
The Julia Language

The Julia Project

August 17, 2017

Contents

Contents i

I Home 1

II Julia Documentation 3

1 Manual 5

2 Standard Library 7

3 Developer Documentation 9

III Manual 11

4 Introduction 13

5 Getting Started 15

5.1 Resources . 17

6 Variables 19

6.1 Allowed Variable Names . 20

6.2 Stylistic Conventions . 21

7 Integers and Floating-Point Numbers 23

7.1 Integers . 24

Overflow behavior . 26

Division errors . 26

i

ii CONTENTS

7.2 Floating-Point Numbers . 26

Floating-point zero . 28

Special floating-point values . 28

Machine epsilon . 29

Rounding modes . 30

Background and References . 31

7.3 Arbitrary Precision Arithmetic . 31

7.4 Numeric Literal Coefficients . 33

Syntax Conflicts . 33

7.5 Literal zero and one . 34

8 Mathematical Operations and Elementary Functions 35

8.1 Arithmetic Operators . 35

8.2 Bitwise Operators . 36

8.3 Updating operators . 36

8.4 Vectorized ”dot” operators . 37

8.5 Numeric Comparisons . 37

Chaining comparisons . 40

Elementary Functions . 40

8.6 Operator Precedence . 40

8.7 Numerical Conversions . 41

Rounding functions . 42

Division functions . 42

Sign and absolute value functions . 42

Powers, logs and roots . 42

Trigonometric and hyperbolic functions . 42

Special functions . 44

9 Complex and Rational Numbers 45

9.1 Complex Numbers . 45

9.2 Rational Numbers . 48

10 Strings 51

10.1 Characters . 52

10.2 String Basics . 53

10.3 Unicode and UTF-8 . 54

10.4 Concatenation . 56

10.5 Interpolation . 56

10.6 Triple-Quoted String Literals . 57

10.7 Common Operations . 58

10.8 Non-Standard String Literals . 59

10.9 Regular Expressions . 60

10.10Byte Array Literals . 63

10.11Version Number Literals . 64

10.12Raw String Literals . 65

11 Functions 67

11.1 Argument Passing Behavior . 68

11.2 The return Keyword . 68

11.3 Operators Are Functions . 69

11.4 Operators With Special Names . 69

11.5 Anonymous Functions . 70

CONTENTS iii

11.6 Multiple Return Values . 70

11.7 Varargs Functions . 71

11.8 Optional Arguments . 73

11.9 Keyword Arguments . 73

11.10Evaluation Scope of Default Values . 74

11.11Do-Block Syntax for Function Arguments . 74

11.12Dot Syntax for Vectorizing Functions . 76

11.13Further Reading . 77

12 Control Flow 79

12.1 Compound Expressions . 79

12.2 Conditional Evaluation . 80

12.3 Short-Circuit Evaluation . 83

12.4 Repeated Evaluation: Loops . 85

12.5 Exception Handling . 88

Built-in Exceptions . 88

The throw() function . 89

Errors . 90

Warnings and informational messages . 90

The try/catch statement . 91

finally Clauses . 92

12.6 Tasks (aka Coroutines) . 92

Core task operations . 94

Tasks and events . 94

Task states . 95

13 Scope of Variables 97

13.1 Global Scope . 98

13.2 Local Scope . 98

Soft Local Scope . 99

Hard Local Scope . 100

Hard vs. Soft Local Scope . 102

Let Blocks . 103

For Loops and Comprehensions . 104

13.3 Constants . 104

14 Types 107

14.1 Type Declarations . 108

14.2 Abstract Types . 109

14.3 Primitive Types . 111

14.4 Composite Types . 111

14.5 Mutable Composite Types . 113

14.6 Declared Types . 114

14.7 Type Unions . 114

14.8 Parametric Types . 115

Parametric Composite Types . 115

Parametric Abstract Types . 118

Tuple Types . 120

Vararg Tuple Types . 120

Parametric Primitive Types . 122

14.9 UnionAll Types . 122

14.10Type Aliases . 123

iv CONTENTS

14.11Operations on Types . 124

14.12Custom pretty-printing . 125

14.13 ”Value types” . 126

14.14Nullable Types: Representing Missing Values . 127

Constructing Nullable objects . 127

Checking if a Nullable object has a value . 128

Safely accessing the value of a Nullable object . 128

Performing operations on Nullable objects . 129

15 Methods 131

15.1 Defining Methods . 131

15.2 Method Ambiguities . 134

15.3 Parametric Methods . 135

15.4 Redefining Methods . 137

15.5 Parametrically-constrained Varargs methods . 139

15.6 Note on Optional and keyword Arguments . 139

15.7 Function-like objects . 140

15.8 Empty generic functions . 140

15.9 Method design and the avoidance of ambiguities . 140

Tuple and NTuple arguments . 141

Orthogonalize your design . 141

Dispatch on one argument at a time . 142

Abstract containers and element types . 142

Complex method ”cascades” with default arguments . 142

16 Constructors 145

16.1 Outer Constructor Methods . 145

16.2 Inner Constructor Methods . 146

16.3 Incomplete Initialization . 147

16.4 Parametric Constructors . 149

16.5 Case Study: Rational . 151

16.6 Constructors and Conversion . 152

16.7 Outer-only constructors . 153

17 Conversion and Promotion 155

17.1 Conversion . 156

Defining New Conversions . 156

Case Study: Rational Conversions . 157

17.2 Promotion . 158

Defining Promotion Rules . 159

Case Study: Rational Promotions . 160

18 Interfaces 161

18.1 Iteration . 161

18.2 Indexing . 163

18.3 Abstract Arrays . 164

19 Modules 169

19.1 Summary of module usage . 170

Modules and files . 170

Standard modules . 171

Default top-level definitions and bare modules . 171

CONTENTS v

Relative and absolute module paths . 171

Module file paths . 172

Namespace miscellanea . 172

Module initialization and precompilation . 172

20 Documentation 177

20.1 Accessing Documentation . 179

20.2 Functions & Methods . 180

20.3 Advanced Usage . 180

Dynamic documentation . 181

20.4 Syntax Guide . 181

Functions and Methods . 182

Macros . 182

Types . 183

Modules . 183

Global Variables . 184

Multiple Objects . 184

Macro-generated code . 185

20.5 Markdown syntax . 185

Inline elements . 185

Toplevel elements . 187

20.6 Markdown Syntax Extensions . 191

21 Metaprogramming 193

21.1 Program representation . 193

Symbols . 194

21.2 Expressions and evaluation . 195

Quoting . 195

Interpolation . 196

eval() and effects . 196

Functions on Expressions . 198

21.3 Macros . 198

Basics . 198

Hold up: why macros? . 199

Macro invocation . 200

Building an advanced macro . 200

Hygiene . 202

21.4 Code Generation . 203

21.5 Non-Standard String Literals . 204

21.6 Generated functions . 206

An advanced example . 209

22 Multi-dimensional Arrays 211

22.1 Arrays . 211

Basic Functions . 211

Construction and Initialization . 212

Concatenation . 212

Typed array initializers . 213

Comprehensions . 213

Generator Expressions . 214

Indexing . 215

Assignment . 216

vi CONTENTS

Supported index types . 216

Iteration . 219

Array traits . 219

Array and Vectorized Operators and Functions . 219

Broadcasting . 220

Implementation . 221

22.2 Sparse Matrices . 222

Compressed Sparse Column (CSC) Storage . 223

Sparse matrix constructors . 223

Sparse matrix operations . 224

Correspondence of dense and sparse methods . 224

23 Linear algebra 227

23.1 Special matrices . 229

Elementary operations . 229

Matrix factorizations . 229

The uniform scaling operator . 230

23.2 Matrix factorizations . 230

24 Networking and Streams 233

24.1 Basic Stream I/O . 233

24.2 Text I/O . 234

24.3 IO Output Contextual Properties . 235

24.4 Working with Files . 235

24.5 A simple TCP example . 236

24.6 Resolving IP Addresses . 237

25 Parallel Computing 239

25.1 Code Availability and Loading Packages . 240

25.2 Data Movement . 242

26 Global variables 245

26.1 Parallel Map and Loops . 246

26.2 Synchronization With Remote References . 248

26.3 Scheduling . 248

26.4 Channels . 249

26.5 Remote References and AbstractChannels . 252

26.6 Channels and RemoteChannels . 252

26.7 Remote References and Distributed Garbage Collection . 254

26.8 Shared Arrays . 254

26.9 Shared Arrays and Distributed Garbage Collection . 257

26.10ClusterManagers . 257

26.11Cluster Managers with Custom Transports . 260

26.12Network Requirements for LocalManager and SSHManager . 261

26.13Cluster Cookie . 262

26.14Specifying Network Topology (Experimental) . 262

26.15Multi-Threading (Experimental) . 263

Setup . 263

The @threadsMacro . 263

26.16@threadcall (Experimental) . 264

27 Date and DateTime 265

CONTENTS vii

27.1 Constructors . 265

27.2 Durations/Comparisons . 267

27.3 Accessor Functions . 268

27.4 Query Functions . 269

27.5 TimeType-Period Arithmetic . 270

27.6 Adjuster Functions . 271

27.7 Period Types . 273

27.8 Rounding . 273

Rounding Epoch . 274

28 InteractingWith Julia 277

28.1 The different prompt modes . 277

The Julian mode . 277

Help mode . 278

Shell mode . 279

Search modes . 279

28.2 Key bindings . 279

Customizing keybindings . 279

28.3 Tab completion . 280

28.4 Customizing Colors . 282

29 Running External Programs 285

29.1 Interpolation . 286

29.2 Quoting . 287

29.3 Pipelines . 288

Avoiding Deadlock in Pipelines . 289

Complex Example . 290

30 Calling C and Fortran Code 291

30.1 Creating C-Compatible Julia Function Pointers . 293

30.2 Mapping C Types to Julia . 294

Auto-conversion: . 294

Type Correspondences: . 295

Bits Types: . 295

Struct Type correspondences . 297

Type Parameters . 298

SIMD Values . 298

Memory Ownership . 299

When to use T, Ptr{T} and Ref{T} . 299

30.3 Mapping C Functions to Julia . 299

ccall/cfunction argument translation guide . 299

ccall/cfunction return type translation guide . 300

Passing Pointers for Modifying Inputs . 301

Special Reference Syntax for ccall (deprecated): . 302

30.4 Some Examples of C Wrappers . 302

30.5 Garbage Collection Safety . 304

30.6 Non-constant Function Specifications . 304

30.7 Indirect Calls . 304

30.8 Calling Convention . 305

30.9 Accessing Global Variables . 305

30.10Accessing Data through a Pointer . 306

30.11Thread-safety . 306

viii CONTENTS

30.12More About Callbacks . 306

30.13C++ . 307

31 Handling Operating System Variation 311

32 Environment Variables 313

32.1 File locations . 313

JULIA_HOME . 313

JULIA_LOAD_PATH . 314

JULIA_PKGDIR . 314

JULIA_HISTORY . 314

JULIA_PKGRESOLVE_ACCURACY . 314

32.2 External applications . 315

JULIA_SHELL . 315

JULIA_EDITOR . 315

32.3 Parallelization . 315

JULIA_CPU_CORES . 315

JULIA_WORKER_TIMEOUT . 315

JULIA_NUM_THREADS . 315

JULIA_THREAD_SLEEP_THRESHOLD . 315

JULIA_EXCLUSIVE . 315

32.4 REPL formatting . 316

JULIA_ERROR_COLOR . 316

JULIA_WARN_COLOR . 316

JULIA_INFO_COLOR . 316

JULIA_INPUT_COLOR . 316

JULIA_ANSWER_COLOR . 316

JULIA_STACKFRAME_LINEINFO_COLOR . 316

JULIA_STACKFRAME_FUNCTION_COLOR . 316

32.5 Debugging and profiling . 316

JULIA_GC_ALLOC_POOL, JULIA_GC_ALLOC_OTHER, JULIA_GC_ALLOC_PRINT 316

JULIA_GC_NO_GENERATIONAL . 317

JULIA_GC_WAIT_FOR_DEBUGGER . 317

ENABLE_JITPROFILING . 317

JULIA_LLVM_ARGS . 317

JULIA_DEBUG_LOADING . 317

33 Embedding Julia 319

33.1 High-Level Embedding . 319

Using julia-config to automatically determine build parameters . 320

33.2 Converting Types . 321

33.3 Calling Julia Functions . 321

33.4 Memory Management . 322

Manipulating the Garbage Collector . 323

33.5 Working with Arrays . 323

Accessing Returned Arrays . 324

Multidimensional Arrays . 324

33.6 Exceptions . 324

Throwing Julia Exceptions . 324

34 Packages 327

34.1 Package Status . 327

CONTENTS ix

34.2 Adding and Removing Packages . 328

34.3 Offline Installation of Packages . 330

34.4 Installing Unregistered Packages . 330

34.5 Updating Packages . 331

34.6 Checkout, Pin and Free . 332

34.7 Custom METADATA Repository . 334

35 Package Development 335

35.1 Initial Setup . 335

35.2 Making changes to an existing package . 335

Documentation changes . 335

Code changes . 336

Dirty packages . 337

Making a branch post hoc . 337

Squashing and rebasing . 338

35.3 Creating a new Package . 339

REQUIRE speaks for itself . 339

Guidelines for naming a package . 339

Generating the package . 340

Loading Static Non-Julia Files . 341

Making Your Package Available . 341

Tagging and Publishing Your Package . 342

35.4 Fixing Package Requirements . 344

35.5 Requirements Specification . 345

36 Profiling 347

36.1 Basic usage . 347

36.2 Accumulation and clearing . 350

36.3 Options for controlling the display of profile results . 350

36.4 Configuration . 351

37 Memory allocation analysis 353

38 Stack Traces 355

38.1 Viewing a stack trace . 355

38.2 Extracting useful information . 356

38.3 Error handling . 357

38.4 Comparison with backtrace() . 358

39 Performance Tips 361

39.1 Avoid global variables . 361

39.2 Measure performance with @time and pay attention to memory allocation 362

39.3 Tools . 362

39.4 Avoid containers with abstract type parameters . 363

39.5 Type declarations . 363

Avoid fields with abstract type . 363

Avoid fields with abstract containers . 365

Annotate values taken from untyped locations . 368

Declare types of keyword arguments . 368

39.6 Break functions into multiple definitions . 369

39.7 Write ”type-stable” functions . 369

39.8 Avoid changing the type of a variable . 369

x CONTENTS

39.9 Separate kernel functions (aka, function barriers) . 370

39.10Types with values-as-parameters . 371

39.11The dangers of abusing multiple dispatch (aka, more on types with values-as-parameters) 372

39.12Access arrays in memory order, along columns . 373

39.13Pre-allocating outputs . 374

39.14More dots: Fuse vectorized operations . 376

39.15Consider using views for slices . 376

39.16Avoid string interpolation for I/O . 377

39.17Optimize network I/O during parallel execution . 377

39.18Fix deprecation warnings . 378

39.19Tweaks . 378

39.20Performance Annotations . 378

39.21Treat Subnormal Numbers as Zeros . 381

39.22@code_warntype . 382

40 WorkflowTips 385

40.1 REPL-based workflow . 385

A basic editor/REPL workflow . 385

Simplify initialization . 386

40.2 Browser-based workflow . 386

41 Style Guide 387

41.1 Write functions, not just scripts . 387

41.2 Avoid writing overly-specific types . 387

41.3 Handle excess argument diversity in the caller . 388

41.4 Append ! to names of functions that modify their arguments . 388

41.5 Avoid strange type Unions . 389

41.6 Avoid type Unions in fields . 389

41.7 Avoid elaborate container types . 389

41.8 Use naming conventions consistent with Julia’s base/ . 389

41.9 Don’t overuse try-catch . 390

41.10Don’t parenthesize conditions . 390

41.11Don’t overuse ... 390

41.12Don’t use unnecessary static parameters . 390

41.13Avoid confusion about whether something is an instance or a type 390

41.14Don’t overuse macros . 391

41.15Don’t expose unsafe operations at the interface level . 391

41.16Don’t overload methods of base container types . 391

41.17Avoid type piracy . 391

41.18Be careful with type equality . 392

41.19Do not write x->f(x) . 392

41.20Avoid using floats for numeric literals in generic code when possible 392

42 Frequently Asked Questions 395

42.1 Sessions and the REPL . 395

How do I delete an object in memory? . 395

How can I modify the declaration of a type in my session? . 395

42.2 Functions . 395

I passed an argument x to a function, modified it inside that function, but on the outside, 395

Can I use using or import inside a function? . 396

What does the ... operator do? . 397

The two uses of the ... operator: slurping and splatting . 397

CONTENTS xi

... combines many arguments into one argument in function definitions 397

... splits one argument into many different arguments in function calls 398

42.3 Types, type declarations, and constructors . 398

What does ”type-stable” mean? . 398

Why does Julia give a DomainError for certain seemingly-sensible operations? 398

Why does Julia use native machine integer arithmetic? . 399

What are the possible causes of an UndefVarError during remote execution? 403

42.4 Packages and Modules . 404

What is the difference between ”using” and ”importall”? . 404

42.5 Nothingness and missing values . 404

How does ”null” or ”nothingness” work in Julia? . 404

42.6 Memory . 405

Why does x += y allocate memory when x and y are arrays? . 405

42.7 Asynchronous IO and concurrent synchronous writes . 405

Why do concurrent writes to the same stream result in inter-mixed output? 405

42.8 Julia Releases . 406

Do I want to use a release, beta, or nightly version of Julia? . 406

When are deprecated functions removed? . 407

43 Noteworthy Differences from other Languages 409

43.1 Noteworthy differences from MATLAB . 409

43.2 Noteworthy differences from R . 411

43.3 Noteworthy differences from Python . 413

43.4 Noteworthy differences from C/C++ . 414

44 Unicode Input 417

IV Standard Library 419

45 Essentials 421

45.1 Introduction . 421

45.2 Getting Around . 421

45.3 All Objects . 427

45.4 Types . 433

45.5 Generic Functions . 440

45.6 Syntax . 442

45.7 Nullables . 444

45.8 System . 446

45.9 Errors . 454

45.10Events . 459

45.11Reflection . 460

45.12 Internals . 463

46 Collections and Data Structures 467

46.1 Iteration . 467

46.2 General Collections . 469

46.3 Iterable Collections . 471

46.4 Indexable Collections . 490

46.5 Associative Collections . 492

46.6 Set-Like Collections . 499

46.7 Dequeues . 501

xii CONTENTS

47 Mathematics 507

47.1 Mathematical Operators . 507

47.2 Mathematical Functions . 522

47.3 Statistics . 545

47.4 Signal Processing . 549

48 Numbers 557

48.1 Standard Numeric Types . 557

Abstract number types . 557

Concrete number types . 558

48.2 Data Formats . 560

48.3 General Number Functions and Constants . 565

Integers . 572

48.4 BigFloats . 573

48.5 Random Numbers . 574

49 Strings 577

50 Arrays 593

50.1 Constructors and Types . 593

50.2 Basic functions . 600

50.3 Broadcast and vectorization . 606

50.4 Indexing and assignment . 608

50.5 Views (SubArrays and other view types) . 612

50.6 Concatenation and permutation . 615

50.7 Array functions . 627

50.8 Combinatorics . 634

50.9 BitArrays . 637

50.10Sparse Vectors and Matrices . 639

51 Tasks and Parallel Computing 647

51.1 Tasks . 647

51.2 General Parallel Computing Support . 654

51.3 Shared Arrays . 665

51.4 Multi-Threading . 666

51.5 ccall using a threadpool (Experimental) . 671

51.6 Synchronization Primitives . 672

51.7 Cluster Manager Interface . 674

52 Linear Algebra 677

52.1 Standard Functions . 677

52.2 Low-level matrix operations . 733

52.3 BLAS Functions . 737

BLAS Character Arguments . 737

52.4 LAPACK Functions . 744

53 Constants 761

54 Filesystem 765

55 I/O and Network 777

55.1 General I/O . 777

55.2 Text I/O . 787

CONTENTS xiii

55.3 Multimedia I/O . 794

55.4 Memory-mapped I/O . 797

55.5 Network I/O . 799

56 Punctuation 805

57 Sorting and Related Functions 807

57.1 Sorting Functions . 809

57.2 Order-Related Functions . 812

57.3 Sorting Algorithms . 814

58 Package Manager Functions 815

59 Dates and Time 819

59.1 Dates and Time Types . 819

59.2 Dates Functions . 820

Accessor Functions . 824

Query Functions . 828

Adjuster Functions . 830

Periods . 832

Rounding Functions . 832

Conversion Functions . 834

Constants . 835

60 Iteration utilities 837

61 Unit Testing 843

61.1 Testing Base Julia . 843

61.2 Basic Unit Tests . 843

61.3 Working with Test Sets . 845

61.4 Other Test Macros . 846

61.5 Broken Tests . 848

61.6 Creating Custom AbstractTestSet Types . 848

62 C Interface 851

63 LLVM Interface 859

64 C Standard Library 861

65 Dynamic Linker 865

66 Profiling 867

67 StackTraces 871

68 SIMD Support 873

V Developer Documentation 875

69 Reflection and introspection 877

69.1 Module bindings . 877

69.2 DataType fields . 877

xiv CONTENTS

69.3 Subtypes . 878

69.4 DataType layout . 878

69.5 Function methods . 878

69.6 Expansion and lowering . 878

69.7 Intermediate and compiled representations . 879

70 Documentation of Julia’s Internals 881

70.1 Initialization of the Julia runtime . 881

main() . 881

julia_init() . 881

true_main() . 883

Base._start . 883

Base.eval . 883

jl_atexit_hook() . 883

julia_save() . 883

70.2 Julia ASTs . 883

Lowered form . 884

Surface syntax AST . 889

70.3 More about types . 893

Types and sets (and Any and Union{}/Bottom) . 893

UnionAll types . 894

Free variables . 895

TypeNames . 895

Tuple types . 896

Diagonal types . 898

Subtyping diagonal variables . 899

Introduction to the internal machinery . 899

Subtyping and method sorting . 900

70.4 Memory layout of Julia Objects . 900

Object layout (jl_value_t) . 900

Garbage collector mark bits . 901

Object allocation . 901

70.5 Eval of Julia code . 903

Julia Execution . 903

Parsing . 904

Macro Expansion . 904

Type Inference . 904

JIT Code Generation . 905

System Image . 906

70.6 Calling Conventions . 906

Julia Native Calling Convention . 906

JL Call Convention . 907

C ABI . 907

70.7 High-level Overview of the Native-Code Generation Process . 907

Representation of Pointers . 907

Representation of Intermediate Values . 907

Union representation . 908

Specialized Calling Convention Signature Representation . 908

70.8 Julia Functions . 909

Method Tables . 909

Function calls . 909

Adding methods . 909

CONTENTS xv

Creating generic functions . 910

Closures . 910

Constructors . 910

Builtins . 910

Keyword arguments . 911

Compiler efficiency issues . 912

70.9 Base.Cartesian . 913

Principles of usage . 913

Basic syntax . 914

70.10Talking to the compiler (the :meta mechanism) . 918

70.11SubArrays . 919

Indexing: cartesian vs. linear indexing . 919

Index replacement . 919

SubArray design . 919

70.12System Image Building . 923

Building the Julia system image . 923

70.13Working with LLVM . 923

Overview of Julia to LLVM Interface . 924

Building Julia with a different version of LLVM . 924

Passing options to LLVM . 924

Improving LLVM optimizations for Julia . 925

70.14printf() and stdio in the Julia runtime . 925

Libuv wrappers for stdio . 925

Interface between JL_STD* and Julia code . 925

printf() during initialization . 926

Legacy ios.c library . 926

70.15Bounds checking . 926

Eliding bounds checks . 927

Propagating inbounds . 927

The bounds checking call hierarchy . 927

70.16Proper maintenance and care of multi-threading locks . 928

Locks . 928

Broken Locks . 929

Shared Global Data Structures . 929

70.17Arrays with custom indices . 930

Generalizing existing code . 931

Writing custom array types with non-1 indexing . 933

Summary . 934

70.18Base.LibGit2 . 934

70.19Module loading . 957

Experimental features . 957

71 Developing/debugging Julia’s C code 959

71.1 Reporting and analyzing crashes (segfaults) . 959

Version/Environment info . 959

Segfaults during bootstrap (sysimg.jl) . 959

Segfaults when running a script . 960

Errors during Julia startup . 960

Glossary . 961

71.2 gdb debugging tips . 961

Displaying Julia variables . 961

Useful Julia variables for Inspecting . 961

xvi CONTENTS

Useful Julia functions for Inspecting those variables . 962

Inserting breakpoints for inspection from gdb . 962

Inserting breakpoints upon certain conditions . 962

Dealing with signals . 963

Debugging during Julia’s build process (bootstrap) . 963

Debugging precompilation errors . 964

Mozilla’s Record and Replay Framework (rr) . 964

71.3 Using Valgrind with Julia . 965

General considerations . 965

Suppressions . 965

Running the Julia test suite under Valgrind . 965

Caveats . 965

71.4 Sanitizer support . 966

General considerations . 966

Address Sanitizer (ASAN) . 966

Memory Sanitizer (MSAN) . 966

Part I

Home

1

Part II

Julia Documentation

3

Chapter 1

Manual

• Introduction

• Getting Started

• Variables

• Integers and Floating-Point Numbers

• Mathematical Operations and Elementary Functions

• Complex and Rational Numbers

• Strings

• Functions

• Control Flow

• Scope of Variables

• Types

• Methods

• Constructors

• Conversion and Promotion

• Interfaces

• Modules

• Documentation

• Metaprogramming

• Multi-dimensional Arrays

• Linear Algebra

• Networking and Streams

• Parallel Computing

• Date and DateTime

5

6 CHAPTER 1. MANUAL

• Running External Programs

• Calling C and Fortran Code

• Handling Operating System Variation

• Environment Variables

• Interacting With Julia

• Embedding Julia

• Packages

• Profiling

• Stack Traces

• Performance Tips

• Workflow Tips

• Style Guide

• Frequently Asked Questions

• Noteworthy Differences from other Languages

• Unicode Input

Chapter 2

Standard Library

• Essentials

• Collections and Data Structures

• Mathematics

• Numbers

• Strings

• Arrays

• Tasks and Parallel Computing

• Linear Algebra

• Constants

• Filesystem

• I/O and Network

• Punctuation

• Sorting and Related Functions

• Package Manager Functions

• Dates and Time

• Iteration utilities

• Unit Testing

• C Interface

• C Standard Library

• Dynamic Linker

• Profiling

• StackTraces

• SIMD Support

7

Chapter 3

Developer Documentation

• Reflection and introspection

• Documentation of Julia’s Internals

– Initialization of the Julia runtime

– Julia ASTs

– More about types

– Memory layout of Julia Objects

– Eval of Julia code

– Calling Conventions

– High-level Overview of the Native-Code Generation Process

– Julia Functions

– Base.Cartesian

– Talking to the compiler (the :meta mechanism)

– SubArrays

– System Image Building

– Working with LLVM

– printf() and stdio in the Julia runtime

– Bounds checking

– Proper maintenance and care of multi-threading locks

– Arrays with custom indices

– Base.LibGit2

– Module loading

• Developing/debugging Julia’s C code

– Reporting and analyzing crashes (segfaults)

– gdb debugging tips

– Using Valgrind with Julia

– Sanitizer support

9

Part III

Manual

11

Chapter 4

Introduction

Scientific computing has traditionally required the highest performance, yet domain experts have largely moved to

slower dynamic languages for daily work. We believe there are many good reasons to prefer dynamic languages for

these applications, and we do not expect their use to diminish. Fortunately, modern language design and compiler

techniquesmake it possible tomostly eliminate the performance trade-offand provide a single environment productive

enough for prototyping and efficient enough for deploying performance-intensive applications. The Julia programming

language fills this role: it is a flexible dynamic language, appropriate for scientific and numerical computing, with

performance comparable to traditional statically-typed languages.

Because Julia’s compiler is different from the interpreters used for languages like Python or R, you may find that Julia’s

performance is unintuitive at first. If you find that something is slow, we highly recommend reading through the

Performance Tips section before trying anything else. Once you understand how Julia works, it’s easy to write code

that’s nearly as fast as C.

Julia features optional typing, multiple dispatch, and good performance, achieved using type inference and just-in-

time (JIT) compilation, implemented using LLVM. It is multi-paradigm, combining features of imperative, functional,

and object-oriented programming. Julia provides ease and expressiveness for high-level numerical computing, in the

same way as languages such as R, MATLAB, and Python, but also supports general programming. To achieve this,

Julia builds upon the lineage of mathematical programming languages, but also borrows much from popular dynamic

languages, including Lisp, Perl, Python, Lua, and Ruby.

The most significant departures of Julia from typical dynamic languages are:

• The core language imposes very little; the standard library is written in Julia itself, including primitive operations

like integer arithmetic

• A rich language of types for constructing and describing objects, that can also optionally be used to make type

declarations

• The ability to define function behavior across many combinations of argument types via multiple dispatch

• Automatic generation of efficient, specialized code for different argument types

• Good performance, approaching that of statically-compiled languages like C

Although one sometimes speaks of dynamic languages as being ”typeless”, they are definitely not: every object,

whether primitive or user-defined, has a type. The lack of type declarations in most dynamic languages, however,

means that one cannot instruct the compiler about the types of values, and often cannot explicitly talk about types at

all. In static languages, on the other hand, while one can – and usually must – annotate types for the compiler, types

exist only at compile time and cannot be manipulated or expressed at run time. In Julia, types are themselves run-time

objects, and can also be used to convey information to the compiler.

13

https://en.wikipedia.org/wiki/Just-in-time_compilation
https://en.wikipedia.org/wiki/Just-in-time_compilation
https://en.wikipedia.org/wiki/Low_Level_Virtual_Machine
https://en.wikipedia.org/wiki/Lisp_(programming_language)
https://en.wikipedia.org/wiki/Perl_(programming_language)
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Lua_(programming_language)
https://en.wikipedia.org/wiki/Ruby_(programming_language)
https://en.wikipedia.org/wiki/Multiple_dispatch

14 CHAPTER 4. INTRODUCTION

While the casual programmer need not explicitly use types or multiple dispatch, they are the core unifying features

of Julia: functions are defined on different combinations of argument types, and applied by dispatching to the most

specific matching definition. This model is a good fit for mathematical programming, where it is unnatural for the first

argument to ”own” an operation as in traditional object-oriented dispatch. Operators are just functions with special

notation – to extend addition to new user-defined data types, you define new methods for the + function. Existing

code then seamlessly applies to the new data types.

Partly because of run-time type inference (augmented by optional type annotations), and partly because of a strong

focus on performance from the inception of the project, Julia’s computational efficiency exceeds that of other dynamic

languages, and even rivals that of statically-compiled languages. For large scale numerical problems, speed always has

been, continues to be, and probably always will be crucial: the amount of data being processed has easily kept pace

with Moore’s Law over the past decades.

Julia aims to create an unprecedented combination of ease-of-use, power, and efficiency in a single language. In

addition to the above, some advantages of Julia over comparable systems include:

• Free and open source (MIT licensed)

• User-defined types are as fast and compact as built-ins

• No need to vectorize code for performance; devectorized code is fast

• Designed for parallelism and distributed computation

• Lightweight ”green” threading (coroutines)

• Unobtrusive yet powerful type system

• Elegant and extensible conversions and promotions for numeric and other types

• Efficient support for Unicode, including but not limited to UTF-8

• Call C functions directly (no wrappers or special APIs needed)

• Powerful shell-like capabilities for managing other processes

• Lisp-like macros and other metaprogramming facilities

https://github.com/JuliaLang/julia/blob/master/LICENSE.md
https://en.wikipedia.org/wiki/Coroutine
https://en.wikipedia.org/wiki/Unicode
https://en.wikipedia.org/wiki/UTF-8

Chapter 5

Getting Started

Julia installation is straightforward, whether using precompiled binaries or compiling from source. Download and install

Julia by following the instructions at https://julialang.org/downloads/.

The easiest way to learn and experiment with Julia is by starting an interactive session (also known as a read-eval-print

loop or ”repl”) by double-clicking the Julia executable or running julia from the command line:

$ julia

_

_ _ _(_)_ | A fresh approach to technical computing

(_) | (_) (_) | Documentation: https://docs.julialang.org

_ _ _| |_ __ _ | Type "?help" for help.

| | | | | | |/ _` | |

| | |_| | | | (_| | | Version 0.5.0-dev+2440 (2016-02-01 02:22 UTC)

_/ |__'_|_|_|__'_| | Commit 2bb94d6 (11 days old master)

|__/ | x86_64-apple-darwin13.1.0

julia> 1 + 2

3

julia> ans

3

To exit the interactive session, type ^D – the control key together with the d key or type quit(). When run in

interactive mode, julia displays a banner and prompts the user for input. Once the user has entered a complete

expression, such as 1 + 2, and hits enter, the interactive session evaluates the expression and shows its value. If an

expression is entered into an interactive session with a trailing semicolon, its value is not shown. The variable ans

is bound to the value of the last evaluated expression whether it is shown or not. The ans variable is only bound in

interactive sessions, not when Julia code is run in other ways.

To evaluate expressions written in a source file file.jl, write include("file.jl").

To run code in a file non-interactively, you can give it as the first argument to the julia command:

$ julia script.jl arg1 arg2...

As the example implies, the following command-line arguments to julia are taken as command-line arguments to

the program script.jl, passed in the global constant ARGS. The name of the script itself is passed in as the global

PROGRAM_FILE. Note that ARGS is also set when script code is given using the -e option on the command line (see

the julia help output below) but PROGRAM_FILE will be empty. For example, to just print the arguments given to a

script, you could do this:

$ julia -e 'println(PROGRAM_FILE); for x in ARGS; println(x); end' foo bar

15

https://julialang.org/downloads/

16 CHAPTER 5. GETTING STARTED

foo

bar

Or you could put that code into a script and run it:

$ echo 'println(PROGRAM_FILE); for x in ARGS; println(x); end' > script.jl

$ julia script.jl foo bar

script.jl

foo

bar

The -- delimiter can be used to separate command-line args to the scriptfile from args to Julia:

$ julia --color=yes -O -- foo.jl arg1 arg2..

Julia can be started in parallel mode with either the -p or the --machinefile options. -p nwill launch an additional

nworker processes, while --machinefile filewill launch aworker for each line in file file. The machines defined

in file must be accessible via a passwordless ssh login, with Julia installed at the same location as the current host.

Each machine definition takes the form [count*][user@]host[:port] [bind_addr[:port]] . user defaults

to current user, port to the standard ssh port. count is the number of workers to spawn on the node, and defaults

to 1. The optional bind-to bind_addr[:port] specifies the ip-address and port that other workers should use to

connect to this worker.

If you have code that you want executed whenever Julia is run, you can put it in ~/.juliarc.jl:

$ echo 'println("Greetings! ! ?")' > ~/.juliarc.jl

$ julia

Greetings! ! ?

...

There are variousways to run Julia code and provide options, similar to those available for the perl and ruby programs:

julia [switches] -- [programfile] [args...]

