \mitsansP Mathematical Sans-serif Italic Capital P

U+1D618 \mitsansQ Mathematical Sans-serif Italic Capital Q

U+1D619 \mitsansR Mathematical Sans-serif Italic Capital R

U+1D61A \mitsansS Mathematical Sans-serif Italic Capital S

U+1D61B \mitsansT Mathematical Sans-serif Italic Capital T

U+1D61C \mitsansU Mathematical Sans-serif Italic Capital U

U+1D61D \mitsansV Mathematical Sans-serif Italic Capital V

U+1D61E \mitsansW Mathematical Sans-serif Italic CapitalW

U+1D61F \mitsansX Mathematical Sans-serif Italic Capital X

U+1D620 \mitsansY Mathematical Sans-serif Italic Capital Y

U+1D621 \mitsansZ Mathematical Sans-serif Italic Capital Z

U+1D622 \mitsansa Mathematical Sans-serif Italic Small A

U+1D623 \mitsansb Mathematical Sans-serif Italic Small B

U+1D624 \mitsansc Mathematical Sans-serif Italic Small C

U+1D625 \mitsansd Mathematical Sans-serif Italic Small D

U+1D626 \mitsanse Mathematical Sans-serif Italic Small E

U+1D627 \mitsansf Mathematical Sans-serif Italic Small F

U+1D628 \mitsansg Mathematical Sans-serif Italic Small G

U+1D629 \mitsansh Mathematical Sans-serif Italic Small H

U+1D62A \mitsansi Mathematical Sans-serif Italic Small I

U+1D62B \mitsansj Mathematical Sans-serif Italic Small J

U+1D62C \mitsansk Mathematical Sans-serif Italic Small K

U+1D62D \mitsansl Mathematical Sans-serif Italic Small L

U+1D62E \mitsansm Mathematical Sans-serif Italic Small M

U+1D62F \mitsansn Mathematical Sans-serif Italic Small N

U+1D630 \mitsanso Mathematical Sans-serif Italic Small O

U+1D631 \mitsansp Mathematical Sans-serif Italic Small P

U+1D632 \mitsansq Mathematical Sans-serif Italic Small Q

U+1D633 \mitsansr Mathematical Sans-serif Italic Small R

U+1D634 \mitsanss Mathematical Sans-serif Italic Small S

U+1D635 \mitsanst Mathematical Sans-serif Italic Small T

U+1D636 \mitsansu Mathematical Sans-serif Italic Small U

U+1D637 \mitsansv Mathematical Sans-serif Italic Small V

U+1D638 \mitsansw Mathematical Sans-serif Italic SmallW

U+1D639 \mitsansx Mathematical Sans-serif Italic Small X

U+1D63A \mitsansy Mathematical Sans-serif Italic Small Y

U+1D63B \mitsansz Mathematical Sans-serif Italic Small Z

U+1D63C \mbfitsansA Mathematical Sans-serif Bold Italic Capital A

U+1D63D \mbfitsansB Mathematical Sans-serif Bold Italic Capital B

U+1D63E \mbfitsansC Mathematical Sans-serif Bold Italic Capital C

U+1D63F \mbfitsansD Mathematical Sans-serif Bold Italic Capital D

U+1D640 \mbfitsansE Mathematical Sans-serif Bold Italic Capital E

U+1D641 \mbfitsansF Mathematical Sans-serif Bold Italic Capital F

U+1D642 \mbfitsansG Mathematical Sans-serif Bold Italic Capital G

U+1D643 \mbfitsansH Mathematical Sans-serif Bold Italic Capital H

U+1D644 \mbfitsansI Mathematical Sans-serif Bold Italic Capital I

U+1D645 \mbfitsansJ Mathematical Sans-serif Bold Italic Capital J

U+1D646 \mbfitsansK Mathematical Sans-serif Bold Italic Capital K

U+1D647 \mbfitsansL Mathematical Sans-serif Bold Italic Capital L

U+1D648 \mbfitsansM Mathematical Sans-serif Bold Italic Capital M

U+1D649 \mbfitsansN Mathematical Sans-serif Bold Italic Capital N

U+1D64A \mbfitsansO Mathematical Sans-serif Bold Italic Capital O

U+1D64B \mbfitsansP Mathematical Sans-serif Bold Italic Capital P

U+1D64C \mbfitsansQ Mathematical Sans-serif Bold Italic Capital Q

U+1D64D \mbfitsansR Mathematical Sans-serif Bold Italic Capital R

U+1D64E \mbfitsansS Mathematical Sans-serif Bold Italic Capital S

U+1D64F \mbfitsansT Mathematical Sans-serif Bold Italic Capital T

U+1D650 \mbfitsansU Mathematical Sans-serif Bold Italic Capital U

U+1D651 \mbfitsansV Mathematical Sans-serif Bold Italic Capital V

U+1D652 \mbfitsansW Mathematical Sans-serif Bold Italic CapitalW

U+1D653 \mbfitsansX Mathematical Sans-serif Bold Italic Capital X

U+1D654 \mbfitsansY Mathematical Sans-serif Bold Italic Capital Y

U+1D655 \mbfitsansZ Mathematical Sans-serif Bold Italic Capital Z

U+1D656 \mbfitsansa Mathematical Sans-serif Bold Italic Small A

U+1D657 \mbfitsansb Mathematical Sans-serif Bold Italic Small B

U+1D658 \mbfitsansc Mathematical Sans-serif Bold Italic Small C

U+1D659 \mbfitsansd Mathematical Sans-serif Bold Italic Small D

U+1D65A \mbfitsanse Mathematical Sans-serif Bold Italic Small E

U+1D65B \mbfitsansf Mathematical Sans-serif Bold Italic Small F

U+1D65C \mbfitsansg Mathematical Sans-serif Bold Italic Small G

U+1D65D \mbfitsansh Mathematical Sans-serif Bold Italic Small H

U+1D65E \mbfitsansi Mathematical Sans-serif Bold Italic Small I

U+1D65F \mbfitsansj Mathematical Sans-serif Bold Italic Small J

U+1D660 \mbfitsansk Mathematical Sans-serif Bold Italic Small K

U+1D661 \mbfitsansl Mathematical Sans-serif Bold Italic Small L

U+1D662 \mbfitsansm Mathematical Sans-serif Bold Italic Small M

U+1D663 \mbfitsansn Mathematical Sans-serif Bold Italic Small N

U+1D664 \mbfitsanso Mathematical Sans-serif Bold Italic Small O

U+1D665 \mbfitsansp Mathematical Sans-serif Bold Italic Small P

U+1D666 \mbfitsansq Mathematical Sans-serif Bold Italic Small Q

U+1D667 \mbfitsansr Mathematical Sans-serif Bold Italic Small R

U+1D668 \mbfitsanss Mathematical Sans-serif Bold Italic Small S

U+1D669 \mbfitsanst Mathematical Sans-serif Bold Italic Small T

U+1D66A \mbfitsansu Mathematical Sans-serif Bold Italic Small U

U+1D66B \mbfitsansv Mathematical Sans-serif Bold Italic Small V

U+1D66C \mbfitsansw Mathematical Sans-serif Bold Italic SmallW

U+1D66D \mbfitsansx Mathematical Sans-serif Bold Italic Small X

U+1D66E \mbfitsansy Mathematical Sans-serif Bold Italic Small Y

U+1D66F \mbfitsansz Mathematical Sans-serif Bold Italic Small Z

U+1D670 \mttA Mathematical Monospace Capital A

U+1D671 \mttB Mathematical Monospace Capital B

U+1D672 \mttC Mathematical Monospace Capital C

U+1D673 \mttD Mathematical Monospace Capital D

U+1D674 \mttE Mathematical Monospace Capital E

U+1D675 \mttF Mathematical Monospace Capital F

U+1D676 \mttG Mathematical Monospace Capital G

U+1D677 \mttH Mathematical Monospace Capital H

U+1D678 \mttI Mathematical Monospace Capital I

U+1D679 \mttJ Mathematical Monospace Capital J

U+1D67A \mttK Mathematical Monospace Capital K

U+1D67B \mttL Mathematical Monospace Capital L

U+1D67C \mttM Mathematical Monospace Capital M

U+1D67D \mttN Mathematical Monospace Capital N

U+1D67E \mttO Mathematical Monospace Capital O

U+1D67F \mttP Mathematical Monospace Capital P

U+1D680 \mttQ Mathematical Monospace Capital Q

U+1D681 \mttR Mathematical Monospace Capital R

U+1D682 \mttS Mathematical Monospace Capital S

U+1D683 \mttT Mathematical Monospace Capital T

U+1D684 \mttU Mathematical Monospace Capital U

U+1D685 \mttV Mathematical Monospace Capital V

U+1D686 \mttW Mathematical Monospace CapitalW

U+1D687 \mttX Mathematical Monospace Capital X

U+1D688 \mttY Mathematical Monospace Capital Y

U+1D689 \mttZ Mathematical Monospace Capital Z

U+1D68A \mtta Mathematical Monospace Small A

U+1D68B \mttb Mathematical Monospace Small B

U+1D68C \mttc Mathematical Monospace Small C

U+1D68D \mttd Mathematical Monospace Small D

U+1D68E \mtte Mathematical Monospace Small E

U+1D68F \mttf Mathematical Monospace Small F

U+1D690 \mttg Mathematical Monospace Small G

U+1D691 \mtth Mathematical Monospace Small H

U+1D692 \mtti Mathematical Monospace Small I

U+1D693 \mttj Mathematical Monospace Small J

U+1D694 \mttk Mathematical Monospace Small K

U+1D695 \mttl Mathematical Monospace Small L

U+1D696 \mttm Mathematical Monospace Small M

U+1D697 \mttn Mathematical Monospace Small N

U+1D698 \mtto Mathematical Monospace Small O

U+1D699 \mttp Mathematical Monospace Small P

U+1D69A \mttq Mathematical Monospace Small Q

U+1D69B \mttr Mathematical Monospace Small R

U+1D69C \mtts Mathematical Monospace Small S

U+1D69D \mttt Mathematical Monospace Small T

U+1D69E \mttu Mathematical Monospace Small U

U+1D69F \mttv Mathematical Monospace Small V

U+1D6A0 \mttw Mathematical Monospace SmallW

U+1D6A1 \mttx Mathematical Monospace Small X

U+1D6A2 \mtty Mathematical Monospace Small Y

U+1D6A3 \mttz Mathematical Monospace Small Z

U+1D6A4 \imath Mathematical Italic Small Dotless I

U+1D6A5 \jmath Mathematical Italic Small Dotless J

U+1D6A8 \mbfAlpha Mathematical Bold Capital Alpha

U+1D6A9 \mbfBeta Mathematical Bold Capital Beta

U+1D6AA \mbfGamma Mathematical Bold Capital Gamma

U+1D6AB \mbfDelta Mathematical Bold Capital Delta

U+1D6AC \mbfEpsilon Mathematical Bold Capital Epsilon

U+1D6AD \mbfZeta Mathematical Bold Capital Zeta

U+1D6AE \mbfEta Mathematical Bold Capital Eta

U+1D6AF \mbfTheta Mathematical Bold Capital Theta

U+1D6B0 \mbfIota Mathematical Bold Capital Iota

U+1D6B1 \mbfKappa Mathematical Bold Capital Kappa

U+1D6B2 \mbfLambda Mathematical Bold Capital Lamda

U+1D6B3 \mbfMu Mathematical Bold Capital Mu

U+1D6B4 \mbfNu Mathematical Bold Capital Nu

U+1D6B5 \mbfXi Mathematical Bold Capital Xi

U+1D6B6 \mbfOmicron Mathematical Bold Capital Omicron

U+1D6B7 \mbfPi Mathematical Bold Capital Pi

U+1D6B8 \mbfRho Mathematical Bold Capital Rho

U+1D6B9 \mbfvarTheta Mathematical Bold Capital Theta Symbol

U+1D6BA \mbfSigma Mathematical Bold Capital Sigma

U+1D6BB \mbfTau Mathematical Bold Capital Tau

U+1D6BC \mbfUpsilon Mathematical Bold Capital Upsilon

U+1D6BD \mbfPhi Mathematical Bold Capital Phi

U+1D6BE \mbfChi Mathematical Bold Capital Chi

U+1D6BF \mbfPsi Mathematical Bold Capital Psi

U+1D6C0 \mbfOmega Mathematical Bold Capital Omega

U+1D6C1 \mbfnabla Mathematical Bold Nabla

U+1D6C2 \mbfalpha Mathematical Bold Small Alpha

U+1D6C3 \mbfbeta Mathematical Bold Small Beta

U+1D6C4 \mbfgamma Mathematical Bold Small Gamma

U+1D6C5 \mbfdelta Mathematical Bold Small Delta

U+1D6C6 \mbfepsilon Mathematical Bold Small Epsilon

U+1D6C7 \mbfzeta Mathematical Bold Small Zeta

U+1D6C8 \mbfeta Mathematical Bold Small Eta

U+1D6C9 \mbftheta Mathematical Bold Small Theta

U+1D6CA \mbfiota Mathematical Bold Small Iota

U+1D6CB \mbfkappa Mathematical Bold Small Kappa

U+1D6CC \mbflambda Mathematical Bold Small Lamda

U+1D6CD \mbfmu Mathematical Bold Small Mu

U+1D6CE \mbfnu Mathematical Bold Small Nu

U+1D6CF \mbfxi Mathematical Bold Small Xi

U+1D6D0 \mbfomicron Mathematical Bold Small Omicron

U+1D6D1 \mbfpi Mathematical Bold Small Pi

U+1D6D2 \mbfrho Mathematical Bold Small Rho

U+1D6D3 \mbfvarsigma Mathematical Bold Small Final Sigma

U+1D6D4 \mbfsigma Mathematical Bold Small Sigma

U+1D6D5 \mbftau Mathematical Bold Small Tau

U+1D6D6 \mbfupsilon Mathematical Bold Small Upsilon

U+1D6D7 \mbfvarphi Mathematical Bold Small Phi

U+1D6D8 \mbfchi Mathematical Bold Small Chi

U+1D6D9 \mbfpsi Mathematical Bold Small Psi

U+1D6DA \mbfomega Mathematical Bold Small Omega

U+1D6DB \mbfpartial Mathematical Bold Partial Differential

U+1D6DC \mbfvarepsilon Mathematical Bold Epsilon Symbol

U+1D6DD \mbfvartheta Mathematical Bold Theta Symbol

U+1D6DE \mbfvarkappa Mathematical Bold Kappa Symbol

U+1D6DF \mbfphi Mathematical Bold Phi Symbol

U+1D6E0 \mbfvarrho Mathematical Bold Rho Symbol

U+1D6E1 \mbfvarpi Mathematical Bold Pi Symbol

U+1D6E2 \mitAlpha Mathematical Italic Capital Alpha

U+1D6E3 \mitBeta Mathematical Italic Capital Beta

U+1D6E4 \mitGamma Mathematical Italic Capital Gamma

U+1D6E5 \mitDelta Mathematical Italic Capital Delta

U+1D6E6 \mitEpsilon Mathematical Italic Capital Epsilon

U+1D6E7 \mitZeta Mathematical Italic Capital Zeta

U+1D6E8 \mitEta Mathematical Italic Capital Eta

U+1D6E9 \mitTheta Mathematical Italic Capital Theta

U+1D6EA \mitIota Mathematical Italic Capital Iota

U+1D6EB \mitKappa Mathematical Italic Capital Kappa

U+1D6EC \mitLambda Mathematical Italic Capital Lamda

U+1D6ED \mitMu Mathematical Italic Capital Mu

U+1D6EE \mitNu Mathematical Italic Capital Nu

U+1D6EF \mitXi Mathematical Italic Capital Xi

U+1D6F0 \mitOmicron Mathematical Italic Capital Omicron

U+1D6F1 \mitPi Mathematical Italic Capital Pi

U+1D6F2 \mitRho Mathematical Italic Capital Rho

U+1D6F3 \mitvarTheta Mathematical Italic Capital Theta Symbol

U+1D6F4 \mitSigma Mathematical Italic Capital Sigma

U+1D6F5 \mitTau Mathematical Italic Capital Tau

U+1D6F6 \mitUpsilon Mathematical Italic Capital Upsilon

U+1D6F7 \mitPhi Mathematical Italic Capital Phi

U+1D6F8 \mitChi Mathematical Italic Capital Chi

U+1D6F9 \mitPsi Mathematical Italic Capital Psi

U+1D6FA \mitOmega Mathematical Italic Capital Omega

U+1D6FB \mitnabla Mathematical Italic Nabla

U+1D6FC \mitalpha Mathematical Italic Small Alpha

U+1D6FD \mitbeta Mathematical Italic Small Beta

U+1D6FE \mitgamma Mathematical Italic Small Gamma

U+1D6FF \mitdelta Mathematical Italic Small Delta

U+1D700 \mitepsilon Mathematical Italic Small Epsilon

U+1D701 \mitzeta Mathematical Italic Small Zeta

U+1D702 \miteta Mathematical Italic Small Eta

U+1D703 \mittheta Mathematical Italic Small Theta

U+1D704 \mitiota Mathematical Italic Small Iota

U+1D705 \mitkappa Mathematical Italic Small Kappa

U+1D706 \mitlambda Mathematical Italic Small Lamda

U+1D707 \mitmu Mathematical Italic Small Mu

U+1D708 \mitnu Mathematical Italic Small Nu

U+1D709 \mitxi Mathematical Italic Small Xi

U+1D70A \mitomicron Mathematical Italic Small Omicron

U+1D70B \mitpi Mathematical Italic Small Pi

U+1D70C \mitrho Mathematical Italic Small Rho

U+1D70D \mitvarsigma Mathematical Italic Small Final Sigma

U+1D70E \mitsigma Mathematical Italic Small Sigma

U+1D70F \mittau Mathematical Italic Small Tau

U+1D710 \mitupsilon Mathematical Italic Small Upsilon

U+1D711 \mitphi Mathematical Italic Small Phi

U+1D712 \mitchi Mathematical Italic Small Chi

U+1D713 \mitpsi Mathematical Italic Small Psi

U+1D714 \mitomega Mathematical Italic Small Omega

U+1D715 \mitpartial Mathematical Italic Partial Differential

U+1D716 \mitvarepsilon Mathematical Italic Epsilon Symbol

U+1D717 \mitvartheta Mathematical Italic Theta Symbol

U+1D718 \mitvarkappa Mathematical Italic Kappa Symbol

U+1D719 \mitvarphi Mathematical Italic Phi Symbol

U+1D71A \mitvarrho Mathematical Italic Rho Symbol

U+1D71B \mitvarpi Mathematical Italic Pi Symbol

U+1D71C \mbfitAlpha Mathematical Bold Italic Capital Alpha

U+1D71D \mbfitBeta Mathematical Bold Italic Capital Beta

U+1D71E \mbfitGamma Mathematical Bold Italic Capital Gamma

U+1D71F \mbfitDelta Mathematical Bold Italic Capital Delta

U+1D720 \mbfitEpsilon Mathematical Bold Italic Capital Epsilon

U+1D721 \mbfitZeta Mathematical Bold Italic Capital Zeta

U+1D722 \mbfitEta Mathematical Bold Italic Capital Eta

U+1D723 \mbfitTheta Mathematical Bold Italic Capital Theta

U+1D724 \mbfitIota Mathematical Bold Italic Capital Iota

U+1D725 \mbfitKappa Mathematical Bold Italic Capital Kappa

U+1D726 \mbfitLambda Mathematical Bold Italic Capital Lamda

U+1D727 \mbfitMu Mathematical Bold Italic Capital Mu

U+1D728 \mbfitNu Mathematical Bold Italic Capital Nu

U+1D729 \mbfitXi Mathematical Bold Italic Capital Xi

U+1D72A \mbfitOmicron Mathematical Bold Italic Capital Omicron

U+1D72B \mbfitPi Mathematical Bold Italic Capital Pi

U+1D72C \mbfitRho Mathematical Bold Italic Capital Rho

U+1D72D \mbfitvarTheta Mathematical Bold Italic Capital Theta Symbol

U+1D72E \mbfitSigma Mathematical Bold Italic Capital Sigma

U+1D72F \mbfitTau Mathematical Bold Italic Capital Tau

U+1D730 \mbfitUpsilon Mathematical Bold Italic Capital Upsilon

U+1D731 \mbfitPhi Mathematical Bold Italic Capital Phi

U+1D732 \mbfitChi Mathematical Bold Italic Capital Chi

U+1D733 \mbfitPsi Mathematical Bold Italic Capital Psi

U+1D734 \mbfitOmega Mathematical Bold Italic Capital Omega

U+1D735 \mbfitnabla Mathematical Bold Italic Nabla

U+1D736 \mbfitalpha Mathematical Bold Italic Small Alpha

U+1D737 \mbfitbeta Mathematical Bold Italic Small Beta

U+1D738 \mbfitgamma Mathematical Bold Italic Small Gamma

U+1D739 \mbfitdelta Mathematical Bold Italic Small Delta

U+1D73A \mbfitepsilon Mathematical Bold Italic Small Epsilon

U+1D73B \mbfitzeta Mathematical Bold Italic Small Zeta

U+1D73C \mbfiteta Mathematical Bold Italic Small Eta

U+1D73D \mbfittheta Mathematical Bold Italic Small Theta

U+1D73E \mbfitiota Mathematical Bold Italic Small Iota

U+1D73F \mbfitkappa Mathematical Bold Italic Small Kappa

U+1D740 \mbfitlambda Mathematical Bold Italic Small Lamda

U+1D741 \mbfitmu Mathematical Bold Italic Small Mu

U+1D742 \mbfitnu Mathematical Bold Italic Small Nu

U+1D743 \mbfitxi Mathematical Bold Italic Small Xi

U+1D744 \mbfitomicron Mathematical Bold Italic Small Omicron

U+1D745 \mbfitpi Mathematical Bold Italic Small Pi

U+1D746 \mbfitrho Mathematical Bold Italic Small Rho

U+1D747 \mbfitvarsigma Mathematical Bold Italic Small Final Sigma

U+1D748 \mbfitsigma Mathematical Bold Italic Small Sigma

U+1D749 \mbfittau Mathematical Bold Italic Small Tau

U+1D74A \mbfitupsilon Mathematical Bold Italic Small Upsilon

U+1D74B \mbfitphi Mathematical Bold Italic Small Phi

U+1D74C \mbfitchi Mathematical Bold Italic Small Chi

U+1D74D \mbfitpsi Mathematical Bold Italic Small Psi

U+1D74E \mbfitomega Mathematical Bold Italic Small Omega

U+1D74F \mbfitpartial Mathematical Bold Italic Partial Differential

U+1D750 \mbfitvarepsilon Mathematical Bold Italic Epsilon Symbol

U+1D751 \mbfitvartheta Mathematical Bold Italic Theta Symbol

U+1D752 \mbfitvarkappa Mathematical Bold Italic Kappa Symbol

U+1D753 \mbfitvarphi Mathematical Bold Italic Phi Symbol

U+1D754 \mbfitvarrho Mathematical Bold Italic Rho Symbol

U+1D755 \mbfitvarpi Mathematical Bold Italic Pi Symbol

U+1D756 \mbfsansAlpha Mathematical Sans-serif Bold Capital Alpha

U+1D757 \mbfsansBeta Mathematical Sans-serif Bold Capital Beta

U+1D758 \mbfsansGamma Mathematical Sans-serif Bold Capital Gamma

U+1D759 \mbfsansDelta Mathematical Sans-serif Bold Capital Delta

U+1D75A \mbfsansEpsilon Mathematical Sans-serif Bold Capital Epsilon

U+1D75B \mbfsansZeta Mathematical Sans-serif Bold Capital Zeta

U+1D75C \mbfsansEta Mathematical Sans-serif Bold Capital Eta

U+1D75D \mbfsansTheta Mathematical Sans-serif Bold Capital Theta

U+1D75E \mbfsansIota Mathematical Sans-serif Bold Capital Iota

U+1D75F \mbfsansKappa Mathematical Sans-serif Bold Capital Kappa

U+1D760 \mbfsansLambda Mathematical Sans-serif Bold Capital Lamda

U+1D761 \mbfsansMu Mathematical Sans-serif Bold Capital Mu

U+1D762 \mbfsansNu Mathematical Sans-serif Bold Capital Nu

U+1D763 \mbfsansXi Mathematical Sans-serif Bold Capital Xi

U+1D764 \mbfsansOmicron Mathematical Sans-serif Bold Capital Omicron

U+1D765 \mbfsansPi Mathematical Sans-serif Bold Capital Pi

U+1D766 \mbfsansRho Mathematical Sans-serif Bold Capital Rho

U+1D767 \mbfsansvarTheta Mathematical Sans-serif Bold Capital Theta Symbol

U+1D768 \mbfsansSigma Mathematical Sans-serif Bold Capital Sigma

U+1D769 \mbfsansTau Mathematical Sans-serif Bold Capital Tau

U+1D76A \mbfsansUpsilon Mathematical Sans-serif Bold Capital Upsilon

U+1D76B \mbfsansPhi Mathematical Sans-serif Bold Capital Phi

U+1D76C \mbfsansChi Mathematical Sans-serif Bold Capital Chi

U+1D76D \mbfsansPsi Mathematical Sans-serif Bold Capital Psi

U+1D76E \mbfsansOmega Mathematical Sans-serif Bold Capital Omega

U+1D76F \mbfsansnabla Mathematical Sans-serif Bold Nabla

U+1D770 \mbfsansalpha Mathematical Sans-serif Bold Small Alpha

U+1D771 \mbfsansbeta Mathematical Sans-serif Bold Small Beta

U+1D772 \mbfsansgamma Mathematical Sans-serif Bold Small Gamma

U+1D773 \mbfsansdelta Mathematical Sans-serif Bold Small Delta

U+1D774 \mbfsansepsilon Mathematical Sans-serif Bold Small Epsilon

U+1D775 \mbfsanszeta Mathematical Sans-serif Bold Small Zeta

U+1D776 \mbfsanseta Mathematical Sans-serif Bold Small Eta

U+1D777 \mbfsanstheta Mathematical Sans-serif Bold Small Theta

U+1D778 \mbfsansiota Mathematical Sans-serif Bold Small Iota

U+1D779 \mbfsanskappa Mathematical Sans-serif Bold Small Kappa

U+1D77A \mbfsanslambda Mathematical Sans-serif Bold Small Lamda

U+1D77B \mbfsansmu Mathematical Sans-serif Bold Small Mu

U+1D77C \mbfsansnu Mathematical Sans-serif Bold Small Nu

U+1D77D \mbfsansxi Mathematical Sans-serif Bold Small Xi

U+1D77E \mbfsansomicron Mathematical Sans-serif Bold Small Omicron

U+1D77F \mbfsanspi Mathematical Sans-serif Bold Small Pi

U+1D780 \mbfsansrho Mathematical Sans-serif Bold Small Rho

U+1D781 \mbfsansvarsigma Mathematical Sans-serif Bold Small Final Sigma

U+1D782 \mbfsanssigma Mathematical Sans-serif Bold Small Sigma

U+1D783 \mbfsanstau Mathematical Sans-serif Bold Small Tau

U+1D784 \mbfsansupsilon Mathematical Sans-serif Bold Small Upsilon

U+1D785 \mbfsansphi Mathematical Sans-serif Bold Small Phi

U+1D786 \mbfsanschi Mathematical Sans-serif Bold Small Chi

U+1D787 \mbfsanspsi Mathematical Sans-serif Bold Small Psi

U+1D788 \mbfsansomega Mathematical Sans-serif Bold Small Omega

U+1D789 \mbfsanspartial Mathematical Sans-serif Bold Partial Differential

U+1D78A \mbfsansvarepsilon Mathematical Sans-serif Bold Epsilon Symbol

U+1D78B \mbfsansvartheta Mathematical Sans-serif Bold Theta Symbol

U+1D78C \mbfsansvarkappa Mathematical Sans-serif Bold Kappa Symbol

U+1D78D \mbfsansvarphi Mathematical Sans-serif Bold Phi Symbol

U+1D78E \mbfsansvarrho Mathematical Sans-serif Bold Rho Symbol

U+1D78F \mbfsansvarpi Mathematical Sans-serif Bold Pi Symbol

U+1D790 \mbfitsansAlpha Mathematical Sans-serif Bold Italic Capital Alpha

U+1D791 \mbfitsansBeta Mathematical Sans-serif Bold Italic Capital Beta

U+1D792 \mbfitsansGamma Mathematical Sans-serif Bold Italic Capital Gamma

U+1D793 \mbfitsansDelta Mathematical Sans-serif Bold Italic Capital Delta

U+1D794 \mbfitsansEpsilon Mathematical Sans-serif Bold Italic Capital Epsilon

U+1D795 \mbfitsansZeta Mathematical Sans-serif Bold Italic Capital Zeta

U+1D796 \mbfitsansEta Mathematical Sans-serif Bold Italic Capital Eta

U+1D797 \mbfitsansTheta Mathematical Sans-serif Bold Italic Capital Theta

U+1D798 \mbfitsansIota Mathematical Sans-serif Bold Italic Capital Iota

U+1D799 \mbfitsansKappa Mathematical Sans-serif Bold Italic Capital Kappa

U+1D79A \mbfitsansLambda Mathematical Sans-serif Bold Italic Capital Lamda

U+1D79B \mbfitsansMu Mathematical Sans-serif Bold Italic Capital Mu

U+1D79C \mbfitsansNu Mathematical Sans-serif Bold Italic Capital Nu

U+1D79D \mbfitsansXi Mathematical Sans-serif Bold Italic Capital Xi

U+1D79E \mbfitsansOmicron Mathematical Sans-serif Bold Italic Capital Omicron

U+1D79F \mbfitsansPi Mathematical Sans-serif Bold Italic Capital Pi

U+1D7A0 \mbfitsansRho Mathematical Sans-serif Bold Italic Capital Rho

U+1D7A1 \mbfitsansvarTheta Mathematical Sans-serif Bold Italic Capital Theta Symbol

U+1D7A2 \mbfitsansSigma Mathematical Sans-serif Bold Italic Capital Sigma

U+1D7A3 \mbfitsansTau Mathematical Sans-serif Bold Italic Capital Tau

U+1D7A4 \mbfitsansUpsilon Mathematical Sans-serif Bold Italic Capital Upsilon

U+1D7A5 \mbfitsansPhi Mathematical Sans-serif Bold Italic Capital Phi

U+1D7A6 \mbfitsansChi Mathematical Sans-serif Bold Italic Capital Chi

U+1D7A7 \mbfitsansPsi Mathematical Sans-serif Bold Italic Capital Psi

U+1D7A8 \mbfitsansOmega Mathematical Sans-serif Bold Italic Capital Omega

U+1D7A9 \mbfitsansnabla Mathematical Sans-serif Bold Italic Nabla

U+1D7AA \mbfitsansalpha Mathematical Sans-serif Bold Italic Small Alpha

U+1D7AB \mbfitsansbeta Mathematical Sans-serif Bold Italic Small Beta

U+1D7AC \mbfitsansgamma Mathematical Sans-serif Bold Italic Small Gamma

U+1D7AD \mbfitsansdelta Mathematical Sans-serif Bold Italic Small Delta

U+1D7AE \mbfitsansepsilon Mathematical Sans-serif Bold Italic Small Epsilon

U+1D7AF \mbfitsanszeta Mathematical Sans-serif Bold Italic Small Zeta

U+1D7B0 \mbfitsanseta Mathematical Sans-serif Bold Italic Small Eta

U+1D7B1 \mbfitsanstheta Mathematical Sans-serif Bold Italic Small Theta

U+1D7B2 \mbfitsansiota Mathematical Sans-serif Bold Italic Small Iota

U+1D7B3 \mbfitsanskappa Mathematical Sans-serif Bold Italic Small Kappa

U+1D7B4 \mbfitsanslambda Mathematical Sans-serif Bold Italic Small Lamda

U+1D7B5 \mbfitsansmu Mathematical Sans-serif Bold Italic Small Mu

U+1D7B6 \mbfitsansnu Mathematical Sans-serif Bold Italic Small Nu

U+1D7B7 \mbfitsansxi Mathematical Sans-serif Bold Italic Small Xi

U+1D7B8 \mbfitsansomicron Mathematical Sans-serif Bold Italic Small Omicron

U+1D7B9 \mbfitsanspi Mathematical Sans-serif Bold Italic Small Pi

U+1D7BA \mbfitsansrho Mathematical Sans-serif Bold Italic Small Rho

U+1D7BB \mbfitsansvarsigma Mathematical Sans-serif Bold Italic Small Final Sigma

U+1D7BC \mbfitsanssigma Mathematical Sans-serif Bold Italic Small Sigma

U+1D7BD \mbfitsanstau Mathematical Sans-serif Bold Italic Small Tau

U+1D7BE \mbfitsansupsilon Mathematical Sans-serif Bold Italic Small Upsilon

U+1D7BF \mbfitsansphi Mathematical Sans-serif Bold Italic Small Phi

U+1D7C0 \mbfitsanschi Mathematical Sans-serif Bold Italic Small Chi

U+1D7C1 \mbfitsanspsi Mathematical Sans-serif Bold Italic Small Psi

U+1D7C2 \mbfitsansomega Mathematical Sans-serif Bold Italic Small Omega

U+1D7C3 \mbfitsanspartial Mathematical Sans-serif Bold Italic Partial Differential

U+1D7C4 \mbfitsansvarepsilon Mathematical Sans-serif Bold Italic Epsilon Symbol

U+1D7C5 \mbfitsansvartheta Mathematical Sans-serif Bold Italic Theta Symbol

U+1D7C6 \mbfitsansvarkappa Mathematical Sans-serif Bold Italic Kappa Symbol

U+1D7C7 \mbfitsansvarphi Mathematical Sans-serif Bold Italic Phi Symbol

U+1D7C8 \mbfitsansvarrho Mathematical Sans-serif Bold Italic Rho Symbol

U+1D7C9 \mbfitsansvarpi Mathematical Sans-serif Bold Italic Pi Symbol

U+1D7CA \mbfDigamma Mathematical Bold Capital Digamma

U+1D7CB \mbfdigamma Mathematical Bold Small Digamma

U+1D7CE \mbfzero Mathematical Bold Digit Zero

U+1D7CF \mbfone Mathematical Bold Digit One

U+1D7D0 \mbftwo Mathematical Bold Digit Two

U+1D7D1 \mbfthree Mathematical Bold Digit Three

U+1D7D2 \mbffour Mathematical Bold Digit Four

U+1D7D3 \mbffive Mathematical Bold Digit Five

U+1D7D4 \mbfsix Mathematical Bold Digit Six

U+1D7D5 \mbfseven Mathematical Bold Digit Seven

U+1D7D6 \mbfeight Mathematical Bold Digit Eight

U+1D7D7 \mbfnine Mathematical Bold Digit Nine

U+1D7D8 \Bbbzero Mathematical Double-struck Digit Zero

U+1D7D9 \Bbbone Mathematical Double-struck Digit One

U+1D7DA \Bbbtwo Mathematical Double-struck Digit Two

U+1D7DB \Bbbthree Mathematical Double-struck Digit Three

U+1D7DC \Bbbfour Mathematical Double-struck Digit Four

U+1D7DD \Bbbfive Mathematical Double-struck Digit Five

U+1D7DE \Bbbsix Mathematical Double-struck Digit Six

U+1D7DF \Bbbseven Mathematical Double-struck Digit Seven

U+1D7E0 \Bbbeight Mathematical Double-struck Digit Eight

U+1D7E1 \Bbbnine Mathematical Double-struck Digit Nine

U+1D7E2 \msanszero Mathematical Sans-serif Digit Zero

U+1D7E3 \msansone Mathematical Sans-serif Digit One

U+1D7E4 \msanstwo Mathematical Sans-serif Digit Two

U+1D7E5 \msansthree Mathematical Sans-serif Digit Three

U+1D7E6 \msansfour Mathematical Sans-serif Digit Four

U+1D7E7 \msansfive Mathematical Sans-serif Digit Five

U+1D7E8 \msanssix Mathematical Sans-serif Digit Six

U+1D7E9 \msansseven Mathematical Sans-serif Digit Seven

U+1D7EA \msanseight Mathematical Sans-serif Digit Eight

U+1D7EB \msansnine Mathematical Sans-serif Digit Nine

U+1D7EC \mbfsanszero Mathematical Sans-serif Bold Digit Zero

U+1D7ED \mbfsansone Mathematical Sans-serif Bold Digit One

U+1D7EE \mbfsanstwo Mathematical Sans-serif Bold Digit Two

U+1D7EF \mbfsansthree Mathematical Sans-serif Bold Digit Three

U+1D7F0 \mbfsansfour Mathematical Sans-serif Bold Digit Four

U+1D7F1 \mbfsansfive Mathematical Sans-serif Bold Digit Five

U+1D7F2 \mbfsanssix Mathematical Sans-serif Bold Digit Six

U+1D7F3 \mbfsansseven Mathematical Sans-serif Bold Digit Seven

U+1D7F4 \mbfsanseight Mathematical Sans-serif Bold Digit Eight

U+1D7F5 \mbfsansnine Mathematical Sans-serif Bold Digit Nine

U+1D7F6 \mttzero Mathematical Monospace Digit Zero

U+1D7F7 \mttone Mathematical Monospace Digit One

U+1D7F8 \mtttwo Mathematical Monospace Digit Two

U+1D7F9 \mttthree Mathematical Monospace Digit Three

U+1D7FA \mttfour Mathematical Monospace Digit Four

U+1D7FB \mttfive Mathematical Monospace Digit Five

U+1D7FC \mttsix Mathematical Monospace Digit Six

U+1D7FD \mttseven Mathematical Monospace Digit Seven

U+1D7FE \mtteight Mathematical Monospace Digit Eight

U+1D7FF \mttnine Mathematical Monospace Digit Nine

U+1F004 \:mahjong: Mahjong Tile RedDragon

U+1F0CF \:black_joker: Playing Card Black Joker

U+1F170 \:a: Negative Squared Latin Capital Letter A

U+1F171 \:b: Negative Squared Latin Capital Letter B

U+1F17E \:o2: Negative Squared Latin Capital Letter O

U+1F17F \:parking: Negative Squared Latin Capital Letter P

U+1F18E \:ab: Negative Squared Ab

U+1F191 \:cl: Squared Cl

U+1F192 \:cool: Squared Cool

U+1F193 \:free: Squared Free

U+1F194 \:id: Squared Id

U+1F195 \:new: Squared New

U+1F196 \:ng: Squared Ng

U+1F197 \:ok: SquaredOk

U+1F198 \:sos: Squared Sos

U+1F199 \:up: Squared UpWith ExclamationMark

U+1F19A \:vs: Squared Vs

U+1F201 \:koko: Squared Katakana Koko

U+1F202 \:sa: Squared Katakana Sa

U+1F21A \:u7121: Squared Cjk Unified Ideograph-7121

U+1F22F \:u6307: Squared Cjk Unified Ideograph-6307

U+1F232 \:u7981: Squared Cjk Unified Ideograph-7981

U+1F233 \:u7a7a: Squared Cjk Unified Ideograph-7a7a

U+1F234 \:u5408: Squared Cjk Unified Ideograph-5408

U+1F235 \:u6e80: Squared Cjk Unified Ideograph-6e80

U+1F236 \:u6709: Squared Cjk Unified Ideograph-6709

U+1F237 \:u6708: Squared Cjk Unified Ideograph-6708

U+1F238 \:u7533: Squared Cjk Unified Ideograph-7533

U+1F239 \:u5272: Squared Cjk Unified Ideograph-5272

U+1F23A \:u55b6: Squared Cjk Unified Ideograph-55b6

U+1F250 \:ideograph_advantage: Circled Ideograph Advantage

U+1F251 \:accept: Circled Ideograph Accept

U+1F300 \:cyclone: Cyclone

U+1F301 \:foggy: Foggy

U+1F302 \:closed_umbrella: Closed Umbrella

U+1F303 \:night_with_stars: NightWith Stars

U+1F304 \:sunrise_over_mountains: Sunrise OverMountains

U+1F305 \:sunrise: Sunrise

U+1F306 \:city_sunset: Cityscape At Dusk

U+1F307 \:city_sunrise: Sunset Over Buildings

U+1F308 \:rainbow: Rainbow

U+1F309 \:bridge_at_night: Bridge At Night

U+1F30A \:ocean: WaterWave

U+1F30B \:volcano: Volcano

U+1F30C \:milky_way: MilkyWay

U+1F30D \:earth_africa: Earth Globe Europe-africa

U+1F30E \:earth_americas: Earth Globe Americas

U+1F30F \:earth_asia: Earth Globe Asia-australia

U+1F310 \:globe_with_meridians: GlobeWithMeridians

U+1F311 \:new_moon: NewMoon Symbol

U+1F312 \:waxing_crescent_moon: Waxing CrescentMoon Symbol

U+1F313 \:first_quarter_moon: First QuarterMoon Symbol

U+1F314 \:moon: Waxing GibbousMoon Symbol

U+1F315 \:full_moon: Full Moon Symbol

U+1F316 \:waning_gibbous_moon: Waning GibbousMoon Symbol

U+1F317 \:last_quarter_moon: Last QuarterMoon Symbol

U+1F318 \:waning_crescent_moon: Waning CrescentMoon Symbol

U+1F319 \:crescent_moon: CrescentMoon

U+1F31A \:new_moon_with_face: NewMoonWith Face

U+1F31B \:first_quar-

ter_moon_with_face:

First QuarterMoonWith Face

U+1F31C \:last_quar-

ter_moon_with_face:

Last QuarterMoonWith Face

U+1F31D \:full_moon_with_face: Full MoonWith Face

U+1F31E \:sun_with_face: SunWith Face

U+1F31F \:star2: Glowing Star

U+1F320 \:stars: Shooting Star

U+1F330 \:chestnut: Chestnut

U+1F331 \:seedling: Seedling

U+1F332 \:evergreen_tree: Evergreen Tree

U+1F333 \:deciduous_tree: Deciduous Tree

U+1F334 \:palm_tree: Palm Tree

U+1F335 \:cactus: Cactus

U+1F337 \:tulip: Tulip

U+1F338 \:cherry_blossom: Cherry Blossom

U+1F339 \:rose: Rose

U+1F33A \:hibiscus: Hibiscus

U+1F33B \:sunflower: Sunflower

U+1F33C \:blossom: Blossom

U+1F33D \:corn: Ear OfMaize

U+1F33E \:ear_of_rice: Ear Of Rice

U+1F33F \:herb: Herb

U+1F340 \:four_leaf_clover: Four Leaf Clover

U+1F341 \:maple_leaf: Maple Leaf

U+1F342 \:fallen_leaf: Fallen Leaf

U+1F343 \:leaves: Leaf Fluttering InWind

U+1F344 \:mushroom: Mushroom

U+1F345 \:tomato: Tomato

U+1F346 \:eggplant: Aubergine

U+1F347 \:grapes: Grapes

U+1F348 \:melon: Melon

U+1F349 \:watermelon: Watermelon

U+1F34A \:tangerine: Tangerine

U+1F34B \:lemon: Lemon

U+1F34C \:banana: Banana

U+1F34D \:pineapple: Pineapple

U+1F34E \:apple: Red Apple

U+1F34F \:green_apple: Green Apple

U+1F350 \:pear: Pear

U+1F351 \:peach: Peach

U+1F352 \:cherries: Cherries

U+1F353 \:strawberry: Strawberry

U+1F354 \:hamburger: Hamburger

U+1F355 \:pizza: Slice Of Pizza

U+1F356 \:meat_on_bone: Meat On Bone

U+1F357 \:poultry_leg: Poultry Leg

U+1F358 \:rice_cracker: Rice Cracker

U+1F359 \:rice_ball: Rice Ball

U+1F35A \:rice: Cooked Rice

U+1F35B \:curry: Curry And Rice

U+1F35C \:ramen: Steaming Bowl

U+1F35D \:spaghetti: Spaghetti

U+1F35E \:bread: Bread

U+1F35F \:fries: French Fries

U+1F360 \:sweet_potato: Roasted Sweet Potato

U+1F361 \:dango: Dango

U+1F362 \:oden: Oden

U+1F363 \:sushi: Sushi

U+1F364 \:fried_shrimp: Fried Shrimp

U+1F365 \:fish_cake: Fish CakeWith Swirl Design

U+1F366 \:icecream: Soft Ice Cream

U+1F367 \:shaved_ice: Shaved Ice

U+1F368 \:ice_cream: Ice Cream

U+1F369 \:doughnut: Doughnut

U+1F36A \:cookie: Cookie

U+1F36B \:chocolate_bar: Chocolate Bar

U+1F36C \:candy: Candy

U+1F36D \:lollipop: Lollipop

U+1F36E \:custard: Custard

U+1F36F \:honey_pot: Honey Pot

U+1F370 \:cake: Shortcake

U+1F371 \:bento: Bento Box

U+1F372 \:stew: Pot Of Food

U+1F373 \:egg: Cooking

U+1F374 \:fork_and_knife: Fork And Knife

U+1F375 \:tea: TeacupWithout Handle

U+1F376 \:sake: Sake Bottle And Cup

U+1F377 \:wine_glass: Wine Glass

U+1F378 \:cocktail: Cocktail Glass

U+1F379 \:tropical_drink: Tropical Drink

U+1F37A \:beer: BeerMug

U+1F37B \:beers: Clinking BeerMugs

U+1F37C \:baby_bottle: Baby Bottle

U+1F380 \:ribbon: Ribbon

U+1F381 \:gift: Wrapped Present

U+1F382 \:birthday: Birthday Cake

U+1F383 \:jack_o_lantern: Jack-o-lantern

U+1F384 \:christmas_tree: Christmas Tree

U+1F385 \:santa: Father Christmas

U+1F386 \:fireworks: Fireworks

U+1F387 \:sparkler: Firework Sparkler

U+1F388 \:balloon: Balloon

U+1F389 \:tada: Party Popper

U+1F38A \:confetti_ball: Confetti Ball

U+1F38B \:tanabata_tree: Tanabata Tree

U+1F38C \:crossed_flags: Crossed Flags

U+1F38D \:bamboo: Pine Decoration

U+1F38E \:dolls: Japanese Dolls

U+1F38F \:flags: Carp Streamer

U+1F390 \:wind_chime: Wind Chime

U+1F391 \:rice_scene: Moon Viewing Ceremony

U+1F392 \:school_satchel: School Satchel

U+1F393 \:mortar_board: Graduation Cap

U+1F3A0 \:carousel_horse: Carousel Horse

U+1F3A1 \:ferris_wheel: FerrisWheel

U+1F3A2 \:roller_coaster: Roller Coaster

U+1F3A3 \:fishing_pole_and_fish: Fishing Pole And Fish

U+1F3A4 \:microphone: Microphone

U+1F3A5 \:movie_camera: Movie Camera

U+1F3A6 \:cinema: Cinema

U+1F3A7 \:headphones: Headphone

U+1F3A8 \:art: Artist Palette

U+1F3A9 \:tophat: TopHat

U+1F3AA \:circus_tent: Circus Tent

U+1F3AB \:ticket: Ticket

U+1F3AC \:clapper: Clapper Board

U+1F3AD \:performing_arts: Performing Arts

U+1F3AE \:video_game: Video Game

U+1F3AF \:dart: Direct Hit

U+1F3B0 \:slot_machine: SlotMachine

U+1F3B1 \:8ball: Billiards

U+1F3B2 \:game_die: GameDie

U+1F3B3 \:bowling: Bowling

U+1F3B4 \:flower_playing_cards: Flower Playing Cards

U+1F3B5 \:musical_note: Musical Note

U+1F3B6 \:notes: MultipleMusical Notes

U+1F3B7 \:saxophone: Saxophone

U+1F3B8 \:guitar: Guitar

U+1F3B9 \:musical_keyboard: Musical Keyboard

U+1F3BA \:trumpet: Trumpet

U+1F3BB \:violin: Violin

U+1F3BC \:musical_score: Musical Score

U+1F3BD \:running_shirt_with_sash: Running ShirtWith Sash

U+1F3BE \:tennis: Tennis Racquet And Ball

U+1F3BF \:ski: Ski And Ski Boot

U+1F3C0 \:basketball: Basketball AndHoop

U+1F3C1 \:checkered_flag: Chequered Flag

U+1F3C2 \:snowboarder: Snowboarder

U+1F3C3 \:runner: Runner

U+1F3C4 \:surfer: Surfer

U+1F3C6 \:trophy: Trophy

U+1F3C7 \:horse_racing: Horse Racing

U+1F3C8 \:football: American Football

U+1F3C9 \:rugby_football: Rugby Football

U+1F3CA \:swimmer: Swimmer

U+1F3E0 \:house: House Building

U+1F3E1 \:house_with_garden: HouseWith Garden

U+1F3E2 \:office: Office Building

U+1F3E3 \:post_office: Japanese Post Office

U+1F3E4 \:european_post_office: European Post Office

U+1F3E5 \:hospital: Hospital

U+1F3E6 \:bank: Bank

U+1F3E7 \:atm: Automated TellerMachine

U+1F3E8 \:hotel: Hotel

U+1F3E9 \:love_hotel: Love Hotel

U+1F3EA \:convenience_store: Convenience Store

U+1F3EB \:school: School

U+1F3EC \:department_store: Department Store

U+1F3ED \:factory: Factory

U+1F3EE \:izakaya_lantern: Izakaya Lantern

U+1F3EF \:japanese_castle: Japanese Castle

U+1F3F0 \:european_castle: European Castle

U+1F3FB \:skin-tone-2: Emoji Modifier Fitzpatrick Type-1-2

U+1F3FC \:skin-tone-3: Emoji Modifier Fitzpatrick Type-3

U+1F3FD \:skin-tone-4: Emoji Modifier Fitzpatrick Type-4

U+1F3FE \:skin-tone-5: Emoji Modifier Fitzpatrick Type-5

U+1F3FF \:skin-tone-6: Emoji Modifier Fitzpatrick Type-6

U+1F400 \:rat: Rat

U+1F401 \:mouse2: Mouse

U+1F402 \:ox: Ox

U+1F403 \:water_buffalo: Water Buffalo

U+1F404 \:cow2: Cow

U+1F405 \:tiger2: Tiger

U+1F406 \:leopard: Leopard

U+1F407 \:rabbit2: Rabbit

U+1F408 \:cat2: Cat

U+1F409 \:dragon: Dragon

U+1F40A \:crocodile: Crocodile

U+1F40B \:whale2: Whale

U+1F40C \:snail: Snail

U+1F40D \:snake: Snake

U+1F40E \:racehorse: Horse

U+1F40F \:ram: Ram

U+1F410 \:goat: Goat

U+1F411 \:sheep: Sheep

U+1F412 \:monkey: Monkey

U+1F413 \:rooster: Rooster

U+1F414 \:chicken: Chicken

U+1F415 \:dog2: Dog

U+1F416 \:pig2: Pig

U+1F417 \:boar: Boar

U+1F418 \:elephant: Elephant

U+1F419 \:octopus: Octopus

U+1F41A \:shell: Spiral Shell

U+1F41B \:bug: Bug

U+1F41C \:ant: Ant

U+1F41D \:bee: Honeybee

U+1F41E \:beetle: Lady Beetle

U+1F41F \:fish: Fish

U+1F420 \:tropical_fish: Tropical Fish

U+1F421 \:blowfish: Blowfish

U+1F422 \:turtle: Turtle

U+1F423 \:hatching_chick: Hatching Chick

U+1F424 \:baby_chick: Baby Chick

U+1F425 \:hatched_chick: Front-facing Baby Chick

U+1F426 \:bird: Bird

U+1F427 \:penguin: Penguin

U+1F428 \:koala: Koala

U+1F429 \:poodle: Poodle

U+1F42A \:dromedary_camel: Dromedary Camel

U+1F42B \:camel: Bactrian Camel

U+1F42C \:dolphin: Dolphin

U+1F42D \:mouse: Mouse Face

U+1F42E \:cow: Cow Face

U+1F42F \:tiger: Tiger Face

U+1F430 \:rabbit: Rabbit Face

U+1F431 \:cat: Cat Face

U+1F432 \:dragon_face: Dragon Face

U+1F433 \:whale: SpoutingWhale

U+1F434 \:horse: Horse Face

U+1F435 \:monkey_face: Monkey Face

U+1F436 \:dog: Dog Face

U+1F437 \:pig: Pig Face

U+1F438 \:frog: Frog Face

U+1F439 \:hamster: Hamster Face

U+1F43A \:wolf: Wolf Face

U+1F43B \:bear: Bear Face

U+1F43C \:panda_face: Panda Face

U+1F43D \:pig_nose: Pig Nose

U+1F43E \:feet: Paw Prints

U+1F440 \:eyes: Eyes

U+1F442 \:ear: Ear

U+1F443 \:nose: Nose

U+1F444 \:lips: Mouth

U+1F445 \:tongue: Tongue

U+1F446 \:point_up_2: White Up Pointing Backhand Index

U+1F447 \:point_down: White Down Pointing Backhand Index

U+1F448 \:point_left: White Left Pointing Backhand Index

U+1F449 \:point_right: White Right Pointing Backhand Index

U+1F44A \:facepunch: Fisted Hand Sign

U+1F44B \:wave: Waving Hand Sign

U+1F44C \:ok_hand: OkHand Sign

U+1F44D \:+1: Thumbs Up Sign

U+1F44E \:-1: Thumbs Down Sign

U+1F44F \:clap: Clapping Hands Sign

U+1F450 \:open_hands: OpenHands Sign

U+1F451 \:crown: Crown

U+1F452 \:womans_hat: Womans Hat

U+1F453 \:eyeglasses: Eyeglasses

U+1F454 \:necktie: Necktie

U+1F455 \:shirt: T-shirt

U+1F456 \:jeans: Jeans

U+1F457 \:dress: Dress

U+1F458 \:kimono: Kimono

U+1F459 \:bikini: Bikini

U+1F45A \:womans_clothes: Womans Clothes

U+1F45B \:purse: Purse

U+1F45C \:handbag: Handbag

U+1F45D \:pouch: Pouch

U+1F45E \:mans_shoe: Mans Shoe

U+1F45F \:athletic_shoe: Athletic Shoe

U+1F460 \:high_heel: High-heeled Shoe

U+1F461 \:sandal: Womans Sandal

U+1F462 \:boot: Womans Boots

U+1F463 \:footprints: Footprints

U+1F464 \:bust_in_silhouette: Bust In Silhouette

U+1F465 \:busts_in_silhouette: Busts In Silhouette

U+1F466 \:boy: Boy

U+1F467 \:girl: Girl

U+1F468 \:man: Man

U+1F469 \:woman: Woman

U+1F46A \:family: Family

U+1F46B \:couple: Man AndWomanHolding Hands

U+1F46C \:two_men_hold-

ing_hands:

TwoMenHolding Hands

U+1F46D \:two_women_hold-

ing_hands:

TwoWomenHolding Hands

U+1F46E \:cop: Police Officer

U+1F46F \:dancers: WomanWith Bunny Ears

U+1F470 \:bride_with_veil: BrideWith Veil

U+1F471 \:person_with_blond_hair: PersonWith BlondHair

U+1F472 \:man_with_gua_pi_mao: ManWith Gua PiMao

U+1F473 \:man_with_turban: ManWith Turban

U+1F474 \:older_man: OlderMan

U+1F475 \:older_woman: OlderWoman

U+1F476 \:baby: Baby

U+1F477 \:construction_worker: ConstructionWorker

U+1F478 \:princess: Princess

U+1F479 \:japanese_ogre: JapaneseOgre

U+1F47A \:japanese_goblin: Japanese Goblin

U+1F47B \:ghost: Ghost

U+1F47C \:angel: Baby Angel

U+1F47D \:alien: Extraterrestrial Alien

U+1F47E \:space_invader: AlienMonster

U+1F47F \:imp: Imp

U+1F480 \:skull: Skull

U+1F481 \:information_desk_per-

son:

Information Desk Person

U+1F482 \:guardsman: Guardsman

U+1F483 \:dancer: Dancer

U+1F484 \:lipstick: Lipstick

U+1F485 \:nail_care: Nail Polish

U+1F486 \:massage: FaceMassage

U+1F487 \:haircut: Haircut

U+1F488 \:barber: Barber Pole

U+1F489 \:syringe: Syringe

U+1F48A \:pill: Pill

U+1F48B \:kiss: KissMark

U+1F48C \:love_letter: Love Letter

U+1F48D \:ring: Ring

U+1F48E \:gem: Gem Stone

U+1F48F \:couplekiss: Kiss

U+1F490 \:bouquet: Bouquet

U+1F491 \:couple_with_heart: CoupleWith Heart

U+1F492 \:wedding: Wedding

U+1F493 \:heartbeat: Beating Heart

U+1F494 \:broken_heart: BrokenHeart

U+1F495 \:two_hearts: TwoHearts

U+1F496 \:sparkling_heart: Sparkling Heart

U+1F497 \:heartpulse: Growing Heart

U+1F498 \:cupid: HeartWith Arrow

U+1F499 \:blue_heart: Blue Heart

U+1F49A \:green_heart: GreenHeart

U+1F49B \:yellow_heart: YellowHeart

U+1F49C \:purple_heart: Purple Heart

U+1F49D \:gift_heart: HeartWith Ribbon

U+1F49E \:revolving_hearts: Revolving Hearts

U+1F49F \:heart_decoration: Heart Decoration

U+1F4A0 \:dia-

mond_shape_with_a_dot_in-

side:

Diamond ShapeWith ADot Inside

U+1F4A1 \:bulb: Electric Light Bulb

U+1F4A2 \:anger: Anger Symbol

U+1F4A3 \:bomb: Bomb

U+1F4A4 \:zzz: Sleeping Symbol

U+1F4A5 \:boom: Collision Symbol

U+1F4A6 \:sweat_drops: Splashing Sweat Symbol

U+1F4A7 \:droplet: Droplet

U+1F4A8 \:dash: Dash Symbol

U+1F4A9 \:hankey: Pile Of Poo

U+1F4AA \:muscle: Flexed Biceps

U+1F4AB \:dizzy: Dizzy Symbol

U+1F4AC \:speech_balloon: Speech Balloon

U+1F4AD \:thought_balloon: Thought Balloon

U+1F4AE \:white_flower: White Flower

U+1F4AF \:100: Hundred Points Symbol

U+1F4B0 \:moneybag: Money Bag

U+1F4B1 \:currency_exchange: Currency Exchange

U+1F4B2 \:heavy_dollar_sign: Heavy Dollar Sign

U+1F4B3 \:credit_card: Credit Card

U+1F4B4 \:yen: BanknoteWith Yen Sign

U+1F4B5 \:dollar: BanknoteWith Dollar Sign

U+1F4B6 \:euro: BanknoteWith Euro Sign

U+1F4B7 \:pound: BanknoteWith Pound Sign

U+1F4B8 \:money_with_wings: MoneyWithWings

U+1F4B9 \:chart: ChartWith Upwards Trend And Yen Sign

U+1F4BA \:seat: Seat

U+1F4BB \:computer: Personal Computer

U+1F4BC \:briefcase: Briefcase

U+1F4BD \:minidisc: Minidisc

U+1F4BE \:floppy_disk: Floppy Disk

U+1F4BF \:cd: Optical Disc

U+1F4C0 \:dvd: Dvd

U+1F4C1 \:file_folder: File Folder

U+1F4C2 \:open_file_folder: Open File Folder

U+1F4C3 \:page_with_curl: PageWith Curl

U+1F4C4 \:page_facing_up: Page Facing Up

U+1F4C5 \:date: Calendar

U+1F4C6 \:calendar: Tear-off Calendar

U+1F4C7 \:card_index: Card Index

U+1F4C8 \:chart_with_up-

wards_trend:

ChartWith Upwards Trend

U+1F4C9 \:chart_with_down-

wards_trend:

ChartWith Downwards Trend

U+1F4CA \:bar_chart: Bar Chart

U+1F4CB \:clipboard: Clipboard

U+1F4CC \:pushpin: Pushpin

U+1F4CD \:round_pushpin: Round Pushpin

U+1F4CE \:paperclip: Paperclip

U+1F4CF \:straight_ruler: Straight Ruler

U+1F4D0 \:triangular_ruler: Triangular Ruler

U+1F4D1 \:bookmark_tabs: Bookmark Tabs

U+1F4D2 \:ledger: Ledger

U+1F4D3 \:notebook: Notebook

U+1F4D4 \:notebook_with_decora-

tive_cover:

NotebookWith Decorative Cover

U+1F4D5 \:closed_book: Closed Book

U+1F4D6 \:book: Open Book

U+1F4D7 \:green_book: Green Book

U+1F4D8 \:blue_book: Blue Book

U+1F4D9 \:orange_book: Orange Book

U+1F4DA \:books: Books

U+1F4DB \:name_badge: Name Badge

U+1F4DC \:scroll: Scroll

U+1F4DD \:memo: Memo

U+1F4DE \:telephone_receiver: Telephone Receiver

U+1F4DF \:pager: Pager

U+1F4E0 \:fax: FaxMachine

U+1F4E1 \:satellite: Satellite Antenna

U+1F4E2 \:loudspeaker: Public Address Loudspeaker

U+1F4E3 \:mega: CheeringMegaphone

U+1F4E4 \:outbox_tray: Outbox Tray

U+1F4E5 \:inbox_tray: Inbox Tray

U+1F4E6 \:package: Package

U+1F4E7 \:e-mail: E-mail Symbol

U+1F4E8 \:incoming_envelope: Incoming Envelope

U+1F4E9 \:envelope_with_arrow: EnvelopeWith Downwards ArrowAbove

U+1F4EA \:mailbox_closed: ClosedMailboxWith Lowered Flag

U+1F4EB \:mailbox: ClosedMailboxWith Raised Flag

U+1F4EC \:mailbox_with_mail: OpenMailboxWith Raised Flag

U+1F4ED \:mailbox_with_no_mail: OpenMailboxWith Lowered Flag

U+1F4EE \:postbox: Postbox

U+1F4EF \:postal_horn: Postal Horn

U+1F4F0 \:newspaper: Newspaper

U+1F4F1 \:iphone: Mobile Phone

U+1F4F2 \:calling: Mobile PhoneWith Rightwards ArrowAt Left

U+1F4F3 \:vibration_mode: VibrationMode

U+1F4F4 \:mobile_phone_off: Mobile PhoneOff

U+1F4F5 \:no_mobile_phones: NoMobile Phones

U+1F4F6 \:signal_strength: AntennaWith Bars

U+1F4F7 \:camera: Camera

U+1F4F9 \:video_camera: Video Camera

U+1F4FA \:tv: Television

U+1F4FB \:radio: Radio

U+1F4FC \:vhs: Videocassette

U+1F500 \:twisted_rightwards_ar-

rows:

Twisted Rightwards Arrows

U+1F501 \:repeat: Clockwise Rightwards And Leftwards Open Circle Arrows

U+1F502 \:repeat_one: Clockwise Rightwards And Leftwards Open Circle Arrows

With CircledOneOverlay

U+1F503 \:arrows_clockwise: Clockwise Downwards AndUpwards Open Circle Arrows

U+1F504 \:arrows_counterclock-

wise:

Anticlockwise Downwards AndUpwards Open Circle

Arrows

U+1F505 \:low_brightness: Low Brightness Symbol

U+1F506 \:high_brightness: High Brightness Symbol

U+1F507 \:mute: SpeakerWith Cancellation Stroke

U+1F508 \:speaker: Speaker

U+1F509 \:sound: SpeakerWithOne SoundWave

U+1F50A \:loud_sound: SpeakerWith Three SoundWaves

U+1F50B \:battery: Battery

U+1F50C \:electric_plug: Electric Plug

U+1F50D \:mag: Left-pointingMagnifying Glass

U+1F50E \:mag_right: Right-pointingMagnifying Glass

U+1F50F \:lock_with_ink_pen: LockWith Ink Pen

U+1F510 \:closed_lock_with_key: Closed LockWith Key

U+1F511 \:key: Key

U+1F512 \:lock: Lock

U+1F513 \:unlock: Open Lock

U+1F514 \:bell: Bell

U+1F515 \:no_bell: BellWith Cancellation Stroke

U+1F516 \:bookmark: Bookmark

U+1F517 \:link: Link Symbol

U+1F518 \:radio_button: Radio Button

U+1F519 \:back: BackWith Leftwards ArrowAbove

U+1F51A \:end: EndWith Leftwards ArrowAbove

U+1F51B \:on: OnWith ExclamationMarkWith Left Right ArrowAbove

U+1F51C \:soon: SoonWith Rightwards ArrowAbove

U+1F51D \:top: TopWith Upwards ArrowAbove

U+1F51E \:underage: NoOneUnder Eighteen Symbol

U+1F51F \:keycap_ten: Keycap Ten

U+1F520 \:capital_abcd: Input Symbol For Latin Capital Letters

U+1F521 \:abcd: Input Symbol For Latin Small Letters

U+1F522 \:1234: Input Symbol For Numbers

U+1F523 \:symbols: Input Symbol For Symbols

U+1F524 \:abc: Input Symbol For Latin Letters

U+1F525 \:fire: Fire

U+1F526 \:flashlight: Electric Torch

U+1F527 \:wrench: Wrench

U+1F528 \:hammer: Hammer

U+1F529 \:nut_and_bolt: Nut And Bolt

U+1F52A \:hocho: Hocho

U+1F52B \:gun: Pistol

U+1F52C \:microscope: Microscope

U+1F52D \:telescope: Telescope

U+1F52E \:crystal_ball: Crystal Ball

U+1F52F \:six_pointed_star: Six Pointed StarWithMiddle Dot

U+1F530 \:beginner: Japanese Symbol For Beginner

U+1F531 \:trident: Trident Emblem

U+1F532 \:black_square_button: Black Square Button

U+1F533 \:white_square_button: White Square Button

U+1F534 \:red_circle: Large Red Circle

U+1F535 \:large_blue_circle: Large Blue Circle

U+1F536 \:large_orange_diamond: LargeOrange Diamond

U+1F537 \:large_blue_diamond: Large Blue Diamond

U+1F538 \:small_orange_diamond: Small Orange Diamond

U+1F539 \:small_blue_diamond: Small Blue Diamond

U+1F53A \:small_red_triangle: Up-pointing Red Triangle

U+1F53B \:small_red_trian-

gle_down:

Down-pointing Red Triangle

U+1F53C \:arrow_up_small: Up-pointing Small Red Triangle

U+1F53D \:arrow_down_small: Down-pointing Small Red Triangle

U+1F550 \:clock1: Clock FaceOneOclock

U+1F551 \:clock2: Clock Face TwoOclock

U+1F552 \:clock3: Clock Face ThreeOclock

U+1F553 \:clock4: Clock Face Four Oclock

U+1F554 \:clock5: Clock Face FiveOclock

U+1F555 \:clock6: Clock Face Six Oclock

U+1F556 \:clock7: Clock Face SevenOclock

U+1F557 \:clock8: Clock Face Eight Oclock

U+1F558 \:clock9: Clock Face NineOclock

U+1F559 \:clock10: Clock Face TenOclock

U+1F55A \:clock11: Clock Face ElevenOclock

U+1F55B \:clock12: Clock Face TwelveOclock

U+1F55C \:clock130: Clock FaceOne-thirty

U+1F55D \:clock230: Clock Face Two-thirty

U+1F55E \:clock330: Clock Face Three-thirty

U+1F55F \:clock430: Clock Face Four-thirty

U+1F560 \:clock530: Clock Face Five-thirty

U+1F561 \:clock630: Clock Face Six-thirty

U+1F562 \:clock730: Clock Face Seven-thirty

U+1F563 \:clock830: Clock Face Eight-thirty

U+1F564 \:clock930: Clock Face Nine-thirty

U+1F565 \:clock1030: Clock Face Ten-thirty

U+1F566 \:clock1130: Clock Face Eleven-thirty

U+1F567 \:clock1230: Clock Face Twelve-thirty

U+1F5FB \:mount_fuji: Mount Fuji

U+1F5FC \:tokyo_tower: Tokyo Tower

U+1F5FD \:statue_of_liberty: StatueOf Liberty

U+1F5FE \:japan: Silhouette Of Japan

U+1F5FF \:moyai: Moyai

U+1F600 \:grinning: Grinning Face

U+1F601 \:grin: Grinning FaceWith Smiling Eyes

U+1F602 \:joy: FaceWith Tears Of Joy

U+1F603 \:smiley: Smiling FaceWithOpenMouth

U+1F604 \:smile: Smiling FaceWithOpenMouth And Smiling Eyes

U+1F605 \:sweat_smile: Smiling FaceWithOpenMouth And Cold Sweat

U+1F606 \:laughing: Smiling FaceWithOpenMouth And Tightly-closed Eyes

U+1F607 \:innocent: Smiling FaceWith Halo

U+1F608 \:smiling_imp: Smiling FaceWith Horns

U+1F609 \:wink: Winking Face

U+1F60A \:blush: Smiling FaceWith Smiling Eyes

U+1F60B \:yum: Face Savouring Delicious Food

U+1F60C \:relieved: Relieved Face

U+1F60D \:heart_eyes: Smiling FaceWith Heart-shaped Eyes

U+1F60E \:sunglasses: Smiling FaceWith Sunglasses

U+1F60F \:smirk: Smirking Face

U+1F610 \:neutral_face: Neutral Face

U+1F611 \:expressionless: Expressionless Face

U+1F612 \:unamused: Unamused Face

U+1F613 \:sweat: FaceWith Cold Sweat

U+1F614 \:pensive: Pensive Face

U+1F615 \:confused: Confused Face

U+1F616 \:confounded: Confounded Face

U+1F617 \:kissing: Kissing Face

U+1F618 \:kissing_heart: Face Throwing A Kiss

U+1F619 \:kissing_smiling_eyes: Kissing FaceWith Smiling Eyes

U+1F61A \:kissing_closed_eyes: Kissing FaceWith Closed Eyes

U+1F61B \:stuck_out_tongue: FaceWith Stuck-out Tongue

U+1F61C \:stuck_out_tongue_wink-

ing_eye:

FaceWith Stuck-out Tongue AndWinking Eye

U+1F61D \:stuck_out_tongue_closed_eyes:FaceWith Stuck-out Tongue And Tightly-closed Eyes

U+1F61E \:disappointed: Disappointed Face

U+1F61F \:worried: Worried Face

U+1F620 \:angry: Angry Face

U+1F621 \:rage: Pouting Face

U+1F622 \:cry: Crying Face

U+1F623 \:persevere: Persevering Face

U+1F624 \:triumph: FaceWith LookOf Triumph

U+1F625 \:disappointed_relieved: Disappointed But Relieved Face

U+1F626 \:frowning: Frowning FaceWithOpenMouth

U+1F627 \:anguished: Anguished Face

U+1F628 \:fearful: Fearful Face

U+1F629 \:weary: Weary Face

U+1F62A \:sleepy: Sleepy Face

U+1F62B \:tired_face: Tired Face

U+1F62C \:grimacing: Grimacing Face

U+1F62D \:sob: Loudly Crying Face

U+1F62E \:open_mouth: FaceWithOpenMouth

U+1F62F \:hushed: Hushed Face

U+1F630 \:cold_sweat: FaceWithOpenMouth And Cold Sweat

U+1F631 \:scream: Face Screaming In Fear

U+1F632 \:astonished: Astonished Face

U+1F633 \:flushed: Flushed Face

U+1F634 \:sleeping: Sleeping Face

U+1F635 \:dizzy_face: Dizzy Face

U+1F636 \:no_mouth: FaceWithoutMouth

U+1F637 \:mask: FaceWithMedical Mask

U+1F638 \:smile_cat: Grinning Cat FaceWith Smiling Eyes

U+1F639 \:joy_cat: Cat FaceWith Tears Of Joy

U+1F63A \:smiley_cat: Smiling Cat FaceWithOpenMouth

U+1F63B \:heart_eyes_cat: Smiling Cat FaceWith Heart-shaped Eyes

U+1F63C \:smirk_cat: Cat FaceWithWry Smile

U+1F63D \:kissing_cat: Kissing Cat FaceWith Closed Eyes

U+1F63E \:pouting_cat: Pouting Cat Face

U+1F63F \:crying_cat_face: Crying Cat Face

U+1F640 \:scream_cat: Weary Cat Face

U+1F645 \:no_good: FaceWith NoGoodGesture

U+1F646 \:ok_woman: FaceWithOkGesture

U+1F647 \:bow: Person Bowing Deeply

U+1F648 \:see_no_evil: See-no-evil Monkey

U+1F649 \:hear_no_evil: Hear-no-evil Monkey

U+1F64A \:speak_no_evil: Speak-no-evil Monkey

U+1F64B \:raising_hand: Happy Person Raising OneHand

U+1F64C \:raised_hands: Person Raising Both Hands In Celebration

U+1F64D \:person_frowning: Person Frowning

U+1F64E \:person_with_pout-

ing_face:

PersonWith Pouting Face

U+1F64F \:pray: PersonWith Folded Hands

U+1F680 \:rocket: Rocket

U+1F681 \:helicopter: Helicopter

U+1F682 \:steam_locomotive: Steam Locomotive

U+1F683 \:railway_car: Railway Car

U+1F684 \:bullettrain_side: High-speed Train

U+1F685 \:bullettrain_front: High-speed TrainWith Bullet Nose

U+1F686 \:train2: Train

U+1F687 \:metro: Metro

U+1F688 \:light_rail: Light Rail

U+1F689 \:station: Station

U+1F68A \:tram: Tram

U+1F68B \:train: TramCar

U+1F68C \:bus: Bus

U+1F68D \:oncoming_bus: Oncoming Bus

U+1F68E \:trolleybus: Trolleybus

U+1F68F \:busstop: Bus Stop

U+1F690 \:minibus: Minibus

U+1F691 \:ambulance: Ambulance

U+1F692 \:fire_engine: Fire Engine

U+1F693 \:police_car: Police Car

U+1F694 \:oncoming_police_car: Oncoming Police Car

U+1F695 \:taxi: Taxi

U+1F696 \:oncoming_taxi: Oncoming Taxi

U+1F697 \:car: Automobile

U+1F698 \:oncoming_automobile: Oncoming Automobile

U+1F699 \:blue_car: Recreational Vehicle

U+1F69A \:truck: Delivery Truck

U+1F69B \:articulated_lorry: Articulated Lorry

U+1F69C \:tractor: Tractor

U+1F69D \:monorail: Monorail

U+1F69E \:mountain_railway: Mountain Railway

U+1F69F \:suspension_railway: Suspension Railway

U+1F6A0 \:mountain_cableway: Mountain Cableway

U+1F6A1 \:aerial_tramway: Aerial Tramway

U+1F6A2 \:ship: Ship

U+1F6A3 \:rowboat: Rowboat

U+1F6A4 \:speedboat: Speedboat

U+1F6A5 \:traffic_light: Horizontal Traffic Light

U+1F6A6 \:vertical_traffic_light: Vertical Traffic Light

U+1F6A7 \:construction: Construction Sign

U+1F6A8 \:rotating_light: Police Cars Revolving Light

U+1F6A9 \:triangular_flag_on_post: Triangular Flag On Post

U+1F6AA \:door: Door

U+1F6AB \:no_entry_sign: No Entry Sign

U+1F6AC \:smoking: Smoking Symbol

U+1F6AD \:no_smoking: No Smoking Symbol

U+1F6AE \:put_litter_in_its_place: Put Litter In Its Place Symbol

U+1F6AF \:do_not_litter: DoNot Litter Symbol

U+1F6B0 \:potable_water: PotableWater Symbol

U+1F6B1 \:non-potable_water: Non-potableWater Symbol

U+1F6B2 \:bike: Bicycle

U+1F6B3 \:no_bicycles: No Bicycles

U+1F6B4 \:bicyclist: Bicyclist

U+1F6B5 \:mountain_bicyclist: Mountain Bicyclist

U+1F6B6 \:walking: Pedestrian

U+1F6B7 \:no_pedestrians: No Pedestrians

U+1F6B8 \:children_crossing: Children Crossing

U+1F6B9 \:mens: Mens Symbol

U+1F6BA \:womens: Womens Symbol

U+1F6BB \:restroom: Restroom

U+1F6BC \:baby_symbol: Baby Symbol

U+1F6BD \:toilet: Toilet

U+1F6BE \:wc: Water Closet

U+1F6BF \:shower: Shower

U+1F6C0 \:bath: Bath

U+1F6C1 \:bathtub: Bathtub

U+1F6C2 \:passport_control: Passport Control

U+1F6C3 \:customs: Customs

U+1F6C4 \:baggage_claim: Baggage Claim

U+1F6C5 \:left_luggage: Left Luggage
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Chapter 45

Essentials

45.1 Introduction

The Julia standard library contains a range of functions andmacros appropriate for performing scientific and numerical

computing, but is also as broad as those of many general purpose programming languages. Additional functionality is

available from a growing collection of available packages. Functions are grouped by topic below.