-v, --version Display version information

-h, --help Print this message

-J, --sysimage <file> Start up with the given system image file

--precompiled={yes|no} Use precompiled code from system image if available

--compilecache={yes|no} Enable/disable incremental precompilation of modules

-H, --home <dir> Set location of `julia` executable

--startup-file={yes|no} Load ~/.juliarc.jl

--handle-signals={yes|no} Enable or disable Julia's default signal handlers

-e, --eval <expr> Evaluate <expr>

-E, --print <expr> Evaluate and show <expr>

-L, --load <file> Load <file> immediately on all processors

-p, --procs {N|auto} Integer value N launches N additional local worker processes

"auto" launches as many workers as the number of local cores

--machinefile <file> Run processes on hosts listed in <file>

-i Interactive mode; REPL runs and isinteractive() is true

-q, --quiet Quiet startup (no banner)

--color={yes|no} Enable or disable color text

--history-file={yes|no} Load or save history

5.1. RESOURCES 17

--compile={yes|no|all|min}Enable or disable JIT compiler, or request exhaustive compilation

-C, --cpu-target <target> Limit usage of cpu features up to <target>

-O, --optimize={0,1,2,3} Set the optimization level (default is 2 if unspecified or 3 if

specified as -O)

-g, -g <level> Enable / Set the level of debug info generation (default is 1 if

unspecified or 2 if specified as -g)

--inline={yes|no} Control whether inlining is permitted (overrides functions declared as

@inline)

--check-bounds={yes|no} Emit bounds checks always or never (ignoring declarations)

--math-mode={ieee,fast} Disallow or enable unsafe floating point optimizations (overrides

@fastmath declaration)

--depwarn={yes|no|error} Enable or disable syntax and method deprecation warnings ("error"

turns warnings into errors)

--output-o name Generate an object file (including system image data)

--output-ji name Generate a system image data file (.ji)

--output-bc name Generate LLVM bitcode (.bc)

--output-incremental=no Generate an incremental output file (rather than complete)

--code-coverage={none|user|all}, --code-coverage

Count executions of source lines (omitting setting is equivalent to "

user")

--track-allocation={none|user|all}, --track-allocation

Count bytes allocated by each source line

5.1 Resources

In addition to this manual, there are various other resources that may help new users get started with Julia:

• Julia and IJulia cheatsheet

• Learn Julia in a few minutes

• Learn Julia the Hard Way

• Julia by Example

• Hands-on Julia

• Tutorial for Homer Reid’s numerical analysis class

• An introductory presentation

• Videos from the Julia tutorial at MIT

• YouTube videos from the JuliaCons

http://math.mit.edu/{~}stevenj/Julia-cheatsheet.pdf
https://learnxinyminutes.com/docs/julia/
https://github.com/chrisvoncsefalvay/learn-julia-the-hard-way
http://samuelcolvin.github.io/JuliaByExample/
https://github.com/dpsanders/hands_on_julia
http://homerreid.dyndns.org/teaching/18.330/JuliaProgramming.shtml
https://raw.githubusercontent.com/ViralBShah/julia-presentations/master/Fifth-Elephant-2013/Fifth-Elephant-2013.pdf
https://julialang.org/blog/2013/03/julia-tutorial-MIT
https://www.youtube.com/user/JuliaLanguage/playlists

Chapter 6

Variables

A variable, in Julia, is a name associated (or bound) to a value. It’s useful when you want to store a value (that you

obtained after some math, for example) for later use. For example:

Assign the value 10 to the variable x

julia> x = 10

10

Doing math with x's value

julia> x + 1

11

Reassign x's value

julia> x = 1 + 1

2

You can assign values of other types, like strings of text

julia> x = "Hello World!"

"Hello World!"

Julia provides an extremely flexible system for naming variables. Variable names are case-sensitive, and have no se-

mantic meaning (that is, the language will not treat variables differently based on their names).

julia> x = 1.0

1.0

julia> y = -3

-3

julia> Z = "My string"

"My string"

julia> customary_phrase = "Hello world!"

"Hello world!"

julia> UniversalDeclarationOfHumanRightsStart = ""

""

Unicode names (in UTF-8 encoding) are allowed:

19

20 CHAPTER 6. VARIABLES

julia> δ = 0.00001

1.0e-5

julia> = "Hello"

"Hello"

In the Julia REPL and several other Julia editing environments, you can type many Unicode math symbols by typing

the backslashed LaTeX symbol name followed by tab. For example, the variable name δ can be entered by typing

\delta-tab, or even α by \alpha-tab-\hat- tab-_2-tab. (If you find a symbol somewhere, e.g. in someone else’s

code, that you don’t know how to type, the REPL help will tell you: just type ? and then paste the symbol.)

Julia will even let you redefine built-in constants and functions if needed:

julia> pi

π = 3.1415926535897...

julia> pi = 3

WARNING: imported binding for pi overwritten in module Main

3

julia> pi

3

julia> sqrt(100)

10.0

julia> sqrt = 4

WARNING: imported binding for sqrt overwritten in module Main

4

However, this is obviously not recommended to avoid potential confusion.

6.1 Allowed Variable Names

Variable names must begin with a letter (A-Z or a-z), underscore, or a subset of Unicode code points greater than

00A0; in particular, Unicode character categories Lu/Ll/Lt/Lm/Lo/Nl (letters), Sc/So (currency and other symbols), and

a few other letter-like characters (e.g. a subset of the Sm math symbols) are allowed. Subsequent characters may also

include ! and digits (0-9 and other characters in categories Nd/No), as well as other Unicode code points: diacritics

and othermodifying marks (categories Mn/Mc/Me/Sk), some punctuation connectors (category Pc), primes, and a few

other characters.

Operators like + are also valid identifiers, but are parsed specially. In some contexts, operators can be used just like

variables; for example (+) refers to the addition function, and (+) = f will reassign it. Most of the Unicode infix

operators (in category Sm), such as , are parsed as infix operators and are available for user-defined methods (e.g. you

can use const = kron to define as an infix Kronecker product).

The only explicitly disallowed names for variables are the names of built-in statements:

julia> else = false

ERROR: syntax: unexpected "else"

julia> try = "No"

ERROR: syntax: unexpected "="

http://www.fileformat.info/info/unicode/category/index.htm

6.2. STYLISTIC CONVENTIONS 21

Some Unicode characters are considered to be equivalent in identifiers. Different ways of entering Unicode combining

characters (e.g., accents) are treated as equivalent (specifically, Julia identifiers areNFC-normalized). TheUnicode char-

acters (U+025B: Latin small letter open e) and µ (U+00B5: micro sign) are treated as equivalent to the corresponding

Greek letters, because the former are easily accessible via some input methods.

6.2 Stylistic Conventions

While Julia imposes few restrictions on valid names, it has become useful to adopt the following conventions:

• Names of variables are in lower case.

• Word separation can be indicated by underscores ('_'), but use of underscores is discouraged unless the name

would be hard to read otherwise.

• Names of Types and Modules begin with a capital letter and word separation is shown with upper camel case

instead of underscores.

• Names of functions and macros are in lower case, without underscores.

• Functions that write to their arguments have names that end in !. These are sometimes called ”mutating” or ”in-

place” functions because they are intended to produce changes in their arguments after the function is called,

not just return a value.

For more information about stylistic conventions, see the Style Guide.

Chapter 7

Integers and Floating-Point Numbers

Integers and floating-point values are the basic building blocks of arithmetic and computation. Built-in representations

of such values are called numeric primitives, while representations of integers and floating-point numbers as immediate

values in code are known as numeric literals. For example, 1 is an integer literal, while 1.0 is a floating-point literal;

their binary in-memory representations as objects are numeric primitives.

Julia provides a broad range of primitive numeric types, and a full complement of arithmetic and bitwise operators as

well as standard mathematical functions are defined over them. These map directly onto numeric types and opera-

tions that are natively supported on modern computers, thus allowing Julia to take full advantage of computational

resources. Additionally, Julia provides software support for Arbitrary Precision Arithmetic, which can handle opera-

tions on numeric values that cannot be represented effectively in native hardware representations, but at the cost of

relatively slower performance.

The following are Julia’s primitive numeric types:

• Integer types:

Type Signed? Number of bits Smallest value Largest value

Int8 8 -2^7 2^7 - 1

UInt8 8 0 2^8 - 1

Int16 16 -2^15 2^15 - 1

UInt16 16 0 2^16 - 1

Int32 32 -2^31 2^31 - 1

UInt32 32 0 2^32 - 1

Int64 64 -2^63 2^63 - 1

UInt64 64 0 2^64 - 1

Int128 128 -2^127 2^127 - 1

UInt128 128 0 2^128 - 1

Bool N/A 8 false (0) true (1)

• Floating-point types:

Additionally, full support for Complex and Rational Numbers is built on top of these primitive numeric types. All

numeric types interoperate naturally without explicit casting, thanks to a flexible, user-extensible type promotion

system.

23

24 CHAPTER 7. INTEGERS AND FLOATING-POINT NUMBERS

Type Precision Number of bits

Float16 half 16

Float32 single 32

Float64 double 64

7.1 Integers

Literal integers are represented in the standard manner:

julia> 1

1

julia> 1234

1234

The default type for an integer literal depends on whether the target system has a 32-bit architecture or a 64-bit

architecture:

32-bit system:

julia> typeof(1)

Int32

64-bit system:

julia> typeof(1)

Int64

The Julia internal variable Sys.WORD_SIZE indicates whether the target system is 32-bit or 64-bit:

32-bit system:

julia> Sys.WORD_SIZE

32

64-bit system:

julia> Sys.WORD_SIZE

64

Julia also defines the types Int and UInt, which are aliases for the system’s signed and unsigned native integer types

respectively:

32-bit system:

julia> Int

Int32

julia> UInt

UInt32

64-bit system:

julia> Int

Int64

julia> UInt

UInt64

https://en.wikipedia.org/wiki/Half-precision_floating-point_format
https://en.wikipedia.org/wiki/Single_precision_floating-point_format
https://en.wikipedia.org/wiki/Double_precision_floating-point_format

7.1. INTEGERS 25

Larger integer literals that cannot be represented using only 32 bits but can be represented in 64 bits always create

64-bit integers, regardless of the system type:

32-bit or 64-bit system:

julia> typeof(3000000000)

Int64

Unsigned integers are input and output using the 0x prefix and hexadecimal (base 16) digits 0-9a-f (the capitalized

digits A-F also work for input). The size of the unsigned value is determined by the number of hex digits used:

julia> 0x1

0x01

julia> typeof(ans)

UInt8

julia> 0x123

0x0123

julia> typeof(ans)

UInt16

julia> 0x1234567

0x01234567

julia> typeof(ans)

UInt32

julia> 0x123456789abcdef

0x0123456789abcdef

julia> typeof(ans)

UInt64

This behavior is based on the observation that when one uses unsigned hex literals for integer values, one typically is

using them to represent a fixed numeric byte sequence, rather than just an integer value.

Recall that the variable ans is set to the value of the last expression evaluated in an interactive session. This does not

occur when Julia code is run in other ways.

Binary and octal literals are also supported:

julia> 0b10

0x02

julia> typeof(ans)

UInt8

julia> 0o10

0x08

julia> typeof(ans)

UInt8

26 CHAPTER 7. INTEGERS AND FLOATING-POINT NUMBERS

The minimum and maximum representable values of primitive numeric types such as integers are given by the type-

min() and typemax() functions:

julia> (typemin(Int32), typemax(Int32))

(-2147483648, 2147483647)

julia> for T in [Int8,Int16,Int32,Int64,Int128,UInt8,UInt16,UInt32,UInt64,UInt128]

println("$(lpad(T,7)): [$(typemin(T)),$(typemax(T))]")

end

Int8: [-128,127]

Int16: [-32768,32767]

Int32: [-2147483648,2147483647]

Int64: [-9223372036854775808,9223372036854775807]

Int128: [-170141183460469231731687303715884105728,170141183460469231731687303715884105727]

UInt8: [0,255]

UInt16: [0,65535]

UInt32: [0,4294967295]

UInt64: [0,18446744073709551615]

UInt128: [0,340282366920938463463374607431768211455]

The values returned by typemin() and typemax() are always of the given argument type. (The above expression

uses several features we have yet to introduce, including for loops, Strings, and Interpolation, but should be easy

enough to understand for users with some existing programming experience.)

Overflow behavior

In Julia, exceeding the maximum representable value of a given type results in a wraparound behavior:

julia> x = typemax(Int64)

9223372036854775807

julia> x + 1

-9223372036854775808

julia> x + 1 == typemin(Int64)

true

Thus, arithmetic with Julia integers is actually a form of modular arithmetic. This reflects the characteristics of the

underlying arithmetic of integers as implemented on modern computers. In applications where overflow is possible,

explicit checking for wraparound produced by overflow is essential; otherwise, the BigInt type in Arbitrary Precision

Arithmetic is recommended instead.

Division errors

Integer division (the div function) has two exceptional cases: dividing by zero, and dividing the lowest negative number

(typemin()) by -1. Both of these cases throw a DivideError. The remainder and modulus functions (rem and mod)

throw a DivideErrorwhen their second argument is zero.

7.2 Floating-Point Numbers

Literal floating-point numbers are represented in the standard formats:

https://en.wikipedia.org/wiki/Modular_arithmetic

7.2. FLOATING-POINT NUMBERS 27

julia> 1.0

1.0

julia> 1.

1.0

julia> 0.5

0.5

julia> .5

0.5

julia> -1.23

-1.23

julia> 1e10

1.0e10

julia> 2.5e-4

0.00025

The above results are all Float64 values. Literal Float32 values can be entered by writing an f in place of e:

julia> 0.5f0

0.5f0

julia> typeof(ans)

Float32

julia> 2.5f-4

0.00025f0

Values can be converted to Float32 easily:

julia> Float32(-1.5)

-1.5f0

julia> typeof(ans)

Float32

Hexadecimal floating-point literals are also valid, but only as Float64 values:

julia> 0x1p0

1.0

julia> 0x1.8p3

12.0

julia> 0x.4p-1

0.125

julia> typeof(ans)

Float64

28 CHAPTER 7. INTEGERS AND FLOATING-POINT NUMBERS

Half-precision floating-point numbers are also supported (Float16), but they are implemented in software and use

Float32 for calculations.

julia> sizeof(Float16(4.))

2

julia> 2*Float16(4.)

Float16(8.0)

The underscore _ can be used as digit separator:

julia> 10_000, 0.000_000_005, 0xdead_beef, 0b1011_0010

(10000, 5.0e-9, 0xdeadbeef, 0xb2)

Floating-point zero

Floating-point numbers have two zeros, positive zero and negative zero. They are equal to each other but have dif-

ferent binary representations, as can be seen using the bits function: :

julia> 0.0 == -0.0

true

julia> bits(0.0)

"00"

julia> bits(-0.0)

"1000"

Special floating-point values

There are three specified standard floating-point values that do not correspond to any point on the real number line:

Float16 Float32 Float64 Name Description

Inf16 Inf32 Inf positive infinity a value greater than all finite floating-point values

-Inf16 -Inf32 -Inf negative

infinity

a value less than all finite floating-point values

NaN16 NaN32 NaN not a number a value not == to any floating-point value (including

itself)

For further discussion of how these non-finite floating-point values are ordered with respect to each other and other

floats, see Numeric Comparisons. By the IEEE 754 standard, these floating-point values are the results of certain

arithmetic operations:

julia> 1/Inf

0.0

julia> 1/0

Inf

julia> -5/0

-Inf

https://en.wikipedia.org/wiki/Signed_zero
https://en.wikipedia.org/wiki/IEEE_754-2008

7.2. FLOATING-POINT NUMBERS 29

julia> 0.000001/0

Inf

julia> 0/0

NaN

julia> 500 + Inf

Inf

julia> 500 - Inf

-Inf

julia> Inf + Inf

Inf

julia> Inf - Inf

NaN

julia> Inf * Inf

Inf

julia> Inf / Inf

NaN

julia> 0 * Inf

NaN

The typemin() and typemax() functions also apply to floating-point types:

julia> (typemin(Float16),typemax(Float16))

(-Inf16, Inf16)

julia> (typemin(Float32),typemax(Float32))

(-Inf32, Inf32)

julia> (typemin(Float64),typemax(Float64))

(-Inf, Inf)

Machine epsilon

Most real numbers cannot be represented exactlywith floating-point numbers, and so formanypurposes it is important

to know the distance between two adjacent representable floating-point numbers, which is often known as machine

epsilon.

Julia provides eps(), which gives the distance between 1.0 and the next larger representable floating-point value:

julia> eps(Float32)

1.1920929f-7

julia> eps(Float64)

2.220446049250313e-16

julia> eps() # same as eps(Float64)

2.220446049250313e-16

https://en.wikipedia.org/wiki/Machine_epsilon
https://en.wikipedia.org/wiki/Machine_epsilon

30 CHAPTER 7. INTEGERS AND FLOATING-POINT NUMBERS

These values are 2.0^-23 and 2.0^-52 as Float32 and Float64 values, respectively. The eps() function can

also take a floating-point value as an argument, and gives the absolute difference between that value and the next

representable floating point value. That is, eps(x) yields a value of the same type as x such that x + eps(x) is the

next representable floating-point value larger than x:

julia> eps(1.0)

2.220446049250313e-16

julia> eps(1000.)

1.1368683772161603e-13

julia> eps(1e-27)

1.793662034335766e-43

julia> eps(0.0)

5.0e-324

The distance between two adjacent representable floating-point numbers is not constant, but is smaller for smaller

values and larger for larger values. In other words, the representable floating-point numbers are densest in the real

number line near zero, and grow sparser exponentially as one moves farther away from zero. By definition, eps(1.0)

is the same as eps(Float64) since 1.0 is a 64-bit floating-point value.

Julia also provides the nextfloat() and prevfloat() functions which return the next largest or smallest repre-

sentable floating-point number to the argument respectively:

julia> x = 1.25f0

1.25f0

julia> nextfloat(x)

1.2500001f0

julia> prevfloat(x)

1.2499999f0

julia> bits(prevfloat(x))

"00111111100111111111111111111111"

julia> bits(x)

"00111111101000000000000000000000"

julia> bits(nextfloat(x))

"00111111101000000000000000000001"

This example highlights the general principle that the adjacent representable floating-point numbers also have adjacent

binary integer representations.

Rounding modes

If a number doesn’t have an exact floating-point representation, it must be rounded to an appropriate representable

value, however, if wanted, the manner in which this rounding is done can be changed according to the rounding modes

presented in the IEEE 754 standard.

julia> x = 1.1; y = 0.1;

https://en.wikipedia.org/wiki/IEEE_754-2008

7.3. ARBITRARY PRECISION ARITHMETIC 31

julia> x + y

1.2000000000000002

julia> setrounding(Float64,RoundDown) do

x + y

end

1.2

The default mode used is always RoundNearest, which rounds to the nearest representable value, with ties rounded

towards the nearest value with an even least significant bit.

Warning

Rounding is generally only correct for basic arithmetic functions (+(), -(), *(), /() and sqrt()) and

type conversion operations. Many other functions assume the default RoundNearest mode is set, and

can give erroneous results when operating under other rounding modes.

Background and References

Floating-point arithmetic entails many subtletieswhich can be surprising to userswho are unfamiliarwith the low-level

implementation details. However, these subtleties are described in detail in most books on scientific computation, and

also in the following references:

• The definitive guide to floating point arithmetic is the IEEE 754-2008 Standard; however, it is not available for

free online.

• For a brief but lucid presentation of how floating-point numbers are represented, see John D. Cook’s article

on the subject as well as his introduction to some of the issues arising from how this representation differs in

behavior from the idealized abstraction of real numbers.

• Also recommended is Bruce Dawson’s series of blog posts on floating-point numbers.

• For an excellent, in-depth discussion of floating-point numbers and issues of numerical accuracy encountered

when computing with them, see David Goldberg’s paper What Every Computer Scientist Should Know About

Floating-Point Arithmetic.

• For even more extensive documentation of the history of, rationale for, and issues with floating-point numbers,

as well as discussion of many other topics in numerical computing, see the collected writings of William Kahan,

commonly known as the ”Father of Floating-Point”. Of particular interest may be An Interview with the Old

Man of Floating-Point.

7.3 Arbitrary Precision Arithmetic

To allow computations with arbitrary-precision integers and floating point numbers, Julia wraps the GNU Multiple

Precision Arithmetic Library (GMP) and the GNU MPFR Library, respectively. The BigInt and BigFloat types are

available in Julia for arbitrary precision integer and floating point numbers respectively.

Constructors exist to create these types from primitive numerical types, and parse() can be used to construct them

from AbstractStrings. Once created, they participate in arithmetic with all other numeric types thanks to Julia’s

type promotion and conversion mechanism:

julia> BigInt(typemax(Int64)) + 1

9223372036854775808

http://standards.ieee.org/findstds/standard/754-2008.html
https://www.johndcook.com/blog/2009/04/06/anatomy-of-a-floating-point-number/
https://www.johndcook.com/blog/2009/04/06/numbers-are-a-leaky-abstraction/
https://randomascii.wordpress.com/2012/05/20/thats-not-normalthe-performance-of-odd-floats/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.22.6768&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.22.6768&rep=rep1&type=pdf
https://people.eecs.berkeley.edu/{~}wkahan/
https://en.wikipedia.org/wiki/William_Kahan
https://people.eecs.berkeley.edu/{~}wkahan/ieee754status/754story.html
https://people.eecs.berkeley.edu/{~}wkahan/ieee754status/754story.html
https://gmplib.org
https://gmplib.org
http://www.mpfr.org

32 CHAPTER 7. INTEGERS AND FLOATING-POINT NUMBERS

julia> parse(BigInt, "123456789012345678901234567890") + 1

123456789012345678901234567891

julia> parse(BigFloat, "1.23456789012345678901")

1.234567890123456789010004

julia> BigFloat(2.0^66) / 3

2.459565876494606882133344e+19

julia> factorial(BigInt(40))

815915283247897734345611269596115894272000000000

However, type promotion between the primitive types above and BigInt/BigFloat is not automatic and must be

explicitly stated.

julia> x = typemin(Int64)

-9223372036854775808

julia> x = x - 1

9223372036854775807

julia> typeof(x)

Int64

julia> y = BigInt(typemin(Int64))

-9223372036854775808

julia> y = y - 1

-9223372036854775809

julia> typeof(y)

BigInt

The default precision (in number of bits of the significand) and roundingmode of BigFloat operations can be changed

globally by calling setprecision() and setrounding(), and all further calculations will take these changes in ac-

count. Alternatively, the precision or the rounding can be changed only within the execution of a particular block of

code by using the same functions with a do block:

julia> setrounding(BigFloat, RoundUp) do

BigFloat(1) + parse(BigFloat, "0.1")

end

1.1003

julia> setrounding(BigFloat, RoundDown) do

BigFloat(1) + parse(BigFloat, "0.1")

end

1.099986

julia> setprecision(40) do

BigFloat(1) + parse(BigFloat, "0.1")

end

1.1000000000004

7.4. NUMERIC LITERAL COEFFICIENTS 33

7.4 Numeric Literal Coefficients

To make common numeric formulas and expressions clearer, Julia allows variables to be immediately preceded by a

numeric literal, implying multiplication. This makes writing polynomial expressions much cleaner:

julia> x = 3

3

julia> 2x^2 - 3x + 1

10

julia> 1.5x^2 - .5x + 1

13.0

It also makes writing exponential functions more elegant:

julia> 2^2x

64

The precedence of numeric literal coefficients is the same as that of unary operators such as negation. So 2^3x is

parsed as 2^(3x), and 2x^3 is parsed as 2*(x^3).

Numeric literals also work as coefficients to parenthesized expressions:

julia> 2(x-1)^2 - 3(x-1) + 1

3

Additionally, parenthesized expressions can be used as coefficients to variables, implying multiplication of the expres-

sion by the variable:

julia> (x-1)x

6

Neither juxtaposition of two parenthesized expressions, nor placing a variable before a parenthesized expression,

however, can be used to imply multiplication:

julia> (x-1)(x+1)

ERROR: MethodError: objects of type Int64 are not callable

julia> x(x+1)

ERROR: MethodError: objects of type Int64 are not callable

Both expressions are interpreted as function application: any expression that is not a numeric literal, when immediately

followed by a parenthetical, is interpreted as a function applied to the values in parentheses (see Functions for more

about functions). Thus, in both of these cases, an error occurs since the left-hand value is not a function.

The above syntactic enhancements significantly reduce the visual noise incurred when writing common mathematical

formulae. Note that nowhitespace may come between a numeric literal coefficient and the identifier or parenthesized

expression which it multiplies.

Syntax Conflicts

Juxtaposed literal coefficient syntax may conflict with two numeric literal syntaxes: hexadecimal integer literals and

engineering notation for floating-point literals. Here are some situations where syntactic conflicts arise:

• The hexadecimal integer literal expression 0xff could be interpreted as the numeric literal 0 multiplied by the

variable xff.

34 CHAPTER 7. INTEGERS AND FLOATING-POINT NUMBERS

• The floating-point literal expression 1e10 could be interpreted as the numeric literal 1multiplied by the variable

e10, and similarly with the equivalent E form.

In both cases, we resolve the ambiguity in favor of interpretation as a numeric literals:

• Expressions starting with 0x are always hexadecimal literals.

• Expressions starting with a numeric literal followed by e or E are always floating-point literals.

7.5 Literal zero and one

Julia provides functions which return literal 0 and 1 corresponding to a specified type or the type of a given variable.

Function Description

zero(x) Literal zero of type x or type of variable x

one(x) Literal one of type x or type of variable x

These functions are useful in Numeric Comparisons to avoid overhead from unnecessary type conversion.

Examples:

julia> zero(Float32)

0.0f0

julia> zero(1.0)

0.0

julia> one(Int32)

1

julia> one(BigFloat)

1.00

Chapter 8

Mathematical Operations and Elementary Functions

Julia provides a complete collection of basic arithmetic and bitwise operators across all of its numeric primitive types,

as well as providing portable, efficient implementations of a comprehensive collection of standard mathematical func-

tions.

8.1 Arithmetic Operators

The following arithmetic operators are supported on all primitive numeric types:

Expression Name Description

+x unary plus the identity operation

-x unary minus maps values to their additive inverses

x + y binary plus performs addition

x - y binary minus performs subtraction

x * y times performs multiplication

x / y divide performs division

x \ y inverse divide equivalent to y / x

x ^ y power raises x to the yth power

x % y remainder equivalent to rem(x,y)

as well as the negation on Bool types:

Expression Name Description

!x negation changes true to false and vice versa

Julia’s promotion system makes arithmetic operations on mixtures of argument types ”just work” naturally and auto-

matically. See Conversion and Promotion for details of the promotion system.

Here are some simple examples using arithmetic operators:

julia> 1 + 2 + 3

6

julia> 1 - 2

-1

julia> 3*2/12

0.5

35

https://en.wikipedia.org/wiki/Arithmetic#Arithmetic_operations

36 CHAPTER 8. MATHEMATICAL OPERATIONS AND ELEMENTARY FUNCTIONS

(By convention,we tend to space operatorsmore tightly if they get applied before other nearbyoperators. For instance,

we would generally write -x + 2 to reflect that first x gets negated, and then 2 is added to that result.)

8.2 Bitwise Operators

The following bitwise operators are supported on all primitive integer types:

Expression Name

~x bitwise not

x & y bitwise and

x | y bitwise or

x y bitwise xor (exclusive or)

x >>> y logical shift right

x >> y arithmetic shift right

x << y logical/arithmetic shift left

Here are some examples with bitwise operators:

julia> ~123

-124

julia> 123 & 234

106

julia> 123 | 234

251

julia> 123 234

145

julia> xor(123, 234)

145

julia> ~UInt32(123)

0xffffff84

julia> ~UInt8(123)

0x84

8.3 Updating operators

Every binary arithmetic and bitwise operator also has an updating version that assigns the result of the operation

back into its left operand. The updating version of the binary operator is formed by placing a = immediately after the

operator. For example, writing x += 3 is equivalent to writing x = x + 3:

julia> x = 1

1

julia> x += 3

4

julia> x

4

https://en.wikipedia.org/wiki/Bitwise_operation#Bitwise_operators
https://en.wikipedia.org/wiki/Logical_shift
https://en.wikipedia.org/wiki/Arithmetic_shift

8.4. VECTORIZED ”DOT” OPERATORS 37

The updating versions of all the binary arithmetic and bitwise operators are:

+= -= *= /= \= ÷= %= ^= &= |= = >>>= >>= <<=

Note

An updating operator rebinds the variable on the left-hand side. As a result, the type of the variable may

change.

julia> x = 0x01; typeof(x)

UInt8

julia> x *= 2 # Same as x = x * 2

2

julia> typeof(x)

Int64

8.4 Vectorized ”dot” operators

For every binary operation like ^, there is a corresponding ”dot” operation .^ that is automatically defined to perform

^ element-by-element on arrays. For example, [1,2,3] ^ 3 is not defined, since there is no standard mathematical

meaning to ”cubing” an array, but [1,2,3] .^ 3 is defined as computing the elementwise (or ”vectorized”) result

[1^3, 2^3, 3^3]. Similarly for unary operators like ! or √, there is a corresponding .√ that applies the operator

elementwise.

julia> [1,2,3] .^ 3

3-element Array{Int64,1}:

1

8

27

More specifically, a .^ b is parsed as the ”dot” call (^).(a,b), which performs a broadcast operation: it can combine

arrays and scalars, arrays of the same size (performing the operation elementwise), and even arrays of different shapes

(e.g. combining row and column vectors to produce a matrix). Moreover, like all vectorized ”dot calls,” these ”dot

operators” are fusing. For example, if you compute 2 .* A.^2 .+ sin.(A) (or equivalently @. 2A^2 + sin(A),

using the @. macro) for an array A, it performs a single loop over A, computing 2a^2 + sin(a) for each element of

A. In particular, nested dot calls like f.(g.(x)) are fused, and ”adjacent” binary operators like x .+ 3 .* x.^2 are

equivalent to nested dot calls (+).(x, (*).(3, (^).(x, 2))).

Furthermore, ”dotted” updating operators like a .+= b (or @. a += b) are parsed as a .= a .+ b, where .= is a

fused in-place assignment operation (see the dot syntax documentation).

Note the dot syntax is also applicable to user-defined operators. For example, if you define (A,B) = kron(A,B)

to give a convenient infix syntax A B for Kronecker products (kron), then [A,B] . [C,D]will compute [AC, BD]

with no additional coding.

8.5 Numeric Comparisons

Standard comparison operations are defined for all the primitive numeric types:

Here are some simple examples:

38 CHAPTER 8. MATHEMATICAL OPERATIONS AND ELEMENTARY FUNCTIONS

Operator Name

== equality

!=, ≠ inequality

< less than

<=, ≤ less than or equal to

> greater than

>=, ≥ greater than or equal to

julia> 1 == 1

true

julia> 1 == 2

false

julia> 1 != 2

true

julia> 1 == 1.0

true

julia> 1 < 2

true

julia> 1.0 > 3

false

julia> 1 >= 1.0

true

julia> -1 <= 1

true

julia> -1 <= -1

true

julia> -1 <= -2

false

julia> 3 < -0.5

false

Integers are compared in the standardmanner– bycomparison of bits. Floating-point numbers are compared according

to the IEEE 754 standard:

• Finite numbers are ordered in the usual manner.

• Positive zero is equal but not greater than negative zero.

• Inf is equal to itself and greater than everything else except NaN.

• -Inf is equal to itself and less then everything else except NaN.

• NaN is not equal to, not less than, and not greater than anything, including itself.

https://en.wikipedia.org/wiki/IEEE_754-2008

8.5. NUMERIC COMPARISONS 39

The last point is potentially surprising and thus worth noting:

julia> NaN == NaN

false

julia> NaN != NaN

true

julia> NaN < NaN

false

julia> NaN > NaN

false

and can cause especial headaches with Arrays:

julia> [1 NaN] == [1 NaN]

false

Julia provides additional functions to test numbers for special values, which can be useful in situations like hash key

comparisons:

Function Tests if

isequal(x, y) x and y are identical

isfinite(x) x is a finite number

isinf(x) x is infinite

isnan(x) x is not a number

isequal() considers NaNs equal to each other:

julia> isequal(NaN, NaN)

true

julia> isequal([1 NaN], [1 NaN])

true

julia> isequal(NaN, NaN32)

true

isequal() can also be used to distinguish signed zeros:

julia> -0.0 == 0.0

true

julia> isequal(-0.0, 0.0)

false

Mixed-type comparisons between signed integers, unsigned integers, and floats can be tricky. A great deal of care has

been taken to ensure that Julia does them correctly.

For other types, isequal() defaults to calling ==(), so if you want to define equality for your own types then you

only need to add a ==()method. If you define your own equality function, you should probably define a corresponding

hash() method to ensure that isequal(x,y) implies hash(x) == hash(y).

40 CHAPTER 8. MATHEMATICAL OPERATIONS AND ELEMENTARY FUNCTIONS

Chaining comparisons

Unlike most languages, with the notable exception of Python, comparisons can be arbitrarily chained:

julia> 1 < 2 <= 2 < 3 == 3 > 2 >= 1 == 1 < 3 != 5

true

Chaining comparisons is often quite convenient in numerical code. Chained comparisons use the && operator for scalar

comparisons, and the & operator for elementwise comparisons, which allows them to work on arrays. For example, 0

.< A .< 1 gives a boolean array whose entries are true where the corresponding elements of A are between 0 and

1.

Note the evaluation behavior of chained comparisons:

julia> v(x) = (println(x); x)

v (generic function with 1 method)

julia> v(1) < v(2) <= v(3)

2

1

3

true

julia> v(1) > v(2) <= v(3)

2

1

false

The middle expression is only evaluated once, rather than twice as it would be if the expression were written as v(1)

< v(2) && v(2) <= v(3). However, the order of evaluations in a chained comparison is undefined. It is strongly

recommended not to use expressions with side effects (such as printing) in chained comparisons. If side effects are

required, the short-circuit && operator should be used explicitly (see Short-Circuit Evaluation).

Elementary Functions

Julia provides a comprehensive collection of mathematical functions and operators. These mathematical operations

are defined over as broad a class of numerical values as permit sensible definitions, including integers, floating-point

numbers, rationals, and complex numbers, wherever such definitions make sense.

Moreover, these functions (like any Julia function) can be applied in ”vectorized” fashion to arrays and other collections

with the dot syntax f.(A), e.g. sin.(A)will compute the sine of each element of an array A.

8.6 Operator Precedence

Julia applies the following order of operations, from highest precedence to lowest:

For a complete list of every Julia operator’s precedence, see the top of this file: src/julia-parser.scm

You can also find the numerical precedence for any given operator via the built-in function Base.operator_prece-

dence, where higher numbers take precedence:

julia> Base.operator_precedence(:+), Base.operator_precedence(:*), Base.operator_precedence(:.)

(9, 11, 15)

https://en.wikipedia.org/wiki/Python_syntax_and_semantics#Comparison_operators
https://github.com/JuliaLang/julia/blob/master/src/julia-parser.scm

8.7. NUMERICAL CONVERSIONS 41

Category Operators

Syntax . followed by ::

Exponentiation ^

Fractions //

Multiplication * / % & \

Bitshifts << >> >>>

Addition + - |

Syntax : .. followed by |>

Comparisons > < >= <= == === != !== <:

Control flow && followed by || followed by ?

Assignments = += -= *= /= //= \= ^= ÷= %= |= &= = <<= >>= >>>=

julia> Base.operator_precedence(:+=), Base.operator_precedence(:(=)) # (Note the necessary parens

on `:(=)`)↪→

(1, 1)

8.7 Numerical Conversions

Julia supports three forms of numerical conversion, which differ in their handling of inexact conversions.

• The notation T(x) or convert(T,x) converts x to a value of type T.

– If T is a floating-point type, the result is the nearest representable value, which could be positive or

negative infinity.

– If T is an integer type, an InexactError is raised if x is not representable by T.

• x % T converts an integer x to a value of integer type T congruent to x modulo 2^n, where n is the number of

bits in T. In other words, the binary representation is truncated to fit.

• The Rounding functions take a type T as an optional argument. For example, round(Int,x) is a shorthand for

Int(round(x)).

The following examples show the different forms.

julia> Int8(127)

127

julia> Int8(128)

ERROR: InexactError()

Stacktrace:

[1] Int8(::Int64) at ./sysimg.jl:24

julia> Int8(127.0)

127

julia> Int8(3.14)

ERROR: InexactError()

Stacktrace:

[1] convert(::Type{Int8}, ::Float64) at ./float.jl:658

[2] Int8(::Float64) at ./sysimg.jl:24

42 CHAPTER 8. MATHEMATICAL OPERATIONS AND ELEMENTARY FUNCTIONS

julia> Int8(128.0)

ERROR: InexactError()

Stacktrace:

[1] convert(::Type{Int8}, ::Float64) at ./float.jl:658

[2] Int8(::Float64) at ./sysimg.jl:24

julia> 127 % Int8

127

julia> 128 % Int8

-128

julia> round(Int8,127.4)

127

julia> round(Int8,127.6)

ERROR: InexactError()

Stacktrace:

[1] trunc(::Type{Int8}, ::Float64) at ./float.jl:651

[2] round(::Type{Int8}, ::Float64) at ./float.jl:337

See Conversion and Promotion for how to define your own conversions and promotions.

Rounding functions

Function Description Return type

round(x) round x to the nearest integer typeof(x)

round(T, x) round x to the nearest integer T

floor(x) round x towards -Inf typeof(x)

floor(T, x) round x towards -Inf T

ceil(x) round x towards +Inf typeof(x)

ceil(T, x) round x towards +Inf T

trunc(x) round x towards zero typeof(x)

trunc(T, x) round x towards zero T

Division functions

Sign and absolute value functions

Powers, logs and roots

For an overview of why functions like hypot(), expm1(), and log1p() are necessary and useful, see John D. Cook’s

excellent pair of blog posts on the subject: expm1, log1p, erfc, and hypot.

Trigonometric and hyperbolic functions

All the standard trigonometric and hyperbolic functions are also defined:

sin cos tan cot sec csc

sinh cosh tanh coth sech csch

asin acos atan acot asec acsc

asinh acosh atanh acoth asech acsch

sinc cosc atan2

https://www.johndcook.com/blog/2010/06/07/math-library-functions-that-seem-unnecessary/
https://www.johndcook.com/blog/2010/06/02/whats-so-hard-about-finding-a-hypotenuse/

8.7. NUMERICAL CONVERSIONS 43

Function Description

div(x,y) truncated division; quotient rounded towards zero

fld(x,y) floored division; quotient rounded towards -Inf

cld(x,y) ceiling division; quotient rounded towards +Inf

rem(x,y) remainder; satisfies x == div(x,y)*y + rem(x,y); sign matches x

mod(x,y) modulus; satisfies x == fld(x,y)*y + mod(x,y); sign matches y

mod1(x,y) mod()with offset 1; returns r(0,y] for y>0 or r[y,0) for y<0, where mod(r, y) ==

mod(x, y)

mod2pi(x) modulus with respect to 2pi; 0 <= mod2pi(x) < 2pi

di-

vrem(x,y)

returns (div(x,y),rem(x,y))

fld-

mod(x,y)

returns (fld(x,y),mod(x,y))

gcd(x,y...) greatest positive common divisor of x, y,...

lcm(x,y...) least positive common multiple of x, y,...

Function Description

abs(x) a positive value with the magnitude of x

abs2(x) the squared magnitude of x

sign(x) indicates the sign of x, returning -1, 0, or +1

signbit(x) indicates whether the sign bit is on (true) or off (false)

copysign(x,y) a value with the magnitude of x and the sign of y

flipsign(x,y) a value with the magnitude of x and the sign of x*y

Function Description

sqrt(x), √x square root of x

cbrt(x), x cube root of x

hypot(x,y) hypotenuse of right-angled triangle with other sides of length x and y

exp(x) natural exponential function at x

expm1(x) accurate exp(x)-1 for x near zero

ldexp(x,n) x*2^n computed efficiently for integer values of n

log(x) natural logarithm of x

log(b,x) base b logarithm of x

log2(x) base 2 logarithm of x

log10(x) base 10 logarithm of x

log1p(x) accurate log(1+x) for x near zero

exponent(x) binary exponent of x

significand(x) binary significand (a.k.a. mantissa) of a floating-point number x

These are all single-argument functions, with the exception of atan2, which gives the angle in radians between the

x-axis and the point specified by its arguments, interpreted as x and y coordinates.

Additionally, sinpi(x) and cospi(x) are provided for more accurate computations of sin(pi*x) and cos(pi*x)

respectively.

In order to compute trigonometric functions with degrees instead of radians, suffix the function with d. For example,

sind(x) computes the sine of x where x is specified in degrees. The complete list of trigonometric functions with

degree variants is:

sind cosd tand cotd secd cscd

asind acosd atand acotd asecd acscd

https://en.wikipedia.org/wiki/Atan2
https://en.wikipedia.org/wiki/Radian

44 CHAPTER 8. MATHEMATICAL OPERATIONS AND ELEMENTARY FUNCTIONS

Special functions

Function Description

gamma(x) gamma function at x

lgamma(x) accurate log(gamma(x)) for large x

lfact(x) accurate log(factorial(x)) for large x; same as lgamma(x+1) for x > 1, zero otherwise

beta(x,y) beta function at x,y

lbeta(x,y) accurate log(beta(x,y)) for large x or y

https://en.wikipedia.org/wiki/Gamma_function
https://en.wikipedia.org/wiki/Beta_function

Chapter 9

Complex and Rational Numbers

Julia ships with predefined types representing both complex and rational numbers, and supports all standard Mathe-

matical Operations and Elementary Functions on them. Conversion and Promotion are defined so that operations on

any combination of predefined numeric types, whether primitive or composite, behave as expected.

9.1 Complex Numbers

The global constant im is bound to the complex number i, representing the principal square root of -1. It was deemed

harmful to co-opt the name i for a global constant, since it is such a popular index variable name. Since Julia allows

numeric literals to be juxtaposed with identifiers as coefficients, this binding suffices to provide convenient syntax for

complex numbers, similar to the traditional mathematical notation:

julia> 1 + 2im

1 + 2im

You can perform all the standard arithmetic operations with complex numbers:

julia> (1 + 2im)*(2 - 3im)

8 + 1im

julia> (1 + 2im)/(1 - 2im)

-0.6 + 0.8im

julia> (1 + 2im) + (1 - 2im)

2 + 0im

julia> (-3 + 2im) - (5 - 1im)

-8 + 3im

julia> (-1 + 2im)^2

-3 - 4im

julia> (-1 + 2im)^2.5

2.7296244647840084 - 6.960664459571898im

julia> (-1 + 2im)^(1 + 1im)

-0.27910381075826657 + 0.08708053414102428im

julia> 3(2 - 5im)

45

46 CHAPTER 9. COMPLEX AND RATIONAL NUMBERS

6 - 15im

julia> 3(2 - 5im)^2

-63 - 60im

julia> 3(2 - 5im)^-1.0

0.20689655172413796 + 0.5172413793103449im

The promotion mechanism ensures that combinations of operands of different types just work:

julia> 2(1 - 1im)

2 - 2im

julia> (2 + 3im) - 1

1 + 3im

julia> (1 + 2im) + 0.5

1.5 + 2.0im

julia> (2 + 3im) - 0.5im

2.0 + 2.5im

julia> 0.75(1 + 2im)

0.75 + 1.5im

julia> (2 + 3im) / 2

1.0 + 1.5im

julia> (1 - 3im) / (2 + 2im)

-0.5 - 1.0im

julia> 2im^2

-2 + 0im

julia> 1 + 3/4im

1.0 - 0.75im

Note that 3/4im == 3/(4*im) == -(3/4*im), since a literal coefficient binds more tightly than division.

Standard functions to manipulate complex values are provided:

julia> z = 1 + 2im

1 + 2im

julia> real(1 + 2im) # real part of z

1

julia> imag(1 + 2im) # imaginary part of z

2

julia> conj(1 + 2im) # complex conjugate of z

1 - 2im

julia> abs(1 + 2im) # absolute value of z

2.23606797749979

9.1. COMPLEX NUMBERS 47

julia> abs2(1 + 2im) # squared absolute value

5

julia> angle(1 + 2im) # phase angle in radians

1.1071487177940904

As usual, the absolute value (abs()) of a complex number is its distance from zero. abs2() gives the square of the

absolute value, and is of particular use for complex numbers where it avoids taking a square root. angle() returns

the phase angle in radians (also known as the argument or arg function). The full gamut of other Elementary Functions

is also defined for complex numbers:

julia> sqrt(1im)

0.7071067811865476 + 0.7071067811865475im

julia> sqrt(1 + 2im)

1.272019649514069 + 0.7861513777574233im

julia> cos(1 + 2im)

2.0327230070196656 - 3.0518977991518im

julia> exp(1 + 2im)

-1.1312043837568135 + 2.4717266720048188im

julia> sinh(1 + 2im)

-0.4890562590412937 + 1.4031192506220405im

Note that mathematical functions typically return real values when applied to real numbers and complex values when

applied to complex numbers. For example, sqrt() behaves differently when applied to -1 versus -1 + 0im even

though -1 == -1 + 0im:

julia> sqrt(-1)

ERROR: DomainError:

sqrt will only return a complex result if called with a complex argument. Try sqrt(complex(x)).

Stacktrace:

[1] sqrt(::Int64) at ./math.jl:434

julia> sqrt(-1 + 0im)

0.0 + 1.0im

The literal numeric coefficient notation does not work when constructing a complex number from variables. Instead,

the multiplication must be explicitly written out:

julia> a = 1; b = 2; a + b*im

1 + 2im

However, this is not recommended; Use the complex() function instead to construct a complex value directly from

its real and imaginary parts:

julia> a = 1; b = 2; complex(a, b)

1 + 2im

48 CHAPTER 9. COMPLEX AND RATIONAL NUMBERS

This construction avoids the multiplication and addition operations.

Inf and NaN propagate through complex numbers in the real and imaginary parts of a complex number as described

in the Special floating-point values section:

julia> 1 + Inf*im

1.0 + Inf*im

julia> 1 + NaN*im

1.0 + NaN*im

9.2 Rational Numbers

Julia has a rational number type to represent exact ratios of integers. Rationals are constructed using the // operator:

julia> 2//3

2//3

If the numerator and denominator of a rational have common factors, they are reduced to lowest terms such that the

denominator is non-negative:

julia> 6//9

2//3

julia> -4//8

-1//2

julia> 5//-15

-1//3

julia> -4//-12

1//3

This normalized form for a ratio of integers is unique, so equality of rational values can be tested by checking for

equality of the numerator and denominator. The standardized numerator and denominator of a rational value can be

extracted using the numerator() and denominator() functions:

julia> numerator(2//3)

2

julia> denominator(2//3)

3

Direct comparison of the numerator and denominator is generally not necessary, since the standard arithmetic and

comparison operations are defined for rational values:

julia> 2//3 == 6//9

true

julia> 2//3 == 9//27

false

9.2. RATIONAL NUMBERS 49

julia> 3//7 < 1//2

true

julia> 3//4 > 2//3

true

julia> 2//4 + 1//6

2//3

julia> 5//12 - 1//4

1//6

julia> 5//8 * 3//12

5//32

julia> 6//5 / 10//7

21//25

Rationals can be easily converted to floating-point numbers:

julia> float(3//4)

0.75

Conversion from rational to floating-point respects the following identity for any integral values of a and b, with the

exception of the case a == 0 and b == 0:

julia> a = 1; b = 2;

julia> isequal(float(a//b), a/b)

true

Constructing infinite rational values is acceptable:

julia> 5//0

1//0

julia> -3//0

-1//0

julia> typeof(ans)

Rational{Int64}

Trying to construct a NaN rational value, however, is not:

julia> 0//0

ERROR: ArgumentError: invalid rational: zero(Int64)//zero(Int64)

Stacktrace:

[1] Rational{Int64}(::Int64, ::Int64) at ./rational.jl:13

[2] //(::Int64, ::Int64) at ./rational.jl:40

As usual, the promotion system makes interactions with other numeric types effortless:

50 CHAPTER 9. COMPLEX AND RATIONAL NUMBERS

julia> 3//5 + 1

8//5

julia> 3//5 - 0.5

0.09999999999999998

julia> 2//7 * (1 + 2im)

2//7 + 4//7*im

julia> 2//7 * (1.5 + 2im)

0.42857142857142855 + 0.5714285714285714im

julia> 3//2 / (1 + 2im)

3//10 - 3//5*im

julia> 1//2 + 2im

1//2 + 2//1*im

julia> 1 + 2//3im

1//1 - 2//3*im

julia> 0.5 == 1//2

true

julia> 0.33 == 1//3

false

julia> 0.33 < 1//3

true

julia> 1//3 - 0.33

0.0033333333333332993

Chapter 10

Strings

Strings are finite sequences of characters. Of course, the real trouble comes when one asks what a character is. The

characters that English speakers are familiar with are the letters A, B, C, etc., together with numerals and common

punctuation symbols. These characters are standardized together with a mapping to integer values between 0 and

127 by the ASCII standard. There are, of course, many other characters used in non-English languages, including

variants of the ASCII characters with accents and other modifications, related scripts such as Cyrillic and Greek, and

scripts completely unrelated toASCII and English, includingArabic, Chinese, Hebrew, Hindi, Japanese, and Korean. The

Unicode standard tackles the complexities of what exactly a character is, and is generally accepted as the definitive

standard addressing this problem. Depending on your needs, you can either ignore these complexities entirely and

just pretend that only ASCII characters exist, or you can write code that can handle any of the characters or encodings

that one may encounter when handling non-ASCII text. Julia makes dealing with plain ASCII text simple and efficient,

and handling Unicode is as simple and efficient as possible. In particular, you can write C-style string code to process

ASCII strings, and they will work as expected, both in terms of performance and semantics. If such code encounters

non-ASCII text, it will gracefully fail with a clear error message, rather than silently introducing corrupt results. When

this happens, modifying the code to handle non-ASCII data is straightforward.

There are a few noteworthy high-level features about Julia’s strings:

• The built-in concrete type used for strings (and string literals) in Julia is String. This supports the full range of

Unicode characters via the UTF-8 encoding. (A transcode() function is provided to convert to/from other

Unicode encodings.)

• All string types are subtypes of the abstract type AbstractString, and external packages define additional

AbstractString subtypes (e.g. for other encodings). If you define a function expecting a string argument,

you should declare the type as AbstractString in order to accept any string type.

• Like C and Java, but unlike most dynamic languages, Julia has a first-class type representing a single character,

called Char. This is just a special kind of 32-bit primitive type whose numeric value represents a Unicode code

point.

• As in Java, strings are immutable: the value of an AbstractString object cannot be changed. To construct a

different string value, you construct a new string from parts of other strings.

• Conceptually, a string is a partial function from indices to characters: for some index values, no character value

is returned, and instead an exception is thrown. This allows for efficient indexing into strings by the byte index

of an encoded representation rather than by a character index, which cannot be implemented both efficiently

and simply for variable-width encodings of Unicode strings.

51

https://en.wikipedia.org/wiki/ASCII
https://en.wikipedia.org/wiki/Unicode
https://en.wikipedia.org/wiki/Unicode
https://en.wikipedia.org/wiki/UTF-8

52 CHAPTER 10. STRINGS

10.1 Characters

A Char value represents a single character: it is just a 32-bit primitive type with a special literal representation and

appropriate arithmetic behaviors, whose numeric value is interpreted as a Unicode code point. Here is how Char

values are input and shown:

julia> 'x'

'x': ASCII/Unicode U+0078 (category Ll: Letter, lowercase)

julia> typeof(ans)

Char

You can convert a Char to its integer value, i.e. code point, easily:

julia> Int('x')

120

julia> typeof(ans)

Int64

On 32-bit architectures, typeof(ans)will be Int32. You can convert an integer value back to a Char just as easily:

julia> Char(120)

'x': ASCII/Unicode U+0078 (category Ll: Letter, lowercase)

Not all integer values are valid Unicode code points, but for performance, the Char() conversion does not check that

every character value is valid. If you want to check that each converted value is a valid code point, use the isvalid()

function:

julia> Char(0x110000)

'\U110000': Unicode U+110000 (category Cn: Other, not assigned)

julia> isvalid(Char, 0x110000)

false

As of this writing, the valid Unicode code points are U+00 through U+d7ff and U+e000 through U+10ffff. These

have not all been assigned intelligible meanings yet, nor are they necessarily interpretable by applications, but all of

these values are considered to be valid Unicode characters.

You can input anyUnicode character in single quotes using \u followed by up to four hexadecimal digits or \U followed

by up to eight hexadecimal digits (the longest valid value only requires six):

julia> '\u0'

'\0': ASCII/Unicode U+0000 (category Cc: Other, control)

julia> '\u78'

'x': ASCII/Unicode U+0078 (category Ll: Letter, lowercase)

julia> '\u2200'

'': Unicode U+2200 (category Sm: Symbol, math)

julia> '\U10ffff'

'\U10ffff': Unicode U+10ffff (category Cn: Other, not assigned)

https://en.wikipedia.org/wiki/Code_point

10.2. STRING BASICS 53

Julia uses your system’s locale and language settings to determine which characters can be printed as-is and which

must be output using the generic, escaped \u or \U input forms. In addition to these Unicode escape forms, all of C’s

traditional escaped input forms can also be used:

julia> Int('\0')

0

julia> Int('\t')

9

julia> Int('\n')

10

julia> Int('\e')

27

julia> Int('\x7f')

127

julia> Int('\177')

127

julia> Int('\xff')

255

You can do comparisons and a limited amount of arithmetic with Char values:

julia> 'A' < 'a'

true

julia> 'A' <= 'a' <= 'Z'

false

julia> 'A' <= 'X' <= 'Z'

true

julia> 'x' - 'a'

23

julia> 'A' + 1

'B': ASCII/Unicode U+0042 (category Lu: Letter, uppercase)

10.2 String Basics

String literals are delimited by double quotes or triple double quotes:

julia> str = "Hello, world.\n"

"Hello, world.\n"

julia> """Contains "quote" characters"""

"Contains \"quote\" characters"

If you want to extract a character from a string, you index into it:

https://en.wikipedia.org/wiki/C_syntax#Backslash_escapes
https://en.wikipedia.org/wiki/C_syntax#Backslash_escapes

54 CHAPTER 10. STRINGS

julia> str[1]

'H': ASCII/Unicode U+0048 (category Lu: Letter, uppercase)

julia> str[6]

',': ASCII/Unicode U+002c (category Po: Punctuation, other)

julia> str[end]

'\n': ASCII/Unicode U+000a (category Cc: Other, control)

All indexing in Julia is 1-based: the first element of any integer-indexed object is found at index 1. (As we will see

below, this does not necessarily mean that the last element is found at index n, where n is the length of the string.)

In any indexing expression, the keyword end can be used as a shorthand for the last index (computed by endof(str)).

You can perform arithmetic and other operations with end, just like a normal value:

julia> str[end-1]

'.': ASCII/Unicode U+002e (category Po: Punctuation, other)

julia> str[end÷2]

' ': ASCII/Unicode U+0020 (category Zs: Separator, space)

Using an index less than 1 or greater than end raises an error:

julia> str[0]

ERROR: BoundsError: attempt to access "Hello, world.\n"

at index [0]

[...]

julia> str[end+1]

ERROR: BoundsError: attempt to access "Hello, world.\n"

at index [15]

[...]

You can also extract a substring using range indexing:

julia> str[4:9]

"lo, wo"

Notice that the expressions str[k] and str[k:k] do not give the same result:

julia> str[6]

',': ASCII/Unicode U+002c (category Po: Punctuation, other)

julia> str[6:6]

","

The former is a single character value of type Char, while the latter is a string value that happens to contain only a

single character. In Julia these are very different things.

10.3 Unicode and UTF-8

Julia fully supports Unicode characters and strings. As discussed above, in character literals, Unicode code points can

be represented using Unicode \u and \U escape sequences, as well as all the standard C escape sequences. These can

likewise be used to write string literals:

julia> s = "\u2200 x \u2203 y"

" x y"

10.3. UNICODE AND UTF-8 55

Whether these Unicode characters are displayed as escapes or shown as special characters depends on your terminal’s

locale settings and its support for Unicode. String literals are encoded using the UTF-8 encoding. UTF-8 is a variable-

width encoding, meaning that not all characters are encoded in the same number of bytes. In UTF-8, ASCII characters

– i.e. those with code points less than 0x80 (128) – are encoded as they are in ASCII, using a single byte, while code

points 0x80 and above are encoded using multiple bytes – up to four per character. This means that not every byte

index into a UTF-8 string is necessarily a valid index for a character. If you index into a string at such an invalid byte

index, an error is thrown:

julia> s[1]

'': Unicode U+2200 (category Sm: Symbol, math)

julia> s[2]

ERROR: UnicodeError: invalid character index

[...]

julia> s[3]

ERROR: UnicodeError: invalid character index

[...]

julia> s[4]

' ': ASCII/Unicode U+0020 (category Zs: Separator, space)

In this case, the character is a three-byte character, so the indices 2 and 3 are invalid and the next character’s index is

4; this next valid index can be computed by nextind(s,1), and the next index after that by nextind(s,4) and so

on.

Because of variable-length encodings, the number of characters in a string (given by length(s)) is not always the

same as the last index. If you iterate through the indices 1 through endof(s) and index into s, the sequence of

characters returned when errors aren’t thrown is the sequence of characters comprising the string s. Thus we have

the identity that length(s) <= endof(s), since each character in a string must have its own index. The following

is an inefficient and verbose way to iterate through the characters of s:

julia> for i = 1:endof(s)

try

println(s[i])

catch

ignore the index error

end

end

x

y

The blank lines actually have spaces on them. Fortunately, the above awkward idiom is unnecessary for iterating

through the characters in a string, since you can just use the string as an iterable object, no exception handling required:

julia> for c in s

println(c)

end

x

56 CHAPTER 10. STRINGS

y

Julia uses the UTF-8 encoding by default, and support for new encodings can be added by packages. For example,

the LegacyStrings.jl package implements UTF16String and UTF32String types. Additional discussion of other en-

codings and how to implement support for them is beyond the scope of this document for the time being. For further

discussion of UTF-8 encoding issues, see the section below on byte array literals. The transcode() function is pro-

vided to convert data between the various UTF-xx encodings, primarily for working with external data and libraries.

10.4 Concatenation

One of the most common and useful string operations is concatenation:

julia> greet = "Hello"

"Hello"

julia> whom = "world"

"world"

julia> string(greet, ", ", whom, ".\n")

"Hello, world.\n"

Julia also provides * for string concatenation:

julia> greet * ", " * whom * ".\n"

"Hello, world.\n"

While * may seem like a surprising choice to users of languages that provide + for string concatenation, this use of *

has precedent in mathematics, particularly in abstract algebra.

In mathematics, + usually denotes a commutative operation, where the order of the operands does not matter. An

example of this is matrix addition, where A + B == B + A for any matrices A and B that have the same shape. In

contrast, * typically denotes a noncommutative operation, where the order of the operands does matter. An example

of this is matrix multiplication, where in general A * B != B * A. As with matrix multiplication, string concatena-

tion is noncommutative: greet * whom != whom * greet. As such, * is a more natural choice for an infix string

concatenation operator, consistent with common mathematical use.

More precisely, the set of all finite-length strings S together with the string concatenation operator * forms a free

monoid (S, *). The identity element of this set is the empty string, "". Whenever a free monoid is not commutative,

the operation is typically represented as \cdot, *, or a similar symbol, rather than +, which as stated usually implies

commutativity.

10.5 Interpolation

Constructing strings using concatenation can become a bit cumbersome, however. To reduce the need for these

verbose calls to string() or repeated multiplications, Julia allows interpolation into string literals using $, as in Perl:

julia> "$greet, $whom.\n"

"Hello, world.\n"

This is more readable and convenient and equivalent to the above string concatenation – the system rewrites this

apparent single string literal into a concatenation of string literals with variables.

The shortest complete expression after the $ is taken as the expression whose value is to be interpolated into the

string. Thus, you can interpolate any expression into a string using parentheses:

https://github.com/JuliaArchive/LegacyStrings.jl
https://en.wikipedia.org/wiki/Free_monoid
https://en.wikipedia.org/wiki/Free_monoid

10.6. TRIPLE-QUOTED STRING LITERALS 57

julia> "1 + 2 = $(1 + 2)"

"1 + 2 = 3"

Both concatenation and string interpolation callstring() to convert objects into string form. Most non-AbstractString

objects are converted to strings closely corresponding to how they are entered as literal expressions:

julia> v = [1,2,3]

3-element Array{Int64,1}:

1

2

3

julia> "v: $v"

"v: [1, 2, 3]"

string() is the identity for AbstractString and Char values, so these are interpolated into strings as themselves,

unquoted and unescaped:

julia> c = 'x'

'x': ASCII/Unicode U+0078 (category Ll: Letter, lowercase)

julia> "hi, $c"

"hi, x"

To include a literal $ in a string literal, escape it with a backslash:

julia> print("I have \$100 in my account.\n")

I have $100 in my account.

10.6 Triple-Quoted String Literals

When strings are created using triple-quotes ("""...""") they have some special behavior that can be useful for

creating longer blocks of text. First, if the opening """ is followed by a newline, the newline is stripped from the

resulting string.

"""hello"""

is equivalent to

"""

hello"""

but

"""

hello"""

will contain a literal newline at the beginning. Trailingwhitespace is left unaltered. They can contain " symbols without

escaping. Triple-quoted strings are also dedented to the level of the least-indented line. This is useful for defining

strings within code that is indented. For example:

58 CHAPTER 10. STRINGS

julia> str = """

Hello,

world.

"""

" Hello,\n world.\n"

In this case the final (empty) line before the closing """ sets the indentation level.

Note that line breaks in literal strings, whether single- or triple-quoted, result in a newline (LF) character \n in the

string, even if your editor uses a carriage return \r (CR) or CRLF combination to end lines. To include a CR in a string,

use an explicit escape \r; for example, you can enter the literal string "a CRLF line ending\r\n".

10.7 Common Operations

You can lexicographically compare strings using the standard comparison operators:

julia> "abracadabra" < "xylophone"

true

julia> "abracadabra" == "xylophone"

false

julia> "Hello, world." != "Goodbye, world."

true

julia> "1 + 2 = 3" == "1 + 2 = $(1 + 2)"

true

You can search for the index of a particular character using the search() function:

julia> search("xylophone", 'x')

1

julia> search("xylophone", 'p')

5

julia> search("xylophone", 'z')

0

You can start the search for a character at a given offset by providing a third argument:

julia> search("xylophone", 'o')

4

julia> search("xylophone", 'o', 5)

7

julia> search("xylophone", 'o', 8)

0

You can use the contains() function to check if a substring is contained in a string:

10.8. NON-STANDARD STRING LITERALS 59

julia> contains("Hello, world.", "world")

true

julia> contains("Xylophon", "o")

true

julia> contains("Xylophon", "a")

false

julia> contains("Xylophon", 'o')

ERROR: MethodError: no method matching contains(::String, ::Char)

Closest candidates are:

contains(!Matched::Function, ::Any, !Matched::Any) at reduce.jl:664

contains(::AbstractString, !Matched::AbstractString) at strings/search.jl:378

The last error is because 'o' is a character literal, and contains() is a generic function that looks for subsequences.

To look for an element in a sequence, you must use in() instead.

Two other handy string functions are repeat() and join():

julia> repeat(".:Z:.", 10)

".:Z:..:Z:..:Z:..:Z:..:Z:..:Z:..:Z:..:Z:..:Z:..:Z:."

julia> join(["apples", "bananas", "pineapples"], ", ", " and ")

"apples, bananas and pineapples"

Some other useful functions include:

• endof(str) gives the maximal (byte) index that can be used to index into str.

• length(str) the number of characters in str.

• i = start(str) gives the first valid index at which a character can be found in str (typically 1).

• c, j = next(str,i) returns next character at or after the index i and the next valid character index follow-

ing that. With start() and endof(), can be used to iterate through the characters in str.

• ind2chr(str,i) gives the number of characters in str up to and including any at index i.

• chr2ind(str,j) gives the index at which the jth character in str occurs.

10.8 Non-Standard String Literals

There are situationswhenyouwant to construct a string or use string semantics, but the behavior of the standard string

construct is not quite what is needed. For these kinds of situations, Julia provides non-standard string literals. A non-

standard string literal looks like a regular double-quoted string literal, but is immediately prefixed by an identifier, and

doesn’t behave quite like a normal string literal. Regular expressions, byte array literals and version number literals, as

described below, are some examples of non-standard string literals. Other examples are given in theMetaprogramming

section.

60 CHAPTER 10. STRINGS

10.9 Regular Expressions

Julia has Perl-compatible regular expressions (regexes), as provided by the PCRE library. Regular expressions are related

to strings in two ways: the obvious connection is that regular expressions are used to find regular patterns in strings;

the other connection is that regular expressions are themselves input as strings, which are parsed into a state machine

that can be used to efficiently search for patterns in strings. In Julia, regular expressions are input using non-standard

string literals prefixed with various identifiers beginning with r. The most basic regular expression literal without any

options turned on just uses r"...":

julia> r"^\s*(?:#|$)"

r"^\s*(?:#|$)"

julia> typeof(ans)

Regex

To check if a regex matches a string, use ismatch():

julia> ismatch(r"^\s*(?:#|$)", "not a comment")

false

julia> ismatch(r"^\s*(?:#|$)", "# a comment")

true

As one can see here, ismatch() simply returns true or false, indicating whether the given regex matches the string or

not. Commonly, however, one wants to know not just whether a string matched, but also how it matched. To capture

this information about a match, use the match() function instead:

julia> match(r"^\s*(?:#|$)", "not a comment")

julia> match(r"^\s*(?:#|$)", "# a comment")

RegexMatch("#")

If the regular expression does not match the given string, match() returns nothing – a special value that does not

print anything at the interactive prompt. Other than not printing, it is a completely normal value and you can test for

it programmatically:

m = match(r"^\s*(?:#|$)", line)

if m === nothing

println("not a comment")

else

println("blank or comment")

end

If a regular expression does match, the value returned by match() is a RegexMatch object. These objects record how

the expression matches, including the substring that the pattern matches and any captured substrings, if there are any.

This example only captures the portion of the substring that matches, but perhaps we want to capture any non-blank

text after the comment character. We could do the following:

julia> m = match(r"^\s*(?:#\s*(.*?)\s*$|$)", "# a comment ")

RegexMatch("# a comment ", 1="a comment")

http://www.pcre.org/

10.9. REGULAR EXPRESSIONS 61

When calling match(), you have the option to specify an index at which to start the search. For example:

julia> m = match(r"[0-9]","aaaa1aaaa2aaaa3",1)

RegexMatch("1")

julia> m = match(r"[0-9]","aaaa1aaaa2aaaa3",6)

RegexMatch("2")

julia> m = match(r"[0-9]","aaaa1aaaa2aaaa3",11)

RegexMatch("3")

You can extract the following info from a RegexMatch object:

• the entire substring matched: m.match

• the captured substrings as an array of strings: m.captures

• the offset at which the whole match begins: m.offset

• the offsets of the captured substrings as a vector: m.offsets

Forwhen a capture doesn’t match, instead of a substring, m.captures contains nothing in that position, and m.off-

sets has a zero offset (recall that indices in Julia are 1-based, so a zero offset into a string is invalid). Here is a pair of

somewhat contrived examples:

julia> m = match(r"(a|b)(c)?(d)", "acd")

RegexMatch("acd", 1="a", 2="c", 3="d")

julia> m.match

"acd"

julia> m.captures

3-element Array{Union{SubString{String}, Void},1}:

"a"

"c"

"d"

julia> m.offset

1

julia> m.offsets

3-element Array{Int64,1}:

1

2

3

julia> m = match(r"(a|b)(c)?(d)", "ad")

RegexMatch("ad", 1="a", 2=nothing, 3="d")

julia> m.match

"ad"

julia> m.captures

3-element Array{Union{SubString{String}, Void},1}:

"a"

62 CHAPTER 10. STRINGS

nothing

"d"

julia> m.offset

1

julia> m.offsets

3-element Array{Int64,1}:

1

0

2

It is convenient to have captures returned as an array so that one can use destructuring syntax to bind them to local

variables:

julia> first, second, third = m.captures; first

"a"

Captures can also be accessed by indexing the RegexMatch object with the number or name of the capture group:

julia> m=match(r"(?<hour>\d+):(?<minute>\d+)","12:45")

RegexMatch("12:45", hour="12", minute="45")

julia> m[:minute]

"45"

julia> m[2]

"45"

Captures can be referenced in a substitution string when using replace() by using \n to refer to the nth capture

group and prefixing the subsitution string with s. Capture group 0 refers to the entire match object. Named capture

groups can be referenced in the substitution with g<groupname>. For example:

julia> replace("first second", r"(\w+) (?<agroup>\w+)", s"\g<agroup> \1")

"second first"

Numbered capture groups can also be referenced as \g<n> for disambiguation, as in:

julia> replace("a", r".", s"\g<0>1")

"a1"

You can modify the behavior of regular expressions by some combination of the flags i, m, s, and x after the closing

double quote mark. These flags have the same meaning as they do in Perl, as explained in this excerpt from the perlre

manpage:

i Do case-insensitive pattern matching.

If locale matching rules are in effect, the case map is taken

from the current locale for code points less than 255, and

from Unicode rules for larger code points. However, matches

that would cross the Unicode rules/non-Unicode rules boundary

(ords 255/256) will not succeed.

m Treat string as multiple lines. That is, change "^" and "$"

http://perldoc.perl.org/perlre.html#Modifiers
http://perldoc.perl.org/perlre.html#Modifiers

10.10. BYTE ARRAY LITERALS 63

from matching the start or end of the string to matching the

start or end of any line anywhere within the string.

s Treat string as single line. That is, change "." to match any

character whatsoever, even a newline, which normally it would

not match.

Used together, as r""ms, they let the "." match any character

whatsoever, while still allowing "^" and "$" to match,

respectively, just after and just before newlines within the

string.

x Tells the regular expression parser to ignore most whitespace

that is neither backslashed nor within a character class. You

can use this to break up your regular expression into

(slightly) more readable parts. The '#' character is also

treated as a metacharacter introducing a comment, just as in

ordinary code.

For example, the following regex has all three flags turned on:

julia> r"a+.*b+.*?d$"ism

r"a+.*b+.*?d$"ims

julia> match(r"a+.*b+.*?d$"ism, "Goodbye,\nOh, angry,\nBad world\n")

RegexMatch("angry,\nBad world")

Triple-quoted regex strings, of the form r"""...""", are also supported (and may be convenient for regular expres-

sions containing quotation marks or newlines).

10.10 Byte Array Literals

Another useful non-standard string literal is the byte-array string literal: b"...". This form lets you use string notation

to express literal byte arrays – i.e. arrays of UInt8 values. The rules for byte array literals are the following:

• ASCII characters and ASCII escapes produce a single byte.