Some general notes:

• Except for functions in built-in modules (, , and ), all functions documented here are directly available for use in

programs.

• To usemodule functions, use to import themodule, and to use the functions.

• Alternatively, will import all exported functions into the current namespace.

• Byconvention, functionnamesendingwithanexclamationpoint () modify their arguments. Some functionshave

bothmodifying (e.g., ) and non-modifying () versions.

45.2 Getting Around

– Function.

Quit (or control-D at the prompt). The default exit code is zero, indicating that the processes completed success-

fully.

– Function.

Quit the program indicating that the processes completed successfully. This function calls (see ).

– Function.

415

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/initdefs.jl#L21-L26
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/initdefs.jl#L30-L35
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Register a zero-argument function to be called at process exit. hooks are called in last in first out (LIFO) order and

run before object finalizers.

– Function.

Register a one-argument function to be called before theREPL interface is initialized in interactive sessions; this is

useful to customize the interface. The argument of is the REPL object. This function should be called fromwithin

the initialization file.

– Function.

Determine whether Julia is running an interactive session.

– Function.

Print information about exported global variables in amodule, optionally restricted to thosematching .

Thememory consumption estimate is an approximate lower bound on the size of the internal structure of the ob-

ject.

– Function.

Compute the amount of memory used by all unique objects reachable from the argument.

Keyword Arguments

• : specifies the types of objects to exclude from the traversal.

• : specifies the typesofobjects toalwayscharge thesizeofall of theirfields, even if thosefieldswouldnormally

be excluded.

–Method.

Edit a file or directory optionally providing a line number to edit the file at. Returns to the prompt when you quit

the editor. The editor can be changed by setting , or as an environment variable.

–Method.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/initdefs.jl#L99-L104
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/client.jl#L355-L362
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/initdefs.jl#L42-L46
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/interactiveutil.jl#L704-L710
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/summarysize.jl#L13-L22
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/interactiveutil.jl#L26-L32
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Edit the definition of a function, optionally specifying a tuple of types to indicate whichmethod to edit. The editor

can be changed by setting , or as an environment variable.

–Macro.

Evaluates the arguments to the function ormacro call, determines their types, and calls the function on the result-

ing expression.

–Method.

Show a file using the default pager, optionally providing a starting line number. Returns to the prompt when you

quit the pager.

–Method.

Show the definition of a function using the default pager, optionally specifying a tuple of types to indicate which

method to see.

–Macro.

Evaluates the arguments to the function ormacro call, determines their types, and calls the function on the result-

ing expression.

–Method.

Send a printed form of to the operating system clipboard (”copy”).

–Method.

Return a string with the contents of the operating system clipboard (”paste”).

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/interactiveutil.jl#L83-L89
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/interactiveutil.jl#L474-L479
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/interactiveutil.jl#L109-L114
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/interactiveutil.jl#L117-L122
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/interactiveutil.jl#L466-L471
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/interactiveutil.jl#L206-L210
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/interactiveutil.jl#L213-L217
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Forcereloadingofapackage, even if ithasbeen loadedbefore. This is intendedforuseduringpackagedevelopment

as code is modified.

– Function.

This function is part of the implementation of / , if a module is not already defined in . It can also be called directly

to force reloading a module, regardless of whether it has been loaded before (for example, when interactively de-

veloping libraries).

Loads a source file, in the context of the module, on every active node, searching standard locations for files. is

considered a top-level operation, so it sets the current path but does not use it to search for files (see help for ).

This function is typically used to load library code, and is implicitly called by to load packages.

When searching for files, first looks for package code under , then tries paths in the global array . is case-sensitive

on all platforms, including those with case-insensitive filesystems likemacOS andWindows.

– Function.

Creates a precompiled cache file for amodule and all of its dependencies. This can be used to reduce package load

times. Cache files are stored in , which defaults to . See Module initialization and precompilation for important

notes.

– Function.

Specifywhether thefilecalling this function isprecompilable. If is , then throwsanexceptionwhenthefile is loaded

by // unless the file is being precompiled, and in amodule file it causes themodule to be automatically precompiled

when it is imported. Typically, should occur before the declaration in the file.

If amoduleorfile isnot safelyprecompilable, it should call in order to throwanerror if Julia attempts toprecompile

it.

should not be used in amodule unless all of its dependencies are also using . Failure to do so can result in a runtime

error when loading themodule.

– Function.

Evaluate the contents of the input source file into module . Returns the result of the last evaluated expression of

the input file. During including, a task-local include path is set to the directory containing the file. Nested calls to

will search relative to that path. This function is typically used to load source interactively, or to combine files in

packages that are broken intomultiple source files.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/loading.jl#L279-L284
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/loading.jl#L298-L316
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/loading.jl#L550-L559
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/loading.jl#L256-L270
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/loading.jl#L475-L483
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– Function.

Like , except reads code from the given string rather than from a file.

– Function.

In amodule, declare that the file specified by (relative or absolute) is a dependency for precompilation; that is, the

module will need to be recompiled if this file changes.

This is only needed if your module depends on a file that is not used via . It has no effect outside of compilation.

– Function.

Search through all documentation for a string, ignoring case.

–Method.

Returns themethod of (a object) that would be called for arguments of the given .

If is an abstract type, then themethod that would be called by is returned.

–Method.

Return themodule in which the binding for the variable referenced by inmodule was created.

–Macro.

Applied to a function or macro call, it evaluates the arguments to the specified call, and returns the object for the

method thatwould be called for those arguments. Applied to a variable, it returns themodule inwhich the variable

was bound. It calls out to the function.

– Function.

Returns themethod table for .

If is specified, returns an array of methods whose typesmatch.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/loading.jl#L426-L430
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/loading.jl#L222-L231
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/utils.jl#L442-L446
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reflection.jl#L852-L858
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reflection.jl#L884-L888
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/interactiveutil.jl#L456-L463
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reflection.jl#L615-L621
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– Function.

Return an array of methods with an argument of type .

The optional second argument restricts the search to a particular module or function (the default is all modules,

starting fromMain).

If optional is , also return arguments with a parent type of , excluding type .

–Macro.

Show an expression and result, returning the result.

– Function.

Print information about the version of Julia in use. The output is controlled with boolean keyword arguments:

• : print information about installed packages

• : print all additional information

– Function.

Replace the top-level module () with a new one, providing a clean workspace. The previous module is made avail-

able as . A previously-loaded package can be accessed using a statement such as .

This function should only be used interactively.

– Keyword.

A variable referring to the last computed value, automatically set at the interactive prompt.

45.3 All Objects

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/interactiveutil.jl#L539-L549
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/show.jl#L248-L252
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/interactiveutil.jl#L250-L258
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/interactiveutil.jl#L653-L661
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/basedocs.jl#L678-L682
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Determine whether and are identical, in the sense that no program could distinguish them. Compares mutable

objects by address inmemory, and compares immutable objects (such as numbers) by contents at the bit level. This

function is sometimes called .

Examples

– Function.

Determine whether is of the given . Can also be used as an infix operator, e.g. .

–Method.

Similar to , except treats all floating-point values as equal to each other, and treats as unequal to . The default

implementation of calls , so if you have a type that doesn’t have these floating-point subtleties then you probably

only need to define .

is the comparison function used by hash tables (). must imply that .

This typically means that if you define your own function then you must define a corresponding (and vice versa).

Collections typically implement by calling recursively on all contents.

Scalar types generally do not need to implement separate from , unless they represent floating-point numbers

amenable to amore efficient implementation than that provided as a generic fallback (based on , , and ).

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/operators.jl#L135-L156
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1772-L1777
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/operators.jl#L55-L88
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–Method.

Similar to , except treats all floating-point values as equal to each other, and treats as unequal to . The default

implementation of calls , so if you have a type that doesn’t have these floating-point subtleties then you probably

only need to define .

is the comparison function used by hash tables (). must imply that .

This typically means that if you define your own function then you must define a corresponding (and vice versa).

Collections typically implement by calling recursively on all contents.

Scalar types generally do not need to implement separate from , unless they represent floating-point numbers

amenable to amore efficient implementation than that provided as a generic fallback (based on , , and ).

Examples

If neither nor is null, compare them according to their values (i.e. ). Else, return if both arguments are null, and if

one is null but not the other: nulls are considered equal.

Examples

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/operators.jl#L55-L88
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/nullable.jl#L208-L229


45.3. ALL OBJECTS 423

Test whether is less than , according to a canonical total order. Values that are normally unordered, such as , are

ordered in an arbitrary but consistent fashion. This is the default comparison used by . Non-numeric types with a

canonical total order should implement this function. Numeric types only need to implement it if they have special

values such as .

–Method.

If neither nor is null, compare themaccording to their values (i.e. ). Else, return if only is null, and otherwise: nulls

are always considered greater than non-nulls, but not greater than another null.

Examples

– Function.

Return if is , otherwise return . This differs from or in that it is an ordinary function, so all the arguments are

evaluated first. In some cases, using instead of an statement can eliminate the branch in generated code and

provide higher performance in tight loops.

Examples

– Function.

Compare and lexicographically and return -1, 0, or 1 depending onwhether is less than, equal to, or greater than

, respectively. This function should be defined for lexicographically comparable types, and will call by default.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1428-L1436
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/nullable.jl#L242-L270
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/operators.jl#L278-L291
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– Function.

Determine whether is lexicographically less than .

Examples

– Function.

Get the concrete type of .

– Function.

Construct a tuple of the given objects.

Examples

– Function.

Create a tuple of length , computing each element as , where is the index of the element.

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/operators.jl#L316-L331
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/operators.jl#L334-L344
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L783-L787
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L409-L419
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/tuple.jl#L97-L107
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Get a hash value for based on object identity. if .

– Function.

Compute an integer hash code such that implies . The optional second argument is a hash code to be mixed with

the result.

New types should implement the 2-argument form, typically by calling the 2-argument method recursively in or-

der to mix hashes of the contents with each other (and with ). Typically, any type that implements should also

implement its own (hence ) to guarantee the property mentioned above.

– Function.

Register a function to be called when there are no program-accessible references to . The type of must be a ,

otherwise the behavior of this function is unpredictable.

– Function.

Immediately run finalizers registered for object .

– Function.

Create a shallow copy of : the outer structure is copied, but not all internal values. For example, copying an array

produces a new array with identically-same elements as the original.

– Function.

Create a deep copy of : everything is copied recursively, resulting in a fully independent object. For example, deep-

copying an array produces a new array whose elements are deep copies of the original elements. Calling on an

object should generally have the same effect as serializing and then deserializing it.

As a special case, functions can only be actually deep-copied if they are anonymous, otherwise they are just copied.

The difference is only relevant in the case of closures, i.e. functions whichmay contain hidden internal references.

While it isn’t normally necessary, user-defined types can override the default behavior by defining a specialized

version of the function (which shouldn’t otherwise be used), where is the type to be specialized for, and keeps

track of objects copied so far within the recursion. Within the definition, should be used in place of , and the

variable should be updated as appropriate before returning.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1518-L1522
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1172-L1182
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1551-L1557
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L889-L893
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1268-L1274
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/deepcopy.jl#L8-L27
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– Function.

Testswhetheranassignable location is defined. Thearguments canbeamoduleanda symbolor a compositeobject

and field name (as a symbol) or index.

–Macro.

Tests whether variable is defined in the current scope.

Examples

– Function.

Convert to a value of type .

If is an type, an will be raised if is not representable by , for example if is not integer-valued, or is outside the range

supported by .

Examples

If is a or type, then it will return the closest value to representable by .

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1233-L1240
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reflection.jl#L196-L214
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If is a collection type and a collection, the result of may alias .

Similarly, if is a composite type and a related instance, the result of may alias part or all of .

– Function.

Convert all arguments to their common promotion type (if any), and return them all (as a tuple).

Examples

– Function.

Convert to the type of ().

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1799-L1867
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L322-L332
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L292-L296
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– Function.

If is a type, return a ”larger” type (for numeric types, this will be a typewith at least asmuch range and precision as

the argument, and usually more). Otherwise is converted to .

Examples

– Function.

The identity function. Returns its argument.

Examples

45.4 Types

– Function.

Return the supertype of DataType .

– Function.

Subtype operator: returns if and only if all values of type are also of type .

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/operators.jl#L874-L889
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/operators.jl#L403-L413
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/operators.jl#L31-L40
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– Function.

Supertype operator, equivalent to .

– Function.

Return a list of immediate subtypes of DataType . Note that all currently loaded subtypes are included, including

those not visible in the current module.

Examples

– Function.

The lowest value representable by the given (real) numeric DataType .

Examples

– Function.

The highest value representable by the given (real) numeric .

– Function.

The smallest in absolute value non-subnormal value representable by the given floating-point DataType .

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/operators.jl#L5-L21
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/operators.jl#L24-L28
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reflection.jl#L524-L539
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L767-L780
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1315-L1319
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/float.jl#L709-L714
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– Function.

The highest finite value representable by the given floating-point DataType .

Examples

– Function.

The largest integer losslessly representable by the given floating-point DataType .

The largest integer losslessly representable by the given floating-point DataType that also does not exceed the

maximum integer representable by the integer DataType .

–Method.

Size, in bytes, of the canonical binary representation of the given DataType , if any.

Examples

If does not have a specific size, an error is thrown.

–Method.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L740-L753
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/floatfuncs.jl#L19-L23
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/floatfuncs.jl#L29-L34
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L247-L269
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Returns the machine epsilon of the floating point type ( by default). This is defined as the gap between 1 and the

next largest value representable by , and is equivalent to .

–Method.

Returns the unit in last place (ulp) of . This is the distance between consecutive representable floating point values

at . In most cases, if the distance on either side of is different, then the larger of the two is taken, that is

The exceptions to this rule are the smallest and largest finite values (e.g. and for ), which round to the smaller of

the values.

The rationale for this behavior is that bounds the floating point rounding error. Under the default roundingmode,

if y is a real number andx is the nearest floating point number to y, then

|y − x| ≤ eps(x)/2.

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/float.jl#L727-L748
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/float.jl#L751-L791
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Determine a type big enough to hold values of each argument typewithout loss, whenever possible. In some cases,

where no type exists to which both types can be promoted losslessly, some loss is tolerated; for example, returns

even though strictly, not all values can be represented exactly as values.

– Function.

Specifieswhat type should be used by when given values of types and . This function should not be called directly,

but should have definitions added to it for new types as appropriate.

– Function.

Extract a named field from a of composite type. The syntax calls .

Examples

– Function.

Assign to a named field in of composite type. The syntax calls .

– Function.

The byte offset of field of a type relative to the data start. For example, we could use it in the followingmanner to

summarize information about a struct:

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/promotion.jl#L134-L153
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1734-L1740
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L621-L635
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1567-L1572
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– Function.

Determine the declared type of a field (specified by name or index) in a composite DataType .

Examples

– Function.

Return iff value is immutable. SeeMutable Composite Types for a discussion of immutability. Note that this func-

tion works on values, so if you give it a type, it will tell you that a value of is mutable.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reflection.jl#L361-L385
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reflection.jl#L388-L406
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reflection.jl#L245-L260
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– Function.

Return if is a ”plain data” type, meaning it is immutable and contains no references to other values. Typical exam-

ples are numeric types such as , , and .

Examples

– Function.

Determine whether ’s only subtypes are itself and . This means is a concrete type that can have instances.

Examples

– Function.

Compute a type that contains both and .

– Function.

Compute a type that contains the intersection of and . Usually this will be the smallest such type or one close to it.

– Type.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reflection.jl#L265-L280
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reflection.jl#L285-L305
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1106-L1110
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reflection.jl#L352-L357
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Return , which contains no run-time data. Types like this can be used to pass the information between functions

through the value , which must be an value. The intent of this construct is to be able to dispatch on constants

directly (at compile time) without having to test the value of the constant at run time.

Examples

–Macro.

Create an subtypewithname andenummember values of and withoptional assignedvalues of and , respectively.

can be used just like other types and enummember values as regular values, such as

Examples

, which defaults to , must be a primitive subtype of . Member values can be converted between the enum type and

. and perform these conversions automatically.

– Function.

Return a collection of all instances of the given type, if applicable. Mostly used for enumerated types (see ).

Example

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/essentials.jl#L352-L371
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/Enums.jl#L31-L52
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reflection.jl#L464-L477
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45.5 Generic Functions

– Type.

Abstract type of all functions.

– Function.

Determinewhether the given generic function has amethodmatching the given of argument typeswith the upper

bound of world age given by .

Examples

– Function.

Determine whether the given generic function has amethod applicable to the given arguments.

Examples

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/basedocs.jl#L712-L727
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reflection.jl#L964-L975
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1870-L1887
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Invoke a method for the given generic function matching the specified types, on the specified arguments. The ar-

guments must be compatible with the specified types. This allows invoking a method other than the most specific

matchingmethod, which is useful when the behavior of amore general definition is explicitly needed (often as part

of the implementation of amore specificmethod of the same function).

– Function.

Calls , but guarantees that themost recentmethod of will be executed. This is useful in specialized circumstances,

e.g. long-running event loops or callback functions that may call obsolete versions of a function . (The drawback is

that is somewhat slower than calling directly, and the type of the result cannot be inferred by the compiler.)

– Function.

Applies a function to the preceding argument. This allows for easy function chaining.

Examples

– Function.

Compose functions: i.e. means . The symbol can be entered in the Julia REPL (and most editors, appropriately

configured) by typing .

Examples

45.6 Syntax

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L925-L933
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/essentials.jl#L409-L418
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/operators.jl#L894-L904
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/operators.jl#L909-L926
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Evaluate an expression in the given module and return the result. Every (except those defined with ) has its own

1-argument definition of , which evaluates expressions in that module.

–Macro.

Evaluate anexpressionwith values interpolated into it using . If twoarguments areprovided, thefirst is themodule

to evaluate in.

– Function.

Load the file using , evaluate all expressions, and return the value of the last one.

– Function.

Only valid in the context of an returned from a macro. Prevents the macro hygiene pass from turning embedded

variables into gensym variables. See theMacros section of theMetaprogramming chapter of themanual for more

details and examples.

–Macro.

Eliminates array bounds checking within expressions.

In the example below the bound check of array A is skipped to improve performance.

Warning

Using may return incorrect results/crashes/corruption for out-of-bounds indices. The user is respon-

sible for checking it manually.

–Macro.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/expr.jl#L144-L150
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/essentials.jl#L73-L78
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/loading.jl#L486-L491
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/essentials.jl#L220-L226
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/essentials.jl#L236-L257
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Give a hint to the compiler that this function is worth inlining.

Small functions typically do not need the annotation, as the compiler does it automatically. By using on bigger

functions, an extra nudge can be given to the compiler to inline it. This is shown in the following example:

–Macro.

Prevents the compiler from inlining a function.

Small functions are typically inlined automatically. By using on small functions, auto-inlining can be prevented.

This is shown in the following example:

–Macro.

Applied to a function argument name, hints to the compiler that themethod should not be specialized for different

types of that argument. This is only a hint for avoiding excess code generation. Can be applied to an argument

within a formal argument list, or in the function body. When applied to an argument, the macro must wrap the

entire argument expression. Whenused in a function body, themacromust occur in statement position andbefore

any code.

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/expr.jl#L153-L170
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/expr.jl#L175-L191
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/essentials.jl#L21-L48
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Generates a symbol which will not conflict with other variable names.

–Macro.

Generates a gensym symbol for a variable. For example, is transformed into .

–Macro.

Tells the compiler to apply the polyhedral optimizer Polly to a function.

–Method.

Parse the expression string and return an expression (which could later be passed to eval for execution). is the

index of the first character to start parsing. If is (default), will try to consume asmuch input as it can; otherwise, it

will stop as soon as it has parsed a valid expression. Incomplete but otherwise syntactically valid expressions will

return . If is (default), syntax errors other than incomplete expressions will raise an error. If is , will return an

expression that will raise an error upon evaluation.

–Method.

Parse theexpressionstringgreedily, returninga singleexpression. Anerror is thrown if thereareadditional charac-

ters after the first expression. If is (default), syntax errors will raise an error; otherwise, will return an expression

that will raise an error upon evaluation.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/expr.jl#L5-L9
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/expr.jl#L18-L23
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/expr.jl#L215-L219
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L936-L954
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45.7 Nullables

– Type.

Wrap value in an object of type , which indicates whether a value is present. yields a non-empty wrapper and

yields an empty instance of a wrapper that might contain a value of type .

yields with stored in the result’s field.

Examples

–Method.

Attempt to access the value of . Returns the value if it is present; otherwise, returns if provided, or throws a if not.

Examples

– Function.

Return whether or not is null for ; return for all other .

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L957-L980
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/nullable.jl#L6-L32
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/nullable.jl#L77-L93
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– Function.

Return the value of for ; return for all other .

This method does not check whether or not is null before attempting to access the value of for (hence ”unsafe”).

Examples

45.8 System

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/nullable.jl#L139-L165
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/nullable.jl#L104-L135
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Run a command object, constructedwith backticks. Throws an error if anything goeswrong, including the process

exiting with a non-zero status.

– Function.

Run a command object asynchronously, returning the resulting object.

– Constant.

Used in a stream redirect to discard all data written to it. Essentially equivalent to /dev/null on Unix or NUL on

Windows. Usage:

– Function.

Run a command object, constructedwith backticks, and tell whether it was successful (exitedwith a code of 0). An

exception is raised if the process cannot be started.

– Function.

Determine whether a process is currently running.

– Function.

Determine whether a process has exited.

–Method.

Send a signal to a process. The default is to terminate the process.

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/process.jl#L653-L658
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1226-L1230
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/basedocs.jl#L700-L709
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/process.jl#L689-L694
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/process.jl#L743-L747
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/process.jl#L752-L756
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/process.jl#L720-L724
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Set the process title. No-op on some operating systems.

– Function.

Get the process title. On some systems, will always return an empty string.

– Function.

Starts running a command asynchronously, and returns a tuple (stdout,stdin,process) of the output stream and

input stream of the process, and the process object itself.

– Function.

Mark a command object so that running it will not throw an error if the result code is non-zero.

– Function.

Mark a command object so that it will be run in a newprocess group, allowing it to outlive the julia process, and not

have Ctrl-C interrupts passed to it.

– Type.

Construct a new object, representing an external program and arguments, from , while changing the settings of

the optional keyword arguments:

• : If (defaults to ), then the will not throw an error if the return code is nonzero.

• : If (defaults to ), then the will be run in a new process group, allowing it to outlive the process and not have

Ctrl-C passed to it.

• : If (defaults to ), then on Windows the will send a command-line string to the process with no quoting or

escaping of arguments, even arguments containing spaces. (OnWindows, arguments are sent to a program

as a single ”command-line” string, and programs are responsible for parsing it into arguments. By default,

empty arguments and arguments with spaces or tabs are quoted with double quotes in the command line,

and or are preceded by backslashes. is useful for launching programs that parse their command line in

nonstandard ways.) Has no effect on non-Windows systems.

• : If (defaults to ), then onWindows no new console window is displayed when the is executed. This has no

effect if a console is already open or on non-Windows systems.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/sysinfo.jl#L186-L190
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/sysinfo.jl#L174-L178
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/process.jl#L633-L638
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/process.jl#L180-L184
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/process.jl#L189-L193
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• : Set environment variables to use when running the . is either a dictionary mapping strings to strings, an

arrayof strings of the form , an arrayor tuple of pairs, or . In order tomodify (rather than replace) theexisting

environment, create by and then set as desired.

• : Specify a working directory for the command (instead of the current directory).

For any keywords that are not specified, the current settings from are used. Normally, to create a object in the

first place, one uses backticks, e.g.

– Function.

Set environment variables to use when running the given . is either a dictionary mapping strings to strings, an

array of strings of the form , or zero or more pair arguments. In order to modify (rather than replace) the existing

environment, create by and then setting as desired, or use .

The keyword argument can be used to specify a working directory for the command.

– Function.

Execute in an environment that is temporarily modified (not replaced as in ) by zero or more arguments . is gen-

erally used via the syntax. A value of can be used to temporarily unset an environment variable (if it is set). When

returns, the original environment has been restored.

–Method.

Create a pipeline from a data source to a destination. The source and destination can be commands, I/O streams,

strings, or results of other calls. At least oneargumentmustbeacommand. Strings refer tofilenames. Whencalled

with more than two arguments, they are chained together from left to right. For example is equivalent to . This

provides amore concise way to specify multi-stage pipelines.

Examples:

–Method.

Redirect I/O to or from the given . Keyword arguments specify which of the command’s streams should be redi-

rected. controlswhether file output appends to thefile. This is amore general versionof the2-argument function.

is equivalent to when is a command, and to when is another kind of data source.

Examples:

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/process.jl#L33-L67
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/process.jl#L214-L224
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/env.jl#L142-L150
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/process.jl#L283-L300
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– Function.

Get the local machine’s host name.

– Function.

Get the IP address of the local machine.

– Function.

Get Julia’s process ID.

–Method.

Get the system time in seconds since the epoch, with fairly high (typically, microsecond) resolution.

– Function.

Get the time in nanoseconds. The time corresponding to 0 is undefined, andwraps every 5.8 years.

– Function.

Set a timer to be read by the next call to or . Themacro call can also be used to time evaluation.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/process.jl#L248-L263
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libc.jl#L236-L240
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/socket.jl#L666-L670
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libc.jl#L227-L231
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1584-L1588
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/util.jl#L9-L13
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– Function.

Print and return the time elapsed since the last . Themacro call can also be used to time evaluation.

– Function.

Return, but do not print, the time elapsed since the last . Themacro calls and also return evaluation time.

–Macro.

A macro to execute an expression, printing the time it took to execute, the number of allocations, and the total

number of bytes its execution caused to be allocated, before returning the value of the expression.

See also , , , and .

–Macro.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/util.jl#L79-L95
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/util.jl#L129-L145
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/util.jl#L102-L117
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/util.jl#L212-L233
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This is a verboseversionof the macro. It first prints the same informationas , thenanynon-zeromemoryallocation

counters, and then returns the value of the expression.

See also , , , and .

–Macro.

A macro to execute an expression, and return the value of the expression, elapsed time, total bytes allocated,

garbage collection time, and an object with variousmemory allocation counters.

See also , , , and .

–Macro.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/util.jl#L247-L265
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/util.jl#L337-L374
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Amacro to evaluate an expression, discarding the resulting value, instead returning the number of seconds it took

to execute as a floating-point number.

See also , , , and .

–Macro.

A macro to evaluate an expression, discarding the resulting value, instead returning the total number of bytes al-

located during evaluation of the expression. Note: the expression is evaluated inside a local function, instead of

the current context, in order to eliminate the effects of compilation, however, there still may be some allocations

due to JIT compilation. This alsomakes the results inconsistentwith the macros, which do not try to adjust for the

effects of compilation.

See also , , , and .

– Type.

A singleton of this type provides a hash table interface to environment variables.

– Constant.

Reference to the singleton , providing a dictionary interface to system environment variables.

– Function.

Predicate for testing if the OS provides a Unix-like interface. See documentation in Handling Operating System

Variation.

– Function.

Predicate for testing if the OS is a derivative of AppleMacintosh OS X or Darwin. See documentation in Handling

Operating SystemVariation.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/util.jl#L277-L290
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/util.jl#L305-L322
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/env.jl#L61-L65
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/env.jl#L68-L73
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/sysinfo.jl#L206-L211
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/sysinfo.jl#L246-L251
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– Function.

Predicate for testing if theOS is a derivative of Linux. See documentation inHandlingOperating SystemVariation.

– Function.

Predicate for testing if theOS is a derivative of BSD. See documentation in Handling Operating SystemVariation.

– Function.

Predicate for testing if theOS is a derivative ofMicrosoftWindowsNT. See documentation inHandlingOperating

SystemVariation.

– Function.

Returns the version number for theWindowsNTKernel as a , i.e. , or if this is not running onWindows.

–Macro.

Partially evaluate an expression at parse time.

For example, will evaluate and insert either or into the expression. This is useful in caseswhere a constructwould

be invalid on other platforms, such as a to a non-existent function. and are also valid syntax.

45.9 Errors

– Function.

Raise an with the givenmessage.

– Function.

Throw an object as an exception.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/sysinfo.jl#L222-L227
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/sysinfo.jl#L230-L235
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/sysinfo.jl#L238-L243
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/sysinfo.jl#L266-L271
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/osutils.jl#L3-L13
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1439-L1443
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/error.jl#L19-L23
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– Function.

Throwan objectwithout changing the current exception backtrace. The default argument is the current exception

(if called within a block).

– Function.

Get a backtrace object for the current program point.

– Function.

Get the backtrace of the current exception, for use within blocks.

– Function.

Throw an if is . Also available as themacro .

–Macro.

Throw an if is . Preferred syntax for writing assertions. Message is optionally displayed upon assertion failure.

Examples

– Type.

The parameters to a function call do not match a valid signature. Argument is a descriptive error string.

– Type.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/error.jl#L42-L47
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/error.jl#L51-L55
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/error.jl#L58-L62
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/error.jl#L82-L87
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/error.jl#L90-L103
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/base.jl#L27-L32
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The asserted condition did not evaluate to . Optional argument is a descriptive error string.

– Type.

An indexing operation into an array, , tried to access an out-of-bounds element at index .

Examples

– Type.

The objects called do not havematching dimensionality. Optional argument is a descriptive error string.

– Type.

Integer division was attemptedwith a denominator value of 0.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/base.jl#L79-L84
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L896-L922
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/base.jl#L68-L73
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L2067-L2082
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– Type.

The argument to a function or constructor is outside the valid domain.

Examples

– Type.

Nomore data was available to read from a file or stream.

– Type.

Generic error type. The error message, in the field, may providemore specific details.

– Type.

Cannot exactly convert to type in amethod of function .

Examples

– Type.

The process was stopped by a terminal interrupt (CTRL+C).

– Type.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1322-L1338
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/base.jl#L61-L65
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L506-L510
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1300-L1312
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1680-L1684
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An indexing operation into an () or like object tried to access or delete a non-existent element.

– Type.

An error occurred while ing, ing, or a file. The error specifics should be available in the field.

– Type.

A method with the required type signature does not exist in the given generic function. Alternatively, there is no

uniquemost-specificmethod.

– Type.

An attempted access to a with no defined value.

Examples

– Type.

An operation allocated toomuchmemory for either the system or the garbage collector to handle properly.

– Type.

An operation tried to write tomemory that is read-only.

– Type.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/base.jl#L37-L42
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/base.jl#L95-L100
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/base.jl#L47-L52
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1694-L1709
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L881-L886
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L272-L276
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The result of an expression is too large for the specified type andwill cause a wraparound.

– Type.

The expression passed to the function could not be interpreted as a valid Julia expression.

– Type.

After a client Julia process has exited, further attempts to reference the dead child will throw this exception.

– Type.

The function call grew beyond the size of the call stack. This usually happens when a call recurses infinitely.

– Type.

A system call failed with an error code (in the global variable).

– Type.

A type assertion failure, or calling an intrinsic function with an incorrect argument type.

– Type.

The item or field is not defined for the given object.

– Type.

A symbol in the current scope is not defined.

– Type.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1511-L1515
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/base.jl#L17-L22
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/distributed/cluster.jl#L888-L893
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1358-L1363
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/base.jl#L3-L7
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1560-L1564
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L562-L566
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1453-L1457
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An error occurred when running amodule’s function. The actual error thrown is available in the field.

– Function.

Returns an anonymous function that calls function . If an exception arises, is repeatedly called again, each time

returns , after waiting the number of seconds specified in . should input ’s current state and the .

Examples

– Type.

A iterator of length whose elements exponentially increase at a rate in the interval * (1 ± ). The first element is

and all elements are clamped to .

45.10 Events

–Method.

Create a timer to call the given function. The is passed one argument, the timer object itself. The callback will be

invoked after the specified initial , and then repeatingwith the given interval. If is , the timer is only triggeredonce.

Times are in seconds. A timer is stopped and has its resources freed by calling on it.

– Type.

Create a timer that wakes up tasks waiting for it (by calling on the timer object) at a specified interval. Times are

in seconds. Waiting tasks are woken with an error when the timer is closed (by . Use to check whether a timer is

still active.

– Type.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/base.jl#L107-L112
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/error.jl#L152-L168
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/error.jl#L133-L139
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/event.jl#L424-L432
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/event.jl#L324-L330
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Create a async condition that wakes up tasks waiting for it (by calling on the object) when notified fromC by a call

to . Waiting tasks are wokenwith an error when the object is closed (by . Use to check whether it is still active.

–Method.

Create a async condition that calls the given function. The is passed one argument, the async condition object

itself.

45.11 Reflection

– Function.

Get the name of a as a .

Examples

– Function.

Get amodule’s enclosing . is its own parent, as is after .

Examples

–Macro.

Get the of the toplevel eval, which is the code is currently being read from.

– Function.

Get the fully-qualified name of amodule as a tuple of symbols. For example,

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/event.jl#L267-L275
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/event.jl#L297-L302
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reflection.jl#L5-L15
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reflection.jl#L18-L31
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reflection.jl#L34-L39
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– Function.

Get an array of the names exported by a , excluding deprecated names. If is true, then the list also includes non-

exported names defined in the module, deprecated names, and compiler-generated names. If is true, then names

explicitly imported from other modules are also included.

As a special case, all names defined in are considered ”exported”, since it is not idiomatic to explicitly export names

from .

– Function.

Get the number of fields in the given object.

– Function.

Get an array of the fields of a .

Examples

– Function.

Get the name of field of a .

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reflection.jl#L44-L57
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reflection.jl#L80-L91
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1390-L1394
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reflection.jl#L130-L142
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reflection.jl#L111-L124
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– Function.

Get the number of fields that an instance of the given typewould have. An error is thrown if the type is too abstract

to determine this.

– Function.

Determine themodule containing the definition of a .

Examples

– Function.

Get the name of a (potentially UnionAll-wrapped) (without its parent module) as a symbol.

Examples

– Function.

Determine whether a global is declared in a given .

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reflection.jl#L437-L442
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reflection.jl#L167-L185
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reflection.jl#L147-L163
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reflection.jl#L188-L192
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Get the name of a generic as a symbol, or .

–Method.

Determine themodule containing the (first) definition of a generic function.

–Method.

Determine themodule containing a given definition of a generic function.

–Method.

Returns a tuple giving the location of a generic definition.

–Method.

Returns a tuple giving the location of a definition.

–Macro.

Applied to a function or macro call, it evaluates the arguments to the specified call, and returns a tuple giving the

location for themethod that would be called for those arguments. It calls out to the function.

45.12 Internals

– Function.

Perform garbage collection. This should not generally be used.

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reflection.jl#L899-L903
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reflection.jl#L943-L948
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reflection.jl#L951-L955
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reflection.jl#L921-L925
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reflection.jl#L908-L912
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/interactiveutil.jl#L482-L488
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1460-L1464
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Control whether garbage collection is enabled using a boolean argument ( for enabled, for disabled). Returns pre-

viousGC state. Disabling garbage collection should be used onlywith extreme caution, as it can causememory use

to growwithout bound.

– Function.

Takes the expression and returns an equivalent expression with all macros removed (expanded) for executing in

module . The keyword controls whether deeper levels of nested macros are also expanded. This is demonstrated

in the example below:

–Macro.

Return equivalent expression with all macros removed (expanded).

There are differences between and .

• While takes a keyword argument ,

is always recursive. For a non recursivemacro version, see .

• While has an explicit argument, always

expands with respect to themodule in which it is called. This is best seen in the following example:

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1502-L1508
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/expr.jl#L57-L81
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With the expression expands where appears in the code (module in the example). With the expression expands

in themodule given as the first argument.

–Macro.

Non recursive version of .

– Function.

Takes the expression and returns an equivalent expression in lowered form for executing in module . See also .

– Function.

Returns an array of lowered ASTs for themethodsmatching the given generic function and type signature.

–Macro.

Evaluates thearguments to the functionormacrocall, determines their types, andcalls on theresultingexpression.

– Function.

Returns an array of lowered and type-inferredASTs for themethodsmatching the given generic function and type

signature. The keyword argument controls whether additional optimizations, such as inlining, are also applied.

–Macro.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/expr.jl#L90-L127
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/expr.jl#L133-L137
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/expr.jl#L48-L54
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reflection.jl#L559-L563
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/interactiveutil.jl#L507-L512
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reflection.jl#L809-L815
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Evaluates thearguments to the functionormacrocall, determines their types, andcalls on theresultingexpression.

– Function.

Prints lowered and type-inferred ASTs for themethodsmatching the given generic function and type signature to

which defaults to . The ASTs are annotated in such a way as to cause ”non-leaf” types to be emphasized (if color is

available, displayed in red). This serves as a warning of potential type instability. Not all non-leaf types are partic-

ularly problematic for performance, so the results need to be used judiciously. See for more information.

–Macro.

Evaluates thearguments to the functionormacrocall, determines their types, andcalls on theresultingexpression.

– Function.

Prints theLLVMbitcodesgenerated for running themethodmatching thegivengeneric functionandtypesignature

to which defaults to .

All metadata and dbg.* calls are removed from the printed bitcode. Use code_llvm_raw for the full IR.

–Macro.

Evaluates thearguments to the functionormacrocall, determines their types, andcalls on theresultingexpression.

– Function.

Prints the native assembly instructions generated for running themethodmatching the given generic function and

type signature to which defaults to . Switch assembly syntax using symbol parameter set to for AT&T syntax or

for Intel syntax. Output is AT&T syntax by default.

–Macro.

Evaluates thearguments to the functionormacrocall, determines their types, andcalls on theresultingexpression.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/interactiveutil.jl#L491-L496
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/interactiveutil.jl#L339-L348
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/interactiveutil.jl#L499-L504
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reflection.jl#L775-L782
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/interactiveutil.jl#L515-L520
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reflection.jl#L788-L794
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/interactiveutil.jl#L523-L528
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– Function.

Compile the given function for the argument tuple (of types) , but do not execute it.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1121-L1125


Chapter 46

Collections andData Structures

46.1 Iteration

Sequential iteration is implemented by themethods , , and . The general loop:

is translated into:

The object may be anything, and should be chosen appropriately for each iterable type. See themanual section on the

iteration interface for more details about defining a custom iterable type.

– Function.

Get initial iteration state for an iterable object.

Examples

– Function.

465

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1753-L1769
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Test whether we are done iterating.

Examples

– Function.

For a given iterable object and iteration state, return the current item and the next iteration state.

Examples

– Function.

Given the type of an iterator, returns one of the following values:

• if the length (number of elements) cannot be determined in advance.

• if there is a fixed, finite length.

• if there is a known length plus a notion of multidimensional shape (as for an array). In this case the function

is valid for the iterator.

• if the iterator yields values forever.

The default value (for iterators that do not define this function) is . This means that most iterators are assumed to

implement .

This trait is generally used to select betweenalgorithms thatpre-allocate space for their result, andalgorithms that

resize their result incrementally.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1780-L1796
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L858-L871
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– Function.

Given the type of an iterator, returns one of the following values:

• if the type of elements yielded by the iterator is not known in advance.

• if the element type is known, and would return ameaningful value.

is the default, since iterators are assumed to implement .

This trait is generally used to select between algorithms that pre-allocate a specific type of result, and algorithms

that pick a result type based on the types of yielded values.

Fully implemented by:

•

•

•

•

•

•

•

•

•

•

•

•

46.2 General Collections

– Function.

Determine whether a collection is empty (has no elements).

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/generator.jl#L57-L81
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/generator.jl#L89-L107
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– Function.

Remove all elements from a .

–Method.

Return the number of elements in the collection.

Use to get the last valid index of an indexable collection.

Examples

Fully implemented by:

•

•

•

•

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1277-L1290
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dict.jl#L292-L308
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1659-L1677
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•

•

•

•

•

•

•

46.3 Iterable Collections

– Function.

Determine whether an item is in the given collection, in the sense that it is to one of the values generated by it-

erating over the collection. Some collections need a slightly different definition; for example s check whether the

item to one of the elements. s look for pairs, and the key is compared using . To test for the presence of a key in a

dictionary, use or .

– Function.

Determine the type of the elements generated by iterating a collection of the given . For associative collection

types, this will be a . The definition is provided for convenience so that instances can be passed instead of types.

However the form that accepts a type argument should be defined for new types.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reduce.jl#L608-L632
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/array.jl#L58-L75
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– Function.

Returns a vector containing the highest index in for each value in that is amember of . The output vector contains

0 wherever is not amember of .

Examples

– Function.

Returns the indices of elements in collection that appear in collection .

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/array.jl#L1820-L1848
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/array.jl#L1905-L1930
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– Function.

Return an array containing only the unique elements of collection , as determined by , in the order that the first of

each set of equivalent elements originally appears.

Examples

Returns an array containing one value from for each unique value produced by applied to elements of .

Examples

Return unique regions of along dimension .

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/set.jl#L186-L201
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/set.jl#L243-L257
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– Function.

Remove duplicate items as determined by , then return themodified . will return the elements of in the order that

they occur. If you do not care about the order of the returned data, then calling will bemuchmore efficient as long

as the elements of can be sorted.

Examples

– Function.

Return if all values from are distinct when comparedwith .

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/multidimensional.jl#L1371-L1409
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/set.jl#L306-L339
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–Method.

Reduce the given collection with the given binary operator . must be a neutral element for that will be returned

for empty collections. It is unspecifiedwhether is used for non-empty collections.

Reductions for certain commonly-used operators have special implementations which should be used instead: , , ,

, , .

The associativity of the reduction is implementation dependent. This means that you can’t use non-associative

operations like because it is undefinedwhether should be evaluated as or . Use or instead for guaranteed left or

right associativity.

Some operations accumulate error, and parallelism will also be easier if the reduction can be executed in groups.

Futureversionsof Juliamightchangethealgorithm. Note that theelementsarenot reordered if youuseanordered

collection.

Examples

–Method.

Like . This cannot be used with empty collections, except for some special cases (e.g. when is one of , , , , , ) when

Julia can determine the neutral element of .

–Method.

Like , but with guaranteed left associativity. will be used exactly once.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/set.jl#L360-L376
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reduce.jl#L292-L317
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reduce.jl#L320-L331
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reduce.jl#L76-L86
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–Method.

Like , but using the first element of as . In general, this cannot be usedwith empty collections (see ).

–Method.

Like , but with guaranteed right associativity. will be used exactly once.

–Method.

Like , but using the last element of as . In general, this cannot be usedwith empty collections (see ).

–Method.

Returns the largest element in a collection.

–Method.

Compute themaximumvalue of an array over the given dimensions. See also the function to take themaximumof

two ormore arguments, which can be applied elementwise to arrays via .

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reduce.jl#L89-L99
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reduce.jl#L142-L152
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reduce.jl#L155-L165
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reduce.jl#L443-L455
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– Function.

Compute themaximum value of over the singleton dimensions of , andwrite results to .

Examples

–Method.

Returns the smallest element in a collection.

–Method.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reducedim.jl#L378-L400
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reducedim.jl#L403-L424
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reduce.jl#L458-L470
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Compute theminimum value of an array over the given dimensions. See also the function to take theminimum of

two ormore arguments, which can be applied elementwise to arrays via .

Examples

– Function.

Compute theminimum value of over the singleton dimensions of , andwrite results to .

Examples

–Method.

Compute both theminimum andmaximum element in a single pass, and return them as a 2-tuple.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reducedim.jl#L427-L450
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reducedim.jl#L453-L474
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–Method.

Compute theminimum andmaximum elements of an array over the given dimensions.

Examples

– Function.

Returns the index of the maximum element in a collection. If there are multiple maximal elements, then the first

onewill be returned. values are ignored, unless all elements are .

The collectionmust not be empty.

Examples

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reduce.jl#L478-L490
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/multidimensional.jl#L1481-L1506
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/array.jl#L1773-L1793
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Returns the indexof theminimumelement in a collection. If there aremultipleminimal elements, then thefirst one

will be returned. values are ignored, unless all elements are .

The collectionmust not be empty.

Examples

–Method.

Returns themaximumelementof the collection and its index. If there aremultiplemaximal elements, then thefirst

onewill be returned. values are ignored, unless all elements are .

The collectionmust not be empty.

Examples

–Method.

For an array input, returns the value and index of themaximum over the given region.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/array.jl#L1796-L1816
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/array.jl#L1695-L1715
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–Method.

Returns theminimumelement of the collection and its index. If there aremultipleminimal elements, then the first

onewill be returned. values are ignored, unless all elements are .

The collectionmust not be empty.

Examples

–Method.

For an array input, returns the value and index of theminimum over the given region.

Examples

– Function.

Find themaximumof and the corresponding linear index along singleton dimensions of and , and store the results

in and .

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reducedim.jl#L687-L705
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/array.jl#L1734-L1754
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reducedim.jl#L648-L666
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reducedim.jl#L676-L681
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Find theminimum of and the corresponding linear index along singleton dimensions of and , and store the results

in and .

– Function.

Sum the results of calling function on each element of .

Returns the sum of all elements in a collection.

Sum elements of an array over the given dimensions.

Examples

– Function.

Sum elements of over the singleton dimensions of , andwrite results to .

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reducedim.jl#L637-L642
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reduce.jl#L339-L348
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reduce.jl#L351-L360
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reducedim.jl#L282-L303
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– Function.

Returns the product of applied to each element of .

Returns the product of all elements of a collection.

Multiply elements of an array over the given dimensions.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reducedim.jl#L306-L327
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reduce.jl#L397-L406
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reduce.jl#L409-L418
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reducedim.jl#L330-L351
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– Function.

Multiply elements of over the singleton dimensions of , andwrite results to .

Examples

–Method.

Test whether any elements of a boolean collection are , returning as soon as the first value in is encountered

(short-circuiting).

–Method.

Test whether any values along the given dimensions of an array are .

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reducedim.jl#L354-L375
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reduce.jl#L506-L527
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– Function.

Test whether any values in along the singleton dimensions of are , andwrite results to .

Examples

–Method.

Testwhether all elements of a boolean collection are , returning as soon as the first value in is encountered (short-

circuiting).

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reducedim.jl#L525-L546
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reducedim.jl#L549-L571
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–Method.

Test whether all values along the given dimensions of an array are .

Examples

– Function.

Test whether all values in along the singleton dimensions of are , andwrite results to .

Examples

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reduce.jl#L530-L552
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reducedim.jl#L477-L498
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reducedim.jl#L501-L522
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Count the number of elements in for which predicate returns . If is omitted, counts the number of elements in

(which should be a collection of boolean values).

–Method.

Determinewhether predicate returns for any elements of , returning as soonas thefirst item in forwhich returns

is encountered (short-circuiting).

–Method.

Determinewhether predicate returns for all elements of , returning as soon as the first item in forwhich returns

is encountered (short-circuiting).

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reduce.jl#L675-L690
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reduce.jl#L555-L573
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reduce.jl#L581-L598
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Call function on each element of iterable . Formultiple iterable arguments, is called elementwise. should be used

instead of when the results of are not needed, for example in .

Examples

– Function.

Transform collection by applying to each element. For multiple collection arguments, apply elementwise.

Examples

Return applied to the value of if it has one, as a . If is null, then return a null value of type . is guaranteed to be

either or a concrete type. Whichever of these is chosen is an implementation detail, but typically the choice that

maximizes performance would be used. If has a value, then the return type is guaranteed to be of type .

Examples

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/abstractarray.jl#L1760-L1777
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/abstractarray.jl#L1925-L1945
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/nullable.jl#L328-L349
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Like , but stores the result in rather than a new collection. must be at least as large as the first collection.

Examples

–Method.

Apply function toeachelement in , and then reduce the result using thebinary function . mustbeaneutral element

for that will be returned for empty collections. It is unspecifiedwhether is used for non-empty collections.

is functionally equivalent to calling , but will in general execute faster since no intermediate collection needs to be

created. See documentation for and .

The associativity of the reduction is implementation-dependent. Additionally, some implementations may reuse

the return value of for elements that appear multiple times in . Use or instead for guaranteed left or right asso-

ciativity and invocation of for every value.

–Method.

Like . In general, this cannot be usedwith empty collections (see ).

–Method.

Like , but with guaranteed left associativity, as in . will be used exactly once.

–Method.

Like , but using the first element of as . In general, this cannot be usedwith empty collections (see ).

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/abstractarray.jl#L1968-L1986
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reduce.jl#L211-L231
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reduce.jl#L203-L208
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reduce.jl#L52-L57
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reduce.jl#L60-L65
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–Method.

Like , but with guaranteed right associativity, as in . will be used exactly once.

–Method.

Like , but using the first element of as . In general, this cannot be usedwith empty collections (see ).

– Function.

Get the first element of an iterable collection. Returns the start point of a even if it is empty.

Examples

– Function.

Get the last element of an ordered collection, if it can be computed inO(1) time. This is accomplished by calling to

get the last index. Returns the end point of a even if it is empty.

Examples

– Function.

Get the step size of a object.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reduce.jl#L120-L125
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reduce.jl#L128-L133
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/abstractarray.jl#L132-L146
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/abstractarray.jl#L153-L168
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–Method.

Return an of all items in a collection or iterator. For associative collections, returns . If the argument is array-like

or is an iterator with the trait, the result will have the same shape and number of dimensions as the argument.

Examples

–Method.

Return an with the given element type of all items in a collection or iterable. The result has the same shape and

number of dimensions as .

Examples

–Method.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/range.jl#L353-L370
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/array.jl#L443-L462
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/array.jl#L410-L424
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Determine whether every element of is also in , using .

Examples

– Function.

Return a copy of , removing elements for which is . The function is passed one argument.

Examples

Return a copy of , removing elements for which is . The function is passed two arguments (key and value).

Examples

Return null if either is null or is false, and otherwise.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/set.jl#L154-L170
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/array.jl#L1968-L1987
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/associative.jl#L339-L356


46.4. INDEXABLE COLLECTIONS 491

– Function.

Update , removing elements for which is . The function is passed one argument.

Examples

Update , removing elements for which is . The function is passed two arguments (key and value).

Example

46.4 Indexable Collections

–Method.

Retrieve the value(s) stored at the given key or index within a collection. The syntax is converted by the compiler

to .

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/nullable.jl#L297-L313
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/array.jl#L1990-L2006
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/associative.jl#L306-L325
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–Method.

Store the given value at the given key or index within a collection. The syntax is converted by the compiler to .

– Function.

Returns the last index of the collection.

Examples

Fully implemented by:

•

•

•

•

Partially implemented by:

•

•

•

•

•

•

•

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L96-L112
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1914-L1919
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L845-L855
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46.5 Associative Collections

is the standard associative collection. Its implementation uses as the hashing function for the key, and to determine

equality. Define these two functions for custom types to override how they are stored in a hash table.

is a special hash table where the keys are always object identities.

is a hash table implementationwhere the keys areweak references to objects, and thusmay be garbage collected even

when referenced in a hash table.

s can be created by passing pair objects constructed with to a constructor: . This call will attempt to infer type infor-

mation from the keys and values (i.e. this example creates a ). To explicitly specify types use the syntax . For example,

.

Associative collectionsmay also be created with generators. For example, .

Given a dictionary , the syntax returns the value of key (if it exists) or throws an error, and stores the key-value pair

in (replacing any existing value for the key ). Multiple arguments to are converted to tuples; for example, the syntax is

equivalent to , i.e. it refers to the value keyed by the tuple .

– Type.

constructs a hash table with keys of type and values of type .

Given a single iterable argument, constructs a whose key-value pairs are taken from 2-tuples generated by the

argument.

Alternatively, a sequence of pair arguments may be passed.

– Type.

constructs a hash table where the keys are (always) object identities. Unlike it is not parameterized on its key and

value type and thus its is always .

See for further help.

– Type.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dict.jl#L68-L91
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/associative.jl#L426-L434
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constructs a hash table where the keys are weak references to objects, and thus may be garbage collected even

when referenced in a hash table.

See for further help.

– Function.

Determine whether a collection has amapping for a given key.

–Method.

Return the value stored for the given key, or the given default value if nomapping for the key is present.

Examples

– Function.

Return the value stored for the given key, or if no mapping for the key is present, return . Use to also store the

default value in the dictionary.

This is intended to be called using block syntax

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/weakkeydict.jl#L5-L13
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dict.jl#L493-L510
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1128-L1144
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–Method.

Return the value stored for the given key, or if nomapping for the key is present, store , and return .

Examples

–Method.

Return the value stored for the given key, or if nomapping for the key is present, store , and return .

This is intended to be called using block syntax:

– Function.

Return the keymatching argument if one exists in , otherwise return .

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1147-L1161
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1605-L1628
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1631-L1644
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– Function.

Delete themapping for the given key in a collection, and return the collection.

Examples

–Method.

Delete and return themapping for if it exists in , otherwise return , or throw an error if is not specified.

Examples

– Function.

Return an iterator over all keys in a collection. returns an array of keys. Since the keys are stored internally in a

hash table, the order in which they are returned may vary. But and both iterate and return the elements in the

same order.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dict.jl#L514-L531
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1079-L1095
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1999-L2020


46.5. ASSOCIATIVE COLLECTIONS 497

– Function.

Return an iterator over all values in a collection. returns an array of values. Since the values are stored internally

in a hash table, the order in which they are returned may vary. But and both iterate and return the elements in

the same order.

Examples

– Function.

Construct a merged collection from the given collections. If necessary, the types of the resulting collection will be

promoted to accommodate the types of the merged collections. If the same key is present in another collection,

the value for that key will be the value it has in the last collection listed.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/associative.jl#L63-L85
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/associative.jl#L89-L111
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Construct a merged collection from the given collections. If necessary, the types of the resulting collection will be

promoted to accommodate the types of the merged collections. Values with the same key will be combined using

the combiner function.

Examples

–Method.

Update collection with pairs from the other collections. See also .

Examples

–Method.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/associative.jl#L230-L262
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/associative.jl#L266-L292
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/associative.jl#L122-L142
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Update collectionwith pairs from the other collections. Valueswith the same keywill be combined using the com-

biner function.

Examples

– Function.

Suggest that collection reserve capacity for at least elements. This can improve performance.

– Function.

Get the key type of an associative collection type. Behaves similarly to .

Examples

– Function.

Get the value type of an associative collection type. Behaves similarly to .

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/associative.jl#L152-L181
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L874-L878
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/associative.jl#L200-L210
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Fully implemented by:

•

•

•

Partially implemented by:

•

•

•

•

•

46.6 Set-Like Collections

– Type.

Construct a of the values generated by the given iterable object, or an empty set. Should be used instead of for

sparse integer sets, or for sets of arbitrary objects.

– Type.

Construct a sorted set of positive s generated by the given iterable object, or an empty set. Implemented as a bit

string, and therefore designed for dense integer sets. Only s greater than 0 can be stored. If the set will be sparse

(for example holding a few very large integers), use instead.

– Function.

Construct the union of two ormore sets. Maintains order with arrays.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/associative.jl#L215-L225
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/set.jl#L11-L17
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/intset.jl#L8-L15
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– Function.

Union each element of into set in-place.

Examples

– Function.

Construct the intersection of two or more sets. Maintains order and multiplicity of the first argument for arrays

and ranges.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L710-L737
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/set.jl#L79-L93
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– Function.

Construct the set of elements in but not . Maintains order with arrays. Note that both arguments must be collec-

tions, and both will be iterated over. In particular, where is a potential member of , will not work in general.

Examples

– Function.

Remove each element of from set in-place.

Examples

– Function.

Construct the symmetric difference of elements in the passed in sets or arrays. Maintains order with arrays.

Examples

–Method.

The set is destructively modified to toggle the inclusion of integer .

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1712-L1731
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/array.jl#L2070-L2085
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/set.jl#L133-L147
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/array.jl#L2106-L2120
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/intset.jl#L159-L163
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–Method.

For each element in , destructively toggle its inclusion in set .

–Method.

For each element in , destructively toggle its inclusion in set .

– Function.

Intersects sets and and overwrites the set with the result. If needed, will be expanded to the size of .

– Function.

Determine whether every element of is also in , using .

Examples

Fully implemented by:

•

•

Partially implemented by:

•

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/intset.jl#L153-L157
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/intset.jl#L153-L157
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/intset.jl#L134-L139
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/set.jl#L154-L170
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46.7 Dequeues

– Function.

Insert one ormore at the end of .

Examples

Use to add all the elements of another collection to . The result of the preceding example is equivalent to .

–Method.

Remove an item in and return it. If is an ordered container, the last item is returned.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L299-L319
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L2023-L2057
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– Function.

Insert one ormore at the beginning of .

Examples

– Function.

Remove the first from .

Examples

– Function.

Insert an into at the given . is the index of in the resulting .

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/array.jl#L838-L854
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1196-L1223
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– Function.

Remove the item at the given and return themodified . Subsequent items are shifted to fill the resulting gap.

Examples

Remove the itemsat the indicesgivenby , and return themodified . Subsequent itemsare shifted tofill the resulting

gap.

canbe either an iterator or a collectionof sorted andunique integer indices, or a boolean vector of the same length

as with indicating entries to delete.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/array.jl#L871-L888
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/array.jl#L898-L914
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/array.jl#L923-L952
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– Function.

Remove the item at the given index, and return the removed item. Subsequent items are shifted left to fill the

resulting gap. If specified, replacement values from an ordered collection will be spliced in place of the removed

item.

Examples

To insert before an index without removing any items, use .

Remove items in the specified index range, and returnacollectioncontaining the removed items. Subsequent items

are shifted left to fill the resulting gap. If specified, replacement values from an ordered collection will be spliced

in place of the removed items.

To insert before an index without removing any items, use .

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/array.jl#L1000-L1048
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– Function.

Resize to contain elements. If is smaller than the current collection length, the first elements will be retained. If

is larger, the new elements are not guaranteed to be initialized.

Examples

– Function.

Add the elements of to the end of .

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/array.jl#L1067-L1095
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/array.jl#L781-L810
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Use toadd individual itemsto whicharenotalreadythemselves inanothercollection. Theresult isof thepreceding

example is equivalent to .

– Function.

Insert the elements of to the beginning of .

Examples

Fully implemented by:

• (a.k.a. 1-dimensional )

• (a.k.a. 1-dimensional )

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L569-L595
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/array.jl#L730-L743




Chapter 47

Mathematics

47.1 Mathematical Operators

–Method.

Unaryminus operator.

– Function.

Addition operator. calls this function with all arguments, i.e. .

–Method.

Subtraction operator.

–Method.

Multiplication operator. calls this function with all arguments, i.e. .

– Function.

Right division operator: multiplication of by the inverse of on the right. Gives floating-point results for integer

arguments.

–Method.

511

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L66-L70
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1907-L1911
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L73-L77
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1575-L1581
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L394-L399
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Left division operator: multiplication of by the inverse of on the left. Gives floating-point results for integer argu-

ments.

Examples

–Method.

Exponentiation operator. If is a matrix, computesmatrix exponentiation.

If is an literal (e.g. in or in ), the Julia code is transformedby the compiler to , to enable compile-time specialization

on the value of the exponent. (As a default fallback we have , where usually unless has been defined in the calling

namespace.)

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/operators.jl#L448-L474
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/promotion.jl#L254-L280
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Computes without rounding the intermediate result . On some systems this is significantlymore expensive than .

is used to improve accuracy in certain algorithms. See .

– Function.

Combined multiply-add, computes allowing the add and multiply to be contracted with each other or ones from

other and to form if the transformation can improve performance. The result can be different on different ma-

chines and can also be different on the same machine due to constant propagation or other optimizations. See

.

Examples

–Method.

Return themultiplicative inverse of , such that or yields (themultiplicative identity) up to roundoff errors.

If is a number, this is essentially the same as , but for some types may be slightly more efficient.

Examples

– Function.

The quotient from Euclidean division. Computes , truncated to an integer.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1890-L1896
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/math.jl#L965-L983
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/number.jl#L156-L179
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– Function.

Largest integer less than or equal to .

Examples

– Function.

Smallest integer larger than or equal to .

Examples

– Function.

The reduction of modulo , or equivalently, the remainder of after floored division by , i.e.

if computedwithout intermediate rounding.

The result will have the same sign as , andmagnitude less than (with some exceptions, see note below).

Note

When used with floating point values, the exact result may not be representable by the type, and so

rounding error may occur. In particular, if the exact result is very close to , then it may be rounded to .

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/operators.jl#L640-L654
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/operators.jl#L588-L598
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/operators.jl#L601-L611
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Find such that (mod n), where n is the number of integers representable in , and is an integer in . If can represent

any integer (e.g. ), then this operation corresponds to a conversion to .

– Function.

Remainder from Euclidean division, returning a value of the same sign as , and smaller in magnitude than . This

value is always exact.

Examples

– Function.

Compute the remainder of after integer division by , with the quotient rounded according to the rounding mode .

In other words, the quantity

without any intermediate rounding. This internally uses a high precision approximation of 2π, and so will give a

more accurate result than

• if , then the result is in the interval [−, ]. This will generally be themost accurate result.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/int.jl#L170-L206
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/int.jl#L482-L496
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/operators.jl#L619-L636
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• if , then the result is in the interval [0, 2] if is positive,. or [−2, 0] otherwise.