• \x and octal escape sequences produce the byte corresponding to the escape value.

• Unicode escape sequences produce a sequence of bytes encoding that code point in UTF-8.

There is some overlap between these rules since the behavior of \x and octal escapes less than 0x80 (128) are covered

by both of the first two rules, but here these rules agree. Together, these rules allow one to easily use ASCII characters,

arbitrary byte values, and UTF-8 sequences to produce arrays of bytes. Here is an example using all three:

julia> b"DATA\xff\u2200"

8-element Array{UInt8,1}:

0x44

0x41

0x54

0x41

0xff

0xe2

0x88

0x80

64 CHAPTER 10. STRINGS

The ASCII string ”DATA” corresponds to the bytes 68, 65, 84, 65. \xff produces the single byte 255. The Unicode

escape \u2200 is encoded in UTF-8 as the three bytes 226, 136, 128. Note that the resulting byte array does not

correspond to a valid UTF-8 string – if you try to use this as a regular string literal, you will get a syntax error:

julia> "DATA\xff\u2200"

ERROR: syntax: invalid UTF-8 sequence

Also observe the significant distinction between \xff and \uff: the former escape sequence encodes the byte 255,

whereas the latter escape sequence represents the code point 255, which is encoded as two bytes in UTF-8:

julia> b"\xff"

1-element Array{UInt8,1}:

0xff

julia> b"\uff"

2-element Array{UInt8,1}:

0xc3

0xbf

In character literals, this distinction is glossed over and \xff is allowed to represent the code point 255, because

characters always represent code points. In strings, however, \x escapes always represent bytes, not code points,

whereas \u and \U escapes always represent code points, which are encoded in one ormore bytes. For code points less

than \u80, it happens that theUTF-8 encoding of each code point is just the single byte produced by the corresponding

\x escape, so the distinction can safely be ignored. For the escapes \x80 through \xff as compared to \u80 through

\uff, however, there is a major difference: the former escapes all encode single bytes, which – unless followed by

very specific continuation bytes – do not form valid UTF-8 data, whereas the latter escapes all represent Unicode code

points with two-byte encodings.

If this is all extremely confusing, try reading ”The Absolute Minimum Every Software Developer Absolutely, Positively

Must Know About Unicode and Character Sets”. It’s an excellent introduction to Unicode and UTF-8, and may help

alleviate some confusion regarding the matter.

10.11 Version Number Literals

Version numbers can easily be expressedwith non-standard string literals of the form v"...". Version number literals

create VersionNumber objects which follow the specifications of semantic versioning, and therefore are composed

of major, minor and patch numeric values, followed by pre-release and build alpha-numeric annotations. For example,

v"0.2.1-rc1+win64" is broken into major version 0, minor version 2, patch version 1, pre-release rc1 and build

win64. When entering a version literal, everything except the major version number is optional, therefore e.g. v"0.2"

is equivalent to v"0.2.0" (with empty pre-release/build annotations), v"2" is equivalent to v"2.0.0", and so on.

VersionNumber objects are mostly useful to easily and correctly compare two (or more) versions. For example, the

constant VERSION holds Julia version number as a VersionNumber object, and therefore one can define someversion-

specific behavior using simple statements as:

if v"0.2" <= VERSION < v"0.3-"

do something specific to 0.2 release series

end

Note that in the above example the non-standard version number v"0.3-" is used, with a trailing -: this notation is a

Julia extension of the standard, and it’s used to indicate a version which is lower than any 0.3 release, including all of

its pre-releases. So in the above example the code would only run with stable 0.2 versions, and exclude such versions

https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
http://semver.org

10.12. RAW STRING LITERALS 65

as v"0.3.0-rc1". In order to also allow for unstable (i.e. pre-release) 0.2 versions, the lower bound check should

be modified like this: v"0.2-" <= VERSION.

Another non-standard version specification extension allows one to use a trailing + to express an upper limit on build

versions, e.g. VERSION > v"0.2-rc1+" can be used to mean any version above 0.2-rc1 and any of its builds: it

will return false for version v"0.2-rc1+win64" and true for v"0.2-rc2".

It is good practice to use such special versions in comparisons (particularly, the trailing - should always be used on

upper bounds unless there’s a good reason not to), but theymust not be used as the actual version number of anything,

as they are invalid in the semantic versioning scheme.

Besides being used for the VERSION constant, VersionNumber objects are widely used in the Pkgmodule, to specify

packages versions and their dependencies.

10.12 Raw String Literals

Rawstringswithout interpolation orunescaping can be expressedwith non-standard string literals of the formraw"...".

Raw string literals create ordinary String objects which contain the enclosed contents exactly as entered with no in-

terpolation or unescaping. This is useful for strings which contain code or markup in other languages which use $ or

\ as special characters. The exception is quotation marks that still must be escaped, e.g. raw"\"" is equivalent to

"\"".

Chapter 11

Functions

In Julia, a function is an object that maps a tuple of argument values to a return value. Julia functions are not pure

mathematical functions, in the sense that functions can alter and be affected by the global state of the program. The

basic syntax for defining functions in Julia is:

julia> function f(x,y)

x + y

end

f (generic function with 1 method)

There is a second, more terse syntax for defining a function in Julia. The traditional function declaration syntax demon-

strated above is equivalent to the following compact ”assignment form”:

julia> f(x,y) = x + y

f (generic function with 1 method)

In the assignment form, the bodyof the functionmust be a single expression, although it can be a compound expression

(see Compound Expressions). Short, simple function definitions are common in Julia. The short function syntax is

accordingly quite idiomatic, considerably reducing both typing and visual noise.

A function is called using the traditional parenthesis syntax:

julia> f(2,3)

5

Without parentheses, the expression f refers to the function object, and can be passed around like any value:

julia> g = f;

julia> g(2,3)

5

As with variables, Unicode can also be used for function names:

julia> ∑(x,y) = x + y

∑ (generic function with 1 method)

julia> ∑(2, 3)

5

67

68 CHAPTER 11. FUNCTIONS

11.1 Argument Passing Behavior

Julia function arguments follow a convention sometimes called ”pass-by-sharing”, which means that values are not

copiedwhen they are passed to functions. Function arguments themselves act as newvariable bindings (new locations

that can refer to values), but the values they refer to are identical to the passed values. Modifications to mutable values

(such as Arrays) made within a function will be visible to the caller. This is the same behavior found in Scheme, most

Lisps, Python, Ruby and Perl, among other dynamic languages.

11.2 The return Keyword

The value returned by a function is the value of the last expression evaluated, which, by default, is the last expression

in the body of the function definition. In the example function, f, from the previous section this is the value of the

expression x + y. As in C and most other imperative or functional languages, the return keyword causes a function

to return immediately, providing an expression whose value is returned:

function g(x,y)

return x * y

x + y

end

Since function definitions can be entered into interactive sessions, it is easy to compare these definitions:

julia> f(x,y) = x + y

f (generic function with 1 method)

julia> function g(x,y)

return x * y

x + y

end

g (generic function with 1 method)

julia> f(2,3)

5

julia> g(2,3)

6

Of course, in a purely linear function body like g, the usage of return is pointless since the expression x + y is never

evaluated and we could simply make x * y the last expression in the function and omit the return. In conjunction

with other control flow, however, return is of real use. Here, for example, is a function that computes the hypotenuse

length of a right triangle with sides of length x and y, avoiding overflow:

julia> function hypot(x,y)

x = abs(x)

y = abs(y)

if x > y

r = y/x

return x*sqrt(1+r*r)

end

if y == 0

return zero(x)

end

11.3. OPERATORS ARE FUNCTIONS 69

r = x/y

return y*sqrt(1+r*r)

end

hypot (generic function with 1 method)

julia> hypot(3, 4)

5.0

There are three possible points of return from this function, returning the values of three different expressions, de-

pending on the values of x and y. The return on the last line could be omitted since it is the last expression.

11.3 Operators Are Functions

In Julia, most operators are just functions with support for special syntax. (The exceptions are operators with special

evaluation semantics like && and ||. These operators cannot be functions since Short-Circuit Evaluation requires

that their operands are not evaluated before evaluation of the operator.) Accordingly, you can also apply them using

parenthesized argument lists, just as you would any other function:

julia> 1 + 2 + 3

6

julia> +(1,2,3)

6

The infix form is exactly equivalent to the function application form – in fact the former is parsed to produce the

function call internally. This also means that you can assign and pass around operators such as +() and *() just like

you would with other function values:

julia> f = +;

julia> f(1,2,3)

6

Under the name f, the function does not support infix notation, however.

11.4 Operators With Special Names

A few special expressions correspond to calls to functions with non-obvious names. These are:

Expression Calls

[A B C ...] hcat()

[A; B; C; ...] vcat()

[A B; C D; ...] hvcat()

A' ctranspose()

A.' transpose()

1:n colon()

A[i] getindex()

A[i]=x setindex!()

These functions are included in the Base.Operators module even though they do not have operator-like names.

70 CHAPTER 11. FUNCTIONS

11.5 Anonymous Functions

Functions in Julia are first-class objects: they can be assigned to variables, and called using the standard function call

syntax from the variable they have been assigned to. They can be used as arguments, and they can be returned as

values. They can also be created anonymously, without being given a name, using either of these syntaxes:

julia> x -> x^2 + 2x - 1

(::#1) (generic function with 1 method)

julia> function (x)

x^2 + 2x - 1

end

(::#3) (generic function with 1 method)

This creates a function taking one argument x and returning the value of the polynomial x^2 + 2x - 1 at that value.

Notice that the result is a generic function, but with a compiler-generated name based on consecutive numbering.

The primary use for anonymous functions is passing them to functions which take other functions as arguments. A

classic example is map(), which applies a function to each value of an array and returns a new array containing the

resulting values:

julia> map(round, [1.2,3.5,1.7])

3-element Array{Float64,1}:

1.0

4.0

2.0

This is fine if a named function effecting the transform onewants already exists to pass as the first argument to map().

Often, however, a ready-to-use, named function does not exist. In these situations, the anonymous function construct

allows easy creation of a single-use function object without needing a name:

julia> map(x -> x^2 + 2x - 1, [1,3,-1])

3-element Array{Int64,1}:

2

14

-2

An anonymous function accepting multiple arguments can be written using the syntax (x,y,z)->2x+y-z. A zero-

argument anonymous function is written as ()->3. The idea of a function with no arguments may seem strange, but

is useful for ”delaying” a computation. In this usage, a block of code is wrapped in a zero-argument function, which is

later invoked by calling it as f().

11.6 Multiple Return Values

In Julia, one returns a tuple of values to simulate returning multiple values. However, tuples can be created and

destructuredwithout needing parentheses, thereby providing an illusion that multiple values are being returned, rather

than a single tuple value. For example, the following function returns a pair of values:

julia> function foo(a,b)

a+b, a*b

end

foo (generic function with 1 method)

https://en.wikipedia.org/wiki/First-class_citizen

11.7. VARARGS FUNCTIONS 71

If you call it in an interactive session without assigning the return value anywhere, you will see the tuple returned:

julia> foo(2,3)

(5, 6)

A typical usage of such a pair of return values, however, extracts each value into a variable. Julia supports simple tuple

”destructuring” that facilitates this:

julia> x, y = foo(2,3)

(5, 6)

julia> x

5

julia> y

6

You can also return multiple values via an explicit usage of the return keyword:

function foo(a,b)

return a+b, a*b

end

This has the exact same effect as the previous definition of foo.

11.7 Varargs Functions

It is often convenient to be able to write functions taking an arbitrary number of arguments. Such functions are

traditionally known as ”varargs” functions, which is short for ”variable number of arguments”. You can define a varargs

function by following the last argument with an ellipsis:

julia> bar(a,b,x...) = (a,b,x)

bar (generic function with 1 method)

The variables a and b are bound to the first two argument values as usual, and the variable x is bound to an iterable

collection of the zero or more values passed to bar after its first two arguments:

julia> bar(1,2)

(1, 2, ())

julia> bar(1,2,3)

(1, 2, (3,))

julia> bar(1, 2, 3, 4)

(1, 2, (3, 4))

julia> bar(1,2,3,4,5,6)

(1, 2, (3, 4, 5, 6))

In all these cases, x is bound to a tuple of the trailing values passed to bar.

It is possible to constrain the numberofvalues passed as avariable argument; thiswill be discussed later in Parametrically-

constrained Varargs methods.

On the flip side, it is often handy to ”splice” the values contained in an iterable collection into a function call as individual

arguments. To do this, one also uses ... but in the function call instead:

72 CHAPTER 11. FUNCTIONS

julia> x = (3, 4)

(3, 4)

julia> bar(1,2,x...)

(1, 2, (3, 4))

In this case a tuple of values is spliced into a varargs call precisely where the variable number of arguments go. This

need not be the case, however:

julia> x = (2, 3, 4)

(2, 3, 4)

julia> bar(1,x...)

(1, 2, (3, 4))

julia> x = (1, 2, 3, 4)

(1, 2, 3, 4)

julia> bar(x...)

(1, 2, (3, 4))

Furthermore, the iterable object spliced into a function call need not be a tuple:

julia> x = [3,4]

2-element Array{Int64,1}:

3

4

julia> bar(1,2,x...)

(1, 2, (3, 4))

julia> x = [1,2,3,4]

4-element Array{Int64,1}:

1

2

3

4

julia> bar(x...)

(1, 2, (3, 4))

Also, the function that arguments are spliced into need not be a varargs function (although it often is):

julia> baz(a,b) = a + b;

julia> args = [1,2]

2-element Array{Int64,1}:

1

2

julia> baz(args...)

3

julia> args = [1,2,3]

3-element Array{Int64,1}:

1

11.8. OPTIONALARGUMENTS 73

2

3

julia> baz(args...)

ERROR: MethodError: no method matching baz(::Int64, ::Int64, ::Int64)

Closest candidates are:

baz(::Any, ::Any) at none:1

As you can see, if the wrong number of elements are in the spliced container, then the function call will fail, just as it

would if too many arguments were given explicitly.

11.8 Optional Arguments

In many cases, function arguments have sensible default values and therefore might not need to be passed explicitly

in every call. For example, the library function parse(T, num, base) interprets a string as a number in some base.

The base argument defaults to 10. This behavior can be expressed concisely as:

function parse(type, num, base=10)

###

end

With this definition, the function can be called with either two or three arguments, and 10 is automatically passed

when a third argument is not specified:

julia> parse(Int,"12",10)

12

julia> parse(Int,"12",3)

5

julia> parse(Int,"12")

12

Optional arguments are actually just a convenient syntax forwritingmultiplemethod definitionswith different numbers

of arguments (see Note on Optional and keyword Arguments).

11.9 Keyword Arguments

Some functions need a large number of arguments, or have a large number of behaviors. Remembering how to call

such functions can be difficult. Keyword arguments can make these complex interfaces easier to use and extend by

allowing arguments to be identified by name instead of only by position.

For example, consider a function plot that plots a line. This function might have many options, for controlling line

style, width, color, and so on. If it accepts keyword arguments, a possible call might look like plot(x, y, width=2),

where we have chosen to specify only line width. Notice that this serves two purposes. The call is easier to read,

since we can label an argument with its meaning. It also becomes possible to pass any subset of a large number of

arguments, in any order.

Functions with keyword arguments are defined using a semicolon in the signature:

function plot(x, y; style="solid", width=1, color="black")

###

end

74 CHAPTER 11. FUNCTIONS

When the function is called, the semicolon is optional: one can either call plot(x, y, width=2) or plot(x, y;

width=2), but the former style ismore common. An explicit semicolon is required only for passingvarargs or computed

keywords as described below.

Keyword argument default values are evaluated onlywhen necessary (when a corresponding keyword argument is not

passed), and in left-to-right order. Therefore default expressions may refer to prior keyword arguments.

The types of keyword arguments can be made explicit as follows:

function f(;x::Int64=1)

###

end

Extra keyword arguments can be collected using ..., as in varargs functions:

function f(x; y=0, kwargs...)

###

end

Inside f, kwargs will be a collection of (key,value) tuples, where each key is a symbol. Such collections can be

passed as keyword arguments using a semicolon in a call, e.g. f(x, z=1; kwargs...). Dictionaries can also be

used for this purpose.

One can also pass (key,value) tuples, or any iterable expression (such as a => pair) that can be assigned to such a

tuple, explicitly after a semicolon. For example, plot(x, y; (:width,2)) and plot(x, y; :width => 2) are

equivalent to plot(x, y, width=2). This is useful in situations where the keyword name is computed at runtime.

The nature of keyword arguments makes it possible to specify the same argument more than once. For example, in the

call plot(x, y; options..., width=2) it is possible that the options structure also contains a value for width.

In such a case the rightmost occurrence takes precedence; in this example, width is certain to have the value 2.

11.10 Evaluation Scope of Default Values

Optional and keyword arguments differ slightly in how their default values are evaluated. When optional argument

default expressions are evaluated, only previous arguments are in scope. In contrast, all the arguments are in scope

when keyword arguments default expressions are evaluated. For example, given this definition:

function f(x, a=b, b=1)

###

end

the b in a=b refers to a b in an outer scope, not the subsequent argument b. However, if a and b were keyword

arguments instead, then both would be created in the same scope and the b in a=b would refer to the subsequent

argument b (shadowing any b in an outer scope), which would result in an undefined variable error (since the default

expressions are evaluated left-to-right, and b has not been assigned yet).

11.11 Do-Block Syntax for Function Arguments

Passing functions as arguments to other functions is a powerful technique, but the syntax for it is not always conve-

nient. Such calls are especially awkward to write when the function argument requires multiple lines. As an example,

consider calling map() on a function with several cases:

11.11. DO-BLOCK SYNTAX FOR FUNCTION ARGUMENTS 75

map(x->begin

if x < 0 && iseven(x)

return 0

elseif x == 0

return 1

else

return x

end

end,

[A, B, C])

Julia provides a reserved word do for rewriting this code more clearly:

map([A, B, C]) do x

if x < 0 && iseven(x)

return 0

elseif x == 0

return 1

else

return x

end

end

The do x syntax creates an anonymous function with argument x and passes it as the first argument to map(). Simi-

larly, do a,bwould create a two-argument anonymous function, and a plain dowould declare that what follows is an

anonymous function of the form () ->

How these arguments are initialized depends on the ”outer” function; here, map() will sequentially set x to A, B, C,

calling the anonymous function on each, just as would happen in the syntax map(func, [A, B, C]).

This syntax makes it easier to use functions to effectively extend the language, since calls look like normal code blocks.

There are many possible uses quite different from map(), such as managing system state. For example, there is a

version of open() that runs code ensuring that the opened file is eventually closed:

open("outfile", "w") do io

write(io, data)

end

This is accomplished by the following definition:

function open(f::Function, args...)

io = open(args...)

try

f(io)

finally

close(io)

end

end

Here, open() first opens the file for writing and then passes the resulting output stream to the anonymous function

you defined in the do ... end block. After your function exits, open() will make sure that the stream is properly

closed, regardless of whether your function exited normally or threw an exception. (The try/finally construct will

be described in Control Flow.)

With the do block syntax, it helps to check the documentation or implementation to know how the arguments of the

user function are initialized.

76 CHAPTER 11. FUNCTIONS

11.12 Dot Syntax for Vectorizing Functions

In technical-computing languages, it is common to have ”vectorized” versions of functions, which simply apply a given

function f(x) to each element of an array A to yield a new array via f(A). This kind of syntax is convenient for

data processing, but in other languages vectorization is also often required for performance: if loops are slow, the

”vectorized” version of a function can call fast library codewritten in a low-level language. In Julia, vectorized functions

are not required for performance, and indeed it is often beneficial to write your own loops (see Performance Tips), but

they can still be convenient. Therefore, any Julia function f can be applied elementwise to anyarray (or other collection)

with the syntax f.(A). For example sin can be applied to all elements in the vector A, like so:

julia> A = [1.0, 2.0, 3.0]

3-element Array{Float64,1}:

1.0

2.0

3.0

julia> sin.(A)

3-element Array{Float64,1}:

0.841471

0.909297

0.14112

Of course, you can omit the dot if you write a specialized ”vector” method of f, e.g. via f(A::AbstractArray) =

map(f, A), and this is just as efficient as f.(A). But that approach requires you to decide in advancewhich functions

you want to vectorize.

More generally, f.(args...) is actually equivalent to broadcast(f, args...), which allows you to operate on

multiple arrays (even of different shapes), or a mix of arrays and scalars (see Broadcasting). For example, if you have

f(x,y) = 3x + 4y, then f.(pi,A) will return a new array consisting of f(pi,a) for each a in A, and f.(vec-

tor1,vector2)will return a new vector consisting of f(vector1[i],vector2[i]) for each index i (throwing an

exception if the vectors have different length).

julia> f(x,y) = 3x + 4y;

julia> A = [1.0, 2.0, 3.0];

julia> B = [4.0, 5.0, 6.0];

julia> f.(pi, A)

3-element Array{Float64,1}:

13.4248

17.4248

21.4248

julia> f.(A, B)

3-element Array{Float64,1}:

19.0

26.0

33.0

Moreover, nested f.(args...) calls are fused into a single broadcast loop. For example, sin.(cos.(X)) is equiv-

alent to broadcast(x -> sin(cos(x)), X), similar to [sin(cos(x)) for x in X]: there is only a single loop

over X, and a single array is allocated for the result. [In contrast, sin(cos(X)) in a typical ”vectorized” language

11.13. FURTHER READING 77

would first allocate one temporary array for tmp=cos(X), and then compute sin(tmp) in a separate loop, allocating

a second array.] This loop fusion is not a compiler optimization that may or may not occur, it is a syntactic guarantee

whenever nested f.(args...) calls are encountered. Technically, the fusion stops as soon as a ”non-dot” function

call is encountered; for example, in sin.(sort(cos.(X))) the sin and cos loops cannot be merged because of the

intervening sort function.

Finally, the maximum efficiency is typically achieved when the output array of a vectorized operation is pre-allocated,

so that repeated calls do not allocate new arrays over and over again for the results (Pre-allocating outputs:). A

convenient syntax for this is X .= ..., which is equivalent to broadcast!(identity, X, ...) except that, as

above, the broadcast! loop is fused with any nested ”dot” calls. For example, X .= sin.(Y) is equivalent to

broadcast!(sin, X, Y), overwriting X with sin.(Y) in-place. If the left-hand side is an array-indexing expres-

sion, e.g. X[2:end] .= sin.(Y), then it translates to broadcast! on a view, e.g. broadcast!(sin, view(X,

2:endof(X)), Y), so that the left-hand side is updated in-place.

Since adding dots to many operations and function calls in an expression can be tedious and lead to code that is dif-

ficult to read, the macro @. is provided to convert every function call, operation, and assignment in an expression into

the ”dotted” version.

julia> Y = [1.0, 2.0, 3.0, 4.0];

julia> X = similar(Y); # pre-allocate output array

julia> @. X = sin(cos(Y)) # equivalent to X .= sin.(cos.(Y))

4-element Array{Float64,1}:

0.514395

-0.404239

-0.836022

-0.608083

Binary (or unary) operators like .+ are handled with the same mechanism: they are equivalent to broadcast calls

and are fused with other nested ”dot” calls. X .+= Y etcetera is equivalent to X .= X .+ Y and results in a fused

in-place assignment; see also dot operators.

11.13 Further Reading

We should mention here that this is far from a complete picture of defining functions. Julia has a sophisticated type

system and allowsmultiple dispatch on argument types. None of the examples given here provide any type annotations

on their arguments, meaning that they are applicable to all types of arguments. The type system is described in Types

and defining a function in terms of methods chosen by multiple dispatch on run-time argument types is described in

Methods.

Chapter 12

Control Flow

Julia provides a variety of control flow constructs:

• Compound Expressions: begin and (;).

• Conditional Evaluation: if-elseif-else and ?: (ternary operator).

• Short-Circuit Evaluation: &&, || and chained comparisons.

• Repeated Evaluation: Loops: while and for.

• Exception Handling: try-catch, error() and throw().

• Tasks (aka Coroutines): yieldto().

The first five control flow mechanisms are standard to high-level programming languages. Tasks are not so standard:

they provide non-local control flow, making it possible to switch between temporarily-suspended computations. This

is a powerful construct: both exception handling and cooperative multitasking are implemented in Julia using tasks.

Everyday programming requires no direct usage of tasks, but certain problems can be solvedmuchmore easily by using

tasks.

12.1 Compound Expressions

Sometimes it is convenient to have a single expression which evaluates several subexpressions in order, returning the

value of the last subexpression as its value. There are two Julia constructs that accomplish this: begin blocks and (;)

chains. The value of both compound expression constructs is that of the last subexpression. Here’s an example of a

begin block:

julia> z = begin

x = 1

y = 2

x + y

end

3

Since these are fairly small, simple expressions, they could easily be placed onto a single line, which is where the (;)

chain syntax comes in handy:

79

80 CHAPTER 12. CONTROL FLOW

julia> z = (x = 1; y = 2; x + y)

3

This syntax is particularly useful with the terse single-line function definition form introduced in Functions. Although

it is typical, there is no requirement that begin blocks be multiline or that (;) chains be single-line:

julia> begin x = 1; y = 2; x + y end

3

julia> (x = 1;

y = 2;

x + y)

3

12.2 Conditional Evaluation

Conditional evaluation allows portions of code to be evaluated or not evaluated depending on the value of a boolean

expression. Here is the anatomy of the if-elseif-else conditional syntax:

if x < y

println("x is less than y")

elseif x > y

println("x is greater than y")

else

println("x is equal to y")

end

If the condition expression x < y is true, then the corresponding block is evaluated; otherwise the condition expres-

sion x > y is evaluated, and if it is true, the corresponding block is evaluated; if neither expression is true, the else

block is evaluated. Here it is in action:

julia> function test(x, y)

if x < y

println("x is less than y")

elseif x > y

println("x is greater than y")

else

println("x is equal to y")

end

end

test (generic function with 1 method)

julia> test(1, 2)

x is less than y

julia> test(2, 1)

x is greater than y

julia> test(1, 1)

x is equal to y

12.2. CONDITIONAL EVALUATION 81

The elseif and else blocks are optional, and as many elseif blocks as desired can be used. The condition expres-

sions in the if-elseif-else construct are evaluated until the first one evaluates to true, after which the associated

block is evaluated, and no further condition expressions or blocks are evaluated.

if blocks are ”leaky”, i.e. they do not introduce a local scope. This means that new variables defined inside the if

clauses can be used after the if block, even if they weren’t defined before. So, we could have defined the test

function above as

julia> function test(x,y)

if x < y

relation = "less than"

elseif x == y

relation = "equal to"

else

relation = "greater than"

end

println("x is ", relation, " y.")

end

test (generic function with 1 method)

julia> test(2, 1)

x is greater than y.

The variable relation is declared inside the if block, but used outside. However, when depending on this behavior,

make sure all possible code paths define a value for the variable. The following change to the above function results

in a runtime error

julia> function test(x,y)

if x < y

relation = "less than"

elseif x == y

relation = "equal to"

end

println("x is ", relation, " y.")

end

test (generic function with 1 method)

julia> test(1,2)

x is less than y.

julia> test(2,1)

ERROR: UndefVarError: relation not defined

Stacktrace:

[1] test(::Int64, ::Int64) at ./none:7

if blocks also return a value, which may seem unintuitive to users coming from many other languages. This value is

simply the return value of the last executed statement in the branch that was chosen, so

julia> x = 3

3

julia> if x > 0

"positive!"

else

82 CHAPTER 12. CONTROL FLOW

"negative..."

end

"positive!"

Note that very short conditional statements (one-liners) are frequently expressed using Short-Circuit Evaluation in

Julia, as outlined in the next section.

Unlike C, MATLAB, Perl, Python, and Ruby – but like Java, and a few other stricter, typed languages – it is an error if

the value of a conditional expression is anything but true or false:

julia> if 1

println("true")

end

ERROR: TypeError: non-boolean (Int64) used in boolean context

This error indicates that the conditional was of the wrong type: Int64 rather than the required Bool.

The so-called ”ternary operator”, ?:, is closely related to the if-elseif-else syntax, but is used where a conditional

choice between single expression values is required, as opposed to conditional execution of longer blocks of code. It

gets its name from being the only operator in most languages taking three operands:

a ? b : c

The expression a, before the ?, is a condition expression, and the ternary operation evaluates the expression b, before

the :, if the condition a is true or the expression c, after the :, if it is false.

The easiest way to understand this behavior is to see an example. In the previous example, the println call is shared

by all three branches: the only real choice is which literal string to print. This could be written more concisely using

the ternary operator. For the sake of clarity, let’s try a two-way version first:

julia> x = 1; y = 2;

julia> println(x < y ? "less than" : "not less than")

less than

julia> x = 1; y = 0;

julia> println(x < y ? "less than" : "not less than")

not less than

If the expression x < y is true, the entire ternary operator expression evaluates to the string "less than" and

otherwise it evaluates to the string "not less than". The original three-way example requires chaining multiple

uses of the ternary operator together:

julia> test(x, y) = println(x < y ? "x is less than y" :

x > y ? "x is greater than y" : "x is equal to y")

test (generic function with 1 method)

julia> test(1, 2)

x is less than y

julia> test(2, 1)

x is greater than y

12.3. SHORT-CIRCUIT EVALUATION 83

julia> test(1, 1)

x is equal to y

To facilitate chaining, the operator associates from right to left.

It is significant that like if-elseif-else, the expressions before and after the : are only evaluated if the condition

expression evaluates to true or false, respectively:

julia> v(x) = (println(x); x)

v (generic function with 1 method)

julia> 1 < 2 ? v("yes") : v("no")

yes

"yes"

julia> 1 > 2 ? v("yes") : v("no")

no

"no"

12.3 Short-Circuit Evaluation

Short-circuit evaluation is quite similar to conditional evaluation. The behavior is found in most imperative program-

ming languages having the && and || boolean operators: in a series of boolean expressions connected by these op-

erators, only the minimum number of expressions are evaluated as are necessary to determine the final boolean value

of the entire chain. Explicitly, this means that:

• In the expression a && b, the subexpression b is only evaluated if a evaluates to true.

• In the expression a || b, the subexpression b is only evaluated if a evaluates to false.

The reasoning is that a && b must be false if a is false, regardless of the value of b, and likewise, the value of a

|| b must be true if a is true, regardless of the value of b. Both && and || associate to the right, but && has higher

precedence than || does. It’s easy to experiment with this behavior:

julia> t(x) = (println(x); true)

t (generic function with 1 method)

julia> f(x) = (println(x); false)

f (generic function with 1 method)

julia> t(1) && t(2)

1

2

true

julia> t(1) && f(2)

1

2

false

julia> f(1) && t(2)

1

false

84 CHAPTER 12. CONTROL FLOW

julia> f(1) && f(2)

1

false

julia> t(1) || t(2)

1

true

julia> t(1) || f(2)

1

true

julia> f(1) || t(2)

1

2

true

julia> f(1) || f(2)

1

2

false

You can easily experiment in the same way with the associativity and precedence of various combinations of && and

|| operators.

This behavior is frequently used in Julia to form an alternative to very short if statements. Instead of if <cond>

<statement> end, one can write <cond> && <statement> (which could be read as: <cond> and then <state-

ment>). Similarly, instead of if ! <cond> <statement> end, one can write <cond> || <statement> (which

could be read as: <cond> or else <statement>).

For example, a recursive factorial routine could be defined like this:

julia> function fact(n::Int)

n >= 0 || error("n must be non-negative")

n == 0 && return 1

n * fact(n-1)

end

fact (generic function with 1 method)

julia> fact(5)

120

julia> fact(0)

1

julia> fact(-1)

ERROR: n must be non-negative

Stacktrace:

[1] fact(::Int64) at ./none:2

Boolean operations without short-circuit evaluation can be done with the bitwise boolean operators introduced in

Mathematical Operations and Elementary Functions: & and |. These are normal functions, which happen to support

infix operator syntax, but always evaluate their arguments:

julia> f(1) & t(2)

12.4. REPEATED EVALUATION: LOOPS 85

1

2

false

julia> t(1) | t(2)

1

2

true

Just like condition expressions used in if, elseif or the ternary operator, the operands of && or ||must be boolean

values (true or false). Using a non-boolean value anywhere except for the last entry in a conditional chain is an

error:

julia> 1 && true

ERROR: TypeError: non-boolean (Int64) used in boolean context

On the other hand, any type of expression can be used at the end of a conditional chain. It will be evaluated and

returned depending on the preceding conditionals:

julia> true && (x = (1, 2, 3))

(1, 2, 3)

julia> false && (x = (1, 2, 3))

false

12.4 Repeated Evaluation: Loops

There are two constructs for repeated evaluation of expressions: the while loop and the for loop. Here is an example

of a while loop:

julia> i = 1;

julia> while i <= 5

println(i)

i += 1

end

1

2

3

4

5

The while loop evaluates the condition expression (i <= 5 in this case), and as long it remains true, keeps also

evaluating the body of the while loop. If the condition expression is falsewhen the while loop is first reached, the

body is never evaluated.

The for loop makes common repeated evaluation idioms easier to write. Since counting up and down like the above

while loop does is so common, it can be expressed more concisely with a for loop:

julia> for i = 1:5

println(i)

end

86 CHAPTER 12. CONTROL FLOW

1

2

3

4

5

Here the 1:5 is a Range object, representing the sequence of numbers 1, 2, 3, 4, 5. The for loop iterates through

these values, assigning each one in turn to the variable i. One rather important distinction between the previous

while loop form and the for loop form is the scope during which the variable is visible. If the variable i has not been

introduced in an other scope, in the for loop form, it is visible only inside of the for loop, and not afterwards. You’ll

either need a new interactive session instance or a different variable name to test this:

julia> for j = 1:5

println(j)

end

1

2

3

4

5

julia> j

ERROR: UndefVarError: j not defined

See Scope of Variables for a detailed explanation of variable scope and how it works in Julia.

In general, the for loop construct can iterate over any container. In these cases, the alternative (but fully equivalent)

keyword in or is typically used instead of =, since it makes the code read more clearly:

julia> for i in [1,4,0]

println(i)

end

1

4

0

julia> for s ["foo","bar","baz"]

println(s)

end

foo

bar

baz

Various types of iterable containers will be introduced and discussed in later sections of the manual (see, e.g., Multi-

dimensional Arrays).

It is sometimes convenient to terminate the repetition of a while before the test condition is falsified or stop iterating

in a for loop before the end of the iterable object is reached. This can be accomplished with the break keyword:

julia> i = 1;

julia> while true

println(i)

12.4. REPEATED EVALUATION: LOOPS 87

if i >= 5

break

end

i += 1

end

1

2

3

4

5

julia> for i = 1:1000

println(i)

if i >= 5

break

end

end

1

2

3

4

5

Without the break keyword, the above while loopwould never terminate on its own, and the for loopwould iterate

up to 1000. These loops are both exited early by using break.

In other circumstances, it is handy to be able to stop an iteration and move on to the next one immediately. The

continue keyword accomplishes this:

julia> for i = 1:10

if i % 3 != 0

continue

end

println(i)

end

3

6

9

This is a somewhat contrived example since we could produce the same behavior more clearly by negating the condi-

tion and placing the println call inside the if block. In realistic usage there is more code to be evaluated after the

continue, and often there are multiple points from which one calls continue.

Multiple nested for loops can be combined into a single outer loop, forming the cartesian product of its iterables:

julia> for i = 1:2, j = 3:4

println((i, j))

end

(1, 3)

(1, 4)

(2, 3)

(2, 4)

A break statement inside such a loop exits the entire nest of loops, not just the inner one.

88 CHAPTER 12. CONTROL FLOW

12.5 Exception Handling

When an unexpected condition occurs, a functionmaybe unable to return a reasonable value to its caller. In such cases,

it may be best for the exceptional condition to either terminate the program, printing a diagnostic error message, or if

the programmer has provided code to handle such exceptional circumstances, allow that code to take the appropriate

action.

Built-in Exceptions

Exceptions are thrown when an unexpected condition has occurred. The built-in Exceptions listed below all inter-

rupt the normal flow of control.

Exception

ArgumentError

BoundsError

CompositeException

DivideError

DomainError

EOFError

ErrorException

InexactError

InitError

InterruptException

InvalidStateException

KeyError

LoadError

OutOfMemoryError

ReadOnlyMemoryError

RemoteException

MethodError

OverflowError

ParseError

SystemError

TypeError

UndefRefError

UndefVarError

UnicodeError

For example, the sqrt() function throws a DomainError if applied to a negative real value:

julia> sqrt(-1)

ERROR: DomainError:

sqrt will only return a complex result if called with a complex argument. Try sqrt(complex(x)).

Stacktrace:

[1] sqrt(::Int64) at ./math.jl:434

You may define your own exceptions in the following way:

julia> struct MyCustomException <: Exception end

12.5. EXCEPTION HANDLING 89

The throw() function

Exceptions can be created explicitly with throw(). For example, a function defined only for nonnegative numbers

could be written to throw() a DomainError if the argument is negative:

julia> f(x) = x>=0 ? exp(-x) : throw(DomainError())

f (generic function with 1 method)

julia> f(1)

0.36787944117144233

julia> f(-1)

ERROR: DomainError:

Stacktrace:

[1] f(::Int64) at ./none:1

Note that DomainError without parentheses is not an exception, but a type of exception. It needs to be called to

obtain an Exception object:

julia> typeof(DomainError()) <: Exception

true

julia> typeof(DomainError) <: Exception

false

Additionally, some exception types take one or more arguments that are used for error reporting:

julia> throw(UndefVarError(:x))

ERROR: UndefVarError: x not defined

This mechanism can be implemented easily by custom exception types following the way UndefVarError is written:

julia> struct MyUndefVarError <: Exception

var::Symbol

end

julia> Base.showerror(io::IO, e::MyUndefVarError) = print(io, e.var, " not defined")

Note

When writing an error message, it is preferred to make the first word lowercase. For example, size(A)

== size(B) || throw(DimensionMismatch("size of A not equal to size of B"))

is preferred over

size(A) == size(B) || throw(DimensionMismatch("Size of A not equal to size of B")).

However, sometimes it makes sense to keep the uppercase first letter, for instance if an argument to

a function is a capital letter: size(A,1) == size(B,2) || throw(DimensionMismatch("A has

first dimension...")).

90 CHAPTER 12. CONTROL FLOW

Errors

The error() function is used to produce an ErrorException that interrupts the normal flow of control.

Suppose we want to stop execution immediately if the square root of a negative number is taken. To do this, we can

define a fussy version of the sqrt() function that raises an error if its argument is negative:

julia> fussy_sqrt(x) = x >= 0 ? sqrt(x) : error("negative x not allowed")

fussy_sqrt (generic function with 1 method)

julia> fussy_sqrt(2)

1.4142135623730951

julia> fussy_sqrt(-1)

ERROR: negative x not allowed

Stacktrace:

[1] fussy_sqrt(::Int64) at ./none:1

If fussy_sqrt is called with a negative value from another function, instead of trying to continue execution of the

calling function, it returns immediately, displaying the error message in the interactive session:

julia> function verbose_fussy_sqrt(x)

println("before fussy_sqrt")

r = fussy_sqrt(x)

println("after fussy_sqrt")

return r

end

verbose_fussy_sqrt (generic function with 1 method)

julia> verbose_fussy_sqrt(2)

before fussy_sqrt

after fussy_sqrt

1.4142135623730951

julia> verbose_fussy_sqrt(-1)

before fussy_sqrt

ERROR: negative x not allowed

Stacktrace:

[1] fussy_sqrt at ./none:1 [inlined]

[2] verbose_fussy_sqrt(::Int64) at ./none:3

Warnings and informational messages

Julia also provides other functions that write messages to the standard error I/O, but do not throw any Exceptions

and hence do not interrupt execution:

julia> info("Hi"); 1+1

INFO: Hi

2

julia> warn("Hi"); 1+1

WARNING: Hi

2

julia> error("Hi"); 1+1

ERROR: Hi

Stacktrace:

[1] error(::String) at ./error.jl:21

12.5. EXCEPTION HANDLING 91

The try/catch statement

The try/catch statement allows for Exceptions to be tested for. For example, a customized square root function

can be written to automatically call either the real or complex square root method on demand using Exceptions :

julia> f(x) = try

sqrt(x)

catch

sqrt(complex(x, 0))

end

f (generic function with 1 method)

julia> f(1)

1.0

julia> f(-1)

0.0 + 1.0im

It is important to note that in real code computing this function, one would compare x to zero instead of catching an

exception. The exception is much slower than simply comparing and branching.

try/catch statements also allow the Exception to be saved in a variable. In this contrived example, the following

example calculates the square root of the second element of x if x is indexable, otherwise assumes x is a real number

and returns its square root:

julia> sqrt_second(x) = try

sqrt(x[2])

catch y

if isa(y, DomainError)

sqrt(complex(x[2], 0))

elseif isa(y, BoundsError)

sqrt(x)

end

end

sqrt_second (generic function with 1 method)

julia> sqrt_second([1 4])

2.0

julia> sqrt_second([1 -4])

0.0 + 2.0im

julia> sqrt_second(9)

3.0

julia> sqrt_second(-9)

ERROR: DomainError:

Stacktrace:

[1] sqrt_second(::Int64) at ./none:7

Note that the symbol following catchwill always be interpreted as a name for the exception, so care is needed when

writing try/catch expressions on a single line. The following code will not work to return the value of x in case of

an error:

try bad() catch x end

92 CHAPTER 12. CONTROL FLOW

Instead, use a semicolon or insert a line break after catch:

try bad() catch; x end

try bad()

catch

x

end

The catch clause is not strictly necessary; when omitted, the default return value is nothing.

julia> try error() end # Returns nothing

The power of the try/catch construct lies in the ability to unwind a deeply nested computation immediately to a

much higher level in the stack of calling functions. There are situations where no error has occurred, but the ability

to unwind the stack and pass a value to a higher level is desirable. Julia provides the rethrow(), backtrace() and

catch_backtrace() functions for more advanced error handling.

finally Clauses

In code that performs state changes or uses resources like files, there is typically clean-up work (such as closing files)

that needs to be done when the code is finished. Exceptions potentially complicate this task, since they can cause a

block of code to exit before reaching its normal end. The finally keyword provides a way to run some code when a

given block of code exits, regardless of how it exits.

For example, here is howwe can guarantee that an opened file is closed:

f = open("file")

try

operate on file f

finally

close(f)

end

When control leaves the try block (for example due to a return, or just finishing normally), close(f) will be ex-

ecuted. If the try block exits due to an exception, the exception will continue propagating. A catch block may be

combined with try and finally as well. In this case the finally block will run after catch has handled the error.

12.6 Tasks (aka Coroutines)

Tasks are a control flow feature that allows computations to be suspended and resumed in a flexible manner. This fea-

ture is sometimes called by other names, such as symmetric coroutines, lightweight threads, cooperative multitasking,

or one-shot continuations.

When a piece of computing work (in practice, executing a particular function) is designated as a Task, it becomes

possible to interrupt it by switching to another Task. The original Task can later be resumed, at which point it will

pick up right where it left off. At first, this may seem similar to a function call. However there are two key differences.

First, switching tasks does not use any space, so any number of task switches can occur without consuming the call

stack. Second, switching among tasks can occur in any order, unlike function calls, where the called function must

finish executing before control returns to the calling function.

This kind of control flow can make it much easier to solve certain problems. In some problems, the various pieces of

required work are not naturally related by function calls; there is no obvious ”caller” or ”callee” among the jobs that

12.6. TASKS (AKA COROUTINES) 93

need to be done. An example is the producer-consumer problem, where one complex procedure is generating values

and another complex procedure is consuming them. The consumer cannot simply call a producer function to get a

value, because the producer may have more values to generate and so might not yet be ready to return. With tasks,

the producer and consumer can both run as long as they need to, passing values back and forth as necessary.

Julia provides a Channel mechanism for solving this problem. A Channel is a waitable first-in first-out queue which

can have multiple tasks reading from and writing to it.

Let’s define a producer task, which produces values via the put! call. To consume values, we need to schedule the

producer to run in a new task. A special Channel constructor which accepts a 1-arg function as an argument can be

used to run a task bound to a channel. We can then take!() values repeatedly from the channel object:

julia> function producer(c::Channel)

put!(c, "start")

for n=1:4

put!(c, 2n)

end

put!(c, "stop")

end;

julia> chnl = Channel(producer);

julia> take!(chnl)

"start"

julia> take!(chnl)

2

julia> take!(chnl)

4

julia> take!(chnl)

6

julia> take!(chnl)

8

julia> take!(chnl)

"stop"

One way to think of this behavior is that producer was able to return multiple times. Between calls to put!(), the

producer’s execution is suspended and the consumer has control.

The returned Channel can be used as an iterable object in a for loop, in which case the loop variable takes on all the

produced values. The loop is terminated when the channel is closed.

julia> for x in Channel(producer)

println(x)

end

start

2

4

6

8

stop

94 CHAPTER 12. CONTROL FLOW

Note that we did not have to explicitly close the channel in the producer. This is because the act of binding a Channel

to a Task() associates the open lifetime of a channel with that of the bound task. The channel object is closed

automatically when the task terminates. Multiple channels can be bound to a task, and vice-versa.

While the Task() constructor expects a 0-argument function, the Channel()methodwhich creates a channel bound

task expects a function that accepts a single argument of type Channel. A common pattern is for the producer to be

parameterized, in which case a partial function application is needed to create a 0 or 1 argument anonymous function.

For Task() objects this can be done either directly or by use of a convenience macro:

function mytask(myarg)

...

end

taskHdl = Task(() -> mytask(7))

or, equivalently

taskHdl = @task mytask(7)

To orchestrate more advanced work distribution patterns, bind() and schedule() can be used in conjunction with

Task() and Channel() constructors to explicitly link a set of channels with a set of producer/consumer tasks.

Note that currently Julia tasks are not scheduled to run on separate CPU cores. True kernel threads are discussed

under the topic of Parallel Computing.

Core task operations

Let us explore the low level construct yieldto() to underestand how task switchingworks. yieldto(task,value)

suspends the current task, switches to the specified task, and causes that task’s last yieldto() call to return the

specified value. Notice that yieldto() is the only operation required to use task-style control flow; instead of

calling and returning we are always just switching to a different task. This is why this feature is also called ”symmetric

coroutines”; each task is switched to and from using the same mechanism.

yieldto() is powerful, but most uses of tasks do not invoke it directly. Consider why this might be. If you switch

away from the current task, you will probably want to switch back to it at some point, but knowing when to switch

back, and knowing which task has the responsibility of switching back, can require considerable coordination. For

example, put!() and take!() are blocking operations, which, when used in the context of channels maintain state

to rememberwho the consumers are. Not needing tomanually keep track of the consuming task iswhatmakes put!()

easier to use than the low-level yieldto().

In addition to yieldto(), a few other basic functions are needed to use tasks effectively.

• current_task() gets a reference to the currently-running task.

• istaskdone() queries whether a task has exited.

• istaskstarted() queries whether a task has run yet.

• task_local_storage() manipulates a key-value store specific to the current task.

Tasks and events

Most task switches occur as a result of waiting for events such as I/O requests, and are performed by a scheduler

included in the standard library. The scheduler maintains a queue of runnable tasks, and executes an event loop that

restarts tasks based on external events such as message arrival.

12.6. TASKS (AKA COROUTINES) 95

The basic function for waiting for an event is wait(). Several objects implement wait(); for example, given a Pro-

cess object, wait() will wait for it to exit. wait() is often implicit; for example, a wait() can happen inside a call

to read() to wait for data to be available.

In all of these cases, wait() ultimately operates on a Condition object, which is in charge of queueing and restarting

tasks. When a task calls wait() on a Condition, the task is marked as non-runnable, added to the condition’s queue,

and switches to the scheduler. The scheduler will then pick another task to run, or block waiting for external events.

If all goes well, eventually an event handler will call notify() on the condition, which causes tasks waiting for that

condition to become runnable again.

A task created explicitly by calling Task is initially not known to the scheduler. This allows you to manage tasks

manually using yieldto() if you wish. However, when such a task waits for an event, it still gets restarted automat-

ically when the event happens, as you would expect. It is also possible to make the scheduler run a task whenever

it can, without necessarily waiting for any events. This is done by calling schedule(), or using the @schedule or

@async macros (see Parallel Computing for more details).

Task states

Tasks have a state field that describes their execution status. A Task state is one of the following symbols:

Symbol Meaning

:runnable Currently running, or available to be switched to

:waiting Blocked waiting for a specific event

:queued In the scheduler’s run queue about to be restarted

:done Successfully finished executing

:failed Finished with an uncaught exception

Chapter 13

Scope of Variables

The scope of a variable is the region of code within which a variable is visible. Variable scoping helps avoid variable

naming conflicts. The concept is intuitive: two functions can both have arguments called xwithout the twox’s referring

to the same thing. Similarly there are many other cases where different blocks of code can use the same namewithout

referring to the same thing. The rules for when the same variable name does or doesn’t refer to the same thing are

called scope rules; this section spells them out in detail.

Certain constructs in the language introduce scope blocks, which are regions of code that are eligible to be the scope

of some set of variables. The scope of a variable cannot be an arbitrary set of source lines; instead, it will always line

up with one of these blocks. There are two main types of scopes in Julia, global scope and local scope, the latter can be

nested. The constructs introducing scope blocks are:

Scope name block/construct introducing this kind of scope

Global Scope module, baremodule, at interactive prompt (REPL)

Local Scope Soft Local Scope: for, while, comprehensions, try-catch-finally, let

Local Scope Hard Local Scope: functions (either syntax, anonymous & do-blocks), struct, macro

Notably missing from this table are begin blocks and if blocks, which do not introduce new scope blocks. All three

types of scopes follow somewhat different rules which will be explained below as well as some extra rules for certain

blocks.

Julia uses lexical scoping, meaning that a function’s scope does not inherit from its caller’s scope, but from the scope

in which the function was defined. For example, in the following code the x inside foo refers to the x in the global

scope of its module Bar:

julia> module Bar

x = 1

foo() = x

end;

and not a x in the scope where foo is used:

julia> import .Bar

julia> x = -1;

julia> Bar.foo()

1

Thus lexical scope means that the scope of variables can be inferred from the source code alone.

97

https://en.wikipedia.org/wiki/Scope_%28computer_science%29#Lexical_scoping_vs._dynamic_scoping

98 CHAPTER 13. SCOPE OFVARIABLES

13.1 Global Scope

Eachmodule introduces a newglobal scope, separate from the global scope of all othermodules; there is no all-encompassing

global scope. Modules can introduce variables of other modules into their scope through the using or import state-

ments or through qualified access using the dot-notation, i.e. each module is a so-called namespace. Note that variable

bindings can only be changed within their global scope and not from an outside module.

julia> module A

a = 1 # a global in A's scope

end;

julia> module B

module C

c = 2

end

b = C.c # can access the namespace of a nested global scope

through a qualified access

import ..A # makes module A available

d = A.a

end;

julia> module D

b = a # errors as D's global scope is separate from A's

end;

ERROR: UndefVarError: a not defined

julia> module E

import ..A # make module A available

A.a = 2 # throws below error

end;

ERROR: cannot assign variables in other modules

Note that the interactive prompt (aka REPL) is in the global scope of the module Main.

13.2 Local Scope

A new local scope is introduced by most code-blocks, see above table for a complete list. A local scope usually inherits

all the variables from its parent scope, both for reading and writing. There are two subtypes of local scopes, hard and

soft, with slightly different rules concerning what variables are inherited. Unlike global scopes, local scopes are not

namespaces, thus variables in an inner scope cannot be retrieved from the parent scope through some sort of qualified

access.

The following rules and examples pertain to both hard and soft local scopes. A newly introduced variable in a local

scope does not back-propagate to its parent scope. For example, here the z is not introduced into the top-level scope:

julia> for i = 1:10

z = i

end

julia> z

ERROR: UndefVarError: z not defined

(Note, in this and all following examples it is assumed that their top-level is a global scope with a clean workspace, for

instance a newly started REPL.)

13.2. LOCAL SCOPE 99

Inside a local scope a variable can be forced to be a local variable using the local keyword:

julia> x = 0;

julia> for i = 1:10

local x

x = i + 1

end

julia> x

0

Inside a local scope a new global variable can be defined using the keyword global:

julia> for i = 1:10

global z

z = i

end

julia> z

10

The location of both the local and global keywords within the scope block is irrelevant. The following is equivalent

to the last example (although stylistically worse):

julia> for i = 1:10

z = i

global z

end

julia> z

10

Soft Local Scope

In a soft local scope, all variables are inherited from its parent scope unless a variable is specificallymarked

with the keyword local.

Soft local scopes are introduced by for-loops, while-loops, comprehensions, try-catch-finally-blocks, and let-blocks.

There are some extra rules for Let Blocks and for For Loops and Comprehensions.

In the following example the x and y refer always to the same variables as the soft local scope inherits both read and

write variables:

julia> x, y = 0, 1;

julia> for i = 1:10

x = i + y + 1

end

julia> x

12

100 CHAPTER 13. SCOPE OFVARIABLES

Within soft scopes, the global keyword is never necessary, although allowed. The only case when it would change the

semantics is (currently) a syntax error:

julia> let

local j = 2

let

global j = 3

end

end

ERROR: syntax: `global j`: j is local variable in the enclosing scope

Hard Local Scope

Hard local scopes are introduced by function definitions (in all their forms), struct type definition blocks, and macro-

definitions.

In a hard local scope, all variables are inherited from its parent scope unless:

• an assignment would result in a modified global variable, or

• a variable is specifically marked with the keyword local.

Thus global variables are only inherited for reading but not for writing:

julia> x, y = 1, 2;

julia> function foo()

x = 2 # assignment introduces a new local

return x + y # y refers to the global

end;

julia> foo()

4

julia> x

1

An explicit global is needed to assign to a global variable:

julia> x = 1;

julia> function foobar()

global x = 2

end;

julia> foobar();

julia> x

2

Note that nested functions can behave differently to functions defined in the global scope as they can modify their

parent scope’s local variables:

13.2. LOCAL SCOPE 101

julia> x, y = 1, 2;

julia> function baz()

x = 2 # introduces a new local

function bar()

x = 10 # modifies the parent's x

return x + y # y is global

end

return bar() + x # 12 + 10 (x is modified in call of bar())

end;

julia> baz()

22

julia> x, y

(1, 2)

The distinction between inheriting global and local variables for assignment can lead to some slight differences be-

tween functions defined in local vs. global scopes. Consider the modification of the last example by moving bar to

the global scope:

julia> x, y = 1, 2;

julia> function bar()

x = 10 # local

return x + y

end;

julia> function quz()

x = 2 # local

return bar() + x # 12 + 2 (x is not modified)

end;

julia> quz()

14

julia> x, y

(1, 2)

Note that above subtlety does not pertain to type and macro definitions as they can only appear at the global scope.

There are special scoping rules concerning the evaluation of default and keyword function arguments which are de-

scribed in the Function section.

An assignment introducing a variable used inside a function, type or macro definition need not come before its inner

usage:

julia> f = y -> y + a

(::#1) (generic function with 1 method)

julia> f(3)

ERROR: UndefVarError: a not defined

Stacktrace:

[1] (::##1#2)(::Int64) at ./none:1

102 CHAPTER 13. SCOPE OFVARIABLES

julia> a = 1

1

julia> f(3)

4

This behavior may seem slightly odd for a normal variable, but allows for named functions – which are just normal

variables holding function objects – to be used before they are defined. This allows functions to be defined inwhatever

order is intuitive and convenient, rather than forcing bottom up ordering or requiring forward declarations, as long as

they are defined by the time they are actually called. As an example, here is an inefficient, mutually recursive way to

test if positive integers are even or odd:

julia> even(n) = n == 0 ? true : odd(n-1);

julia> odd(n) = n == 0 ? false : even(n-1);

julia> even(3)

false

julia> odd(3)

true

Julia provides built-in, efficient functions to test for oddness and evenness called iseven() and isodd() so the

above definitions should only be taken as examples.

Hard vs. Soft Local Scope

Blocks which introduce a soft local scope, such as loops, are generally used to manipulate the variables in their parent

scope. Thus their default is to fully access all variables in their parent scope.

Conversely, the code inside blocks which introduce a hard local scope (function, type, and macro definitions) can be

executed at any place in a program. Remotely changing the state of global variables in other modules should be done

with care and thus this is an opt-in feature requiring the global keyword.

The reason to allow modifying local variables of parent scopes in nested functions is to allow constructing closures

which have a private state, for instance the state variable in the following example:

julia> let

state = 0

global counter

counter() = state += 1

end;

julia> counter()

1

julia> counter()

2

See also the closures in the examples in the next two sections.

https://en.wikipedia.org/wiki/Closure_%28computer_programming%29

13.2. LOCAL SCOPE 103

Let Blocks

Unlike assignments to local variables, let statements allocate newvariable bindings each time they run. An assignment

modifies an existing value location, and let creates new locations. This difference is usually not important, and is only

detectable in the case of variables that outlive their scope via closures. The let syntax accepts a comma-separated

series of assignments and variable names:

julia> x, y, z = -1, -1, -1;

julia> let x = 1, z

println("x: $x, y: $y") # x is local variable, y the global

println("z: $z") # errors as z has not been assigned yet but is local

end

x: 1, y: -1

ERROR: UndefVarError: z not defined

The assignments are evaluated in order, with each right-hand side evaluated in the scope before the new variable on

the left-hand side has been introduced. Therefore it makes sense to write something like let x = x since the two x

variables are distinct and have separate storage. Here is an example where the behavior of let is needed:

julia> Fs = Array{Any}(2); i = 1;

julia> while i <= 2

Fs[i] = ()->i

i += 1

end

julia> Fs[1]()

3

julia> Fs[2]()

3

Here we create and store two closures that return variable i. However, it is always the same variable i, so the two

closures behave identically. We can use let to create a new binding for i:

julia> Fs = Array{Any}(2); i = 1;

julia> while i <= 2

let i = i

Fs[i] = ()->i

end

i += 1

end

julia> Fs[1]()

1

julia> Fs[2]()

2

Since the begin construct does not introduce a new scope, it can be useful to use a zero-argument let to just intro-

duce a new scope block without creating any new bindings:

104 CHAPTER 13. SCOPE OFVARIABLES

julia> let

local x = 1

let

local x = 2

end

x

end

1

Since let introduces a new scope block, the inner local x is a different variable than the outer local x.

For Loops and Comprehensions

for loops and Comprehensions have the following behavior: any new variables introduced in their body scopes are

freshly allocated for each loop iteration. This is in contrast to while loops which reuse the variables for all iterations.

Therefore these constructs are similar to while loops with let blocks inside:

julia> Fs = Array{Any}(2);

julia> for j = 1:2

Fs[j] = ()->j

end

julia> Fs[1]()

1

julia> Fs[2]()

2

for loops will reuse existing variables for its iteration variable:

julia> i = 0;

julia> for i = 1:3

end

julia> i

3

However, comprehensions do not do this, and always freshly allocate their iteration variables:

julia> x = 0;

julia> [x for x = 1:3];

julia> x

0

13.3 Constants

A common use of variables is giving names to specific, unchanging values. Such variables are only assigned once. This

intent can be conveyed to the compiler using the const keyword:

13.3. CONSTANTS 105

julia> const e = 2.71828182845904523536;

julia> const pi = 3.14159265358979323846;

The const declaration is allowed on both global and local variables, but is especially useful for globals. It is difficult

for the compiler to optimize code involving global variables, since their values (or even their types) might change at

almost any time. If a global variable will not change, adding a const declaration solves this performance problem.

Local constants are quite different. The compiler is able to determine automatically when a local variable is constant,

so local constant declarations are not necessary for performance purposes.

Special top-level assignments, such as those performed by the function and struct keywords, are constant by

default.

Note that const only affects the variable binding; the variable may be bound to a mutable object (such as an array),

and that object may still be modified.

Chapter 14

Types

Type systems have traditionally fallen into two quite different camps: static type systems, where every program ex-

pression must have a type computable before the execution of the program, and dynamic type systems, where nothing

is known about types until run time, when the actual values manipulated by the program are available. Object orienta-

tion allows some flexibility in statically typed languages by letting code be written without the precise types of values

being known at compile time. The ability to write code that can operate on different types is called polymorphism. All

code in classic dynamically typed languages is polymorphic: only by explicitly checking types, or when objects fail to

support operations at run-time, are the types of any values ever restricted.

Julia’s type system is dynamic, but gains some of the advantages of static type systems bymaking it possible to indicate

that certain values are of specific types. This can be of great assistance in generating efficient code, but even more

significantly, it allows method dispatch on the types of function arguments to be deeply integrated with the language.

Method dispatch is explored in detail in Methods, but is rooted in the type system presented here.

The default behavior in Julia when types are omitted is to allow values to be of any type. Thus, one can write many

useful Julia programs without ever explicitly using types. When additional expressiveness is needed, however, it is

easy to gradually introduce explicit type annotations into previously ”untyped” code. Doing so will typically increase

both the performance and robustness of these systems, and perhaps somewhat counterintuitively, often significantly

simplify them.

Describing Julia in the lingo of type systems, it is: dynamic, nominative and parametric. Generic types can be param-

eterized, and the hierarchical relationships between types are explicitly declared, rather than implied by compatible

structure. One particularly distinctive feature of Julia’s type system is that concrete types may not subtype each other:

all concrete types are final and may only have abstract types as their supertypes. While this might at first seem unduly

restrictive, it has many beneficial consequences with surprisingly few drawbacks. It turns out that being able to inherit

behavior is much more important than being able to inherit structure, and inheriting both causes significant difficulties

in traditional object-oriented languages. Other high-level aspects of Julia’s type system that should be mentioned up

front are:

• There is no division between object and non-object values: all values in Julia are true objects having a type that

belongs to a single, fully connected type graph, all nodes of which are equally first-class as types.

• There is no meaningful concept of a ”compile-time type”: the only type a value has is its actual type when the

program is running. This is called a ”run-time type” in object-oriented languageswhere the combination of static

compilation with polymorphism makes this distinction significant.

• Only values, not variables, have types – variables are simply names bound to values.

• Both abstract and concrete types can be parameterized by other types. They can also be parameterized by

symbols, by values of any type for which isbits() returns true (essentially, things like numbers and bools that

107

https://en.wikipedia.org/wiki/Type_system
https://en.wikipedia.org/wiki/Nominal_type_system
https://en.wikipedia.org/wiki/Structural_type_system
https://en.wikipedia.org/wiki/Structural_type_system

108 CHAPTER 14. TYPES

are stored like C types or structs with no pointers to other objects), and also by tuples thereof. Type parameters

may be omitted when they do not need to be referenced or restricted.

Julia’s type system is designed to be powerful and expressive, yet clear, intuitive and unobtrusive. Many Julia program-

mers may never feel the need to write code that explicitly uses types. Some kinds of programming, however, become

clearer, simpler, faster and more robust with declared types.

14.1 Type Declarations

The :: operator can be used to attach type annotations to expressions and variables in programs. There are two

primary reasons to do this:

1. As an assertion to help confirm that your program works the way you expect,

2. To provide extra type information to the compiler, which can then improve performance in some cases

When appended to an expression computing a value, the :: operator is read as ”is an instance of”. It can be used

anywhere to assert that the value of the expression on the left is an instance of the type on the right. When the type

on the right is concrete, the value on the left must have that type as its implementation – recall that all concrete types

are final, so no implementation is a subtype of any other. When the type is abstract, it suffices for the value to be

implemented by a concrete type that is a subtype of the abstract type. If the type assertion is not true, an exception

is thrown, otherwise, the left-hand value is returned:

julia> (1+2)::AbstractFloat

ERROR: TypeError: typeassert: expected AbstractFloat, got Int64

julia> (1+2)::Int

3

This allows a type assertion to be attached to any expression in-place.

When appended to a variable on the left-hand side of an assignment, or as part of a local declaration, the :: operator

means something a bit different: it declares the variable to always have the specified type, like a type declaration in a

statically-typed language such as C. Every value assigned to the variable will be converted to the declared type using

convert():

julia> function foo()

x::Int8 = 100

x

end

foo (generic function with 1 method)

julia> foo()

100

julia> typeof(ans)

Int8

This feature is useful for avoiding performance ”gotchas” that could occur if one of the assignments to a variable

changed its type unexpectedly.

This ”declaration” behavior only occurs in specific contexts:

14.2. ABSTRACT TYPES 109

local x::Int8 # in a local declaration

x::Int8 = 10 # as the left-hand side of an assignment

and applies to the whole current scope, even before the declaration. Currently, type declarations cannot be used in

global scope, e.g. in the REPL, since Julia does not yet have constant-type globals.

Declarations can also be attached to function definitions:

function sinc(x)::Float64

if x == 0

return 1

end

return sin(pi*x)/(pi*x)

end

Returning from this function behaves just like an assignment to a variable with a declared type: the value is always

converted to Float64.

14.2 Abstract Types

Abstract types cannot be instantiated, and serve only as nodes in the type graph, thereby describing sets of related

concrete types: those concrete types which are their descendants. We begin with abstract types even though they

have no instantiation because they are the backbone of the type system: they form the conceptual hierarchy which

makes Julia’s type system more than just a collection of object implementations.

Recall that in Integers and Floating-Point Numbers, we introduced a variety of concrete types of numeric values:

Int8, UInt8, Int16, UInt16, Int32, UInt32, Int64, UInt64, Int128, UInt128, Float16, Float32, and Float64.

Although they have different representation sizes, Int8, Int16, Int32, Int64 and Int128 all have in common that

they are signed integer types. Likewise UInt8, UInt16, UInt32, UInt64 and UInt128 are all unsigned integer types,

while Float16, Float32 and Float64 are distinct in being floating-point types rather than integers. It is common

for a piece of code to make sense, for example, only if its arguments are some kind of integer, but not really depend

on what particular kind of integer. For example, the greatest common denominator algorithm works for all kinds of

integers, but will not work for floating-point numbers. Abstract types allow the construction of a hierarchy of types,

providing a context into which concrete types can fit. This allows you, for example, to easily program to any type that

is an integer, without restricting an algorithm to a specific type of integer.

Abstract types are declared using the abstract type keyword. The general syntaxes for declaring an abstract type

are:

abstract type «name» end

abstract type «name» <: «supertype» end

The abstract type keyword introduces a new abstract type, whose name is given by «name». This name can be

optionally followed by <: and an already-existing type, indicating that the newly declared abstract type is a subtype

of this ”parent” type.

When no supertype is given, the default supertype is Any – a predefined abstract type that all objects are instances of

and all types are subtypes of. In type theory, Any is commonly called ”top” because it is at the apex of the type graph.

Julia also has a predefined abstract ”bottom” type, at the nadir of the type graph, which is written as Union{}. It is

the exact opposite of Any: no object is an instance of Union{} and all types are supertypes of Union{}.

Let’s consider some of the abstract types that make up Julia’s numerical hierarchy:

110 CHAPTER 14. TYPES

abstract type Number end

abstract type Real <: Number end

abstract type AbstractFloat <: Real end

abstract type Integer <: Real end

abstract type Signed <: Integer end

abstract type Unsigned <: Integer end

The Number type is a direct child type of Any, and Real is its child. In turn, Real has two children (it has more, but

only two are shown here; we’ll get to the others later): Integer and AbstractFloat, separating the world into

representations of integers and representations of real numbers. Representations of real numbers include, of course,

floating-point types, but also include other types, such as rationals. Hence, AbstractFloat is a proper subtype of

Real, including only floating-point representations of real numbers. Integers are further subdivided into Signed and

Unsigned varieties.

The <: operator in general means ”is a subtype of”, and, used in declarations like this, declares the right-hand type to

be an immediate supertype of the newly declared type. It can also be used in expressions as a subtype operator which

returns truewhen its left operand is a subtype of its right operand:

julia> Integer <: Number

true

julia> Integer <: AbstractFloat

false

An important use of abstract types is to provide default implementations for concrete types. To give a simple example,

consider:

function myplus(x,y)

x+y

end

The first thing to note is that the above argument declarations are equivalent to x::Any and y::Any. When this func-

tion is invoked, say as myplus(2,5), the dispatcher chooses the most specific method named myplus that matches

the given arguments. (See Methods for more information on multiple dispatch.)

Assuming no method more specific than the above is found, Julia next internally defines and compiles a method called

myplus specifically for two Int arguments based on the generic function given above, i.e., it implicitly defines and

compiles:

function myplus(x::Int,y::Int)

x+y

end

and finally, it invokes this specific method.

Thus, abstract types allow programmers to write generic functions that can later be used as the default method by

many combinations of concrete types. Thanks to multiple dispatch, the programmer has full control over whether the

default or more specific method is used.

An important point to note is that there is no loss in performance if the programmer relies on a function whose

arguments are abstract types, because it is recompiled for each tuple of argument concrete types with which it is

invoked. (Theremaybe a performance issue, however, in the case of function arguments that are containers of abstract

types; see Performance Tips.)

14.3. PRIMITIVE TYPES 111

14.3 Primitive Types

Aprimitive type is a concrete typewhose data consists of plain old bits. Classic examples of primitive types are integers

and floating-point values. Unlike most languages, Julia lets you declare your own primitive types, rather than providing

only a fixed set of built-in ones. In fact, the standard primitive types are all defined in the language itself:

primitive type Float16 <: AbstractFloat 16 end

primitive type Float32 <: AbstractFloat 32 end

primitive type Float64 <: AbstractFloat 64 end

primitive type Bool <: Integer 8 end

primitive type Char 32 end

primitive type Int8 <: Signed 8 end

primitive type UInt8 <: Unsigned 8 end

primitive type Int16 <: Signed 16 end

primitive type UInt16 <: Unsigned 16 end

primitive type Int32 <: Signed 32 end

primitive type UInt32 <: Unsigned 32 end

primitive type Int64 <: Signed 64 end

primitive type UInt64 <: Unsigned 64 end

primitive type Int128 <: Signed 128 end

primitive type UInt128 <: Unsigned 128 end

The general syntaxes for declaring a primitive type are:

primitive type «name» «bits» end

primitive type «name» <: «supertype» «bits» end

The number of bits indicates howmuch storage the type requires and the name gives the new type a name. A primitive

type can optionally be declared to be a subtype of some supertype. If a supertype is omitted, then the type defaults

to having Any as its immediate supertype. The declaration of Bool above therefore means that a boolean value takes

eight bits to store, and has Integer as its immediate supertype. Currently, only sizes that are multiples of 8 bits are

supported. Therefore, boolean values, although they really need just a single bit, cannot be declared to be any smaller

than eight bits.