• if , then the result is in the interval [0, 2].

• if , then the result is in the interval [−2, 0].

Examples

– Function.

Modulus after division by , returning in the range [0, 2).

This function computes a floating point representation of the modulus after division by numerically exact , and is

therefore not exactly the same as , which would compute the modulus of relative to division by the floating-point

number .

Examples

– Function.

The quotient and remainder from Euclidean division. Equivalent to or .

– Function.

The floored quotient andmodulus after division. Equivalent to .

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/math.jl#L799-L828
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/math.jl#L946-L960
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/number.jl#L68-L81
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/number.jl#L84-L88
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Flooring division, returning a value consistent with

See also: .

Examples

– Function.

Modulus after flooring division, returning a value such that in the range (0, y] for positive and in the range [y, 0)
for negative .

Examples

– Function.

Return .

See also: , .

– Function.

Divide two integers or rational numbers, giving a result.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/operators.jl#L678-L698
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/operators.jl#L658-L672
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/operators.jl#L703-L709
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/rational.jl#L27-L39
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– Function.

Approximate floating point number as a number with components of the given integer type. The result will differ

from by nomore than . If is not provided, it defaults to .

– Function.

Numerator of the rational representation of .

– Function.

Denominator of the rational representation of .

– Function.

Leftbit shiftoperator, . For , theresult is shifted leftby bits, fillingwiths. This isequivalent to . For , this isequivalent

to .

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/rational.jl#L112-L129
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/rational.jl#L192-L204
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/rational.jl#L208-L220
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See also , .

Leftbit shiftoperator, . For , theresult is withelementsshifted positionsbackwards, fillingwith values. If , elements

are shifted forwards. Equivalent to .

Examples

– Function.

Right bit shift operator, . For , the result is shifted right by bits, where , filling with s if , s if , preserving the sign of .

This is equivalent to . For , this is equivalent to .

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/operators.jl#L481-L500
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/bitarray.jl#L1432-L1466
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See also , .

Right bit shift operator, . For , the result is with elements shifted positions forward, fillingwith values. If , elements

are shifted backwards. Equivalent to .

Examples

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/operators.jl#L510-L539
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/bitarray.jl#L1394-L1428
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Unsigned right bit shift operator, . For , the result is shifted right by bits, where , fillingwith s. For , this is equivalent

to .

For integer types, this is equivalent to . For integer types, this is equivalent to .

Examples

s are treated as if having infinite size, so no filling is required and this is equivalent to .

See also , .

Unsigned right bitshift operator, . Equivalent to . See for details and examples.

– Function.

Called by syntax for constructing ranges.

Range operator. constructs a range from to with a step size of 1, and is similar but uses a step size of . These

syntaxes call the function . The colon is also used in indexing to select whole dimensions.

– Function.

Construct a range by length, given a starting value and optional step (defaults to 1).

– Type.

Define an that behaves like , with the added distinction that the lower limit is guaranteed (by the type system) to

be 1.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/operators.jl#L549-L575
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/bitarray.jl#L1469-L1474
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/range.jl#L18-L27
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/range.jl#L39-L45
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/range.jl#L55-L59
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/range.jl#L166-L172
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– Type.

A range where produces values of type (in the second form, is deduced automatically), parameterized by a erence

value, a , and the gth. By default is the starting value , but alternatively you can supply it as the value of for some

other index . In conjunction with this can be used to implement ranges that are free of roundoff error.

– Function.

Generic equality operator, giving a single result. Falls back to . Should be implemented for all types with a notion

of equality, based on the abstract value that an instance represents. For example, all numeric types are compared

by numeric value, ignoring type. Strings are compared as sequences of characters, ignoring encoding.

Follows IEEE semantics for floating-point numbers.

Collections should generally implement by calling recursively on all contents.

New numeric types should implement this function for two arguments of the new type, and handle comparison to

other types via promotion rules where possible.

– Function.

Not-equals comparisonoperator. Alwaysgives theopposite answeras . Newtypes shouldgenerally not implement

this, and rely on the fallback definition instead.

Examples

– Function.

Equivalent to .

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/range.jl#L181-L192
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1366-L1380
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/operators.jl#L116-L131
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– Function.

Less-than comparison operator. Newnumeric types should implement this function for two arguments of the new

type. Because of the behavior of floating-point NaN values, implements a partial order. Types with a canonical

partial order should implement , and types with a canonical total order should implement .

Examples

– Function.

Less-than-or-equals comparison operator.

Examples

– Function.

Greater-than comparison operator. Generally, new types should implement instead of this function, and rely on

the fallback definition .

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/operators.jl#L160-L176
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/operators.jl#L180-L199
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/operators.jl#L225-L245
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– Function.

Greater-than-or-equals comparison operator.

Examples

– Function.

Return -1, 0, or 1 depending on whether is less than, equal to, or greater than , respectively. Uses the total order

implemented by . For floating-point numbers, uses but throws an error for unordered arguments.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/operators.jl#L202-L222
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/operators.jl#L249-L269
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/operators.jl#L294-L313
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– Function.

Bitwise not.

Examples

– Function.

Bitwise and.

Examples

– Function.

Bitwise or.

Examples

– Function.

Bitwise exclusive or of and . The infix operation is a synonym for , and can be typed by tab-completing or in the

Julia REPL.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/int.jl#L245-L261
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/int.jl#L264-L277
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/int.jl#L280-L293
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– Function.

Boolean not.

Examples

Predicate functionnegation: when the argumentof is a function, it returns a functionwhich computes theboolean

negation of .

Examples

– Keyword.

Short-circuiting boolean AND.

– Keyword.

Short-circuiting booleanOR.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/bool.jl#L45-L62
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/bool.jl#L17-L34
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/operators.jl#L930-L947
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/basedocs.jl#L543-L547
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/basedocs.jl#L550-L554
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47.2 Mathematical Functions

– Function.

Inexact equality comparison: if . The default is zero and the default depends on the types of and . The keyword

argument determines whether or not NaN values are considered equal (defaults to false).

For real or complex floating-point values, defaults to . This corresponds to requiring equality of about half of the

significand digits. For other types, defaults to zero.

and mayalso be arrays of numbers, inwhich case defaults to butmaybe changedbypassing a keyword argument.

(For numbers, is the same thing as .) When and are arrays, if is not finite (i.e. or ), the comparison falls back to

checking whether all elements of and are approximately equal component-wise.

The binary operator is equivalent to with the default arguments, and is equivalent to .

Examples

– Function.

Compute sine of , where is in radians.

– Function.

Compute cosine of , where is in radians.

– Function.

Compute sine and cosine of , where is in radians.

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/floatfuncs.jl#L203-L234
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/math.jl#L326-L330
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/math.jl#L333-L337
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/math.jl#L448-L452
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Compute tangent of , where is in radians.

– Function.

Compute sine of , where is in degrees.

– Function.

Compute cosine of , where is in degrees.

– Function.

Compute tangent of , where is in degrees.

– Function.

Compute sin(πx)more accurately than , especially for large .

– Function.

Compute cos(πx)more accurately than , especially for large .

– Function.

Compute hyperbolic sine of .

– Function.

Compute hyperbolic cosine of .

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/math.jl#L340-L344
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/special/trig.jl#L434-L436
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/special/trig.jl#L434-L436
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/special/trig.jl#L434-L436
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/special/trig.jl#L101-L105
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/special/trig.jl#L164-L168
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/math.jl#L207-L211
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/math.jl#L214-L218


47.2. MATHEMATICAL FUNCTIONS 529

Compute hyperbolic tangent of .

– Function.

Compute the inverse sine of , where the output is in radians.

– Function.

Compute the inverse cosine of , where the output is in radians

– Function.

Compute the inverse tangent of , where the output is in radians.

– Function.

Compute the inverse tangent of , using the signs of both and to determine the quadrant of the return value.

– Function.

Compute the inverse sine of , where the output is in degrees.

– Function.

Compute the inverse cosine of , where the output is in degrees.

– Function.

Compute the inverse tangent of , where the output is in degrees.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/math.jl#L221-L225
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/math.jl#L347-L351
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/math.jl#L354-L358
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/math.jl#L228-L232
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/math.jl#L528-L533
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/special/trig.jl#L444-L447
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/special/trig.jl#L444-L447
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/special/trig.jl#L444-L447
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– Function.

Compute the secant of , where is in radians.

– Function.

Compute the cosecant of , where is in radians.

– Function.

Compute the cotangent of , where is in radians.

– Function.

Compute the secant of , where is in degrees.

– Function.

Compute the cosecant of , where is in degrees.

– Function.

Compute the cotangent of , where is in degrees.

– Function.

Compute the inverse secant of , where the output is in radians.

– Function.

Compute the inverse cosecant of , where the output is in radians.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/special/trig.jl#L320-L324
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/special/trig.jl#L320-L324
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/special/trig.jl#L320-L324
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/special/trig.jl#L330-L334
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/special/trig.jl#L330-L334
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/special/trig.jl#L330-L334
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/special/trig.jl#L344-L346
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/special/trig.jl#L344-L346
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– Function.

Compute the inverse cotangent of , where the output is in radians.

– Function.

Compute the inverse secant of , where the output is in degrees.

– Function.

Compute the inverse cosecant of , where the output is in degrees.

– Function.

Compute the inverse cotangent of , where the output is in degrees.

– Function.

Compute the hyperbolic secant of .

– Function.

Compute the hyperbolic cosecant of .

– Function.

Compute the hyperbolic cotangent of .

– Function.

Compute the inverse hyperbolic sine of .

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/special/trig.jl#L344-L346
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/special/trig.jl#L444-L447
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/special/trig.jl#L444-L447
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/special/trig.jl#L444-L447
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/special/trig.jl#L325-L329
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/special/trig.jl#L325-L329
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/special/trig.jl#L325-L329
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/math.jl#L235-L239
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– Function.

Compute the inverse hyperbolic cosine of .

– Function.

Compute the inverse hyperbolic tangent of .

– Function.

Compute the inverse hyperbolic secant of .

– Function.

Compute the inverse hyperbolic cosecant of .

– Function.

Compute the inverse hyperbolic cotangent of .

– Function.

Compute sin(πx)/(πx) ifx 6= 0, and 1 ifx = 0.

– Function.

Compute cos(πx)/x− sin(πx)/(πx2) ifx 6= 0, and 0 ifx = 0. This is the derivative of .

– Function.

Convert from degrees to radians.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/math.jl#L361-L365
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/math.jl#L368-L372
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/special/trig.jl#L347-L349
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/special/trig.jl#L347-L349
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/special/trig.jl#L347-L349
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/special/trig.jl#L290-L294
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/special/trig.jl#L301-L306
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– Function.

Convert from radians to degrees.

– Function.

Compute the hypotenuse
√
x2 + y2 avoiding overflow and underflow.

Examples

Compute the hypotenuse
√∑

x2
i avoiding overflow and underflow.

–Method.

Compute the natural logarithm of . Throws for negative arguments. Use complex negative arguments to obtain

complex results.

There is an experimental variant in the module, which is typically faster andmore accurate.

–Method.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/math.jl#L155-L164
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/math.jl#L143-L152
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/math.jl#L474-L494
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/math.jl#L521-L525
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/math.jl#L375-L383
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Compute the base logarithm of . Throws for negative arguments.

Note

If is a power of 2 or 10, or should be used, as these will typically be faster and more accurate. For

example,

– Function.

Compute the logarithm of to base 2. Throws for negative arguments.

Examples

– Function.

Compute the logarithm of to base 10. Throws for negative arguments.

Examples

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/math.jl#L173-L198
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/math.jl#L386-L400
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/math.jl#L403-L417
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Accurate natural logarithm of . Throws for arguments less than -1.

There is an experimental variant in the module, which is typically faster andmore accurate.

Examples

– Function.

Return such that has amagnitude in the interval [1/2, 1) or 0, and is equal tox× 2exp.

– Function.

Compute the natural base exponential of , in other words ex.

– Function.

Compute the base 2 exponential of , in other words 2x.

Examples

– Function.

Compute 10x.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/math.jl#L420-L437
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/math.jl#L656-L661
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/special/exp.jl#L62-L71
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/math.jl#L275-L285
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– Function.

Computex× 2n.

Examples

– Function.

Return a tuple (fpart,ipart) of the fractional and integral parts of a number. Both parts have the same sign as the

argument.

Examples

– Function.

Accurately compute ex − 1.

–Method.

Rounds to an integer value according to the provided , returning a value of the same type as . When not specifying

a roundingmode the global modewill be used (see ), which by default is round to the nearest integer ( mode), with

ties (fractional values of 0.5) being rounded to the nearest even integer.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L452-L465
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/math.jl#L552-L562
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/math.jl#L715-L726
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/math.jl#L242-L246
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The optional argument will change how the number gets rounded.

converts the result to type , throwing an if the value is not representable.

rounds to the specified number of digits after the decimal place (or before if negative). rounds using a base other

than 10.

Examples

Note

Rounding to specified digits in bases other than 2 can be inexact when operating on binary floating

point numbers. For example, the value represented by is actually less than 1.15, yetwill be rounded to

1.2.





Chapter 48

Examples

– Type.

A type used for controlling the rounding mode of floating point operations (via / functions), or as optional argu-

ments for rounding to the nearest integer (via the function).

Currently supported roundingmodes are:

• (default)

•

•

•

• ( only)

•

•

– Constant.

The default roundingmode. Rounds to the nearest integer, with ties (fractional values of 0.5) being rounded to the

nearest even integer.

539

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/floatfuncs.jl#L54-L114
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/rounding.jl#L26-L43
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/rounding.jl#L46-L51
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– Constant.

Rounds to nearest integer, with ties rounded away from zero (C/C++ behaviour).

– Constant.

Rounds to nearest integer, with ties rounded toward positive infinity (Java/JavaScript behaviour).

– Constant.

using this roundingmode is an alias for .

– Constant.

using this roundingmode is an alias for .

– Constant.

using this roundingmode is an alias for .

–Method.

Returns the nearest integral value of the same type as the complex-valued to , breaking ties using the specified s.

Thefirst isused for rounding thereal componentswhile thesecond isused for rounding the imaginarycomponents.

– Function.

returns the nearest integral value of the same type as that is greater than or equal to .

converts the result to type , throwing an if the value is not representable.

and work as for .

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/rounding.jl#L77-L82
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/rounding.jl#L85-L90
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/rounding.jl#L54-L58
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/rounding.jl#L61-L65
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/rounding.jl#L68-L72
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/complex.jl#L931-L938
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L279-L289
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returns the nearest integral value of the same type as that is less than or equal to .

converts the result to type , throwing an if the value is not representable.

and work as for .

– Function.

returns the nearest integral value of the same type as whose absolute value is less than or equal to .

converts the result to type , throwing an if the value is not representable.

and work as for .

– Function.

returns the nearest integral value of type whose absolute value is less than or equal to . If the value is not repre-

sentable by , an arbitrary value will be returned.

– Function.

Rounds (in the sense of ) so that there are significant digits, under a base representation, default 10.

Examples

– Function.

Return theminimum of the arguments. See also the function to take theminimum element from a collection.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L493-L503
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L790-L800
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1467-L1473
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/floatfuncs.jl#L150-L164
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/operators.jl#L364-L375
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– Function.

Return themaximum of the arguments. See also the function to take themaximum element from a collection.

Examples

– Function.

Return . See also: that returns .

Examples

– Function.

Return if . If , return . If , return . Arguments are promoted to a common type.

– Function.

Restrict values in to the specified range, in-place. See also .

– Function.

The absolute value of .

When is applied to signed integers, overflowmay occur, resulting in the return of a negative value. This overflow

occurs only when is applied to theminimum representable value of a signed integer. That is, when , , not as might

be expected.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/operators.jl#L350-L361
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/operators.jl#L378-L388
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/math.jl#L52-L65
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/math.jl#L72-L77
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– Function.

Calculates , checking for overflow errors where applicable. For example, standard two’s complement signed inte-

gers (e.g. ) cannot represent , thus leading to an overflow.

The overflow protectionmay impose a perceptible performance penalty.

– Function.

Calculates , checking for overflow errors where applicable. For example, standard two’s complement signed inte-

gers (e.g. ) cannot represent , thus leading to an overflow.

The overflow protectionmay impose a perceptible performance penalty.

– Function.

Calculates , checking for overflow errors where applicable.

The overflow protectionmay impose a perceptible performance penalty.

– Function.

Calculates , checking for overflow errors where applicable.

The overflow protectionmay impose a perceptible performance penalty.

– Function.

Calculates , checking for overflow errors where applicable.

The overflow protectionmay impose a perceptible performance penalty.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/int.jl#L99-L120
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/checked.jl#L107-L115
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/checked.jl#L81-L89
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/checked.jl#L155-L161
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/checked.jl#L212-L218
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/checked.jl#L277-L283
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– Function.

Calculates , checking for overflow errors where applicable.

The overflow protectionmay impose a perceptible performance penalty.

– Function.

Calculates , checking for overflow errors where applicable.

The overflow protectionmay impose a perceptible performance penalty.

– Function.

Calculates , checking for overflow errors where applicable.

The overflow protectionmay impose a perceptible performance penalty.

– Function.

Calculates , checking for overflow errors where applicable.

The overflow protectionmay impose a perceptible performance penalty.

– Function.

Calculates , checking for overflow errors where applicable.

The overflow protectionmay impose a perceptible performance penalty.

– Function.

Calculates , with the flag indicating whether overflow has occurred.

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/checked.jl#L306-L312
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/checked.jl#L315-L321
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/checked.jl#L324-L330
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/checked.jl#L333-L339
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/checked.jl#L342-L348
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/checked.jl#L128-L132
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Calculates , with the flag indicating whether overflow has occurred.

– Function.

Calculates , with the flag indicating whether overflow has occurred.

– Function.

Squared absolute value of .

– Function.

Return which has themagnitude of and the same sign as .

Examples

– Function.

Return zero if andx/|x| otherwise (i.e., ±1 for real ).

– Function.

Returns if the value of the sign of is negative, otherwise .

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/checked.jl#L187-L191
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/checked.jl#L227-L231
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/number.jl#L123-L132
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L605-L618
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/number.jl#L113-L117
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– Function.

Return with its sign flipped if is negative. For example .

– Function.

Return
√
x. Throws for negative arguments. Use complex negative arguments instead. The prefix operator is

equivalent to .

– Function.

Integer square root: the largest integer such that .

– Function.

Return the cube root of , i.e. x1/3. Negative values are accepted (returning the negative real root whenx < 0).

The prefix operator is equivalent to .

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/number.jl#L91-L110
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/number.jl#L135-L147
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/math.jl#L466-L471
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/intfuncs.jl#L798-L807


547

–Method.

Return the real part of the complex number .

Examples

– Function.

Return the imaginary part of the complex number .

Examples

– Function.

Return both the real and imaginary parts of the complex number .

Examples

– Function.

Compute the complex conjugate of a complex number .

Examples

Returns a lazy view of the input, where each element is conjugated.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/math.jl#L260-L272
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/complex.jl#L53-L63
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/complex.jl#L66-L76
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/complex.jl#L81-L91
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/complex.jl#L231-L241
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– Function.

Compute the phase angle in radians of a complex number .

Examples

– Function.

Return exp(iz).

Examples

– Function.

Number of ways to choose out of items.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/rowvector.jl#L87-L102
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/complex.jl#L482-L498
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/complex.jl#L465-L475
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/intfuncs.jl#L829-L842
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– Function.

Factorial of . If is an , the factorial is computed as an integer (promoted to at least 64 bits). Note that thismay over-

flow if is not small, but you can use to compute the result exactly in arbitrary precision. If is not an , is equivalent

to .

– Function.

Greatest common (positive) divisor (or zero if and are both zero).

Examples

– Function.

Least common (non-negative) multiple.

Examples

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/number.jl#L281-L303
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/intfuncs.jl#L5-L18
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/intfuncs.jl#L51-L64
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Computes the greatest common (positive) divisor of and and their Bézout coefficients, i.e. the integer coefficients

and that satisfyux+ vy = d = gcd(x, y). gcdx(x, y) returns (d, u, v).

Examples

Note

Bézout coefficients are not uniquely defined. returns the minimal Bézout coefficients that are com-

putedby theextendedEuclideanalgorithm. (Ref: D.Knuth, TAoCP,2/e, p. 325,AlgorithmX.)For signed

integers, these coefficients and are minimal in the sense that |u| < |y/d| and |v| < |x/d|. Further-
more, the signsof and are chosen so that is positive. For unsigned integers, the coefficients and might

be near their , and the identity then holds only via the unsigned integers’ modulo arithmetic.

– Function.

Test whether is a power of two.

Examples

– Function.

The smallest power of two not less than . Returns 0 for , and returns for negative arguments.

Examples

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/intfuncs.jl#L85-L111
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/intfuncs.jl#L316-L329
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/intfuncs.jl#L280-L294
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The largest power of two not greater than . Returns 0 for , and returns for negative arguments.

Examples

– Function.

The smallest not less than , where is a non-negative integer. must be greater than 1, and must be greater than 0.

Examples

See also .

– Function.

The largest not greater than , where is a non-negative integer. must be greater than 1, and must not be less than

1.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/intfuncs.jl#L298-L312
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/intfuncs.jl#L332-L354
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See also .

– Function.

Next integer greater than or equal to that can bewritten as
∏

kpi

i for integers p1, p2, etc.

Examples

– Function.

Take the inverse of modulo : such that xy = 1 (mod m), with div(x, y) = 0. This is undefined form = 0, or
if gcd(x,m) 6= 1.

Examples

– Function.

Computexp (mod m).

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/intfuncs.jl#L365-L386
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/combinatorics.jl#L222-L236
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/intfuncs.jl#L129-L147
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– Function.

Compute the gamma function of .

– Function.

Compute the logarithm of the absolute value of for , while for compute the principal branch cut of the logarithm

of (defined for negative by analytic continuation from positive ).

– Function.

Compute the logarithmic factorial of a nonnegative integer . Equivalent to of , but extends this function to non-

integer .

– Function.

Euler integral of the first kindB(x, y) = Γ(x)Γ(y)/Γ(x+ y).

– Function.

Natural logarithm of the absolute value of the function log(|B(x, y)|).

– Function.

Compute the number of digits in integer written in base . The base must not be in .

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/intfuncs.jl#L231-L253
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/special/gamma.jl#L6-L10
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/special/gamma.jl#L36-L43
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/special/gamma.jl#L27-L33
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/special/gamma.jl#L139-L143
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/special/gamma.jl#L151-L156
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– Function.

Multiply and , giving the result as a larger type.

–Macro.

Evaluate thepolynomial
∑

k c[k]z
k−1 for the coefficients , , ...; that is, the coefficients are given in ascendingorder

by power of . This macro expands to efficient inline code that uses either Horner’s method or, for complex , amore

efficient Goertzel-like algorithm.

–Macro.

Execute a transformed version of the expression, which calls functions thatmay violate strict IEEE semantics. This

allows the fastest possible operation, but results are undefined – be careful when doing this, as it may change nu-

merical results.

This sets the LLVM Fast-Math flags, and corresponds to the option in clang. See the notes on performance anno-

tations for more details.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/intfuncs.jl#L513-L530
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/number.jl#L183-L192
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/math.jl#L99-L117
http://llvm.org/docs/LangRef.html#fast-math-flags
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/fastmath.jl#L128-L148
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48.1 Statistics

– Function.

Apply the function to each element of and take themean.

Compute themean of whole array , or optionally along the dimensions in .

Note

Julia does not ignore values in the computation. For applications requiring the handling of missing

data, the package is recommended.

– Function.

Compute themean of over the singleton dimensions of , andwrite results to .

Examples

– Function.

Compute the sample standarddeviationof avectoror array , optionally alongdimensions in . Thealgorithmreturns

an estimator of the generative distribution’s standard deviation under the assumption that each entry of is an IID

drawn from that generative distribution. This computation is equivalent to calculating . A pre-computed may be

provided. If is , then the sum is scaled with , whereas the sum is scaled with if is where .

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/statistics.jl#L5-L17
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/statistics.jl#L66-L74
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/statistics.jl#L38-L59
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Note

Julia does not ignore values in the computation. For applications requiring the handling of missing

data, the package is recommended.

– Function.

Compute the sample standard deviation of a vector with knownmean . If is , then the sum is scaledwith , whereas

the sum is scaled with if is where .

Note

Julia does not ignore values in the computation. For applications requiring the handling of missing

data, the package is recommended.

– Function.

Compute the sample variance of a vector or array , optionally along dimensions in . The algorithm will return an

estimator of the generative distribution’s variance under the assumption that each entry of is an IID drawn from

that generative distribution. This computation is equivalent to calculating . If is , then the sum is scaled with ,

whereas the sum is scaled with if is where . Themean over the regionmay be provided.

Note

Julia does not ignore values in the computation. For applications requiring the handling of missing

data, the package is recommended.

– Function.

Compute the sample variance of a collection with known mean(s) , optionally over . may contain means for each

dimension of . If is , then the sum is scaled with , whereas the sum is scaled with if is where .

Note

Julia does not ignore values in the computation. For applications requiring the handling of missing

data, the package is recommended.

– Function.

Compute themiddle of a scalar value, which is equivalent to itself, but of the type of for consistency.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/statistics.jl#L264-L279
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/statistics.jl#L286-L298
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/statistics.jl#L203-L218
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/statistics.jl#L183-L195
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/statistics.jl#L529-L533
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Compute themiddle of two reals and , which is equivalent in both value and type to computing their mean ().

Compute the middle of a range, which consists of computing the mean of its extrema. Since a range is sorted, the

mean is performedwith the first and last element.

Compute themiddle of an array , which consists of finding its extrema and then computing their mean.

– Function.

Compute the median of an entire array , or, optionally, along the dimensions in . For an even number of elements

no exact median element exists, so the result is equivalent to calculatingmean of twomedian elements.

Note

Julia does not ignore values in the computation. For applications requiring the handling of missing

data, the package is recommended.

– Function.

Like , but may overwrite the input vector.

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/statistics.jl#L539-L544
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/statistics.jl#L547-L557
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/statistics.jl#L560-L577
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/statistics.jl#L605-L616
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/statistics.jl#L580-L584
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Compute the quantile(s) of a vector at a specified probability or vector or tuple of probabilities . The keyword

argument indicates whether can be assumed to be sorted.

The should be on the interval [0,1], and should not have any values.

Quantiles are computed via linear interpolation between the points , for where . This corresponds to Definition 7

of Hyndman and Fan (1996), and is the same as the R default.

Note

Julia does not ignore values in the computation. For applications requiring the handling of missing

data, the package is recommended. will throw an in the presence of values in the data array.

• Hyndman, R.J and Fan, Y. (1996) ”SampleQuantiles in Statistical Packages”, TheAmerican Statistician, Vol. 50,

No. 4, pp. 361-365

– Function.

Compute the quantile(s) of a vector at the probability or probabilities , which can be given as a single value, a

vector, or a tuple. If is a vector, an optional output array may also be specified. (If not provided, a new output

array is created.) The keyword argument indicateswhether can be assumed to be sorted; if (the default), then the

elements of may be partially sorted.

The elements of should be on the interval [0,1], and should not have any values.

Quantiles are computed via linear interpolation between the points , for where . This corresponds to Definition 7

of Hyndman and Fan (1996), and is the same as the R default.

Note

Julia does not ignore values in the computation. For applications requiring the handling of missing

data, the package is recommended. will throw an in the presence of values in the data array.

• Hyndman, R.J and Fan, Y. (1996) ”SampleQuantiles in Statistical Packages”, TheAmerican Statistician, Vol. 50,

No. 4, pp. 361-365

– Function.

Compute the variance of the vector . If is (the default) then the sum is scaledwith , whereas the sum is scaledwith

if is where .

Compute the covariancematrix of thematrix along the dimension . If is (the default) then the sum is scaledwith ,

whereas the sum is scaled with if is where .

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/statistics.jl#L716-L736
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/statistics.jl#L621-L644
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/statistics.jl#L357-L362
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/statistics.jl#L365-L371
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Compute the covariance between the vectors and . If is (the default), computes
1

n−1

∑n
i=1(xi − x̄)(yi − ȳ)∗

where ∗ denotes the complex conjugate and . If is , computes 1
n

∑n
i=1(xi − x̄)(yi − ȳ)∗.

Compute the covariance between the vectors or matrices and along the dimension . If is (the default) then the

sum is scaled with , whereas the sum is scaled with if is where .

– Function.

Return the number one.

Compute the Pearson correlationmatrix of thematrix along the dimension .

Compute the Pearson correlation between the vectors and .

Compute the Pearson correlation between the vectors or matrices and along the dimension .

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/statistics.jl#L375-L382
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/statistics.jl#L386-L392
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/statistics.jl#L498-L502
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/statistics.jl#L505-L509
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/statistics.jl#L512-L516
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/statistics.jl#L519-L523




Chapter 49

Numbers

49.1 Standard Numeric Types

Abstract number types

– Type.

Abstract supertype for all number types.

– Type.

Abstract supertype for all real numbers.

– Type.

Abstract supertype for all floating point numbers.

– Type.

Abstract supertype for all integers.

– Type.

Abstract supertype for all signed integers.
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https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L2085-L2089
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L2092-L2096
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L2099-L2103
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L2106-L2110
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L2113-L2117
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– Type.

Abstract supertype for all unsigned integers.

Concrete number types

– Type.

16-bit floating point number type.

– Type.

32-bit floating point number type.

– Type.

64-bit floating point number type.

– Type.

Arbitrary precision floating point number type.

– Type.

Boolean type.

– Type.

8-bit signed integer type.

– Type.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L2120-L2124
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L2136-L2140
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L2136-L2140
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L2136-L2140
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/mpfr.jl#L49-L53
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L2127-L2131
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L2147-L2151
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8-bit unsigned integer type.

– Type.

16-bit signed integer type.

– Type.

16-bit unsigned integer type.

– Type.

32-bit signed integer type.

– Type.

32-bit unsigned integer type.

– Type.

64-bit signed integer type.

– Type.

64-bit unsigned integer type.

– Type.

128-bit signed integer type.

– Type.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L2154-L2158
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L2147-L2151
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L2154-L2158
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L2147-L2151
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L2154-L2158
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L2147-L2151
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L2154-L2158
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L2147-L2151
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128-bit unsigned integer type.

– Type.

Arbitrary precision integer type.

– Type.

Complex number type with real and imaginary part of type .

, and are aliases for , and respectively.

– Type.

Rational number type, with numerator and denominator of type .

– Type.

Irrational number type.

49.2 Data Formats

– Function.

Convert an integer to a binary string, optionally specifying a number of digits to pad to.

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L2154-L2158
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/gmp.jl#L45-L49
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/complex.jl#L3-L10
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/rational.jl#L3-L7
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/irrationals.jl#L5-L9
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/intfuncs.jl#L640-L652
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Convert an integer to a hexadecimal string, optionally specifying a number of digits to pad to.

– Function.

Convert an integer to a decimal string, optionally specifying a number of digits to pad to.

Examples

– Function.

Convert an integer to an octal string, optionally specifying a number of digits to pad to.

– Function.

Convert an integer to a string in the given , optionally specifying a number of digits to pad to.

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/intfuncs.jl#L655-L668
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/intfuncs.jl#L687-L701
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/intfuncs.jl#L671-L684
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/intfuncs.jl#L612-L625
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Returns an array with element type (default ) of the digits of in the given base, optionally padded with zeros to a

specified size. More significant digits are at higher indexes, such that .

Examples

– Function.

Fills an array of the digits of in the given base. More significant digits are at higher indexes. If the array length is

insufficient, the least significant digits are filled up to the array length. If the array length is excessive, the excess

portion is filled with zeros.

Examples

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/intfuncs.jl#L710-L740
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/intfuncs.jl#L755-L780
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A string giving the literal bit representation of a number.

Examples

–Method.

Parse a string as a number. If the type is an integer type, then a base can be specified (the default is 10). If the type

is a floating point type, the string is parsed as a decimal floating point number. If the string does not contain a valid

number, an error is raised.

– Function.

Like , but returns a of the requested type. The result will be null if the string does not contain a valid number.

– Function.

Convert a number to a maximum precision representation (typically or ). See for information about some pitfalls

with floating-point numbers.

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L80-L93
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L983-L1003
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/parse.jl#L174-L179
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1098-L1103


568 CHAPTER 49. NUMBERS

Convert a number to a signed integer. If the argument is unsigned, it is reinterpreted as signed without checking

for overflow.

– Function.

Convertanumber toanunsigned integer. If theargument is signed, it is reinterpretedasunsignedwithoutchecking

for negative values.

Examples

–Method.

Convert a number or array to a floating point data type. When passed a string, this function is equivalent to .

– Function.

Extract the (a.k.a. mantissa), in binary representation, of a floating-point number. If is a non-zero finite number,

then the result will be a number of the same type on the interval [1, 2). Otherwise is returned.

Examples

– Function.

Get the exponent of a normalized floating-point number.

–Method.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/int.jl#L152-L157
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/int.jl#L131-L148
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/float.jl#L252-L257
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/math.jl#L626-L641
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/math.jl#L607-L611
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Convert real numbers or arrays to complex. defaults to zero.

– Function.

Byte-swap an integer. Flip the bits of its binary representation.

Examples

– Function.

Get a hexadecimal string of the binary representation of a floating point number.

Examples

– Function.

Convert a hexadecimal string to the floating point number it represents.

– Function.

Convert an arbitrarily long hexadecimal string to its binary representation. Returns an , i.e. an array of bytes.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/complex.jl#L136-L140
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1057-L1076
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L431-L441
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1293-L1297
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– Function.

Convert an array of bytes to its hexadecimal representation. All characters are in lower-case.

Examples

49.3 General Number Functions and Constants

– Function.

Return a multiplicative identity for : a value such that . Alternatively can take a type , in which case returns a

multiplicative identity for any of type .

If possible, returns a value of the same type as , and returns a value of type . However, this may not be the case for

types representing dimensionful quantities (e.g. time in days), since themultiplicative identitymust be dimension-

less. In that case, should return an identity value of the same precision (and shape, for matrices) as .

If youwant a quantity that is of the same type as , or of type , even if is dimensionful, use instead.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/strings/util.jl#L427-L443
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/strings/util.jl#L466-L485
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/number.jl#L224-L253
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– Function.

Returns , where is either the type of the argument or (if a type is passed) the argument. This differs from for

dimensionful quantities: is dimensionless (a multiplicative identity) while is dimensionful (of the same type as , or

of type ).

– Function.

Get the additive identity element for the type of ( can also specify the type itself).

– Constant.

The constant pi.

– Constant.

The imaginary unit.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/number.jl#L259-L275
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/number.jl#L203-L220
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/irrationals.jl#L154-L164
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– Constant.

The constant e.

– Constant.

Catalan’s constant.

– Constant.

Euler’s constant.

– Constant.

The golden ratio.

– Constant.

Positive infinity of type .

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/complex.jl#L18-L28
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/irrationals.jl#L167-L177
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/irrationals.jl#L206-L215
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/irrationals.jl#L180-L190
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/irrationals.jl#L193-L203
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/float.jl#L32-L36
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– Constant.

Positive infinity of type .

– Constant.

Positive infinity of type .

– Constant.

A not-a-number value of type .

– Constant.

A not-a-number value of type .

– Constant.

A not-a-number value of type .

– Function.

Test whether a floating point number is subnormal.

– Function.

Test whether a number is finite.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/float.jl#L17-L21
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/float.jl#L5-L9
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/float.jl#L38-L42
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/float.jl#L23-L27
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/float.jl#L11-L15
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1687-L1691
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– Function.

Test whether a number is infinite.

– Function.

Test whether a floating point number is not a number (NaN).

– Function.

Return if ; if is an array, this checks whether all of the elements of are zero.

– Function.

Return if ; if is an array, this checks whether is an identity matrix.

– Function.

The result of iterative applications of to if , or applications of if .

Returns the smallest floating point number of the same type as such . If no such exists (e.g. if is or ), then returns .

– Function.

Returns the largest floating point number of the same type as such . If no such exists (e.g. if is or ), then returns .

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/float.jl#L527-L539
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/float.jl#L545-L549
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/float.jl#L518-L522
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/number.jl#L16-L26
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/number.jl#L29-L39
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/float.jl#L582-L587
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/float.jl#L626-L631
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/float.jl#L634-L639
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– Function.

Test whether is numerically equal to some integer.

– Function.

Test whether or all its elements are numerically equal to some real number.

Examples

–Method.

Create a Float32 from . If is not exactly representable then determines how is rounded.

Examples

See for available roundingmodes.

–Method.

Create a Float64 from . If is not exactly representable then determines how is rounded.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/number.jl#L4-L13
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/complex.jl#L113-L126
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L155-L171
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See for available roundingmodes.

–Method.

Createanarbitraryprecision integer. maybean (or anything that canbeconverted toan ). Theusualmathematical

operators are defined for this type, and results are promoted to a .

Instances can be constructed from strings via , or using the string literal.

–Method.

Create an arbitrary precision floating point number. may be an , a or a . The usual mathematical operators are

defined for this type, and results are promoted to a .

Note that because decimal literals are converted to floating point numbers when parsed, may not yield what you

expect. Youmay instead prefer to initialize constants from strings via , or using the string literal.

– Function.

Get the current floating point rounding mode for type , controlling the rounding of basic arithmetic functions (, , ,

and ) and type conversion.

See for available modes.

–Method.

Set the rounding mode of floating point type , controlling the rounding of basic arithmetic functions (, , , and ) and

type conversion. Other numerical functionsmay give incorrect or invalid valueswhen using roundingmodes other

than the default .

Note that this may affect other types, for instance changing the roundingmode of will change the roundingmode

of . See for available modes.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L691-L707
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/gmp.jl#L63-L80
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/mpfr.jl#L74-L92
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/rounding.jl#L131-L139
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Warning

This feature is still experimental, andmay give unexpected or incorrect values.

–Method.

Change the roundingmode of floating point type for the duration of . It is logically equivalent to:

See for available roundingmodes.

Warning

This feature is still experimental, andmaygive unexpectedor incorrect values. A knownproblem is the

interaction with compiler optimisations, e.g.

Here the compiler is constant folding, that is evaluating a known constant expression at compile time,

however the rounding mode is only changed at runtime, so this is not reflected in the function result.

This can be avoided bymoving constants outside the expression, e.g.

– Function.

Returns if operations on subnormal floating-point values (”denormals”) obey rules for IEEE arithmetic, and if they

might be converted to zeros.

– Function.

If is , subsequent floating-point operations follow rules for IEEE arithmetic on subnormal values (”denormals”).

Otherwise, floating-point operations are permitted (but not required) to convert subnormal inputs or outputs to

zero. Returns unless but the hardware does not support zeroing of subnormal numbers.

can speed up some computations on some hardware. However, it can break identities such as .

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/rounding.jl#L112-L128
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/rounding.jl#L148-L182
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/rounding.jl#L235-L240
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/rounding.jl#L222-L232
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Integers

– Function.

Number of ones in the binary representation of .

– Function.

Number of zeros in the binary representation of .

– Function.

Number of zeros leading the binary representation of .

– Function.

Number of ones leading the binary representation of .

– Function.

Number of zeros trailing the binary representation of .

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/int.jl#L301-L310
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/int.jl#L337-L346
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/int.jl#L313-L322
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/int.jl#L349-L358
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/int.jl#L325-L334
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– Function.

Number of ones trailing the binary representation of .

– Function.

Returns if is odd (that is, not divisible by 2), and otherwise.

– Function.

Returns is is even (that is, divisible by 2), and otherwise.

49.4 BigFloats

The type implements arbitrary-precision floating-point arithmetic using the GNUMPFR library.

– Function.

Get the precision of a floating point number, as defined by the effective number of bits in themantissa.

–Method.

Get the precision (in bits) currently used for arithmetic.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/int.jl#L361-L370
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/int.jl#L51-L63
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/int.jl#L66-L78
http://www.mpfr.org/
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L58-L63
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/mpfr.jl#L738-L742
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– Function.

Set the precision (in bits) to be used for arithmetic.

Change the arithmetic precision (in bits) for the duration of . It is logically equivalent to:

Often used as

–Method.

Create a representation of as a with precision .

–Method.

Create a representation of as a with the current global precision and roundingmode .

–Method.

Create a representation of as a with precision and roundingmode .

–Method.

Create a representation of the string as a .

49.5 RandomNumbers

Randomnumber generation in Julia uses theMersenneTwister library via objects. Julia has a global RNG,which is used

by default. Other RNG types can be plugged in by inheriting the type; they can then be used to have multiple streams

of random numbers. Besides , Julia also provides the RNG type, which is a wrapper over theOS provided entropy.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/mpfr.jl#L745-L749
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/mpfr.jl#L883-L895
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/mpfr.jl#L137-L141
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/mpfr.jl#L160-L165
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/mpfr.jl#L148-L153
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/mpfr.jl#L170-L174
http://www.math.sci.hiroshima-u.ac.jp/{~}m-mat/MT/SFMT/#dSFMT
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Most functions related to random generation accept an optional as the first argument, , which defaults to the global

one if not provided. Morever, some of them accept optionally dimension specifications (which can be given as a tuple)

to generate arrays of random values.

A or RNG can generate random numbers of the following types: , , , , , , , , , , , , , , (or complex numbers of those types).

Randomfloatingpointnumbers aregenerateduniformly in [0, 1). As representsunbounded integers, the intervalmust
be specified (e.g. ).

– Function.

Reseed the random number generator. If a is provided, the RNG will give a reproducible sequence of numbers,

otherwise Julia will get entropy from the system. For , the may be a non-negative integer or a vector of integers.

does not support seeding.

Examples

– Type.

Createa RNGobject. DifferentRNGobjectscanhavetheirownseeds,whichmaybeuseful forgeneratingdifferent

streams of random numbers.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/random.jl#L243-L271
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– Type.

Create a RNG object. Two such objects will always generate different streams of random numbers.

– Function.

Pick a random element or array of random elements from the set of values specified by ; can be

• an indexable collection (for example or ),

• an or object,

• a string (considered as a collection of characters), or

• a type: the set of values to pick from is then equivalent to for integers (this is not applicable to ), and to [0, 1)
for floating point numbers;

defaults to .

Examples

Note

The complexity of is linear in the length of , unless an optimized method with constant complexity is

available,which is the case for , and . Formore thana fewcalls, use instead, or either or asappropriate.

– Function.

Populate the array with random values. If is specified ( can be a type or a collection, cf. for details), the values are

picked randomly from . This is equivalent to but without allocating a new array.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/random.jl#L95-L120
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/random.jl#L60-L64
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/random.jl#L299-L331
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– Function.

Generate a of random boolean values.

Examples

– Function.

Generate a normally-distributed randomnumber of type withmean0 and standard deviation 1. Optionally gener-

ate an array of normally-distributed random numbers. The module currently provides an implementation for the

types , , and (the default), and their counterparts. When the type argument is complex, the values are drawn from

the circularly symmetric complex normal distribution.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/random.jl#L342-L363
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/random.jl#L809-L831
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– Function.

Fill the array with normally-distributed (mean 0, standard deviation 1) random numbers. Also see the function.

Examples

– Function.

Generate a random number of type according to the exponential distribution with scale 1. Optionally generate

an array of such random numbers. The module currently provides an implementation for the types , , and (the

default).

Examples

– Function.

Fill the array with random numbers following the exponential distribution (with scale 1).

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/random.jl#L1332-L1354
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/random.jl#L1423-L1441
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/random.jl#L1381-L1402
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– Function.

Create an array of the size of initialized RNG objects. The first RNG object given as a parameter and following

RNGs in the array are initialized such that a state of the RNGobject in the arraywould bemoved forward (without

generating numbers) from a previous RNG object array element on a particular number of steps encoded by the

jump polynomial .

Default jump polynomial moves forward RNG state by steps.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/random.jl#L1444-L1461
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/random.jl#L178-L188
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Strings

–Method.

The number of characters in string .

Examples

–Method.

The number of bytes in string .

Examples

–Method.

Multiplication operator. calls this function with all arguments, i.e. .

–Method.

Repeat a string or character times. The function is an alias to this operator.

Examples

587

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/strings/basic.jl#L81-L91
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/strings/basic.jl#L45-L55
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1575-L1581
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– Function.

Create a string from any values using the function.

Examples

–Method.

Repeat a string times. This can equivalently be accomplished by calling .

Examples

–Method.

Repeat a character times. This can equivalently be accomplished by calling .

Examples

– Function.

Create a string from any value using the function.

–Method.

Convert a string to a contiguous byte array representation encoded as UTF-8 bytes. This representation is often

appropriate for passing strings to C.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/strings/types.jl#L169-L180
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/strings/io.jl#L112-L122
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/strings/types.jl#L156-L166
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/strings/string.jl#L442-L452
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/strings/io.jl#L142-L146
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/strings/basic.jl#L13-L18
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– Function.

Convert string data between Unicode encodings. is either a or a of UTF-XX code units, where is 8, 16, or 32.

indicates the encoding of the return value: to return a (UTF-8 encoded) or to return a of UTF- data. (The alias

can also be used as the integer type, for converting strings used by external C libraries.)

The function succeeds as long as the input data can be reasonably represented in the target encoding; it always

succeeds for conversions between UTF-XX encodings, even for invalid Unicode data.

Only conversion to/fromUTF-8 is currently supported.

– Function.

Copy a string from the address of a C-style (NUL-terminated) string encoded as UTF-8. (The pointer can be safely

freed afterwards.) If is specified (the length of the data in bytes), the string does not have to be NUL-terminated.

This function is labelled ”unsafe” because it will crash if is not a valid memory address to data of the requested

length.

–Method.

Get the th code unit of an encoded string. For example, returns the th byte of the representation of aUTF-8 string.

– Function.

Convert a string to type and check that it contains only ASCII data, otherwise throwing an indicating the position

of the first non-ASCII byte.

Examples

–Macro.

Construct a regex, such as . The regex also accepts one or more flags, listed after the ending quote, to change its

behaviour:

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/c.jl#L160-L176
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/strings/string.jl#L24-L33
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/strings/string.jl#L56-L61
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/strings/util.jl#L505-L521
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• enables case-insensitivematching

• treats the and tokens as matching the start and end of individual lines, as opposed to the whole string.

• allows the modifier tomatch newlines.

• enables ”comment mode”: whitespace is enabled except when escaped with , and is treated as starting a

comment.

For example, this regex has all three flags enabled:

–Macro.

Create an object from a literal string.

–Macro.

Create a object from a literal string.

– Function.

Normalize the string according to one of the four ”normal forms” of the Unicode standard: can be , , , or . Normal

forms C (canonical composition) and D (canonical decomposition) convert different visually identical representa-

tions of the same abstract string into a single canonical form, with form C being more compact. Normal forms KC

and KD additionally canonicalize ”compatibility equivalents”: they convert characters that are abstractly similar

but visually distinct into a single canonical choice (e.g. they expand ligatures into the individual characters), with

formKC beingmore compact.

Alternatively, finer control and additional transformationsmaybebeobtainedby calling ,where anynumber of the

following boolean keywords options (which all default to except for ) are specified:

• : do not perform canonical composition

• : do canonical decomposition instead of canonical composition ( is ignored if present)

• : compatibility equivalents are canonicalized

• : performUnicode case folding, e.g. for case-insensitive string comparison

• , , or : convert various newline sequences (LF, CRLF, CR, NEL) into a linefeed (LF), line-separation (LS), or

paragraph-separation (PS) character, respectively

• : strip diacritical marks (e.g. accents)

• : strip Unicode’s ”default ignorable” characters (e.g. the soft hyphen or the left-to-right marker)

• : strip control characters; horizontal tabs and form feeds are converted to spaces; newlines are also con-

verted to spaces unless a newline-conversion flag was specified

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/regex.jl#L63-L82
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/utils.jl#L37-L41
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/utils.jl#L78-L82
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• : throw an error if unassigned code points are found

• : enforce Unicode Versioning Stability

For example, NFKC corresponds to the options .

– Function.

Returns an iterator over substrings of that correspond to the extended graphemes in the string, as defined byUni-

code UAX #29. (Roughly, these are what users would perceive as single characters, even though theymay contain

more than one codepoint; for example a letter combinedwith an accent mark is a single grapheme.)

–Method.

Returns if the given value is valid for its type, which currently can be either or .

–Method.

Returns if the given value is valid for that type. Types currently can be either or . Values for can be of type or .

Values for can be of that type, or .

–Method.

Tells whether index is valid for the given string.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/strings/utf8proc.jl#L146-L180
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/strings/utf8proc.jl#L346-L353
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1972-L1977
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1980-L1986
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/strings/basic.jl#L142-L164
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– Function.

Returns if the given char or integer is an assigned Unicode code point.

– Function.

Test whether a string contains amatch of the given regular expression.

– Function.

Search for the first match of the regular expression in and return a object containing thematch, or nothing if the

match failed. The matching substring can be retrieved by accessing and the captured sequences can be retrieved

by accessing The optional argument specifies an index at which to start the search.

– Function.

Search forallmatchesofa theregularexpression in andreturna iteratorover thematches. If overlap is , thematch-

ing sequences are allowed to overlap indices in the original string, otherwise theymust be from distinct character

ranges.

– Function.

Return a vector of thematching substrings from .

– Function.

Make a string at least columns wide when printed by padding on the left with copies of .

Examples

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/strings/utf8proc.jl#L213-L217
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1591-L1595
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1743-L1750
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L422-L428
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1598-L1602
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/strings/util.jl#L232-L243
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Make a string at least columns wide when printed by padding on the right with copies of .

Examples

– Function.

Search for thefirst occurrenceof thegivencharacterswithin thegiven string. The secondargumentmaybea single

character, a vector or a set of characters, a string, or a regular expression (though regular expressions are only

allowed on contiguous strings, such as ASCII or UTF-8 strings). The third argument optionally specifies a starting

index. The return value is a range of indexes where thematching sequence is found, such that :

= such that , or if unmatched.

= such that , or if unmatched.

Examples

– Function.

Similar to , but returning the last occurrence of the given characters within the given string, searching in reverse

from .

Examples

– Function.

Similar to , but return only the start index at which the substring is found, or if it is not.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/strings/util.jl#L246-L257
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/strings/search.jl#L5-L27
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/strings/search.jl#L203-L214
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– Function.

Similar to , but return only the start index at which the substring is found, or if it is not.

Examples

–Method.

Determine whether the second argument is a substring of the first.

Examples

–Method.

Reverses a string.

Examples

– Function.

Search for the given pattern in , and replace each occurrencewith . If is provided, replace atmost occurrences. As

with , thesecondargumentmaybeasinglecharacter, avectororasetof characters, a string, ora regularexpression.

If is a function, each occurrence is replacedwith where is thematched substring. If is a regular expression and is

a , then capture group references in are replacedwith the correspondingmatched text.

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/strings/search.jl#L152-L169
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/strings/search.jl#L319-L332
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/strings/search.jl#L374-L384
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/strings/types.jl#L116-L126
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/strings/util.jl#L408-L418
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Return an array of substrings by splitting the given string on occurrences of the given character delimiters, which

maybespecified inanyof the formatsallowedby ’s secondargument (i.e. a singlecharacter, collectionofcharacters,

string, or regular expression). If is omitted, it defaults to the set of all space characters, and is taken to be . The two

keyword arguments are optional: they are a maximum size for the result and a flag determining whether empty

fields should be kept in the result.

Examples

– Function.

Similar to , but starting from the end of the string.

Examples

– Function.

Return withany leadingand trailingwhitespace removed. If (a character, orvectoror setof characters) is provided,

instead remove characters contained in it.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/strings/util.jl#L266-L287
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/strings/util.jl#L318-L345
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– Function.

Return with any leading whitespace and delimiters removed. The default delimiters to remove are , , , , , and . If (a

character, or vector or set of characters) is provided, instead remove characters contained in it.

Examples

– Function.

Return with any trailing whitespace and delimiters removed. The default delimiters to remove are , , , , , and . If (a

character, or vector or set of characters) is provided, instead remove characters contained in it.

Examples

– Function.

Returns if starts with . If is a vector or set of characters, tests whether the first character of belongs to that set.

See also .

Examples

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/strings/util.jl#L188-L200
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/strings/util.jl#L126-L143
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/strings/util.jl#L157-L174
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/strings/util.jl#L5-L18
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Returns if ends with . If is a vector or set of characters, tests whether the last character of belongs to that set.

See also .

Examples

– Function.

Returns with all characters converted to uppercase.

Examples

– Function.

Returns with all characters converted to lowercase.

Examples

– Function.

Capitalizes the first character of each word in . See also to capitalize only the first character in .

Examples

– Function.

Returns with thefirst character converted touppercase (technically ”title case” forUnicode). See also to capitalize

the first character of every word in .

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/strings/util.jl#L31-L44
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/strings/basic.jl#L382-L392
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/strings/basic.jl#L395-L405
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/strings/basic.jl#L408-L420
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– Function.

Returns with the first character converted to lowercase.

Examples

– Function.

Join an arrayof into a single string, inserting the givendelimiter betweenadjacent strings. If is given, itwill be used

instead of between the last two strings. For example,

Examples

can be any iterable over elements which are convertible to strings via . will be printed to .

– Function.

Remove the last character from .

Examples

– Function.

Remove a single trailing newline from a string.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/strings/basic.jl#L436-L449
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/strings/basic.jl#L457-L467
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/strings/io.jl#L176-L191
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/strings/util.jl#L68-L81
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– Function.

Convert a byte index to a character index with respect to string .

See also .

Examples

– Function.

Convert a character index to a byte index.

See also .

Examples

– Function.

Get the next valid string index after . Returns a value greater than at or after the end of the string.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/strings/util.jl#L84-L94
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/strings/basic.jl#L259-L277
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/strings/basic.jl#L292-L309
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– Function.

Get the previous valid string index before . Returns a value less than at the beginning of the string.

Examples

– Function.

Create a randomstring of length , consisting of characters from ,which defaults to the set of upper- and lower-case

letters and the digits 0-9. The optional argument specifies a random number generator, see RandomNumbers.

Examples

Note

canbe any collectionof characters, of type or (more efficient), provided can randomlypick characters

from it.

– Function.

Gives the number of columns needed to print a character.

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/strings/basic.jl#L213-L232
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/strings/basic.jl#L183-L197
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/random.jl#L1619-L1643
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/strings/utf8proc.jl#L193-L197
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Gives the number of columns needed to print a string.

Examples

– Function.

Tests whether a character is alphanumeric. A character is classified as alphabetic if it belongs to the Unicode gen-

eral category Letter or Number, i.e. a character whose category code begins with ’L’ or ’N’.

– Function.

Tests whether a character is alphabetic. A character is classified as alphabetic if it belongs to the Unicode general

category Letter, i.e. a character whose category code begins with ’L’.

– Function.

Tests whether a character belongs to the ASCII character set, or whether this is true for all elements of a string.

– Function.

Tests whether a character is a control character. Control characters are the non-printing characters of the Latin-1

subset of Unicode.

– Function.

Tests whether a character is a numeric digit (0-9).

– Function.

Tests whether a character is printable, and not a space. Any character that would cause a printer to use ink should

be classifiedwith .

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/strings/basic.jl#L337-L347
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/strings/utf8proc.jl#L270-L276
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/strings/utf8proc.jl#L252-L258
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/strings/basic.jl#L350-L355
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/strings/utf8proc.jl#L285-L290
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/strings/utf8proc.jl#L245-L249
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/strings/utf8proc.jl#L321-L327
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– Function.

Tests whether a character is a lowercase letter. A character is classified as lowercase if it belongs to Unicode cate-

gory Ll, Letter: Lowercase.

– Function.

Tests whether a character is numeric. A character is classified as numeric if it belongs to theUnicode general cate-

gory Number, i.e. a character whose category code begins with ’N’.

– Function.

Tests whether a character is printable, including spaces, but not a control character.

– Function.

Tests whether a character belongs to the Unicode general category Punctuation, i.e. a character whose category

code begins with ’P’.

– Function.

Tests whether a character is any whitespace character. Includes ASCII characters ’\t’, ’\n’, ’\v’, ’\f’, ’\r’, and ’ ’, Latin-1

character U+0085, and characters in Unicode category Zs.

– Function.

Tests whether a character is an uppercase letter. A character is classified as uppercase if it belongs to Unicode

category Lu, Letter: Uppercase, or Lt, Letter: Titlecase.

– Function.

Tests whether a character is a valid hexadecimal digit. Note that this does not include (as in the standard prefix).

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/strings/utf8proc.jl#L222-L228
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/strings/utf8proc.jl#L261-L267
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/strings/utf8proc.jl#L312-L316
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/strings/utf8proc.jl#L293-L298
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/strings/utf8proc.jl#L303-L309
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/strings/utf8proc.jl#L233-L239
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– Type.

Create a by concatenating the string representations of the arguments together.

– Function.

General escaping of traditional C andUnicode escape sequences. Any characters in are also escaped (with a back-

slash). See also .

– Function.

General unescaping of traditional C and Unicode escape sequences. Reverse of .

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/strings/basic.jl#L363-L377
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1965-L1969
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/strings/io.jl#L230-L236
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/strings/io.jl#L283-L288




Chapter 51

Arrays

51.1 Constructors and Types

– Type.

Supertype for -dimensional arrays (or array-like types)with elements of type . andother types are subtypes of this.

See themanual section on the interface.

– Type.

Supertype for one-dimensional arrays (or array-like types) with elements of type . Alias for .

– Type.

Supertype for two-dimensional arrays (or array-like types) with elements of type . Alias for .

– Type.

-dimensional dense array with elements of type .

–Method.

Construct an uninitialized -dimensional containing elements of type . can either be supplied explicitly, as in , or

be determined by the length or number of . may be a tuple or a series of integer arguments corresponding to the

lengths in each dimension. If the rank is supplied explicitly, then it must match the length or number of .

Examples

605

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/abstractarray.jl#L5-L11
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/array.jl#L6-L11
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/array.jl#L14-L19
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/array.jl#L28-L32
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– Type.

One-dimensional dense array with elements of type , often used to represent amathematical vector. Alias for .

–Method.

Construct an uninitialized of length .

Examples

– Type.

Two-dimensional dense array with elements of type , often used to represent amathematical matrix. Alias for .

–Method.

Construct an uninitialized of size ×.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L2194-L2217
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/array.jl#L35-L40
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L2163-L2176
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/array.jl#L43-L48
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L2179-L2191
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–Method.

Construct a 1-d array of the specified type. This is usually called with the syntax . Element values can be specified

using .

Examples

Retrieve the value(s) stored at the given key or index within a collection. The syntax is converted by the compiler

to .

Examples

– Function.

Create an array of all zeros with the same layout as , element type and size . The argument can be skipped, which

behaves like was passed. For convenience may also be passed in variadic form.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/array.jl#L207-L227
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L96-L112
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See also , .

– Function.

Create an array of all ones with the same layout as , element type and size . The argument can be skipped, which

behaves like was passed. For convenience may also be passed in variadic form.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1922-L1962
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See also , .

– Type.

Space-efficient -dimensional boolean array, which stores one bit per boolean value.

–Method.

Construct an uninitialized with the given dimensions. Behaves identically to the constructor.

Examples

–Method.

Construct a generated by the given iterable object. The shape is inferred from the object.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L343-L383
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/bitarray.jl#L7-L11
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/bitarray.jl#L36-L56
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– Function.

Create a with all values set to .

Examples

Create a with all values set to of the same shape as .

Examples

– Function.

Create a with all values set to .

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/bitarray.jl#L558-L585
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/bitarray.jl#L401-L413
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/bitarray.jl#L416-L433
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Create a with all values set to of the same shape as .

Examples

– Function.

Create an array filled with the value . For example, returns a 5×5 array of floats, with each element initialized to .

Examples

If is an object reference, all elements will refer to the same object. will return an array filled with the result of

evaluating once.

– Function.

Fill array with the value . If is an object reference, all elementswill refer to the same object. will return filledwith

the result of evaluating once.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/bitarray.jl#L366-L378
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/bitarray.jl#L381-L398
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/array.jl#L264-L283
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–Method.

Create an uninitialized mutable array with the given element type and size, based upon the given source array.

The second and third arguments are both optional, defaulting to the given array’s and . The dimensions may be

specified either as a single tuple argument or as a series of integer arguments.

CustomAbstractArraysubtypesmaychoosewhichspecificarray type isbest-suited to return for thegivenelement

type and dimensionality. If they do not specialize this method, the default is an .

For example, returns an uninitialized since ranges are neither mutable nor support 2 dimensions:

Conversely, returns an uninitialized with two elements since s are both mutable and can support 1-dimensional

arrays:

Since s can only store elements of type , however, if you request a different element type it will create a regular

instead:

–Method.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L5-L36
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/abstractarray.jl#L476-L517
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Create an uninitialized mutable array analogous to that specified by , but with specified by the last argument.

might be a type or a function.

Examples:

creates an array that ”acts like” an (andmight indeed be backed by one), but which is indexed identically to . If has

conventional indexing, thiswill be identical to , but if has unconventional indexing then the indices of the resultwill

match .

would create a 1-dimensional logical array whose indices match those of the columns of .

would create an array of , initialized to zero, matching the indices of .

– Function.

-by- identity matrix. The default element type is .

Examples

-by- identity matrix.

-by- identity matrix. The default element type is .

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/abstractarray.jl#L536-L562
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/array.jl#L301-L325
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/array.jl#L334-L338
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Constructs an identity matrix of the same dimensions and type as .

Examples

Note the difference from .

– Function.

Construct a range of linearly spaced elements from to .

– Function.

Construct a vector of logarithmically spaced numbers from to .

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/array.jl#L341-L359
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/array.jl#L362-L383
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/range.jl#L232-L241
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– Function.

Return a vector consisting of a random subsequence of the given array , where each element of is included (in

order) with independent probability . (Complexity is linear in , so this function is efficient even if is small and is

large.) Technically, this process is known as ”Bernoulli sampling” of .

– Function.

Like , but the results are stored in (which is resized as needed).

51.2 Basic functions

– Function.

Returns the number of dimensions of .

Examples

– Function.

Returns a tuple containing the dimensions of . Optionally you can specify the dimension(s) you want the length of,

and get the length of that dimension, or a tuple of the lengths of dimensions you asked for.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/range.jl#L318-L340
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/random.jl#L1696-L1703
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L386-L391
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/abstractarray.jl#L109-L121
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–Method.

Returns the tuple of valid indices for array .

Examples

–Method.

Returns the valid range of indices for array along dimension .

Examples

–Method.

Return the number of elements in the collection.

Use to get the last valid index of an indexable collection.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/abstractarray.jl#L14-L31
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/abstractarray.jl#L54-L66
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/abstractarray.jl#L36-L48
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– Function.

Creates an iterable object for visiting each index of an AbstractArray in an efficient manner. For array types that

have opted into fast linear indexing (like ), this is simply the range . For other array types, this returns a specialized

Cartesian range to efficiently index into the array with indices specified for every dimension. For other iterables,

including strings and dictionaries, this returns an iterator object supporting arbitrary index types (e.g. unevenly

spaced or non-integer indices).

Example for a sparse 2-d array:

If yousupplymore thanone argument, will createan iterableobject that is fast forall arguments (a if all inputshave

fast linear indexing, a otherwise). If the arrayshavedifferent sizes and/ordimensionalities, returns an iterable that

spans the largest range along each dimension.

– Function.

Returns a specifying the valid rangeof indices for where is an . For arrayswith conventional indexing (indices start

at 1), or anymultidimensional array, this is ; however, for one-dimensional arrays with unconventional indices, this

is .

Calling this function is the ”safe” way to write algorithms that exploit linear indexing.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1659-L1677
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/abstractarray.jl#L765-L808
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– Type.

specifies the ”native indexing style” for array . When you define a new type, you can choose to implement either

linear indexing or cartesian indexing. If you decide to implement linear indexing, then you must set this trait for

your array type:

The default is .

Julia’s internal indexing machinery will automatically (and invisibly) convert all indexing operations into the pre-

ferredstyleusing or . This allowsusers toaccesselementsof yourarrayusingany indexing style, evenwhenexplicit

methods have not been provided.

If you define both styles of indexing for your , this trait can be used to select the most performant indexing style.

Somemethods check this trait on their inputs, anddispatch todifferent algorithmsdependingon themost efficient

access pattern. In particular, creates an iterator whose type depends on the setting of this trait.

– Function.

Counts the number of nonzero values in array (dense or sparse). Note that this is not a constant-time operation.

For sparsematrices, one should usually use , which returns the number of stored values.

– Function.

Transform an array to its complex conjugate in-place.

See also .

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/abstractarray.jl#L82-L103
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/abstractarray.jl#L257-L283
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reduce.jl#L707-L723
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– Function.

Returns the distance inmemory (in number of elements) between adjacent elements in dimension .

Examples

– Function.

Returns a tuple of thememory strides in each dimension.

Examples

– Function.

Returns a tuple of subscripts into array corresponding to the linear index .

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/arraymath.jl#L5-L26
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/abstractarray.jl#L171-L186
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/abstractarray.jl#L198-L210
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Returns a tuple of subscripts into an array with dimensions , corresponding to the linear index .

Examples

provides the indices of themaximum element.

Examples

– Function.

The inverse of , returns the linear index corresponding to the provided subscripts.

Examples

– Function.

Check that amatrix is square, then return its common dimension. For multiple arguments, return a vector.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/abstractarray.jl#L1586-L1601
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/abstractarray.jl#L1655-L1679
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/abstractarray.jl#L1614-L1627
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51.3 Broadcast and vectorization

See also the dot syntax for vectorizing functions; for example, implicitly calls . Rather than relying on ”vectorized”

methods of functions like to operate on arrays, you should use to vectorize via .

– Function.

Broadcasts the arrays, tuples, s, nullables, and/or scalars to a container of the appropriate type and dimensions. In

this context, anything that is not a subtype of , (except for s), , or is considered a scalar. The resulting container is

established by the following rules:

• If all the arguments are scalars, it returns a scalar.

• If the arguments are tuples and zero ormore scalars, it returns a tuple.

• If theargumentscontainat leastonearrayor , it returnsanarray (expandingsingletondimensions), andtreats

s as 0-dimensional arrays, and tuples as 1-dimensional arrays.

The following additional rule applies to arguments: If there is at least one , and all the arguments are scalars or , it

returns a treating s as ”containers”.

A special syntax exists for broadcasting: is equivalent to , and nested calls are fused into a single broadcast loop.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/linalg.jl#L199-L214
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– Function.

Like , but store the result of in the array. Note that is only used to store the result, and does not supply arguments

to unless it is also listed in the , as in to perform .

–Macro.

Convert every function call or operator in into a ”dot call” (e.g. convert to ), and convert every assignment in to a

”dot assignment” (e.g. convert to ).

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/broadcast.jl#L347-L433
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/broadcast.jl#L194-L202
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If you want to avoid adding dots for selected function calls in , splice those function calls in with . For example, is

equivalent to (no dot for ).

( is equivalent to a call to .)

Examples

– Function.

Broadcasts the arrays to a common size like and returns an array of the results , where goes over the positions in

the broadcast result .

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/broadcast.jl#L583-L607
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/broadcast.jl#L436-L475
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– Function.

Broadcasts the and arrays to a common size and stores the value from each position in at the indices in given by

the same positions in .

51.4 Indexing and assignment

–Method.

Return a subset of array as specified by , where each may be an , a , or a . See themanual section on array indexing

for details.

Examples

–Method.

Store values from array within some subset of as specified by .

–Method.

Copy the block of in the range of to the block of in the range of . The sizes of the two regionsmust match.

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/broadcast.jl#L493-L498
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/abstractarray.jl#L884-L912
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/abstractarray.jl#L999-L1003
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/multidimensional.jl#L904-L909
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Tests whether the given array has a value associated with index . Returns if the index is out of bounds, or has an

undefined reference.

– Type.

Colons (:) are used to signify indexing entire objects or dimensions at once.

Very few operations are defined on Colons directly; instead they are converted by to an internal vector type () to

represent the collection of indices they span before being used.

– Type.

Create amultidimensional index , which can be used for indexing amultidimensional array . In particular, is equiv-

alent to . One can freely mix integer and indices; for example, (where and are indices and is an ) can be a useful

expression whenwriting algorithms that work along a single dimension of an array of arbitrary dimensionality.

A is sometimes produced by , and always when iterating with an explicit .

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/essentials.jl#L306-L330
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/essentials.jl#L339-L347
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– Type.

Define a region spanning a multidimensional rectangular range of integer indices. These are most commonly en-

countered in the context of iteration, where will return indices equivalent to the nested loops

Consequently these can be useful for writing algorithms that work in arbitrary dimensions.

Examples

– Function.

Convert the tuple to a tuple of indices for use in indexing into array .

The returned tuple must only contain either s or s of scalar indices that are supported by array . It will error upon

encountering a novel index type that it does not know how to process.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/multidimensional.jl#L15-L60
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/multidimensional.jl#L136-L166
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For simple index types, it defers to the unexported to process each index . While this internal function is not in-

tended tobecalleddirectly, maybeextendedbycustomarrayor index types toprovidecustom indexingbehaviors.