The types Bool, Int8 and UInt8 all have identical representations: they are eight-bit chunks of memory. Since Julia’s

type system is nominative, however, they are not interchangeable despite having identical structure. A fundamental

difference between them is that theyhave different supertypes: Bool’s direct supertype is Integer, Int8’s is Signed,

and UInt8’s is Unsigned. All other differences between Bool, Int8, and UInt8 are matters of behavior – the way

functions are defined to act when given objects of these types as arguments. This is why a nominative type system

is necessary: if structure determined type, which in turn dictates behavior, then it would be impossible to make Bool

behave any differently than Int8 or UInt8.

14.4 Composite Types

Composite types are called records, structs, or objects in various languages. A composite type is a collection of named

fields, an instance of which can be treated as a single value. In many languages, composite types are the only kind of

user-definable type, and they are by far the most commonly used user-defined type in Julia as well.

In mainstream object oriented languages, such as C++, Java, Python and Ruby, composite types also have named

functions associated with them, and the combination is called an ”object”. In purer object-oriented languages, such as

Ruby or Smalltalk, all values are objects whether they are composites or not. In less pure object oriented languages,

including C++ and Java, some values, such as integers and floating-point values, are not objects, while instances of

https://en.wikipedia.org/wiki/Composite_data_type

112 CHAPTER 14. TYPES

user-defined composite types are true objects with associated methods. In Julia, all values are objects, but functions

are not bundled with the objects they operate on. This is necessary since Julia chooses which method of a function

to use by multiple dispatch, meaning that the types of all of a function’s arguments are considered when selecting a

method, rather than just the first one (see Methods for more information on methods and dispatch). Thus, it would be

inappropriate for functions to ”belong” to only their first argument. Organizing methods into function objects rather

than having named bags of methods ”inside” each object ends up being a highly beneficial aspect of the language

design.

Composite types are introduced with the struct keyword followed by a block of field names, optionally annotated

with types using the :: operator:

julia> struct Foo

bar

baz::Int

qux::Float64

end

Fields with no type annotation default to Any, and can accordingly hold any type of value.

New objects of type Foo are created by applying the Foo type object like a function to values for its fields:

julia> foo = Foo("Hello, world.", 23, 1.5)

Foo("Hello, world.", 23, 1.5)

julia> typeof(foo)

Foo

When a type is applied like a function it is called a constructor. Two constructors are generated automatically (these

are called default constructors). One accepts any arguments and calls convert() to convert them to the types of the

fields, and the other accepts arguments that match the field types exactly. The reason both of these are generated is

that this makes it easier to add new definitions without inadvertently replacing a default constructor.

Since the bar field is unconstrained in type, any value will do. However, the value for bazmust be convertible to Int:

julia> Foo((), 23.5, 1)

ERROR: InexactError()

Stacktrace:

[1] convert(::Type{Int64}, ::Float64) at ./float.jl:679

[2] Foo(::Tuple{}, ::Float64, ::Int64) at ./none:2

You may find a list of field names using the fieldnames function.

julia> fieldnames(foo)

3-element Array{Symbol,1}:

:bar

:baz

:qux

You can access the field values of a composite object using the traditional foo.bar notation:

julia> foo.bar

"Hello, world."

julia> foo.baz

23

julia> foo.qux

1.5

14.5. MUTABLE COMPOSITE TYPES 113

Composite objects declared with struct are immutable; they cannot be modified after construction. This may seem

odd at first, but it has several advantages:

• It can be more efficient. Some structs can be packed efficiently into arrays, and in some cases the compiler is

able to avoid allocating immutable objects entirely.

• It is not possible to violate the invariants provided by the type’s constructors.

• Code using immutable objects can be easier to reason about.

An immutable object might contain mutable objects, such as arrays, as fields. Those contained objects will remain

mutable; only the fields of the immutable object itself cannot be changed to point to different objects.

Where required, mutable composite objects can be declared with the keyword mutable struct, to be discussed in

the next section.

Composite types with no fields are singletons; there can be only one instance of such types:

julia> struct NoFields

end

julia> NoFields() === NoFields()

true

The === function confirms that the ”two” constructed instances of NoFields are actually one and the same. Singleton

types are described in further detail below.

There is much more to say about how instances of composite types are created, but that discussion depends on both

Parametric Types and on Methods, and is sufficiently important to be addressed in its own section: Constructors.

14.5 Mutable Composite Types

If a composite type is declared with mutable struct instead of struct, then instances of it can be modified:

julia> mutable struct Bar

baz

qux::Float64

end

julia> bar = Bar("Hello", 1.5);

julia> bar.qux = 2.0

2.0

julia> bar.baz = 1//2

1//2

In order to support mutation, such objects are generally allocated on the heap, and have stable memory addresses. A

mutable object is like a little container that might hold different values over time, and so can only be reliably identified

with its address. In contrast, an instance of an immutable type is associatedwith specific field values –- the field values

alone tell you everything about the object. In deciding whether to make a type mutable, ask whether two instances

with the same field values would be considered identical, or if they might need to change independently over time. If

they would be considered identical, the type should probably be immutable.

To recap, two essential properties define immutability in Julia:

114 CHAPTER 14. TYPES

• An object with an immutable type is passed around (both in assignment statements and in function calls) by

copying, whereas a mutable type is passed around by reference.

• It is not permitted to modify the fields of a composite immutable type.

It is instructive, particularly for readers whose background is C/C++, to consider why these two properties go hand

in hand. If they were separated, i.e., if the fields of objects passed around by copying could be modified, then it

would become more difficult to reason about certain instances of generic code. For example, suppose x is a function

argument of an abstract type, and suppose that the function changes a field: x.isprocessed = true. Depending

on whether x is passed by copying or by reference, this statement may or may not alter the actual argument in the

calling routine. Julia sidesteps the possibility of creating functions with unknown effects in this scenario by forbidding

modification of fields of objects passed around by copying.

14.6 Declared Types

The three kinds of types discussed in the previous three sections are actually all closely related. They share the same

key properties:

• They are explicitly declared.

• They have names.

• They have explicitly declared supertypes.

• They may have parameters.

Because of these shared properties, these types are internally represented as instances of the same concept, DataType,

which is the type of any of these types:

julia> typeof(Real)

DataType

julia> typeof(Int)

DataType

A DataType may be abstract or concrete. If it is concrete, it has a specified size, storage layout, and (optionally) field

names. Thus a bits type is a DataType with nonzero size, but no field names. A composite type is a DataType that

has field names or is empty (zero size).

Every concrete value in the system is an instance of some DataType.

14.7 Type Unions

A type union is a special abstract type which includes as objects all instances of any of its argument types, constructed

using the special Union function:

julia> IntOrString = Union{Int,AbstractString}

Union{AbstractString, Int64}

julia> 1 :: IntOrString

1

14.8. PARAMETRIC TYPES 115

julia> "Hello!" :: IntOrString

"Hello!"

julia> 1.0 :: IntOrString

ERROR: TypeError: typeassert: expected Union{AbstractString, Int64}, got Float64

The compilers for many languages have an internal union construct for reasoning about types; Julia simply exposes it

to the programmer.

14.8 Parametric Types

An important and powerful feature of Julia’s type system is that it is parametric: types can take parameters, so that type

declarations actually introduce a whole family of new types – one for each possible combination of parameter values.

There are many languages that support some version of generic programming, wherein data structures and algorithms

to manipulate them may be specified without specifying the exact types involved. For example, some form of generic

programming exists inML,Haskell, Ada, Eiffel, C++, Java, C#, F#, and Scala, just to name a few. Someof these languages

support true parametric polymorphism (e.g. ML, Haskell, Scala), while others support ad-hoc, template-based styles

of generic programming (e.g. C++, Java). With so many different varieties of generic programming and parametric

types in various languages, we won’t even attempt to compare Julia’s parametric types to other languages, but will

instead focus on explaining Julia’s system in its own right. We will note, however, that because Julia is a dynamically

typed language and doesn’t need to make all type decisions at compile time, many traditional difficulties encountered

in static parametric type systems can be relatively easily handled.

All declared types (the DataType variety) can be parameterized, with the same syntax in each case. We will discuss

them in the following order: first, parametric composite types, then parametric abstract types, and finally parametric

bits types.

Parametric Composite Types

Type parameters are introduced immediately after the type name, surrounded by curly braces:

julia> struct Point{T}

x::T

y::T

end

This declaration defines a new parametric type, Point{T}, holding two ”coordinates” of type T. What, one may ask,

is T? Well, that’s precisely the point of parametric types: it can be any type at all (or a value of any bits type, actually,

although here it’s clearly used as a type). Point{Float64} is a concrete type equivalent to the type defined by

replacing T in the definition of Point with Float64. Thus, this single declaration actually declares an unlimited

number of types: Point{Float64}, Point{AbstractString}, Point{Int64}, etc. Each of these is now a usable

concrete type:

julia> Point{Float64}

Point{Float64}

julia> Point{AbstractString}

Point{AbstractString}

The type Point{Float64} is a point whose coordinates are 64-bit floating-point values, while the type Point{Ab-

stractString} is a ”point” whose ”coordinates” are string objects (see Strings).

Point itself is also a valid type object, containing all instances Point{Float64}, Point{AbstractString}, etc. as

subtypes:

https://en.wikipedia.org/wiki/Generic_programming

116 CHAPTER 14. TYPES

julia> Point{Float64} <: Point

true

julia> Point{AbstractString} <: Point

true

Other types, of course, are not subtypes of it:

julia> Float64 <: Point

false

julia> AbstractString <: Point

false

Concrete Point types with different values of T are never subtypes of each other:

julia> Point{Float64} <: Point{Int64}

false

julia> Point{Float64} <: Point{Real}

false

Warning

This last point is very important: even though Float64 <: Real we DO NOT have Point{Float64}

<: Point{Real}.

In other words, in the parlance of type theory, Julia’s type parameters are invariant, rather than being covariant (or

even contravariant). This is for practical reasons: while any instance of Point{Float64}may conceptually be like an

instance of Point{Real} as well, the two types have different representations in memory:

• An instance of Point{Float64} can be represented compactly and efficiently as an immediate pair of 64-bit

values;

• An instance of Point{Real}must be able to hold anypair of instances of Real. Since objects that are instances

of Real can be of arbitrary size and structure, in practice an instance of Point{Real}must be represented as

a pair of pointers to individually allocated Real objects.

The efficiency gained by being able to store Point{Float64} objects with immediate values is magnified enormously

in the case of arrays: an Array{Float64} can be stored as a contiguous memory block of 64-bit floating-point

values, whereas an Array{Real} must be an array of pointers to individually allocated Real objects – which may

well be boxed 64-bit floating-point values, but also might be arbitrarily large, complex objects, which are declared to

be implementations of the Real abstract type.

Since Point{Float64} is not a subtype of Point{Real}, the following method can’t be applied to arguments of

type Point{Float64}:

function norm(p::Point{Real})

sqrt(p.x^2 + p.y^2)

end

A correct way to define a method that accepts all arguments of type Point{T}where T is a subtype of Real is:

https://en.wikipedia.org/wiki/Covariance_and_contravariance_%28computer_science%29
https://en.wikipedia.org/wiki/Covariance_and_contravariance_%28computer_science%29
https://en.wikipedia.org/wiki/Object_type_%28object-oriented_programming%29#Boxing

14.8. PARAMETRIC TYPES 117

function norm(p::Point{<:Real})

sqrt(p.x^2 + p.y^2)

end

(Equivalently, one could definefunction norm{T<:Real}(p::Point{T}) orfunction norm(p::Point{T} where

T<:Real); see UnionAll Types.)

More examples will be discussed later in Methods.

How does one construct a Point object? It is possible to define custom constructors for composite types, which will

be discussed in detail in Constructors, but in the absence of any special constructor declarations, there are two default

ways of creating new composite objects, one in which the type parameters are explicitly given and the other in which

they are implied by the arguments to the object constructor.

Since the type Point{Float64} is a concrete type equivalent to Point declared with Float64 in place of T, it can

be applied as a constructor accordingly:

julia> Point{Float64}(1.0, 2.0)

Point{Float64}(1.0, 2.0)

julia> typeof(ans)

Point{Float64}

For the default constructor, exactly one argument must be supplied for each field:

julia> Point{Float64}(1.0)

ERROR: MethodError: Cannot `convert` an object of type Float64 to an object of type Point{Float64

}

This may have arisen from a call to the constructor Point{Float64}(...),

since type constructors fall back to convert methods.

Stacktrace:

[1] Point{Float64}(::Float64) at ./sysimg.jl:24

julia> Point{Float64}(1.0,2.0,3.0)

ERROR: MethodError: no method matching Point{Float64}(::Float64, ::Float64, ::Float64)

Only one default constructor is generated for parametric types, since overriding it is not possible. This constructor

accepts any arguments and converts them to the field types.

In many cases, it is redundant to provide the type of Point object onewants to construct, since the types of arguments

to the constructor call already implicitly provide type information. For that reason, you can also apply Point itself as

a constructor, provided that the implied value of the parameter type T is unambiguous:

julia> Point(1.0,2.0)

Point{Float64}(1.0, 2.0)

julia> typeof(ans)

Point{Float64}

julia> Point(1,2)

Point{Int64}(1, 2)

julia> typeof(ans)

Point{Int64}

In the case of Point, the type of T is unambiguously implied if and only if the two arguments to Point have the same

type. When this isn’t the case, the constructor will fail with a MethodError:

118 CHAPTER 14. TYPES

julia> Point(1,2.5)

ERROR: MethodError: no method matching Point(::Int64, ::Float64)

Closest candidates are:

Point(::T, !Matched::T) where T at none:2

Constructor methods to appropriately handle such mixed cases can be defined, but that will not be discussed until

later on in Constructors.

Parametric Abstract Types

Parametric abstract type declarations declare a collection of abstract types, in much the same way:

julia> abstract type Pointy{T} end

With this declaration, Pointy{T} is a distinct abstract type for each type or integer value of T. As with parametric

composite types, each such instance is a subtype of Pointy:

julia> Pointy{Int64} <: Pointy

true

julia> Pointy{1} <: Pointy

true

Parametric abstract types are invariant, much as parametric composite types are:

julia> Pointy{Float64} <: Pointy{Real}

false

julia> Pointy{Real} <: Pointy{Float64}

false

The notation Pointy{<:Real} can be used to express the Julia analogue of a covariant type, while Pointy{>:Int}

the analogue of a contravariant type, but technically these represent sets of types (see UnionAll Types).

julia> Pointy{Float64} <: Pointy{<:Real}

true

julia> Pointy{Real} <: Pointy{>:Int}

true

Much as plain old abstract types serve to create a useful hierarchy of types over concrete types, parametric abstract

types serve the same purpose with respect to parametric composite types. We could, for example, have declared

Point{T} to be a subtype of Pointy{T} as follows:

julia> struct Point{T} <: Pointy{T}

x::T

y::T

end

Given such a declaration, for each choice of T, we have Point{T} as a subtype of Pointy{T}:

julia> Point{Float64} <: Pointy{Float64}

true

julia> Point{Real} <: Pointy{Real}

true

julia> Point{AbstractString} <: Pointy{AbstractString}

true

14.8. PARAMETRIC TYPES 119

This relationship is also invariant:

julia> Point{Float64} <: Pointy{Real}

false

julia> Point{Float64} <: Pointy{<:Real}

true

What purpose do parametric abstract types like Pointy serve? Consider if we create a point-like implementation that

only requires a single coordinate because the point is on the diagonal line x = y:

julia> struct DiagPoint{T} <: Pointy{T}

x::T

end

Nowboth Point{Float64} and DiagPoint{Float64} are implementations of the Pointy{Float64} abstraction,

and similarly for every other possible choice of type T. This allows programming to a common interface shared by all

Pointy objects, implemented for both Point and DiagPoint. This cannot be fully demonstrated, however, until we

have introduced methods and dispatch in the next section, Methods.

There are situations where it may not make sense for type parameters to range freely over all possible types. In such

situations, one can constrain the range of T like so:

julia> abstract type Pointy{T<:Real} end

With such a declaration, it is acceptable to use any type that is a subtype of Real in place of T, but not types that are

not subtypes of Real:

julia> Pointy{Float64}

Pointy{Float64}

julia> Pointy{Real}

Pointy{Real}

julia> Pointy{AbstractString}

ERROR: TypeError: Pointy: in T, expected T<:Real, got Type{AbstractString}

julia> Pointy{1}

ERROR: TypeError: Pointy: in T, expected T<:Real, got Int64

Type parameters for parametric composite types can be restricted in the same manner:

struct Point{T<:Real} <: Pointy{T}

x::T

y::T

end

To give a real-world example of how all this parametric type machinery can be useful, here is the actual definition of

Julia’s Rational immutable type (except that we omit the constructor here for simplicity), representing an exact ratio

of integers:

struct Rational{T<:Integer} <: Real

num::T

den::T

end

120 CHAPTER 14. TYPES

It only makes sense to take ratios of integer values, so the parameter type T is restricted to being a subtype of Inte-

ger, and a ratio of integers represents a value on the real number line, so any Rational is an instance of the Real

abstraction.

Tuple Types

Tuples are an abstraction of the arguments of a function –without the function itself. The salient aspects of a function’s

arguments are their order and their types. Therefore a tuple type is similar to a parameterized immutable type where

each parameter is the type of one field. For example, a 2-element tuple type resembles the following immutable type:

struct Tuple2{A,B}

a::A

b::B

end

However, there are three key differences:

• Tuple types may have any number of parameters.

• Tuple types are covariant in their parameters: Tuple{Int} is a subtype ofTuple{Any}. ThereforeTuple{Any}

is considered an abstract type, and tuple types are only concrete if their parameters are.

• Tuples do not have field names; fields are only accessed by index.

Tuple values are written with parentheses and commas. When a tuple is constructed, an appropriate tuple type is

generated on demand:

julia> typeof((1,"foo",2.5))

Tuple{Int64,String,Float64}

Note the implications of covariance:

julia> Tuple{Int,AbstractString} <: Tuple{Real,Any}

true

julia> Tuple{Int,AbstractString} <: Tuple{Real,Real}

false

julia> Tuple{Int,AbstractString} <: Tuple{Real,}

false

Intuitively, this corresponds to the type of a function’s arguments being a subtype of the function’s signature (when

the signature matches).

Vararg Tuple Types

The last parameter of a tuple type can be the special type Vararg, which denotes any number of trailing elements:

14.8. PARAMETRIC TYPES 121

julia> mytupletype = Tuple{AbstractString,Vararg{Int}}

Tuple{AbstractString,Vararg{Int64,N} where N}

julia> isa(("1",), mytupletype)

true

julia> isa(("1",1), mytupletype)

true

julia> isa(("1",1,2), mytupletype)

true

julia> isa(("1",1,2,3.0), mytupletype)

false

Notice that Vararg{T} corresponds to zero or more elements of type T. Vararg tuple types are used to represent the

arguments accepted by varargs methods (see Varargs Functions).

The type Vararg{T,N} corresponds to exactly N elements of type T. NTuple{N,T} is a convenient alias for Tu-

ple{Vararg{T,N}}, i.e. a tuple type containing exactly N elements of type T.

Singleton Types

There is a special kind of abstract parametric type that must be mentioned here: singleton types. For each type, T, the

”singleton type” Type{T} is an abstract type whose only instance is the object T. Since the definition is a little difficult

to parse, let’s look at some examples:

julia> isa(Float64, Type{Float64})

true

julia> isa(Real, Type{Float64})

false

julia> isa(Real, Type{Real})

true

julia> isa(Float64, Type{Real})

false

In other words, isa(A,Type{B}) is true if and only if A and B are the same object and that object is a type. Without

the parameter, Type is simply an abstract typewhich has all type objects as its instances, including, of course, singleton

types:

julia> isa(Type{Float64}, Type)

true

julia> isa(Float64, Type)

true

julia> isa(Real, Type)

true

Any object that is not a type is not an instance of Type:

122 CHAPTER 14. TYPES

julia> isa(1, Type)

false

julia> isa("foo", Type)

false

Untilwe discuss ParametricMethods and conversions, it is difficult to explain the utility of the singleton type construct,

but in short, it allows one to specialize function behavior on specific type values. This is useful for writing methods

(especially parametric ones) whose behavior depends on a type that is given as an explicit argument rather than implied

by the type of one of its arguments.

A few popular languages have singleton types, including Haskell, Scala and Ruby. In general usage, the term ”singleton

type” refers to a type whose only instance is a single value. This meaning applies to Julia’s singleton types, but with

that caveat that only type objects have singleton types.

Parametric Primitive Types

Primitive types can also be declared parametrically. For example, pointers are represented as primitive types which

would be declared in Julia like this:

32-bit system:

primitive type Ptr{T} 32 end

64-bit system:

primitive type Ptr{T} 64 end

The slightly odd feature of these declarations as compared to typical parametric composite types, is that the type pa-

rameter T is not used in the definition of the type itself – it is just an abstract tag, essentially defining an entire family of

types with identical structure, differentiated only by their type parameter. Thus, Ptr{Float64} and Ptr{Int64} are

distinct types, even though they have identical representations. And of course, all specific pointer types are subtypes

of the umbrella Ptr type:

julia> Ptr{Float64} <: Ptr

true

julia> Ptr{Int64} <: Ptr

true

14.9 UnionAll Types

We have said that a parametric type like Ptr acts as a supertype of all its instances (Ptr{Int64} etc.). How does this

work? Ptr itself cannot be a normal data type, since without knowing the type of the referenced data the type clearly

cannot be used for memory operations. The answer is that Ptr (or other parametric types like Array) is a different

kind of type called a UnionAll type. Such a type expresses the iterated union of types for all values of some parameter.

UnionAll types are usually written using the keyword where. For example Ptr could be more accurately written

as Ptr{T} where T, meaning all values whose type is Ptr{T} for some value of T. In this context, the parameter T

is also often called a ”type variable” since it is like a variable that ranges over types. Each where introduces a single

type variable, so these expressions are nested for types with multiple parameters, for example Array{T,N} where

N where T.

The type application syntax A{B,C} requires A to be a UnionAll type, and first substitutes B for the outermost type

variable in A. The result is expected to be another UnionAll type, into which C is then substituted. So A{B,C} is

14.10. TYPE ALIASES 123

equivalent to A{B}{C}. This explains why it is possible to partially instantiate a type, as in Array{Float64}: the first

parameter value has been fixed, but the second still ranges over all possible values. Using explicit where syntax, any

subset of parameters can be fixed. For example, the type of all 1-dimensional arrays can be written as Array{T,1}

where T.

Type variables can be restricted with subtype relations. Array{T} where T<:Integer refers to all arrays whose

element type is some kind of Integer. The syntax Array{<:Integer} is a convenient shorthand for Array{T}

where T<:Integer. Type variables can have both lower and upper bounds. Array{T} where Int<:T<:Number

refers to all arrays of Numbers that are able to contain Ints (since Tmust be at least as big as Int). The syntax where

T>:Int also works to specify only the lower bound of a type variable, and Array{>:Int} is equivalent to Array{T}

where T>:Int.

Since where expressions nest, type variable bounds can refer to outer type variables. For example Tuple{T,Ar-

ray{S}} where S<:AbstractArray{T} where T<:Real refers to 2-tuples whose first element is some Real,

and whose second element is an Array of any kind of array whose element type contains the type of the first tuple

element.

The where keyword itself can be nested inside a more complex declaration. For example, consider the two types

created by the following declarations:

julia> const T1 = Array{Array{T,1} where T, 1}

Array{Array{T,1} where T,1}

julia> const T2 = Array{Array{T,1}, 1} where T

Array{Array{T,1},1} where T

Type T1 defines a 1-dimensional array of 1-dimensional arrays; each of the inner arrays consists of objects of the same

type, but this type may vary from one inner array to the next. On the other hand, type T2 defines a 1-dimensional

array of 1-dimensional arrays all of whose inner arrays must have the same type. Note that T2 is an abstract type, e.g.,

Array{Array{Int,1},1} <: T2, whereas T1 is a concrete type. As a consequence, T1 can be constructed with a

zero-argument constructor a=T1() but T2 cannot.

There is a convenient syntax for naming such types, similar to the short form of function definition syntax:

Vector{T} = Array{T,1}

This is equivalent to const Vector = Array{T,1} where T. Writing Vector{Float64} is equivalent to writing

Array{Float64,1}, and the umbrella type Vector has as instances all Array objects where the second parameter

– the number of array dimensions – is 1, regardless of what the element type is. In languages where parametric types

must always be specified in full, this is not especially helpful, but in Julia, this allows one to write just Vector for the

abstract type including all one-dimensional dense arrays of any element type.

14.10 Type Aliases

Sometimes it is convenient to introduce a new name for an already expressible type. This can be done with a simple

assignment statement. For example, UInt is aliased to either UInt32 or UInt64 as is appropriate for the size of

pointers on the system:

32-bit system:

julia> UInt

UInt32

64-bit system:

124 CHAPTER 14. TYPES

julia> UInt

UInt64

This is accomplished via the following code in base/boot.jl:

if Int === Int64

const UInt = UInt64

else

const UInt = UInt32

end

Of course, this depends on what Int is aliased to – but that is predefined to be the correct type – either Int32 or

Int64.

(Note that unlike Int, Float does not exist as a type alias for a specific sized AbstractFloat. Unlike with integer

registers, the floating point register sizes are specified by the IEEE-754 standard. Whereas the size of Int reflects the

size of a native pointer on that machine.)

14.11 Operations on Types

Since types in Julia are themselves objects, ordinary functions can operate on them. Some functions that are particu-

larly useful forworking with or exploring types have already been introduced, such as the <: operator, which indicates

whether its left hand operand is a subtype of its right hand operand.

The isa function tests if an object is of a given type and returns true or false:

julia> isa(1, Int)

true

julia> isa(1, AbstractFloat)

false

The typeof() function, already used throughout the manual in examples, returns the type of its argument. Since, as

noted above, types are objects, they also have types, and we can ask what their types are:

julia> typeof(Rational{Int})

DataType

julia> typeof(Union{Real,Float64,Rational})

DataType

julia> typeof(Union{Real,String})

Union

What if we repeat the process? What is the type of a type of a type? As it happens, types are all composite values and

thus all have a type of DataType:

julia> typeof(DataType)

DataType

julia> typeof(Union)

DataType

14.12. CUSTOM PRETTY-PRINTING 125

DataType is its own type.

Another operation that applies to some types is supertype(), which reveals a type’s supertype. Only declared types

(DataType) have unambiguous supertypes:

julia> supertype(Float64)

AbstractFloat

julia> supertype(Number)

Any

julia> supertype(AbstractString)

Any

julia> supertype(Any)

Any

If you apply supertype() to other type objects (or non-type objects), a MethodError is raised:

julia> supertype(Union{Float64,Int64})

ERROR: MethodError: no method matching supertype(::Type{Union{Float64, Int64}})

Closest candidates are:

supertype(!Matched::DataType) at operators.jl:41

supertype(!Matched::UnionAll) at operators.jl:46

14.12 Custom pretty-printing

Often, onewants to customize how instances of a type are displayed. This is accomplished by overloading the show()

function. For example, suppose we define a type to represent complex numbers in polar form:

julia> struct Polar{T<:Real} <: Number

r::T

Θ::T

end

julia> Polar(r::RealΘ,::Real) = Polar(promote(rΘ,)...)

Polar

Here, we’ve added a custom constructor function so that it can take arguments of different Real types and promote

them to a common type (see Constructors and Conversion and Promotion). (Of course, we would have to define

lots of other methods, too, to make it act like a Number, e.g. +, *, one, zero, promotion rules and so on.) By de-

fault, instances of this type display rather simply, with information about the type name and the field values, as e.g.

Polar{Float64}(3.0,4.0).

If we want it to display instead as 3.0 * exp(4.0im), we would define the following method to print the object to

a given output object io (representing a file, terminal, buffer, etcetera; see Networking and Streams):

julia> Base.show(io::IO, z::Polar) = print(io, z.r, " * exp(", zΘ., "im)")

More fine-grained control over display of Polar objects is possible. In particular, sometimes onewants both a verbose

multi-line printing format, used for displaying a single object in the REPL and other interactive environments, and also

a more compact single-line format used for print() or for displaying the object as part of another object (e.g. in an

array). Although by default the show(io, z) function is called in both cases, you can define a different multi-line

format for displaying an object by overloading a three-argument form of show that takes the text/plainMIME type

as its second argument (see Multimedia I/O), for example:

126 CHAPTER 14. TYPES

julia> Base.show{T}(io::IO, ::MIME"text/plain", z::Polar{T}) =

print(io, "Polar{$T} complex number:\n ", z)

(Note that print(..., z) here will call the 2-argument show(io, z) method.) This results in:

julia> Polar(3, 4.0)

Polar{Float64} complex number:

3.0 * exp(4.0im)

julia> [Polar(3, 4.0), Polar(4.0,5.3)]

2-element Array{Polar{Float64},1}:

3.0 * exp(4.0im)

4.0 * exp(5.3im)

where the single-line show(io, z) form is still used for an array of Polar values. Technically, the REPL calls dis-

play(z) to display the result of executing a line, which defaults to show(STDOUT, MIME("text/plain"), z),

which in turn defaults to show(STDOUT, z), but you should not define new display() methods unless you are

defining a new multimedia display handler (see Multimedia I/O).

Moreover, you can also define show methods for other MIME types in order to enable richer display (HTML, images,

etcetera) of objects in environments that support this (e.g. IJulia). For example, we can define formatted HTML display

of Polar objects, with superscripts and italics, via:

julia> Base.show{T}(io::IO, ::MIME"text/html", z::Polar{T}) =

println(io, "<code>Polar{$T}</code> complex number: ",

z.r, " <i>e</i>^{", zΘ., " <i>i</i>}")

A Polar object will then display automatically using HTML in an environment that supports HTML display, but you

can call show manually to get HTML output if you want:

julia> show(STDOUT, "text/html", Polar(3.0,4.0))

<code>Polar{Float64}</code> complex number: 3.0 <i>e</i>^{4.0 <i>i</i>}

14.13 ”Value types”

In Julia, you can’t dispatch on a value such as true or false. However, you can dispatch on parametric types, and

Julia allows you to include ”plain bits” values (Types, Symbols, Integers, floating-point numbers, tuples, etc.) as type

parameters. A common example is the dimensionality parameter in Array{T,N}, where T is a type (e.g., Float64)

but N is just an Int.

You can create your own custom types that take values as parameters, and use them to control dispatch of custom

types. By way of illustration of this idea, let’s introduce a parametric type, Val{T}, which serves as a customary way

to exploit this technique for cases where you don’t need a more elaborate hierarchy.

Val is defined as:

julia> struct Val{T}

end

There is no more to the implementation of Val than this. Some functions in Julia’s standard library accept Val types

as arguments, and you can also use it to write your own functions. For example:

julia> firstlast(::Type{Val{true}}) = "First"

firstlast (generic function with 1 method)

julia> firstlast(::Type{Val{false}}) = "Last"

firstlast (generic function with 2 methods)

14.14. NULLABLE TYPES: REPRESENTING MISSING VALUES 127

julia> firstlast(Val{true})

"First"

julia> firstlast(Val{false})

"Last"

For consistency across Julia, the call site should always pass a Valtype rather than creating an instance, i.e., use

foo(Val{:bar}) rather than foo(Val{:bar}()).

It’s worth noting that it’s extremely easy to mis-use parametric ”value” types, including Val; in unfavorable cases, you

can easily end up making the performance of your code much worse. In particular, you would never want to write

actual code as illustrated above. For more information about the proper (and improper) uses of Val, please read the

more extensive discussion in the performance tips.

14.14 Nullable Types: Representing Missing Values

In many settings, you need to interact with a value of type T that may or may not exist. To handle these settings, Julia

provides a parametric type called Nullable{T}, which can be thought of as a specialized container type that can

contain either zero or one values. Nullable{T} provides a minimal interface designed to ensure that interactions

with missing values are safe. At present, the interface consists of several possible interactions:

• Construct a Nullable object.

• Check if a Nullable object has a missing value.

• Access the value of a Nullable object with a guarantee that a NullException will be thrown if the object’s

value is missing.

• Access the value of a Nullable object with a guarantee that a default value of type T will be returned if the

object’s value is missing.

• Perform an operation on the value (if it exists) of a Nullable object, getting a Nullable result. The result will

be missing if the original value was missing.

• Performing a test on the value (if it exists) of a Nullable object, getting a result that is missing if either the

Nullable itself was missing, or the test failed.

• Perform general operations on single Nullable objects, propagating the missing data.

Constructing Nullable objects

To construct an object representing a missing value of type T, use the Nullable{T}() function:

julia> x1 = Nullable{Int64}()

Nullable{Int64}()

julia> x2 = Nullable{Float64}()

Nullable{Float64}()

julia> x3 = Nullable{Vector{Int64}}()

Nullable{Array{Int64,1}}()

To construct an object representing a non-missing value of type T, use the Nullable(x::T) function:

128 CHAPTER 14. TYPES

julia> x1 = Nullable(1)

Nullable{Int64}(1)

julia> x2 = Nullable(1.0)

Nullable{Float64}(1.0)

julia> x3 = Nullable([1, 2, 3])

Nullable{Array{Int64,1}}([1, 2, 3])

Note the core distinction between these two ways of constructing a Nullable object: in one style, you provide a

type, T, as a function parameter; in the other style, you provide a single value of type T as an argument.

Checking if a Nullable object has a value

You can check if a Nullable object has any value using isnull():

julia> isnull(Nullable{Float64}())

true

julia> isnull(Nullable(0.0))

false

Safely accessing the value of a Nullable object

You can safely access the value of a Nullable object using get():

julia> get(Nullable{Float64}())

ERROR: NullException()

Stacktrace:

[1] get(::Nullable{Float64}) at ./nullable.jl:92

julia> get(Nullable(1.0))

1.0

If the value is not present, as it would be for Nullable{Float64}, a NullException error will be thrown. The

error-throwing nature of the get() function ensures that any attempt to access a missing value immediately fails.

In cases for which a reasonable default value exists that could be used when a Nullable object’s value turns out to

be missing, you can provide this default value as a second argument to get():

julia> get(Nullable{Float64}(), 0.0)

0.0

julia> get(Nullable(1.0), 0.0)

1.0

Tip

Make sure the type of the default value passed to get() and that of the Nullable object match to

avoid type instability, which could hurt performance. Use convert() manually if needed.

14.14. NULLABLE TYPES: REPRESENTING MISSING VALUES 129

Performing operations on Nullable objects

Nullable objects represent values that are possibly missing, and it is possible to write all code using these objects by

first testing to see if the value is missing with isnull(), and then doing an appropriate action. However, there are

some common use cases where the code could be more concise or clear by using a higher-order function.

The map function takes as arguments a function f and a Nullable value x. It produces a Nullable:

• If x is a missing value, then it produces a missing value;

• If x has a value, then it produces a Nullable containing f(get(x)) as value.

This is useful for performing simple operations on values that might be missing if the desired behaviour is to simply

propagate the missing values forward.

Thefilter function takes as arguments a predicate function p (that is, a function returning a boolean) and a Nullable

value x. It produces a Nullable value:

• If x is a missing value, then it produces a missing value;

• If p(get(x)) is true, then it produces the original value x;

• If p(get(x)) is false, then it produces a missing value.

In this way, filter can be thought of as selecting only allowable values, and converting non-allowable values to

missing values.