More complicated index types may require more context about the dimension into which they index. To support

those cases, calls ,which then recursivelywalks throughboth thegiven tupleof indices and thedimensional indices

of in tandem. As such, not all index types are guaranteed to propagate to .

– Function.

Return if the specified indices are in bounds for the given array . Subtypes of should specialize thismethod if they

need to provide custom bounds checking behaviors; however, in many cases one can rely on ’s indices and .

See also .

Examples

Throw an error if the specified indices are not in bounds for the given array .

– Function.

Return if the given is within the bounds of . Custom types that would like to behave as indices for all arrays can

extend this method in order to provide a specialized bounds checking implementation.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/indices.jl#L193-L212
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/abstractarray.jl#L311-L337
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/abstractarray.jl#L353-L357
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/abstractarray.jl#L434-L450
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51.5 Views (SubArrays and other view types)

– Function.

Like , but returns a view into the parent array with the given indices instead of making a copy. Calling or on the

returned computes the indices to the parent array on the flywithout checking bounds.

–Macro.

Createsa froman indexingexpression. This canonlybeapplieddirectly toa referenceexpression (e.g. ), andshould

not be used as the target of an assignment (e.g. ). See also to switch an entire block of code to use views for slicing.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/subarray.jl#L80-L109
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–Macro.

Convert every array-slicing operation in the given expression (whichmaybe a / block, loop, function, etc.) to return

a view. Scalar indices, non-array types, and explicit calls (as opposed to ) are unaffected.

Note that the macro only affects expressions that appear explicitly in the given , not array slicing that occurs in

functions called by that code.

– Function.

Returns the ”parent array” of an array view type (e.g., ), or the array itself if it is not a view.

Examples

– Function.

From an array view , returns the corresponding indexes in the parent.

– Function.

Return all the data of where the index for dimension equals . Equivalent to where is in position .

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/subarray.jl#L416-L445
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/subarray.jl#L525-L537
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1476-L1499
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/subarray.jl#L64-L68
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– Function.

Change the type-interpretation of a block of memory. For arrays, this constructs an array with the same binary

data as the given array, but with the specified element type. For example, interprets the 4 bytes corresponding to

as a .

Warning

It is not allowed to an array to an element typewith a larger alignment then the alignment of the array.

For a normal , this is the alignment of its element type. For a reinterpreted array, this is the alignment

of the it was reinterpreted from. For example, is not allowed but is allowed.

Examples

– Function.

Returnanarray with the samedata as , butwithdifferentdimension sizesornumberofdimensions. The twoarrays

share the same underlying data, so that setting elements of alters the values of and vice versa.

The new dimensionsmay be specified either as a list of arguments or as a shape tuple. Atmost one dimensionmay

be specified with a , in which case its length is computed such that its product with all the specified dimensions is

equal to the length of the original array . The total number of elements must not change.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/abstractarraymath.jl#L100-L118
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1027-L1054
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– Function.

Remove the dimensions specified by from array . Elements of must be unique andwithin the range . must equal 1

for all in .

Examples

– Function.

Reshape the array as a one-dimensional column vector. The resulting array shares the sameunderlying data as , so

modifying onewill alsomodify the other.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reshapedarray.jl#L39-L87
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/abstractarraymath.jl#L45-L66
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See also .

51.6 Concatenation and permutation

– Function.

Concatenate the input arrays along the specified dimensions in the iterable . For dimensions not in , all input arrays

should have the same size, which will also be the size of the output array along that dimension. For dimensions in

, the size of the output array is the sum of the sizes of the input arrays along that dimension. If is a single number,

the different arrays are tightly stacked along that dimension. If is an iterable containing several dimensions, this

allowsone toconstructblockdiagonalmatricesand theirhigher-dimensional analoguesbysimultaneously increas-

ing several dimensions for every new input array and putting zero blocks elsewhere. For example, builds a block

diagonal matrix, i.e. a blockmatrix with , , ... as diagonal blocks andmatching zero blocks away from the diagonal.

– Function.

Concatenate along dimension 1.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/abstractarraymath.jl#L12-L37
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1525-L1539
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– Function.

Concatenate along dimension 2.

Examples

– Function.

Horizontal and vertical concatenation in one call. This function is called for blockmatrix syntax. Thefirst argument

specifies the number of arguments to concatenate in each block row.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/abstractarray.jl#L1271-L1301
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/abstractarray.jl#L1303-L1343


634 CHAPTER 51. ARRAYS

If the first argument is a single integer , then all block rows are assumed to have block columns.

– Function.

Reverse in dimension .

Examples

– Function.

Circularly shift the data in an array. The second argument is a vector giving the amount to shift in each dimension.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/abstractarray.jl#L1378-L1415
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/abstractarraymath.jl#L126-L143
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See also .

– Function.

Circularly shift the data in , storing the result in . specifies the amount to shift in each dimension.

The arraymust be distinct from the array (they cannot alias each other).

See also .

– Function.

Copy to , indexing each dimension modulo its length. and must have the same size, but can be offset in their

indices; any offset results in a (circular) wraparound. If the arrays have overlapping indices, then on the domain of

the overlap agrees with .

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/abstractarraymath.jl#L178-L209
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/multidimensional.jl#L914-L924
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–Method.

Returns if there is at least one element in such that is .

–Method.

Return a vector of the linear indexes of the non-zeros in (determined by ). A common use of this is to convert a

boolean array to an array of indexes of the elements. If there are nonon-zero elements of , returns an empty array.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/multidimensional.jl#L967-L997
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reduce.jl#L640-L664


51.6. CONCATENATION AND PERMUTATION 637

–Method.

Return a vector of the linear indexes of where returns . If there are no such elements of , find returns an empty

array.

Examples

– Function.

Return a vector of indexes for each dimension giving the locations of the non-zeros in (determined by ). If there

are no non-zero elements of , returns a 2-tuple of empty arrays.

Examples

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/array.jl#L1573-L1595
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/array.jl#L1534-L1555
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/array.jl#L1615-L1641
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Return a tuple where and are the row and column indexes of the non-zero values inmatrix , and is a vector of the

non-zero values.

Examples

–Method.

Return the linear index of the first non-zero value in (determined by ). Returns if no such value is found.

Examples

–Method.

Return the linear index of the first element equal to in . Returns if is not found.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/array.jl#L1657-L1674
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/array.jl#L1260-L1279
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/array.jl#L1309-L1328
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–Method.

Return the linear index of the first element of for which returns . Returns if there is no such element.

Examples

–Method.

Return the linear index of the last non-zero value in (determined by ). Returns if there is no non-zero value in .

Examples

–Method.

Return the linear index of the last element equal to in . Returns if there is no element of equal to .

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/array.jl#L1359-L1378
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/array.jl#L1407-L1431
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–Method.

Return the linear index of the last element of for which returns . Returns if there is no such element.

Examples

–Method.

Find the next linear index >= of a non-zero element of , or if not found.

Examples

–Method.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/array.jl#L1460-L1482
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/array.jl#L1512-L1531
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/array.jl#L1232-L1250
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Find the next linear index >= of an element of for which returns , or if not found.

Examples

–Method.

Find the next linear index >= of an element of equal to (using ), or if not found.

Examples

–Method.

Find the previous linear index <= of a non-zero element of , or if not found.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/array.jl#L1331-L1349
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/array.jl#L1282-L1300


642 CHAPTER 51. ARRAYS

–Method.

Find the previous linear index <= of an element of for which returns , or if not found.

Examples

–Method.

Find the previous linear index <= of an element of equal to (using ), or if not found.

Examples

– Function.

Permute the dimensions of array . is a vector specifying a permutation of length . This is a generalization of trans-

pose for multi-dimensional arrays. Transpose is equivalent to .

See also: .

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/array.jl#L1381-L1399
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/array.jl#L1485-L1504
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/array.jl#L1434-L1452
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– Function.

Permute the dimensions of array and store the result in the array . is a vector specifying a permutation of length

. The preallocated array should have and is completely overwritten. No in-place permutation is supported and

unexpected results will happen if and have overlappingmemory regions.

See also .

– Type.

Given anAbstractArray , create a view such that the dimensions appear to be permuted. Similar to , except that no

copying occurs ( shares storage with ).

See also: .

Examples

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/permuteddimsarray.jl#L79-L110
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/permuteddimsarray.jl#L116-L126
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/permuteddimsarray.jl#L19-L40
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Check two array shapes for compatibility, allowing trailing singleton dimensions, and return whichever shape has

more dimensions.

51.7 Array functions

–Method.

Cumulative operation along a dimension (defaults to 1). See also to use a preallocated output array, both for

performance and to control the precision of the output (e.g. to avoid overflow). For common operations there are

specialized variants of , see: ,

Like , but using a starting element . The first entry of the result will be .

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/indices.jl#L34-L51
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/multidimensional.jl#L726-L748
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– Function.

Cumulative operation on along a dimension, storing the result in . The dimension defaults to 1. See also .

– Function.

Cumulative product along a dimension (defaults to 1). See also to use a preallocated output array, both for per-

formance and to control the precision of the output (e.g. to avoid overflow).

– Function.

Cumulative product of along a dimension, storing the result in . The dimension defaults to 1. See also .

– Function.

Cumulative sum along a dimension (defaults to 1). See also to use a preallocated output array, both for perfor-

mance and to control the precision of the output (e.g. to avoid overflow).

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/multidimensional.jl#L755-L775
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/multidimensional.jl#L810-L815
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/multidimensional.jl#L692-L715
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/multidimensional.jl#L718-L723
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– Function.

Cumulative sum of along a dimension, storing the result in . The dimension defaults to 1. See also .

– Function.

Cumulative sum along a dimension, using the Kahan-Babuska-Neumaier compensated summation algorithm for

additional accuracy. The dimension defaults to 1.

– Function.

Compute theCRC-32cchecksumof thegiven ,whichcanbean , a contiguous subarray thereof, or a . Optionally, you

can pass a starting integer to bemixed in with the checksum. The parameter can be used to compute a checksum

on data divided into chunks: performing is equivalent to the checksum of . (Technically, a little-endian checksum

is computed.)

There is also amethod to checksum bytes from a stream , or to checksum all the remaining bytes. Hence you can

do to checksum an entire file, or to checksum an without calling .

For a , note that the result is specific to the UTF-8 encoding (a different checksum would be obtained from a dif-

ferent Unicode encoding). To checksum an of some other bitstype, you can do , but note that the result may be

endian-dependent.

– Function.

Finitedifferenceoperatorofmatrixorvector . If is amatrix, compute thefinitedifferenceoveradimension (default

).

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/multidimensional.jl#L655-L678
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/multidimensional.jl#L684-L689
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/abstractarraymath.jl#L240-L245
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/util.jl#L763-L783
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– Function.

Compute differences along vector , using as the spacing between points. The default spacing is one.

Examples

–Method.

Construct anarrayby repeating theentriesof . The i-thelementof specifies thenumberof times that the individual

entries of the i-th dimension of should be repeated. The i-th element of specifies the number of times that a slice

along the i-th dimension of should be repeated. If or are omitted, no repetition is performed.

Examples

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/generic.jl#L245-L263
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/generic.jl#L277-L294
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/abstractarraymath.jl#L337-L369
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Rotatematrix 180 degrees.

Examples

Rotatematrix 180 degrees an integer number of times. If is even, this is equivalent to a .

Examples

– Function.

Rotatematrix left 90 degrees.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/arraymath.jl#L170-L187
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/arraymath.jl#L272-L295
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/arraymath.jl#L115-L132
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Rotatematrix left 90 degrees an integer number of times. If is zero or amultiple of four, this is equivalent to a .

Examples

– Function.

Rotatematrix right 90 degrees.

Examples

Rotatematrix right 90 degrees an integer number of times. If is zero or amultiple of four, this is equivalent to a .

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/arraymath.jl#L197-L230
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/arraymath.jl#L143-L160
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– Function.

Reduce2-argument function alongdimensionsof . is a vector specifying thedimensions to reduce, and is the initial

value to use in the reductions. For , , and the argument is optional.

The associativity of the reduction is implementation-dependent; if you need a particular associativity, e.g. left-to-

right, you should write your own loop. See documentation for .

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/arraymath.jl#L237-L270
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– Function.

Evaluates to the same as , but is generally faster because the intermediate array is avoided.

Examples

– Function.

Transform the given dimensions of array using function . is called on each slice of of the form . is an integer vector

specifying where the colons go in this expression. The results are concatenated along the remaining dimensions.

For example, if is and is 4-dimensional, is called on for all and .

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reducedim.jl#L245-L276
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reducedim.jl#L216-L239
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– Function.

Returns the sum of all elements of , using the Kahan-Babuska-Neumaier compensated summation algorithm for

additional accuracy.

51.8 Combinatorics

– Function.

Construct a random permutation of length . The optional argument specifies a random number generator (see

RandomNumbers). To randomly permute an arbitrary vector, see or .

Examples

– Function.

Construct in a random permutation of length . The optional argument specifies a random number generator (see

RandomNumbers). To randomly permute an arbitrary vector, see or .

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/abstractarray.jl#L1787-L1830
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/reduce.jl#L368-L373
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/random.jl#L1789-L1806
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– Function.

Return the inverse permutation of . If , then .

Examples

– Function.

Returns if is a valid permutation.

Examples

–Method.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/random.jl#L1810-L1827
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/combinatorics.jl#L170-L203
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/combinatorics.jl#L47-L60
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Permute vector in-place, according to permutation . No checking is done to verify that is a permutation.

To return a new permutation, use . Note that this is generally faster than for large vectors.

See also .

Examples

– Function.

Like , but the inverse of the given permutation is applied.

Examples

– Function.

Construct a random cyclic permutation of length . The optional argument specifies a random number generator,

see RandomNumbers.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/combinatorics.jl#L95-L121
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/combinatorics.jl#L147-L167
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– Function.

Construct in a randomcyclic permutation of length . The optional argument specifies a randomnumber generator,

see RandomNumbers.

Examples

– Function.

Return a randomly permuted copy of . The optional argument specifies a random number generator (see Random

Numbers). To permute in-place, see . To obtain randomly permuted indices, see .

Examples

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/random.jl#L1848-L1865
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/random.jl#L1869-L1887
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/random.jl#L1760-L1785
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In-place version of : randomly permute in-place, optionally supplying the random-number generator .

Examples

– Function.

Return a copy of reversed from start to stop.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/random.jl#L1716-L1745
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– Function.

Given an index in , return the corresponding index in so that . (This can benontrivial in the casewhere is aUnicode

string.)

Examples

– Function.

In-place version of .

51.9 BitArrays

s are space-efficient ”packed” boolean arrays, which store one bit per boolean value. They can be used similarly to

arrays (which store one byte per boolean value), and can be converted to/from the latter via and , respectively.

– Function.

Performs a bitwise not operation on . See .

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L513-L552
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/strings/types.jl#L132-L149
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L555-L559
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– Function.

Performs a left rotation operation on and puts the result into . controls how far to rotate the bits.

Performs a left rotation operation in-place on . controls how far to rotate the bits.

– Function.

Performs a left rotation operation, returning a new . controls how far to rotate the bits. See also .

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/bitarray.jl#L1154-L1171
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/bitarray.jl#L1477-L1482
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/bitarray.jl#L1495-L1500
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– Function.

Performs a right rotation operation on and puts the result into . controls how far to rotate the bits.

Performs a right rotation operation in-place on . controls how far to rotate the bits.

– Function.

Performs a right rotation operation on , returning a new . controls how far to rotate the bits. See also .

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/bitarray.jl#L1503-L1544
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/bitarray.jl#L1547-L1552
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/bitarray.jl#L1565-L1570
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/bitarray.jl#L1573-L1614
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51.10 Sparse Vectors andMatrices

Sparse vectors andmatrices largely support the sameset of operations as their dense counterparts. The following func-

tions are specific to sparse arrays.

– Type.

Vector type for storing sparse vectors.

– Type.

Matrix type for storing sparsematrices in the Compressed Sparse Column format.

– Function.

Convert an AbstractMatrix into a sparsematrix.

Examples

Create a sparse matrix of dimensions such that . The function is used to combine duplicates. If and are not

specified, they are set to and respectively. If the function is not supplied, defaults to unless the elements of are

Booleans in which case defaults to . All elements of must satisfy , and all elements of must satisfy . Numerical

zeros in (, , ) are retained as structural nonzeros; to drop numerical zeros, use .

For additional documentation and an expert driver, see .

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/sparse/sparsevector.jl#L12-L16
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/sparse/sparsematrix.jl#L8-L13
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/sparse/sparsematrix.jl#L429-L448
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– Function.

Create a sparse vector of length such that . Duplicates are combined using the function, which defaults to if no

argument is provided, unless the elements of are Booleans in which case defaults to .

Examples

Create a sparse vector of length where the nonzero indices are keys from the dictionary, and the nonzero values

are the values from the dictionary.

Examples

Convert a vector into a sparse vector of length .

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/sparse/sparsematrix.jl#L502-L529
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/sparse/sparsevector.jl#L122-L152
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/sparse/sparsevector.jl#L198-L211
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– Function.

Returns if is sparse, and otherwise.

– Function.

Convert a sparsematrix or vector into a densematrix or vector.

Examples

– Function.

Returns the number of stored (filled) elements in a sparse array.

Examples

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/sparse/sparsevector.jl#L330-L343
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/sparse/abstractsparse.jl#L8-L12
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/sparse/sparsematrix.jl#L398-L417
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/sparse/sparsematrix.jl#L56-L72
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Create a sparse vector of length or sparsematrix of size . This sparse arraywill not contain any nonzero values. No

storage will be allocated for nonzero values during construction. The type defaults to if not specified.

Examples

– Function.

Create a sparse array with the same structure as that of , but with every nonzero element having the value .

Examples

Note the difference from .

–Method.

Create a sparse identitymatrix of size . When is supplied, create a sparse identitymatrix of size . The type defaults

to if not specified.

is equivalent to , and can be used to efficiently create a sparsemultiple of the identity matrix.

–Method.

Create a sparse identity matrix with the same size as .

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/sparse/sparsematrix.jl#L1479-L1495
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/sparse/sparsematrix.jl#L1451-L1475
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/sparse/sparsematrix.jl#L1538-L1548
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Note the difference from .

Create a sparse identitymatrix of size . When is supplied, create a sparse identitymatrix of size . The type defaults

to if not specified.

is equivalent to , and can be used to efficiently create a sparsemultiple of the identity matrix.

– Function.

Construct a sparse diagonal matrix. is a tuple of vectors containing the diagonals and is a tuple containing the

positions of the diagonals. In the case the input contains only one diagonal, can be a vector (instead of a tuple) and

can be the diagonal position (instead of a tuple), defaulting to 0 (diagonal). Optionally, and specify the size of the

resulting sparsematrix.

Examples

– Function.

Create a random length sparse vector or by sparsematrix, in which the probability of any element being nonzero

is independently given by (and hence the mean density of nonzeros is also exactly ). Nonzero values are sampled

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/sparse/sparsematrix.jl#L1511-L1534
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/sparse/sparsematrix.jl#L1538-L1548
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/sparse/sparsematrix.jl#L3338-L3360
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from the distribution specified by and have the type . The uniform distribution is used in case is not specified. The

optional argument specifies a random number generator, see RandomNumbers.

Examples

– Function.

Createa randomsparsevectorof length or sparsematrixof size by with the specified (independent) probability of

any entry being nonzero, where nonzero values are sampled from the normal distribution. The optional argument

specifies a random number generator, see RandomNumbers.

Examples

– Function.

Return a vector of the structural nonzero values in sparse array . This includes zeros that are explicitly stored in

the sparse array. The returned vector points directly to the internal nonzero storage of , and any modifications to

the returned vector will mutate as well. See and .

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/sparse/sparsematrix.jl#L1374-L1397
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/sparse/sparsematrix.jl#L1428-L1446
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– Function.

Returnavectorof therowindicesof .Anymodifications to thereturnedvectorwillmutate aswell. Providingaccess

to how the row indices are stored internally can be useful in conjunction with iterating over structural nonzero

values. See also and .

Examples

– Function.

Return the range of indices to the structural nonzero values of a sparse matrix column. In conjunction with and ,

this allows for convenient iterating over a sparsematrix :

–Method.

Removes stored numerical zeros from , optionally trimming resulting excess space from and when is .

For an out-of-place version, see . For algorithmic information, see .

–Method.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/sparse/sparsematrix.jl#L77-L100
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/sparse/sparsematrix.jl#L103-L125
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/sparse/sparsematrix.jl#L128-L146
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/sparse/sparsematrix.jl#L1243-L1251
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Generates a copy of and removes stored numerical zeros from that copy, optionally trimming excess space from

the result’s and arrays when is .

For an in-place version and algorithmic information, see .

Examples

–Method.

Removes stored numerical zeros from , optionally trimming resulting excess space from and when is .

For an out-of-place version, see . For algorithmic information, see .

–Method.

Generates a copy of and removes numerical zeros from that copy, optionally trimming excess space from the re-

sult’s and arrays when is .

For an in-place version and algorithmic information, see .

Examples

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/sparse/sparsematrix.jl#L1253-L1274
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/sparse/sparsevector.jl#L1954-L1962
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/sparse/sparsevector.jl#L1964-L1985
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Bilaterally permute , returning (). Column-permutation ’s lengthmustmatch ’s column count (). Row-permutation

’s lengthmust match ’s row count ().

For expert drivers and additional information, see .

Examples

–Method.

Bilaterally permute , storing result () in . Stores intermediate result () in optional argument if present. Requires

that none of , , and, if present, alias each other; to store result back into , use the followingmethod lacking :

’s dimensionsmust match those of ( and ), and must have enough storage to accommodate all allocated entries in

( and ). Column-permutation ’s lengthmustmatch ’s column count (). Row-permutation ’s lengthmustmatch ’s row

count ().

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/sparse/sparsematrix.jl#L1104-L1146
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’s dimensionsmust match those of ( and ), and must have enough storage to accommodate all allocated entries in

( and ).

For additional (algorithmic) information, and for versions of thesemethods that forgo argument checking, see (un-

exported) parent methods and .

See also: .

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/sparse/sparsematrix.jl#L1032-L1061




Chapter 52

Tasks and Parallel Computing

52.1 Tasks

– Type.

Create a (i.e. coroutine) to execute the given function (which must be callable with no arguments). The task exits

when this function returns.

Examples

In this example, is a runnable that hasn’t started yet.

– Function.

Get the currently running .

– Function.

Determine whether a task has exited.

671

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1341-L1355
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/task.jl#L83-L87
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– Function.

Determine whether a task has started executing.

– Function.

Switch to the scheduler to allow another scheduled task to run. A task that calls this function is still runnable, and

will be restarted immediately if there are no other runnable tasks.

A fast, unfair-scheduling version of which immediately yields to before calling the scheduler.

– Function.

Switch to the given task. The first time a task is switched to, the task’s function is called with no arguments. On

subsequent switches, is returned from the task’s last call to . This is a low-level call that only switches tasks, not

considering states or scheduling in any way. Its use is discouraged.

–Method.

Look up the value of a key in the current task’s task-local storage.

–Method.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/task.jl#L90-L110
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/task.jl#L113-L126
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/event.jl#L143-L149
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/event.jl#L152-L157
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/event.jl#L165-L172
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/task.jl#L141-L145
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Assign a value to a key in the current task’s task-local storage.

–Method.

Call the function with amodified task-local storage, in which is assigned to ; the previous value of , or lack thereof,

is restored afterwards. Useful for emulating dynamic scoping.

– Type.

Create an edge-triggered event source that tasks can wait for. Tasks that call on a are suspended and queued.

Tasks arewoken upwhen is later called on the . Edge triggeringmeans that only tasks waiting at the time is called

canbewokenup. For level-triggerednotifications, youmustkeepextra state tokeep trackofwhetheranotification

has happened. The type does this, and so can be used for level-triggered events.

– Function.

Wake up taskswaiting for a condition, passing them . If is (the default), all waiting tasks arewoken, otherwise only

one is. If is , the passed value is raised as an exception in the woken tasks.

Returns the count of tasks woken up. Returns 0 if no tasks are waiting on .

– Function.

Add a to the scheduler’s queue. This causes the task to run constantly when the system is otherwise idle, unless

the task performs a blocking operation such as .

If a second argument is provided, it will be passed to the task (via the return value of ) when it runs again. If is , the

value is raised as an exception in the woken task.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/task.jl#L148-L152
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/task.jl#L155-L161
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/event.jl#L5-L14
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/event.jl#L34-L42
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–Macro.

Wrapanexpression in a andadd it to the localmachine’s scheduler queue. Similar to except that anenclosing does

NOTwait for tasks started with an .

–Macro.

Wrap an expression in a without executing it, and return the . This only creates a task, and does not run it.

– Function.

Block the current task for a specified number of seconds. Theminimum sleep time is 1millisecond or input of .

– Type.

Constructs a with an internal buffer that can hold amaximumof objects of type . calls on a full channel block until

an object is removedwith .

constructs an unbuffered channel. blocks until a matching is called. And vice-versa.

Other constructors:

• : equivalent to

• : equivalent to

–Method.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/event.jl#L91-L119
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/event.jl#L65-L71
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/task.jl#L57-L78
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/event.jl#L411-L416
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/channels.jl#L5-L19
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Appends an item to the channel . Blocks if the channel is full.

For unbuffered channels, blocks until a is performed by a different task.

–Method.

Removes and returns a value from a . Blocks until data is available.

For unbuffered channels, blocks until a is performed by a different task.

–Method.

Determine whether a has a value stored to it. Returns immediately, does not block.

For unbuffered channels returns if there are tasks waiting on a .

–Method.

Waits for and gets the first available item from the channel. Does not remove the item. is unsupported on an

unbuffered (0-size) channel.

–Method.

Closes a channel. An exception is thrown by:

• on a closed channel.

• and on an empty, closed channel.

–Method.

Associates the lifetime of with a task. Channel is automatically closed when the task terminates. Any uncaught

exception in the task is propagated to all waiters on .

The object can be explicitly closed independent of task termination. Terminating tasks have no effect on already

closed Channel objects.

When a channel is bound to multiple tasks, the first task to terminate will close the channel. Whenmultiple chan-

nels are bound to the same task, termination of the task will close all of the bound channels.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/channels.jl#L254-L261
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/channels.jl#L311-L318
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/channels.jl#L350-L358
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/channels.jl#L297-L302
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/channels.jl#L136-L143
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– Function.

Usesmultiple concurrent tasks tomap over a collection (ormultiple equal length collections). Formultiple collec-

tion arguments, is applied elementwise.

specifies the number of tasks to run concurrently. Depending on the length of the collections, if is unspecified, up

to 100 tasks will be used for concurrent mapping.

can also be specified as a zero-arg function. In this case, the number of tasks to run in parallel is checked before

processing every element and a new task started if the value of is less than the current number of tasks.

If is specified, the collection is processed in batch mode. must then be a function that must accept a of argument

tuples andmust return a vector of results. The input vector will have a length of or less.

The following examples highlight execution in different tasks by returning the of the tasks in which the mapping

function is executed.

First, with undefined, each element is processed in a different task.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/channels.jl#L152-L202
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With all elements are processed in 2 tasks.

With defined, themapping function needs to be changed to accept an array of argument tuples and return an array

of results. is used in themodifiedmapping function to achieve this.

Note

Currently, all tasks in Julia are executed in a single OS thread co-operatively. Consequently, is benefi-

cial only when themapping function involves any I/O - disk, network, remote worker invocation, etc.

– Function.

Like , but stores output in rather than returning a collection.

52.2 General Parallel Computing Support

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/asyncmap.jl#L5-L79
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/asyncmap.jl#L415-L420
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Launches worker processes via the specified cluster manager.

For example, Beowulf clusters are supported via a custom cluster manager implemented in the package .

The number of seconds a newly launchedworkerwaits for connection establishment from themaster can be spec-

ified via variable in the worker process’s environment. Relevant only when using TCP/IP as transport.

Add processes on remote machines via SSH. Requires to be installed in the same location on each node, or to be

available via a shared file system.

is a vector of machine specifications. Workers are started for each specification.

Amachine specification is either a string or a tuple - .

is a string of the form . defaults to current user, to the standard ssh port. If is specified, otherworkerswill connect

to this worker at the specified and .

is the number of workers to be launched on the specified host. If specified as it will launch asmanyworkers as the

number of cores on the specific host.

Keyword arguments:

• : if then SSH tunneling will be used to connect to the worker from themaster process. Default is .

• : specifies additional ssh options, e.g. ‘

• : specifies themaximum number of workers connected to in parallel at a host. Defaults to 10.

• : specifies the working directory on the workers. Defaults to the host’s current directory (as found by )

• : if then BLASwill run onmultiple threads in added processes. Default is .

• : name of the executable. Defaults to or as the casemay be.

• : additional flags passed to the worker processes.

• : Specifieshowtheworkers connect toeachother. Sendingamessagebetweenunconnectedworkers results

in an error.

– : All processes are connected to each other. The default.

– : Only the driver process, i.e. 1 connects to the workers. The workers do not connect to each other.

– : The methodof the clustermanager specifies the connection topology via fields and in . Aworkerwith

a cluster manager identity will connect to all workers specified in .

• : Applicable onlywith . If , worker-worker connections are setup lazily, i.e. they are setup at the first instance

of a remote call betweenworkers. Default is true.

Environment variables :

If themaster process fails to establish a connectionwith a newly launchedworkerwithin 60.0 seconds, theworker

treats it as a fatal situation and terminates. This timeout can be controlled via environment variable . The value of

on the master process specifies the number of seconds a newly launched worker waits for connection establish-

ment.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/distributed/cluster.jl#L353-L364
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/distributed/managers.jl#L51-L115
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Equivalent to

Note that workers do not run a startup script, nor do they synchronize their global state (such as global variables,

newmethod definitions, and loadedmodules) with any of the other running processes.

Launches workers using the in-built which only launches workers on the local host. This can be used to take ad-

vantage of multiple cores. will add 4 processes on the local machine. If is , binding is restricted to . Keyword args ,

, , , and have the same effect as documented for .

– Function.

Get the number of available processes.

– Function.

Get the number of available worker processes. This is one less than . Equal to if .

–Method.

Returns a list of all process identifiers.

–Method.

Returns a list of all process identifiers on the same physical node. Specifically all workers bound to the same ip-

address as are returned.

– Function.

Returns a list of all worker process identifiers.

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/distributed/managers.jl#L292-L300
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/distributed/managers.jl#L303-L311
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/distributed/cluster.jl#L722-L726
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/distributed/cluster.jl#L742-L747
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/distributed/cluster.jl#L753-L757
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/distributed/cluster.jl#L784-L789
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/distributed/cluster.jl#L804-L808
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Removes the specifiedworkers. Note that only process 1 can add or removeworkers.

Argument specifies how long to wait for the workers to shut down: - If unspecified, will wait until all requested

are removed. - An is raised if all workers cannot be terminated before the requested seconds. - With a value of

0, the call returns immediatelywith theworkers scheduled for removal in a different task. The scheduled object is

returned. The user should call on the task before invoking any other parallel calls.

– Function.

Interrupt the current executing task on the specified workers. This is equivalent to pressing Ctrl-C on the local

machine. If no arguments are given, all workers are interrupted.

Interrupt the current executing task on the specified workers. This is equivalent to pressing Ctrl-C on the local

machine. If no arguments are given, all workers are interrupted.

– Function.

Get the id of the current process.

– Function.

Transform collection by applying to each element using available workers and tasks.

For multiple collection arguments, apply elementwise.

Note that must bemade available to all worker processes; see Code Availability and Loading Packages for details.

If a worker pool is not specified, all available workers, i.e., the default worker pool is used.

Bydefault, distributes the computationover all specifiedworkers. Touseonly the local process anddistributeover

tasks, specify . This is equivalent to using . For example, is equivalent to

can also use a mix of processes and tasks via the argument. For batch sizes greater than 1, the collection is pro-

cessed inmultiple batches, each of length or less. A batch is sent as a single request to a freeworker, where a local

processes elements from the batch usingmultiple concurrent tasks.

Any error stops fromprocessing the remainder of the collection. Tooverride this behavior you can specify an error

handling function via argument which takes in a single argument, i.e., the exception. The function can stop the

processing by rethrowing the error, or, to continue, return any value which is then returned inline with the results

to the caller.

Consider the following two examples. The first one returns the exception object inline, the second a 0 in place of

any exception:

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/distributed/cluster.jl#L824-L838
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/distributed/cluster.jl#L1009-L1014
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/distributed/cluster.jl#L1017-L1022
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/distributed/cluster.jl#L715-L719
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Errors can also be handled by retrying failed computations. Keyword arguments and are passed through to as

keyword arguments and respectively. If batching is specified, and an entire batch fails, all items in the batch are

retried.

Note that if both and are specified, the hook is called before retrying. If does not throw (or rethrow) an exception,

the element will not be retried.

Example: On errors, retry on an element amaximum of 3 times without any delay between retries.

Example: Retry only if the exception is not of type , with exponentially increasing delays up to 3 times. Return a in

place for all occurrences.

– Type.

Exceptions on remote computations are captured and rethrown locally. A wraps the of theworker and a captured

exception. A captures the remoteexception anda serializable formof the call stackwhen theexceptionwas raised.

– Type.

Create a on process . The default is the current process.

–Method.

Make a reference to a on process . The default is the current process.

–Method.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/distributed/pmap.jl#L32-L98
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/distributed/process_messages.jl#L24-L30
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/distributed/remotecall.jl#L78-L83
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/distributed/remotecall.jl#L86-L91
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Create references to remote channels of a specific size and type. is a function that when executed on must return

an implementation of an .

For example, , will return a reference to a channel of type and size 10 on .

The default is the current process.

– Function.

Block the current task until some event occurs, depending on the type of the argument:

• : Wait for a value to become available on the specified remote channel.

• : Wait for a value to become available for the specified future.

• : Wait for a value to be appended to the channel.

• : Wait for on a condition.

• : Wait for aprocessorprocess chain toexit. The fieldof aprocess canbeused todetermine successor failure.

• : Wait for a to finish, returning its result value. If the task failswith an exception, the exception is propagated

(re-thrown in the task that called ).

• :Wait for changes on a file descriptor (see for keyword arguments and return code)

If no argument is passed, the task blocks for an undefined period. A task can only be restarted by an explicit call to

or .

Often is called within a loop to ensure a waited-for condition is met before proceeding.

–Method.

Waits and fetches a value from depending on the type of :

• : Wait for and get the value of a . The fetched value is cached locally. Further calls to on the same reference

return the cached value. If the remote value is an exception, throws a which captures the remote exception

and backtrace.

• : Wait for and get the value of a remote reference. Exceptions raised are same as for a .

Does not remove the item fetched.

–Method.

Call a function asynchronously on the given arguments on the specified process. Returns a . Keyword arguments,

if any, are passed through to .

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/distributed/remotecall.jl#L94-L104
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1243-L1265
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/distributed/remotecall.jl#L492-L504
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/distributed/remotecall.jl#L347-L353
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–Method.

Perform a faster in onemessage on the specified byworker id . Keyword arguments, if any, are passed through to

.

See also and .

–Method.

Perform in onemessage. Keyword arguments, if any, are passed through to . Any remote exceptions are captured

in a and thrown.

See also and .

–Method.

Executes onworker asynchronously. Unlike , it does not store the result of computation, nor is there away towait

for its completion.

A successful invocation indicates that the request has been accepted for execution on the remote node.

While consecutive s to the sameworker are serialized in the order they are invoked, the order of executions on the

remote worker is undetermined. For example, will serialize the call to , followed by and in that order. However, it

is not guaranteed that is executed before onworker 2.

Any exceptions thrown by are printed to on the remote worker.

Keyword arguments, if any, are passed through to .

–Method.

Store a set of values to the . If the channel is full, blocks until space is available. Returns its first argument.

–Method.

Store a value to a . s are write-once remote references. A on an already set throws an . All asynchronous remote

calls return s and set the value to the return value of the call upon completion.

–Method.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/distributed/remotecall.jl#L404-L411
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/distributed/remotecall.jl#L375-L384
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/distributed/remotecall.jl#L430-L449
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/distributed/remotecall.jl#L537-L543
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/distributed/remotecall.jl#L509-L517
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Fetch value(s) from a , removing the value(s) in the processs.

–Method.

Determine whether a has a value stored to it. Note that this function can cause race conditions, since by the time

you receive its result it may no longer be true. However, it can be safely used on a since they are assigned only

once.

–Method.

Determine whether a has a value stored to it.

If the argument is owned by a different node, this call will block to wait for the answer. It is recommended to wait

for in a separate task instead or to use a local as a proxy:

– Type.

Create aWorkerPool from a vector of worker ids.

– Type.

An implementation of an . , , (and other remote calls which execute functions remotely) benefit from caching the

serialized/deserialized functions on the worker nodes, especially closures (which may capture large amounts of

data).

The remote cache is maintained for the lifetime of the returned object. To clear the cache earlier, use .

For global variables, only the bindings are captured in a closure, not the data. blocks can be used to capture global

data.

Examples

The abovewould transfer only once to eachworker.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/distributed/remotecall.jl#L555-L560
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/distributed/remotecall.jl#L193-L200
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/distributed/remotecall.jl#L169-L181
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/distributed/workerpool.jl#L32-L36
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/distributed/workerpool.jl#L233-L259
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– Function.

containing idle - used by and (by default).

–Method.

Removes all cached functions from all participating workers.

– Function.

Returns an anonymous function that executes function on an available worker using .

–Method.

variant of . Waits for and takes a free worker from and performs a on it.

–Method.

variant of . Waits for and takes a free worker from and performs a on it.

–Method.

variant of . Waits for and takes a free worker from and performs a on it.

–Method.

variant of . Waits for and takes a free worker from and performs a on it.

– Function.

Waits until returns or for seconds, whichever is earlier. is polled every seconds.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/distributed/workerpool.jl#L190-L194
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/distributed/workerpool.jl#L268-L272
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/distributed/workerpool.jl#L208-L213
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/distributed/workerpool.jl#L155-L159
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/distributed/workerpool.jl#L163-L168
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/distributed/workerpool.jl#L172-L177
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/distributed/workerpool.jl#L180-L185
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/task.jl#L340-L345
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–Macro.

Create a closure around an expression and run it on an automatically-chosen process, returning a to the result.

Examples

–Macro.

Create a closure around an expression and run the closure asynchronously on process . Returns a to the result.

Accepts two arguments, and an expression.

Examples

–Macro.

Equivalent to . See and .

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/distributed/macros.jl#L19-L41
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/distributed/macros.jl#L47-L64
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–Macro.

Equivalent to . See and .

Examples

–Macro.

Like , wraps an expression in a and adds it to the local machine’s scheduler queue. Additionally it adds the task to

the set of items that the nearest enclosing waits for.

–Macro.

Wait until all dynamically-enclosed uses of , , and are complete. All exceptions thrown by enclosed async opera-

tions are collected and thrown as a .

–Macro.

A parallel for loop of the form :

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/distributed/macros.jl#L70-L92
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/distributed/macros.jl#L98-L114
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/task.jl#L327-L333
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/task.jl#L292-L298
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The specified range is partitioned and locally executed across all workers. In case an optional reducer function is

specified, performs local reductions on eachworker with a final reduction on the calling process.

Note that without a reducer function, executes asynchronously, i.e. it spawns independent tasks on all available

workers and returns immediately without waiting for completion. To wait for completion, prefix the call with , like

:

–Macro.

Execute an expression under on all . Errors on any of the processes are collected into a and thrown. For example:

will define on all processes.

Unlike and , does not capture any local variables. Instead, local variables can be broadcast using interpolation:

The optional argument allows specifying a subset of all processes to have execute the expression.

Equivalent to calling .

–Method.

Clears global bindings in modules by initializing them to . should be of type or a collection of s . and identify the

processes and the module in which global variables are to be reinitialized. Only those names found to be defined

under are cleared.

An exception is raised if a global constant is requested to be cleared.

– Function.

s and s are identified by fields:

• - refers to the nodewhere the underlying object/storage referred to by the reference actually exists.

• - refers to the node the remote referencewas created from. Note that this is different from the nodewhere

the underlying object referred to actually exists. For example calling from the master process would result

in a value of 2 and a value of 1.

• is unique across all references created from theworker specified by .

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/distributed/macros.jl#L273-L293
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/distributed/macros.jl#L136-L158
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/distributed/clusterserialize.jl#L228-L237
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Taken together, and uniquely identify a reference across all workers.

is a low-level API which returns a object that wraps and values of a remote reference.

– Function.

A low-level APIwhich returns the backing for an returned by . The call is valid only on the nodewhere the backing

channel exists.

– Function.

A low-level API which given a connection or a , returns the of the worker it is connected to. This is useful when

writing custom methods for a type, which optimizes the data written out depending on the receiving process id.

–Method.

Returns the cluster cookie.

–Method.

Sets the passed cookie as the cluster cookie, then returns it.

52.3 Shared Arrays

– Type.

Construct a of a bits type and size across the processes specified by - all of which have to be on the same host. If

is specified by calling , then must match the length of .

If is left unspecified, the shared arraywill bemapped across all processes on the current host, including themaster.

But, and will only refer to worker processes. This facilitates work distribution code to use workers for actual

computation with themaster process acting as a driver.

If an function of the type is specified, it is called on all the participating workers.

The shared array is valid as long as a reference to the object exists on the nodewhich created themapping.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/distributed/remotecall.jl#L115-L135
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/distributed/remotecall.jl#L138-L144
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/distributed/cluster.jl#L915-L922
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/distributed/cluster.jl#L633-L637
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/distributed/cluster.jl#L640-L644
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Construct a backed by the file , with element type (must be a bits type) and size , across the processes specified

by - all of which have to be on the same host. This file ismmapped into the hostmemory, with the following conse-

quences:

• The array datamust be represented in binary format (e.g., an ASCII format like CSV cannot be supported)

• Any changes youmake to the array values (e.g., ) will also change the values on disk

If is left unspecified, the shared arraywill bemapped across all processes on the current host, including themaster.

But, and will only refer to worker processes. This facilitates work distribution code to use workers for actual

computation with themaster process acting as a driver.

must be one of , , , or , and defaults to if the file specified by already exists, or if not. If an function of the type is

specified, it is called on all the participating workers. You cannot specify an function if the file is not writable.

allows you to skip the specified number of bytes at the beginning of the file.

–Method.

Get the vector of processes mapping the shared array.

– Function.

Returns the actual object backing .

– Function.

Returns the current worker’s index in the list of workersmapping the (i.e. in the same list returned by ), or 0 if the

is not mapped locally.

– Function.

Returns a range describing the ”default” indexes to be handled by the current process. This range should be inter-

preted in the sense of linear indexing, i.e., as a sub-range of . In multi-process contexts, returns an empty range in

the parent process (or any process for which returns 0).

It’sworth emphasizing that exists purely as a convenience, and you canpartitionworkon the array amongworkers

any way youwish. For a , all indexes should be equally fast for each worker process.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/sharedarray.jl#L37-L86
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/sharedarray.jl#L288-L292
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/sharedarray.jl#L304-L308
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/sharedarray.jl#L295-L301
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/sharedarray.jl#L312-L325
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52.4 Multi-Threading

Thisexperimental interfacesupports Julia’smulti-threadingcapabilities. Typesand functionsdescribedheremight (and

likely will) change in the future.

– Function.

Get the ID number of the current thread of execution. Themaster thread has ID .

– Function.

Get the number of threads available to the Julia process. This is the inclusive upper bound on .

–Macro.

Amacro to parallelize a for-loop to run with multiple threads. This spawns number of threads, splits the iteration

spaceamongst them, and iterates inparallel. Abarrier is placedat theendof the loopwhichwaits for all the threads

to finish execution, and the loop returns.

– Type.

Holds a reference to an object of type , ensuring that it is only accessed atomically, i.e. in a thread-safe manner.

Only certain ”simple” types can be used atomically, namely the primitive integer and float-point types. These are

..., ..., and ....

New atomic objects can be created from a non-atomic values; if none is specified, the atomic object is initialized

with zero.

Atomic objects can be accessed using the notation:

Examples

Atomic operations use an prefix, such as , , etc.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/threadingconstructs.jl#L5-L9
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/threadingconstructs.jl#L13-L18
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/threadingconstructs.jl#L79-L86
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/atomics.jl#L35-L64
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– Function.

Atomically compare-and-set

Atomically compares the value in with . If equal, write to . Otherwise, leaves unmodified. Returns the old value in

. By comparing the returned value to (via ) one knowswhether wasmodified and now holds the new value .

For further details, see LLVM’s instruction.

This function can be used to implement transactional semantics. Before the transaction, one records the value in .

After the transaction, the new value is stored only if has not beenmodified in themean time.

Examples

– Function.

Atomically exchange the value in

Atomically exchanges the value in with . Returns the old value.

For further details, see LLVM’s instruction.

Examples

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/atomics.jl#L73-L105
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/atomics.jl#L108-L129
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Atomically add to

Performs atomically. Returns the old value.

For further details, see LLVM’s instruction.

Examples

– Function.

Atomically subtract from

Performs atomically. Returns the old value.

For further details, see LLVM’s instruction.

Examples

– Function.

Atomically bitwise-and with

Performs atomically. Returns the old value.

For further details, see LLVM’s instruction.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/atomics.jl#L132-L152
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/atomics.jl#L155-L175
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– Function.

Atomically bitwise-nand (not-and) with

Performs atomically. Returns the old value.

For further details, see LLVM’s instruction.

Examples

– Function.

Atomically bitwise-or with

Performs atomically. Returns the old value.

For further details, see LLVM’s instruction.

Examples

– Function.

Atomically bitwise-xor (exclusive-or) with

Performs atomically. Returns the old value.

For further details, see LLVM’s instruction.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/atomics.jl#L178-L198
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/atomics.jl#L201-L221
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/atomics.jl#L224-L244
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– Function.

Atomically store themaximum of and in

Performs atomically. Returns the old value.

For further details, see LLVM’s instruction.

Examples

– Function.

Atomically store theminimum of and in

Performs atomically. Returns the old value.

For further details, see LLVM’s instruction.

Examples

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/atomics.jl#L247-L267
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/atomics.jl#L270-L290
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/atomics.jl#L293-L313


696 CHAPTER 52. TASKS AND PARALLEL COMPUTING

Insert a sequential-consistencymemory fence

Insertsamemory fencewithsequentially-consistentorderingsemantics. Therearealgorithmswherethis isneeded,

i.e. where an acquire/release ordering is insufficient.

This is likelyaveryexpensiveoperation. Giventhatall otheratomicoperations inJuliaalreadyhaveacquire/release

semantics, explicit fences should not be necessary in most cases.

For further details, see LLVM’s instruction.

52.5 ccall using a threadpool (Experimental)

–Macro.

The macro is called in the same way as but does the work in a different thread. This is useful when you want to

call a blocking C function without causing the main thread to become blocked. Concurrency is limited by size of

the libuv thread pool, which defaults to 4 threads but can be increased by setting the environment variable and

restarting the process.

Note that the called function should never call back into Julia.

52.6 Synchronization Primitives

– Type.

Abstract supertype describing types that implement the thread-safe synchronization primitives: , , , and

– Function.

Acquires the lock when it becomes available. If the lock is already locked by a different task/thread, it waits for it

to become available.

Each must bematched by an .

– Function.

Releases ownership of the lock.

If this is a recursive lockwhich has been acquired before, it just decrements an internal counter and returns imme-

diately.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/atomics.jl#L425-L439
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/threadcall.jl#L17-L28
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/locks.jl#L13-L19
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/lock.jl#L54-L62
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/lock.jl#L78-L85


52.6. SYNCHRONIZATION PRIMITIVES 697

– Function.

Acquires the lock if it is available, returning if successful. If the lock is already locked by a different task/thread,

returns .

Each successful must bematched by an .

– Function.

Check whether the lock is held by any task/thread. This should not be used for synchronization (see instead ).

– Type.

Creates a reentrant lock for synchronizing Tasks. The same task can acquire the lock as many times as required.

Each must bematchedwith an .

This lock is NOT threadsafe. See for a threadsafe lock.

– Type.

These are standard systemmutexes for locking critical sections of logic.

OnWindows, this is a critical section object, on pthreads, this is a .

See also SpinLock for a lighter-weight lock.

– Type.

Creates a non-reentrant lock. Recursive use will result in a deadlock. Each must bematchedwith an .

Test-and-test-and-set spin locks are quickest up to about 30ish contending threads. If you have more contention

than that, perhaps a lock is the wrongway to synchronize.

See also RecursiveSpinLock for a version that permits recursion.

See alsoMutex for amore efficient version on one core or if the lockmay be held for a considerable length of time.

– Type.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/lock.jl#L31-L40
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/lock.jl#L21-L26
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/lock.jl#L4-L12
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/locks.jl#L172-L181
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/locks.jl#L35-L49
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Creates a reentrant lock. The same thread can acquire the lock asmany times as required. Each must bematched

with an .

See also SpinLock for a slightly faster version.

See alsoMutex for amore efficient version on one core or if the lockmay be held for a considerable length of time.

– Type.

Creates a counting semaphore that allows atmost acquires to be in use at any time. Each acquiremust bemached

with a release.

This construct is NOT threadsafe.

– Function.

Wait for one of the permits to be available, blocking until one can be acquired.

– Function.

Return one permit to the pool, possibly allowing another task to acquire it and resume execution.

52.7 ClusterManager Interface

This interface provides a mechanism to launch and manage Julia workers on different cluster environments. There

are two types of managers present in Base: , for launching additional workers on the same host, and , for launching on

remote hosts via . TCP/IP sockets are used to connect and transport messages between processes. It is possible for

ClusterManagers to provide a different transport.

– Function.

Implemented by cluster managers. For every Julia worker launched by this function, it should append a entry to

and notify . The function MUST exit once all workers, requested by have been launched. is a dictionary of all

keyword arguments was called with.

– Function.

Implemented by cluster managers. It is called on the master process, during a worker’s lifetime, with appropriate

values:

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/locks.jl#L95-L105
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/lock.jl#L118-L126
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/lock.jl#L134-L139
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/lock.jl#L151-L157
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/distributed/managers.jl#L346-L353
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• with / when aworker is added / removed from the Julia worker pool.

• with when is called. The should signal the appropriate worker with an interrupt signal.

• with for cleanup purposes.

–Method.

Implemented by clustermanagers. It is called on themaster process, by . It should cause the remoteworker speci-

fied by to exit. executes a remote on .

–Method.

Implemented by clustermanagers using custom transports. It should establish a logical connection toworkerwith

id , specified by and return a pair of objects. Messages from to current processwill be read off , whilemessages to

be sent to will be written to . The custom transport implementationmust ensure that messages are delivered and

received completely and in order. sets up TCP/IP socket connections in-betweenworkers.

– Function.

Called by cluster managers implementing custom transports. It initializes a newly launched process as a worker.

Command line argument has the effect of initializing a process as a worker using TCP/IP sockets for transport. is

a .

– Function.

is an internal function which is the default entry point for worker processes connecting via TCP/IP. It sets up the

process as a Julia cluster worker.

If the cookie is unspecified, the worker tries to read it from its STDIN.

host:port information is written to stream (defaults to STDOUT).

The function closes STDIN (after reading the cookie if required), redirects STDERR to STDOUT, listens on a free

port (or if specified, theport in the command lineoption) and schedules tasks toprocess incomingTCPconnections

and requests.

It does not return.

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/distributed/managers.jl#L356-L366
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/distributed/managers.jl#L517-L525
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/distributed/managers.jl#L376-L386
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/distributed/cluster.jl#L316-L323
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/distributed/cluster.jl#L176-L194
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Calledbyclustermanagersusingcustomtransports. It shouldbecalledwhenthecustomtransport implementation

receives the first message from a remote worker. The custom transport must manage a logical connection to the

remote worker and provide two objects, one for incomingmessages and the other for messages addressed to the

remote worker. If is , the remote peer initiated the connection. Whichever of the pair initiates the connection

sends the cluster cookie and its Julia version number to perform the authentication handshake.

See also .

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/distributed/process_messages.jl#L121-L134
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Linear Algebra

53.1 Standard Functions

Linear algebra functions in Julia are largely implemented by calling functions from LAPACK. Sparse factorizations call

functions from SuiteSparse.

–Method.

Multiplication operator. calls this function with all arguments, i.e. .

–Method.

Left division operator: multiplication of by the inverse of on the left. Gives floating-point results for integer argu-

ments.

Examples

701

http://www.netlib.org/lapack/
http://faculty.cse.tamu.edu/davis/suitesparse.html
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1575-L1581
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/operators.jl#L448-L474
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– Function.

Compute the dot product between two vectors. For complex vectors, the first vector is conjugated. When the

vectors have equal lengths, calling is semantically equivalent to .

Examples

– Function.

For any iterable containers and (including arrays of any dimension) of numbers (or any element type for which is

defined), compute the Euclidean dot product (the sum of ) as if they were vectors.

Examples

– Function.

Compute the cross product of two 3-vectors.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/generic.jl#L666-L681
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/generic.jl#L613-L632
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– Function.

Compute a convenient factorization of , based upon the type of the inputmatrix. checks to see if it is symmetric/-

triangular/etc. if is passed as a generic matrix. checks every element of to verify/rule out each property. It will

short-circuit as soon as it can rule out symmetry/triangular structure. The return value can be reused for efficient

solving of multiple systems. For example: .

Properties of type of factorization

Positive-definite Cholesky (see )

Dense Symmetric/Hermitian Bunch-Kaufman (see )

Sparse Symmetric/Hermitian LDLt (see )

Triangular Triangular

Diagonal Diagonal

Bidiagonal Bidiagonal

Tridiagonal LU (see )

Symmetric real tridiagonal LDLt (see )

General square LU (see )

General non-square QR (see )

If is called on a Hermitian positive-definite matrix, for instance, then will return a Cholesky factorization.

Examples

This returns a , which can nowbe passed to other linear algebra functions (e.g. eigensolvers)whichwill use special-

izedmethods for types.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/generic.jl#L87-L113
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/dense.jl#L696-L742
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– Type.

Construct amatrix from the diagonal of .

Examples

Construct amatrix with as its diagonal.

Examples

– Type.

Constructsanupper () or lower () bidiagonalmatrixusing thegivendiagonal () andoff-diagonal () vectors. The result

is of type and provides efficient specialized linear solvers, butmay be converted into a regularmatrix with (or for

short). The length of must be one less than the length of .

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/diagonal.jl#L8-L27
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/diagonal.jl#L30-L47
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Construct a matrix from themain diagonal of and its first super- (if ) or sub-diagonal (if ).

Examples

– Type.

Construct a symmetric tridiagonal matrix from the diagonal () and first sub/super-diagonal (), respectively. The

result is of type and provides efficient specialized eigensolvers, but may be converted into a regular matrix with

(or for short).

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/bidiag.jl#L19-L57
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/bidiag.jl#L62-L91
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Examples

Construct a symmetric tridiagonal matrix from the diagonal and first sub/super-diagonal, of the symmetric matrix

.

Examples

– Type.

Construct a tridiagonalmatrix fromthefirst subdiagonal, diagonal, andfirst superdiagonal, respectively. The result

is of type and provides efficient specialized linear solvers, butmay be converted into a regularmatrix with (or for

short). The lengths of and must be one less than the length of .

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/tridiag.jl#L17-L47
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/tridiag.jl#L50-L70
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returns a array based on (abstract) matrix , using its first lower diagonal, main diagonal, and first upper diagonal.

Examples

– Type.

Construct a view of the upper (if ) or lower (if ) triangle of thematrix .

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/tridiag.jl#L409-L446
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/tridiag.jl#L462-L484


708 CHAPTER 53. LINEAR ALGEBRA

Note that will not be equal to unless is itself symmetric (e.g. if ).

– Type.

Construct a view of the upper (if ) or lower (if ) triangle of thematrix .

Examples

Note that will not be equal to unless is itself Hermitian (e.g. if ).

– Type.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/symmetric.jl#L8-L42
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/symmetric.jl#L49-L77


53.1. STANDARD FUNCTIONS 709

Construct a view of the thematrix .

Examples

– Type.

Construct an view of the thematrix .

Examples

– Type.

Generically sized uniform scaling operator defined as a scalar times the identity operator, . See also .

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/triangular.jl#L53-L72
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/triangular.jl#L74-L93
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– Function.

Compute the LU factorization of , such that . By default, pivoting is used. This can be overridden by passing for the

second argument.

See also .

Examples

– Function.

Compute the LU factorization of a sparsematrix .

For sparse with real or complex element type, the return type of is , with = or respectively and is an integer type

( or ).

The individual components of the factorization can be accessed by indexing:

Component Description

(lower triangular) part of

(upper triangular) part of

right permutation

left permutation

of scaling factors

components

The relation between and is

further supports the following functions:

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/uniformscaling.jl#L7-L29
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lu.jl#L168-L190
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•

•

•

Note

uses the UMFPACK library that is part of SuiteSparse. As this library only supports sparse matrices

with or elements, converts into a copy that is of type or as appropriate.

Compute the LU factorization of .

In most cases, if is a subtype of with an element type supporting , , and , the return type is . If pivoting is chosen

(default) the element type should also support and .

The individual components of the factorization can be accessed by indexing:

Component Description

(lower triangular) part of

(upper triangular) part of

(right) permutation

(right) permutation

The relationship between and is

further supports the following functions:

Supported function

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/sparse/umfpack.jl#L104-L139
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– Function.

is the same as , but saves space by overwriting the input , instead of creating a copy. An exception is thrown if the

factorization produces a number not representable by the element type of , e.g. for integer types.

– Function.

Compute the Cholesky factorization of a positive definite matrix and return the matrix such that .

Examples

Compute the square root of a non-negative number .

Examples

Compute the square root of a non-negative UniformScaling .

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lu.jl#L90-L141
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lu.jl#L27-L34
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/cholesky.jl#L159-L182
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/cholesky.jl#L189-L199
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/uniformscaling.jl#L325-L336
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– Function.

Compute theCholesky factorization of a sparse positive definitematrix . must be a or a / viewof a . Note that even

if doesn’t have the type tag, it must still be symmetric or Hermitian. A fill-reducing permutation is used. is most

frequentlyusedtosolvesystemsofequationswith , butalso themethods , , and aredefined for .Youcanalsoextract

individual factors from , using . However, since pivoting is on by default, the factorization is internally represented

as with a permutationmatrix ; using just without accounting for will give incorrect answers. To include the effects

of permutation, it’s typically preferable to extract ”combined” factors like (the equivalent of ) and (the equivalent

of ).

Setting the optional keyword argument computes the factorization of instead of . If the argument is nonempty, it

should be a permutation of giving the ordering to use (instead of CHOLMOD’s default AMDordering).

Note

This method uses the CHOLMOD library from SuiteSparse, which only supports doubles or complex

doubles. Input matrices not of those element types will be converted to or as appropriate.

Many other functions fromCHOLMOD arewrapped but not exported from the module.

Compute theCholesky factorization of a dense symmetric positive definitematrix and return a factorization. The

matrix can either be a or or a perfectly symmetric or Hermitian . The triangular Cholesky factor can be obtained

from the factorization with: and . The following functions are available for objects: , , , , and .

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/sparse/cholmod.jl#L1380-L1412
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Compute the pivoted Cholesky factorization of a dense symmetric positive semi-definitematrix and return a fac-

torization. The matrix can either be a or or a perfectly symmetric or Hermitian . The triangular Cholesky factor

can be obtained from the factorization with: and . The following functions are available for objects: , , , , and . The

argument determines the tolerance for determining the rank. For negative values, the tolerance is the machine

precision.

– Function.

Compute theCholesky (LL′) factorization of , reusing the symbolic factorization . must be a or a / viewof a . Note

that even if doesn’t have the type tag, it must still be symmetric or Hermitian.

See also .

Note

This method uses the CHOLMOD library from SuiteSparse, which only supports doubles or complex

doubles. Input matrices not of those element types will be converted to or as appropriate.

The same as , but saves space by overwriting the input , instead of creating a copy. An exception is thrown if the

factorization produces a number not representable by the element type of , e.g. for integer types.

Examples

The same as , but saves space by overwriting the input , instead of creating a copy. An exception is thrown if the

factorization produces a number not representable by the element type of , e.g. for integer types.

– Function.

Update a Cholesky factorization with the vector . If then but the computation of only uses operations.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/cholesky.jl#L278-L316
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/cholesky.jl#L329-L340
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/sparse/cholmod.jl#L1341-L1356
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/cholesky.jl#L218-L236
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/cholesky.jl#L258-L265
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/cholesky.jl#L627-L633
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– Function.

Downdate a Cholesky factorization with the vector . If then but the computation of only uses operations.

– Function.

Update a Cholesky factorization with the vector . If then but the computation of only uses operations. The input

factorization is updated in place such that on exit . The vector is destroyed during the computation.

– Function.

Downdate a Cholesky factorization with the vector . If then but the computation of only uses operations. The

input factorization is updated in place such that on exit . The vector is destroyed during the computation.

– Function.

Compute theLDL′ factorization of a sparse matrix . must be a or a / view of a . Note that even if doesn’t have

the type tag, it must still be symmetric or Hermitian. A fill-reducing permutation is used. is most frequently used

to solve systems of equations with . The returned factorization object also supports themethods , , , and . You can

extract individual factors from using . However, since pivoting is on by default, the factorization is internally rep-

resented as with a permutation matrix ; using just without accounting for will give incorrect answers. To include

the effects of permutation, it is typically preferable to extract ”combined” factors like (the equivalent of ) and (the

equivalent of ). The complete list of supported factors is .

Setting the optional keyword argument computes the factorization of instead of . If the argument is nonempty, it

should be a permutation of giving the ordering to use (instead of CHOLMOD’s default AMDordering).

Note

This method uses the CHOLMOD library from SuiteSparse, which only supports doubles or complex

doubles. Input matrices not of those element types will be converted to or as appropriate.

Many other functions fromCHOLMOD arewrapped but not exported from the module.

Compute an factorization of a real symmetric tridiagonalmatrix such that where is a unit lower triangularmatrix

and is a vector. Themain use of an factorization is to solve the linear system of equations with .

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/cholesky.jl#L636-L642
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/cholesky.jl#L528-L535
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/cholesky.jl#L574-L581
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/sparse/cholmod.jl#L1479-L1512
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/ldlt.jl#L35-L41
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Compute theLDL′ factorizationof , reusing the symbolic factorization . must be a or a / viewof a .Note that even

if doesn’t have the type tag, it must still be symmetric or Hermitian.

See also .

Note

This method uses the CHOLMOD library from SuiteSparse, which only supports doubles or complex

doubles. Input matrices not of those element types will be converted to or as appropriate.

Same as , but saves space by overwriting the input , instead of creating a copy.

– Function.

Compute the (pivoted) QR factorization of such that either or . Also see . The default is to compute a thin factor-

ization. Note that is not extendedwith zeros when the full is requested.

Computes the polar decomposition of a vector. Returns , a unit vector in the direction of , and , the norm of .

See also , , and .

Examples

– Function.

Computes the polar decomposition of a vector. Instead of returning a new vector as , this function mutates the

input vector in place. Returns , a unit vector in the direction of (this is a mutation of ), and , the norm of .

See also , , and .

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/sparse/cholmod.jl#L1435-L1450
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/ldlt.jl#L19-L23
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/qr.jl#L284-L291
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/qr.jl#L303-L326
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/qr.jl#L338-L348
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Compute theQR factorization of thematrix : an orthogonal (or unitary if is complex-valued)matrix , and an upper

triangular matrix such that

A = QR

The returned object stores the factorization in a packed format:

• if then is a object,

• otherwise if the element type of is a BLAS type (, , or ), then is a object,

• otherwise is a object.

The individual components of the factorization can be accessed by indexing with a symbol:

• : the orthogonal/unitarymatrix

• : the upper triangular matrix

• : the permutation vector of the pivot ( only)

• : the permutationmatrix of the pivot ( only)

The following functions are available for the objects: , , and . When is rectangular, will return a least squares

solution and if the solution is not unique, the onewith smallest norm is returned.

Multiplicationwith respect to either thin or full is allowed, i.e. both and are supported. A matrix can be converted

into a regular matrix with which has a named argument .

Examples

Note

returnsmultiple types because LAPACKuses several representations thatminimize thememory stor-

age requirements of products of Householder elementary reflectors, so that the and matrices can be

stored compactly rather as two separate densematrices.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/qr.jl#L215-L271
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Compute the factorization of a sparsematrix . Fill-reducing rowand columnpermutations are used such that . The

main application of this type is to solve least squares or underdetermined problemswith . The function calls the C

library SPQR.

Examples

– Function.

is the same as when is a subtype of , but saves space by overwriting the input , instead of creating a copy. An

exception is thrown if the factorization produces a number not representable by the element type of , e.g. for

integer types.

– Type.

AQRmatrix factorization stored in a packed format, typically obtained from . IfA is an ×matrix, then

A = QR

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/sparse/spqr.jl#L156-L195
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/qr.jl#L203-L210
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whereQ is an orthogonal/unitarymatrix andR is upper triangular. ThematrixQ is stored as a sequence ofHouse-

holder reflectors vi and coefficients τi where:

Q =

min(m,n)∏
i=1

(I − τiviv
T
i ).

The object has two fields:

• is an ×matrix.

– The upper triangular part contains the elements ofR, that is for a object .

– The subdiagonal part contains the reflectors vi stored in a packed format where vi is the ith column of
thematrix .

• is a vector of length containing the coefficients aui.

– Type.

AQRmatrix factorization stored in a compact blocked format, typically obtained from . IfA is an ×matrix, then

A = QR

whereQ is anorthogonal/unitarymatrixandR isupper triangular. It is similar to the formatexcept that theorthog-

onal/unitary matrixQ is stored in Compact WY format 1, as a lower trapezoidal matrix V and an upper triangular

matrixT where

Q =

min(m,n)∏
i=1

(I − τiviv
T
i ) = I − V TV T

such that vi is the ith column ofV , and aui is the ith diagonal element ofT .

The object has two fields:

• , as in the type, is an ×matrix.

– The upper triangular part contains the elements ofR, that is for a object .

– The subdiagonal part contains the reflectors vi stored in a packed format such that .

• is a square matrix with columns, whose upper triangular part gives the matrix T above (the subdiagonal

elements are ignored).

Note

This format should not to be confusedwith the olderWY representation 2.

2C Bischof and C Van Loan, ”The WY representation for products of Householder matrices”, SIAM J Sci Stat Comput 8 (1987), s2-s13.

doi:10.1137/0908009

1RSchreiber andCVan Loan, ”A storage-efficientWY representation for products ofHouseholder transformations”, SIAMJ Sci Stat Comput 10

(1989), 53-57. doi:10.1137/0910005

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/qr.jl#L4-L34
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/qr.jl#L43-L87
http://dx.doi.org/10.1137/0908009
http://dx.doi.org/10.1137/0910005
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– Type.

A QR matrix factorization with column pivoting in a packed format, typically obtained from . IfA is an × matrix,

then

AP = QR

where P is a permutation matrix,Q is an orthogonal/unitary matrix andR is upper triangular. The matrixQ is

stored as a sequence of Householder reflectors:

Q =

min(m,n)∏
i=1

(I − τiviv
T
i ).

The object has three fields:

• is an ×matrix.

– The upper triangular part contains the elements ofR, that is for a object .

– The subdiagonal part contains the reflectors vi stored in a packed format where vi is the ith column of
thematrix .

• is a vector of length containing the coefficients aui.

• is an integer vector of length corresponding to the permutationP .

– Function.

Compute the LQ factorization of , using the input matrix as a workspace. See also .

– Function.

Compute the LQ factorization of . See also .

– Function.

Perform an LQ factorization of such that . The default is to compute a thin factorization. The LQ factorization is

theQR factorization of . is not extendedwith zeros if the full is requested.

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/qr.jl#L95-L125
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lq.jl#L20-L25
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lq.jl#L27-L31
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lq.jl#L35-L42
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Compute the Bunch-Kaufman 3 factorization of a symmetric or Hermitian matrix and return a object. indicates

which triangle of matrix to reference. If is , is assumed to be symmetric. If is , is assumed to be Hermitian. If is ,

rook pivoting is used. If is false, rook pivoting is not used. The following functions are available for objects: , , , , .

– Function.

is the same as , but saves space by overwriting the input , instead of creating a copy.

– Function.

Computes eigenvalues () and eigenvectors () of . See for details on the , , and arguments (for , , and matrices) and

the and keyword arguments. The eigenvectors are returned columnwise.

Examples

is a wrapper around , extracting all parts of the factorization to a tuple; where possible, using is recommended.

Computes generalized eigenvalues () and vectors () of with respect to .

is a wrapper around , extracting all parts of the factorization to a tuple; where possible, using is recommended.