While map and filter are useful in specific cases, by far the most useful higher-order function is broadcast, which

can handle a wide variety of cases, including making existing operations work and propagate Nullables. An example

will motivate the need for broadcast. Suppose we have a function that computes the greater of two real roots of a

quadratic equation, using the quadratic formula:

julia> root(a::Real, b::Real, c::Real) = (-b + √(b^2 - 4a*c)) / 2a

root (generic function with 1 method)

We may verify that the result of root(1, -9, 20) is 5.0, as we expect, since 5.0 is the greater of two real roots of

the quadratic equation.

Suppose now that we want to find the greatest real root of a quadratic equations where the coefficients might be

missing values. Having missing values in datasets is a common occurrence in real-world data, and so it is important to

be able to deal with them. But we cannot find the roots of an equation if we do not know all the coefficients. The best

solution to this will depend on the particular use case; perhaps we should throw an error. However, for this example,

we will assume that the best solution is to propagate the missing values forward; that is, if any input is missing, we

simply produce a missing output.

The broadcast() function makes this task easy; we can simply pass the root function we wrote to broadcast:

julia> broadcast(root, Nullable(1), Nullable(-9), Nullable(20))

Nullable{Float64}(5.0)

julia> broadcast(root, Nullable(1), Nullable{Int}(), Nullable{Int}())

Nullable{Float64}()

julia> broadcast(root, Nullable{Int}(), Nullable(-9), Nullable(20))

Nullable{Float64}()

130 CHAPTER 14. TYPES

If one or more of the inputs is missing, then the output of broadcast()will be missing.

There exists special syntactic sugar for the broadcast() function using a dot notation:

julia> root.(Nullable(1), Nullable(-9), Nullable(20))

Nullable{Float64}(5.0)

In particular, the regular arithmetic operators can be broadcast() conveniently using .-prefixed operators:

julia> Nullable(2) ./ Nullable(3) .+ Nullable(1.0)

Nullable{Float64}(1.66667)

Chapter 15

Methods

Recall from Functions that a function is an object that maps a tuple of arguments to a return value, or throws an

exception if no appropriate value can be returned. It is common for the same conceptual function or operation to be

implemented quite differently for different types of arguments: adding two integers is very different from adding two

floating-point numbers, both of which are distinct from adding an integer to a floating-point number. Despite their

implementation differences, these operations all fall under the general concept of ”addition”. Accordingly, in Julia,

these behaviors all belong to a single object: the + function.

To facilitate using many different implementations of the same concept smoothly, functions need not be defined all at

once, but can rather be defined piecewise by providing specific behaviors for certain combinations of argument types

and counts. A definition of one possible behavior for a function is called a method. Thus far, we have presented only

examples of functions defined with a single method, applicable to all types of arguments. However, the signatures of

method definitions can be annotated to indicate the types of arguments in addition to their number, and more than

a single method definition may be provided. When a function is applied to a particular tuple of arguments, the most

specific method applicable to those arguments is applied. Thus, the overall behavior of a function is a patchwork of

the behaviors of its various method definitions. If the patchwork is well designed, even though the implementations

of the methods may be quite different, the outward behavior of the function will appear seamless and consistent.

The choice of which method to execute when a function is applied is called dispatch. Julia allows the dispatch process

to choose which of a function’s methods to call based on the number of arguments given, and on the types of all of the

function’s arguments. This is different than traditional object-oriented languages, where dispatch occurs based only on

the first argument, which often has a special argument syntax, and is sometimes implied rather than explicitly written

as an argument. 1 Using all of a function’s arguments to choose which method should be invoked, rather than just the

first, is known as multiple dispatch. Multiple dispatch is particularly useful for mathematical code, where it makes little

sense to artificially deem the operations to ”belong” to one argument more than any of the others: does the addition

operation in x + y belong to x any more than it does to y? The implementation of a mathematical operator generally

depends on the types of all of its arguments. Even beyond mathematical operations, however, multiple dispatch ends

up being a powerful and convenient paradigm for structuring and organizing programs.

15.1 Defining Methods

Until now, we have, in our examples, defined only functions with a single method having unconstrained argument

types. Such functions behave just like they would in traditional dynamically typed languages. Nevertheless, we have

used multiple dispatch and methods almost continually without being aware of it: all of Julia’s standard functions

1In C++ or Java, for example, in a method call like obj.meth(arg1,arg2), the object obj ”receives” the method call and is implicitly passed

to the method via the this keyword, rather than as an explicit method argument. When the current this object is the receiver of a method call, it

can be omitted altogether, writing just meth(arg1,arg2), with this implied as the receiving object.

131

https://en.wikipedia.org/wiki/Multiple_dispatch

132 CHAPTER 15. METHODS

and operators, like the aforementioned + function, have many methods defining their behavior over various possible

combinations of argument type and count.

When defining a function, one can optionally constrain the types of parameters it is applicable to, using the :: type-

assertion operator, introduced in the section on Composite Types:

julia> f(x::Float64, y::Float64) = 2x + y

f (generic function with 1 method)

This function definition applies only to calls where x and y are both values of type Float64:

julia> f(2.0, 3.0)

7.0

Applying it to any other types of arguments will result in a MethodError:

julia> f(2.0, 3)

ERROR: MethodError: no method matching f(::Float64, ::Int64)

Closest candidates are:

f(::Float64, !Matched::Float64) at none:1

julia> f(Float32(2.0), 3.0)

ERROR: MethodError: no method matching f(::Float32, ::Float64)

Closest candidates are:

f(!Matched::Float64, ::Float64) at none:1

julia> f(2.0, "3.0")

ERROR: MethodError: no method matching f(::Float64, ::String)

Closest candidates are:

f(::Float64, !Matched::Float64) at none:1

julia> f("2.0", "3.0")

ERROR: MethodError: no method matching f(::String, ::String)

As you can see, the arguments must be precisely of type Float64. Other numeric types, such as integers or 32-

bit floating-point values, are not automatically converted to 64-bit floating-point, nor are strings parsed as numbers.

Because Float64 is a concrete type and concrete types cannot be subclassed in Julia, such a definition can only

be applied to arguments that are exactly of type Float64. It may often be useful, however, to write more general

methods where the declared parameter types are abstract:

julia> f(x::Number, y::Number) = 2x - y

f (generic function with 2 methods)

julia> f(2.0, 3)

1.0

This method definition applies to any pair of arguments that are instances of Number. They need not be of the same

type, so long as they are each numeric values. The problem of handling disparate numeric types is delegated to the

arithmetic operations in the expression 2x - y.

To define a functionwith multiple methods, one simply defines the functionmultiple times, with different numbers and

types of arguments. The first method definition for a function creates the function object, and subsequent method

definitions add newmethods to the existing function object. Themost specificmethod definitionmatching the number

and types of the arguments will be executed when the function is applied. Thus, the two method definitions above,

taken together, define the behavior for f over all pairs of instances of the abstract type Number – but with a different

behavior specific to pairs of Float64 values. If one of the arguments is a 64-bit float but the other one is not, then the

f(Float64,Float64) method cannot be called and the more general f(Number,Number) method must be used:

15.1. DEFINING METHODS 133

julia> f(2.0, 3.0)

7.0

julia> f(2, 3.0)

1.0

julia> f(2.0, 3)

1.0

julia> f(2, 3)

1

The 2x + y definition is only used in the first case, while the 2x - y definition is used in the others. No automatic

casting or conversion of function arguments is ever performed: all conversion in Julia is non-magical and completely

explicit. Conversion and Promotion, however, shows how clever application of sufficiently advanced technology can

be indistinguishable from magic. 2

For non-numeric values, and for fewer or more than two arguments, the function f remains undefined, and applying

it will still result in a MethodError:

julia> f("foo", 3)

ERROR: MethodError: no method matching f(::String, ::Int64)

Closest candidates are:

f(!Matched::Number, ::Number) at none:1

julia> f()

ERROR: MethodError: no method matching f()

Closest candidates are:

f(!Matched::Float64, !Matched::Float64) at none:1

f(!Matched::Number, !Matched::Number) at none:1

You can easily see which methods exist for a function by entering the function object itself in an interactive session:

julia> f

f (generic function with 2 methods)

This output tells us that f is a function object with two methods. To find out what the signatures of those methods

are, use the methods() function:

julia> methods(f)

2 methods for generic function "f":

f(x::Float64, y::Float64) in Main at none:1

f(x::Number, y::Number) in Main at none:1

which shows that f has two methods, one taking two Float64 arguments and one taking arguments of type Number.

It also indicates the file and line number where the methods were defined: because these methods were defined at

the REPL, we get the apparent line number none:1.

In the absence of a type declaration with ::, the type of a method parameter is Any by default, meaning that it is

unconstrained since all values in Julia are instances of the abstract type Any. Thus, we can define a catch-all method

for f like so:

julia> f(x,y) = println("Whoa there, Nelly.")

f (generic function with 3 methods)

julia> f("foo", 1)

Whoa there, Nelly.

134 CHAPTER 15. METHODS

This catch-all is less specific than any other possible method definition for a pair of parameter values, so it will only be

called on pairs of arguments to which no other method definition applies.

Although it seems a simple concept, multiple dispatch on the types of values is perhaps the single most powerful and

central feature of the Julia language. Core operations typically have dozens of methods:

julia> methods(+)

180 methods for generic function "+":

+(x::Bool, z::Complex{Bool}) in Base at complex.jl:224

+(x::Bool, y::Bool) in Base at bool.jl:89

+(x::Bool) in Base at bool.jl:86

+(x::Bool, y::T) where T<:AbstractFloat in Base at bool.jl:96

+(x::Bool, z::Complex) in Base at complex.jl:231

+(a::Float16, b::Float16) in Base at float.jl:372

+(x::Float32, y::Float32) in Base at float.jl:374

+(x::Float64, y::Float64) in Base at float.jl:375

+(z::Complex{Bool}, x::Bool) in Base at complex.jl:225

+(z::Complex{Bool}, x::Real) in Base at complex.jl:239

+(x::Char, y::Integer) in Base at char.jl:40

+(c::BigInt, x::BigFloat) in Base.MPFR at mpfr.jl:303

+(a::BigInt, b::BigInt, c::BigInt, d::BigInt, e::BigInt) in Base.GMP at gmp.jl:303

+(a::BigInt, b::BigInt, c::BigInt, d::BigInt) in Base.GMP at gmp.jl:296

+(a::BigInt, b::BigInt, c::BigInt) in Base.GMP at gmp.jl:290

+(x::BigInt, y::BigInt) in Base.GMP at gmp.jl:258

+(x::BigInt, c::Union{UInt16, UInt32, UInt64, UInt8}) in Base.GMP at gmp.jl:315

...

+(a, b, c, xs...) at operators.jl:119

Multiple dispatch togetherwith the flexible parametric type system give Julia its ability to abstractly express high-level

algorithms decoupled from implementation details, yet generate efficient, specialized code to handle each case at run

time.

15.2 Method Ambiguities

It is possible to define a set of function methods such that there is no unique most specific method applicable to some

combinations of arguments:

julia> g(x::Float64, y) = 2x + y

g (generic function with 1 method)

julia> g(x, y::Float64) = x + 2y

g (generic function with 2 methods)

julia> g(2.0, 3)

7.0

julia> g(2, 3.0)

8.0

julia> g(2.0, 3.0)

ERROR: MethodError: g(::Float64, ::Float64) is ambiguous.

[...]

Here the call g(2.0, 3.0) could be handled by either the g(Float64, Any) or the g(Any, Float64) method,

and neither is more specific than the other. In such cases, Julia raises a MethodError rather than arbitrarily picking a

method. You can avoid method ambiguities by specifying an appropriate method for the intersection case:

15.3. PARAMETRIC METHODS 135

julia> g(x::Float64, y::Float64) = 2x + 2y

g (generic function with 3 methods)

julia> g(2.0, 3)

7.0

julia> g(2, 3.0)

8.0

julia> g(2.0, 3.0)

10.0

It is recommended that the disambiguating method be defined first, since otherwise the ambiguity exists, if transiently,

until the more specific method is defined.

Inmore complex cases, resolvingmethod ambiguities involves a certain element of design; this topic is explored further

below.

15.3 Parametric Methods

Method definitions can optionally have type parameters qualifying the signature:

julia> same_type(x::T, y::T) where {T} = true

same_type (generic function with 1 method)

julia> same_type(x,y) = false

same_type (generic function with 2 methods)

The first method applies whenever both arguments are of the same concrete type, regardless of what type that is,

while the second method acts as a catch-all, covering all other cases. Thus, overall, this defines a boolean function

that checks whether its two arguments are of the same type:

julia> same_type(1, 2)

true

julia> same_type(1, 2.0)

false

julia> same_type(1.0, 2.0)

true

julia> same_type("foo", 2.0)

false

julia> same_type("foo", "bar")

true

julia> same_type(Int32(1), Int64(2))

false

Such definitions correspond to methods whose type signatures are UnionAll types (see UnionAll Types).

This kind of definition of function behavior by dispatch is quite common – idiomatic, even – in Julia. Method type

parameters are not restricted to being used as the types of arguments: they can be used anywhere a value would be in

the signature of the function or body of the function. Here’s an example where the method type parameter T is used

as the type parameter to the parametric type Vector{T} in the method signature:

136 CHAPTER 15. METHODS

julia> myappend(v::Vector{T}, x::T) where {T} = [v..., x]

myappend (generic function with 1 method)

julia> myappend([1,2,3],4)

4-element Array{Int64,1}:

1

2

3

4

julia> myappend([1,2,3],2.5)

ERROR: MethodError: no method matching myappend(::Array{Int64,1}, ::Float64)

Closest candidates are:

myappend(::Array{T,1}, !Matched::T) where T at none:1

julia> myappend([1.0,2.0,3.0],4.0)

4-element Array{Float64,1}:

1.0

2.0

3.0

4.0

julia> myappend([1.0,2.0,3.0],4)

ERROR: MethodError: no method matching myappend(::Array{Float64,1}, ::Int64)

Closest candidates are:

myappend(::Array{T,1}, !Matched::T) where T at none:1

As you can see, the type of the appended element must match the element type of the vector it is appended to, or

else a MethodError is raised. In the following example, the method type parameter T is used as the return value:

julia> mytypeof(x::T) where {T} = T

mytypeof (generic function with 1 method)

julia> mytypeof(1)

Int64

julia> mytypeof(1.0)

Float64

Just as you can put subtype constraints on type parameters in type declarations (see Parametric Types), you can also

constrain type parameters of methods:

julia> same_type_numeric(x::T, y::T) where {T<:Number} = true

same_type_numeric (generic function with 1 method)

julia> same_type_numeric(x::Number, y::Number) = false

same_type_numeric (generic function with 2 methods)

julia> same_type_numeric(1, 2)

true

julia> same_type_numeric(1, 2.0)

false

15.4. REDEFINING METHODS 137

julia> same_type_numeric(1.0, 2.0)

true

julia> same_type_numeric("foo", 2.0)

ERROR: MethodError: no method matching same_type_numeric(::String, ::Float64)

Closest candidates are:

same_type_numeric(!Matched::T<:Number, ::T<:Number) where T<:Number at none:1

same_type_numeric(!Matched::Number, ::Number) at none:1

julia> same_type_numeric("foo", "bar")

ERROR: MethodError: no method matching same_type_numeric(::String, ::String)

julia> same_type_numeric(Int32(1), Int64(2))

false

The same_type_numeric function behaves much like the same_type function defined above, but is only defined

for pairs of numbers.

Parametric methods allow the same syntax as where expressions used to write types (see UnionAll Types). If there is

only a single parameter, the enclosing curly braces (in where {T}) can be omitted, but are often preferred for clarity.

Multiple parameters can be separated with commas, e.g. where {T, S<:Real}, or written using nested where, e.g.

where S<:Real where T.

15.4 Redefining Methods

When redefining a method or adding new methods, it is important to realize that these changes don’t take effect

immediately. This is key to Julia’s ability to statically infer and compile code to run fast, without the usual JIT tricks and

overhead. Indeed, any new method definition won’t be visible to the current runtime environment, including Tasks

and Threads (and any previously defined @generated functions). Let’s start with an example to see what this means:

julia> function tryeval()

@eval newfun() = 1

newfun()

end

tryeval (generic function with 1 method)

julia> tryeval()

ERROR: MethodError: no method matching newfun()

The applicable method may be too new: running in world age xxxx1, while current world is xxxx2.

Closest candidates are:

newfun() at none:1 (method too new to be called from this world context.)

in tryeval() at none:1

...

julia> newfun()

1

In this example, observe that the new definition for newfun has been created, but can’t be immediately called. The

new global is immediately visible to the tryeval function, so you could write return newfun (without parentheses).

But neither you, nor any of your callers, nor the functions they call, or etc. can call this new method definition!

But there’s an exception: future calls to newfun from the REPL work as expected, being able to both see and call the

new definition of newfun.

138 CHAPTER 15. METHODS

However, future calls to tryeval will continue to see the definition of newfun as it was at the previous statement at

the REPL, and thus before that call to tryeval.

You may want to try this for yourself to see how it works.

The implementation of this behavior is a ”world age counter”. This monotonically increasing value tracks each method

definition operation. This allows describing ”the set of method definitions visible to a given runtime environment” as

a single number, or ”world age”. It also allows comparing the methods available in two worlds just by comparing their

ordinal value. In the example above, we see that the ”current world” (in which the method newfun() exists), is one

greater than the task-local ”runtime world” that was fixed when the execution of tryeval started.

Sometimes it is necessary to get around this (for example, if you are implementing the above REPL). Fortunately, there

is an easy solution: call the function using Base.invokelatest:

julia> function tryeval2()

@eval newfun2() = 2

Base.invokelatest(newfun2)

end

tryeval2 (generic function with 1 method)

julia> tryeval2()

2

Finally, let’s take a look at some more complex examples where this rule comes into play. Define a function f(x),

which initially has one method:

julia> f(x) = "original definition"

f (generic function with 1 method)

Start some other operations that use f(x):

julia> g(x) = f(x)

g (generic function with 1 method)

julia> t = @async f(wait()); yield();

Nowwe add some new methods to f(x):

julia> f(x::Int) = "definition for Int"

f (generic function with 2 methods)

julia> f(x::Type{Int}) = "definition for Type{Int}"

f (generic function with 3 methods)

Compare how these results differ:

julia> f(1)

"definition for Int"

julia> g(1)

"definition for Int"

julia> wait(schedule(t, 1))

"original definition"

julia> t = @async f(wait()); yield();

julia> wait(schedule(t, 1))

"definition for Int"

15.5. PARAMETRICALLY-CONSTRAINED VARARGS METHODS 139

15.5 Parametrically-constrained Varargs methods

Function parameters can also be used to constrain the number of arguments that may be supplied to a ”varargs”

function (Varargs Functions). The notation Vararg{T,N} is used to indicate such a constraint. For example:

julia> bar(a,b,x::Vararg{Any,2}) = (a,b,x)

bar (generic function with 1 method)

julia> bar(1,2,3)

ERROR: MethodError: no method matching bar(::Int64, ::Int64, ::Int64)

Closest candidates are:

bar(::Any, ::Any, ::Any, !Matched::Any) at none:1

julia> bar(1,2,3,4)

(1, 2, (3, 4))

julia> bar(1,2,3,4,5)

ERROR: MethodError: no method matching bar(::Int64, ::Int64, ::Int64, ::Int64, ::Int64)

Closest candidates are:

bar(::Any, ::Any, ::Any, ::Any) at none:1

More usefully, it is possible to constrain varargs methods by a parameter. For example:

function getindex(A::AbstractArray{T,N}, indexes::Vararg{Number,N}) where {T,N}

would be called only when the number of indexes matches the dimensionality of the array.

15.6 Note on Optional and keyword Arguments

As mentioned briefly in Functions, optional arguments are implemented as syntax for multiple method definitions. For

example, this definition:

f(a=1,b=2) = a+2b

translates to the following three methods:

f(a,b) = a+2b

f(a) = f(a,2)

f() = f(1,2)

This means that calling f() is equivalent to calling f(1,2). In this case the result is 5, because f(1,2) invokes the first

method of f above. However, this need not always be the case. If you define a fourth method that is more specialized

for integers:

f(a::Int,b::Int) = a-2b

then the result of both f() and f(1,2) is -3. In other words, optional arguments are tied to a function, not to any

specific method of that function. It depends on the types of the optional arguments which method is invoked. When

optional arguments are defined in terms of a global variable, the type of the optional argument may even change at

run-time.

Keyword arguments behave quite differently from ordinary positional arguments. In particular, they do not participate

in method dispatch. Methods are dispatched based only on positional arguments, with keyword arguments processed

after the matching method is identified.

140 CHAPTER 15. METHODS

15.7 Function-like objects

Methods are associated with types, so it is possible to make any arbitrary Julia object ”callable” by adding methods to

its type. (Such ”callable” objects are sometimes called ”functors.”)

For example, you can define a type that stores the coefficients of a polynomial, but behaves like a function evaluating

the polynomial:

julia> struct Polynomial{R}

coeffs::Vector{R}

end

julia> function (p::Polynomial)(x)

v = p.coeffs[end]

for i = (length(p.coeffs)-1):-1:1

v = v*x + p.coeffs[i]

end

return v

end

Notice that the function is specified by type instead of by name. In the function body, p will refer to the object that

was called. A Polynomial can be used as follows:

julia> p = Polynomial([1,10,100])

Polynomial{Int64}([1, 10, 100])

julia> p(3)

931

This mechanism is also the key to how type constructors and closures (inner functions that refer to their surrounding

environment) work in Julia, discussed later in the manual.

15.8 Empty generic functions

Occasionally it is useful to introduce a generic function without yet adding methods. This can be used to separate

interface definitions from implementations. It might also be done for the purpose of documentation or code readability.

The syntax for this is an empty function block without a tuple of arguments:

function emptyfunc

end

15.9 Method design and the avoidance of ambiguities

Julia’s method polymorphism is one of its most powerful features, yet exploiting this power can pose design challenges.

In particular, in more complex method hierarchies it is not uncommon for ambiguities to arise.

Above, it was pointed out that one can resolve ambiguities like

f(x, y::Int) = 1

f(x::Int, y) = 2

by defining a method

f(x::Int, y::Int) = 3

15.9. METHOD DESIGN AND THE AVOIDANCE OF AMBIGUITIES 141

This is often the right strategy; however, there are circumstances where following this advice blindly can be counter-

productive. In particular, the more methods a generic function has, the more possibilities there are for ambiguities.

When your method hierarchies get more complicated than this simple example, it can be worth your while to think

carefully about alternative strategies.

Below we discuss particular challenges and some alternative ways to resolve such issues.

Tuple and NTuple arguments

Tuple (and NTuple) arguments present special challenges. For example,

f(x::NTuple{N,Int}) where {N} = 1

f(x::NTuple{N,Float64}) where {N} = 2

are ambiguous because of the possibility that N == 0: there are no elements to determine whether the Int or

Float64 variant should be called. To resolve the ambiguity, one approach is define a method for the empty tuple:

f(x::Tuple{}) = 3

Alternatively, for all methods but one you can insist that there is at least one element in the tuple:

f(x::NTuple{N,Int}) where {N} = 1 # this is the fallback

f(x::Tuple{Float64, Vararg{Float64}}) = 2 # this requires at least one Float64

Orthogonalize your design

When you might be tempted to dispatch on two or more arguments, consider whether a ”wrapper” function might

make for a simpler design. For example, instead of writing multiple variants:

f(x::A, y::A) = ...

f(x::A, y::B) = ...

f(x::B, y::A) = ...

f(x::B, y::B) = ...

you might consider defining

f(x::A, y::A) = ...

f(x, y) = f(g(x), g(y))

where g converts the argument to type A. This is a very specific example of the more general principle of orthogonal

design, in which separate concepts are assigned to separate methods. Here, gwill most likely need a fallback definition

g(x::A) = x

A related strategy exploits promote to bring x and y to a common type:

f(x::T, y::T) where {T} = ...

f(x, y) = f(promote(x, y)...)

One risk with this design is the possibility that if there is no suitable promotion method converting x and y to the

same type, the second method will recurse on itself infinitely and trigger a stack overflow. The non-exported function

Base.promote_noncircular can be used as an alternative; when promotion fails it will still throw an error, but one

that fails faster with a more specific error message.

https://en.wikipedia.org/wiki/Orthogonality_(programming)
https://en.wikipedia.org/wiki/Orthogonality_(programming)

142 CHAPTER 15. METHODS

Dispatch on one argument at a time

If you need to dispatch on multiple arguments, and there are many fallbacks with too many combinations to make it

practical to define all possible variants, then consider introducing a ”name cascade” where (for example) you dispatch

on the first argument and then call an internal method:

f(x::A, y) = _fA(x, y)

f(x::B, y) = _fB(x, y)

Then the internal methods _fA and _fB can dispatch on y without concern about ambiguities with each other with

respect to x.

Be aware that this strategy has at least one major disadvantage: in many cases, it is not possible for users to further

customize the behavior of f by defining further specializations of your exported function f. Instead, they have to

define specializations for your internal methods _fA and _fB, and this blurs the lines between exported and internal

methods.

Abstract containers and element types

Where possible, try to avoid defining methods that dispatch on specific element types of abstract containers. For

example,

-(A::AbstractArray{T}, b::Date) where {T<:Date}

generates ambiguities for anyone who defines a method

-(A::MyArrayType{T}, b::T) where {T}

The best approach is to avoid defining either of thesemethods: instead, relyon a genericmethod-(A::AbstractArray,

b) and make sure this method is implemented with generic calls (like similar and -) that do the right thing for each

container type and element type separately. This is just a more complex variant of the advice to orthogonalize your

methods.

When this approach is not possible, it may be worth starting a discussion with other developers about resolving the

ambiguity; just because onemethodwas defined first does not necessarilymean that it can’t bemodified or eliminated.

As a last resort, one developer can define the ”band-aid” method

-(A::MyArrayType{T}, b::Date) where {T<:Date} = ...

that resolves the ambiguity by brute force.

Complex method ”cascades” with default arguments

If you are defining amethod ”cascade” that supplies defaults, be careful about dropping any arguments that correspond

to potential defaults. For example, suppose you’re writing a digital filtering algorithm and you have a method that

handles the edges of the signal by applying padding:

function myfilter(A, kernel, ::Replicate)

Apadded = replicate_edges(A, size(kernel))

myfilter(Apadded, kernel) # now perform the "real" computation

end

15.9. METHOD DESIGN AND THE AVOIDANCE OF AMBIGUITIES 143

This will run afoul of a method that supplies default padding:

myfilter(A, kernel) = myfilter(A, kernel, Replicate()) # replicate the edge by default

Together, these two methods generate an infinite recursion with A constantly growing bigger.

The better design would be to define your call hierarchy like this:

struct NoPad end # indicate that no padding is desired, or that it's already applied

myfilter(A, kernel) = myfilter(A, kernel, Replicate()) # default boundary conditions

function myfilter(A, kernel, ::Replicate)

Apadded = replicate_edges(A, size(kernel))

myfilter(Apadded, kernel, NoPad()) # indicate the new boundary conditions

end

other padding methods go here

function myfilter(A, kernel, ::NoPad)

Here's the "real" implementation of the core computation

end

NoPad is supplied in the same argument position as any other kind of padding, so it keeps the dispatch hierarchy well

organized and with reduced likelihood of ambiguities. Moreover, it extends the ”public” myfilter interface: a user

who wants to control the padding explicitly can call the NoPad variant directly.

2Arthur C. Clarke, Profiles of the Future (1961): Clarke’s Third Law.

Chapter 16

Constructors

Constructors 1 are functions that create new objects – specifically, instances of Composite Types. In Julia, type objects

also serve as constructor functions: they create new instances of themselves when applied to an argument tuple as a

function. This much was already mentioned briefly when composite types were introduced. For example:

julia> struct Foo

bar

baz

end

julia> foo = Foo(1, 2)

Foo(1, 2)

julia> foo.bar

1

julia> foo.baz

2

Formany types, forming new objects by binding their field values together is all that is ever needed to create instances.

There are, however, caseswheremore functionality is requiredwhen creating composite objects. Sometimes invariants

must be enforced, either by checking arguments or by transforming them. Recursive data structures, especially those

that may be self-referential, often cannot be constructed cleanly without first being created in an incomplete state

and then altered programmatically to be made whole, as a separate step from object creation. Sometimes, it’s just

convenient to be able to construct objects with fewer or different types of parameters than they have fields. Julia’s

system for object construction addresses all of these cases and more.

16.1 Outer Constructor Methods

A constructor is just like any other function in Julia in that its overall behavior is defined by the combined behavior of

its methods. Accordingly, you can add functionality to a constructor by simply defining new methods. For example,

let’s say you want to add a constructor method for Foo objects that takes only one argument and uses the given value

for both the bar and baz fields. This is simple:

julia> Foo(x) = Foo(x,x)

1Nomenclature: while the term ”constructor” generally refers to the entire function which constructs objects of a type, it is common to abuse

terminology slightly and refer to specific constructor methods as ”constructors”. In such situations, it is generally clear from context that the term is

used to mean ”constructor method” rather than ”constructor function”, especially as it is often used in the sense of singling out a particular method

of the constructor from all of the others.

145

https://en.wikipedia.org/wiki/Recursion_%28computer_science%29#Recursive_data_structures_.28structural_recursion.29

146 CHAPTER 16. CONSTRUCTORS

Foo

julia> Foo(1)

Foo(1, 1)

You could also add a zero-argument Foo constructor method that supplies default values for both of the bar and baz

fields:

julia> Foo() = Foo(0)

Foo

julia> Foo()

Foo(0, 0)

Here the zero-argument constructor method calls the single-argument constructor method, which in turn calls the

automatically provided two-argument constructor method. For reasons that will become clear very shortly, additional

constructor methods declared as normal methods like this are called outer constructor methods. Outer constructor

methods can only ever create a new instance by calling another constructormethod, such as the automatically provided

default ones.

16.2 Inner Constructor Methods

While outer constructor methods succeed in addressing the problem of providing additional convenience methods for

constructing objects, they fail to address the other two use casesmentioned in the introduction of this chapter: enforc-

ing invariants, and allowing construction of self-referential objects. For these problems, one needs inner constructor

methods. An inner constructor method is much like an outer constructor method, with two differences:

1. It is declared inside the block of a type declaration, rather than outside of it like normal methods.

2. It has access to a special locally existent function called new that creates objects of the block’s type.

For example, suppose one wants to declare a type that holds a pair of real numbers, subject to the constraint that the

first number is not greater than the second one. One could declare it like this:

julia> struct OrderedPair

x::Real

y::Real

OrderedPair(x,y) = x > y ? error("out of order") : new(x,y)

end

Now OrderedPair objects can only be constructed such that x <= y:

julia> OrderedPair(1, 2)

OrderedPair(1, 2)

julia> OrderedPair(2,1)

ERROR: out of order

Stacktrace:

[1] OrderedPair(::Int64, ::Int64) at ./none:4

If the type were declared mutable, you could reach in and directly change the field values to violate this invariant, but

messing around with an object’s internals uninvited is considered poor form. You (or someone else) can also provide

additional outer constructor methods at any later point, but once a type is declared, there is no way to add more inner

constructor methods. Since outer constructor methods can only create objects by calling other constructor methods,

16.3. INCOMPLETE INITIALIZATION 147

ultimately, some inner constructor must be called to create an object. This guarantees that all objects of the declared

type must come into existence by a call to one of the inner constructormethods providedwith the type, thereby giving

some degree of enforcement of a type’s invariants.

If any inner constructor method is defined, no default constructor method is provided: it is presumed that you have

supplied yourself with all the inner constructors you need. The default constructor is equivalent to writing your own

inner constructor method that takes all of the object’s fields as parameters (constrained to be of the correct type, if

the corresponding field has a type), and passes them to new, returning the resulting object:

julia> struct Foo

bar

baz

Foo(bar,baz) = new(bar,baz)

end

This declaration has the same effect as the earlier definition of the Foo type without an explicit inner constructor

method. The following two types are equivalent – onewith a default constructor, the otherwith an explicit constructor:

julia> struct T1

x::Int64

end

julia> struct T2

x::Int64

T2(x) = new(x)

end

julia> T1(1)

T1(1)

julia> T2(1)

T2(1)

julia> T1(1.0)

T1(1)

julia> T2(1.0)

T2(1)

It is considered good form to provide as few inner constructor methods as possible: only those taking all arguments

explicitly and enforcing essential error checking and transformation. Additional convenience constructor methods,

supplying default values or auxiliary transformations, should be provided as outer constructors that call the inner

constructors to do the heavy lifting. This separation is typically quite natural.

16.3 Incomplete Initialization

The final problem which has still not been addressed is construction of self-referential objects, or more generally,

recursive data structures. Since the fundamental difficulty may not be immediately obvious, let us briefly explain it.

Consider the following recursive type declaration:

julia> mutable struct SelfReferential

obj::SelfReferential

end

148 CHAPTER 16. CONSTRUCTORS

This type may appear innocuous enough, until one considers how to construct an instance of it. If a is an instance of

SelfReferential, then a second instance can be created by the call:

julia> b = SelfReferential(a)

But how does one construct the first instance when no instance exists to provide as a valid value for its obj field? The

only solution is to allow creating an incompletely initialized instance of SelfReferential with an unassigned obj

field, and using that incomplete instance as a valid value for the obj field of another instance, such as, for example,

itself.

To allow for the creation of incompletely initialized objects, Julia allows the new function to be called with fewer than

the number of fields that the type has, returning an object with the unspecified fields uninitialized. The inner con-

structor method can then use the incomplete object, finishing its initialization before returning it. Here, for example,

we take another crack at defining the SelfReferential type, with a zero-argument inner constructor returning

instances having obj fields pointing to themselves:

julia> mutable struct SelfReferential

obj::SelfReferential

SelfReferential() = (x = new(); x.obj = x)

end

We can verify that this constructor works and constructs objects that are, in fact, self-referential:

julia> x = SelfReferential();

julia> x === x

true

julia> x === x.obj

true

julia> x === x.obj.obj

true

Although it is generally a good idea to return a fully initialized object from an inner constructor, incompletely initialized

objects can be returned:

julia> mutable struct Incomplete

xx

Incomplete() = new()

end

julia> z = Incomplete();

While you are allowed to create objectswith uninitialized fields, any access to an uninitialized reference is an immediate

error:

julia> z.xx

ERROR: UndefRefError: access to undefined reference

This avoids the need to continually check for null values. However, not all object fields are references. Julia considers

some types to be ”plain data”, meaning all of their data is self-contained and does not reference other objects. The plain

data types consist of primitive types (e.g. Int) and immutable structs of other plain data types. The initial contents of

a plain data type is undefined:

16.4. PARAMETRIC CONSTRUCTORS 149

julia> struct HasPlain

n::Int

HasPlain() = new()

end

julia> HasPlain()

HasPlain(438103441441)

Arrays of plain data types exhibit the same behavior.

You can pass incomplete objects to other functions from inner constructors to delegate their completion:

julia> mutable struct Lazy

xx

Lazy(v) = complete_me(new(), v)

end

As with incomplete objects returned from constructors, if complete_me or any of its callees try to access the xx field

of the Lazy object before it has been initialized, an error will be thrown immediately.