Examples

3J R Bunch and L Kaufman, Some stable methods for calculating inertia and solving symmetric linear systems, Mathematics of Computation

31:137 (1977), 163-179. url.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/bunchkaufman.jl#L43-L57
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/bunchkaufman.jl#L19-L24
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/eigen.jl#L111-L132
http://www.ams.org/journals/mcom/1977-31-137/S0025-5718-1977-0428694-0/
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– Function.

Returns the eigenvalues of .

Forgeneralnon-symmetricmatrices it ispossible tospecifyhowthematrix isbalancedbefore theeigenvaluecalcu-

lation. The option permutes thematrix to become closer to upper triangular, and scales thematrix by its diagonal

elements tomake rows and columnsmore equal in norm. The default is for both options.

Computes the generalized eigenvalues of and .

Examples

Returns the eigenvalues of . It is possible to calculate only a subset of the eigenvalues by specifying a covering

indices of the sorted eigenvalues, e.g. the 2nd to 8th eigenvalues.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/eigen.jl#L330-L353
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/eigen.jl#L178-L188
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/eigen.jl#L379-L401
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Returns the eigenvalues of . It is possible to calculate only a subset of the eigenvalues by specifying a pair and for

the lower and upper boundaries of the eigenvalues.

– Function.

Same as , but saves space by overwriting the input , instead of creating a copy. The option permutes the matrix to

become closer to upper triangular, and scales thematrix by its diagonal elements tomake rows and columnsmore

equal in norm.

Same as , but saves space by overwriting the input (and ), instead of creating copies.

Same as , but saves space by overwriting the input , instead of creating a copy. is a range of eigenvalue indices to

search for - for instance, the 2nd to 8th eigenvalues.

Same as , but saves space by overwriting the input , instead of creating a copy. is the lower bound of the interval to

search for eigenvalues, and is the upper bound.

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/symmetric.jl#L443-L467
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/symmetric.jl#L483-L506
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/eigen.jl#L160-L167
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/eigen.jl#L363-L367
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/symmetric.jl#L434-L439
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/symmetric.jl#L474-L479
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Returns the largesteigenvalueof . Theoption permutes thematrix tobecomecloser toupper triangular, and scales

thematrix by its diagonal elements tomake rows and columnsmore equal in norm. Note that if the eigenvalues of

are complex, this methodwill fail, since complex numbers cannot be sorted.

Examples

– Function.

Returns the smallest eigenvalue of . The option permutes the matrix to become closer to upper triangular, and

scales the matrix by its diagonal elements to make rows and columns more equal in norm. Note that if the eigen-

values of are complex, this methodwill fail, since complex numbers cannot be sorted.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/eigen.jl#L198-L231
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– Function.

Returns amatrix whose columns are the eigenvectors of . (The th eigenvector can be obtained from the slice .)

If the optional vector of eigenvalues is specified, returns the specific corresponding eigenvectors.

Examples

Returns amatrix whose columns are the eigenvectors of . (The th eigenvector can be obtained from the slice .) The

and keywords are the same as for .

Examples

Returns a matrix whose columns are the generalized eigenvectors of and . (The th eigenvector can be obtained

from the slice .)

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/eigen.jl#L240-L273
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/tridiag.jl#L227-L262
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/eigen.jl#L138-L153
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– Function.

Computes the eigenvalue decomposition of , returning an factorization object which contains the eigenvalues in

and the eigenvectors in the columns of thematrix . (The th eigenvector can be obtained from the slice .)

The following functions are available for objects: , , and .

For general nonsymmetric matrices it is possible to specify how thematrix is balanced before the eigenvector cal-

culation. Theoption permutes thematrix tobecomecloser toupper triangular, and scales thematrixby itsdiagonal

elements tomake rows and columnsmore equal in norm. The default is for both options.

Examples

Computes the generalized eigenvalue decomposition of and , returning a factorization object which contains the

generalized eigenvalues in and the generalized eigenvectors in the columns of the matrix . (The th generalized

eigenvector can be obtained from the slice .)

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/eigen.jl#L407-L430
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/eigen.jl#L68-L99
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/eigen.jl#L315-L322
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Computes the eigenvalue decomposition of , returning an factorization object which contains the eigenvalues in

and the eigenvectors in the columns of thematrix . (The th eigenvector can be obtained from the slice .)

The following functions are available for objects: , , and .

The specifies indices of the sorted eigenvalues to search for.

Note

If is not , where is the dimension of , then the returned factorization will be a truncated factorization.

Computes the eigenvalue decomposition of , returning an factorization object which contains the eigenvalues in

and the eigenvectors in the columns of thematrix . (The th eigenvector can be obtained from the slice .)

The following functions are available for objects: , , and .

is the lower bound of the window of eigenvalues to search for, and is the upper bound.

Note

If [, ] does not contain all eigenvalues of , then the returned factorization will be a truncated factoriza-

tion.

– Function.

Same as , but saves space by overwriting the input (and ), instead of creating a copy.

– Function.

Compute the Hessenberg decomposition of and return a object. If is the factorization object, the unitary matrix

can be accessed with and the Hessenberg matrix with . When is extracted, the resulting type is the object, and

may be converted to a regular matrix with (or for short).

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/symmetric.jl#L380-L394
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/symmetric.jl#L404-L418
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/eigen.jl#L32-L37
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– Function.

is the same as , but saves space by overwriting the input , instead of creating a copy.

– Function.

Computes theSchur factorizationof thematrix .The (quasi) triangularSchur factorcanbeobtained fromthe object

with either or and the orthogonal/unitary Schur vectors can be obtained with or such that . The eigenvalues of

can be obtainedwith .

Examples

Computes the Generalized Schur (or QZ) factorization of the matrices and . The (quasi) triangular Schur factors

can be obtained from the object with and , the left unitary/orthogonal Schur vectors can be obtainedwith or and

the right unitary/orthogonal Schur vectors can be obtained with or such that and . The generalized eigenvalues

of and can be obtainedwith .

– Function.

Same as but uses the input argument as workspace.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/hessenberg.jl#L24-L49
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/hessenberg.jl#L14-L19
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/schur.jl#L19-L48
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/schur.jl#L185-L194
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/schur.jl#L12-L16
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Same as but uses the input matrices and as workspace.

– Function.

Computes the Schur factorization of the matrix . The methods return the (quasi) triangular Schur factor and the

orthogonal/unitary Schur vectors such that . The eigenvalues of are returned in the vector .

See .

Examples

See .

– Function.

Reorders the Schur factorization of amatrix according to the logical array returning the reordered factorization

object. The selected eigenvalues appear in the leading diagonal of and the corresponding leading columns of form

an orthogonal/unitary basis of the corresponding right invariant subspace. In the real case, a complex conjugate

pair of eigenvalues must be either both included or both excluded via .

Reorders the Schur factorization of a real matrix according to the logical array returning the reordered matrices

and as well as the vector of eigenvalues . The selected eigenvalues appear in the leading diagonal of and the

corresponding leading columnsof formanorthogonal/unitary basis of the corresponding right invariant subspace.

In the real case, a complex conjugate pair of eigenvalues must be either both included or both excluded via .

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/schur.jl#L177-L181
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/schur.jl#L77-L103
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/schur.jl#L269-L273
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/schur.jl#L126-L135
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/schur.jl#L147-L156
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Reorders the Generalized Schur factorization of a matrix pair according to the logical array and returns a Gen-

eralizedSchur object . The selected eigenvalues appear in the leading diagonal of both and , and the left and right

orthogonal/unitary Schur vectors are also reordered such that still holds and the generalized eigenvalues of and

can still be obtainedwith .

Reorders the Generalized Schur factorization of a matrix pair according to the logical array and returns the ma-

trices , , , and vectors and . The selected eigenvalues appear in the leading diagonal of both and , and the left and

right unitary/orthogonal Schur vectors are also reordered such that still holds and the generalized eigenvalues of

and can still be obtainedwith .

– Function.

Same as but overwrites the factorization .

Same as but overwrites the input arguments.

Same as but overwrites the factorization .

Same as but overwrites the factorization the input arguments.

– Function.

Compute the singular value decomposition (SVD) of and return an object.

, , and can be obtained from the factorization with , , and , such that . The algorithm produces and hence is more

efficient to extract than . The singular values in are sorted in descending order.

If (default), a thin SVD is returned. For aM ×N matrix , isM ×M for a full SVD () andM ×min(M,N) for a
thin SVD.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/schur.jl#L213-L222
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/schur.jl#L235-L244
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/schur.jl#L115-L119
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/schur.jl#L139-L143
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/schur.jl#L201-L205
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/schur.jl#L226-L230
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Compute the generalized SVD of and , returning a factorization object , such that and .

For anM-by-Nmatrix and P-by-Nmatrix ,

• is aM-by-M orthogonal matrix,

• is a P-by-P orthogonal matrix,

• is a N-by-N orthogonal matrix,

• is a (K+L)-by-Nmatrix whose rightmost (K+L)-by-(K+L) block is nonsingular upper block triangular,

• is aM-by-(K+L) diagonal matrix with 1s in the first K entries,

• is a P-by-(K+L) matrix whose top right L-by-L block is diagonal,

is the effective numerical rank of thematrix .

The entries of and are related, as explained in the LAPACK documentation for the generalized SVD and the xG-

GSVD3 routine which is called underneath (in LAPACK 3.6.0 and newer).

– Function.

is the same as , but saves space by overwriting the input , instead of creating a copy.

is the same as , but modifies the arguments and in-place, instead of making copies.

– Function.

Computes the SVD of , returning , vector , and such that . The singular values in are sorted in descending order.

If (default), a thin SVD is returned. For aM ×N matrix , isM ×M for a full SVD () andM ×min(M,N) for a
thin SVD.

is a wrapper around , extracting all parts of the factorization to a tuple. Direct use of is thereforemore efficient.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/svd.jl#L29-L62
http://www.netlib.org/lapack/lug/node36.html
http://www.netlib.org/lapack/explore-html/d6/db3/dggsvd3_8f.html
http://www.netlib.org/lapack/explore-html/d6/db3/dggsvd3_8f.html
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/svd.jl#L205-L228
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/svd.jl#L13-L18
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/svd.jl#L188-L193
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Wrapper around extracting all parts of the factorization to a tuple. Direct use of is therefore generally more effi-

cient. The function returns the generalized SVD of and , returning , , , , , and such that and .

– Function.

Returns the singular values of in descending order.

Examples

Return the generalized singular values from the generalized singular value decomposition of and . See also .

– Type.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/svd.jl#L70-L103
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/svd.jl#L238-L246
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/svd.jl#L133-L154
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/svd.jl#L302-L307
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AGivens rotation linear operator. The fields and represent the cosine and sine of the rotation angle, respectively.

The type supports left multiplication and conjugated transpose right multiplication . The type doesn’t have a and

can therefore bemultiplied withmatrices of arbitrary size as long as for or for .

See also:

– Function.

Computes the Givens rotation and scalar such that for any vector where

the result of themultiplication

has the property that

See also:

Computes the Givens rotation and scalar such that the result of themultiplication

has the property that

See also:

Computes the Givens rotation and scalar such that the result of themultiplication

has the property that

See also:

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/givens.jl#L16-L26
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/givens.jl#L234-L254
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/givens.jl#L266-L280
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/givens.jl#L285-L299
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– Function.

Upper triangle of a matrix.

Examples

Returns the upper triangle of starting from the th superdiagonal.

Examples

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/generic.jl#L117-L138
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/generic.jl#L165-L193
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Upper triangle of a matrix, overwriting in the process. See also .

Returns the upper triangle of starting from the th superdiagonal, overwriting in the process.

Examples

– Function.

Lower triangle of a matrix.

Examples

Returns the lower triangle of starting from the th superdiagonal.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/generic.jl#L227-L232
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/dense.jl#L131-L155
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/generic.jl#L141-L162
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– Function.

Lower triangle of a matrix, overwriting in the process. See also .

Returns the lower triangle of starting from the th superdiagonal, overwriting in the process.

Examples

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/generic.jl#L196-L224
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/generic.jl#L235-L240
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/dense.jl#L174-L198
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A giving the indices of the th diagonal of thematrix .

Examples

– Function.

The th diagonal of a matrix, as a vector. Use to construct a diagonal matrix.

Examples

– Function.

Construct a matrix by placing on the th diagonal. This constructs a full matrix; if you want a storage-efficient ver-

sion with fast arithmetic, use instead.

Examples

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/dense.jl#L240-L256
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/dense.jl#L259-L278
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/dense.jl#L281-L296
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Scale an array by a scalar overwriting in-place.

If is a matrix and is a vector, then scales each column of by (similar to ), while scales each row of by (similar to

), again operating in-place on . An exception is thrown if the scaling produces a number not representable by the

element type of , e.g. for integer types.

Examples

– Function.

Compute the rank of a matrix by counting howmany singular values of have magnitude greater than . By default,

the value of is the largest dimension of multiplied by the of the of .

Examples

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/generic.jl#L45-L83
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/generic.jl#L708-L731
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Compute the -norm of a vector or the operator norm of amatrix , defaulting to the 2-norm.

For vectors, this is equivalent to and equal to:

‖A‖p =

(
n∑

i=1

|ai|p
)1/p

with ai the entries ofA andn its length.

can assume any numeric value (even though not all values produce amathematically valid vector norm). In partic-

ular, returns the largest value in , whereas returns the smallest.

Examples

For matrices, the matrix norm induced by the vector -norm is used, where valid values of are , , or . (Note that for

sparsematrices, is currently not implemented.) Use to compute the Frobenius norm.

When , thematrix norm is themaximum absolute column sum of :

‖A‖1 = max
1jn

m∑
i=1

|aij |

with aij the entries ofA, andm andn its dimensions.

When , thematrix norm is the spectral norm, equal to the largest singular value of .

When , thematrix norm is themaximum absolute row sum of :

‖A‖∞ = max
1im

n∑
j=1

|aij |

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/generic.jl#L497-L529
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For numbers, return (|x|p)1/p. This is equivalent to .

For row vectors, return the q-norm of , which is equivalent to the p-normwith value . They coincide at .

Thedifference in normbetween a vector space and its dual arises to preserve the relationship betweenduality and

the inner product, and the result is consistent with the p-norm of matrix.

– Function.

For any iterable container (including arrays of any dimension) of numbers (or any element type for which is de-

fined), compute the -norm (defaulting to ) as if were a vector of the corresponding length.

The -norm is defined as:

‖A‖p =

(
n∑

i=1

|ai|p
)1/p

with ai the entries ofA andn its length.

can assume any numeric value (even though not all values produce amathematically valid vector norm). In partic-

ular, returns the largest value in , whereas returns the smallest. If is a matrix and , then this is equivalent to the

Frobenius norm.

Examples

For numbers, return (|x|p)1/p.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/generic.jl#L532-L563
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/generic.jl#L576-L581
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/generic.jl#L586-L595
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/generic.jl#L406-L432
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/generic.jl#L451-L455
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– Function.

Normalize the vector in-place so that its -norm equals unity, i.e. . See also and .

– Function.

Normalize the vector so that its -norm equals unity, i.e. . See also and .

Examples

– Function.

Condition number of thematrix , computed using the operator -norm. Valid values for are , (default), or .

– Function.

κS(M,p) =
∥∥|M |

∣∣M−1
∣∣∥∥

p

κS(M,x, p) =
∥∥|M |

∣∣M−1
∣∣ |x|∥∥

p

Skeel condition number κS of the matrix , optionally with respect to the vector , as computed using the operator

-norm. is by default, if not provided. Valid values for are , , or .

This quantity is also known in the literature as the Bauer condition number, relative condition number, or compo-

nentwise relative condition number.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/generic.jl#L1309-L1315
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/generic.jl#L1338-L1367
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/dense.jl#L935-L940
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/generic.jl#L856-L870
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– Function.

Matrix trace. Sums the diagonal elements of .

Examples

– Function.

Matrix determinant.

Examples

– Function.

Log of matrix determinant. Equivalent to , but may provide increased accuracy and/or speed.

Examples

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/generic.jl#L741-L756
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/generic.jl#L1208-L1223
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/generic.jl#L1241-L1260
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Log of absolute value of matrix determinant. Equivalent to , but may provide increased accuracy and/or speed.

–Method.

Matrix inverse. Computesmatrix such that , where is the identity matrix. Computed by solving the left-division .

Examples

– Function.

Computes theMoore-Penrose pseudoinverse.

Formatrices withfloating point elements, it is convenient to compute thepseudoinverse by inverting only singular

values above a given threshold, .

The optimal choice of varies bothwith the value of and the intended application of the pseudoinverse. The default

value of is ,which is essentiallymachine epsilon for the real part of amatrix elementmultiplied by the largermatrix

dimension. For inverting dense ill-conditionedmatrices in a least-squares sense, is recommended.

For more information, see 4, 5, 6, 7.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/generic.jl#L1233-L1238
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/generic.jl#L768-L791
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– Function.

Basis for nullspace of .

Examples

– Function.

Construct amatrix by repeating the givenmatrix (or vector) times in dimension 1 and times in dimension 2.

Examples

4Issue 8859, ”Fix least squares”, https://github.com/JuliaLang/julia/pull/8859

5Åke Björck, ”Numerical Methods for Least Squares Problems”, SIAMPress, Philadelphia, 1996, ”Other Titles in AppliedMathematics”, Vol. 51.

doi:10.1137/1.9781611971484

6G.W. Stewart, ”Rank Degeneracy”, SIAM Journal on Scientific and Statistical Computing, 5(2), 1984, 403-413. doi:10.1137/0905030

7Konstantinos Konstantinides and Kung Yao, ”Statistical analysis of effective singular values in matrix rank determination”, IEEE Transactions

on Acoustics, Speech and Signal Processing, 36(5), 1988, 757-763. doi:10.1109/29.1585

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/dense.jl#L821-L864
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/dense.jl#L906-L925
http://epubs.siam.org/doi/book/10.1137/1.9781611971484
http://epubs.siam.org/doi/abs/10.1137/0905030
http://dx.doi.org/10.1109/29.1585
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– Function.

Kronecker tensor product of two vectors or twomatrices.

Examples

– Function.

Concatenatematrices block-diagonally. Currently only implemented for sparsematrices.

Examples

– Function.

Perform simple linear regression using Ordinary Least Squares. Returns and such that is the closest straight line

to the given points , i.e., such that the squared error between and is minimized.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/abstractarraymath.jl#L283-L309
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/dense.jl#L315-L339
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/sparse/sparsematrix.jl#L3133-L3148
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See also:

, , , .

– Function.

Compute thematrix exponential of , defined by

eA =

∞∑
n=0

An

n!
.

For symmetric or Hermitian , an eigendecomposition () is used, otherwise the scaling and squaring algorithm (see
8) is chosen.

Examples

– Function.

If has no negative real eigenvalue, compute the principal matrix logarithm of , i.e. the unique matrixX such that

eX = A and−π < Im(λ) < π for all the eigenvalues λ ofX . If has nonpositive eigenvalues, a nonprincipal

matrix function is returnedwhenever possible.

If is symmetric or Hermitian, its eigendecomposition () is used, if is triangular an improved version of the inverse

scalingandsquaringmethod isemployed (see 9 and 10). Forgeneralmatrices, thecomplexSchur form() is computed

and the triangular algorithm is used on the triangular factor.

8Nicholas J. Higham, ”The squaring and scalingmethod for thematrix exponential revisited”, SIAM Journal onMatrix Analysis andApplications,

26(4), 2005, 1179-1193. doi:10.1137/090768539

9Awad H. Al-Mohy and Nicholas J. Higham, ”Improved inverse scaling and squaring algorithms for the matrix logarithm”, SIAM Journal on Sci-

entific Computing, 34(4), 2012, C153-C169. doi:10.1137/110852553

10Awad H. Al-Mohy, Nicholas J. Higham and Samuel D. Relton, ”Computing the Fréchet derivative of the matrix logarithm and estimating the

condition number”, SIAM Journal on Scientific Computing, 35(4), 2013, C394-C410. doi:10.1137/120885991

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/generic.jl#L1051-L1072
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/dense.jl#L427-L453
http://dx.doi.org/10.1137/090768539
http://dx.doi.org/10.1137/110852553
http://dx.doi.org/10.1137/120885991
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Examples

– Function.

If has no negative real eigenvalues, compute the principal matrix square root of , that is the uniquematrixX with

eigenvalues having positive real part such thatX2 = A. Otherwise, a nonprincipal square root is returned.

If is symmetric or Hermitian, its eigendecomposition () is used to compute the square root. Otherwise, the square

root is determined bymeans of the Björck-Hammarlingmethod 11, which computes the complex Schur form () and

then the complex square root of the triangular factor.

Examples

– Function.

Computes the solution to the continuous Lyapunov equation , where no eigenvalue of has a zero real part and no

two eigenvalues are negative complex conjugates of each other.

– Function.

Computes the solution to the Sylvester equation , where , and have compatible dimensions and and have no

eigenvalues with equal real part.

11ÅkeBjörck and SvenHammarling, ”A Schurmethod for the square root of amatrix”, Linear Algebra and its Applications, 52-53, 1983, 127-140.

doi:10.1016/0024-3795(83)80010-X

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/dense.jl#L553-L583
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/dense.jl#L619-L649
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/dense.jl#L979-L985
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/dense.jl#L959-L964
http://dx.doi.org/10.1016/0024-3795(83)80010-X
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– Function.

Test that a factorization of amatrix succeeded.

– Function.

Test whether amatrix is symmetric.

Examples

– Function.

Test whether amatrix is positive definite by trying to perform a Cholesky factorization of . See also

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/factorization.jl#L19-L35
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/generic.jl#L875-L898
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– Function.

Test whether amatrix is positive definite by trying to perform a Cholesky factorization of , overwriting in the pro-

cess. See also .

Examples

– Function.

Test whether amatrix is lower triangular.

Examples

– Function.

Test whether amatrix is upper triangular.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/dense.jl#L94-L111
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/dense.jl#L72-L91
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/generic.jl#L987-L1010


750 CHAPTER 53. LINEAR ALGEBRA

– Function.

Test whether amatrix is diagonal.

Examples

– Function.

Test whether amatrix is Hermitian.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/generic.jl#L953-L976
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/generic.jl#L1021-L1044
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– Type.

A lazy-viewwrapper of an , which turns a length- vector into a shaped row vector and represents the transpose of

a vector (the elements are also transposed recursively). This type is usually constructed (and unwrapped) via the

function or operator (or related or operator).

By convention, a vector canbemultipliedbyamatrixon its left ()whereasa rowvector canbemultipliedbyamatrix

on its right (such that ). It differs from a -sizedmatrix by the facts that its transpose returns a vector and the inner

product returns a scalar, but will otherwise behave similarly.

– Type.

A lazy-view wrapper of an , taking the elementwise complex conjugate. This type is usually constructed (and un-

wrapped) via the function (or related ), but currently this is the default behavior for only. For other arrays, the

constructor can be used directly.

Examples

– Function.

The transposition operator ().

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/generic.jl#L914-L937
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/rowvector.jl#L3-L15
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/conjarray.jl#L3-L22
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The transposition operator ().

Examples

– Function.

Transpose array and store the result in the preallocated array , which should have a size corresponding to . No

in-place transposition is supported and unexpected results will happen if and have overlappingmemory regions.

– Function.

The conjugate transposition operator ().

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/transpose.jl#L97-L116
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/rowvector.jl#L59-L76
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/transpose.jl#L8-L15
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– Function.

Conjugate transpose array and store the result in the preallocated array , which should have a size corresponding

to . No in-place transposition is supported and unexpected results will happen if and have overlapping memory

regions.

–Method.

Computes eigenvalues of using implicitly restarted Lanczos or Arnoldi iterations for real symmetric or general

nonsymmetric matrices respectively.

The following keyword arguments are supported:

• : Number of eigenvalues

• : Number of Krylov vectors used in the computation; should satisfy for real symmetric problems and for

other problems, where is the size of the input matrix . The default is . Note that these restrictions limit the

input matrix to be of dimension at least 2.

• : type of eigenvalues to compute. See the note below.

type of eigenvalues

eigenvalues of largest magnitude (default)

eigenvalues of smallest magnitude

eigenvalues of largest real part

eigenvalues of smallest real part

eigenvalues of largest imaginary part (nonsymmetric or complex only)

eigenvalues of smallest imaginary part (nonsymmetric or complex only)

compute half of the eigenvalues from each end of the spectrum, biased in favor of the high end. (real symmetric

only)

• : parameterdefining therelative tolerance forconvergenceofRitzvalues (eigenvalueestimates). ARitzvalue

is consideredconvergedwhen itsassociatedresidual is less thanorequal to theproductof andmax(2/3, ||),
where is LAPACK’s machine epsilon. The residual associated with and its corresponding Ritz vector v is

defined as the norm ||Av − v||. The specified value of should be positive; otherwise, it is ignored and is

used instead. Default: .

• : Maximum number of iterations (default = 300)

• : Specifies the level shift used in inverse iteration. If (default), defaults to ordinary (forward) iterations. Oth-

erwise, find eigenvalues close to using shift and invert iterations.

• : Returns the Ritz vectors (eigenvectors) if

• : starting vector fromwhich to start the iterations

returns the requested eigenvalues in , the correspondingRitz vectors (only if ), the number of convergedeigenval-

ues , the number of iterations and the number of matrix vector multiplications , as well as the final residual vector

.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/operators.jl#L716-L733
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/transpose.jl#L18-L25
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Note

The and keywords interact: the description of eigenvalues searched for by do not necessarily refer

to the eigenvalues of , but rather the linear operator constructed by the specification of the iteration

mode implied by .

iterationmode refers to eigenvalues of

ordinary (forward) A
real or complex inverse with level shift (A− σI)−1

Note

Although has a default value, the best choice depends strongly on the matrix . We recommend that

users _always_ specify a value for which suits their specific needs.

For details of how the errors in the computed eigenvalues are estimated, see:

• B. N. Parlett, ”The Symmetric Eigenvalue Problem”, SIAM: Philadelphia, 2/e (1998), Ch. 13.2, ”Ac-

cessing Accuracy in Lanczos Problems”, pp. 290-292 ff.

• R. B. Lehoucq andD. C. Sorensen, ”Deflation Techniques for an Implicitly RestartedArnoldi Itera-

tion”, SIAMJournalonMatrixAnalysisandApplications (1996), 17(4), 789–821. doi:10.1137/S0895479895281484

–Method.

Computes generalized eigenvalues of and using implicitly restarted Lanczos or Arnoldi iterations for real sym-

metric or general nonsymmetric matrices respectively.

The following keyword arguments are supported:

• : Number of eigenvalues

• : Number of Krylov vectors used in the computation; should satisfy for real symmetric problems and for

other problems, where is the size of the input matrices and . The default is . Note that these restrictions

limit the input matrix to be of dimension at least 2.

• : type of eigenvalues to compute. See the note below.

• : relative tolerance used in the convergence criterion for eigenvalues, similar to in the method for the ordi-

nary eigenvalue problem, but effectively for the eigenvalues ofB−1A instead ofA. See the documentation

for the ordinary eigenvalue problem in and the accompanying note about .

• : Maximum number of iterations (default = 300)

• : Specifies the level shift used in inverse iteration. If (default), defaults to ordinary (forward) iterations. Oth-

erwise, find eigenvalues close to using shift and invert iterations.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/arnoldi.jl#L6-L88
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type of eigenvalues

eigenvalues of largest magnitude (default)

eigenvalues of smallest magnitude

eigenvalues of largest real part

eigenvalues of smallest real part

eigenvalues of largest imaginary part (nonsymmetric or complex only)

eigenvalues of smallest imaginary part (nonsymmetric or complex only)

compute half of the eigenvalues from each end of the spectrum, biased in favor of the high end. (real symmetric

only)

• : Returns the Ritz vectors (eigenvectors) if

• : starting vector fromwhich to start the iterations

returns the requested eigenvalues in , the correspondingRitz vectors (only if ), the number of convergedeigenval-

ues , the number of iterations and the number of matrix vector multiplications , as well as the final residual vector

.

Examples

Note

The and keywords interact: the description of eigenvalues searched for by do not necessarily refer to

the eigenvalue problemAv = Bvλ, but rather the linear operator constructed by the specification
of the iterationmode implied by .

iterationmode refers to the problem

ordinary (forward) Av = Bvλ
real or complex inverse with level shift (A− σB)−1B = vν

– Function.

Computes the largest singular values of using implicitly restarted Lanczos iterations derived from .

Inputs

• : Linearoperatorwhose singular valuesaredesired. maybe representedasa subtypeof , e.g., a sparsematrix,

or any other type supporting the four methods , , , and .

• : Number of singular values. Default: 6.

• : If , return the left and right singular vectors and . If , omit the singular vectors. Default: .

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/arnoldi.jl#L104-L167
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• : tolerance, see .

• : Maximum number of iterations, see . Default: 1000.

• : Maximum size of the Krylov subspace, see (there called ). Default: .

• : Initial guess for the first Krylov vector. It may have length , or 0.

Outputs

• : An object containing the left singular vectors, the requested values, and the right singular vectors. If , the

left and right singular vectors will be empty.

• : Number of converged singular values.

• : Number of iterations.

• : Number of matrix–vector products used.

• : Final residual vector.

Examples

Implementation

is formally equivalent to calling to perform implicitly restarted Lanczos tridiagonalization on theHer-

mitianmatrixA′A orAA′ such that the size is smallest.

– Function.

computes the peak flop rate of the computer by using double precision . By default, if no arguments are specified,

itmultiplies amatrix of size , where . If the underlying BLAS is usingmultiple threads, higher flop rates are realized.

The number of BLAS threads can be set with .

If the keyword argument is set to , is run in parallel on all theworker processors. Theflop rate of the entire parallel

computer is returned. When running in parallel, only 1 BLAS thread is used. The argument still refers to the size

of the problem that is solved on each processor.

53.2 Low-level matrix operations

Matrixoperations involving transpositionsoperations like areconvertedbytheJuliaparser intocalls tospeciallynamed

functions like . If youwant to overload these operations for your own types, then it is useful to know the names of these

functions.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/arnoldi.jl#L351-L396
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/generic.jl#L1107-L1120
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Also, in many cases there are in-place versions of matrix operations that allow you to supply a pre-allocated output

vector or matrix. This is useful when optimizing critical code in order to avoid the overhead of repeated allocations.

These in-place operations are suffixedwith below (e.g. ) according to the usual Julia convention.

– Function.

Compute in-place and store the result in , returning the result. If only two arguments are passed, then overwrites

with the result.

The argument should not be amatrix. Rather, instead ofmatrices it should be a factorization object (e.g. produced

by or ). The reason for this is that factorization itself is both expensive and typically allocatesmemory (although it

can also be done in-place via, e.g., ), and performance-critical situations requiring usually also require fine-grained

control over the factorization of .

– Function.

For matrices or vectorsA andB, calculatesA \B.

– Function.

For matrices or vectorsA andB, calculatesA \B.

– Function.

Calculates thematrix-matrix ormatrix-vector productAB and stores the result in , overwriting the existing value

of . Note that must not be aliased with either or .

Examples

– Function.

For matrices or vectorsA andB, calculatesAB.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/factorization.jl#L86-L99
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/operators.jl#L832-L836
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/operators.jl#L853-L857
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/matmul.jl#L159-L175
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/operators.jl#L746-L750
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– Function.

For matrices or vectorsA andB, calculatesAB.

– Function.

For matrices or vectorsA andB, calculatesA/B.

– Function.

For matrices or vectorsA andB, calculatesA/B.

– Function.

For matrices or vectorsA andB, calculatesA \B.

– Function.

Similar to , but returnA \B, computing the result in-place in (or overwriting if is not supplied).

– Function.

For matrices or vectorsA andB, calculatesA \B.

– Function.

For matrices or vectorsA andB, calculatesAB.

– Function.

For matrices or vectorsA andB, calculatesAB.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/operators.jl#L767-L771
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/operators.jl#L790-L794
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/operators.jl#L811-L815
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/operators.jl#L825-L829
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/factorization.jl#L102-L107
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/operators.jl#L839-L843
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/operators.jl#L739-L743
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/operators.jl#L753-L757
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– Function.

For matrices or vectorsA andB, calculatesA/B.

– Function.

For matrices or vectorsA andB, calculatesA/B.

– Function.

For matrices or vectorsA andB, calculatesA \B.

– Function.

Similar to , but returnA \B, computing the result in-place in (or overwriting if is not supplied).

– Function.

For matrices or vectorsA andB, calculatesA \B.

– Function.

For matrices or vectorsA andB, calculatesAB.

– Function.

For matrices or vectorsA andB, calculatesAB.

– Function.

For matrices or vectorsA andB, calculatesA/B.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/operators.jl#L783-L787
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/operators.jl#L797-L801
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/operators.jl#L846-L850
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/factorization.jl#L110-L115
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/operators.jl#L860-L864
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/operators.jl#L760-L764
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/operators.jl#L774-L778
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/operators.jl#L804-L808
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– Function.

For matrices or vectorsA andB, calculatesA/B.

53.3 BLAS Functions

In Julia (as in much of scientific computation), dense linear-algebra operations are based on the LAPACK library, which

in turn is built on top of basic linear-algebra building-blocks known as the BLAS. There are highly optimized implemen-

tations of BLAS available for every computer architecture, and sometimes in high-performance linear algebra routines

it is useful to call the BLAS functions directly.

provides wrappers for some of the BLAS functions. Those BLAS functions that overwrite one of the input arrays have

names ending in . Usually, a BLAS function has four methods defined, for , , , and arrays.

BLAS Character Arguments

ManyBLAS functions accept arguments that determinewhether to transpose an argument (), which triangle of amatrix

to reference ( or ), whether the diagonal of a triangular matrix can be assumed to be all ones () or which side of amatrix

multiplication the input argument belongs on (). The possiblities are:

MultplicationOrder

Meaning

The argument goes on the left side of amatrix-matrix operation.

The argument goes on the right side of amatrix-matrix operation.

Triangle Referencing

/ Meaning

Only the upper triangle of thematrix will be used.

Only the lower triangle of thematrix will be used.

TranspositionOperation

/ Meaning

The input matrix is not transposed or conjugated.

The input matrix will be transposed.

The input matrix will be conjugated and transposed.

Unit Diagonal

/ Meaning

The diagonal values of thematrix will be read.

The diagonal of thematrix is assumed to be all ones.

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/operators.jl#L818-L822
http://www.netlib.org/lapack/
http://www.netlib.org/blas/
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Dot function for twocomplexvectors consistingof elementsof array with stride and elementsof array with stride

.

Examples

– Function.

Dot function for two complex vectors, consisting of elements of array with stride and elements of array with

stride , conjugating the first vector.

Examples

– Function.

Copy elements of array with stride to array with stride . Returns .

– Function.

2-norm of a vector consisting of elements of array with stride .

Examples

– Function.

Sum of the absolute values of the first elements of array with stride .

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/blas.jl#L244-L255
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/blas.jl#L229-L241
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/blas.jl#L159-L163
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/blas.jl#L337-L350
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– Function.

Overwrite with , where is a scalar. Returns .

Examples

– Function.

Overwrite with for the first elements of array with stride . Returns .

– Function.

Returns scaled by for the first elements of array with stride .

– Function.

Rank-1 update of thematrix with vectors and as .

– Function.

Rank-1 update of the symmetric matrix with vector as . controls which triangle of is updated. Returns .

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/blas.jl#L370-L383
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/blas.jl#L403-L420
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/blas.jl#L183-L187
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/blas.jl#L190-L194
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/blas.jl#L906-L910
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/blas.jl#L937-L942
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– Function.

Rank-k update of the symmetric matrix as or according to . Only the triangle of is used. Returns .

– Function.

Returns either the upper triangle or the lower triangle of , according to , of or , according to .

– Function.

Methods for complex arrays only. Rank-1 update of the Hermitianmatrix with vector as . controls which triangle

of is updated. Returns .

– Function.

Methods for complex arrays only. Rank-k update of theHermitianmatrix as or according to . Only the triangle of

is updated. Returns .

– Function.

Methods for complex arrays only. Returns the triangle of or , according to .

– Function.

Update vector as or according to . Thematrix is a general bandmatrix of dimension by with sub-diagonals and

super-diagonals. and are scalars. Returns the updated .

– Function.

Returns or according to . The matrix is a general band matrix of dimension by with sub-diagonals and super-

diagonals, and is a scalar.

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/blas.jl#L1171-L1177
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/blas.jl#L1180-L1187
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/blas.jl#L967-L973
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/blas.jl#L1227-L1234
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/blas.jl#L1237-L1243
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/blas.jl#L549-L555
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/blas.jl#L558-L564
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Update vector as where is a a symmetric bandmatrix of order with super-diagonals stored in the argument . The

storage layout for is described the referenceBLASmodule, level-2 BLAS at http://www.netlib.org/lapack/explore-

html/. Only the triangle of is used.

Returns the updated .

–Method.

Returns where isasymmetricbandmatrixoforder with super-diagonals stored in theargument .Only the triangle

of is used.

–Method.

Returns where isasymmetricbandmatrixoforder with super-diagonals stored in theargument .Only the triangle

of is used.

– Function.

Update as or the other three variants according to and . Returns the updated .

–Method.

Returns or the other three variants according to and .

–Method.

Returns or the other three variants according to and .

– Function.

Update the vector as or according to . and are scalars. Returns the updated .

–Method.

http://www.netlib.org/lapack/explore-html/
http://www.netlib.org/lapack/explore-html/
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/blas.jl#L756-L766
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/blas.jl#L738-L744
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/blas.jl#L747-L753
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/blas.jl#L997-L1002
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/blas.jl#L1049-L1053
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/blas.jl#L1056-L1060
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/blas.jl#L523-L529
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Returns or according to . is a scalar.

–Method.

Returns or according to .

– Function.

Update as or according to . is assumed to be symmetric. Only the triangle of is used. Returns the updated .

–Method.

Returns or according to . is assumed to be symmetric. Only the triangle of is used.

–Method.

Returns or according to . is assumed to be symmetric. Only the triangle of is used.

– Function.

Update the vector as . is assumed to be symmetric. Only the triangle of is used. and are scalars. Returns the

updated .

–Method.

Returns . is assumed to be symmetric. Only the triangle of is used. is a scalar.

–Method.

Returns . is assumed to be symmetric. Only the triangle of is used.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/blas.jl#L532-L537
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/blas.jl#L540-L544
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/blas.jl#L1122-L1128
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/blas.jl#L1104-L1110
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/blas.jl#L1113-L1119
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/blas.jl#L603-L609
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/blas.jl#L654-L660
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/blas.jl#L663-L668


766 CHAPTER 53. LINEAR ALGEBRA

– Function.

Update as or one of the other three variants determined by and . Only the triangle of is used. determines if the

diagonal values are read or are assumed to be all ones. Returns the updated .

– Function.

Returns or one of the other three variants determined by and . Only the triangle of is used. determines if the

diagonal values are read or are assumed to be all ones.

– Function.

Overwrite with the solution to or one of the other three variants determined by and .Only the triangle of is used.

determines if the diagonal values are read or are assumed to be all ones. Returns the updated .

– Function.

Returns the solution to or one of the other three variants determined by determined by and . Only the triangle of

is used. determines if the diagonal values are read or are assumed to be all ones.

– Function.

Returns , where is determined by . Only the triangle of is used. determines if the diagonal values are read or are

assumed to be all ones. Themultiplication occurs in-place on .

– Function.

Returns , where is determined by . Only the triangle of is used. determines if the diagonal values are read or are

assumed to be all ones.

– Function.

Overwrite with the solution to or one of the other two variants determined by and . determines if the diagonal

values are read or are assumed to be all ones. Returns the updated .

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/blas.jl#L1360-L1369
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/blas.jl#L1372-L1380
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/blas.jl#L1383-L1392
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/blas.jl#L1395-L1403
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/blas.jl#L812-L820
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/blas.jl#L802-L809
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/blas.jl#L854-L862
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– Function.

Returns the solution to or one of the other two variants determined by and . determines if the diagonal values are

read or are assumed to be all ones.

– Function.

Set the number of threads the BLAS library should use.

– Constant.

An object of type , representing an identity matrix of any size.

Examples

53.4 LAPACK Functions

provides wrappers for some of the LAPACK functions for linear algebra. Those functions that overwrite one of the

input arrays have names ending in .

Usually a function has 4methods defined, one each for , , and arrays.

Note that the LAPACKAPI provided by Julia can andwill change in the future. Since this API is not user-facing, there is

no commitment to support/deprecate this specific set of functions in future releases.

– Function.

Compute the LU factorization of a banded matrix . is the first subdiagonal containing a nonzero band, is the last

superdiagonal containing one, and is the first dimension of thematrix . Returns the LU factorization in-place and ,

the vector of pivots used.

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/blas.jl#L865-L872
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/blas.jl#L91-L95
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/uniformscaling.jl#L34-L49
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L161-L168
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Solve the equation . determines the orientation of . It may be (no transpose), (transpose), or (conjugate trans-

pose). is the first subdiagonal containing a nonzero band, is the last superdiagonal containing one, and is the first

dimensionof thematrix . is the vector of pivots returned from . Returns the vector ormatrix , overwriting in-place.

– Function.

Balance thematrix before computing its eigensystem or Schur factorization. can be one of ( will not be permuted

or scaled), ( will only be permuted), ( will only be scaled), or ( will be both permuted and scaled). Modifies in-place

and returns , , and . If permuting was turned on, if and or . contains information about the scaling/permutations

performed.

– Function.

Transform the eigenvectors of a matrix balanced using to the unscaled/unpermuted eigenvectors of the original

matrix. Modifies in-place. can be (left eigenvectors are transformed) or (right eigenvectors are transformed).

– Function.

Reduce in-place to bidiagonal form . Returns , containing the bidiagonalmatrix ; , containing the diagonal elements

of ; , containing the off-diagonal elements of ; , containing the elementary reflectors representing ; and , containing

the elementary reflectors representing .

– Function.

Compute the factorizationof , . contains scalarswhichparameterize theelementary reflectorsof the factorization.

must have length greater than or equal to the smallest dimension of .

Returns and modified in-place.

Compute the factorization of , .

Returns , modified in-place, and , which contains scalars which parameterize the elementary reflectors of the fac-

torization.

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L171-L179
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L235-L244
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L247-L254
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L544-L552
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L555-L564
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L650-L657
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Compute the factorizationof , . contains scalarswhichparameterize theelementary reflectorsof the factorization.

must have length greater than or equal to the smallest dimension of .

Returns and modified in-place.

Compute the factorization of , .

Returns , modified in-place, and , which contains scalars which parameterize the elementary reflectors of the fac-

torization.

– Function.

Compute the factorizationof , . contains scalarswhichparameterize theelementary reflectorsof the factorization.

must have length greater than or equal to the smallest dimension of .

Returns and modified in-place.

Compute the factorization of , .

Returns , modified in-place, and , which contains scalars which parameterize the elementary reflectors of the fac-

torization.

– Function.

Compute the pivoted factorization of , using BLAS level 3. is a pivoting matrix, represented by . stores the ele-

mentary reflectors. must have length length greater than or equal to if is an matrix. must have length greater

than or equal to the smallest dimension of .

, , and aremodified in-place.

Compute the pivoted factorization of , using BLAS level 3. is a pivotingmatrix, represented by . must have length

greater than or equal to if is an matrix.

Returns and , modified in-place, and , which stores the elementary reflectors.

Compute the pivoted factorization of , using BLAS level 3.

Returns , modified in-place, , which represents the pivotingmatrix , and , which stores the elementary reflectors.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L567-L575
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L660-L667
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L617-L625
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L692-L699
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L578-L588
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L712-L721
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L727-L734


770 CHAPTER 53. LINEAR ALGEBRA

– Function.

Compute the factorizationof , . contains scalarswhichparameterize theelementary reflectorsof the factorization.

must have length greater than or equal to the smallest dimension of .

Returns and modified in-place.

Compute the factorization of , .

Returns , modified in-place, and , which contains scalars which parameterize the elementary reflectors of the fac-

torization.

– Function.

Compute the blocked factorization of , . contains upper triangular block reflectors which parameterize the ele-

mentary reflectors of the factorization. The first dimension of sets the block size and it must be between 1 and .

The second dimension of must equal the smallest dimension of .

Returns and modified in-place.

Compute the blocked factorization of , . sets the block size and it must be between 1 and , the second dimension

of .

Returns ,modified in-place, and ,which contains upper triangular block reflectorswhich parameterize the elemen-

tary reflectors of the factorization.

– Function.

Recursively computes the blocked factorization of , . contains upper triangular block reflectors which parameter-

ize the elementary reflectors of the factorization. Thefirst dimensionof sets the block size and itmust bebetween

1 and . The second dimension of must equal the smallest dimension of .

Returns and modified in-place.

Recursively computes the blocked factorization of , .

Returns ,modified in-place, and ,which contains upper triangular block reflectorswhich parameterize the elemen-

tary reflectors of the factorization.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L628-L636
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L702-L709
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L591-L601
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L670-L679
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L604-L614
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L682-L689
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– Function.

Compute the pivoted factorization of , .

Returns , modified in-place, , the pivoting information, and an codewhich indicates success (), a singular value in (,

in which case is singular), or an error code ().

– Function.

Transforms the upper trapezoidal matrix to upper triangular form in-place. Returns and , the scalar parameters

for the elementary reflectors of the transformation.

– Function.

Multiplies the matrix by from the transformation supplied by . Depending on or the multiplication can be left-

sided () or right-sided () and can be unmodified (), transposed (), or conjugate transposed (). Returns matrix which

is modified in-place with the result of themultiplication.

– Function.

Solves the linearequation , , or usingaQRorLQfactorization. Modifies thematrix/vector inplacewith thesolution.

is overwritten with its or factorization. may be one of (no modification), (transpose), or (conjugate transpose).

searches for theminimumnorm/least squares solution. maybeunderoroverdetermined. The solution is returned

in .

– Function.

Solves the linear equation where is a squarematrix using the factorizationof . is overwrittenwith its factorization

and is overwritten with the solution . contains the pivoting information for the factorization of .

– Function.

Solves the linear equation , , or for square .Modifies thematrix/vector in placewith the solution. is the factoriza-

tion from , with the pivoting information. may be one of (nomodification), (transpose), or (conjugate transpose).

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L639-L647
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L834-L840
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L822-L831
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L970-L979
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L982-L989
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L992-L1000
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Computes the inverse of , using its factorization found by . is the pivot information output and contains the

factorization of . is overwritten with its inverse.

– Function.

Solves the linear equation (), (), or () using the factorization of . may be , in which case will be equilibrated and

copied to ; , in which case and from a previous factorization are inputs; or , in which case will be copied to and

then factored. If , maybe ,meaning has not been equilibrated; ,meaning wasmultiplied by from the left; ,meaning

was multiplied by from the right; or , meaning was multiplied by from the left and from the right. If and or the

elements of must all be positive. If and or the elements of must all be positive.

Returns the solution ; , which is an output if is not , and describes the equilibration that was performed; , the row

equilibration diagonal; , the column equilibration diagonal; , which may be overwritten with its equilibrated form

(if and ) or (if and ); , the reciprocal condition number of after equilbrating; , the forward error bound for each

solution vector in ; , the forward error bound for each solution vector in ; and , the reciprocal pivot growth factor.

The no-equilibration, no-transpose simplification of .

– Function.

Computes the least norm solution of by finding the factorization of , then dividing-and-conquering the problem.

is overwritten with the solution . Singular values below will be treated as zero. Returns the solution in and the

effective rank of in .

– Function.

Computes the leastnormsolutionof byfinding the full factorizationof , thendividing-and-conquering theproblem.

is overwritten with the solution . Singular values below will be treated as zero. Returns the solution in and the

effective rank of in .

– Function.

Solves the equation where is subject to the equality constraint . Uses the formula to solve. Returns and the

residual sum-of-squares.

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L1003-L1010
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L1153-L1176
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L1180-L1184
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L1375-L1383
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L1386-L1394
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L1447-L1453
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Finds theeigensystemof . If , the lefteigenvectorsof aren’t computed. If , therighteigenvectorsof aren’t computed.

If or , the corresponding eigenvectors are computed. Returns the eigenvalues in , the right eigenvectors in , and

the left eigenvectors in .

– Function.

Finds the singular value decomposition of , , using a divide and conquer approach. If , all the columns of and the

rows of are computed. If , no columns of or rows of are computed. If , is overwritten with the columns of (thin)

and the rows of (thin) . If , the columns of (thin) and the rows of (thin) are computed and returned separately.

– Function.

Finds the singular value decomposition of , . If , all the columns of are computed. If all the rows of are computed.

If , no columns of are computed. If no rows of are computed. If , is overwritten with the columns of (thin) . If , is

overwrittenwith the rows of (thin) . If , the columns of (thin) are computed and returned separately. If the rows of

(thin) are computed and returned separately. and can’t both be .

Returns , , and , where are the singular values of .

– Function.

Finds thegeneralized singular valuedecompositionof and , and . has on its diagonal and has on its diagonal. If , the

orthogonal/unitarymatrix is computed. If the orthogonal/unitarymatrix is computed. If , the orthogonal/unitary

matrix is computed. If , or is , thatmatrix is not computed. This function is only available in LAPACKversions prior

to 3.6.0.

– Function.

Finds thegeneralized singular valuedecompositionof and , and . has on its diagonal and has on its diagonal. If , the

orthogonal/unitarymatrix is computed. If the orthogonal/unitarymatrix is computed. If , the orthogonal/unitary

matrix is computed. If , , or is , that matrix is not computed. This function requires LAPACK 3.6.0.

– Function.

Finds the eigensystem of with matrix balancing. If , the left eigenvectors of aren’t computed. If , the right eigen-

vectors of aren’t computed. If or , the corresponding eigenvectors are computed. If , no balancing is performed.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L1742-L1750
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L1753-L1762
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L1765-L1778
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L1781-L1791
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L1910-L1919
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If , is permuted but not scaled. If , is scaled but not permuted. If , is permuted and scaled. If , no reciprocal condi-

tion numbers are computed. If , reciprocal condition numbers are computed for the eigenvalues only. If , reciprocal

condition numbers are computed for the right eigenvectors only. If , reciprocal condition numbers are computed

for the right eigenvectors and the eigenvectors. If , the right and left eigenvectors must be computed.

– Function.

Finds the generalized eigendecomposition of and . If , the left eigenvectors aren’t computed. If , the right eigenvec-

tors aren’t computed. If or , the corresponding eigenvectors are computed.

– Function.

Solves the equation where is a tridiagonalmatrixwith on the subdiagonal, on the diagonal, and on the superdiag-

onal.

Overwrites with the solution and returns it.

– Function.

Finds the factorization of a tridiagonalmatrixwith on the subdiagonal, on the diagonal, and on the superdiagonal.

Modifies , , and in-place and returns them and the second superdiagonal and the pivoting vector .

– Function.

Solves the equation (), (), or () using the factorization computed by . is overwritten with the solution .

– Function.

Explicitly finds thematrix of a factorization after calling on . Uses the output of . is overwritten by .

– Function.

Explicitly finds thematrix of a factorization after calling on . Uses the output of . is overwritten by .

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L2220-L2236
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L2239-L2246
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L2413-L2421
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L2424-L2432
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L2435-L2441
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L2835-L2840
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L2843-L2848
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– Function.

Explicitly finds thematrix of a factorization after calling on . Uses the output of . is overwritten by .

– Function.

Explicitly finds thematrix of a factorization after calling on . Uses the output of . is overwritten by .

– Function.

Computes (), (), () for or the equivalent right-sided multiplication for using from a factorization of computed

using . is overwritten.

– Function.

Computes (), (), () for or the equivalent right-sided multiplication for using from a factorization of computed

using . is overwritten.

– Function.

Computes (), (), () for or the equivalent right-sided multiplication for using from a factorization of computed

using . is overwritten.

– Function.

Computes (), (), () for or the equivalent right-sided multiplication for using from a factorization of computed

using . is overwritten.

– Function.

Computes (), (), () for or the equivalent right-sided multiplication for using from a factorization of computed

using . is overwritten.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L2851-L2856
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L2859-L2864
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L2867-L2874
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L2877-L2884
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L2887-L2894
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L2897-L2904
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L2907-L2914
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– Function.

Finds the solution to where is a symmetric or Hermitian positive definite matrix. If the upper Cholesky decom-

position of is computed. If the lower Cholesky decomposition of is computed. is overwritten by its Cholesky

decomposition. is overwritten with the solution .

– Function.

Computes theCholesky (upper if , lower if ) decompositionof positive-definitematrix . is overwritten and returned

with an info code.

– Function.

Computes the inverse of positive-definite matrix after calling to find its (upper if , lower if ) Cholesky decomposi-

tion.

is overwritten by its inverse and returned.

– Function.

Finds the solution to where is a symmetric or Hermitian positive definite matrix whose Cholesky decomposition

was computed by . If the upper Cholesky decomposition of was computed. If the lower Cholesky decomposition

of was computed. is overwritten with the solution .

– Function.

Computes the (upper if , lower if ) pivoted Cholesky decomposition of positive-definite matrix with a user-set tol-

erance . is overwritten by its Cholesky decomposition.

Returns , thepivots , therankof , andan code. If , the factorizationsucceeded. If , then is indefiniteor rank-deficient.

– Function.

Solves for positive-definite tridiagonal . is the diagonal of and is the off-diagonal. is overwrittenwith the solution

and returned.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L3045-L3053
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L3056-L3062
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L3065-L3073
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L3076-L3084
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L3087-L3097
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L3152-L3158
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– Function.

Computes the LDLt factorization of a positive-definite tridiagonal matrix with as diagonal and as off-diagonal.

and are overwritten and returned.

– Function.

Solves for positive-definite tridiagonal with diagonal and off-diagonal after computing ’s LDLt factorization using

. is overwritten with the solution .

– Function.

Finds the inverse of (upper if , lower if ) triangular matrix . If , has non-unit diagonal elements. If , all diagonal

elements of are one. is overwritten with its inverse.

– Function.

Solves (), (), or () for (upper if , lower if ) triangular matrix . If , has non-unit diagonal elements. If , all diagonal

elements of are one. is overwritten with the solution .

– Function.

Finds the reciprocal condition number of (upper if , lower if ) triangularmatrix . If , has non-unit diagonal elements.

If , all diagonal elements of are one. If , the condition number is found in the infinity norm. If or , the condition

number is found in the one norm.

– Function.

Finds the eigensystemof an upper triangularmatrix . If , the right eigenvectors are computed. If , the left eigenvec-

tors are computed. If , both sets are computed. If , all eigenvectors are found. If , all eigenvectors are found and

backtransformed using and . If , only the eigenvectors corresponding to the values in are computed.

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L3161-L3167
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L3232-L3238
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L3297-L3304
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L3307-L3315
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L3576-L3584
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L3587-L3597


778 CHAPTER 53. LINEAR ALGEBRA

Estimates the error in the solution to (), (), () for , or the equivalent equations a right-handed after computing

using . If , is upper triangular. If , is lower triangular. If , has non-unit diagonal elements. If , all diagonal elements

of are one. and are optional inputs. is the forward error and is the backward error, each component-wise.

– Function.

Computes the eigensystem for a symmetric tridiagonal matrix with as diagonal and as off-diagonal. If only the

eigenvalues are found and returned in . If then the eigenvectors are also found and returned in .

– Function.

Computes theeigenvalues for a symmetric tridiagonalmatrixwith asdiagonal and asoff-diagonal. If , all theeigen-

values are found. If , the eigenvalues in the half-open interval are found. If , the eigenvalues with indices between

and are found. If , eigvalues are ordered within a block. If , they are ordered across all the blocks. can be set as a

tolerance for convergence.

– Function.

Computes the eigenvalues () or eigenvalues andeigenvectors () for a symmetric tridiagonalmatrixwith as diagonal

and as off-diagonal. If , all the eigenvalues are found. If , the eigenvalues in the half-open interval are found. If , the

eigenvalues with indices between and are found. The eigenvalues are returned in and the eigenvectors in .

– Function.

Computes the eigenvectors for a symmetric tridiagonal matrix with as diagonal and as off-diagonal. specifies the

input eigenvalues for which to find corresponding eigenvectors. specifies the submatrices corresponding to the

eigenvalues in . specifies the splitting points between the submatrix blocks.

– Function.

Converts a symmetric matrix (which has been factorized into a triangular matrix) into two matrices and . If , is

upper triangular. If , it is lower triangular. is the pivot vector from the triangular factorization. is overwritten by

and .

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L3601-L3612
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L3773-L3780
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L3783-L3793
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L3796-L3806
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L3809-L3817
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L4752-L4760
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Finds the solution to for symmetric matrix . If , the upper half of is stored. If , the lower half is stored. is overwrit-

ten by the solution . is overwritten by its Bunch-Kaufman factorization. contains pivoting information about the

factorization.

– Function.

Computes the Bunch-Kaufman factorization of a symmetric matrix . If , the upper half of is stored. If , the lower

half is stored.

Returns , overwritten by the factorization, a pivot vector , and the error code which is a non-negative integer. If is

positive thematrix is singular and the diagonal part of the factorization is exactly zero at position .

– Function.

Computes the inverse of a symmetric matrix using the results of . If , the upper half of is stored. If , the lower half

is stored. is overwritten by its inverse.

– Function.

Solves the equation for a symmetricmatrix using the results of . If , the upper half of is stored. If , the lower half is

stored. is overwritten by the solution .

– Function.

Finds the solution to for Hermitian matrix . If , the upper half of is stored. If , the lower half is stored. is overwrit-

ten by the solution . is overwritten by its Bunch-Kaufman factorization. contains pivoting information about the

factorization.

– Function.

Computes theBunch-Kaufman factorization of aHermitianmatrix . If , the upper half of is stored. If , the lower half

is stored.

Returns , overwritten by the factorization, a pivot vector , and the error code which is a non-negative integer. If is

positive thematrix is singular and the diagonal part of the factorization is exactly zero at position .

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L4763-L4771
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L4774-L4785
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L4788-L4794
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L4797-L4804
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L4808-L4816
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L4819-L4830
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Computes the inverse of a Hermitian matrix using the results of . If , the upper half of is stored. If , the lower half

is stored. is overwritten by its inverse.

– Function.

Solves the equation for a Hermitianmatrix using the results of . If , the upper half of is stored. If , the lower half is

stored. is overwritten by the solution .

– Function.

Finds the eigenvalues () or eigenvalues and eigenvectors () of a symmetric matrix . If , the upper triangle of is used.

If , the lower triangle of is used.

– Function.

Finds the eigenvalues () or eigenvalues and eigenvectors () of a symmetric matrix . If , the upper triangle of is used.

If , the lower triangle of is used. If , all the eigenvalues are found. If , the eigenvalues in the half-open interval are

found. If , the eigenvalues with indices between and are found. can be set as a tolerance for convergence.

The eigenvalues are returned in and the eigenvectors in .

– Function.

Finds thegeneralizedeigenvalues ()oreigenvaluesandeigenvectors ()ofasymmetricmatrix andsymmetricpositive-

definite matrix . If , the upper triangles of and are used. If , the lower triangles of and are used. If , the problem to

solve is . If , the problem to solve is . If , the problem to solve is .

– Function.

Computes the singular value decomposition of a bidiagonal matrix with on the diagonal and on the off-diagonal.

If , is the superdiagonal. If , is the subdiagonal. Can optionally also compute the product .

Returns the singular values in , and thematrix overwritten with .

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L4833-L4839
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L4842-L4849
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L5151-L5157
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L5160-L5172
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L5176-L5187
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L5239-L5248
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Computes the singular value decomposition of a bidiagonal matrix with on the diagonal and on the off-diagonal

using a divide and conqueqmethod. If , is the superdiagonal. If , is the subdiagonal. If , only the singular values are

found. If , the singular values and vectors are found. If , the singular values and vectors are found in compact form.

Only works for real types.

Returns the singular values in , and if , the compact singular vectors in .

– Function.

Finds the reciprocal condition number of matrix . If , the condition number is found in the infinity norm. If or , the

condition number is found in the one norm. must be the result of and is the norm of in the relevant norm.

– Function.

Converts a matrix to Hessenberg form. If is balanced with then and are the outputs of . Otherwise they should

be and . contains the elementary reflectors of the factorization.

– Function.

Explicitly finds , the orthogonal/unitarymatrix from . , , , and must correspond to the input/output to .

– Function.

Computes the eigenvalues () or the eigenvalues and Schur vectors () of matrix . is overwritten by its Schur form.

Returns , containing the Schur vectors, and , containing the eigenvalues.

– Function.

Computes the generalized eigenvalues, generalized Schur form, left Schur vectors (), or right Schur vectors () of

and .

Thegeneralizedeigenvaluesare returned in and . The left Schurvectorsare returned in and the rightSchurvectors

are returned in .

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L5307-L5319
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L5390-L5397
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L5440-L5447
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L5489-L5494
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L5735-L5743
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L5747-L5756
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Reorder the Schur factorization of a matrix. If , the Schur vectors are reordered. If they are not modified. and

specify the reordering of the vectors.

– Function.

Reorder the Schur factorization of a matrix and optionally finds reciprocal condition numbers. If , no condition

numbers are found. If , only the condition number for this cluster of eigenvalues is found. If , only the condition

number for the invariant subspace is found. If then the condition numbers for the cluster and subspace are found.

If the Schur vectors are updated. If the Schur vectors are not modified. determines which eigenvalues are in the

cluster.

Returns , , and reordered eigenvalues in .

– Function.

Reorders the vectors of a generalized Schur decomposition. specifices the eigenvalues in each cluster.

– Function.

Solves the Sylvester matrix equation where and are both quasi-upper triangular. If , is not modified. If , is trans-

posed. If , is conjugate transposed. Similarly for and . If , the equation is solved. If , the equation is solved.

Returns (overwriting ) and .

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L6051-L6057
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L6060-L6073
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L6076-L6081
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/linalg/lapack.jl#L6115-L6126
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Constants

– Constant.

The singleton instance of type , used by convention when there is no value to return (as in a C function). Can be

converted to an empty value.

– Constant.

A string containing the script name passed to Julia from the command line. Note that the script name remains

unchanged fromwithin included files. Alternatively see .

– Constant.

An array of the command line arguments passed to Julia, as strings.

– Constant.

The C null pointer constant, sometimes usedwhen calling external code.

– Constant.

A object describing which version of Julia is in use. For details see Version Number Literals.

– Constant.
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https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/basedocs.jl#L685-L690
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/initdefs.jl#L5-L11
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/initdefs.jl#L14-L18
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/pointer.jl#L13-L17
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/version.jl#L203-L208
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Anarrayofpathsas stringsor custom loaderobjects for the functionand and statements to considerwhen loading

code. To create a custom loader type, define the type and then add appropriate methods to the function with the

following signature:

The argument is the current value in , is the name of the module to load, and is the path of any previously found

code to provide . If no provider has been found earlier in then the value of will be . Custom loader functionality is

experimental andmay break or change in Julia 1.0.

– Constant.

A string containing the full path to the directory containing the executable.

– Constant.

The number of logical CPU cores available in the system.

See the Hwloc.jl package for extended information, including number of physical cores.

– Constant.

Standard word size on the current machine, in bits.

– Constant.

A symbol representing the name of the operating system, as returned by of the build configuration.

– Constant.

A symbol representing the architecture of the build configuration.

– Constant.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/initdefs.jl#L49-L65
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/initdefs.jl#L90-L94
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/sysinfo.jl#L27-L33
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/sysinfo.jl#L58-L62
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/sysinfo.jl#L44-L48
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/sysinfo.jl#L36-L40
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A string containing the build triple.

See also:

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/sysinfo.jl#L51-L55
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Filesystem

– Function.

Get the current working directory.

–Method.

Set the current working directory.

–Method.

Temporarily changes the current working directory and applies function before returning.

– Function.

Returns the files and directories in the directory (or the current working directory if not given).

– Function.

The method returns an iterator thatwalks the directory tree of a directory. The iterator returns a tuple containing

. The directory tree can be traversed top-down or bottom-up. If encounters a it will rethrow the error by default.

A custom error handling function can be provided through keyword argument. is called with a as argument.
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https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/file.jl#L32-L36
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/file.jl#L44-L48
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/file.jl#L77-L81
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/file.jl#L403-L407
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– Function.

Make a new directory with name and permissions . defaults to , modified by the current file creation mask. This

function never creates more than one directory. If the directory already exists, or some intermediate directories

do not exist, this function throws an error. See for a function which creates all required intermediate directories.

– Function.

Create all directories in the given , with permissions . defaults to , modified by the current file creationmask.

– Function.

Creates a symbolic link to with the name .

Note

This function raises an error under operating systems that do not support soft symbolic links, such as

Windows XP.

– Function.

Returns the target location a symbolic link points to.

– Function.

Change the permissionsmode of to . Only integer s (e.g. ) are currently supported. If and the path is a directory all

permissions in that directory will be recursively changed.

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/file.jl#L433-L455
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/file.jl#L84-L92
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/file.jl#L102-L107
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/file.jl#L543-L551
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/file.jl#L574-L578
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/file.jl#L598-L604
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Change the owner and/or group of to and/or . If the value entered for or is the corresponding IDwill not change.

Only integer s and s are currently supported.

– Function.

Returns a structure whose fields contain information about the file. The fields of the structure are:

Name Description

size The size (in bytes) of the file

device ID of the device that contains the file

inode The inode number of the file

mode The protectionmode of the file

nlink The number of hard links to the file

uid The user id of the owner of the file

gid The group id of the file owner

rdev If this file refers to a device, the ID of the device it refers to

blksize The file-system preferred block size for the file

blocks The number of such blocks allocated

mtime Unix timestamp of when the file was last modified

ctime Unix timestamp of when the file was created

– Function.

Like , but for symbolic links gets the info for the link itself rather than the file it refers to. This function must be

called on a file path rather than a file object or a file descriptor.

– Function.

Equivalent to

– Function.

Equivalent to .

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/file.jl#L618-L623
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/stat.jl#L83-L104
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/stat.jl#L107-L114
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/stat.jl#L140-L144
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/stat.jl#L133-L137
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Equivalent to

– Function.

Equivalent to .

– Function.

Gets the permissions of the owner of the file as a bitfield of

Value Description

01 Execute Permission

02 Write Permission

04 Read Permission

For allowed arguments, see .

– Function.

Like but gets the permissions of the group owning the file.

– Function.

Like but gets the permissions for people who neither own the file nor are amember of the group owning the file

– Function.

Copy the file, link, or directory from to . will first remove an existing .

If , and is a symbolic link, will be created as a symbolic link. If and is a symbolic link, will be a copy of the file or

directory refers to.

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/stat.jl#L119-L123
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/stat.jl#L126-L130
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/stat.jl#L228-L240
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/stat.jl#L243-L247
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/stat.jl#L250-L255
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/file.jl#L209-L218
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Download a file from the given url, optionally renaming it to the given local file name. Note that this function relies

on theavailabilityof external tools suchas , or todownload thefileand isprovided for convenience. Forproduction

use or situations in which more options are needed, please use a package that provides the desired functionality

instead.

– Function.

Move the file, link, or directory from to . will first remove an existing .

– Function.

Delete the file, link, or empty directory at the given path. If is passed, a non-existing path is not treated as error. If

is passed and the path is a directory, then all contents are removed recursively.

– Function.

Update the last-modified timestamp on a file to the current time.

– Function.

Generate a unique temporary file path.

– Function.

Obtain the path of a temporary directory (possibly sharedwith other processes).

–Method.

Returns , where is the path of a new temporary file in and is an open file object for this path.

–Method.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/interactiveutil.jl#L640-L648
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/file.jl#L231-L236
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/file.jl#L129-L135
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/file.jl#L242-L246
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/file.jl#L343-L347
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/file.jl#L336-L340
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/file.jl#L350-L355
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Apply the function to the result of and remove the temporary file upon completion.

–Method.

Create a temporary directory in the directory and return its path. If does not exist, throw an error.

–Method.

Apply the function to the result of and remove the temporary directory upon completion.

– Function.

Returns if is a block device, otherwise.

– Function.

Returns if is a character device, otherwise.

– Function.

Returns if is a directory, otherwise.

– Function.

Returns if is a FIFO, otherwise.

– Function.

Returns if is a regular file, otherwise.

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/file.jl#L367-L372
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/file.jl#L358-L363
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/file.jl#L383-L388
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/stat.jl#L177-L181
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/stat.jl#L163-L167
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/stat.jl#L170-L174
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/stat.jl#L156-L160
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/stat.jl#L184-L188
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Returns if is a symbolic link, otherwise.

– Function.

Returns if is a mount point, otherwise.

– Function.

Returns if is a valid filesystem path, otherwise.

– Function.

Returns if has the setgid flag set, otherwise.

– Function.

Returns if has the setuid flag set, otherwise.

– Function.

Returns if is a socket, otherwise.

– Function.

Returns if has the sticky bit set, otherwise.

– Function.

Return the current user’s home directory.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/stat.jl#L191-L195
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/stat.jl#L296-L300
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/stat.jl#L149-L153
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/stat.jl#L214-L218
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/stat.jl#L207-L211
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/stat.jl#L198-L202
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/stat.jl#L221-L225
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Note

determines the home directory via ’s . For details (for example on how to specify the home directory

via environment variables), see the documentation.

– Function.

Get the directory part of a path.

See also:

– Function.

Get the file name part of a path.

See also:

–Macro.

expands to a string with the path to the file containing the macrocall, or an empty string if evaluated by . Returns

if themacro wasmissing parser source information. Alternatively see .

–Macro.

expands to a stringwith the absolute path to the directory of thefile containing themacrocall. Returns the current

working directory if run from a REPL or if evaluated by .

–Macro.

expands to the line number of the location of themacrocall. Returns if the line number could not be determined.

– Function.

http://docs.libuv.org/en/v1.x/misc.html#c.uv_os_homedir
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/path.jl#L52-L61
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/path.jl#L134-L145
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/path.jl#L148-L159
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/loading.jl#L740-L747
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/loading.jl#L753-L759
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/loading.jl#L730-L735
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Determines whether a path is absolute (begins at the root directory).

– Function.

Determines whether a path refers to a directory (for example, ends with a path separator).

– Function.

Join path components into a full path. If some argument is an absolute path, then prior components are dropped.

– Function.

Convert a path to an absolute path by adding the current directory if necessary.

Convert a set of paths to an absolute path by joining them together and adding the current directory if necessary.

Equivalent to .

– Function.

Normalize a path, removing ”.” and ”..” entries.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/path.jl#L86-L98
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/path.jl#L101-L113
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/path.jl#L194-L204
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/path.jl#L264-L268
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/path.jl#L271-L276
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– Function.

Canonicalize a path by expanding symbolic links and removing ”.” and ”..” entries.

– Function.

Return a relative filepath to either from the current directory or from an optional start directory. This is a path

computation: the filesystem is not accessed to confirm the existence or nature of or .

– Function.

OnUnix systems, replace a tilde character at the start of a path with the current user’s home directory.

– Function.

Split a path into a tuple of the directory name and file name.

– Function.

OnWindows, split apath into thedrive letterpartand thepathpart. OnUnix systems, thefirst component is always

the empty string.

– Function.

If the last component of a path contains adot, split thepath into everythingbefore thedot andeverything including

and after the dot. Otherwise, return a tuple of the argument unmodified and the empty string.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/path.jl#L219-L228
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/path.jl#L319-L323
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/path.jl#L350-L356
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/path.jl#L342-L346
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/path.jl#L116-L125
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/path.jl#L44-L49
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/path.jl#L162-L176


Chapter 56

I/O andNetwork

56.1 General I/O

– Constant.

Global variable referring to the standard out stream.

– Constant.

Global variable referring to the standard error stream.

– Constant.

Global variable referring to the standard input stream.

– Function.

Open a file in a mode specified by five boolean arguments. The default is to open files for reading only. Returns a

stream for accessing the file.

Alternate syntax for open, where a string-basedmode specifier is used instead of the five booleans. The values of

correspond to those from or Perl , and are equivalent to setting the following boolean groups:
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https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libuv.jl#L114-L118
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libuv.jl#L121-L125
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libuv.jl#L107-L111
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/iostream.jl#L96-L101
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/iostream.jl#L115-L130
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Mode Description

r read

r+ read, write

w write, create, truncate

w+ read, write, create, truncate

a write, create, append

a+ read, write, create, append

Apply the function to the result of and close the resulting file descriptor upon completion.

Examples

Start running asynchronously, and return a tuple . If is , then reads fromtheprocess’s standardoutput and option-

ally specifies the process’s standard input stream. If is , then writes to the process’s standard input and optionally

specifies the process’s standard output stream.

Similar to , but calls on the resulting process stream, then closes the input stream and waits for the process to

complete. Returns the value returned by .

– Type.

Createan ,whichmayoptionallyoperateonapre-existingarray. If the readable/writableargumentsaregiven, they

restrict whether or not the buffer may be read from or written to respectively. By default the buffer is readable

but not writable. The last argument optionally specifies a size beyondwhich the buffer may not be grown.

Create an in-memory I/O stream.

Create a fixed size IOBuffer. The buffer will not grow dynamically.

Create a read-only on the data underlying the given string.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/iostream.jl#L141-L151
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/process.jl#L567-L575
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/process.jl#L610-L616
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/iobuffer.jl#L34-L41
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/iobuffer.jl#L51-L55
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/iobuffer.jl#L58-L62
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–Method.

Obtain the contents of an as an array, without copying. Afterwards, the is reset to its initial state.

– Function.

Create an object from an integer file descriptor. If is , closing this object will close the underlying descriptor. By

default, an is closedwhen it is garbage collected. allows you to associate the descriptor with a named file.

– Function.

Commit all currently buffered writes to the given stream.

– Function.

Close an I/O stream. Performs a first.

–Method.

Read up to bytes from and return the CRC-32c checksum, optionally mixed with a starting integer. If is not sup-

plied, then will be read until the end of the stream.

– Function.

Write the canonical binary representation of a value to the given I/O stream or file. Returns the number of bytes

written into the stream.

You canwrite multiple values with the same call. i.e. the following are equivalent:

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/strings/io.jl#L155-L170
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/iobuffer.jl#L260-L265
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/iostream.jl#L80-L86
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/io.jl#L653-L657
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/io.jl#L22-L26
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/util.jl#L793-L799
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– Function.

Open a file and read its contents. is passed to : this is equivalent to .

Read the entire contents of a file as a string.

Read at most bytes from , returning a of the bytes read.

Read at most bytes from , returning a of the bytes read.

If is (the default), this functionwill block repeatedly trying to read all requested bytes, until an error or end-of-file

occurs. If is , at most one call is performed, and the amount of data returned is device-dependent. Note that not

all stream types support the option.

Read a single value of type from , in canonical binary representation.

Read the entirety of , as a String.

– Function.

Read binary data from an I/O stream or file, filling in .

– Function.

Read at most bytes from into , returning the number of bytes read. The size of will be increased if needed (i.e. if

is greater than and enough bytes could be read), but it will never be decreased.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/io.jl#L59-L70
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/io.jl#L161-L170
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/io.jl#L540-L544
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/iostream.jl#L283-L292
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1185-L1193
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L39-L44
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/io.jl#L515-L521
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Read at most bytes from into , returning the number of bytes read. The size of will be increased if needed (i.e. if

is greater than and enough bytes could be read), but it will never be decreased.

See for a description of the option.

– Function.

Copy from the stream object into (converted to a pointer).

It is recommended that subtypes override the following method signature to provide more efficient implementa-

tions:

– Function.

Copy from (converted to a pointer) into the object.

It is recommended that subtypes override the following method signature to provide more efficient implementa-

tions:

– Function.

Get the current position of a stream.

– Function.

Seek a stream to the given position.

– Function.

Seek a stream to its beginning.

– Function.

Seek a stream to its end.

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/iostream.jl#L256-L264
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/io.jl#L93-L101
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/io.jl#L76-L84
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1006-L1010
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L826-L830
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1383-L1387
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L2060-L2064
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Seek a stream relative to the current position.

– Function.

Add amark at the current position of stream . Returns themarked position.

See also , , .

– Function.

Remove amark from stream . Returns if the streamwasmarked, otherwise.

See also , , .

– Function.

Reset a stream to a previously marked position, and remove the mark. Returns the previously marked position.

Throws an error if the stream is not marked.

See also , , .

– Function.

Returns if stream is marked.

See also , , .

– Function.

Tests whether an I/O stream is at end-of-file. If the stream is not yet exhausted, this function will block to wait for

more data if necessary, and then return . Therefore it is always safe to read one byte after seeing return . will

return as long as buffered data is still available, even if the remote end of a connection is closed.

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L598-L602
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/io.jl#L601-L607
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/io.jl#L612-L618
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/io.jl#L625-L632
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/io.jl#L641-L647
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/io.jl#L144-L152
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Determine whether a stream is read-only.

– Function.

Returns if the specified IO object is writable (if that can be determined).

– Function.

Returns if the specified IO object is readable (if that can be determined).

– Function.

Determinewhether an object - such as a stream, timer, ormmap – is not yet closed. Once an object is closed, it will

never produce a new event. However, a closed streammay still have data to read in its buffer, use to check for the

ability to read data. Use to be notifiedwhen a streammight be writable or readable.

– Function.

Write an arbitrary value to a stream in anopaque format, such that it can be readback by . The read-back valuewill

be as identical as possible to the original. In general, this process will not work if the reading and writing are done

by different versions of Julia, or an instance of Julia with a different system image. values are serialized as all-zero

bit patterns ().

– Function.

Read a value written by . assumes the binary data read from is correct and has been serialized by a compatible

implementation of . It has been designed with simplicity and performance as a goal and does not validate the data

read. Malformed data can result in process termination. The caller has to ensure the integrity and correctness of

data read from .

– Function.

Print the shortest possible representation, with the minimum number of consecutive non-zero digits, of number ,

ensuring that it would parse to the exact same number.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/io.jl#L286-L290
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/io.jl#L50-L54
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/io.jl#L43-L47
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/io.jl#L12-L19
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L756-L764
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1648-L1656
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/grisu/grisu.jl#L185-L190
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– Function.

Returns the file descriptor backing the stream or file. Note that this function only applies to synchronous ’s and ’s

not to any of the asynchronous streams.

– Function.

Create a pipe to which all C and Julia level output will be redirected. Returns a tuple representing the pipe ends.

Datawritten to may nowbe read from the end of the pipe. The end is given for convenience in case the old object

was cached by the user and needs to be replaced elsewhere.

Note

must be a , a , or a .

–Method.

Run the function while redirecting to . Upon completion, is restored to its prior setting.

Note

must be a , a , or a .

– Function.

Like , but for .

Note

must be a , a , or a .

–Method.

Run the function while redirecting to . Upon completion, is restored to its prior setting.

Note

must be a , a , or a .

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L335-L340
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/stream.jl#L1042-L1055
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/stream.jl#L1094-L1102
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/stream.jl#L1058-L1065
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/stream.jl#L1105-L1113
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Like , but for . Note that the order of the return tuple is still , i.e. data to be read from may bewritten to .

Note

must be a , a , or a .

–Method.

Run the function while redirecting to . Upon completion, is restored to its prior setting.

Note

must be a , a , or a .

– Function.

Read the entirety of as a string and remove a single trailing newline. Equivalent to .

– Function.

Resize the file or buffer given by the first argument to exactly bytes, filling previously unallocated space with ’\0’

if the file or buffer is grown.

– Function.

Advance the stream until before the first character for which returns . For example will skip all whitespace. If

keyword argument is specified, characters from that character through the end of a line will also be skipped.

– Function.

Read until the end of the stream/file and count the number of lines. To specify a file pass the filename as the first

argument. EOLmarkers other than are supported by passing them as the second argument.

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/stream.jl#L1068-L1077
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/stream.jl#L1116-L1124
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/io.jl#L505-L510
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L444-L449
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1989-L1996
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/datafmt.jl#L20-L26
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An that allows reading and performs writes by appending. Seeking and truncating are not supported. See for the

available constructors. If is given, creates a to operate on a data vector, optionally specifying a size beyondwhich

the underlying may not be grown.

– Function.

Read all available data on the stream, blocking the task only if no data is available. The result is a .

– Type.

provides amechanism for passing output configuration settings among methods.

In short, it is an immutable dictionary that is a subclass of . It supports standard dictionary operations such as , and

can also be used as an I/O stream.

–Method.

Create an thatwraps a given stream, adding the specified pair to the properties of that stream (note that can itself

be an ).

• use to see if this particular combination is in the properties set

• use to retrieve themost recent value for a particular key

The following properties are in common use:

• : Boolean specifying that small values shouldbeprintedmore compactly, e.g. that numbers shouldbeprinted

with fewer digits. This is set when printing array elements.

• : Boolean specifying that containers should be truncated, e.g. showing in place of most elements.

• : A giving the size in rows and columns to use for text output. This can be used to override the display size

for called functions, but to get the size of the screen use the function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/iobuffer.jl#L67-L75
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/io.jl#L35-L40
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/show.jl#L5-L12
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–Method.

Create an that wraps an alternate but inherits the properties of .

56.2 Text I/O

–Method.

Write an informative text representation of a value to the current output stream. New types should overload

where the first argument is a stream. The representation used by generally includes Julia-specific formatting and

type information.

– Function.

Show a compact representation of a value to . If is not specified, the default is to print to .

This is used for printing array elements without repeating type information (which would be redundant with that

printed once for the whole array), and without line breaks inside the representation of an element.

To offer a compact representation different from its standard one, a custom type should test in its normal method.

– Function.

Return a string giving a brief description of a value. By default returns , e.g. .

For arrays, returns a string of size and type info, e.g. .

– Function.

Write to (or to the default output stream if is not given) a canonical (un-decorated) text representation of a value

if there is one, otherwise call . The representation used by includes minimal formatting and tries to avoid Julia-

specific details.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/show.jl#L54-L89
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/show.jl#L47-L51
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1542-L1548
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/show.jl#L1792-L1805
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/show.jl#L1620-L1636
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– Function.

Print (using ) followed by a newline. If is not supplied, prints to .

– Function.

Print in a color specified as a symbol.

may take any of the values , , , , , , , , , , , , , , , , , , , or or an integer between 0 and 255 inclusive. Note that not all

terminals support 256 colors. If the keyword is given as , the result will be printed in bold.

– Function.

Display an informational message. Argument is a string describing the information to be displayed. The keyword

argument can be used to override the default prepending of .

Examples

See also .

– Function.

Display a warning. Argument is a string describing the warning to be displayed. Set to true and specify a to only

display the first time is called. If is not a backtrace is displayed. If is not both it and are displayed.

See also .

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/strings/io.jl#L6-L26
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/strings/io.jl#L49-L54
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/util.jl#L401-L409
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/util.jl#L504-L522
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/util.jl#L538-L547
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Display a warning. Argument is a string describing the warning to be displayed.

Examples

– Function.

Stream output of informational, warning, and/or errormessages to , overridingwhatwas otherwise specified. Op-

tionally, divert stream only for module , or specifically function within . can be (the default), , , or . See for the

current set of redirections. Call with no arguments (or just the ) to reset everything.

–Macro.

Print using C style format specification string, with some caveats: and are printed consistently as and for flags

, , , , , , , and . Furthermore, if a floating point number is equally close to the numeric values of two possible output

strings, the output string further away from zero is chosen.

Optionally, an may be passed as the first argument to redirect output.

Examples

–Macro.

Return formatted output as string.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/util.jl#L572-L582
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/util.jl#L478-L488
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/printf.jl#L1194-L1215
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/printf.jl#L1226-L1238
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– Function.

Call the given functionwith an I/O streamand the supplied extra arguments. Everythingwritten to this I/O stream

is returned as a string.

Examples

– Function.

Show a descriptive representation of an exception object.

– Function.

Show every part of the representation of a value.

–Macro.

Show every part of the representation of the given expression. Equivalent to .

– Function.

Reada single lineof text fromthegiven I/Ostreamorfile (defaults to ).When reading fromafile, the text is assumed

to be encoded in UTF-8. Lines in the input end with or or the end of an input stream. When is true (as it is by

default), these trailing newline characters are removed from the line before it is returned. When is false, they are

returned as part of the line.

– Function.

Read a string from an I/O stream or a file, up to and including the given delimiter byte. The text is assumed to be

encoded in UTF-8.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/strings/io.jl#L72-L83
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/replutil.jl#L169-L173
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L402-L406
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/meta.jl#L49-L54
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/io.jl#L183-L193
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/io.jl#L174-L180
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– Function.

Read all lines of an I/O stream or a file as a vector of strings. Behavior is equivalent to saving the result of reading

repeatedly with the same arguments and saving the resulting lines as a vector of strings.

– Function.

Createan iterable object thatwill yieldeach line froman I/Ostreamorafile. Iterationcalls on thestreamargument

repeatedly with passed through, determining whether trailing end-of-line characters are removed. When called

withafilename, thefile is openedonceat thebeginningof iterationandclosedat theend. If iteration is interrupted,

the file will be closedwhen the object is garbage collected.

–Method.

Read amatrix from the sourcewhere each line (separated by ) gives one row,with elements separated by the given

delimiter. The source can be a text file, streamor byte array. Memorymapped files can be used by passing the byte

array representation of themapped segment as source.

If is a numeric type, the result is an array of that type, with any non-numeric elements as for floating-point types,

or zero. Other useful values of include , , and .

If is , the first row of data will be read as header and the tuple is returned instead of only .

Specifying will ignore the corresponding number of initial lines from the input.

If is , blank lines in the input will be ignored.

If is , the file specified by ismemorymapped for potential speedups. Default is except onWindows. OnWindows,

youmaywant to specify if the file is large, and is only read once and not written to.

If is , columns enclosedwithin double-quote (”) characters are allowed to contain new lines and column delimiters.

Double-quote characters within a quoted field must be escaped with another double-quote. Specifying as a tuple

of theexpected rowsandcolumns (includingheader, if any)may speedup readingof largefiles. If is , linesbeginning

with and text following in any line are ignored.

–Method.

If all data is numeric, the result will be a numeric array. If some elements cannot be parsed as numbers, a heteroge-

neous array of numbers and strings is returned.

–Method.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/io.jl#L212-L219
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/io.jl#L566-L576
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/datafmt.jl#L84-L113
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/datafmt.jl#L75-L80
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The end of line delimiter is taken as .

–Method.

The end of line delimiter is taken as . If all data is numeric, the result will be a numeric array. If some elements

cannot be parsed as numbers, a heterogeneous array of numbers and strings is returned.

–Method.

The columns are assumed to be separated by one ormore whitespaces. The end of line delimiter is taken as .

–Method.

The columns are assumed to be separated by one or more whitespaces. The end of line delimiter is taken as . If all

data is numeric, the resultwill be a numeric array. If someelements cannot beparsed as numbers, a heterogeneous

array of numbers and strings is returned.

– Function.

Write (a vector, matrix, or an iterable collection of iterable rows) as text to (either a filename string or an stream)

using the given delimiter (which defaults to tab, but can be any printable Julia object, typically a or ).

For example, two vectors and of the same length can bewritten as two columns of tab-delimited text to by either

or by .

– Function.

Equivalent to with set to comma, and type optionally defined by .

– Function.

Equivalent to with set to comma.

– Type.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/datafmt.jl#L49-L53
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/datafmt.jl#L66-L72
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/datafmt.jl#L41-L46
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/datafmt.jl#L56-L63
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/datafmt.jl#L687-L697
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1446-L1450
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/datafmt.jl#L700-L704
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Returns anewwrite-only I/Ostream,which converts anybyteswritten to it intobase64-encodedASCII byteswrit-

ten to . Calling on the stream is necessary to complete the encoding (but does not close ).

Examples

– Type.

Returns a new read-only I/O stream, which decodes base64-encoded data read from .

Examples

– Function.

Given a -like function , which takes an I/O stream as its first argument, calls to write to a base64-encoded string,

and returns the string. is equivalent to : it converts its arguments into bytes using the standard functions and

returns the base64-encoded string.

See also .

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/base64.jl#L17-L42
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/base64.jl#L206-L225
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/base64.jl#L183-L194
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– Function.

Decodes the base64-encoded and returns a of the decoded bytes.

See also

Examples

– Function.

Return the nominal size of the screen that may be used for rendering output to this io object

56.3 Multimedia I/O

Just as text output is performed by and user-defined types can indicate their textual representation by overloading ,

Julia provides a standardizedmechanism for richmultimedia output (such as images, formatted text, or even audio and

video), consisting of three parts:

• A function to request the richest available multimedia display of a Julia object (with a plain-text fallback).

• Overloading allows one to indicate arbitrary multimedia representations (keyed by standard MIME types) of

user-defined types.

• Multimedia-capable display backendsmay be registered by subclassing a generic type and pushing them onto a

stack of display backends via .

The base Julia runtime provides only plain-text display, but richer displaysmay be enabled by loading externalmodules

or by using graphical Julia environments (such as the IPython-based IJulia notebook).

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/base64.jl#L259-L280
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/stream.jl#L351-L353
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Display using the topmost applicable display in the display stack, typically using the richest supportedmultimedia

output for ,withplain-text output as a fallback. The variant attempts todisplay on thegivendisplay only, throwing

a if cannot display objects of this type.

There are also two variants with a argument (a MIME type string, such as ), which attempt to display using the

requested MIME type only, throwing a if this type is not supported by either the display(s) or by . With these

variants, one can also supply the ”raw” data in the requested MIME type by passing (for MIME types with text-

based storage, such as text/html or application/postscript) or (for binaryMIME types).

– Function.

By default, the functions simply call . However, some display backendsmay override tomodify an existing display

of (if any). Using is also a hint to the backend that may be redisplayed several times, and the backendmay choose

to defer the display until (for example) the next interactive prompt.

– Function.

Returns a boolean value indicating whether the given type (string) is displayable by any of the displays in the cur-

rent display stack, or specifically by the display in the second variant.

–Method.

The functions ultimately call in order to write an object as a given type to a given I/O (usually a memory buffer),

if possible. In order to provide a rich multimedia representation of a user-defined type , it is only necessary to

define a new method for , via: , where is a MIME-type string and the function body calls (or similar) to write that

representation of to . (Note that the notation only supports literal strings; to construct types in a more flexible

manner use .)

For example, if you define a type and know how towrite it to a PNG file, you could define a function to allow your

images to be displayed on any PNG-capable (such as IJulia). As usual, be sure to in order to add newmethods to

the built-in Julia function .

The default MIME type is . There is a fallback definition for output that calls with 2 arguments. Therefore, this

case should be handled by defining a 2-argument method.

Technically, the macrodefinesa singleton type for thegiven string,whichallowsus toexploit Julia’s dispatchmech-

anisms in determining how to display objects of any given type.

The first argument to can be an specifying output format properties. See for details.

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/multimedia.jl#L224-L241
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/multimedia.jl#L288-L300
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/multimedia.jl#L146-L153
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1397-L1425
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Returns a boolean value indicating whether or not the object can be written as the given type. (By default, this is

determined automatically by the existence of the corresponding method for .)

Examples

– Function.

Returns an or containing the representation of in the requested type, aswritten by (throwing a if no appropriate

is available). An is returned for MIME types with textual representations (such as or ), whereas binary data is

returned as . (The function returns whether or not Julia treats a given type as text.)

As a special case, if is an (for textual MIME types) or a (for binary MIME types), the function assumes that is

already in the requested format and simply returns . This special case does not apply to the MIME type. This is

useful so that raw data can be passed to .

– Function.

Returns an containing the representation of in the requested type. This is similar to except that binary data is

base64-encoded as an ASCII string.

As mentioned above, one can also define new display backends. For example, a module that can display PNG images in

a window can register this capability with Julia, so that calling on types with PNG representations will automatically

display the image using themodule’s window.

In order to define a new display backend, one should first create a subtype of the abstract class . Then, for eachMIME

type ( string) that can be displayed on , one should define a function that displays as thatMIME type, usually by calling .

A should be thrown if cannot be displayed as thatMIME type; this is automatic if one calls . Finally, one should define a

function thatqueries for the types supportedby anddisplays the ”best” one; a shouldbe thrown if no supportedMIME

types are found for . Similarly, some subtypes may wish to override . (Again, one should to add newmethods to .) The

return values of these functions are up to the implementation (since in some cases it may be useful to return a display

”handle” of some type). The display functions for can then be called directly, but they can also be invoked automatically

from simply by pushing a new display onto the display-backend stack with:

– Function.

Pushes anewdisplay on topof the global display-backend stack. Calling or will display on the topmost compatible

backend in the stack (i.e., the topmost backend that does not throw a ).

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/multimedia.jl#L28-L43
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/multimedia.jl#L53-L69
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/multimedia.jl#L85-L91
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/multimedia.jl#L189-L195
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– Function.

Pop the topmost backend off of the display-backend stack, or the topmost copy of in the second variant.

– Type.

Returns a , which displays any object as the text/plain MIME type (by default), writing the text representation to

the given I/O stream. (This is how objects are printed in the Julia REPL.)

– Function.

Determine whether aMIME type is text data. MIME types are assumed to be binary data except for a set of types

known to be text data (possibly Unicode).

Examples

56.4 Memory-mapped I/O

– Type.

Create an -like object for creating zeroed-out mmapped-memory that is not tied to a file for use in . Used by for

creating sharedmemory arrays.

–Method.

Create an whose values are linked to a file, using memory-mapping. This provides a convenient way of working

with data too large to fit in the computer’s memory.

The type is an with a bits-type element of and dimension that determines how the bytes of the array are inter-

preted. Notethat thefilemustbestored inbinary format, andnoformatconversionsarepossible (this isa limitation

of operating systems, not Julia).

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/multimedia.jl#L201-L207
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/multimedia.jl#L159-L165
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/multimedia.jl#L97-L111
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L485-L490
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is a tuple or single specifying the size or length of the array.

The file is passed via the stream argument, either as an open or filename string. When you initialize the stream,

use for a ”read-only” array, and to create a new array used to write values to disk.

If no argument is specified, the default is .

Optionally, you can specify an offset (in bytes) if, for example, youwant to skip over a header in the file. The default

value for the offset is the current stream position for an .

The keywordargument specifieswhether thediskfile shouldbegrowntoaccommodate the requestedsizeofarray

(if the total file size is < requested array size). Write privileges are required to grow the file.

The keyword argument specifies whether the resulting and changes made to it will be visible to other processes

mapping the same file.

For example, the following code

creates a -by- , linked to the file associated with stream .

A more portable file would need to encode the word size – 32 bit or 64 bit – and endianness information in the

header. In practice, consider encoding binary data using standard formats like HDF5 (which can be used with

memory-mapping).

–Method.

Create a whose values are linked to a file, usingmemory-mapping; it has the samepurpose, works in the sameway,

and has the same arguments, as , but the byte representation is different.

Example:

This would create a 25-by-30000 , linked to the file associated with stream .

– Function.

Forces synchronization between the in-memory version of amemory-mapped or and the on-disk version.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L174-L231
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L234-L244
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1164-L1169
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56.5 Network I/O

–Method.

Connect to the host on port .

–Method.

Connect to the named pipe / UNIX domain socket at .

–Method.

Listen on port on the address specified by . By default this listens on only. To listen on all interfaces pass or as

appropriate. determines howmany connections can be pending (not having called ) before the serverwill begin to

reject them. The default value of is 511.

–Method.

Create and listen on a named pipe / UNIX domain socket.

– Function.

Gets the IP address of the (may have to do a DNS lookup)

– Function.

Get the IP address and port that the given socket is bound to.

– Function.

Get the IP address and port of the remote endpoint that the given socket is connected to. Valid only for connected

TCP sockets.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/socket.jl#L732-L736
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/stream.jl#L990-L994
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/socket.jl#L760-L769
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/stream.jl#L961-L965
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/socket.jl#L634-L638
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/socket.jl#L845-L849
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/socket.jl#L853-L858
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– Type.

Returns an IPv4 object from ip address formatted as an .

– Type.

Returns an IPv6 object from ip address formatted as an .

– Function.

Returns the number of bytes available for reading before a read from this stream or buffer will block.

– Function.

Accepts a connection on the given server and returns a connection to the client. An uninitialized client streammay

be provided, in which case it will be used instead of creating a new stream.

– Function.

Create a on any port, using hint as a starting point. Returns a tuple of the actual port that the server was created

on and the server itself.

– Function.

Monitor a file descriptor for changes in the read or write availability, andwith a timeout given by seconds.

The keyword arguments determine which of read and/or write status should be monitored; at least one of them

must be set to .

The returned value is an object with boolean fields , , and , giving the result of the polling.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/socket.jl#L24-L33
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/socket.jl#L76-L85
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/io.jl#L137-L141
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L476-L482
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/socket.jl#L818-L823
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/poll.jl#L434-L445
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– Function.

Monitor a file for changes by polling every seconds until a change occurs or seconds have elapsed. The should be

a long period; the default is 5.007 seconds.

Returns a pair of objects when a change is detected.

To determine when a file wasmodified, compare to detect notification of changes. However, using for this opera-

tion is preferred, since it is more reliable and efficient, although in some situations it may not be available.

– Function.

Watch file or directory for changes until a change occurs or seconds have elapsed.

The returned value is an object with boolean fields , , and , giving the result of watching the file.

This behavior of this function varies slightly across platforms. See https://nodejs.org/api/fs.html#fs_caveats for

more detailed information.

– Function.

Bind to the given . Note that will listen on all devices.

• The parameter disables dual stackmode. If , only an IPv6 stack is created.

• If , multiple threads or processes can bind to the same address without error if they all set , but only the last

to bind will receive any traffic.

Associates the lifetime of with a task. Channel is automatically closed when the task terminates. Any uncaught

exception in the task is propagated to all waiters on .

The object can be explicitly closed independent of task termination. Terminating tasks have no effect on already

closed Channel objects.

When a channel is bound to multiple tasks, the first task to terminate will close the channel. Whenmultiple chan-

nels are bound to the same task, termination of the task will close all of the bound channels.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/poll.jl#L514-L526
https://nodejs.org/api/fs.html#fs_caveats
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/poll.jl#L474-L485
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/socket.jl#L415-L423
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– Function.

Send over to .

– Function.

Read a UDP packet from the specified socket, and return the bytes received. This call blocks.

– Function.

ReadaUDPpacket fromthe specified socket, returninga tupleof ,where will beeither IPv4or IPv6as appropriate.

– Function.

Set UDP socket options.

• : loopback for multicast packets (default: ).

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/channels.jl#L152-L202
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/socket.jl#L551-L555
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/socket.jl#L480-L484
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/socket.jl#L490-L495
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• : TTL for multicast packets (default: ).

• : flag must be set to if socket will be used for broadcast messages, or else the UDP system will return an

access error (default: ).

• : Time-to-live of packets sent on the socket (default: ).

– Function.

Converts the endianness of a value fromNetwork byte order (big-endian) to that used by the Host.

– Function.

Converts the endianness of a value from that used by the Host to Network byte order (big-endian).

– Function.

Converts the endianness of a value from Little-endian to that used by the Host.

– Function.

Converts the endianness of a value from that used by the Host to Little-endian.

– Constant.

The 32-bit byte-order-mark indicates the native byte order of the host machine. Little-endian machines will con-

tain the value . Big-endianmachines will contain the value .

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/socket.jl#L451-L461
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/io.jl#L257-L261
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/io.jl#L264-L268
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/io.jl#L271-L275
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/io.jl#L278-L282
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/io.jl#L248-L254




Chapter 57

Punctuation

Extended documentation for mathematical symbols & functions is here.

825
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symbol meaning

invokemacro ; followed by space-separated expressions

prefix ”not” operator

at the end of a function name, indicates that a functionmodifies its argument(s)

begin single line comment

beginmulti-line comment (these are nestable)

endmulti-line comment

string and expression interpolation

remainder operator

exponent operator

bitwise and

short-circuiting boolean and

bitwise or

short-circuiting boolean or

bitwise xor operator

multiply, or matrix multiply

the empty tuple

bitwise not operator

backslash operator

complex transpose operator A

array indexing

vertical concatenation

also vertical concatenation

with space-separated expressions, horizontal concatenation

parametric type instantiation

statement separator

separate function arguments or tuple components

3-argument conditional operator (conditional ? if_true : if_false)

delimit string literals

delimit character literals

delimit external process (command) specifications

splice arguments into a function call or declare a varargs function or type

access named fields in objects/modules, also prefixes elementwise operator/function calls

range a, a+1, a+2, ..., b

range a, a+s, a+2s, ..., b

index an entire dimension (1:end)

type annotation, depending on context

quoted expression

symbol a

(reverse of subtype operator)



Chapter 58

Sorting and Related Functions

Julia has an extensive, flexible API for sorting and interacting with already-sorted arrays of values. By default, Julia

picks reasonable algorithms and sorts in standard ascending order:

You can easily sort in reverse order as well:

To sort an array in-place, use the ”bang” version of the sort function:

Instead of directly sorting an array, you can compute a permutation of the array’s indices that puts the array into sorted

order:

827
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Arrays can easily be sorted according to an arbitrary transformation of their values:

Or in reverse order by a transformation:

If needed, the sorting algorithm can be chosen:

All the sorting and order related functions rely on a ”less than” relation defining a total order on the values to bemanip-

ulated. The function is invoked by default, but the relation can be specified via the keyword.
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58.1 Sorting Functions

– Function.

Sort the vector in place. is used by default for numeric arrays while is used for other arrays. You can specify an

algorithm to use via the keyword (see Sorting Algorithms for available algorithms). The keyword lets you provide

a function that will be applied to each element before comparison; the keyword allows providing a custom ”less

than” function; use to reverse the sorting order. These options are independent and can be used together in all

possible combinations: if both and are specified, the function is applied to the result of the function; reverses

whatever ordering specified via the and keywords.

Examples

– Function.

Variant of that returns a sorted copy of leaving itself unmodified.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/sort.jl#L505-L543
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Sort a multidimensional array along the given dimension. See for a description of possible keyword arguments.

Examples

– Function.

Return a permutation vector of indices of that puts it in sorted order. Specify to choose a particular sorting al-

gorithm (see Sorting Algorithms). is used by default, and since it is stable, the resulting permutation will be the

lexicographically first one that puts the input array into sorted order – i.e. indices of equal elements appear in as-

cending order. If you choose a non-stable sorting algorithm such as , a different permutation that puts the array

into order may be returned. The order is specified using the same keywords as .

See also .

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/sort.jl#L588-L609
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/sort.jl#L758-L782
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– Function.

Like , but accepts a preallocated index vector . If is (the default), is initialized to contain the values .

Examples

– Function.

Sort the rows of matrix lexicographically. See for a description of possible keyword arguments.

Examples

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/sort.jl#L637-L666
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/sort.jl#L693-L715
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/sort.jl#L814-L841
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Sort the columns of matrix lexicographically. See for a description of possible keyword arguments.

Examples

58.2 Order-Related Functions

– Function.

Test whether a vector is in sorted order. The , and keywords modify what order is considered to be sorted just as

they do for .

Examples

– Function.

Return the range of indices of which compare as equal to (using binary search) according to the order specified by

the , and keywords, assuming that is already sorted in that order. Return an empty range located at the insertion

point if does not contain values equal to .

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/sort.jl#L853-L880
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/sort.jl#L60-L80
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– Function.

Return the index of the first value in greater than or equal to , according to the specified order. Return if is greater

than all values in . is assumed to be sorted.

Examples

– Function.

Return the index of the last value in less than or equal to , according to the specified order. Return if is less than

all values in . is assumed to be sorted.

Examples

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/sort.jl#L222-L245
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/sort.jl#L247-L265
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/sort.jl#L267-L285
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Partially sort the vector in place, according to the order specified by , and so that the value at index (or range

of adjacent values if is a range) occurs at the position where it would appear if the array were fully sorted via a

non-stable algorithm. If is a single index, that value is returned; if is a range, an array of values at those indices is

returned. Note that does not fully sort the input array.

Examples

– Function.

Variant of which copies before partially sorting it, thereby returning the same thing as but leaving unmodified.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L638-L688
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L468-L473
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– Function.

Return a partial permutation of the vector , according to the order specified by , and , so that returns the first (or

range of adjacent values if is a range) values of a fully sorted version of . If is a single index (Integer), an array of the

first indices is returned; if is a range, an array of those indices is returned. Note that the handling of integer values

for is different from in that it returns a vector of elements instead of just the th element. Also note that this is

equivalent to, but more efficient than, calling .

– Function.

Like , but accepts a preallocated index vector . If is (the default), ix is initialized to contain the values .

58.3 Sorting Algorithms

There are currently four sorting algorithms available in base Julia:

•

•

•

•

is anO(n^2) stable sorting algorithm. It is efficient for very small , and is used internally by .

is an O(n log n) sorting algorithmwhich is in-place, very fast, but not stable – i.e. elements which are considered equal

will not remain in the same order in which they originally appeared in the array to be sorted. is the default algorithm

for numeric values, including integers and floats.

is similar to , but the output array is only sorted up to index if is an integer, or in the range of if is an . For example:

is an O(n log n) stable sorting algorithm but is not in-place – it requires a temporary array of half the size of the input

array – and is typically not quite as fast as . It is the default algorithm for non-numeric data.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1013-L1024
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1113-L1118
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The default sorting algorithms are chosen on the basis that they are fast and stable, or appear to be so. For numeric

types indeed, is selected as it is faster and indistinguishable in this case from a stable sort (unless the array records its

mutations in some way). The stability property comes at a non-negligible cost, so if you don’t need it, you may want to

explicitly specify your preferred algorithm, e.g. .

The mechanism by which Julia picks default sorting algorithms is implemented via the function. It allows a particular

algorithmtobe registeredas thedefault in all sorting functions for specific arrays. Forexample, hereare the twodefault

methods from :

As for numeric arrays, choosing a non-stable default algorithm for array types for which the notion of a stable sort is

meaningless (i.e. when two values comparing equal can not be distinguished) maymake sense.

https://github.com/JuliaLang/julia/blob/master/base/sort.jl
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PackageManager Functions

All package manager functions are defined in the module. None of the module’s functions are exported; to use them,

you’ll need to prefix each function call with an explicit , e.g. or .

Functions for package development (e.g. , , etc.) have been moved to the PkgDev package. See PkgDev README for

the documentation of those functions.

– Function.

Returns the absolute path of the package directory. This defaults to on all platforms (i.e. in UNIX shell syntax). If

the environment variable is set, then that path is used in the returned value as . If is a relative path, it is interpreted

relative to whatever the current working directory is.

Equivalent to – i.e. it appends path components to the package directory and normalizes the resulting path. In

particular, returns the path to the package .

– Function.

Initialize as a package directory. This will be done automatically when the is not set and uses its default value. As

part of this process, clones a local METADATA git repository from the site and branch specified by its arguments,

which are typically not provided. Explicit (non-default) arguments can be used to support a custom METADATA

setup.

– Function.

Determines an optimal, consistent set of package versions to install or upgrade to. The optimal set of package

versions is based on the contents of and the state of installed packages in , Packages that are no longer required

aremoved into .
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https://github.com/JuliaLang/PkgDev.jl
https://github.com/JuliaLang/PkgDev.jl/blob/master/README.md
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/pkg/pkg.jl#L55-L64
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/pkg/pkg.jl#L67-L73
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/pkg/pkg.jl#L76-L84
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/pkg/pkg.jl#L230-L237
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– Function.

Opens in the editor specified by the or environment variables; when the editor command returns, it runs to

determine and install a new optimal set of installed package versions.

– Function.

Add a requirement entry for to and call . If are given, they must be objects and they specify acceptable version

intervals for .

– Function.

Remove all requirement entries for from and call .

– Function.

If has a URL registered in , clone it from that URL on the default branch. The package does not need to have any

registered versions.

Clone a package directly from the git URL . The package does not need to be registered in . The package repo is

cloned by the name if provided; if not provided, is determined automatically from .

– Function.

Set the protocol used to access GitHub-hosted packages. Defaults to ’https’, with a blank delegating the choice to

the package developer.

– Function.

Returns the names of available packages.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/pkg/pkg.jl#L94-L100
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/pkg/pkg.jl#L110-L116
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/pkg/pkg.jl#L103-L107
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/pkg/pkg.jl#L163-L168
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/pkg/pkg.jl#L171-L177
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/pkg/pkg.jl#L285-L290
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/pkg/pkg.jl#L119-L123
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Returns the version numbers available for package .

– Function.

Returns a dictionarymapping installed package names to the installed version number of each package.

If is installed, return the installed version number. If is registered, but not installed, return .

– Function.

Prints out a summary of what packages are installed andwhat version and state they’re in.

Prints out a summary of what version and state , specifically, is in.

– Function.

Update the metadata repo – kept in – then update any fixed packages that can safely be pulled from their origin;

then call to determine a new optimal set of packages versions.

Without arguments, updates all installed packages. When one ormore package names are provided as arguments,

only those packages and their dependencies are updated.

– Function.

Checkout the repo to the branch . Defaults to checking out the ”master” branch. To go back to using the newest

compatible releasedversion, use . Changes aremerged (fast-forwardonly) if the keywordargument , and the latest

version is pulled from the upstream repo if .

– Function.

Pin at the current version. To go back to using the newest compatible released version, use

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/pkg/pkg.jl#L126-L130
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/pkg/pkg.jl#L133-L138
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/pkg/pkg.jl#L141-L146
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/pkg/pkg.jl#L149-L153
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/pkg/pkg.jl#L156-L160
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/pkg/pkg.jl#L218-L227
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/pkg/pkg.jl#L180-L187
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/pkg/pkg.jl#L203-L208
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Pin at registered version .

– Function.

Free the package to be managed by the package manager again. It calls to determine optimal package versions

after. This is an inverse for both and .

You can also supply an iterable collection of package names, e.g., to freemultiple packages at once.

– Function.

Run the build scripts for all installed packages in depth-first recursive order.

Run thebuild script in for eachpackage in andall of their dependencies in depth-first recursiveorder. This is called

automatically by on all installed or updated packages.

– Function.

Runthetests forall installedpackagesensuring thateachpackage’s testdependenciesare installed for theduration

of the test. A package is tested by running its file and test dependencies are specified in . Coverage statistics for

the packagesmay be generated by passing . The default behavior is not to run coverage.

Run the tests for each package in ensuring that each package’s test dependencies are installed for the duration of

the test. A package is tested by running its file and test dependencies are specified in . Coverage statistics for the

packagesmay be generated by passing . The default behavior is not to run coverage.

– Function.

List the packages that have as a dependency.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/pkg/pkg.jl#L211-L215
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/pkg/pkg.jl#L191-L200
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/pkg/pkg.jl#L240-L244
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/pkg/pkg.jl#L247-L253
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/pkg/pkg.jl#L256-L264
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/pkg/pkg.jl#L267-L275
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/pkg/pkg.jl#L278-L282


Chapter 60

Dates and Time

60.1 Dates and Time Types

– Type.

types represent discrete, human representations of time.

– Type.

A is useful for expressing time periods that are not a fixed multiple of smaller periods. For example, ”a year and a

day” is not a fixed number of days, but can be expressed using a . In fact, a is automatically generated by addition

of different period types, e.g. produces a result.

– Type.

types represent integer-based, machine representations of time as continuous timelines starting from an epoch.

– Type.

841

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/types.jl#L5-L19
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/periods.jl#L151-L159
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/types.jl#L54-L59
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The represents amachine timeline based onUT time (1 day = one revolution of the earth). The is a parameter that

indicates the resolution or precision of the instant.

– Type.

types wrap machine instances to provide human representations of themachine instant. , and are subtypes of .

– Type.

wraps a and interprets it according to the proleptic Gregorian calendar.

– Type.

wraps a and interprets it according to the proleptic Gregorian calendar.

– Type.

wraps a and represents a specificmoment in a 24-hour day.

60.2 Dates Functions

AllDates functionsaredefined in the module; note thatonly the , , and functionsareexported; touseall other functions,

you’ll need to prefix each function call with an explicit , e.g. . Alternatively, you canwrite to bring all exported functions

into to be usedwithout the prefix.

–Method.

Construct a type by parts. Arguments must be convertible to .

–Method.

Construct a type by type parts. Arguments may be in any order. DateTime parts not provided will default to the

value of .

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/types.jl#L62-L68
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/types.jl#L89-L94
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/types.jl#L97-L102
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/types.jl#L108-L112
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/types.jl#L118-L122
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/types.jl#L173-L177
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/types.jl#L253-L258
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–Method.

Create a through the adjuster API. The starting point will be constructed from the provided arguments, and will

be adjusted until returns . The step size in adjusting can be provided manually through the keyword. provides a

limit to the max number of iterations the adjustment API will pursue before throwing an error (in the case that is

never satisfied).

Examples

–Method.

Converts a to a . The hour, minute, second, andmillisecond parts of the new are assumed to be zero.

–Method.

Construct a by parsing the date time string following the pattern given in the string.

This method creates a object each time it is called. If you are parsing many date time strings of the same format,

consider creating a object once and using that as the second argument instead.

– Function.

Format the token from andwrite it to . The formatting can be based on .

All subtypes of must define this method in order to be able to print a Date / DateTime object according to a con-

taining that token.

– Type.

Construct a date formatting object that can be used for parsing date strings or formatting a date object as a string.

The following character codes can be used to construct the string:

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/adjusters.jl#L240-L259
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/conversions.jl#L14-L19
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/io.jl#L408-L417
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/io.jl#L28-L37
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Code Matches Comment

1996, 96 Returns year of 1996, 0096

1996, 96 Returns year of 1996, 0096. Equivalent to

1, 01 Matches 1 or 2-digit months

Jan Matches abbreviatedmonths according to the keyword

January Matches full month names according to the keyword

1, 01 Matches 1 or 2-digit days

00 Matches hours

00 Matchesminutes

00 Matches seconds

.500 Matchesmilliseconds

Mon, Tues Matches abbreviated days of the week

Monday Matches full name days of the week

19960101 Matches fixed-width year, month, and day

Characters not listed above are normally treated as delimiters between date and time slots. For example a string

of ”1996-01-15T00:00:00.0” would have a string like ”y-m-dTH:M:S.s”. If you need to use a code character as a

delimiter you can escape it using backslash. The date ”1995y01m”would have the format ”y\ym\m”.

Creating a DateFormat object is expensive. Whenever possible, create it once and use it many times or try the

string macro. Using this macro creates the DateFormat object once at macro expansion time and reuses it later.

see .

See and for how to use a DateFormat object to parse andwrite Date strings respectively.

–Macro.

Create a object. Similar to but creates the DateFormat object once duringmacro expansion.

See for details about format specifiers.

–Method.

Construct a by parsing the date time string following the pattern given in the object. Similar to butmore efficient

when repeatedly parsing similarly formatted date time strings with a pre-created object.

–Method.

Construct a type by parts. Arguments must be convertible to .

–Method.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/io.jl#L291-L325
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/io.jl#L382-L389
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/io.jl#L422-L430
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/types.jl#L197-L201
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Construct a type by type parts. Arguments may be in any order. parts not providedwill default to the value of .

–Method.

Create a through the adjuster API. The starting point will be constructed from the provided arguments, and will

be adjusted until returns . The step size in adjusting can be provided manually through the keyword. provides a

limit to themax number of iterations the adjustment API will pursue before throwing an error (given that is never

satisfied).

Examples

–Method.

Converts a to a . The hour, minute, second, andmillisecond parts of the are truncated, so only the year, month and

day parts are used in construction.

–Method.

Construct a by parsing the date string following the pattern given in the string.

Thismethodcreatesa object each time it is called. If youareparsingmanydate stringsof the same format, consider

creating a object once and using that as the second argument instead.

–Method.

Parse a date from a date string using a object .

–Method.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/types.jl#L274-L279
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/adjusters.jl#L212-L234
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/conversions.jl#L5-L11
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/io.jl#L433-L442
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/io.jl#L447-L451
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Construct a type by parts. Arguments must be convertible to .

–Method.

Construct a type by type parts. Arguments may be in any order. parts not providedwill default to the value of .

–Method.

Create a through the adjuster API. The starting point will be constructed from the provided arguments, and will

be adjusted until returns . The step size in adjusting can be provided manually through the keyword. provides a

limit to the max number of iterations the adjustment API will pursue before throwing an error (in the case that is

never satisfied). Note that the default step will adjust to allow for greater precision for the given arguments; i.e. if

hour, minute, and second arguments are provided, the default step will be instead of .

Examples

–Method.

Converts a to a . The hour, minute, second, andmillisecond parts of the are used to create the new . Microsecond

and nanoseconds are zero by default.

–Method.

Returns a corresponding to the user’s system time including the system timezone locale.

–Method.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/types.jl#L214-L218
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/types.jl#L290-L295
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/adjusters.jl#L283-L310
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/conversions.jl#L22-L27
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/conversions.jl#L60-L65
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Returns a corresponding to the user’s system time as UTC/GMT.

– Function.

Returns for values, for values, and for values.

Accessor Functions

– Function.

The year of a or as an .

– Function.

Themonth of a or as an .

– Function.

Return the ISO week date of a or as an . Note that the first week of a year is the week that contains the first

Thursday of the year, which can result in dates prior to January 4th being in the last week of the previous year. For

example, is the 53rd week of 2004.

Examples

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/conversions.jl#L79-L83
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/types.jl#L320-L326
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/accessors.jl#L74-L78
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/accessors.jl#L74-L78
https://en.wikipedia.org/wiki/ISO_week_date
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/accessors.jl#L82-L102
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The day of month of a or as an .

– Function.

The hour of day of a as an .

The hour of a as an .

– Function.

Theminute of a as an .

Theminute of a as an .

– Function.

The second of a as an .

The second of a as an .

– Function.

Themillisecond of a as an .

Themillisecond of a as an .

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/accessors.jl#L108-L112
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/accessors.jl#L116-L120
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/accessors.jl#L150-L154
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/accessors.jl#L126-L130
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/accessors.jl#L150-L154
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/accessors.jl#L126-L130
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/accessors.jl#L150-L154
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/accessors.jl#L126-L130
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/accessors.jl#L150-L154
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Themicrosecond of a as an .

– Function.

The nanosecond of a as an .

–Method.

Construct a object with the given value. Input must be losslessly convertible to an .

–Method.

Construct a object with the given value. Input must be losslessly convertible to an .

–Method.

Construct a object with the given value. Input must be losslessly convertible to an .

–Method.

Construct a object with the given value. Input must be losslessly convertible to an .

–Method.

The hour part of a DateTime as a .

–Method.

Theminute part of a DateTime as a .

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/accessors.jl#L150-L154
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/accessors.jl#L150-L154
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/periods.jl#L32-L37
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/periods.jl#L32-L37
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/periods.jl#L32-L37
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/periods.jl#L32-L37
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/periods.jl#L24-L28
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/periods.jl#L24-L28
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–Method.

The second part of a DateTime as a .

–Method.

Themillisecond part of a DateTime as a .

–Method.

Themicrosecond part of a Time as a .

–Method.

The nanosecond part of a Time as a .

– Function.

Simultaneously return the year andmonth parts of a or .

– Function.

Simultaneously return themonth and day parts of a or .

– Function.

Simultaneously return the year, month and day parts of a or .

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/periods.jl#L24-L28
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/periods.jl#L24-L28
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/periods.jl#L24-L28
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/periods.jl#L24-L28
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/accessors.jl#L138-L143
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/accessors.jl#L138-L143
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/accessors.jl#L138-L143
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Query Functions

– Function.

Return the full day name corresponding to the day of the week of the or in the given .

Examples

– Function.

Return the abbreviated name corresponding to the day of the week of the or in the given .

Examples

– Function.

Returns the day of the week as an with .

Examples

– Function.

The day of month of a or as an .

– Function.

For the day of week of , returns which number it is in ’s month. So if the day of the week of is Monday, then In the

range 1:5.

Examples

“‘jldoctest julia> Dates.dayofweekofmonth(Date(”2000-02-01”)) 1

julia> Dates.dayofweekofmonth(Date(”2000-02-08”)) 2

julia> Dates.dayofweekofmonth(Date(”2000-02-15”)) 3 ““

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/query.jl#L131-L142
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/query.jl#L147-L158
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/query.jl#L110-L120
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/accessors.jl#L108-L112
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/query.jl#L173-L191
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– Function.

For the day of week of , returns the total number of that day of the week in ’s month. Returns 4 or 5. Useful in

temporal expressions for specifying the last day of a week in amonth by including in the adjuster function.

Examples

– Function.

Return the full name of themonth of the or in the given .

Examples

– Function.

Return the abbreviatedmonth name of the or in the given .

Examples

– Function.

Returns the number of days in themonth of . Value will be 28, 29, 30, or 31.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/query.jl#L203-L219
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/query.jl#L238-L248
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/query.jl#L253-L263
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– Function.

Returns if the year of is a leap year.

Examples

– Function.

Returns the day of the year for with January 1st being day 1.

– Function.

Returns 366 if the year of is a leap year, otherwise returns 365.

Examples

– Function.

Returns the quarter that resides in. Range of value is 1:4.

– Function.

Returns the day of the current quarter of . Range of value is 1:92.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/query.jl#L268-L284
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/query.jl#L288-L301
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/query.jl#L304-L308
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/query.jl#L89-L102
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/query.jl#L314-L318
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/query.jl#L325-L329
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Adjuster Functions

–Method.

Truncates the value of according to the provided type.

Examples

– Function.

Adjusts to theMonday of its week.

Examples

– Function.

Adjusts to the Sunday of its week.

Examples

– Function.

Adjusts to the first day of its month.

Examples

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/adjusters.jl#L23-L33
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/adjusters.jl#L37-L47
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/adjusters.jl#L53-L63
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/adjusters.jl#L69-L79
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Adjusts to the last day of its month.

Examples

– Function.

Adjusts to the first day of its year.

Examples

– Function.

Adjusts to the last day of its year.

Examples

– Function.

Adjusts to the first day of its quarter.

Examples

– Function.

Adjusts to the last day of its quarter.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/adjusters.jl#L85-L95
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/adjusters.jl#L104-L114
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/adjusters.jl#L120-L130
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/adjusters.jl#L139-L152
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–Method.

Adjusts to the next day of week corresponding to with . Setting allows the current to be considered as the next ,

allowing for no adjustment to occur.

–Method.

Adjusts to the previous day of week corresponding to with . Setting allows the current to be considered as the

previous , allowing for no adjustment to occur.

– Function.

Adjusts to the first of its month. Alternatively, will adjust to the first of the year.

– Function.

Adjusts to the last of its month. Alternatively, will adjust to the last of the year.

–Method.

Adjusts by iterating at most iterations by increments until returns . must take a single argument and return a .

allows to be considered in satisfying .

–Method.

Adjusts by iterating at most iterations by increments until returns . must take a single argument and return a .

allows to be considered in satisfying .

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/adjusters.jl#L162-L175
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/adjusters.jl#L340-L346
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/adjusters.jl#L362-L368
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/adjusters.jl#L384-L389
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/adjusters.jl#L396-L401
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/adjusters.jl#L350-L356
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/adjusters.jl#L371-L377
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Periods

–Method.

Construct a type with the given value. Input must be losslessly convertible to an .

–Method.

Construct a from a of s. All s of the same typewill be added together.

Examples

– Function.

Returns a sensible ”default” value for the inputPeriodby returning forYear,Month, andDay, and forHour,Minute,

Second, andMillisecond.

Rounding Functions

and values can be rounded to a specified resolution (e.g., 1 month or 15minutes) with , , or .

–Method.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/types.jl#L37-L51
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/periods.jl#L194-L214
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/periods.jl#L50-L55


858 CHAPTER 60. DATES AND TIME

Returns the nearest or less than or equal to at resolution .

For convenience, may be a type instead of a value: is a shortcut for .

–Method.

Returns the nearest or greater than or equal to at resolution .

For convenience, may be a type instead of a value: is a shortcut for .

–Method.

Returns the or nearest to at resolution . By default (), ties (e.g., rounding 9:30 to the nearest hour)will be rounded

up.

For convenience, may be a type instead of a value: is a shortcut for .

Valid roundingmodes for are (default), (), and ().

The following functions are not exported:

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/rounding.jl#L79-L97
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/rounding.jl#L100-L118
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/rounding.jl#L135-L157


60.2. DATES FUNCTIONS 859

Simultaneously return the and of a or at resolution . More efficient than calling both and individually.

– Function.

Takes the number of days since the rounding epoch () and returns the corresponding .

– Function.

Takes the number of milliseconds since the rounding epoch () and returns the corresponding .

– Function.

Takes the given and returns the number of days since the rounding epoch () as an .

– Function.

Takes the given and returns the number of milliseconds since the rounding epoch () as an .

Conversion Functions

– Function.

Returns the date portion of .

– Function.

Takes the number of seconds since unix epoch and converts to the corresponding .

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/rounding.jl#L124-L129
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/rounding.jl#L10-L15
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/rounding.jl#L18-L23
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/rounding.jl#L26-L31
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/rounding.jl#L34-L39
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/conversions.jl#L72-L76
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/conversions.jl#L42-L47
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Takes the given and returns the number of seconds since the unix epoch as a .

– Function.

Takes the number of Julian calendar days since epoch and returns the corresponding .

– Function.

Takes the given and returns the number of Julian calendar days since the julian epoch as a .

– Function.

Takes the number of Rata Die days since epoch and returns the corresponding .

– Function.

Returns the number of Rata Die days since epoch from the given or .

Constants

Days of theWeek:

Variable Abbr. Value (Int)

1

2

3

4

5

6

7

Months of the Year:

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/conversions.jl#L52-L57
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/conversions.jl#L104-L109
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/conversions.jl#L115-L120
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/conversions.jl#L86-L91
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/dates/conversions.jl#L94-L98
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Variable Abbr. Value (Int)

1

2

3

4

5

6

7

8

9

10

11

12





Chapter 61

Iteration utilities

– Function.

For a set of iterable objects, returns an iterable of tuples, where the th tuple contains the th component of each

input iterable.

Note that is its own inverse: .

Examples

– Function.

An iterator that yields where is a counter starting at 1, and is the th value from the given iterator. It’s useful when

you need not only the values over which you are iterating, but also the number of iterations so far. Note that may

not be valid for indexing ; it’s also possible that , if has indices that do not start at 1. See the method if youwant to

ensure that is an index.

Examples
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https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/iterators.jl#L199-L229
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An iterator that accesses each element of the array , returning , where is the index for the element and . This is

similar to , except will always be a valid index for .

Specifying ensures that will be an integer; specifying ensures that will be a ; specifying chooses whichever has

been defined as the native indexing style for array .

Examples

Note that returns as a counter (always starting at 1), whereas returns as an index (starting at the first linear index

of , whichmay ormay not be 1).

See also: , .

– Function.

An iterator that yields the same elements as , but starting at the given .

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/iterators.jl#L35-L57
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/iterators.jl#L79-L125
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– Function.

An iterator that counts forever, starting at and incrementing by .

Examples

– Function.

An iterator that generates at most the first elements of .

Examples

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/iterators.jl#L320-L333
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/iterators.jl#L354-L369
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/iterators.jl#L389-L414
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An iterator that generates all but the first elements of .

Examples

– Function.

An iterator that cycles through forever.

Examples

– Function.

An iterator that generates the value forever. If is specified, generates that many times (equivalent to ).

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/iterators.jl#L445-L469
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/iterators.jl#L503-L516
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/iterators.jl#L547-L564
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– Function.

Returns an iterator over the product of several iterators. Each generated element is a tuple whose th element

comes from the th argument iterator. The first iterator changes the fastest.

Examples

– Function.

Given an iterator that yields iterators, return an iterator that yields the elements of those iterators. Put differently,

the elements of the argument iterator are concatenated.

Examples

– Function.

Iterate over a collection elements at a time.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/iterators.jl#L636-L650
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/iterators.jl#L714-L730
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/iterators.jl#L787-L800
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Unit Testing

62.1 Testing Base Julia

Julia is under rapid development and has an extensive test suite to verify functionality acrossmultiple platforms. If you

build Julia from source, you can run this test suite with . In a binary install, you can run the test suite using .

– Function.

Run the Julia unit tests listed in ,which canbeeither a string or an array of strings, using processors. (not exported)

62.2 Basic Unit Tests

The module provides simple unit testing functionality. Unit testing is a way to see if your code is correct by checking

that the results are what you expect. It can be helpful to ensure your code still works after you make changes, and can

be usedwhen developing as a way of specifying the behaviors your code should havewhen complete.

Simple unit testing can be performedwith the and macros:

–Macro.

Tests that the expression evaluates to . Returns a if it does, a if it is , and an if it could not be evaluated.

The form is equivalent to writing which can be useful when the expression is a call using infix syntax such as

approximate comparisons:

This is equivalent to the uglier test . It is an error to supply more than one expression unless the first is a call ex-

pression and the rest are assignments ().

–Macro.

869

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/interactiveutil.jl#L678-L683
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/test.jl#L254-L271
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Tests that the expression throws . The exception may specify either a type, or a value (which will be tested for

equality by comparing fields). Note that does not support a trailing keyword form.

For example, suppose wewant to check our new function works as expected:

If the condition is true, a is returned:

If the condition is false, then a is returned and an exception is thrown:

If the condition could not be evaluated because an exception was thrown, which occurs in this case because is not

defined for symbols, an object is returned and an exception is thrown:

If we expect that evaluating an expression should throw an exception, thenwe can use to check that this occurs:

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/test.jl#L435-L442
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62.3 Workingwith Test Sets

Typically a large number of tests are used to make sure functions work correctly over a range of inputs. In the event a

test fails, the default behavior is to throw an exception immediately. However, it is normally preferable to run the rest

of the tests first to get a better picture of howmany errors there are in the code being tested.

The macro can be used to group tests into sets. All the tests in a test set will be run, and at the end of the test set a

summarywill be printed. If any of the tests failed, or could not be evaluated due to an error, the test set will then throw

a .

–Macro.

Starts a new test set, or multiple test sets if a loop is provided.

If no custom testset type is given it defaults to creating a . records all the results and, if there are any s or s, throws

an exception at the end of the top-level (non-nested) test set, along with a summary of the test results.

Any custom testset type (subtype of ) can be given and it will also be used for any nested invocations. The given

options are only applied to the test set where they are given. The default test set type does not take any options.

The description string accepts interpolation from the loop indices. If no description is provided, one is constructed

based on the variables.

By default the macro will return the testset object itself, though this behavior can be customized in other testset

types. If a loop is used then the macro collects and returns a list of the return values of the method, which by

default will return a list of the testset objects used in each iteration.

We can put our tests for the function in a test set:

Test sets can also be nested:

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/test.jl#L875-L900
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In the event that a nested test set has no failures, as happened here, it will be hidden in the summary. If we do have a

test failure, only the details for the failed test sets will be shown:

62.4 Other TestMacros

As calculations on floating-point values can be imprecise, you can perform approximate equality checks using either

(where , typed via tab completion of , is the function) or use directly.

–Macro.

Tests that the call expression returns a value of the same type inferred by the compiler. It is useful to check for

type stability.

can be any call expression. Returns the result of if the typesmatch, and an if it finds different types.
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–Macro.

Test whether evaluating results in output that contains the string or matches the regular expression. If is a

boolean function, testswhether returns . If is a tuple or array, checks that the error output contains/matches each

item in . Returns the result of evaluating .

See also to check for the absence of error output.

–Macro.

Testwhether evaluating results in empty output (nowarnings or othermessages). Returns the result of evaluating

.

62.5 Broken Tests

If a test fails consistently it can be changed to use the macro. Thiswill denote the test as if the test continues to fail and

alerts the user via an if the test succeeds.

–Macro.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/test.jl#L1106-L1148
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/test.jl#L495-L505
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/test.jl#L526-L531
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Indicates a test that should pass but currently consistently fails. Tests that the expression evaluates to or causes

an exception. Returns a if it does, or an if the expression evaluates to .

The formworks as for the macro.

is also available to skip a test without evaluation, but counting the skipped test in the test set reporting. The test will

not run but gives a .

–Macro.

Marks a test that should not be executed but should be included in test summary reporting as . This can be useful

for tests that intermittently fail, or tests of not-yet-implemented functionality.

The formworks as for the macro.

62.6 Creating Custom Types

Packages can create their own subtypes by implementing the and methods. The subtype should have a one-argument

constructor taking a description string, with any options passed in as keyword arguments.

– Function.

Record a result to a testset. This function is called by the infrastructure each time a contained macro completes,

and is given the test result (which could be an ). This will also be called with an if an exception is thrown inside the

test block but outside of a context.

– Function.

Do any final processing necessary for the given testset. This is called by the infrastructure after a test block exe-

cutes. One common use for this function is to record the testset to the parent’s results list, using .

takes responsibility for maintaining a stack of nested testsets as they are executed, but any result accumulation is the

responsibility of the subtype. You can access this stack with the and methods. Note that these functions are not

exported.

– Function.

Retrieve the active test set from the task’s local storage. If no test set is active, use the fallback default test set.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/test.jl#L279-L289
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/test.jl#L298-L307
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/test.jl#L547-L554
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/test.jl#L557-L564
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/test.jl#L1060-L1065
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– Function.

Returns the number of active test sets, not including the defaut test set

also makes sure that nested invocations use the same subtype as their parent unless it is set explicitly. It does not

propagate any properties of the testset. Option inheritance behavior can be implemented by packages using the stack

infrastructure that provides.

Defining a basic subtypemight look like:

And using that testset looks like:

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/test.jl#L1095-L1099
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C Interface

– Keyword.

Call a function in a C-exported shared library, specified by the tuple , where each component is either a string or

symbol. Alternatively, may also be used to call a function pointer , such as one returned by .

Note that the argument type tuple must be a literal tuple, and not a tuple-valued variable or expression.

Each to the will be converted to thecorresponding , byautomatic insertionof calls to . (Seealso thedocumentation

for each of these functions for further details.) In most cases, this simply results in a call to .

– Function.

Obtain a pointer to a global variable in aC-exported shared library, specified exactly as in . Returns a , defaulting to

if no argument is supplied. The values can be read or written by or , respectively.

– Function.

Generate C-callable function pointer from Julia function. Type annotation of the return value in the callback func-

tion is a must for situations where Julia cannot infer the return type automatically.

Examples

– Function.

877

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/basedocs.jl#L557-L573
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L833-L842
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/c.jl#L7-L23
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Convert to a C argument of type where the input must be the return value of .

In cases where would need to take a Julia object and turn it into a , this function should be used to define and

perform that conversion.

Be careful to ensure that a Julia reference to exists as long as the result of this function will be used. Accordingly,

the argument to this function should never be an expression, only a variable name or field reference. For example,

is acceptable, but is not.

The prefix on this function indicates that using the result of this function after the argument to this function is no

longer accessible to the programmay cause undefined behavior, including program corruption or segfaults, at any

later time.

See also

– Function.

Convert to a value to be passed to C code as type , typically by calling .

In caseswhere cannotbesafely converted to , unlike , mayreturnanobjectof a typedifferent from ,whichhowever

is suitable for tohandle. The result of this function shouldbekept valid (for theGC)until the result of is not needed

anymore. This canbeused to allocatememory thatwill be accessedby the . Ifmultiple objects need tobeallocated,

a tuple of the objects can be used as return value.

Neither nor should take a Julia object and turn it into a .

– Function.

Load a value of type from the address of the th element (1-indexed) starting at . This is equivalent to the C expres-

sion .

The prefix on this function indicates that no validation is performed on the pointer to ensure that it is valid. Incor-

rect usagemay segfault your program or return garbage answers, in the samemanner as C.

– Function.

Store a value of type to the address of the th element (1-indexed) starting at . This is equivalent to theCexpression

.

The prefix on this function indicates that no validation is performed on the pointer to ensure that it is valid. Incor-

rect usagemay corrupt or segfault your program, in the samemanner as C.

–Method.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L803-L823
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L115-L128
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/pointer.jl#L73-L82
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/pointer.jl#L85-L94
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Copy elements from a source pointer to a destination, with no checking. The size of an element is determined by

the type of the pointers.

The prefix on this function indicates that no validation is performed on the pointers and to ensure that they are

valid. Incorrect usagemay corrupt or segfault your program, in the samemanner as C.

–Method.

Copy elements from a source array to a destination, starting at offset in the source and in the destination (1-

indexed).

The prefix on this function indicates that no validation is performed to ensure that N is inbounds on either array.

Incorrect usagemay corrupt or segfault your program, in the samemanner as C.

–Method.

Copy all elements from collection to array .

–Method.

Copy elements from collection starting at offset , to array starting at offset . Returns .

– Function.

Get the native address of an array or string element. Be careful to ensure that a Julia reference to exists as long as

this pointer will be used. This function is ”unsafe” like .

Calling is generally preferable to this function.

–Method.

Wrap a Julia object around the data at the address given by , without making a copy. The pointer element type

determines thearrayelement type. iseitheran integer (fora1darray)ora tupleof thearraydimensions. optionally

specifies whether Julia should take ownership of the memory, calling on the pointer when the array is no longer

referenced.

This function is labelled ”unsafe” because it will crash if is not a valid memory address to data of the requested

length.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L131-L140
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L143-L152
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/multidimensional.jl#L865-L869
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L1899-L1904
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/helpdb/Base.jl#L47-L55
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/pointer.jl#L48-L59
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– Function.

Get the memory address of a Julia object as a . The existence of the resulting will not protect the object from

garbage collection, so youmust ensure that the object remains referenced for thewhole time that the will be used.

– Function.

Convert a to an object reference. Assumes the pointer refers to a valid heap-allocated Julia object. If this is not

the case, undefined behavior results, hence this function is considered ”unsafe” and should be usedwith care.

– Function.

Disable Ctrl-C handler during execution of a function on the current task, for calling external code that may call

julia code that is not interrupt safe. Intended to be called using block syntax as follows:

This is not needed on worker threads () since the will only be delivered to the master thread. External functions

that do not call julia code or julia runtime automatically disable sigint during their execution.

– Function.

Re-enable Ctrl-C handler during execution of a function. Temporarily reverses the effect of .

– Function.

Raises a for with the descriptive string if is

– Type.

A memory address referring to data of type . However, there is no guarantee that the memory is actually valid, or

that it actually represents data of the specified type.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/pointer.jl#L108-L114
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/pointer.jl#L99-L105
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/c.jl#L322-L338
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/c.jl#L347-L352
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/error.jl#L72-L76
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/pointer.jl#L3-L8
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– Type.

An object that safely references data of type . This type is guaranteed to point to valid, Julia-allocated memory of

the correct type. The underlying data is protected from freeing by the garbage collector as long as the itself is

referenced.

When passed as a argument (either as a or type), a object will be converted to a native pointer to the data it

references.

There is no invalid (NULL) .

– Type.

Equivalent to the native c-type.

– Type.

Equivalent to the native c-type ().

– Type.

Equivalent to the native c-type ().

– Type.

Equivalent to the native c-type ().

– Type.

Equivalent to the native c-type ().

– Type.

Equivalent to the native c-type ().

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/refpointer.jl#L3-L14
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/c.jl#L31-L35
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/ctypes.jl#L6-L10
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/ctypes.jl#L14-L18
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/ctypes.jl#L22-L26
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/ctypes.jl#L30-L34
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/ctypes.jl#L38-L42
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– Type.

Equivalent to the native c-type.

– Type.

Equivalent to the native c-type.

– Type.

Equivalent to the native c-type ().

– Type.

Equivalent to the native c-type ().

– Type.

Equivalent to the native c-type ().

– Type.

Equivalent to the native c-type ().

– Type.

Equivalent to the native c-type ().

– Type.

Equivalent to the native c-type.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/c.jl#L49-L53
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/c.jl#L56-L60
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/ctypes.jl#L86-L90
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/ctypes.jl#L94-L98
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/ctypes.jl#L70-L74
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/ctypes.jl#L78-L82
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/ctypes.jl#L54-L58
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/ctypes.jl#L62-L66
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– Type.

Equivalent to the native c-type ().

– Type.

Equivalent to the native c-type ().

– Type.

Equivalent to the native c-type ().

– Type.

Equivalent to the native c-type ().

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/ctypes.jl#L46-L50
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/c.jl#L63-L67
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/ctypes.jl#L102-L106
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/ctypes.jl#L110-L114
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LLVM Interface

– Function.

Call LLVMIRstring in thefirstargument. Similar toanLLVMfunction block, argumentsareavailableasconsecutive

unnamed SSA variables (%0, %1, etc.).

Theoptional declarations string contains external functions declarations that are necessary for llvm to compile the

IR string. Multiple declarations can be passed in by separating themwith line breaks.

Note that the argument type tuple must be a literal tuple, and not a tuple-valued variable or expression.

Each to will be converted to the corresponding , by automatic insertion of calls to . (see also the documentation

for each of these functions for further details). In most cases, this simply results in a call to .

See for usage examples.
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https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/docs/basedocs.jl#L576-L597
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C Standard Library

– Function.

Call from the C standard library.

– Function.

Call from the C standard library.

– Function.

Call from the C standard library.

See warning in the documentation for regarding only using this onmemory originally obtained from .

– Function.

Call from the C standard library. Only use this onmemory obtained from , not on pointers retrieved from other C

libraries. objects obtained from C libraries should be freed by the free functions defined in that library, to avoid

assertion failures if multiple libraries exist on the system.

– Function.

Get the value of the C library’s . If an argument is specified, it is used to set the value of .

The value of is only valid immediately after a to a C library routine that sets it. Specifically, you cannot call at the

next prompt in a REPL, because lots of code is executed between prompts.
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https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libc.jl#L323-L327
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libc.jl#L340-L344
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libc.jl#L330-L337
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libc.jl#L313-L320
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libc.jl#L254-L263
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– Function.

Convert a system call error code to a descriptive string

– Function.

Call theWin32 function [only available onWindows].

– Function.

Convert aWin32 system call error code to a descriptive string [only available onWindows].

–Method.

Converts a struct to a number of seconds since the epoch.

– Function.

Convert time, given as a number of seconds since the epoch or a , to a formatted string using the given format.

Supported formats are the same as those in the standard C library.

– Function.

Parse a formatted time string into a giving the seconds, minute, hour, date, etc. Supported formats are the same

as those in the standard C library. On some platforms, timezones will not be parsed correctly. If the result of this

function will be passed to to convert it to seconds since the epoch, the field should be filled in manually. Setting it

to will tell the C library to use the current system settings to determine the timezone.

– Type.

Convert a number of seconds since the epoch to broken-down format, with fields , , , , , , , , and .

– Function.

Flushes the C and streams (whichmay have beenwritten to by external C code).

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libc.jl#L267-L271
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libc.jl#L275-L279
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libc.jl#L282-L286
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libc.jl#L217-L221
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libc.jl#L163-L169
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libc.jl#L182-L191
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libc.jl#L128-L133
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libc.jl#L95-L99
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Dynamic Linker

The names in are not exported and need to be called e.g. as .

– Function.

Load a shared library, returning an opaque handle.

Theextensiongivenby theconstant (, , or ) canbeomitted fromthe string, as it is automaticallyappended ifneeded.

If is not an absolute path name, then the paths in the array are searched for , followed by the system load path.

The optional flags argument is a bitwise-or of zero or more of , , , , , , , and . These are converted to the correspond-

ing flags of the POSIX (and/orGNU libc and/orMacOS) dlopen command, if possible, or are ignored if the specified

functionality is not available on the current platform. The default flags are platform specific. On MacOS the de-

fault flags are while onother platforms thedefaults are . An important usageof theseflags is to specify nondefault

behavior for when the dynamic library loader binds library references to exported symbols and if the bound refer-

ences are put into process local or global scope. For instance allows the library’s symbols to be available for usage

in other shared libraries, addressing situations where there are dependencies between shared libraries.

– Function.

Similar to , except returns a pointer instead of raising errors.

– Constant.

Enum constant for . See your platformman page for details, if applicable.
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https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libdl.jl#L68-L91
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libdl.jl#L100-L104
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libdl.jl#L32-L44
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– Function.

Look up a symbol from a shared library handle, return callable function pointer on success.

– Function.

Look up a symbol from a shared library handle, silently return pointer on lookup failure.

– Function.

Close shared library referenced by handle.

– Constant.

File extension for dynamic libraries (e.g. dll, dylib, so) on the current platform.

– Function.

Searches for thefirst library in in thepaths in the list, , or system librarypaths (in that order)which can successfully

be dlopen’d. On success, the return value will be one of the names (potentially prefixed by one of the paths in

locations). This string canbe assigned to a andused as the library name in future ’s. On failure, it returns the empty

string.

– Constant.

When calling , the paths in this list will be searched first, in order, before searching the system locations for a valid

library handle.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libdl.jl#L48-L52
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libdl.jl#L58-L62
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libdl.jl#L113-L117
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libdl.jl#L175-L179
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libdl.jl#L122-L130
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libdl.jl#L9-L14
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Profiling

–Macro.

runs your expression while taking periodic backtraces. These are appended to an internal buffer of backtraces.

Themethods in are not exported and need to be called e.g. as .

– Function.

Clear any existing backtraces from the internal buffer.

– Function.

Prints profiling results to (by default, ). If you donot supply a vector, the internal buffer of accumulated backtraces

will be used.

The keyword arguments can be any combination of:

• –Determineswhether backtraces are printedwith (default, ) or without () indentation indicating tree struc-

ture.

• – If , backtraces fromC and Fortran code are shown (normally they are excluded).

• – If (default), instruction pointers aremerged that correspond to the same line of code.

• – Limits the depth higher than in the format.

• – Controls the order in format. (default) sorts by the source line, whereas sorts in order of number of

collected samples.

• – Limits frames that exceed the heuristic noise floor of the sample (only applies to format ). A suggested

value to try for this is 2.0 (the default is 0). This parameter hides samples for which , where is the number of

samples on this line, and is the number of samples for the callee.

• – Limits the printout to only those lines with at least occurrences.
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https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/profile.jl#L10-L15
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/profile.jl#L69-L73
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/profile.jl#L97-L123
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Prints profiling results to . This variant is used to examine results exported by a previous call to . Supply the vector

of backtraces and a dictionary of line information.

See for an explanation of the valid keyword arguments.

– Function.

Configure the between backtraces (measured in seconds), and the number of instruction pointers that may be

stored. Each instruction pointer corresponds to a single line of code; backtraces generally consist of a long list of

instruction pointers. Default settings can be obtained by calling this function with no arguments, and each can be

set independently using keywords or in the order .

– Function.

Returns a reference to the internal buffer of backtraces. Note that subsequent operations, like , can affect unless

you firstmake a copy. Note that the values in havemeaning only on thismachine in the current session, because it

depends on the exact memory addresses used in JIT-compiling. This function is primarily for internal use; may be

a better choice for most users.

– Function.

”Exports” profiling results in a portable format, returning the set of all backtraces () and a dictionary thatmaps the

(session-specific) instruction pointers in to values that store the file name, function name, and line number. This

function allows you to save profiling results for future analysis.

– Function.

Given a previous profiling run, determine who called a particular function. Supplying the filename (and optionally,

range of line numbers over which the function is defined) allows you to disambiguate an overloaded method. The

returned value is a vector containing a count of the number of calls and line information about the caller. One can

optionally supply backtrace obtained from ; otherwise, the current internal profile buffer is used.

– Function.

Clears any stored memory allocation data when running julia with . Execute the command(s) you want to test (to

force JIT-compilation), then call . Then execute your command(s) again, quit Julia, and examine the resulting files.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/profile.jl#L152-L160
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/profile.jl#L34-L42
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/profile.jl#L292-L300
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/profile.jl#L164-L171
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/profile.jl#L226-L235
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/profile.jl#L262-L269
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StackTraces

– Type.

Stack information representing execution context, with the following fields:

•

The name of the function containing the execution context.

•

TheMethodInstance containing the execution context (if it could be found).

•

The path to the file containing the execution context.

•

The line number in the file containing the execution context.

•

True if the code is fromC.

•

True if the code is from an inlined frame.

•

Representation of the pointer to the execution context as returned by .

– Type.

An alias for provided for convenience; returned by calls to and .

– Function.

Returns a stack trace in the form of a vector of s. (By default stacktrace doesn’t return C functions, but this can be

enabled.) When called without specifying a trace, first calls .
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https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/stacktraces.jl#L11-L44
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/stacktraces.jl#L64-L69
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/stacktraces.jl#L143-L149
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– Function.

Returns the stack trace for themost recent error thrown, rather than the current execution context.

The followingmethods and types in are not exported and need to be called e.g. as .

– Function.

Given a pointer to an execution context (usually generated by a call to ), looks up stack frame context information.

Returns an array of frame information for all functions inlined at that point, innermost function first.

– Function.

Takes a (a vector of ) and a function name (a ) and removes the specified by the function name from the (also

removing all frames above the specified function). Primarily used to remove functions from the prior to returning

it.

Returns the with all s from the provided removed.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/stacktraces.jl#L171-L176
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/stacktraces.jl#L117-L123
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/stacktraces.jl#L179-L186
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/stacktraces.jl#L197-L201
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SIMD Support

Type is intended for building libraries of SIMD operations. Practical use of it requires using . The type is defined as:

It has a special compilation rule: a homogeneous tuple of maps to an LLVM type when is a primitive bits type and the

tuple length is in the set {2-6,8-10,16}.

At , the compiler might automatically vectorize operations on such tuples. For example, the following program, when

compiled with generates two SIMD addition instructions () on x86 systems:

However, since the automatic vectorization cannot be relied upon, future use will mostly be via libraries that use .
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Chapter 70

Reflection and introspection

Julia provides a variety of runtime reflection capabilities.

70.1 Module bindings

The exported names for a are available using , which will return an array of elements representing the exported bind-

ings. returns symbols for all bindings in , regardless of export status.

70.2 DataType fields

The names of fields may be interrogated using . For example, given the following type, returns an arrays of elements

representing the field names:

The type of each field in a object is stored in the field of the variable itself:

While is annotated as an , was unannotated in the type definition, therefore defaults to the type.

Types are themselves represented as a structure called :

Note that gives the names for each field of itself, and one of these fields is the field observed in the example above.
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70.3 Subtypes

The direct subtypes of any may be listed using . For example, the abstract has four (concrete) subtypes:

Any abstract subtypewill also be included in this list, but further subtypes thereofwill not; recursive application of may

be used to inspect the full type tree.

70.4 DataType layout

The internal representation of a is critically importantwhen interfacingwithC code and several functions are available

to inspect these details. returns true if is stored with C-compatible alignment. returns the (byte) offset for field i

relative to the start of the type.

70.5 Functionmethods

The methods of any generic function may be listed using . The method dispatch table may be searched for methods

accepting a given type using .

70.6 Expansion and lowering

As discussed in theMetaprogramming section, the function gives the unquoted and interpolated expression () form for

a givenmacro. To use , the expression block itself (otherwise, themacro will be evaluated and the result will be passed

instead!). For example:

The functions and are used to display S-expr style views and depth-nested detail views for any expression.

Finally, the function gives the form of any expression and is of particular interest for understanding both macros and

top-level statements such as function declarations and variable assignments:
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70.7 Intermediate and compiled representations

Inspecting the lowered formfor functions requires selectionof thespecificmethodtodisplay, becausegeneric functions

may have many methods with different type signatures. For this purpose, method-specific code-lowering is available

using , and the type-inferred form is available using . adds highlighting to the output of (see ).

Closer to the machine, the LLVM intermediate representation of a function may be printed using by , and finally the

compiled machine code is available using (this will trigger JIT compilation/code generation for any function which has

not previously been called).

For convenience, there aremacro versions of the above functions which take standard function calls and expand argu-

ment types automatically:

(likewise , , , and )





Chapter 71

Documentation of Julia’s Internals

71.1 Initialization of the Julia runtime

How does the Julia runtime execute ?

main()

Execution starts at in .

calls to set the C library locale and to initialize the ”ios” library (see and Legacy library).

Next is called to process command line options. Note that only deals with options that affect code generation or early

initialization. Other options are handled later by in .

stores command line options in the global struct.

julia_init()

in is called by and calls in .

begins by calling again (it does nothing the second time).

is called to zero the signal handler mask.

searches configured paths for the base system image. See Building the Julia system image.

sets up allocation pools and lists for weak refs, preserved values and finalization.

loads and initializes a pre-compiled femtolisp image containing the scanner/parser.

creates type description objects for the built-in types defined in . e.g.

creates the object; initializes the global struct; and sets to the root task.

initializes the LLVM library.

initializes 8-bit serialization tags for builtin values.
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https://github.com/JuliaLang/julia/blob/master/ui/repl.c
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https://github.com/JuliaLang/julia/blob/master/ui/repl.c
https://github.com/JuliaLang/julia/blob/master/base/client.jl
https://github.com/JuliaLang/julia/blob/master/src/julia.h
https://github.com/JuliaLang/julia/blob/master/src/task.c
https://github.com/JuliaLang/julia/blob/master/src/init.c
https://github.com/JuliaLang/julia/blob/master/src/signals-unix.c
https://github.com/JuliaLang/julia/blob/master/src/init.c
https://github.com/JuliaLang/julia/blob/master/src/gc.c
https://github.com/JuliaLang/julia/blob/master/src/ast.c
https://github.com/JuliaLang/julia/blob/master/src/jltypes.c
https://github.com/JuliaLang/julia/blob/master/src/julia.h
https://github.com/JuliaLang/julia/blob/master/src/task.c
https://github.com/JuliaLang/julia/blob/master/src/codegen.cpp
http://llvm.org
https://github.com/JuliaLang/julia/blob/master/src/staticdata.c
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If there is no sysimg file () then the and modules are created and is evaluated:

creates the Julia module.

creates a new Julia module containing constant symbols. These define an integer code for each intrinsic function.

translates these symbols into LLVM instructions during code generation.

hooks C functions up to Julia function symbols. e.g. the symbol is bound to C function pointer by calling .

creates the global ”Main” module and sets .

Note: then sets . is an alias of at this point, so the set by above is overwritten.

calls which repeatedly calls to execute . <!– TODO– drill down into eval? –>

initializes global C pointers to Julia globals defined in .

pre-allocates global boxed integer value objects for values up to 1024. This speeds up allocation of boxed ints later on.

e.g.:

iterates over the looking for values and sets the type name’s module prefix to .

does ”using Base” in the ”Main” module.

Note: now reverts to as it was before being set to above.

Platform specific signal handlers are initialized for (OSX, Linux), and (Windows).

Other signals ( and ) are hooked up to which prints a backtrace.

calls for each deserializedmodule to run the function.

Finally is hooked up to and calls .

then returns back to in and calls .

sysimg

If there is a sysimg file, it contains a pre-cooked image of the and modules (and whatever else is created

by ). See Building the Julia system image.

deserializes thesavedsysimg into thecurrentJulia runtimeenvironmentand initializationcontinuesafter

below...

Note: (and in general) uses the Legacy library.

true_main()

loads the contents of into .

If a ”program” file was supplied on the command line, then calls which calls which repeatedly calls to execute the

program.

However, in our example (), looks up and executes it.

Base._start

calls which calls to create an expression object and to execute it.

https://github.com/JuliaLang/julia/blob/master/src/intrinsics.cpp
https://github.com/JuliaLang/julia/blob/master/src/intrinsics.cpp
https://github.com/JuliaLang/julia/blob/master/src/intrinsics.cpp
https://github.com/JuliaLang/julia/blob/master/src/builtins.c
https://github.com/JuliaLang/julia/blob/master/src/toplevel.c
https://github.com/JuliaLang/julia/blob/master/src/init.c
https://github.com/JuliaLang/julia/blob/master/src/init.c
https://github.com/JuliaLang/julia/blob/master/src/ast.c
https://github.com/JuliaLang/julia/blob/master/src/toplevel.c
https://github.com/JuliaLang/julia/blob/master/base/boot.jl
https://github.com/JuliaLang/julia/blob/master/src/init.c
https://github.com/JuliaLang/julia/blob/master/src/datatype.c
https://github.com/JuliaLang/julia/blob/master/src/init.c
https://github.com/JuliaLang/julia/blob/master/src/toplevel.c
https://github.com/JuliaLang/julia/blob/master/src/signals-unix.c
https://github.com/JuliaLang/julia/blob/master/src/staticdata.c
https://github.com/JuliaLang/julia/blob/master/src/module.c
https://github.com/JuliaLang/julia/blob/master/src/signals-unix.c
https://github.com/JuliaLang/julia/blob/master/ui/repl.c
https://github.com/JuliaLang/julia/blob/master/src/staticdata.c
https://github.com/JuliaLang/julia/blob/master/src/staticdata.c
https://github.com/JuliaLang/julia/blob/master/ui/repl.c
https://github.com/JuliaLang/julia/blob/master/ui/repl.c
https://github.com/JuliaLang/julia/blob/master/src/toplevel.c
https://github.com/JuliaLang/julia/blob/master/src/ast.c
https://github.com/JuliaLang/julia/blob/master/src/toplevel.c
https://github.com/JuliaLang/julia/blob/master/src/module.c
https://github.com/JuliaLang/julia/blob/master/base/client.jl
https://github.com/JuliaLang/julia/blob/master/src/julia.h
https://github.com/JuliaLang/julia/blob/master/base/client.jl
https://github.com/JuliaLang/julia/blob/master/base/client.jl
https://github.com/JuliaLang/julia/blob/master/src/ast.c
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Base.eval

wasmapped to by .

calls , where is the parsed expression .

calls which calls in .

The stack dump below shows how the interpreter works its way through various methods of and before arriving at

which does .

calls to write ”HelloWorld!” to . See Libuv wrappers for stdio.:

Stack frame Source code Notes

called though

function

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Since our example has just one function call, which has done its job of printing ”Hello World!”, the stack now rapidly

unwinds back to .

jl_atexit_hook()

calls . This calls for eachmodule, then calls and cleans up libuv handles.

https://github.com/JuliaLang/julia/blob/master/src/builtins.c
https://github.com/JuliaLang/julia/blob/master/src/builtins.c
https://github.com/JuliaLang/julia/blob/master/src/builtins.c
https://github.com/JuliaLang/julia/blob/master/src/builtins.c
https://github.com/JuliaLang/julia/blob/master/src/toplevel.c
https://github.com/JuliaLang/julia/blob/master/src/interpreter.c
https://github.com/JuliaLang/julia/blob/master/base/stream.jl
https://github.com/JuliaLang/julia/blob/master/src/jl_uv.c
https://github.com/JuliaLang/julia/blob/master/src/init.c
https://github.com/JuliaLang/julia/blob/master/src/gc.c
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julia_save()

Finally, calls , which if requested on the command line, saves the runtime state to a new system image. See and .

71.2 Julia ASTs

Julia has two representations of code. First there is a surface syntaxAST returned by the parser (e.g. the function), and

manipulatedbymacros. It is a structuredrepresentationofcodeas it iswritten, constructedby fromacharacter stream.

Next there is a lowered form, or IR (intermediate representation), which is used by type inference and code generation.

In the lowered form there are fewer types of nodes, allmacros are expanded, and all control flow is converted to explicit

branches and sequences of statements. The lowered form is constructed by .

First we will focus on the lowered form, since it is more important to the compiler. It is also less obvious to the human,

since it results from a significant rearrangement of the input syntax.

Lowered form

The following data types exist in lowered form:

•

Has a node type indicated by the field, and an field which is a of subexpressions.

•

Identifies arguments and local variables by consecutive numbering. is an abstract typewith subtypes and . Both

types have an integer-valued field giving the slot index. Most slots have the same type at all uses, and so are

representedwith . The types of these slots are found in the field of their object. Slots that require per-use type

annotations are representedwith , which has a field.

•

Wraps the IR of amethod.

•

Contains a single number, specifying the line number the next statement came from.

•

Branch target, a consecutively-numbered integer starting at 0.

•

Unconditional branch.

•

Wraps an arbitrary value to reference as data. For example, the function contains a whose field is the symbol ,

in order to return the symbol itself instead of evaluating it.

•

Refers to global variable in module .

•

Refers to a consecutively-numbered (starting at 0) static single assignment (SSA) variable inserted by the com-

piler.

•

Marks a point where a variable is created. This has the effect of resetting a variable to undefined.

https://github.com/JuliaLang/julia/blob/master/src/init.c
https://github.com/JuliaLang/julia/blob/master/src/gf.c
https://github.com/JuliaLang/julia/blob/master/src/staticdata.c
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Expr types

These symbols appear in the field of s in lowered form.

•

Function call (dynamic dispatch). is the function to call, are the arguments.

•

Function call (static dispatch). is the MethodInstance to call, are the arguments (including the function that is

being called, at ).

•

Reference a static parameter by index.

•

Line number and file namemetadata. Unlike a , can also contain a file name.

•

Conditional branch. If is false, goes to label identified in .

•

Assignment.

•

Adds amethod to a generic function and assigns the result if necessary.

Has a 1-argument formand a4-argument form. The1-argument formarises from the syntax . In the 1-argument

form, the argument is a symbol. If this symbol already names a function in the current scope, nothing happens.

If the symbol is undefined, a new function is created and assigned to the identifier specified by the symbol. If

the symbol is defined but names a non-function, an error is raised. The definition of ”names a function” is that

the binding is constant, and refers to an object of singleton type. The rationale for this is that an instance of a

singleton type uniquely identifies the type to add the method to. When the type has fields, it wouldn’t be clear

whether themethodwas being added to the instance or its type.

The 4-argument form has the following arguments:

–

A function name, or if unknown. If a symbol, then the expression first behaves like the 1-argument form

above. This argument is ignored from then on. When this is , it means a method is being added strictly by

type, .

–

A of argument type data. is a of the argument types, and is a of type variables corresponding to the

method’s static parameters.

–

A of the method itself. For ”out of scope” method definitions (adding a method to a function that also has

methods defined in different scopes) this is an expression that evaluates to a expression.

–

or , identifying whether themethod is staged ().

•

Declares a (global) variable as constant.
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•

Has no arguments; simply yields the value .

•

Allocates a new struct-like object. First argument is the type. The pseudo-function is lowered to this, and the

type is always inserted by the compiler. This is verymuch an internal-only feature, and does no checking. Evalu-

ating arbitrary expressions can easily segfault.

•

Returns its argument as the value of the enclosing function.

•

Yields the caught exception inside a block. This is the value of the run time system variable .

•

Enters an exception handler (). is the label of the catch block to jump to on error.

•

Pop exception handlers. is the number of handlers to pop.

•

Controls turning bounds checks on or off. A stack ismaintained; if the first argument of this expression is true or

false (meansbounds checks aredisabled), it is pushedonto the stack. If thefirst argument is , the stack is popped.

•

Indicates the beginning or endof a section of code that performs abounds check. Like , a stack ismaintained, and

the second argument can be one of: , , or .

•

Partof the implementationofquasi-quote. Theargument isasurfacesyntaxASTthat is simplycopiedrecursively

and returned at run time.

•

Metadata. is typically a symbol specifying the kind of metadata, and the rest of the arguments are free-form.

The following kinds of metadata are commonly used:

– and : Inlining hints.

– : enters a sequence of statements from a specified source location.

* specifies a filename, as a symbol.

* optionally specifies the name of an (inlined) function that originally contained the code.

– : returns to the source location before thematching .

Method

A unique’d container describing the sharedmetadata for a single method.

• , , , ,

Metadata to uniquely identify themethod for the computer and the human.

•

Cache of other methods that may be ambiguous with this one.
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•

Cache of all MethodInstance ever created for this Method, used to ensure uniqueness. Uniqueness is required

for efficiency, especially for incremental precompile and tracking of method invalidation.

•

The original source code (usually compressed).

•

Pointers to non-AST things that have been interpolated into the AST, required by compression of the AST, type-

inference, or the generation of native code.

• , , , ,

Descriptive bit-fields for the source code of thisMethod.

• /

The range of world ages for which this method is visible to dispatch.

MethodInstance

A unique’d container describing a single callable signature for a Method. See especially Proper maintenance and care

of multi-threading locks for important details on how tomodify these fields safely.

•

The primary key for thisMethodInstance. Uniqueness is guaranteed through a lookup.

•

The that this function describes a specialization of. Or a , if this is a top-level Lambda expanded in Module, and

which is not part of aMethod.

•

The values of the static parameters in indexed by . For the at , this is the empty . But for a runtime from the

cache, this will always be defined and indexable.

•

The inferred return type for the field, which (in most cases) is also the computed return type for the function in

general.

•

May contain a cacheof the inferred source for this function, or other information about the inference result such

as a constant return valuemay be put here (if ), or it could be set to to just indicate is inferred.

•

The generic jlcall entry point.

•

The ABI to use when calling . Some significant ones include:

– 0 - Not compiled yet

– 1 - JL_CALLABLE

– 2 - Constant (value stored in )

– 3 -With Static-parameters forwarded



910 CHAPTER 71. DOCUMENTATIONOF JULIA’S INTERNALS

– 4 - Run in interpreter

• /

The range of world ages for which this method instance is valid to be called.

CodeInfo

A temporary container for holding lowered source code.

•

An array of statements

•

An array of symbols giving the name of each slot (argument or local variable).

•

An array of types for the slots.

•

A array of slot properties, represented as bit flags:

– 2 - assigned (only false if there are no assignment statements with this var on the left)

– 8 - const (currently unused for local variables)

– 16 - statically assigned once

– 32 - might be used before assigned. This flag is only valid after type inference.

•

Either an array or an .

If an , it gives the number of compiler-inserted temporary locations in the function. If an array, specifies a type

for each location.

Boolean properties:

•

Whether this has been produced by type inference.

•

Whether this should be inlined.

•

Whether this should should propagate when inlined for the purpose of eliding blocks.

•

Whether this is known to be a pure function of its arguments, without respect to the state of themethod caches

or other mutable global state.

Surface syntax AST

FrontendASTsconsist entirelyof sandatoms (e.g. symbols, numbers). There isgenerallyadifferentexpressionhead for

eachvisuallydistinct syntactic form. Exampleswill begiven in s-expression syntax. Eachparenthesized list corresponds

to an Expr, where the first element is the head. For example corresponds to in Julia.
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Input AST

Calls

syntax:

parses as .

Operators

Most uses of operators are just function calls, so they are parsed with the head . However some operators are special

forms (not necessarily function calls), and in those cases the operator itself is the expression head. In julia-parser.scm

these are referred to as ”syntactic operators”. Some operators ( and ) use N-ary parsing; chained calls are parsed as a

single N-argument call. Finally, chains of comparisons have their own special expression structure.

Input AST

Bracketed forms

Macros

Strings

Doc string syntax:

parses as .
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Input AST

Input AST

Input AST

Imports and such

Numbers

Julia supports more number types thanmany scheme implementations, so not all numbers are represented directly as

scheme numbers in the AST.

Block forms

A block of statements is parsed as .

If statement:

parses as:



71.2. JULIA ASTS 913

Input AST

Input AST

A loop parses as .

A loop parses as . If there is more than one iteration specification, they are parsed as a block: .

and are parsed as 0-argument expressions and .

is parsed as .

A basic function definition is parsed as . Amore complex example:

parses as:

Type definition:

parses as:

The first argument is a boolean telling whether the type is mutable.

blocks parse as . If no variable is present after , is . If there is no clause, then the last argument is not present.
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71.3 More about types

If you’ve used Julia for awhile, you understand the fundamental role that types play. Herewe try to get under the hood,

focusing particularly on Parametric Types.

Types and sets (and and /)

It’s perhaps easiest to conceive of Julia’s type system in terms of sets. While programs manipulate individual values, a

type refers to a set of values. This is not the same thing as a collection; for example a of values is itself a single value.

Rather, a type describes a set of possible values, expressing uncertainty about which value we have.

A concrete type describes the set of values whose direct tag, as returned by the function, is . An abstract type describes

some possibly-larger set of values.

describes the entire universe of possible values. is a subset of that includes , , and other concrete types. Internally,

Julia alsomakes heavy use of another type known as , which can also bewritten as . This corresponds to the empty set.

Julia’s types support the standard operations of set theory: you can ask whether is a ”subset” (subtype) of with . Like-

wise, you intersect two types using , take their union with , and compute a type that contains their union with :

While these operationsmay seem abstract, they lie at the heart of Julia. For example, method dispatch is implemented

by stepping through the items in a method list until reaching one for which the type of the argument tuple is a subtype

of themethod signature. For this algorithm towork, it’s important that methods be sorted by their specificity, and that

the search begins with the most specific methods. Consequently, Julia also implements a partial order on types; this is

achieved by functionality that is similar to , but with differences that will be discussed below.
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UnionAll types

Julia’s type system can also express an iterated union of types: a union of types over all values of some variable. This is

needed to describe parametric types where the values of some parameters are not known.

For example, :obj: has two parameters as in . If we did not know the element type, we couldwrite , which is the union of

for all values of : .

Such a type is represented by a object, which contains a variable ( in this example, of type ), and awrapped type ( in this

example).

Consider the followingmethods:

The signature of is a type wrapping a tuple type. All but can be called with ; all but can be called with .

Let’s look at these types a little more closely:

This indicates that actually names a type. There is one type for each parameter, nested. The syntax is equivalent

to ; internally each is instantiated with a particular variable value, one at a time, outermost-first. This gives a natural

meaning to the omission of trailing type parameters; gives a type equivalent to .

A isnot itself a type, but rathershouldbeconsideredpartof thestructureofa type. Typevariableshave lowerandupper

bounds on their values (in the fields and ). The symbol is purely cosmetic. Internally, s are comparedby address, so they

are defined as mutable types to ensure that ”different” type variables can be distinguished. However, by convention

they should not bemutated.

One can construct s manually:

There are convenience versions that allow you to omit any of these arguments except the symbol.

The syntax is lowered to

so it is seldom necessary to construct a manually (indeed, this is to be avoided).
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Free variables

The concept of a free type variable is extremely important in the type system. We say that a variable is free in type if

does not contain the that introduces variable . For example, the type has no free variables, but the part inside of it does

have a free variable, .

A typewith free variables is, in some sense, not really a type at all. Consider the type , which refers to all homogeneous

arrays of arrays. The inner type , seen by itself, might seem to refer to any kind of array. However, every element of the

outer arraymust have the same array type, so cannot refer to just any old array. One could say that effectively ”occurs”

multiple times, and must have the same value each ”time”.

For this reason, the function in the C API is very important. Types for which it returns true will not give meaningful

answers in subtyping and other type functions.

TypeNames

The following two types are functionally equivalent, yet print differently:

These can be distinguished by examining the field of the type, which is an object of type :
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In this case, the relevant field is , which holds a reference to the top-level type used tomake new types.

The field of points to itself, but for it points back to the original definition of the type.

What about the other fields? assigns an integer to each type. To examine the field, it’s helpful to pick a type that is less

heavily used than Array. Let’s first create our own type:

(The cache is pre-allocated to have length 8, but only the first two entries are populated.) Consequently, when you

instantiate a parametric type, each concrete type gets saved in a type cache. However, instances containing free type

variables are not cached.

Tuple types

Tuple types constitute an interesting special case. For dispatch to work on declarations like , the type has to be able to

accommodate any tuple. Let’s check the parameters:

Unlike other types, tuple types are covariant in their parameters, so this definition permits tomatch any type of tuple:
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However, if a variadic () tuple type has free variables it can describe different kinds of tuples:

Notice that when is free with respect to the type (i.e. its binding type is outside the type), only one value must work

over the whole type. Therefore a heterogeneous tuple does not match.

Finally, it’s worth noting that is distinct:

What is the ”primary” tuple-type?

so is indeed the primary type.

Diagonal types

Consider the type . Amethodwith this signature would look like:
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According to the usual interpretation of a type, this ranges over all types, including , so this type should be equivalent

to . However, this interpretation causes some practical problems.

First, a value of needs to be available inside themethod definition. For a call like , it’s not clear what should be. It could

be , or perhaps . Intuitively, we expect the declaration to mean . To make sure that invariant holds, we need in this

method. That implies themethod should only be called for arguments of the exact same type.

It turns out that being able to dispatch on whether two values have the same type is very useful (this is used by the

promotion system forexample), sowehavemultiple reasons towant adifferent interpretationof . Tomake thisworkwe

add the following rule to subtyping: if a variable occurs more than once in covariant position, it is restricted to ranging

over only concrete types. (”Covariant position” means that only and types occur between an occurrence of a variable

and the type that introduces it.) Such variables are called ”diagonal variables” or ”concrete variables”.

So for example, can be seen as , where ranges over all concrete types. This gives rise to some interesting subtyping

results. For example is not a subtype of , because it includes some types like where the two elements have different

types. and have the non-trivial intersection . However, is a subtype of , because in that case occurs only once and so is

not diagonal.

Next consider a signature like the following:

In this case, occurs in invariantposition inside . Thatmeanswhatever typeof array is passedunambiguouslydetermines

thevalueof –-wesay hasanequality constrainton it. Therefore in this case thediagonal rule isnot reallynecessary, since

the array determines andwe can then allow and to be of any subtypes of . So variables that occur in invariant position

are never considered diagonal. This choice of behavior is slightly controversial –- some feel this definition should be

written as

to clarify whether and need to have the same type. In this version of the signature they would, or we could introduce

a third variable for the type of if and can have different types.

The next complication is the interaction of unions and diagonal variables, e.g.

Consider what this declaration means. has type . then can have either the same type , or else be of type . So all of the

following calls shouldmatch:

These examples are telling us something: when is , there are no extra constraints on . It is as if the method signature

had . Thismeans thatwhether a variable is diagonal is not a static property based onwhere it appears in a type. Rather,

it depends onwhere a variable appearswhen the subtyping algorithm uses it. When has type , we don’t need to use the

in , so does not ”occur”. Indeed, we have the following type equivalence:
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Subtyping diagonal variables

The subtyping algorithm for diagonal variables has two components: (1) identifying variable occurrences, and (2) en-

suring that diagonal variables range over concrete types only.

The first task is accomplished by keeping counters and (in ) for each variable in the environment, tracking the number

of invariant and covariant occurrences, respectively. A variable is diagonal when .

The second task is accomplished by imposing a condition on a variable’s lower bound. As the subtyping algorithm runs,

it narrows the bounds of each variable (raising lower bounds and lowering upper bounds) to keep track of the range

of variable values for which the subtype relation would hold. When we are done evaluating the body of a type whose

variable isdiagonal,we lookat thefinal valuesof thebounds. Since thevariablemustbeconcrete, a contradictionoccurs

if its lower bound could not be a subtype of a concrete type. For example, an abstract type like cannot be a subtype of

a concrete type, but a concrete type like can be, and the empty type can be as well. If a lower bound fails this test the

algorithm stops with the answer .

For example, in the problem , we derive that this would be true if were a supertype of . However, is an abstract type, so

the relation does not hold.

This concreteness test is done by the function . Note that this test is slightly different from , since it also returns for .

Currently this function is heuristic, and does not catch all possible concrete types. The difficulty is thatwhether a lower

bound is concretemight dependon the values of other type variable bounds. For example, is equivalent to the concrete

type only if both the upper and lower bounds of equal . We have not yet worked out a complete algorithm for this.

Introduction to the internal machinery

Most operations for dealing with types are found in the files and . A good way to start is to watch subtyping in action.

Build Julia with and fire up Julia within a debugger. gdb debugging tips has some tips whichmay be useful.

Because the subtyping code is used heavily in the REPL itself–and hence breakpoints in this code get triggered often–it

will be easiest if youmake the following definition:

and then set a breakpoint in . Once this breakpoint gets triggered, you can set breakpoints in other functions.

As a warm-up, try the following:

We canmake it more interesting by trying amore complex case:

Subtyping andmethod sorting

The functions are used for imposing a partial order on functions in method tables (frommost-to-least specific). Speci-

ficity is strict; if is more specific than , then does not equal and is not more specific than .

If is a strict subtype of , then it is automatically consideredmore specific. From there, employs some less formal rules.

For example, is sensitive to the number of arguments, but may not be. In particular, ismore specific than , even though
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it is not a subtype. (Of and , neither is more specific than the other.) Likewise, is not a subtype of , but it is considered

more specific. However, does get a bonus for length: in particular, is more specific than .

If you’re debugging howmethods get sorted, it can be convenient to define the function:

which allows you to test whether tuple type is more specific than tuple type .

71.4 Memory layout of Julia Objects

Object layout (jl_value_t)

The struct is the name for a block of memory owned by the Julia Garbage Collector, representing the data associated

with a Julia object in memory. Absent any type information, it is simply an opaque pointer:

Each struct is contained in a struct that contains metadata information about the Julia object, such as its type and

garbage collector (gc) reachability:

The type of any Julia object is an instance of a leaf object. The function can be used to query for it:

The layout of the object depends on its type. Reflection methods can be used to inspect that layout. A field can be

accessed by calling one of the get-fieldmethods:

If the field types are known, a priori, to be all pointers, the values can also be extracted directly as an array access:

As an example, a ”boxed” is stored as follows:

This object is created by . Note that the pointer references the data portion, not themetadata at the top of the struct.

A value may be stored ”unboxed” in many circumstances (just the data, without the metadata, and possibly not even

stored but just kept in registers), so it is unsafe to assume that the address of a box is a unique identifier. The ”egal” test

(corresponding to the function in Julia), should instead be used to compare two unknown objects for equivalence:
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This optimization should be relatively transparent to the API, since the object will be ”boxed” on-demand, whenever a

pointer is needed.

Note thatmodification of a pointer inmemory is permitted only if the object ismutable. Otherwise,modification of the

value may corrupt the program and the result will be undefined. The mutability property of a value can be queried for

with:

If the object being stored is a , the Julia garbage collector must be notified also:

However, the Embedding Julia section of the manual is also required reading at this point, for covering other details of

boxing and unboxing various types, and understanding the gc interactions.

Mirror structs for some of the built-in types are defined in . The corresponding global objects are created by in .

Garbage collectormark bits

The garbage collector uses several bits from the metadata portion of the to track each object in the system. Further

details about this algorithm can be found in the comments of the garbage collector implementation in .

Object allocation

Most new objects are allocated by :

Although, objects can be also constructed directly frommemory:

And some objects have special constructors that must be used instead of the above functions:

Types:

While these are the most commonly used options, there are more low-level constructors too, which you can find de-

clared in . These are used in to create the initial types needed to bootstrap the creation of the Julia system image.

Tuples:

The representation of tuples is highly unique in the Julia object representation ecosystem. In some cases, a objectmay

be an array of pointers to the objects contained by the tuple equivalent to:

https://github.com/JuliaLang/julia/blob/master/src/julia.h
https://github.com/JuliaLang/julia/blob/master/src/jltypes.c
https://github.com/JuliaLang/julia/blob/master/src/gc.c
https://github.com/JuliaLang/julia/blob/master/src/julia.h
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However, in other cases, the tuplemay be converted to an anonymous type and stored unboxed, or itmay not stored at

all (if it is not being used in a generic context as a ).

Symbols:

Functions andMethodInstance:

Arrays:

Note that many of these have alternative allocation functions for various special-purposes. The list here reflects the

more common usages, but amore complete list can be found by reading the header file.

Internal to Julia, storage is typically allocated by (or for the special types):

And at the lowest level, memory is getting allocated by a call to the garbage collector (in ), then taggedwith its type:

Note that all objects are allocated in multiples of 4 bytes and aligned to the platform pointer size. Memory is allocated

from a pool for smaller objects, or directly with for large objects.

Singleton Types

Singleton types have only one instance and no data fields. Singleton instances have a size of 0 bytes, and

consist only of their metadata. e.g. .

See Singleton Types andNothingness andmissing values

71.5 Eval of Julia code

Oneof thehardestparts about learninghowtheJulia Language runscode is learninghowall of thepieceswork together

to execute a block of code.

Eachchunkof code typicallymakesa trip throughmanystepswithpotentiallyunfamiliarnames, suchas (innoparticular

order): flisp, AST, C++, LLVM, , , , sysimg (or system image), bootstrapping, compile, parse, execute, JIT, interpret, box,

unbox, intrinsic function, and primitive function, before turning into the desired result (hopefully).

Definitions

• REPL

REPL stands for Read-Eval-Print Loop. It’s just what we call the command line environment for

short.

https://github.com/JuliaLang/julia/blob/master/src/julia.h
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• AST

Abstract Syntax Tree The AST is the digital representation of the code structure. In this form the

code has been tokenized for meaning so that it is more suitable for manipulation and execution.

Julia Execution

The 10,000 foot view of the whole process is as follows:

1. The user starts .

2. The C function from gets called. This function processes the command line arguments, filling in the struct and

setting the variable . It then initializes Julia (by calling in , whichmay load a previously compiled sysimg). Finally,

it passes off control to Julia by calling .

3. When takes over control, the subsequent sequence of commands depends on the command line arguments

given. For example, if a filename was supplied, it will proceed to execute that file. Otherwise, it will start an

interactive REPL.

4. Skipping the details about how the REPL interacts with the user, let’s just say the program ends up with a block

of code that it wants to run.

5. If the block of code to run is in a file, gets invoked to load the file and parse it. Each fragment of code is then

passed to to execute.

6. Each fragment of code (or AST), is handed off to to turn into results.

7. takes each code fragment and tries to run it in .

8. decides whether the code is a ”toplevel” action (such as or ), which would be invalid inside a function. If so, it

passes off the code to the toplevel interpreter.

9. then expands the code to eliminate anymacros and to ”lower” the AST tomake it simpler to execute.

10. then uses some simple heuristics to decide whether to JIT compiler the AST or to interpret it directly.

11. The bulk of the work to interpret code is handled by in .

12. If instead, the code is compiled, the bulk of the work is handled by . Whenever a Julia function is called for the

first timewith a given set of argument types, type inferencewill be run on that function. This information is used

by the codegen step to generate faster code.

13. Eventually, the user quits the REPL, or the end of the program is reached, and the method returns.

14. Just before exiting, calls . This calls (which calls any functions registered to inside Julia). Then it calls . Finally, it

gracefully cleans up all handles andwaits for them to flush and close.

Parsing

The Julia parser is a small lisp program written in femtolisp, the source-code for which is distributed inside Julia in sr-

c/flisp.

The interface functions for this are primarily defined in . The code in handles this handoff on the Julia side.

Theother relevant files at this stage are ,whichhandles tokenizing Julia code and turning it into anAST, and ,whichhan-

dles transforming complex AST representations into simpler, ”lowered” AST representations which are more suitable

for analysis and execution.

https://github.com/JuliaLang/julia/blob/master/src/task.c
https://github.com/JuliaLang/julia/blob/master/base/client.jl
https://github.com/JuliaLang/julia/blob/master/src/toplevel.c
https://github.com/JuliaLang/julia/blob/master/src/toplevel.c
https://github.com/JuliaLang/julia/blob/master/src/interpreter.c
https://github.com/JuliaLang/julia/blob/master/src/init.c
https://github.com/JuliaLang/julia/blob/master/src/gc.c
https://github.com/JuliaLang/julia/tree/master/src/flisp
https://github.com/JuliaLang/julia/tree/master/src/flisp
https://github.com/JuliaLang/julia/blob/master/src/jlfrontend.scm
https://github.com/JuliaLang/julia/blob/master/src/ast.c
https://github.com/JuliaLang/julia/blob/master/src/julia-parser.scm
https://github.com/JuliaLang/julia/blob/master/src/julia-syntax.scm
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Macro Expansion

When encounters a macro, it expands that AST node before attempting to evaluate the expression. Macro expansion

involves a handoff from (in Julia), to the parser function (written in ) to the Julia macro itself (written in - what else -

Julia) via , and back.

Typically, macro expansion is invoked as a first step during a call to /, although it can also be invoked directly by a call to

/.

Type Inference

Type inference is implemented in Juliaby in . Type inference is theprocessofexaminingaJulia functionanddetermining

bounds for the types of each of its variables, as well as bounds on the type of the return value from the function. This

enablesmany future optimizations, such as unboxing of known immutable values, and compile-time hoisting of various

run-time operations such as computing field offsets and function pointers. Type inferencemay also include other steps

such as constant propagation and inlining.

MoreDefinitions

• JIT

Just-In-Time Compilation The process of generating native-machine code into memory right when

it is needed.

• LLVM

Low-Level Virtual Machine (a compiler) The Julia JIT compiler is a program/library called libLLVM.

Codegen in Julia refers both to the process of taking a Julia AST and turning it into LLVM instruc-

tions, and the process of LLVMoptimizing that and turning it into native assembly instructions.

• C++

The programming language that LLVM is implemented in, which means that codegen is also imple-

mented in this language. The rest of Julia’s library is implemented in C, in part because its smaller

feature set makes it more usable as a cross-language interface layer.

• box

This term is used to describe the process of taking a value and allocating awrapper around the data

that is tracked by the garbage collector (gc) and is taggedwith the object’s type.

• unbox

The reverse of boxing a value. This operation enablesmore efficientmanipulation of datawhen the

type of that data is fully known at compile-time (through type inference).

• generic function

A Julia function composed of multiple ”methods” that are selected for dynamic dispatch based on

the argument type-signature

• anonymous function or ”method”

A Julia function without a name andwithout type-dispatch capabilities

• primitive function

A function implemented in C but exposed in Julia as a named function ”method” (albeit without

generic function dispatch capabilities, similar to a anonymous function)

• intrinsic function

A low-level operation exposed as a function in Julia. These pseudo-functions implement operations

on raw bits such as add and sign extend that cannot be expressed directly in any other way. Since

they operate on bits directly, they must be compiled into a function and surrounded by a call to to

reassign type information to the value.

https://github.com/JuliaLang/julia/blob/master/base/inference.jl
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JIT Code Generation

Codegen is the process of turning a Julia AST into nativemachine code.

The JIT environment is initialized by an early call to in .

On demand, a Julia method is converted into a native function by the function . (note, when using theMCJIT (in LLVM

v3.4+), each function must be JIT into a newmodule.) This function recursively calls until the entire function has been

emitted.

Muchof the remainingbulkof thisfile isdevoted tovariousmanualoptimizationsof specificcodepatterns. Forexample,

knows how to inlinemany of the primitive functions (defined in ) for various combinations of argument types.

Other parts of codegen are handled by various helper files:

•

Handles backtraces for JIT functions

•

Handles the ccall and llvmcall FFI, along with various files

•

Handles the emission of various low-level intrinsic functions

Bootstrapping

The process of creating a new system image is called ”bootstrapping”.

Theetymologyof thiswordcomes fromthephrase ”pullingoneself upby thebootstraps”, and refers to the

idea of starting from a very limited set of available functions and definitions and endingwith the creation

of a full-featured environment.

System Image

The system image is a precompiled archive of a set of Julia files. The file distributedwith Julia is one such system image,

generated by executing the file , and serializing the resulting environment (including Types, Functions,Modules, and all

other defined values) into a file. Therefore, it contains a frozen version of the , , and modules (andwhatever else was in

the environment at the end of bootstrapping). This serializer/deserializer is implemented by / in .

If there is no sysimg file (), this also implies that was given on the command line, so the final result should be a new

sysimg file. During Julia initialization, minimal and modules are created. Then a file named is evaluated from the

current directory. Julia then evaluates any file given as a command line argument until it reaches the end. Finally, it

saves the resulting environment to a ”sysimg” file for use as a starting point for a future Julia run.

71.6 Calling Conventions

Julia uses three calling conventions for four distinct purposes:

Name Prefix Purpose

Native Speed via specialized signatures

JL Call Wrapper for generic calls

JL Call Builtins

C ABI Wrapper callable fromC

https://github.com/JuliaLang/julia/blob/master/src/codegen.cpp
https://github.com/JuliaLang/julia/blob/master/src/builtins.c
https://github.com/JuliaLang/julia/blob/master/src/debuginfo.cpp
https://github.com/JuliaLang/julia/blob/master/src/ccall.cpp
https://github.com/JuliaLang/julia/blob/master/src/intrinsics.cpp
https://github.com/JuliaLang/julia/blob/master/base/sysimg.jl
https://github.com/JuliaLang/julia/blob/master/src/staticdata.c
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Julia Native Calling Convention

The native calling convention is designed for fast non-generic calls. It usually uses a specialized signature.

• LLVM ghosts (zero-length types) are omitted.

• LLVM scalars and vectors are passed by value.

• LLVM aggregates (arrays and structs) are passed by reference.

A small return values is returned as LLVM return values. A large return values is returned via the ”structure return” ()

convention, where the caller provides a pointer to a return slot.

An argument or return values thta is a homogeneous tuple is sometimes represented as an LLVM vector instead of an

LLVM array.

JL Call Convention

The JL Call convention is for builtins and generic dispatch. Hand-written functions using this convention are declared

via themacro . The convention uses exactly 3 parameters:

• - Julia representation of function that is being applied

• - pointer to array of pointers to boxes

• - length of the array

The return value is a pointer to a box.

CABI

CABI wrappers enable calling Julia fromC. Thewrapper calls a function using the native calling convention.

Tuples are always represented as C arrays.

71.7 High-level Overview of the Native-Code Generation Process

Representation of Pointers

When emitting code to an object file, pointers will be emitted as relocations. The deserialization code will ensure any

object that pointed to one of these constants gets recreated and contains the right runtime pointer.

Otherwise, they will be emitted as literal constants.

To emit one of these objects, call . It’ll handle tracking the Julia value and the LLVM global, ensuring they are valid both

for the current runtime and after deserialization.

When emitted into the object file, these globals are stored as references in a large table. This allows the deserializer to

reference them by index, and implement a custommanual mechanism similar to a Global Offset Table (GOT) to restore

them.

Function pointers are handled similarly. They are stored as values in a large table. Like globals, this allows the deserial-

izer to reference them by index.

Note that functions are handled separately, with names, via the usual symbol resolutionmechanism in the linker.

Note too that functions are also handled separately, via a manual GOT and Procedure Linkage Table (PLT).
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Representation of Intermediate Values

Values are passed around in a struct. This represents an R-value, and includes enough information to determine how

to assign or pass it somewhere.

They are created via one of the helper constructors, usually: (for immediate values) and (for pointers to values).

The function can transform between any two types. It returns an R-value with set to . It’ll cast the object to the re-

quested representation, making heap boxes, allocating stack copies, and computing tagged unions as needed to change

the representation.

By contrast will change to , only if it can be done at zero-cost (i.e. without emitting any code).

Union representation

Inferred union typesmay be stack allocated via a tagged type representation.

The primitive routines that need to be able to handle tagged unions are:

• mark-type

• load-local

• store-local

• isa

• is

• emit_typeof

• emit_sizeof

• boxed

• unbox

• specialized cc-ret

Everything else should be possible to handle in inference by using these primitives to implement union-splitting.

The representationof the tagged-union is as apair of . The selector is fixed-size as , andwill union-tag thefirst126 isbits.

It records theone-baseddepth-first count into the type-unionof the isbits objects inside. An indexof zero indicates that

the is actually a tagged heap-allocated , and needs to be treated as normal for a boxed object rather than as a tagged

union.

The high bit of the selector () can be tested to determine if the is actually a heap-allocated () box, thus avoiding the cost

of re-allocating a box, while maintaining the ability to efficiently handle union-splitting based on the low bits.

It is guaranteed that is an exact test for the type, if the value can be represented by a tag – it will never bemarked . It is

not necessary to also test the type-tag when testing .

The memory regionmaybeallocatedatany size. Theonly constraint is that it is big enough to contain thedata currently

specified by . It might not be big enough to contain the union of all types that could be stored there according to the

associated Union type field. Use appropriate care when copying.
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Specialized Calling Convention Signature Representation

A object describes the calling convention details of any callable.

If any of the arguments or return type of a method can be represented unboxed, and the method is not varargs, it’ll be

given an optimized calling convention signature based on its and fields.

The general principles are that:

• Primitive types get passed in int/float registers.

• Tuples of VecElement types get passed in vector registers.

• Structs get passed on the stack.

• Return values are handle similarly to arguments, with a size-cutoff at which they will instead be returned via a

hidden sret argument.

The total logic for this is implemented by and .

Additionally, if the return type is a union, it may be returned as a pair of values (a pointer and a tag). If the union values

can be stack-allocated, then sufficient space to store themwill also be passed as a hidden first argument. It is up to the

callee whether the returned pointer will point to this space, a boxed object, or even other constant memory.

71.8 Julia Functions

This document will explain how functions, method definitions, andmethod tables work.

Method Tables

Every function in Julia is a generic function. A generic function is conceptually a single function, but consists of many

definitions, or methods. The methods of a generic function are stored in a method table. Method tables (type ) are

associated with s. A describes a family of parameterized types. For example and share the same type name object.

All objects in Julia are potentially callable, because every object has a type, which in turn has a .

Function calls

Given the call , the following steps are performed: first, the method table to use is accessed as . Second, an argument

tuple type is formed, . Note that the type of the function itself is the first element. This is because the type might have

parameters, and so needs to take part in dispatch. This tuple type is looked up in themethod table.

This dispatch process is performed by , which takes two arguments: a pointer to an array of the values f, x, and y, and

the number of values (in this case 3).

Throughout the system, there are two kinds of APIs that handle functions and argument lists: those that accept the

function and arguments separately, and those that accept a single argument structure. In the first kind of API, the ”ar-

guments” part does not contain information about the function, since that is passed separately. In the second kind of

API, the function is the first element of the argument structure.

For example, the following function for performing a call accepts just an pointer, so the first element of the args array

will be the function to call:

This entry point for the same functionality accepts the function separately, so the array does not contain the function:
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Addingmethods

Given the above dispatch process, conceptually all that is needed to add a newmethod is (1) a tuple type, and (2) code

for the body of themethod. implements this operation. is called to extract the relevantmethod table fromwhatwould

be the type of the first argument. This is much more complicated than the corresponding procedure during dispatch,

since the argument tuple typemight be abstract. For example, we can define:

which works since all possible matchingmethods would belong to the samemethod table.

Creating generic functions

Since every object is callable, nothing special is needed to create a generic function. Therefore simply creates a new

singleton (0 size) subtype of and returns its instance. A function can have a mnemonic ”display name” which is used in

debug info and when printing objects. For example the name of is . By convention, the name of the created type is the

same as the function name, with a prepended. So is .

Closures

A closure is simply a callable object with field names corresponding to captured variables. For example, the following

code:

is lowered to (roughly):

Constructors

A constructor call is just a call to a type. The type of most types is , so the method table for contains most constructor

definitions. Onewrinkle is the fallback definition that makes all types callable via :

In this definition the function type is abstract, which is not normally supported. To make this work, all subtypes of (, , ,

and ) currently share amethod table via special arrangement.
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Builtins

The ”builtin” functions, defined in the module, are:

These are all singleton objects whose types are subtypes of , which is a subtype of . Their purpose is to expose entry

points in the run time that use the ”jlcall” calling convention:

The method tables of builtins are empty. Instead, they have a single catch-all method cache entry () whose jlcall fptr

points to the correct function. This is kind of a hack but works reasonably well.

Keyword arguments

Keyword arguments work by associating a special, hidden function object with each method table that has definitions

with keyword arguments. This function is called the ”keyword argument sorter” or ”keyword sorter”, or ”kwsorter”, and

is stored in the field of objects. Every definition in the kwsorter function has the same arguments as some definition

in the normal method table, except with a single argument prepended. This array contains alternating symbols and

values that represent the passed keyword arguments. The kwsorter’s job is to move keyword arguments into their

canonical positions based on name, plus evaluate and substite any needed default value expressions. The result is a

normal positional argument list, which is then passed to yet another function.

The easiest way to understand the process is to look at how a keyword argument method definition is lowered. The

code:

actually produces three method definitions. The first is a function that accepts all arguments (including keywords) as

positional arguments, and includes the code for themethod body. It has an auto-generated name:

The secondmethod is an ordinary definition for the original function, which handles the case where no keyword argu-

ments are passed:

This simply dispatches to the first method, passing along default values. Finally there is the kwsorter definition:
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The front end generates code to loop over the array and pick out arguments in the right order, evaluating default ex-

pressions when an argument is not found.

The function fetches (and creates, if necessary) the field .

This design has the feature that call sites that don’t use keyword arguments require no special handling; everything

works as if they were not part of the language at all. Call sites that do use keyword arguments are dispatched directly

to the called function’s kwsorter. For example the call:

is lowered to:

The unpacking procedure represented here as actually further unpacks each element of , expecting each one to contain

twovalues (a symbolandavalue). (also in ) fetches thekwsorter for thecalled function. Notice that theoriginal function

is passed through, to handle closures.

Compiler efficiency issues

Generating a new type for every function has potentially serious consequences for compiler resource use when com-

bined with Julia’s ”specialize on all arguments by default” design. Indeed, the initial implementation of this design suf-

fered frommuch longer build and test times, highermemory use, and a system image nearly 2x larger than the baseline.

In a naive implementation, the problem is badenough tomake the systemnearly unusable. Several significant optimiza-

tions were needed tomake the design practical.

The first issue is excessive specialization of functions for different values of function-valued arguments. Many func-

tions simply ”pass through” an argument to somewhere else, e.g. to another function or to a storage location. Such

functions do not need to be specialized for every closure thatmight be passed in. Fortunately this case is easy to distin-

guish by simply considering whether a function calls one of its arguments (i.e. the argument appears in ”head position”

somewhere). Performance-critical higher-order functions like certainly call their argument function and sowill still be

specialized as expected. This optimization is implemented by recording which arguments are called during the pass

in the front end. When sees an argument in the type hierarchy passed to a slot declared as or , it behaves as if the

annotation were applied. This heuristic seems to be extremely effective in practice.

The next issue concerns the structure of method cache hash tables. Empirical studies show that the vast majority of

dynamically-dispatched calls involve one or two arguments. In turn, many of these cases can be resolved by consid-

ering only the first argument. (Aside: proponents of single dispatch would not be surprised by this at all. However,

this argument means ”multiple dispatch is easy to optimize in practice”, and that we should therefore use it, not ”we

should use single dispatch”!) So themethod cache uses the type of the first argument as its primary key. Note, however,

that this corresponds to the second element of the tuple type for a function call (the first element being the type of the

function itself). Typically, type variation in head position is extremely low – indeed, the majority of functions belong to

singleton types with no parameters. However, this is not the case for constructors, where a single method table holds

constructors for every type. Therefore the method table is special-cased to use the first tuple type element instead of

the second.

The front end generates type declarations for all closures. Initially, this was implemented by generating normal type

declarations. However, this produced an extremely large number of constructors, all of whichwere trivial (simply pass-

ing all arguments through to ). Sincemethods are partially ordered, inserting all of thesemethods is O(n^2), plus there

are just too many of them to keep around. This was optimized by generating expressions directly (bypassing default

constructor generation), and using directly to create closure instances. Not the prettiest thing ever, but you do what

you gotta do.
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Thenext problemwas the macro, which generated a 0-argument closure for each test case. This is not really necessary,

since each test case is simply run once in place. Therefore I modified to expand to a try-catch block that records the

test result (true, false, or exception raised) and calls the test suite handler on it.

71.9 Base.Cartesian

The (non-exported) Cartesian module provides macros that facilitate writing multidimensional algorithms. It is hoped

that Cartesian will not, in the long term, be necessary; however, at present it is one of the few ways to write compact

and performantmultidimensional code.

Principles of usage

A simple example of usage is:

which generates the following code:

In general, Cartesian allows you to write generic code that contains repetitive elements, like the nested loops in this

example. Other applications include repeated expressions (e.g., loop unwinding) or creating function callswith variable

numbers of arguments without using the ”splat” construct ().

Basic syntax

The (basic) syntax of is as follows:

• The first argumentmust be an integer (not a variable) specifying the number of loops.

• The second argument is the symbol-prefix used for the iterator variable. Here we used , and variables were

generated.

• The third argument specifies the range for each iterator variable. If you use a variable (symbol) here, it’s taken

as . More flexibly, you can use the anonymous-function expression syntax described below.

• The last argument is the body of the loop. Here, that’s what appears between the .

There are some additional features of described in the reference section.

follows a similar pattern, generating from . The general practice is to read from left to right, which is why is (as in ,

where is to the left and the range is to the right) whereas is (as in , where the array comes first).

If you’re developing codewith Cartesian, youmay find that debugging is easier when you examine the generated code,

using :
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Supplying the number of expressions

Thefirst argument tobothof thesemacros is thenumberof expressions,whichmust bean integer. Whenyou’rewriting

a function that you intend to work in multiple dimensions, this may not be something you want to hard-code. If you’re

writing code that you need to workwith older Julia versions, currently you should use the macro described in an older

version of this documentation.

Starting in Julia 0.4-pre, the recommended approach is to use a . Here’s an example:

Naturally, you can also prepare expressions or perform calculations before the block.

Anonymous-function expressions asmacro arguments

Perhaps the singlemost powerful feature in is the ability to supply anonymous-function expressions that get evaluated

at parsing time. Let’s consider a simple example:

generates expressions that follow a pattern. This codewould generate the following statements:

Ineachgeneratedstatement, an ”isolated” (thevariableof theanonymous function) gets replacedbyvalues in the range

. Generally speaking,CartesianemploysaLaTeX-like syntax. This allowsyou todomathon the index . Here’s anexample

computing the strides of an array:

would generate expressions

Anonymous-function expressions havemany uses in practice.

https://docs.julialang.org/en/release-0.3/devdocs/cartesian/#supplying-the-number-of-expressions
https://docs.julialang.org/en/release-0.3/devdocs/cartesian/#supplying-the-number-of-expressions
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Macro reference –Macro.

Generate nested loops, using as the prefix for the iteration variables. may be an anonymous-function expression,

or a simple symbol in which case the range is for dimension .

Optionally, you canprovide ”pre” and ”post” expressions. These get executedfirst and last, respectively, in thebody

of each loop. For example:

would generate:

If youwant just a post-expression, supply for the pre-expression. Using parentheses and semicolons, you can sup-

ply multi-statement expressions.

–Macro.

Generate expressions like . can either be an iteration-symbol prefix, or an anonymous-function expression.

Examples

–Macro.

Generate variables , , ..., to extract values from . can be either a or anonymous-function expression.

would generate

while yields

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/cartesian.jl#L9-L37
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/cartesian.jl#L72-L83
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–Macro.

Generate expressions. should be an anonymous-function expression.

Examples

–Macro.

Generate a function call expression. represents any number of function arguments, the last of which may be an

anonymous-function expression and is expanded into arguments.

For example generates

while yields

–Macro.

Generates an -tuple. would generate , and would generate .

–Macro.

Check whether all of the expressions generated by the anonymous-function expression evaluate to .

would generate the expression . This can be convenient for bounds-checking.

–Macro.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/cartesian.jl#L144-L161
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/cartesian.jl#L119-L134
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/cartesian.jl#L93-L107
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/cartesian.jl#L217-L222
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/cartesian.jl#L176-L184


71.10. TALKING TO THE COMPILER (THE MECHANISM) 937

Check whether any of the expressions generated by the anonymous-function expression evaluate to .

would generate the expression .

–Macro.

Generates a sequence of statements. For example:

would generate:

71.10 Talking to the compiler (the mechanism)

In some circumstances, onemightwish to provide hints or instructions that a givenblock of codehas special properties:

you might always want to inline it, or you might want to turn on special compiler optimization passes. Starting with

version 0.4, Julia has a convention that these instructions can be placed inside a expression, which is typically (but not

necessarily) the first expression in the body of a function.

expressions are created withmacros. As an example, consider the implementation of the macro:

Here, is expected to be an expression defining a function. A statement like this:

gets turned into an expression like this:

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/cartesian.jl#L197-L204
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/cartesian.jl#L232-L249


938 CHAPTER 71. DOCUMENTATIONOF JULIA’S INTERNALS

appends to the end of the expression, creating a new expression if necessary. If is specified, a nested expression

containing and these arguments is appended instead, which can be used to specify additional information.

To use the metadata, you have to parse these expressions. If your implementation can be performed within Julia, is

veryhandy: will scana functionbody expression (onewithout the function signature) for thefirst expressioncontaining

, extract any arguments, and return a tuple . If the metadata did not have any arguments, or was not found, the array

will be empty.

Not yet provided is a convenient infrastructure for parsing expressions fromC++.

71.11 SubArrays

Julia’s type is a container encoding a ”view” of a parent . This page documents some of the design principles and imple-

mentation of s.

Indexing: cartesian vs. linear indexing

Broadly speaking, there are two main ways to access data in an array. The first, often called cartesian indexing, uses

indexes for an -dimensional . For example, a matrix (2-dimensional) can be indexed in cartesian style as . The second

indexingmethod, referred to as linear indexing, uses a single index even for higher-dimensional objects. For example, if

, then the expression returns the value 5. Julia allows you to combine these styles of indexing: for example, a 3d array

can be indexed as , in which case is interpreted as a cartesian index for the first dimension, and is a linear index over

dimensions 2 and 3.

For s, linear indexing appeals to the underlying storage format: an array is laid out as a contiguous block ofmemory, and

hence the linear index is just the offset (+1) of the corresponding entry relative to the beginning of the array. However,

this is not true formany other types: examples include , arrays that require some kind of computation (such as interpo-

lation), and the type under discussion here, . For these types, the underlying information is more naturally described in

terms of cartesian indexes.

You canmanually convert from a cartesian index to a linear index with , and vice versa using . and functions for types

may include similar operations.

While converting from a cartesian index to a linear index is fast (it’s just multiplication and addition), converting from a

linear index to a cartesian index is very slow: it relies on the operation, which is one of the slowest low-level operations

youcanperformwithaCPU.For this reason, anycode thatdealswith types is bestdesigned in termsof cartesian, rather

than linear, indexing.

Index replacement

Consider making 2d slices of a 3d array:

drops ”singleton” dimensions (ones that are specified by an ), so both and are two-dimensional s. Consequently, the

natural way to index these is with . To extract the value from the parent array , the natural approach is to replace with

and with .

The key feature of the design of SubArrays is that this index replacement can be performedwithout any runtime over-

head.
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SubArray design

Type parameters and fields

The strategy adopted is first and foremost expressed in the definition of the type:

has 5 type parameters. The first two are the standard element type and dimensionality. The next is the type of the

parent . Themost heavily-used is the fourth parameter, a of the types of the indices for each dimension. The final one, ,

is only providedas a convenience for dispatch; it’s a boolean that representswhether the index types support fast linear

indexing. More on that later.

If in our example above is a , our case abovewould be a . Note in particular the tuple parameter, which stores the types

of the indices used to create . Likewise,

Storing these values allows index replacement, and having the types encoded as parameters allows one to dispatch to

efficient algorithms.

Index translation

Performing index translation requires that you do different things for different concrete types. For example, for , one

needs to apply the indices to the first and third dimensions of the parent array, whereas for one needs to apply them

to the second and third. The simplest approach to indexing would be to do the type-analysis at runtime:

Unfortunately, this would be disastrous in terms of performance: each element access would allocate memory, and

involves the running of a lot of poorly-typed code.
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The better approach is to dispatch to specific methods to handle each type of stored index. That’s what does: it dis-

patches on the typeof thefirst stored index and consumes the appropriate numberof input indices, and then it recurses

on the remaining indices. In the case of , this expands to

for any pair of indices (except s and arrays thereof, see below).

This is the core of a ; indexingmethods depend upon to do this index translation. Sometimes, though, we can avoid the

indirection andmake it even faster.

Linear indexing

Linear indexing can be implemented efficiently when the entire array has a single stride that separates successive el-

ements, starting from some offset. This means that we can pre-compute these values and represent linear indexing

simply as an addition and multiplication, avoiding the indirection of and (more importantly) the slow computation of

the cartesian coordinates entirely.

For types, the availability of efficient linear indexing is based purely on the types of the indices, and does not depend

on values like the size of the parent array. You can ask whether a given set of indices supports fast linear indexing with

the internal function:

This is computed during construction of the and stored in the type parameter as a boolean that encodes fast linear

indexing support. While not strictly necessary, it means thatwe can define dispatch directly on without any intermedi-

aries.

Since this computation doesn’t depend on runtime values, it can miss some cases in which the stride happens to be

uniform:

A view constructed as happens to have uniform stride, and therefore linear indexing indeed could be performed effi-

ciently. However, success in this case depends on the size of the array: if the first dimension insteadwere odd,
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then does not haveuniform stride, sowe cannot guarantee efficient linear indexing. Sincewehave to base this decision

based purely on types encoded in the parameters of the , cannot implement efficient linear indexing.

A few details

• Note that the function is agnostic to the types of the input indices; it simply determines how and where the

stored indices should be reindexed. It not only supports integer indices, but it supports non-scalar indexing, too.

This means that views of views don’t need two levels of indirection; they can simply re-compute the indices into

the original parent array!

• Hopefully by now it’s fairly clear that supporting slices means that the dimensionality, given by the parameter

, is not necessarily equal to the dimensionality of the parent array or the length of the tuple. Neither do user-

supplied indices necessarily line up with entries in the tuple (e.g., the second user-supplied index might corre-

spond to the third dimension of the parent array, and the third element in the tuple).

Whatmight be less obvious is that the dimensionality of the stored parent arraymust be equal to the number of

effective indices in the tuple. Some examples:

Naively, you’d think you could just set and , but supporting this dramatically complicates the reindexing process,

especially for views of views. Not only do you need to dispatch on the types of the stored indices, but you need

to examine whether a given index is the final one and ”merge” any remaining stored indices together. This is not

an easy task, and evenworse: it’s slow since it implicitly depends upon linear indexing.

Fortunately, this is precisely the computation that performs, and it does so linearly if possible. Consequently,

ensures that the parent array is the appropriate dimensionality for the given indices by reshaping it if needed.

The inner constructor ensures that this invariant is satisfied.

• and arrays thereof throw a nasty wrench into the scheme. Recall that simply dispatches on the type of the

stored indices inorder todeterminehowmanypassed indices shouldbeusedandwhere they shouldgo. Butwith

, there’s no longer a one-to-one correspondence between the number of passed arguments and the number of

dimensions that they index into. Ifwe return to the aboveexample of , you can see that the expansion is incorrect

for . It should skip the entirely and return:

Instead, though, we get:
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Doing this correctly would require combined dispatch on both the stored and passed indices across all combina-

tions of dimensionalities in an intractable manner. As such, must never be called with indices. Fortunately, the

scalar case is easily handled by first flattening the arguments to plain integers. Arrays of , however, cannot be

split apart into orthogonal pieces so easily. Before attempting to use , must ensure that there are no arrays of

in the argument list. If there are, it can simply ”punt” by avoiding the calculation entirely, constructing a nested

with two levels of indirection instead.

71.12 System Image Building

Building the Julia system image

Julia ships with a preparsed system image containing the contents of the module, named . This file is also precompiled

into a shared library called on as many platforms as possible, so as to give vastly improved startup times. On systems

that do not ship with a precompiled system image file, one can be generated from the source files shipped in Julia’s

folder.

This operation is useful for multiple reasons. A user may:

• Build a precompiled shared library system image on a platform that did not ship with one, thereby improving

startup times.

• Modify , rebuild the system image and use the new next time Julia is started.

• Include a file that includes packages into the system image, thereby creating a system image that has packages

embedded into the startup environment.

Julia now ships with a script that automates the tasks of building the system image, wittingly named that lives in . That

is, to include it into a current Julia session, type:

This will include a function:

– Function.

Rebuild the system image. Store it in , which defaults to a file named that sits in the same folder as , except on

Windows where it defaults to . Use the cpu instruction set given by . Valid CPU targets are the same as for the

option to , or the option to . Defaults to ,whichmeans touseallCPU instructionsavailableon thecurrentprocessor.

Include the user image file given by , which should contain directives such as to include that package in the new

system image. New system imagewill not replace an older image unless is set to true.

Note that this file can also be run as a script itself, with command line arguments taking the place of arguments passed

to the function. For example, to build a system image in , with the CPU instruction set, a user image of and set to , one

would execute:

71.13 Workingwith LLVM

This is not a replacement for the LLVMdocumentation, but a collection of tips for working on LLVM for Julia.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/doc/../contrib/build_sysimg.jl#L15-L26
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Overview of Julia to LLVM Interface

Julia statically links in LLVMby default. Build with to link dynamically.

The code for lowering Julia AST to LLVM IR or interpreting it directly is in directory .

File Description

Builtin functions

Lowering

Lowering utilities, notably for array and tuple accesses

Top-level of code generation, pass list, lowering builtins

Tracks debug information for JIT code

Handles native object file and JIT code diassembly

Generic functions

Lowering intrinsics

Custom LLVMpass for

I/O and operating system utility functions

Some of the files form a group that compile to a single object.

The difference between an intrinsic and a builtin is that a builtin is a first class function that can be used like any other

Julia function. An intrinsic can operate only on unboxed data, and therefore its arguments must be statically typed.

Alias Analysis

Julia currently uses LLVM’s TypeBasedAlias Analysis. To find the comments that document the inclusion relationships,

look for in .

The option enables LLVM’s Basic Alias Analysis.

Building Julia with a different version of LLVM

The default version of LLVM is specified in . You can override it by creating a file called in the top-level directory and

adding a line to it such as:

Besides the LLVM release numerals, you can also use to bulid against the latest development version of LLVM.

Passing options to LLVM

You can pass options to LLVMusing debug builds of Julia. To create a debug build, run . The resulting executable is . You

can pass LLVMoptions to this executable via the environment variable . Here are example settings using syntax:

• dumps IR after each pass.

• dumps LLVM diagnostics for loop vectorizer if you built Julia with . Otherwise you will get warnings about

”Unknown command line argument”. Counter-intuitively, building Julia with is not enough to dump diagnostics

from a pass.

Debugging LLVM transformations in isolation

On occasion, it can be useful to debug LLVM’s transformations in isolation from the rest of the Julia system, e.g. be-

cause reproducing the issue inside would take too long, or because onewants to take advantage of LLVM’s tooling (e.g.

bugpoint). To get unoptimized IR for the entire system image, pass the option to the system image build process, which

http://llvm.org/docs/LangRef.html#tbaa-metadata
http://llvm.org/docs/AliasAnalysis.html#the-basicaa-pass
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will output the unoptimized IR to an file. This file can then be passed to LLVM tools as usual. can function as an LLVM

pass plugin and can be loaded into LLVM tools, to make julia-specific passes available in this environment. In addition,

it exposes the meta-pass, which runs the entire Julia pass-pipeline over the IR. As an example, to generate a system

image, one could do:

This system image can then be loaded by as usual.

Alternatively, you can use to obtain a trace of all IR passed to the JIT. This is useful for code that cannot be run as part

of the sysimg generation process (e.g. because it creates unserializable state). However, the resulting does not include

sysimage data, and can thus not be used as such.

It is also possible to dump an LLVM IRmodule for just one Julia function, using:

These files can be processed the sameway as the unoptimized sysimg IR shown above.

Improving LLVMoptimizations for Julia

Improving LLVM code generation usually involves either changing Julia lowering to bemore friendly to LLVM’s passes,

or improving a pass.

If you are planning to improve a pass, be sure to read the LLVM developer policy. The best strategy is to create a code

example in a formwhere you can use LLVM’s tool to study it and the pass of interest in isolation.

1. Create an example Julia code of interest.

2. Use to dump the IR.

3. Pick out the IR at the point just before the pass of interest runs.

4. Strip the debugmetadata and fix up the TBAAmetadata by hand.

The last step is labor intensive. Suggestions on a better waywould be appreciated.

The jlcall calling convention

Julia has a generic calling convention for unoptimized code, which looks somewhat as follows:

where the first argument is the boxed function object, the second argument is an on-stack array of arguments and the

third is the number of arguments. Now, we could perform a straightforward lowering and emit an alloca for the argu-

ment array. However, this would betray the SSA nature of the uses at the call site, making optimizations (including GC

root placement), significantly harder. Instead, we emit it as follows:

http://llvm.org/docs/DeveloperPolicy.html
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Thespecial annotationmarks the fact that this call site is reallyusing the jlcall callingconvention. This allowsus to retain

the SSA-ness of the uses throughout the optimizer. GC root placement will later lower this call to the original C ABI. In

the code the calling convention number is represented by the constant. In addition, there is the calling convention

which functions similarly, but omits the first argument.

GC root placement

GC root placement is done by an LLVM pass late in the pass pipeline. Doing GC root placement this late enables LLVM

tomakemoreaggressiveoptimizations around code that requiresGCroots, aswell as allowingus to reduce thenumber

of requiredGC roots andGC root store operations (since LLVMdoesn’t understandourGC, itwouldn’t otherwise know

what it is and isnot allowed todowithvalues stored to theGCframe, so it’ll conservativelydovery little). Asanexample,

consider an error path

Duringconstant folding, LLVMmaydiscover that thecondition isalways false, andcanremovethebasicblock. However,

if GC root lowering is done early, the GC root slots used in the deleted block, as well as any values kept alive in those

slots only because they were used in the error path, would be kept alive by LLVM. By doing GC root lowering late, we

give LLVM the license to do any of its usual optimizations (constant folding, dead code elimination, etc.), without having

to worry (toomuch) about which values may ormay not be GC tracked.

However, inorder tobeable todo lateGCrootplacement,weneed tobeable to identify a)whichpointersaregc tracked

and b) all uses of such pointers. The goal of the GC placement pass is thus simple:

Minimize the number of neededGC roots/stores to them subject to the constraint that at every safepoint, any live GC-

tracked pointer (i.e. for which there is a path after this point that contains a use of this pointer) is in someGC slot.

Representation

Theprimarydifficulty is thuschoosingan IRrepresentation thatallowsus to identifyGC-trackedpointersandtheiruses,

even after the program has been run through the optimizer. Our design makes use of three LLVM features to achieve

this:

• Custom address spaces

• Operand Bundles

• Non-integral pointers

Custom address spaces allow us to tag every point with an integer that needs to be preserved through optimizations.

The compiler may not insert casts between address spaces that did not exist in the original program and it must never

change the address space of a pointer on a load/store/etc operation. This allows us to annotate which pointers are GC-

tracked in an optimizer-resistant way. Note that metadata would not be able to achieve the same purpose. Metadata

is supposed to always be discardable without altering the semantics of the program. However, failing to identify a GC-

tracked pointer alters the resulting program behavior dramatically - it’ll probably crash or return wrong results. We

currently use three different address spaces (their numbers are defined in ):

• GC Tracked Pointers (currently 10): These are pointers to boxed values that may be put into a GC frame. It is

loosely equivalent to a pointer on theC side. N.B. It is illegal to ever have a pointer in this address space thatmay

not be stored to a GC slot.
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• Derived Pointers (currently 11): These are pointers that are derived from some GC tracked pointer. Uses of

these pointers generate uses of the original pointer. However, they need not themselves be known to the GC.

The GC root placement pass MUST always find the GC tracked pointer from which this pointer is derived and

use that as the pointer to root.

• CalleeRootedPointers (currently12): This is autilityaddress space toexpress thenotionofacallee rootedvalue.

All values of this address spaceMUST be storable to aGC root (though it is possible to relax this condition in the

future), but unlike the other pointers need not be rooted if passed to a call (they do still need to be rooted if they

are live across another safepoint between the definition and the call).

Invariants

The GC root placement pass makes use of several invariants, which need to be observed by the frontend and are pre-

served by the optimizer.

First, only the following address space casts are allowed:

• 0->{Tracked,Derived,CalleeRooted}: It is allowable to decay an untracked pointer to any of the others. However,

do note that the optimizer has broad license to not root such a value. It is never safe to have a value in address

space 0 in any part of the program if it is (or is derived from) a value that requires a GC root.

• Tracked->Derived: This is the standard decay route for interior values. The placement passwill look for these to

identify the base pointer for any use.

• Tracked->CalleeRooted: Addrspace CalleeRooted serves merely as a hint that a GC root is not required. How-

ever, do note that theDerived->CalleeRooted decay is prohibited, since pointers should generally be storable to

a GC slot, even in this address space.

Now let us consider what constitutes a use:

• Loads whose loaded values is in one of the address spaces

• Stores of a value in one of the address spaces to a location

• Stores to a pointer in one of the address spaces

• Calls for which a value in one of the address spaces is an operand

• Calls in jlcall ABI, for which the argument array contains a value

• Return instructions.

We explicitly allow load/stores and simple calls in address spaces Tracked/Derived. Elements of jlcall argument arrays

must always be in address space Tracked (it is required by the ABI that they are valid pointers). The same is true for

return instructions (though note that struct return arguments are allowed to have any of the address spaces). The only

allowable use of an address space CalleeRooted pointer is to pass it to a call (which must have an appropriately typed

operand).

Further, we disallow in addrspace Tracked. This is because unless the operation is a noop, the resulting pointer will

not be validly storable to a GC slot and may thus not be in this address space. If such a pointer is required, it should be

decayed to addrspace Derived first.

Lastly, we disallow / instructions in these address spaces. Having these instructions would mean that some values are

reallyGCtracked. This is problematic, because it breaks that stated requirement thatwe’reable to identifyGC-relevant

pointers. This invariant is accomplished using the LLVM ”non-integral pointers” feature, which is new in LLVM 5.0. It

prohibits theoptimizer frommakingoptimizations thatwould introduce theseoperations. Notewecanstill insert static

constants at JIT time by using in address space 0 and then decaying to the appropriate address space afterwards.
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Supporting ccall

One important aspect missing from the discussion so far is the handling of . has the peculiar feature that the location

and scope of a use do not coincide. As an example consider:

In lowering, the compiler will insert a conversion from the array to the pointer which drops the reference to the array

value. However, we of course need to make sure that the array does stay alive while we’re doing the . To understand

how this is done, first recall the lowering of the above code:

The last , is an extra argument list inserted during lowering that informs the code generator which Julia level values

need to be kept alive for the duration of this . We then take this information and represent it in an ”operand bundle” at

the IR level. An operand bundle is essentially a fake use that is attached to the call site. At the IR level, this looks like so:

TheGC root placement passwill treat the operand bundle as if it were a regular operand. However, as a final step, after

the GC roots are inserted, it will drop the operand bundle to avoid confusing instruction selection.

Supporting pointer_from_objref

is special because it requires the user to take explicit control of GC rooting. By our above invariants, this function is

illegal, because it performs an address space cast from 10 to 0. However, it can be useful, in certain situations, so we

provide a special intrinsic:

which is lowered to the corresponding address space cast after GC root lowering. Do note however that by using this

intrinsic, the caller assumesall responsibility formaking sure that thevalue inquestion is rooted. Further this intrinsic is

not considered a use, so theGC root placement passwill not provide aGC root for the function. As a result, the external

rooting must be arranged while the value is still tracked by the system. I.e. it is not valid to attempt to use the result of

this operation to establish a global root - the optimizer may have already dropped the value.

71.14 printf() and stdio in the Julia runtime

Libuvwrappers for stdio

defines libuv wrappers for the streams:

... and corresponding output functions:

These functions are used by the files in the and directories wherever stdio is needed to ensure that output buffering

is handled in a unifiedway.

In special cases, like signal handlers, where the full libuv infrastructure is too heavy, can be used to directly to :

http://docs.libuv.org
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Interface between JL_STD* and Julia code

, and are bound to the libuv streams defined in the runtime.

Julia’s function (in ) calls (in ) to create Julia objects for , and .

uses to retrieve pointers to and calls to inspect the type of each stream. It then creates a Julia , or object to represent

each stream, e.g.:

The and methods for these streams use to call libuv wrappers in , e.g.:

printf() during initialization

The libuv streams relied upon by etc., are not available until midway through initialization of the runtime (see , ). Error

messages orwarnings that need to be printed before this are routed to the standardC library function by the following

mechanism:

In , the stream pointers are statically initialized to integer constants: . In the function checks its argument and calls if

stream is set to or .

This allows for uniform use of throughout the runtime regardless of whether or not any particular piece of code is

reachable before initialization is complete.

Legacy library

The library is inherited from femtolisp. It provides cross-platform buffered file IO and in-memory temporary buffers.

is still used by:

•

• – for serialization file IO and for memory buffers.

• – for serialization file IO and for memory buffers.

• – for file IO (see for libuv equivalent).

Use of in thesemodules is mostly self-contained and separated from the libuv I/O system. However, there is one place

where femtolisp calls through to with a legacy stream.

There is a hack in that makes the field line up with the and ensures that the values used for to not overlap with valid

values. This allows pointers to point to streams.

This is needed because caller is passed an streamby femtolisp’s function. Julia’s function has special handling for this:

https://github.com/JeffBezanson/femtolisp
https://github.com/JuliaLang/julia/blob/master/src/flisp/print.c#L654
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71.15 Bounds checking

Like many modern programming languages, Julia uses bounds checking to ensure program safety when accessing ar-

rays. In tight inner loops or other performance critical situations, youmaywish to skip these bounds checks to improve

runtime performance. For instance, in order to emit vectorized (SIMD) instructions, your loop body cannot contain

branches, and thus cannot contain bounds checks. Consequently, Julia includes an macro to tell the compiler to skip

such bounds checks within the given block. For the built-in type, the magic happens inside the and intrinsics. User-

defined array types instead use the macro to achieve context-sensitive code selection.

Eliding bounds checks

The macro marks blocks of code that perform bounds checking. When such blocks appear inside of an block, the

compiler removes these blocks. When the is nested inside of a calling function containing an , the compilerwill remove

the block only if it is inlined into the calling function. For example, youmight write themethod as:

With a custom array-like type having:

Then when is inlined into , the call to will be elided. If your function contains multiple layers of inlining, only blocks at

most one level of inlining deeper are eliminated. The rule prevents unintended changes in programbehavior from code

further up the stack.

Propagating inbounds

There may be certain scenarios where for code-organization reasons you want more than one layer between the and

declarations. For instance, the default methods have the chain calls calls .

To override the ”one layer of inlining” rule, a functionmay bemarked with to propagate an inbounds context (or out of

bounds context) through one additional layer of inlining.

The bounds checking call hierarchy

The overall hierarchy is:

• which calls

– which calls

* which recursively calls
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· for each dimension

Here is the array, and contains the ”requested” indices. returns a tuple of ”permitted” indices of .

throws an error if the indices are invalid, whereas returns in that circumstance. discards any information about

the array other than its tuple, and performs a pure indices-vs-indices comparison: this allows relatively few compiled

methods to serve ahuge variety of array types. Indices are specified as tuples, and areusually compared in a1-1 fashion

with individual dimensions handled by calling another important function, : typically,

so checks a single dimension. All of these functions, including the unexported have docstrings accessible with .

If you have to customize bounds checking for a specific array type, you should specialize . However, in most cases you

should be able to rely on as long as you supply useful for your array type.

If you have novel index types, first consider specializing , which handles a single index for a particular dimension of an

array. If you have a custommultidimensional index type (similar to ), then youmay have to consider specializing .

Note this hierarchy has been designed to reduce the likelihood of method ambiguities. We try to make the place to

specialize on array type, and try to avoid specializations on index types; conversely, is intended to be specialized only

on index type (especially, the last argument).

71.16 Propermaintenance and care of multi-threading locks

The following strategies are used to ensure that the code is dead-lock free (generally by addressing the 4th Coffman

condition: circular wait).

1. structure code such that only one lock will need to be acquired at a time

2. always acquire shared locks in the same order, as given by the table below

3. avoid constructs that expect to need unrestricted recursion

Locks

Below are all of the locks that exist in the system and themechanisms for using them that avoid the potential for dead-

locks (noOstrich algorithm allowed here):

The following are definitely leaf locks (level 1), andmust not try to acquire any other lock:

• safepoint

Note that this lock is acquired implicitly by and . use the variants to avoid that for level 1

locks.

While holding this lock, the code must not do any allocation or hit any safepoints. Note

that therearesafepointswhendoingallocation, enabling /disablingGC,entering / restor-

ing exception frames, and taking / releasing locks.

• shared_map

• finalizers

• pagealloc

• gc_perm_lock
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• flisp

flisp itself is already threadsafe, this lock only protects the pool

The following is a leaf lock (level 2), and only acquires level 1 locks (safepoint) internally:

• typecache

The following is a level 3 lock, which can only acquire level 1 or level 2 locks internally:

• Method->writelock

The following is a level 4 lock, which can only recurse to acquire level 1, 2, or 3 locks:

• MethodTable->writelock

No Julia codemay be called while holding a lock above this point.

The following is a level 6 lock, which can only recurse to acquire locks at lower levels:

• codegen

The following is an almost root lock (level end-1), meaning only the root lookmay be held when trying to acquire it:

• typeinf

this one is perhaps one of themost tricky ones, since type-inference can be invoked from

many points

currently the lock is mergedwith the codegen lock, since they call each other recursively

The following is the root lock, meaning no other lock shall be held when trying to acquire it:

• toplevel

this should be held while attempting a top-level action (such as making a new type or

defining a new method): trying to obtain this lock inside a staged function will cause a

deadlock condition!

additionally, it’s unclear if any code can safely run in parallel with an arbitrary toplevel

expression, so it may require all threads to get to a safepoint first

Broken Locks

The following locks are broken:

• toplevel

doesn’t exist right now

fix: create it
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Shared Global Data Structures

These data structures each need locks due to being sharedmutable global state. It is the inverse list for the above lock

priority list. This list does not include level 1 leaf resources due to their simplicity.

MethodTable modifications (def, cache, kwsorter type) : MethodTable->writelock

Type declarations : toplevel lock

Type application : typecache lock

Module serializer : toplevel lock

JIT & type-inference : codegen lock

MethodInstance updates : codegen lock

• These fields are generally lazy initialized, using the test-and-test-and-set pattern.

• These are set at construction and immutable:

– specTypes

– sparam_vals

– def

• These are set by (while holding codegen lock):

– rettype

– inferred

– these can also be reset, see for that logic as it needs to keep in sync

• flag:

– optimization to quickly avoid recurring into while it is already running

– actual state (of setting , then ) is protected by codegen lock

• Function pointers ( and , ):

– these transition once, from to a value, while the codegen lock is held

• Code-generator cache (the contents of ):

– these can transitionmultiple times, but only while the codegen lock is held

– it is valid to use old version of this, or block for newversions of this, so races are benign, as long

as the code is careful not to reference other data in themethod instance (such as ) and assume

it is coordinated, unless also holding the codegen lock

• flag:

– unknown

LLVMContext : codegen lock

Method : Method->writelock

• roots array (serializer and codegen)

• invoke / specializations / tfuncmodifications
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71.17 Arrays with custom indices

Julia 0.5 adds experimental support for arrayswith arbitrary indices. Conventionally, Julia’s arrays are indexed starting

at 1, whereas some other languages start numbering at 0, and yet others (e.g., Fortran) allow you to specify arbitrary

starting indices. While there is muchmerit in picking a standard (i.e., 1 for Julia), there are some algorithms which sim-

plify considerably if you can index outside the range (and not just , either). Such array types are expected to be supplied

through packages.

The purpose of this page is to address the question, ”what do I have to do to support such arrays inmy own code?” First,

let’s address the simplest case: if you know that your codewill never need to handle arrays with unconventional index-

ing, hopefully the answer is ”nothing.” Old code, on conventional arrays, should function essentially without alteration

as long as it was using the exported interfaces of Julia.

Generalizing existing code

As an overview, the steps are:

• replacemany uses of with

• replace with , and with

• replace explicit allocations like with

These are described inmore detail below.

Background

Becauseunconventional indexingbreaks deeply-held assumptions throughout the Julia ecosystem, early adopters run-

ning code that has not been updated are likely to experience errors. The most frustrating bugs would be incorrect re-

sults or segfaults (total crashes of Julia). For example, consider the following function:

This code implicitly assumes that vectors are indexed from 1. Previously that was a safe assumption, so this code was

fine, but (depending on what types the user passes to this function) it may no longer be safe. If this code continued to

workwhen passed a vectorwith non-1 indices, it would either produce an incorrect answer or it would segfault. (If you

do get segfaults, to help locate the cause try running julia with the option .)

To ensure that such errors are caught, in Julia 0.5 both and should throw an error when passed an array with non-1

indexing. This is designed to force users of such arrays to check the code, and inspect it for whether it needs to be

generalized.
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Using for bounds checks and loop iteration

(reminiscent of ) returns a tuple of objects, specifying the range of valid indices along each dimension of . When has

unconventional indexing, the rangesmay not start at 1. If you just want the range for a particular dimension , there is .

Base implements a custom range type, , where means the same thing as but in a form that guarantees (via the type

system) that the lower index is 1. For any new type, this is the default returned by , and it indicates that this array type

uses ”conventional” 1-based indexing. Note that if youdon’twant tobebothered supportingarrayswithnon-1 indexing,

you can add the following line:

at the top of any function.

For bounds checking, note that there are dedicated functions and which can sometimes simplify such tests.

Linear indexing ()

Somealgorithmsaremostconveniently (orefficiently)written in termsofasingle linear index, even if ismulti-dimensional.

In ”true” linear indexing, the indices always range from . However, this raises an ambiguity for one-dimensional arrays

(a.k.a., ): does mean linear indexing, or Cartesian indexing with the array’s native indices?

For this reason, if you want to use linear indexing in an algorithm, your best option is to get the index range by calling .

This will return if is an , and the equivalent of otherwise.

In a sense, one can say that 1-dimensional arrays always use Cartesian indexing. To help enforce this, it’s worth noting

that and will throw an error if indicates a 1-dimensional array with unconventional indexing (i.e., is a rather than a

tuple of ). For arrays with conventional indexing, these functions continue to work the same as always.

Using and , here is oneway you could rewrite :

Allocating storage using generalizations of

Storage is often allocatedwith or . When the result needs tomatch the indices of someother array, thismay not always

suffice. The generic replacement for such patterns is to use . indicates the kind of underlying ”conventional” behavior

you’d like, e.g., or or even (which would allocate an all-zeros array). is a tuple of or values, specifying the indices that

youwant the result to use.

Let’s walk through a couple of explicit examples. First, if has conventional indices, then would end up calling , and thus

return an array. If is an type with unconventional indexing, then should return something that ”behaves like” an but

with a shape (including indices) that matches . (Themost obvious implementation is to allocate an and then ”wrap” it in

a type that shifts the indices.)

Note also that would allocate an (i.e., 1-dimensional array) that matches the indices of the columns of .
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Deprecations

In generalizing Julia’s code base, at least one deprecation was unavoidable: earlier versions of Julia defined , meaning

that the first index along a dimension indexed by is 1. This definition can no longer be justified, so it was deprecated.

There is no provided replacement, because the proper replacement depends on what you are doing andmight need to

know more about the array. However, it appears that many uses of are really about computing an index offset; when

that is the case, a candidate replacement is:

In other words, while does not itself make sense, in general you can say that the offset associatedwith a colon-index is

zero.

Writing custom array types with non-1 indexing

Mostof themethods you’ll need todefineare standard for any type, seeAbstractArrays. This page focuseson the steps

needed to define unconventional indexing.

Do not implement or

Perhaps themajorityofpre-existingcode thatuses will notworkproperly forarrayswithnon-1 indices. For that reason,

it is much better to avoid implementing thesemethods, and use the resulting to identify code that needs to be audited

and perhaps generalized.

Do not annotate bounds checks

Julia 0.5 includes to annotate code that can be removed for callers that exploit . Initially, it seems far preferable to run

with bounds checking always enabled (i.e., omit the annotation so the check always runs).

Custom types

If you’re writing a non-1 indexed array type, you will want to specialize so it returns a , or (perhaps better) a custom .

The advantage of a custom type is that it ”signals” the allocation type for functions like . If we’re writing an array type

for which indexing will start at 0, we likely want to begin by creating a new , , where is equivalent to .

In general, you should probably not export fromyour package: theremay be other packages that implement their own ,

andhavingmultipledistinct types is (perhapscounterintuitively) anadvantage: indicates that shouldcreatea ,whereas

indicates a type. This design allows peaceful coexistence amongmany different custom array types.

Note that the Julia package CustomUnitRanges.jl can sometimes be used to avoid the need to write your own type.

Specializing

Once you have your type, then specialize :

where here we imagine that has a field called (there would be other ways to implement this).

In some cases, the fallback definition for :

https://github.com/JuliaArrays/CustomUnitRanges.jl
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may not be what you want: you may need to specialize it to return something other than when . Likewise, in there is

a dedicated function which is equivalent to but which avoids checking (at runtime) whether . (This is purely a perfor-

mance optimization.) It is defined as:

If the first of these (the zero-dimensional case) is problematic for your custom array type, be sure to specialize it appro-

priately.

Specializing

Given your custom type, then you should also add the following two specializations for :

Both of these should allocate your custom array type.

Specializing

Optionally, define amethod

and you can an array so that the result has custom indices.

Summary

Writing code that doesn’tmake assumptions about indexing requires a few extra abstractions, but hopefully the neces-

sary changes are relatively straightforward.

As a reminder, this support is still experimental. While much of Julia’s base code has been updated to support uncon-

ventional indexing, without a doubt there are many omissions that will be discovered only through usage. Moreover,

at the time of this writing, most packages do not support unconventional indexing. As a consequence, early adopters

should be prepared to identify and/or fix bugs. On the other hand, only through practical usage will it become clear

whether this experimental feature should be retained in future versions of Julia; consequently, interested parties are

encouraged to accept some ownership for putting it through its paces.

71.18 Base.LibGit2

The LibGit2 module provides bindings to libgit2, a portable C library that implements core functionality for the Git

version control system. These bindings are currently used to power Julia’s package manager. It is expected that this

module will eventually bemoved into a separate package.

https://libgit2.github.com/
https://git-scm.com/
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Functionality

Some of this documentation assumes some prior knowledge of the libgit2 API. For more information on some of the

objects andmethods referenced here, consult the upstream libgit2 API reference.

– Type.

Abstract credentials payload

– Type.

A data buffer for exporting data from libgit2. Matches the struct.

When fetching data from LibGit2, a typical usage would look like:

In particular, note that should be called afterward on the object.

– Type.

Credentials that support caching

– Type.

Matches the struct.

– Type.

Matches the struct.

– Type.

Description of changes to one entry. Matches the struct.

The fields represent:

• : One of , indicating whether the file has been added/modified/deleted.

• : Flags for the delta and the objects on each side. Determines whether to treat the file(s) as binary/text,

whether they exist on each side of the diff, and whether the object ids are known to be correct.

https://libgit2.github.com/libgit2/#v0.25.1
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/types.jl#L119
https://libgit2.github.com/libgit2/#HEAD/type/git_buf
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/types.jl#L93-L107
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/types.jl#L890
https://libgit2.github.com/libgit2/#HEAD/type/git_checkout_options
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/types.jl#L128-L132
https://libgit2.github.com/libgit2/#HEAD/type/git_clone_options
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/types.jl#L257-L261
https://libgit2.github.com/libgit2/#HEAD/type/git_diff_delta
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• : Used to indicate if a file has been renamed or copied.

• : The number of files in the delta (for instance, if the delta was run on a submodule commit id, it may contain

more than one file).

• : A containing information about the file(s) before the changes.

• : A containing information about the file(s) after the changes.

– Type.

Description of one side of a delta. Matches the struct.

The fields represent:

• : the of the item in the diff. If the item is empty on this side of the diff (for instance, if the diff is of the removal

of a file), this will be .

• : a terminated path to the item relative to the working directory of the repository.

• : the size of the item in bytes.

• : a combination of the flags. The th bit of this integer sets the th flag.

• : the mode for the item.

• : only present in LibGit2 versions newer than or equal to . The length of the field when converted using .

Usually equal to (40).

– Type.

Matches the struct.

– Type.

Contains the information about HEADduring a fetch, including the name andURL of the branch fetched from, the

oid of the HEAD, andwhether the fetchedHEAD has beenmerged locally.

– Type.

Matches the struct.

– Type.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/types.jl#L371-L387
https://libgit2.github.com/libgit2/#HEAD/type/git_diff_file
https://libgit2.github.com/libgit2/#HEAD/type/git_diff_flag_t
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/types.jl#L335-L352
https://libgit2.github.com/libgit2/#HEAD/type/git_diff_options
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/types.jl#L275-L279
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/types.jl#L582-L588
https://libgit2.github.com/libgit2/#HEAD/type/git_fetch_options
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/types.jl#L238-L242
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Return a object from specified by /.

• is a full () or partial () hash.

• is a textual specification: see the git docs for a full list.

– Type.

Return a object from specified by /.

• is a full () or partial () hash.

• is a textual specification: see the git docs for a full list.

– Type.

A git object identifier, based on the sha-1 hash. It is a 20byte string (40 hex digits) used to identify a in a repository.

– Type.

Return the specified object (, , or ) from specified by /.

• is a full () or partial () hash.

• is a textual specification: see the git docs for a full list.

– Type.

Look up a remote git repository using its name and URL. Uses the default fetch refspec.

Examples

https://git-scm.com/docs/git-rev-parse.html#_specifying_revisions
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/repository.jl#L119-L127
https://git-scm.com/docs/git-rev-parse.html#_specifying_revisions
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/repository.jl#L119-L127
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/types.jl#L12-L17
https://git-scm.com/docs/git-rev-parse.html#_specifying_revisions
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/repository.jl#L107-L116
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/remote.jl#L3-L13
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Lookupa remotegit repositoryusing the repository’s nameandURL, aswell as specifications forhowto fetch from

the remote (e.g. which remote branch to fetch from).

Examples

– Function.

Look up a remote git repository using only its URL, not its name.

Examples

– Type.

Open a git repository at .

– Function.

Open a git repository at with extended controls (for instance, if the current user must be a member of a special

access group to read ).

– Type.

A shortened git object identifier, which can be used to identify a git objectwhen it is unique, consisting of the initial

hexadecimal digits of (the remaining digits are ignored).

– Type.

This is a Julia wrapper around a pointer to a object.

– Type.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/remote.jl#L22-L35
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/remote.jl#L44-L54
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/repository.jl#L3-L7
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/repository.jl#L15-L20
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/types.jl#L24-L30
https://libgit2.github.com/libgit2/#HEAD/type/git_signature
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/types.jl#L708-L713
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Collect information about the status of each file in the git repository (e.g. is the file modified, staged, etc.). can be

used to set variousoptions, for instancewhetherornot to lookatuntrackedfilesorwhether to include submodules

or not.

– Type.

Return a object from specified by /.

• is a full () or partial () hash.

• is a textual specification: see the git docs for a full list.

– Type.

Return a object from specified by /.

• is a full () or partial () hash.

• is a textual specification: see the git docs for a full list.

– Type.

In-memory representation of a file entry in the index. Matches the struct.

– Type.

Matches the struct.

– Type.

Matches the struct.

– Type.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/status.jl#L3-L11
https://git-scm.com/docs/git-rev-parse.html#_specifying_revisions
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/repository.jl#L119-L127
https://git-scm.com/docs/git-rev-parse.html#_specifying_revisions
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/repository.jl#L119-L127
https://libgit2.github.com/libgit2/#HEAD/type/git_index_entry
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/types.jl#L493-L498
https://libgit2.github.com/libgit2/#HEAD/type/git_index_time
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/types.jl#L483-L487
https://libgit2.github.com/libgit2/#HEAD/type/git_merge_options
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/types.jl#L405-L409
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Options for connecting through a proxy.

Matches the struct.

The fields represent:

• : version of the struct in use, in case this changes later. For now, always .

• : an for the type of proxy to use. Defined in . The corresponding Julia enum is and has values:

– : do not attempt the connection through a proxy.

– : attempt to figure out the proxy configuration from the git configuration.

– : connect using the URL given in the field of this struct.

Default is to auto-detect the proxy type.

• : the URL of the proxy.

• : a pointer to a callback function which will be called if the remote requires authentication to connect.

• : a pointer to a callback function which will be called if certificate verification fails. This lets the user decide

whether or not to keep connecting. If the function returns , connecting will be allowed. If it returns , the

connection will not be allowed. A negative value can be used to return errors.

• : the payload to be provided to the two callback functions.

Examples

– Type.

Matches the struct.

The fields represent:

• : version of the struct in use, in case this changes later. For now, always .

• : if a pack filemust be created, this variable sets the number of worker threadswhichwill be spawned by the

packbuilder. If , the packbuilder will auto-set the number of threads to use. The default is .

• : the callbacks (e.g. for authentication with the remote) to use for the push.

• : only relevant if theLibGit2version isgreater thanorequal to . Setsoptions forusingaproxytocommunicate

with a remote. See for more information.

• : only relevant if theLibGit2version is greater thanorequal to . Extraheadersneeded for thepushoperation.

– Type.

https://libgit2.github.com/libgit2/#HEAD/type/git_proxy_options
https://libgit2.github.com/libgit2/#HEAD/type/git_proxy_t
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/types.jl#L194-L227
https://libgit2.github.com/libgit2/#HEAD/type/git_push_options
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/types.jl#L441-L457
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Describes a single instruction/operation to be performed during the rebase. Matches the struct.

– Type.

Matches the struct.

– Type.

Callback settings. Matches the struct.

– Type.

SSH credentials type

– Type.

An action signature (e.g. for committers, taggers, etc). Matches the struct.

– Type.

Providing thedifferencesbetweenthefileas itexists inHEADandthe index, andproviding thedifferencesbetween

the index and the working directory. Matches the struct.

– Type.

Options to control how will issue callbacks. Matches the struct.

– Type.

A LibGit2 representation of an array of strings. Matches the struct.

When fetching data from LibGit2, a typical usage would look like:

https://libgit2.github.com/libgit2/#HEAD/type/git_rebase_operation_t
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/types.jl#L537-L542
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/types.jl#L519-L523
https://libgit2.github.com/libgit2/#HEAD/type/git_remote_callbacks
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/types.jl#L164-L169
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/types.jl#L859
https://libgit2.github.com/libgit2/#HEAD/type/git_signature
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/types.jl#L48-L53
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/types.jl#L569-L575
https://libgit2.github.com/libgit2/#HEAD/type/git_status_opt_t
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/types.jl#L553-L558
https://libgit2.github.com/libgit2/#HEAD/type/git_strarray
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In particular, note that should be called afterward on the object.

Conversely, when passing a vector of strings to LibGit2, it is generally simplest to rely on implicit conversion:

Note that no call to is required as the data is allocated by Julia.

– Type.

Time in a signature. Matches the struct.

– Type.

Credentials that support only and parameters

– Function.

Add a fetch refspec for the specified . This refspec will contain information about which branch(es) to fetch from.

Examples

– Function.

Add a push refspec for the specified . This refspec will contain information about which branch(es) to push to.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/types.jl#L60-L82
https://libgit2.github.com/libgit2/#HEAD/type/git_time
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/types.jl#L37-L42
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/types.jl#L834
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/remote.jl#L224-L237
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Note

You may need to and reopen the in question after updating its push refspecs in order for the change

to take effect and for calls to to work.

– Function.

Reads the file at and adds it to the object database of as a loose blob. Returns the of the resulting blob.

Examples

– Function.

Return the of the author of the commit . The author is the person who made changes to the relevant file(s). See

also .

– Function.

Returns all authors of commits to the repository.

Examples

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/remote.jl#L244-L265
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/blob.jl#L51-L63
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/commit.jl#L21-L26
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/libgit2.jl#L781-L804
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Equivalent to . Create a new branch from the current HEAD.

– Function.

Checkout a new git branch in the repository. is the , in string form, which will be the start of the new branch. If is

an empty string, the current HEADwill be used.

The keyword arguments are:

• : thenameof the remotebranch this newbranch should track, if any. If empty (thedefault), no remotebranch

will be tracked.

• : if , branch creation will be forced.

• : if , after the branch creation finishes the branch headwill be set as the HEAD of .

Equivalent to .

Examples

– Function.

Equivalent to . Checkout the git commit (a in string form) in . If is , force the checkout and discard any current

changes. Note that this detaches the current HEAD.

Examples

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/libgit2.jl#L309-L314
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/libgit2.jl#L324-L348
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/libgit2.jl#L415-L440
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Checks if credentials were used

Checks if credentials were used or failed authentication, see

– Function.

Clone a remote repository located at to the local filesystem location .

The keyword arguments are:

• : which branch of the remote to clone, if not the default repository branch (usually ).

• : if , clone the remote as a bare repository, whichwillmake itself the git directory instead of . Thismeans that

a working tree cannot be checked out. Plays the role of the git CLI argument .

• : a callback which will be used to create the remote before it is cloned. If (the default), no attempt will be

made to create the remote - it will be assumed to already exist.

• : provides credentials if necessary, for instance if the remote is a private repository.

Equivalent to .

Examples

– Function.

Wrapper around

Commit changes to repository

Commit the current patch to the rebase , using as the committer. Is silent if the commit has already been applied.

– Function.

Return the of the committer of the commit . The committer is the person who committed the changes originally

authored by the , but need not be the same as the , for example, if the emailed a patch to a who committed it.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/types.jl#L122
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/types.jl#L897
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/libgit2.jl#L470-L499
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/commit.jl#L53
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/commit.jl#L76
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/rebase.jl#L60-L65
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/commit.jl#L33-L40
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– Function.

Createanewbranch in the repository withname ,whichpoints to commit (whichhas tobepartof ). If is , overwrite

an existing branch named if it exists. If is and a branch already exists named , this function will throw an error.

– Function.

Credentials callback function

Functionprovidesdifferentcredential acquisition functionalityw.r.t. a connectionprotocol. If apayload isprovided

then should contain a object.

For type, if the payload contains fields: & , they are used to create authentication credentials. Empty name and

word trigger an authentication error.

For type, if the payload contains fields: , , & , they are used to create authentication credentials. Empty name

triggers an authentication error.

Credentials are checked in the following order (if supported):

• ssh key pair ( if specified in payload’s field)

• plain text

Note: Due to the specifics of the authentication procedure, when authentication fails, this function is called again

without any indication whether authentication was successful or not. To avoid an infinite loop from repeatedly

using the same faulty credentials, the function can be called. This function returns if the credentials were used.

Using credentials triggers a user prompt for (re)entering required information. and are implemented using a call

counting strategy that prevents repeated usage of faulty credentials.

– Function.

C function pointer for

– Function.

Return signature object. Free it after use.

– Function.

Delete the branch pointed to by .

– Function.

Showwhich files have changed in the git repository between branches and .

The keyword argument is:

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/reference.jl#L196-L204
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/callbacks.jl#L180-L206
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/callbacks.jl#L268
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/signature.jl#L45
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/reference.jl#L216-L220
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• , and it sets options for the diff. The default is to show files added, modified, or deleted.

Returns only the names of the files which have changed, not their contents.

Examples

Equivalent to .

– Function.

Fetch from the specified remote git repository, using todeterminewhich remotebranch(es) to fetch. Thekeyword

arguments are:

• : determines the options for the fetch, e.g. whether to prune afterwards.

• : a message to insert into the reflogs.

Fetches updates from an upstream of the repository .

The keyword arguments are:

• : which remote, specified by name, of to fetch from. If this is empty, the URL will be used to construct an

anonymous remote.

• : the URL of . If not specified, will be assumed based on the given name of .

• : determines properties of the fetch.

• : provides credentials, if necessary, for instance if is a private repository.

Equivalent to .

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/libgit2.jl#L158-L190
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/remote.jl#L272-L280
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/libgit2.jl#L241-L257
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Get the fetch refspecs for the specified . These refspecs contain information about which branch(es) to fetch from.

Examples

– Function.

C function pointer for

–Method.

Perform a git merge on the repository , merging commits with diverging history into the current branch. Returns

if themerge succeeded, if not.

The keyword arguments are:

• : Merge the named commit(s) in .

• : Merge the branch and all its commits since it diverged from the current branch.

• : If is , onlymerge if themerge is a fast-forward (the current branch head is an ancestor of the commits to be

merged), otherwise refuse tomerge and return . This is equivalent to the git CLI option .

• : specifies options for themerge, such asmerge strategy in case of conflicts.

• : specifies options for the checkout step.

Equivalent to .

Note

If you specify a , thismust be done in reference format, since the stringwill be turned into a . For exam-

ple, if you wanted tomerge branch , youwould call .

– Function.

Fastforwardmerge changes into current head

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/remote.jl#L170-L185
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/callbacks.jl#L270
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/libgit2.jl#L610-L637
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/merge.jl#L48-L52
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Return the name of the reference pointed to by the symbolic reference . If is not a symbolic reference, returns an

empty string.

– Function.

Obtain the cached credentials for the given host+protocol (credid), or return and store the default if not found

– Function.

Return the location of the ”git” files of :

• for normal repositories, this is the location of the folder.

• for bare repositories, this is the location of the repository itself.

See also , .

– Function.

Returns a to the current HEAD of .

Return current HEAD of the repo as a string.

– Function.

Set the HEAD of to the object pointed to by .

– Function.

Lookup the object id of the current HEAD of git repository .

– Function.

Lookup the name of the current HEAD of git repository . If is currently detached, returns the name of the HEAD

it’s detached from.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/reference.jl#L82-L88
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/types.jl#L906
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/repository.jl#L166-L175
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/reference.jl#L33-L37
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/libgit2.jl#L46-L51
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/reference.jl#L225-L229
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/repository.jl#L50-L55
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/repository.jl#L65-L72
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– Function.

Open a new git repository at . If is , the working treewill be created in . If is , no working directory will be created.

– Function.

Returns if , a in string form, is an ancestor of , a in string form.

Examples

– Function.

Use a heuristic to guess if a file is binary: searching for NULL bytes and looking for a reasonable ratio of printable

to non-printable characters among the first 8000 bytes.

– Function.

Checks if commit (which is a in string form) is in the repository.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/repository.jl#L36-L42
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/libgit2.jl#L214-L235
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/blob.jl#L39-L45
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/libgit2.jl#L71-L88
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– Function.

Checks if there are any differences between the tree specified by and the tracked files in the working tree (if ) or

the index (if ). are the specifications for options for the diff.

Examples

Equivalent to .

– Function.

Checks if therehavebeenanychanges to trackedfiles in theworking tree (if ) or the index (if ). are the specifications

for options for the diff.

Examples

Equivalent to .

– Function.

Checks if the current branch is an ”orphan” branch, i.e. has no commits. The first commit to this branchwill have no

parents.

– Function.

Determine if the branch specified by exists in the repository . If is , is assumed to be a remote git repository.

Otherwise, it is part of the local filesystem.

returns a , which will be null if the requested branch does not exist yet. If the branch does exist, the contains a to

the branch.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/libgit2.jl#L127-L145
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/libgit2.jl#L104-L123
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/reference.jl#L21-L26
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/reference.jl#L237-L247
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– Function.

Mirror callback function

Function sets refspecs and flag for remote reference.

– Function.

C function pointer for

– Function.

Return the commit message describing the changes made in commit . If is , return a slightly ”cleaned up” message

(which has any leading newlines removed). If is , themessage is not stripped of any such newlines.

– Function.

Return the full name of .

Get the name of a remote repository, for instance . If the remote is anonymous (see ) the name will be an empty

string .

Examples

The name of (e.g. ).

– Function.

Equivalent to . Returns if needs updating.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/callbacks.jl#L3-L7
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/callbacks.jl#L266
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/commit.jl#L3-L10
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/reference.jl#L97-L101
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/remote.jl#L145-L163
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/tag.jl#L54-L58
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/libgit2.jl#L58-L63
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– Function.

Returns the type corresponding to the enum value.

– Function.

Return the base file path of the repository .

• for normal repositories, this will typically be the parent directory of the ”.git” directory (note: this may be

different than the working directory, see for more details).

• for bare repositories, this is the location of the ”git” files.

See also , .

– Function.

Recursively peel until an object of type is obtained. If no is provided, then will be peeled until an object other than

a is obtained.

• A will be peeled to the object it references.

• A will be peeled to a .

Note

Only annotated tags can be peeled to objects. Lightweight tags (the default) are references under

which point directly to objects.

Recursively peel until an object of type is obtained. If no is provided, then will be peeled until the type changes.

• A will be peeled to the object it references.

• A will be peeled to a .

– Function.

Standardise the path string to use POSIX separators.

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/types.jl#L811-L815
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/repository.jl#L202-L213
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/reference.jl#L161-L173
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/repository.jl#L227-L235
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/utils.jl#L57-L61
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Push to the specified remote git repository, using to determinewhich remote branch(es) to push to. The keyword

arguments are:

• : if , a force-push will occur, disregarding conflicts.

• : determines the options for the push, e.g. which proxy headers to use.

Note

You can add information about the push refspecs in two other ways: by setting an option in the repos-

itory’s (with as the key) or by calling . Otherwise you will need to explicitly specify a push refspec in

the call to for it to have any effect, like so: .

Pushes updates to an upstream of .

The keyword arguments are:

• : the name of the upstream remote to push to.

• : the URL of .

• : determines properties of the push.

• : determines if the pushwill be a force push, overwriting the remote branch.

• : provides credentials, if necessary, for instance if is a private repository.

Equivalent to .

– Function.

Get the push refspecs for the specified . These refspecs contain information about which branch(es) to push to.

Examples

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/remote.jl#L290-L305
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/libgit2.jl#L275-L290
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/remote.jl#L195-L214
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Read the tree (or the tree pointed to by in the repository owned by ) into the index . The current index contents

will be replaced.

– Function.

Attemptanautomaticmerge rebaseof thecurrentbranch, from if provided, orotherwise fromtheupstreamtrack-

ing branch. is the branch to rebase onto. By default this is .

If anyconflictsarisewhichcannotbeautomatically resolved, the rebasewill abort, leaving the repositoryandwork-

ing tree in its original state, and the functionwill throw a . This is roughly equivalent to the following command line

statement:

– Function.

Get a list of all reference names in the repository.

– Function.

Returns a corresponding to the type of :

• if the reference is invalid

• if the reference is an object id

• if the reference is symbolic

– Function.

Return a vector of the names of the remotes of .

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/index.jl#L63-L69
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/libgit2.jl#L715-L731
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/reference.jl#L182-L186
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/reference.jl#L70-L77
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/repository.jl#L387-L391
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Resets credentials for another use

Updates some entries, determined by the , in the index from the target commit tree.

Sets the current head to the specified commit oid and optionally resets the index andworking tree tomatch.

git reset [<committish>] [–] <pathspecs>...

Reset the repository to its state at , using one of threemodes set by :

1. - moveHEAD to .

2. - default, move HEAD to and reset the index to .

3. - moveHEAD to , reset the index to , and discard all working changes.

Examples

In this example, the remote which is being fetched from does have a file called in its index, which is why we must

reset.

Equivalent to .

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/types.jl#L125
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/repository.jl#L349
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/repository.jl#L359
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/libgit2.jl#L517
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/libgit2.jl#L524-L566


71.18. BASE.LIBGIT2 979

– Function.

Return a repository to a previous , for example the HEAD of a branch before a merge attempt. can be generated

using the function.

– Function.

List the number of revisions between and (committish OIDs in string form). Since and may be on different

branches, performs a ”left-right” revision list (and count), returning a tuple of s - the number of left and right com-

mits, respectively. A left (or right) commit refers to which side of a symmetric difference in a tree the commit is

reachable from.

Equivalent to .

Examples

This will return .

– Function.

Set both the fetch and push for for the GitRepo or the git repository located at . Typically git repos use ”origin” as

the remote name.

Examples

– Function.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/libgit2.jl#L843-L849
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/libgit2.jl#L569-L596
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/remote.jl#L371-L385
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Returns a shortened version of the name of that’s ”human-readable”.

– Function.

Take a snapshot of the current state of the repository , storing the current HEAD, index, and any uncommitted

work. The output can be used later during a call to to return the repository to the snapshotted state.

– Function.

Lookup the status of the file at in the git repository . For instance, this can be used to check if the file at has been

modified and needs to be staged and committed.

– Function.

Get the stage number of . The stage number represents the current state of the working tree, but other numbers

can be used in the case of a merge conflict. In such a case, the various stage numbers on an describe which side(s)

of the conflict the current state of the file belongs to. Stage is the state before the attempted merge, stage is the

changes which have beenmade locally, stages and larger are for changes from other branches (for instance, in the

case of amulti-branch ”octopus” merge, stages , , and might be used).

– Function.

Create a new git tag (e.g. ) in the repository , at the commit .

The keyword arguments are:

• : themessage for the tag.

• : if , existing references will be overwritten.

• : the tagger’s signature.

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/reference.jl#L45-L62
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/libgit2.jl#L814-L821
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/status.jl#L35-L42
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/index.jl#L148-L158
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/tag.jl#L27-L37
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– Function.

Remove the git tag from the repository .

– Function.

Get a list of all tags in the git repository .

– Function.

The of the target object of .

– Function.

Traverse the entries in a tree and its subtrees in post or pre order.

Function parameter should have following signature:

– Function.

Determine if the branch containing has a specified upstream branch.

returnsa ,whichwill benull if therequestedbranchdoesnothaveanupstreamcounterpart. If theupstreambranch

does exist, the contains a to the upstream branch.

– Function.

Get the fetch URL of a remote git repository.

Examples

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/tag.jl#L17-L21
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/tag.jl#L3-L7
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/tag.jl#L66-L70
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/tree.jl#L3-L9
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/reference.jl#L268-L276
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– Function.

Resourcemanagement helper function

– Function.

Return the location of the working directory of . This will throw an error for bare repositories.

Note

This will typically be the parent directory of , but can be different in some cases: e.g. if either the

configuration variable or the environment variable is set.

See also , .

71.19 Module loading

is responsible for loadingmodules and it alsomanages the precompilation cache. It is the implementation of the state-

ment.

Experimental features

The features below are experimental and not part of the stable Julia API. Before building upon them inform yourself

about the current thinking andwhether theymight change soon.

Module loading callbacks

It is possible to listen to themodules loaded by , by registering a callback.

Please note that the symbol given to the callback is a non-unique identifier and it is the responsibility of the callback

provider to walk themodule chain to determine the fully qualified name of the loaded binding.

The callback below is an example of how to do that:

https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/remote.jl#L99-L115
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/types.jl#L775-L777
https://github.com/JuliaLang/julia/tree/ae1719872092b594228a9bfeedfc3fa8e91c9529/base/libgit2/repository.jl#L181-L194
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71.20 Inference

How inferenceworks

Type inference refers to theprocessofdeducing the typesof latervalues fromthe typesof inputvalues. Julia’s approach

to inference has been described in blog posts (1, 2).

Debugging inference.jl

You can start a Julia session, edit (for example to insert statements), and then replace in your running session by navi-

gating to and executing . This trick typically leads tomuch faster development than if you rebuild Julia for each change.

A convenient entry point into inference is . Here’s a demo running inference on :

If your debugging adventures require a , you can look it up by calling using many of the variables above. A object may

be obtainedwith

The inlining algorithm (inline_worthy)

Muchof the hardestwork for inlining runs in . However, if your question is ”why didn’tmy function inline?” then youwill

most likely be interested in and its primary callee, . handles a number of special cases (e.g., critical functions like and

, incorporating a bonus for functions that return tuples, etc.). The main decision-making happens in , which returns if

the function should be inlined.

implements a cost-model, where ”cheap” functions get inlined;more specifically, we inline functions if their anticipated

run-time is not large compared to the time it would take to issue a call to them if theywere not inlined. The cost-model

is extremely simple and ignores many important details: for example, all loops are analyzed as if they will be executed

once, and the cost of an includes the summed cost of all branches. It’s alsoworth acknowledging thatwe currently lack

a suite of functions suitable for testing howwell the costmodel predicts the actual run-time cost, althoughBaseBench-

marks provides a great deal of indirect information about the successes and failures of anymodification to the inlining

algorithm.

The foundation of the cost-model is a lookup table, implemented in and its callers, that assigns an estimated cost (mea-

sured in CPU cycles) to each of Julia’s intrinsic functions. These costs are based on standard ranges for common archi-

tectures (see Agner Fog’s analysis for more detail).

We supplement this low-level lookup tablewith a number of special cases. For example, an expression (a call for which

all input and output types were inferred in advance) is assigned a fixed cost (currently 20 cycles). In contrast, a expres-

sion, for functions other than intrinsics/builtins, indicates that the call will require dynamic dispatch, in which case we

https://en.wikipedia.org/wiki/Type_inference
https://juliacomputing.com/blog/2016/04/04/inference-convergence.html
https://juliacomputing.com/blog/2017/05/15/inference-converage2.html
https://en.wikipedia.org/wiki/Calling_convention
https://github.com/JuliaCI/BaseBenchmarks.jl
https://github.com/JuliaCI/BaseBenchmarks.jl
http://ithare.com/wp-content/uploads/part101_infographics_v08.png
http://ithare.com/wp-content/uploads/part101_infographics_v08.png
http://www.agner.org/optimize/instruction_tables.pdf
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assign a cost set by (currently set at 1000). Note that this is not a ”first-principles” estimate of the raw cost of dynamic

dispatch, but amere heuristic indicating that dynamic dispatch is extremely expensive.

Each statement gets analyzed for its total cost in a function called . You can run this yourself by following this example:

Theoutput is a holding theestimatedcostofeachstatement in . Note that includes theconsequencesof inliningcallees,

and consequently the costs do too.



Chapter 72

Developing/debugging Julia’s C code

72.1 Reporting and analyzing crashes (segfaults)

So you managed to break Julia. Congratulations! Collected here are some general procedures you can undergo for

common symptoms encountered when something goes awry. Including the information from these debugging steps

can greatly help themaintainerswhen tracking down a segfault or trying to figure outwhy your script is running slower

than expected.

If you’ve been directed to this page, find the symptom that best matches what you’re experiencing and follow the in-

structions to generate the debugging information requested. Table of symptoms:

• Segfaults during bootstrap ()

• Segfaults when running a script

• Errors during Julia startup

Version/Environment info

No matter the error, we will always need to know what version of Julia you are running. When Julia first starts up, a

header is printed out with a version number and date. Please also include the output of in any report you create:

Segfaults during bootstrap ()

Segfaults toward the end of the process of building Julia are a common symptomof something goingwrongwhile Julia

is preparsing the corpus of code in the folder. Many factors can contribute toward this process dying unexpectedly,

985
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however it is as often as not due to an error in the C-code portion of Julia, and as suchmust typically be debuggedwith

a debug build inside of . Explicitly:

Create a debug build of Julia:

Note that this process will likely fail with the same error as a normal incantation, however this will create a debug

executable that will offer the debugging symbols needed to get accurate backtraces. Next, manually run the bootstrap

process inside of :

This will start , attempt to run the bootstrap process using the debug build of Julia, and print out a backtrace if (when)

it segfaults. Youmay need to hit a few times to get the full backtrace. Create a gist with the backtrace, the version info,

and any other pertinent information you can think of and open a new issue on Githubwith a link to the gist.

Segfaults when running a script

The procedure is very similar to Segfaults during bootstrap (). Create a debug build of Julia, and run your script inside

of a debugged Julia process:

Note that will sit there, waiting for instructions. Type to run the process, and to generate a backtrace once it segfaults:

Create a gist with the backtrace, the version info, and any other pertinent information you can think of and open a new

issue on Githubwith a link to the gist.

Errors during Julia startup

Occasionally errors occur during Julia’s startup process (especiallywhenusing binary distributions, as opposed to com-

piling from source) such as the following:

These errors typically indicate something is not getting loaded properly very early on in the bootup phase, and our best

bet in determining what’s going wrong is to use external tools to audit the disk activity of the process:

• On Linux, use :

• OnOSX, use :

Create a gist with the / ouput, the version info, and any other pertinent information and open a new issue on Github

with a link to the gist.

https://gist.github.com
https://github.com/JuliaLang/julia/issues?q=is%3Aopen
https://gist.github.com
https://github.com/JuliaLang/julia/issues?q=is%3Aopen
https://gist.github.com
https://github.com/JuliaLang/julia/issues?q=is%3Aopen
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Glossary

A few terms have been used as shorthand in this guide:

• refers to the root directory of the Julia source tree; e.g. it should contain folders such as , , , , etc.....

72.2 gdb debugging tips

Displaying Julia variables

Within , any object can be displayed using

The object will be displayed in the session, not in the gdb session. This is a useful way to discover the types and values

of objects beingmanipulated by Julia’s C code.

Similarly, if you’re debugging some of Julia’s internals (e.g., ), you can print using

This is a goodway to circumvent problems that arise from the order in which julia’s output streams are initialized.

Julia’s flisp interpreter uses objects; these can be displayedwith .

Useful Julia variables for Inspecting

While the addresses of many variables, like singletons, can be be useful to print for many failures, there are a number

of additional variables (see for a complete list) that are evenmore useful.

• (when in ) and :: for figuring out a bit about the call-stack

• and :: for figuring out what line in a test to go start debugging from (or figure out how far into a file has been

parsed)

• :: not really a variable, but still a useful shorthand for referring to the result of the last gdb command (such as )

• :: sometimes useful, since it lists all of the command line options that were successfully parsed

• :: because who doesn’t like to be able to interact with stdio

Useful Julia functions for Inspecting those variables

• :: For looking up the current function and line. (use on i686 platforms)

• :: For dumping the current Julia backtrace stack to stderr. Only usable after has been called.

• :: For invoking in gdb, where it doesn’t work natively. For example, , , and .

• :: only works in lldb. Note: add something like to prevent lldb from printing its prompt over the output

• :: for invoking side-effects tomodify the current state or to lookup symbols

• :: for extracting the type tag of a Julia value (in gdb, call first, or pick something short like for the first arg to

define a shorthand)
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Inserting breakpoints for inspection from gdb

In your session, set a breakpoint in like so:

Thenwithin your Julia code, insert a call to by adding

where can be any variable or tuple youwant to be accessible in the breakpoint.

It’s particularly helpful to back up to the frame, fromwhich you can display the arguments to a function using, e.g.,

Another useful frame is . The argument is a struct with a reference to the final AST sent into the compiler. However,

the AST at this point will usually be compressed; to view the AST, call and then pass the result to :

Inserting breakpoints upon certain conditions

Loading a particular file

Let’s say the file is :

Calling a particular method

Since this function is used for every call, you will make everything 1000x slower if you do this.

Dealing with signals

Julia requiresa fewsignal to functionproperty. Theprofileruses forsamplingandthegarbagecollectoruses for threads

synchronization. If you are debugging some code that uses the profiler or multiple threads, you may want to let the

debugger ignore these signals since they can be triggered very often during normal operations. The command to do

this in GDB is (replace with or other signals youwant to ignore):

The corresponding LLDB command is (after the process is started):

If you are debugging a segfault with threaded code, you can set a breakpoint on ( should also work on Linux and BSD)

in order to only catch the actual segfault rather than the GC synchronization points.
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Debugging during Julia’s build process (bootstrap)

Errors that occur during need special handling. Julia is built in two stages, constructing and . To see what commands

are running at the time of failure, use .

At the time of this writing, you can debug build errors during the phase from the directory using:

Youmight need to delete all the files in to get this to work.

You can debug the phase using:

By default, any errors will cause Julia to exit, even under gdb. To catch an error ”in the act”, set a breakpoint in (there

are several other useful spots, for specific kinds of failures, including: , , and ).

Once an error is caught, a useful technique is to walk up the stack and examine the function by inspecting the related

call to . To take a real-world example:

Themost recent is at frame #3, so we can go back there and look at the AST for the function . This is the uniqued name

for somemethod of . in this frame is a , so we can look at the type signature, if any, from the field:

Then, we can look at the AST for this function:

Finally, and perhaps most usefully, we can force the function to be recompiled in order to step through the codegen

process. To do this, clear the cached from the :
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Then, set a breakpoint somewhere useful (e.g. , , , etc.), and run codegen:

Debugging precompilation errors

Module precompilation spawns a separate Julia process to precompile each module. Setting a breakpoint or catching

failures inaprecompileworker requiresattachingadebugger to theworker. Theeasiest approach is to set thedebugger

watch for new process launchesmatching a given name. For example:

or:

Then run a script/command to start precompilation. As described earlier, use conditional breakpoints in the parent

process to catch specific file-loading events and narrow the debugging window. (some operating systems may require

alternative approaches, such as following each from the parent process)

Mozilla’s Record and Replay Framework (rr)

Julia nowworks out of the boxwith rr, the lightweight recording and deterministic debugging framework fromMozilla.

This allows you to replay the trace of an execution deterministically. The replayed execution’s address spaces, register

contents, syscall data etc are exactly the same in every run.

A recent version of rr (3.1.0 or higher) is required.

72.3 Using Valgrindwith Julia

Valgrind is a tool for memory debugging, memory leak detection, and profiling. This section describes things to keep in

mindwhen using Valgrind to debugmemory issues with Julia.

General considerations

By default, Valgrind assumes that there is no self modifying code in the programs it runs. This assumptionworks fine in

most instances but fails miserably for a just-in-time compiler like . For this reason it is crucial to pass to , else codemay

crash or behave unexpectedly (often in subtle ways).

In some cases, to better detect memory errors using Valgrind it can help to compile with memory pools disabled. The

compile-time flag disables memory pools in Julia, and disables memory pools in FemtoLisp. To build with both flags,

add the following line to :

Another thing to note: if your program uses multiple workers processes, it is likely that you want all such worker pro-

cesses to run under Valgrind, not just the parent process. To do this, pass to .

Suppressions

Valgrindwill typically display spuriouswarnings as it runs. To reduce the number of suchwarnings, it helps to provide a

suppressions file to Valgrind. A sample suppressions file is included in the Julia source distribution at .

The suppressions file can be used from the source directory as follows:

http://rr-project.org/
http://valgrind.org/
http://valgrind.org/docs/manual/manual-core.html#manual-core.suppress
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Anymemoryerrors thataredisplayedshouldeitherbereportedasbugsorcontributedasadditional suppressions. Note

that some versions of Valgrind are shippedwith insufficient default suppressions, so that may be one thing to consider

before submitting any bugs.

Running the Julia test suite under Valgrind

It is possible to run the entire Julia test suite under Valgrind, but it does take quite some time (typically several hours).

To do so, run the following command from the directory:

If youwould like to see a report of ”definite” memory leaks, pass the flags to as well.

Caveats

Valgrind currently does not support multiple rounding modes, so code that adjusts the rounding mode will behave dif-

ferently when run under Valgrind.

In general, if after setting you find that your program behaves differently when run under Valgrind, it may help to pass

to as you investigate further. This will enable the minimal Valgrind machinery but will also run much faster than when

the full memory checker is enabled.

72.4 Sanitizer support

General considerations

Using Clang’s sanitizers obviously require you to use Clang (), but there’s another catch: most sanitizers require a run-

time library, provided by the host compiler, while the instrumented code generated by Julia’s JIT relies on functionality

from that library. This implies that the LLVMversionof your host compilermatches that of the LLVM library usedwithin

Julia.

An easy solution is to have an dedicated build folder for providing amatching toolchain, by buildingwith . You can then

refer to this toolchain from another build folder by specifying while overriding the and variables.

Address Sanitizer (ASAN)

For detecting or debuggingmemory bugs, you can use Clang’s address sanitizer (ASAN). By compiling with you enable

ASAN for the Julia compiler and its generated code. In addition, you can specify to sanitize the LLVM library as well.

Note that theseoptions incur ahighperformance andmemory cost. For example, usingASAN for Julia andLLVMmakes

takes 8-10 times as long while using 20 times as muchmemory (this can be reduced to respectively a factor of 3 and 4

by using the options described below).

By default, Julia sets the ASANflag,which is required for signal delivery towork properly. You can define other options

using the environment flag, in which case you’ll need to repeat the default option mentioned before. For example,

memory usage can be reduced by specifying and , at the cost of backtrace accuracy. For now, Julia also sets , but this

should be removed in the future.

Memory Sanitizer (MSAN)

For detecting use of uninitializedmemory, you can use Clang’s memory sanitizer (MSAN) by compiling with .

https://github.com/JuliaLang/julia/issues/8314#issuecomment-55766210
https://bugs.kde.org/show_bug.cgi?id=136779
http://clang.llvm.org/docs/AddressSanitizer.html
http://clang.llvm.org/docs/MemorySanitizer.html
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