16.4 Parametric Constructors

Parametric types add a fewwrinkles to the constructor story. Recall from Parametric Types that, by default, instances

of parametric composite types can be constructed eitherwith explicitly given type parameters orwith type parameters

implied by the types of the arguments given to the constructor. Here are some examples:

julia> struct Point{T<:Real}

x::T

y::T

end

julia> Point(1,2) ## implicit T ##

Point{Int64}(1, 2)

julia> Point(1.0,2.5) ## implicit T ##

Point{Float64}(1.0, 2.5)

julia> Point(1,2.5) ## implicit T ##

ERROR: MethodError: no method matching Point(::Int64, ::Float64)

Closest candidates are:

Point(::T<:Real, !Matched::T<:Real) where T<:Real at none:2

julia> Point{Int64}(1, 2) ## explicit T ##

Point{Int64}(1, 2)

julia> Point{Int64}(1.0,2.5) ## explicit T ##

ERROR: InexactError()

Stacktrace:

[1] convert(::Type{Int64}, ::Float64) at ./float.jl:679

[2] Point{Int64}(::Float64, ::Float64) at ./none:2

julia> Point{Float64}(1.0, 2.5) ## explicit T ##

Point{Float64}(1.0, 2.5)

julia> Point{Float64}(1,2) ## explicit T ##

Point{Float64}(1.0, 2.0)

150 CHAPTER 16. CONSTRUCTORS

As you can see, for constructor calls with explicit type parameters, the arguments are converted to the implied field

types: Point{Int64}(1,2) works, but Point{Int64}(1.0,2.5) raises an InexactError when converting 2.5

to Int64. When the type is implied by the arguments to the constructor call, as in Point(1,2), then the types of the

arguments must agree – otherwise the T cannot be determined – but any pair of real arguments with matching type

may be given to the generic Point constructor.

What’s really going on here is that Point, Point{Float64} and Point{Int64} are all different constructor func-

tions. In fact, Point{T} is a distinct constructor function for each type T. Without any explicitly provided inner

constructors, the declaration of the composite type Point{T<:Real} automatically provides an inner constructor,

Point{T}, for each possible type T<:Real, that behaves just like non-parametric default inner constructors do. It

also provides a single general outer Point constructor that takes pairs of real arguments, which must be of the same

type. This automatic provision of constructors is equivalent to the following explicit declaration:

julia> struct Point{T<:Real}

x::T

y::T

Point{T}(x,y) where {T<:Real} = new(x,y)

end

julia> Point(x::T, y::T) where {T<:Real} = Point{T}(x,y);

Notice that each definition looks like the form of constructor call that it handles. The call Point{Int64}(1,2)

will invoke the definition Point{T}(x,y) inside the type block. The outer constructor declaration, on the other

hand, defines a method for the general Point constructor which only applies to pairs of values of the same real type.

This declaration makes constructor calls without explicit type parameters, like Point(1,2) and Point(1.0,2.5),

work. Since the method declaration restricts the arguments to being of the same type, calls like Point(1,2.5), with

arguments of different types, result in ”no method” errors.

Suppose we wanted to make the constructor call Point(1,2.5) work by ”promoting” the integer value 1 to the

floating-point value 1.0. The simplest way to achieve this is to define the following additional outer constructor

method:

julia> Point(x::Int64, y::Float64) = Point(convert(Float64,x),y);

This method uses the convert() function to explicitly convert x to Float64 and then delegates construction to the

general constructor for the casewhere both arguments are Float64. With this method definitionwhatwas previously

a MethodError now successfully creates a point of type Point{Float64}:

julia> Point(1,2.5)

Point{Float64}(1.0, 2.5)

julia> typeof(ans)

Point{Float64}

However, other similar calls still don’t work:

julia> Point(1.5,2)

ERROR: MethodError: no method matching Point(::Float64, ::Int64)

Closest candidates are:

Point(::T<:Real, !Matched::T<:Real) where T<:Real at none:1

For a more general way to make all such calls work sensibly, see Conversion and Promotion. At the risk of spoiling the

suspense, we can reveal here that all it takes is the following outer method definition to make all calls to the general

Point constructor work as one would expect:

julia> Point(x::Real, y::Real) = Point(promote(x,y)...);

16.5. CASE STUDY: RATIONAL 151

The promote function converts all its arguments to a common type – in this case Float64. With this method def-

inition, the Point constructor promotes its arguments the same way that numeric operators like + do, and works for

all kinds of real numbers:

julia> Point(1.5,2)

Point{Float64}(1.5, 2.0)

julia> Point(1,1//2)

Point{Rational{Int64}}(1//1, 1//2)

julia> Point(1.0,1//2)

Point{Float64}(1.0, 0.5)

Thus, while the implicit type parameter constructors provided by default in Julia are fairly strict, it is possible to make

them behave in a more relaxed but sensible manner quite easily. Moreover, since constructors can leverage all of the

power of the type system, methods, and multiple dispatch, defining sophisticated behavior is typically quite simple.

16.5 Case Study: Rational

Perhaps the best way to tie all these pieces together is to present a real world example of a parametric composite type

and its constructor methods. To that end, here is the (slightly modified) beginning of rational.jl, which implements

Julia’s Rational Numbers:

julia> struct OurRational{T<:Integer} <: Real

num::T

den::T

function OurRational{T}(num::T, den::T) where T<:Integer

if num == 0 && den == 0

error("invalid rational: 0//0")

end

g = gcd(den, num)

num = div(num, g)

den = div(den, g)

new(num, den)

end

end

julia> OurRational(n::T, d::T) where {T<:Integer} = OurRational{T}(n,d)

OurRational

julia> OurRational(n::Integer, d::Integer) = OurRational(promote(n,d)...)

OurRational

julia> OurRational(n::Integer) = OurRational(n,one(n))

OurRational

julia> //(n::Integer, d::Integer) = OurRational(n,d)

// (generic function with 1 method)

julia> //(x::OurRational, y::Integer) = x.num // (x.den*y)

// (generic function with 2 methods)

julia> //(x::Integer, y::OurRational) = (x*y.den) // y.num

// (generic function with 3 methods)

julia> //(x::Complex, y::Real) = complex(real(x)//y, imag(x)//y)

https://github.com/JuliaLang/julia/blob/master/base/rational.jl

152 CHAPTER 16. CONSTRUCTORS

// (generic function with 4 methods)

julia> //(x::Real, y::Complex) = x*y'//real(y*y')

// (generic function with 5 methods)

julia> function //(x::Complex, y::Complex)

xy = x*y'

yy = real(y*y')

complex(real(xy)//yy, imag(xy)//yy)

end

// (generic function with 6 methods)

The first line – struct OurRational{T<:Integer} <: Real – declares that OurRational takes one type pa-

rameter of an integer type, and is itself a real type. The field declarations num::T and den::T indicate that the data

held in a OurRational{T} object are a pair of integers of type T, one representing the rational value’s numerator and

the other representing its denominator.

Now things get interesting. OurRational has a single inner constructor method which checks that both of num and

den aren’t zero and ensures that every rational is constructed in ”lowest terms”with a non-negative denominator. This

is accomplished by dividing the given numerator and denominator values by their greatest common divisor, computed

using the gcd function. Since gcd returns the greatest common divisor of its arguments with sign matching the first

argument (den here), after this division the new value of den is guaranteed to be non-negative. Because this is the

only inner constructor for OurRational, we can be certain that OurRational objects are always constructed in this

normalized form.

OurRational also provides several outer constructor methods for convenience. The first is the ”standard” general

constructor that infers the type parameter T from the type of the numerator and denominator when they have the

same type. The second applies when the given numerator and denominator values have different types: it promotes

them to a common type and then delegates construction to the outer constructor for arguments of matching type.

The third outer constructor turns integer values into rationals by supplying a value of 1 as the denominator.

Following the outer constructor definitions, we have a number ofmethods for the // operator, which provides a syntax

forwriting rationals. Before these definitions, // is a completely undefined operatorwith only syntax and no meaning.

Afterwards, it behaves just as described in Rational Numbers – its entire behavior is defined in these few lines. The

first and most basic definition just makes a//b construct a OurRational by applying the OurRational constructor

to a and bwhen they are integers. When one of the operands of // is already a rational number, we construct a new

rational for the resulting ratio slightly differently; this behavior is actually identical to division of a rational with an

integer. Finally, applying // to complex integral values creates an instance of Complex{OurRational} – a complex

number whose real and imaginary parts are rationals:

julia> ans = (1 + 2im)//(1 - 2im);

julia> typeof(ans)

Complex{OurRational{Int64}}

julia> ans <: Complex{OurRational}

false

Thus, although the // operator usually returns an instance of OurRational, if either of its arguments are complex

integers, itwill return an instance of Complex{OurRational} instead. The interested reader should consider perusing

the rest of rational.jl: it is short, self-contained, and implements an entire basic Julia type.

16.6 Constructors and Conversion

Constructors T(args...) in Julia are implemented like other callable objects: methods are added to their types. The

type of a type is Type, so all constructor methods are stored in the method table for the Type type. This means that

https://github.com/JuliaLang/julia/blob/master/base/rational.jl

16.7. OUTER-ONLY CONSTRUCTORS 153

you can declare more flexible constructors, e.g. constructors for abstract types, by explicitly defining methods for the

appropriate types.

However, in some cases you could consider adding methods to Base.convert instead of defining a constructor,

because Julia falls back to calling convert() if no matching constructor is found. For example, if no constructor

T(args...) = ... exists Base.convert(::Type{T}, args...) = ... is called.

convert is used extensively throughout Julia whenever one type needs to be converted to another (e.g. in assign-

ment, ccall, etcetera), and should generally only be defined (or successful) if the conversion is lossless. For example,

convert(Int, 3.0) produces 3, but convert(Int, 3.2) throws an InexactError. If you want to define a con-

structor for a lossless conversion from one type to another, you should probably define a convert method instead.

On the other hand, if your constructor does not represent a lossless conversion, or doesn’t represent ”conversion” at

all, it is better to leave it as a constructor rather than a convertmethod. For example, the Array{Int}() constructor

creates a zero-dimensional Array of the type Int, but is not really a ”conversion” from Int to an Array.

16.7 Outer-only constructors

As we have seen, a typical parametric type has inner constructors that are called when type parameters are known;

e.g. they apply to Point{Int} but not to Point. Optionally, outer constructors that determine type parameters

automatically can be added, for example constructing a Point{Int} from the call Point(1,2). Outer constructors

call inner constructors to do the core work of making an instance. However, in some cases one would rather not

provide inner constructors, so that specific type parameters cannot be requested manually.

For example, say we define a type that stores a vector along with an accurate representation of its sum:

julia> struct SummedArray{T<:Number,S<:Number}

data::Vector{T}

sum::S

end

julia> SummedArray(Int32[1; 2; 3], Int32(6))

SummedArray{Int32,Int32}(Int32[1, 2, 3], 6)

The problem is that wewant S to be a larger type than T, so that we can summany elements with less information loss.

For example, when T is Int32, we would like S to be Int64. Therefore we want to avoid an interface that allows the

user to construct instances of the type SummedArray{Int32,Int32}. Oneway to do this is to provide a constructor

only for SummedArray, but inside the type definition block to suppress generation of default constructors:

julia> struct SummedArray{T<:Number,S<:Number}

data::Vector{T}

sum::S

function SummedArray(a::Vector{T}) where T

S = widen(T)

new{T,S}(a, sum(S, a))

end

end

julia> SummedArray(Int32[1; 2; 3], Int32(6))

ERROR: MethodError: no method matching SummedArray(::Array{Int32,1}, ::Int32)

Closest candidates are:

SummedArray(::Array{T,1}) where T at none:5

This constructorwill be invoked by the syntax SummedArray(a). The syntax new{T,S} allows specifying parameters

for the type to be constructed, i.e. this call will return a SummedArray{T,S}. new{T,S} can be used in any constructor

154 CHAPTER 16. CONSTRUCTORS

definition, but for convenience the parameters to new{} are automatically derived from the type being constructed

when possible.

Chapter 17

Conversion and Promotion

Julia has a system for promoting arguments of mathematical operators to a common type, which has been mentioned

in various other sections, including Integers and Floating-Point Numbers, Mathematical Operations and Elementary

Functions, Types, andMethods. In this section, we explain how this promotion systemworks, as well as how to extend

it to new types and apply it to functions besides built-in mathematical operators. Traditionally, programming languages

fall into two camps with respect to promotion of arithmetic arguments:

• Automatic promotion for built-in arithmetic types and operators. In most languages, built-in numeric types,

when used as operands to arithmetic operators with infix syntax, such as +, -, *, and /, are automatically

promoted to a common type to produce the expected results. C, Java, Perl, and Python, to name a few, all

correctly compute the sum 1 + 1.5 as the floating-point value 2.5, even though one of the operands to +

is an integer. These systems are convenient and designed carefully enough that they are generally all-but-

invisible to the programmer: hardly anyone consciously thinks of this promotion taking place when writing

such an expression, but compilers and interpreters must perform conversion before addition since integers and

floating-point values cannot be added as-is. Complex rules for such automatic conversions are thus inevitably

part of specifications and implementations for such languages.

• No automatic promotion. This camp includes Ada and ML – very ”strict” statically typed languages. In these

languages, every conversion must be explicitly specified by the programmer. Thus, the example expression 1

+ 1.5 would be a compilation error in both Ada and ML. Instead one must write real(1) + 1.5, explicitly

converting the integer 1 to a floating-point value before performing addition. Explicit conversion everywhere is

so inconvenient, however, that evenAda has somedegree of automatic conversion: integer literals are promoted

to the expected integer type automatically, and floating-point literals are similarly promoted to appropriate

floating-point types.

In a sense, Julia falls into the ”no automatic promotion” category: mathematical operators are just functionswith special

syntax, and the arguments of functions are never automatically converted. However, one may observe that applying

mathematical operations to a wide variety of mixed argument types is just an extreme case of polymorphic multi-

ple dispatch – something which Julia’s dispatch and type systems are particularly well-suited to handle. ”Automatic”

promotion of mathematical operands simply emerges as a special application: Julia comes with pre-defined catch-all

dispatch rules for mathematical operators, invoked when no specific implementation exists for some combination of

operand types. These catch-all rules first promote all operands to a common type using user-definable promotion

rules, and then invoke a specialized implementation of the operator in question for the resulting values, now of the

same type. User-defined types can easily participate in this promotion system by defining methods for conversion to

and from other types, and providing a handful of promotion rules defining what types they should promote to when

mixed with other types.

155

156 CHAPTER 17. CONVERSION AND PROMOTION

17.1 Conversion

Conversion of values to various types is performed by the convert function. The convert function generally takes

two arguments: the first is a type object while the second is a value to convert to that type; the returned value is the

value converted to an instance of given type. The simplest way to understand this function is to see it in action:

julia> x = 12

12

julia> typeof(x)

Int64

julia> convert(UInt8, x)

0x0c

julia> typeof(ans)

UInt8

julia> convert(AbstractFloat, x)

12.0

julia> typeof(ans)

Float64

julia> a = Any[1 2 3; 4 5 6]

2×3 Array{Any,2}:

1 2 3

4 5 6

julia> convert(Array{Float64}, a)

2×3 Array{Float64,2}:

1.0 2.0 3.0

4.0 5.0 6.0

Conversion isn’t always possible, in which case a no method error is thrown indicating that convert doesn’t know

how to perform the requested conversion:

julia> convert(AbstractFloat, "foo")

ERROR: MethodError: Cannot `convert` an object of type String to an object of type AbstractFloat

This may have arisen from a call to the constructor AbstractFloat(...),

since type constructors fall back to convert methods.

Some languages consider parsing strings as numbers or formatting numbers as strings to be conversions (manydynamic

languages will even perform conversion for you automatically), however Julia does not: even though some strings can

be parsed as numbers, most strings are not valid representations of numbers, and only a very limited subset of them

are. Therefore in Julia the dedicated parse() functionmust be used to perform this operation, making it more explicit.

Defining New Conversions

To define a new conversion, simply provide a new method for convert(). That’s really all there is to it. For example,

the method to convert a real number to a boolean is this:

convert(::Type{Bool}, x::Real) = x==0 ? false : x==1 ? true : throw(InexactError())

17.1. CONVERSION 157

The type of the first argument of this method is a singleton type, Type{Bool}, the only instance of which is Bool.

Thus, this method is only invoked when the first argument is the type value Bool. Notice the syntax used for the first

argument: the argument name is omitted prior to the :: symbol, and only the type is given. This is the syntax in Julia

for a function argument whose type is specified but whose value is never used in the function body. In this example,

since the type is a singleton, there would never be any reason to use its value within the body. When invoked, the

method determines whether a numeric value is true or false as a boolean, by comparing it to one and zero:

julia> convert(Bool, 1)

true

julia> convert(Bool, 0)

false

julia> convert(Bool, 1im)

ERROR: InexactError()

Stacktrace:

[1] convert(::Type{Bool}, ::Complex{Int64}) at ./complex.jl:31

julia> convert(Bool, 0im)

false

The method signatures for conversion methods are often quite a bit more involved than this example, especially for

parametric types. The example above is meant to be pedagogical, and is not the actual Julia behaviour. This is the

actual implementation in Julia:

convert(::Type{T}, z::Complex) where {T<:Real} =

(imag(z) == 0 ? convert(T, real(z)) : throw(InexactError()))

Case Study: Rational Conversions

To continue our case study of Julia’s Rational type, here are the conversions declared in rational.jl, right after

the declaration of the type and its constructors:

convert(::Type{Rational{T}}, x::Rational) where {T<:Integer} =

Rational(convert(T,x.num),convert(T,x.den))↪→

convert(::Type{Rational{T}}, x::Integer) where {T<:Integer} = Rational(convert(T,x),

convert(T,1))↪→

function convert(::Type{Rational{T}}, x::AbstractFloat, tol::Real) where T<:Integer

if isnan(x); return zero(T)//zero(T); end

if isinf(x); return sign(x)//zero(T); end

y = x

a = d = one(T)

b = c = zero(T)

while true

f = convert(T,round(y)); y -= f

a, b, c, d = f*a+c, f*b+d, a, b

if y == 0 || abs(a/b-x) <= tol

return a//b

end

y = 1/y

end

end

convert(rt::Type{Rational{T}}, x::AbstractFloat) where {T<:Integer} = convert(rt,x,eps(x))

https://github.com/JuliaLang/julia/blob/master/base/rational.jl

158 CHAPTER 17. CONVERSION AND PROMOTION

convert(::Type{T}, x::Rational) where {T<:AbstractFloat} = convert(T,x.num)/convert(T,x.den)

convert(::Type{T}, x::Rational) where {T<:Integer} = div(convert(T,x.num),convert(T,x.den))

The initial four convert methods provide conversions to rational types. The first method converts one type of rational

to another type of rational by converting the numerator and denominator to the appropriate integer type. The second

method does the same conversion for integers by taking the denominator to be 1. The third method implements a

standard algorithm for approximating a floating-point number by a ratio of integers to within a given tolerance, and

the fourth method applies it, using machine epsilon at the given value as the threshold. In general, one should have

a//b == convert(Rational{Int64}, a/b).

The last two convert methods provide conversions from rational types to floating-point and integer types. To convert

to floating point, one simply converts both numerator and denominator to that floating point type and then divides.

To convert to integer, one can use the div operator for truncated integer division (rounded towards zero).

17.2 Promotion

Promotion refers to converting values of mixed types to a single common type. Although it is not strictly necessary, it

is generally implied that the common type to which the values are converted can faithfully represent all of the original

values. In this sense, the term ”promotion” is appropriate since the values are converted to a ”greater” type – i.e. one

which can represent all of the input values in a single common type. It is important, however, not to confuse this with

object-oriented (structural) super-typing, or Julia’s notion of abstract super-types: promotion has nothing to do with

the type hierarchy, and everything to do with converting between alternate representations. For instance, although

every Int32 value can also be represented as a Float64 value, Int32 is not a subtype of Float64.

Promotion to a common ”greater” type is performed in Julia by the promote function, which takes any number of

arguments, and returns a tuple of the same number of values, converted to a common type, or throws an exception if

promotion is not possible. The most common use case for promotion is to convert numeric arguments to a common

type:

julia> promote(1, 2.5)

(1.0, 2.5)

julia> promote(1, 2.5, 3)

(1.0, 2.5, 3.0)

julia> promote(2, 3//4)

(2//1, 3//4)

julia> promote(1, 2.5, 3, 3//4)

(1.0, 2.5, 3.0, 0.75)

julia> promote(1.5, im)

(1.5 + 0.0im, 0.0 + 1.0im)

julia> promote(1 + 2im, 3//4)

(1//1 + 2//1*im, 3//4 + 0//1*im)

Floating-point values are promoted to the largest of the floating-point argument types. Integer values are promoted

to the larger of either the native machine word size or the largest integer argument type. Mixtures of integers and

floating-point values are promoted to a floating-point type big enough to hold all the values. Integers mixed with

rationals are promoted to rationals. Rationals mixed with floats are promoted to floats. Complex values mixed with

real values are promoted to the appropriate kind of complex value.

17.2. PROMOTION 159

That is really all there is to using promotions. The rest is just a matter of clever application, the most typical ”clever”

application being the definition of catch-all methods for numeric operations like the arithmetic operators +, -, * and

/. Here are some of the catch-all method definitions given in promotion.jl:

+(x::Number, y::Number) = +(promote(x,y)...)

-(x::Number, y::Number) = -(promote(x,y)...)

*(x::Number, y::Number) = *(promote(x,y)...)

/(x::Number, y::Number) = /(promote(x,y)...)

Thesemethod definitions say that in the absence ofmore specific rules for adding, subtracting, multiplying and dividing

pairs of numeric values, promote the values to a common type and then try again. That’s all there is to it: nowhere else

does one ever need to worry about promotion to a common numeric type for arithmetic operations – it just happens

automatically. There are definitions of catch-all promotion methods for a number of other arithmetic and mathemat-

ical functions in promotion.jl, but beyond that, there are hardly any calls to promote required in the Julia standard

library. The most common usages of promote occur in outer constructors methods, provided for convenience, to

allow constructor calls with mixed types to delegate to an inner type with fields promoted to an appropriate common

type. For example, recall that rational.jl provides the following outer constructor method:

Rational(n::Integer, d::Integer) = Rational(promote(n,d)...)

This allows calls like the following to work:

julia> Rational(Int8(15),Int32(-5))

-3//1

julia> typeof(ans)

Rational{Int32}

For most user-defined types, it is better practice to require programmers to supply the expected types to constructor

functions explicitly, but sometimes, especially for numeric problems, it can be convenient to do promotion automat-

ically.

Defining Promotion Rules

Although one could, in principle, definemethods for the promote function directly, thiswould require many redundant

definitions for all possible permutations of argument types. Instead, the behavior of promote is defined in terms of

an auxiliary function called promote_rule, which one can provide methods for. The promote_rule function takes

a pair of type objects and returns another type object, such that instances of the argument types will be promoted to

the returned type. Thus, by defining the rule:

promote_rule(::Type{Float64}, ::Type{Float32}) = Float64

one declares that when 64-bit and 32-bit floating-point values are promoted together, they should be promoted to

64-bit floating-point. The promotion type does not need to be one of the argument types, however; the following

promotion rules both occur in Julia’s standard library:

promote_rule(::Type{UInt8}, ::Type{Int8}) = Int

promote_rule(::Type{BigInt}, ::Type{Int8}) = BigInt

https://github.com/JuliaLang/julia/blob/master/base/promotion.jl
https://github.com/JuliaLang/julia/blob/master/base/promotion.jl
https://github.com/JuliaLang/julia/blob/master/base/rational.jl

160 CHAPTER 17. CONVERSION AND PROMOTION

In the latter case, the result type is BigInt since BigInt is the only type large enough to hold integers for arbitrary-

precision integer arithmetic. Also note that one does not need to define bothpromote_rule(::Type{A}, ::Type{B})

and promote_rule(::Type{B}, ::Type{A}) – the symmetry is implied by the way promote_rule is used in the

promotion process.

The promote_rule function is used as a building block to define a second function called promote_type, which,

given any number of type objects, returns the common type to which those values, as arguments to promote should

be promoted. Thus, if one wants to know, in absence of actual values, what type a collection of values of certain types

would promote to, one can use promote_type:

julia> promote_type(Int8, UInt16)

Int64

Internally, promote_type is used inside of promote to determine what type argument values should be converted

to for promotion. It can, however, be useful in its own right. The curious reader can read the code in promotion.jl,

which defines the complete promotion mechanism in about 35 lines.

Case Study: Rational Promotions

Finally, we finish off our ongoing case study of Julia’s rational number type, which makes relatively sophisticated use

of the promotion mechanism with the following promotion rules:

promote_rule(::Type{Rational{T}}, ::Type{S}) where {T<:Integer,S<:Integer} =

Rational{promote_type(T,S)}↪→

promote_rule(::Type{Rational{T}}, ::Type{Rational{S}}) where {T<:Integer,S<:Integer} =

Rational{promote_type(T,S)}↪→

promote_rule(::Type{Rational{T}}, ::Type{S}) where {T<:Integer,S<:AbstractFloat} =

promote_type(T,S)↪→

The first rule says that promoting a rational number with any other integer type promotes to a rational type whose

numerator/denominator type is the result of promotion of its numerator/denominator type with the other integer

type. The second rule applies the same logic to two different types of rational numbers, resulting in a rational of the

promotion of their respective numerator/denominator types. The third and final rule dictates that promoting a rational

with a float results in the same type as promoting the numerator/denominator type with the float.

This small handful of promotion rules, together with the conversion methods discussed above, are sufficient to make

rational numbers interoperate completely naturally with all of Julia’s other numeric types – integers, floating-point

numbers, and complex numbers. By providing appropriate conversion methods and promotion rules in the same man-

ner, any user-defined numeric type can interoperate just as naturally with Julia’s predefined numerics.

https://github.com/JuliaLang/julia/blob/master/base/promotion.jl

Chapter 18

Interfaces

A lot of the power and extensibility in Julia comes from a collection of informal interfaces. By extending a few specific

methods to work for a custom type, objects of that type not only receive those functionalities, but they are also able

to be used in other methods that are written to generically build upon those behaviors.

18.1 Iteration

Required methods Brief description

start(iter) Returns the initial iteration state

next(iter, state) Returns the current item and the next state

done(iter, state) Tests if there are any items remaining

Important optional

methods

Default

definition

Brief description

iteratorsize(Iter-

Type)

HasLength() One of HasLength(), HasShape(), IsInfinite(), or

SizeUnknown() as appropriate

iteratorel-

type(IterType)

HasEl-

type()

Either EltypeUnknown() or HasEltype() as appropriate

eltype(IterType) Any The type the items returned by next()

length(iter) (undefined) The number of items, if known

size(iter,

[dim...])

(undefined) The number of items in each dimension, if known

Value returned by iteratorsize(IterType) Required Methods

HasLength() length(iter)

HasShape() length(iter) and size(iter, [dim...])

IsInfinite() (none)

SizeUnknown() (none)

Value returned by iteratoreltype(IterType) Required Methods

HasEltype() eltype(IterType)

EltypeUnknown() (none)

Sequential iteration is implemented by the methods start(), done(), and next(). Instead of mutating objects

as they are iterated over, Julia provides these three methods to keep track of the iteration state externally from the

object. The start(iter) method returns the initial state for the iterable object iter. That state gets passed along

to done(iter, state), which tests if there are any elements remaining, and next(iter, state), which returns

161

162 CHAPTER 18. INTERFACES

a tuple containing the current element and an updated state. The state object can be anything, and is generally

considered to be an implementation detail private to the iterable object.

Any object defines these three methods is iterable and can be used in the many functions that rely upon iteration. It

can also be used directly in a for loop since the syntax:

for i in iter # or "for i = iter"

body

end

is translated into:

state = start(iter)

while !done(iter, state)

(i, state) = next(iter, state)

body

end

A simple example is an iterable sequence of square numbers with a defined length:

julia> struct Squares

count::Int

end

julia> Base.start(::Squares) = 1

julia> Base.next(S::Squares, state) = (state*state, state+1)

julia> Base.done(S::Squares, state) = state > S.count

julia> Base.eltype(::Type{Squares}) = Int # Note that this is defined for the type

julia> Base.length(S::Squares) = S.count

With only start, next, and done definitions, the Squares type is already pretty powerful. We can iterate over all

the elements:

julia> for i in Squares(7)

println(i)

end

1

4

9

16

25

36

49

We can use many of the builtin methods that work with iterables, like in(), mean() and std():

julia> 25 in Squares(10)

true

julia> mean(Squares(100))

3383.5

18.2. INDEXING 163

julia> std(Squares(100))

3024.355854282583

There are a few more methods we can extend to give Julia more information about this iterable collection. We know

that the elements in a Squares sequence will always be Int. By extending the eltype() method, we can give that

information to Julia and help it make more specialized code in the more complicated methods. We also know the

number of elements in our sequence, so we can extend length(), too.

Now, when we ask Julia to collect() all the elements into an array it can preallocate a Vector{Int} of the right

size instead of blindly push!ing each element into a Vector{Any}:

julia> collect(Squares(10))' # transposed to save space

1×10 RowVector{Int64,Array{Int64,1}}:

1 4 9 16 25 36 49 64 81 100

While we can rely upon generic implementations, we can also extend specific methods where we know there is a

simpler algorithm. For example, there’s a formula to compute the sum of squares, so we can override the generic

iterative version with a more performant solution:

julia> Base.sum(S::Squares) = (n = S.count; return n*(n+1)*(2n+1)÷6)

julia> sum(Squares(1803))

1955361914

This is a very common pattern throughout the Julia standard library: a small set of required methods define an informal

interface that enable many fancier behaviors. In some cases, types will want to additionally specialize those extra

behaviors when they know a more efficient algorithm can be used in their specific case.

18.2 Indexing

Methods to implement Brief description

getindex(X, i) X[i], indexed element access

setindex!(X, v, i) X[i] = v, indexed assignment

endof(X) The last index, used in X[end]

For the Squares iterable above, we can easily compute the ith element of the sequence by squaring it. We can expose

this as an indexing expression S[i]. To opt into this behavior, Squares simply needs to define getindex():

julia> function Base.getindex(S::Squares, i::Int)

1 <= i <= S.count || throw(BoundsError(S, i))

return i*i

end

julia> Squares(100)[23]

529

Additionally, to support the syntax S[end], we must define endof() to specify the last valid index:

julia> Base.endof(S::Squares) = length(S)

julia> Squares(23)[end]

529

Note, though, that the above only defines getindex() with one integer index. Indexing with anything other than an

Int will throw a MethodError saying that there was no matching method. In order to support indexing with ranges

or vectors of Ints, separate methods must be written:

164 CHAPTER 18. INTERFACES

julia> Base.getindex(S::Squares, i::Number) = S[convert(Int, i)]

julia> Base.getindex(S::Squares, I) = [S[i] for i in I]

julia> Squares(10)[[3,4.,5]]

3-element Array{Int64,1}:

9

16

25

While this is starting to support more of the indexing operations supported by some of the builtin types, there’s still

quite a number of behaviors missing. This Squares sequence is starting to look more and more like a vector as we’ve

added behaviors to it. Instead of defining all these behaviors ourselves, we can officially define it as a subtype of an

AbstractArray.

18.3 Abstract Arrays

If a type is defined as a subtype of AbstractArray, it inherits a very large set of rich behaviors including iteration

and multidimensional indexing built on top of single-element access. See the arrays manual page and standard library

section for more supported methods.

A key part in defining an AbstractArray subtype is IndexStyle. Since indexing is such an important part of an array

and often occurs in hot loops, it’s important to make both indexing and indexed assignment as efficient as possible.

Array data structures are typically defined in one of two ways: either it most efficiently accesses its elements using

just one index (linear indexing) or it intrinsically accesses the elements with indices specified for every dimension.

These two modalities are identified by Julia as IndexLinear() and IndexCartesian(). Converting a linear index

to multiple indexing subscripts is typically very expensive, so this provides a traits-basedmechanism to enable efficient

generic code for all array types.

This distinction determines which scalar indexing methods the type must define. IndexLinear() arrays are simple:

just define getindex(A::ArrayType, i::Int). When the array is subsequently indexed with a multidimensional

set of indices, the fallback getindex(A::AbstractArray, I...)() efficiently converts the indices into one linear

index and then calls the above method. IndexCartesian() arrays, on the other hand, require methods to be defined

for each supported dimensionality with ndims(A)Int indices. For example, the builtin SparseMatrixCSC type only

supports two dimensions, so it just defines getindex(A::SparseMatrixCSC, i::Int, j::Int)(). The same

holds for setindex!().

Returning to the sequence of squares from above, we could instead define it as a subtype of an AbstractArray{Int,

1}:

julia> struct SquaresVector <: AbstractArray{Int, 1}

count::Int

end

julia> Base.size(S::SquaresVector) = (S.count,)

julia> Base.IndexStyle(::Type{<:SquaresVector}) = IndexLinear()

julia> Base.getindex(S::SquaresVector, i::Int) = i*i

Note that it’s very important to specify the two parameters of the AbstractArray; the first defines the eltype(),

and the second defines the ndims(). That supertype and those three methods are all it takes for SquaresVector to

be an iterable, indexable, and completely functional array:

julia> s = SquaresVector(7)

7-element SquaresVector:

18.3. ABSTRACTARRAYS 165

Methods to implement Brief description

size(A) Returns a tuple containing the dimensions of A

getindex(A, i::Int) (if IndexLinear) Linear scalar indexing

getindex(A,

I::Vararg{Int, N})

 (if IndexCartesian, where N = ndims(A))

N-dimensional scalar indexing

setindex!(A, v, i::Int) (if IndexLinear) Scalar indexed assignment

setindex!(A, v,

I::Vararg{Int, N})

 (if IndexCartesian, where N = ndims(A))

N-dimensional scalar indexed assignment

Optional methods Default definition Brief description

IndexStyle(::Type) IndexCartesian() Returns either IndexLinear() or

IndexCartesian(). See the description

below.

getindex(A, I...) defined in terms of

scalar getindex()

Multidimensional and nonscalar indexing

setindex!(A, I...) defined in terms of

scalar setindex!()

Multidimensional and nonscalar indexed

assignment

start()/next()/done() defined in terms of

scalar getindex()

Iteration

length(A) prod(size(A)) Number of elements

similar(A) similar(A,

eltype(A),

size(A))

Return a mutable array with the same shape and

element type

similar(A, ::Type{S}) similar(A, S,

size(A))

Return a mutable array with the same shape and

the specified element type

similar(A,

dims::NTuple{Int})

similar(A,

eltype(A), dims)

Return a mutable array with the same element

type and size dims

similar(A, ::Type{S},

dims::NTuple{Int})

Array{S}(dims) Return a mutable array with the specified

element type and size

Non-traditional indices Default definition Brief description

indices(A) map(OneTo,

size(A))

Return the AbstractUnitRange of valid

indices

Base.similar(A,

::Type{S},

inds::NTuple{Ind})

similar(A, S,

Base.to_shape(inds))

Return a mutable array with the specified

indices inds (see below)

Base.simi-

lar(T::Union{Type,Func-

tion},

inds)

T(Base.to_shape(inds))Return an array similar to Twith the specified

indices inds (see below)

1

4

9

16

25

36

49

julia> s[s .> 20]

3-element Array{Int64,1}:

25

36

166 CHAPTER 18. INTERFACES

49

julia> s \ [1 2; 3 4; 5 6; 7 8; 9 10; 11 12; 13 14]

1×2 Array{Float64,2}:

0.305389 0.335329

julia> s s # dot(s, s)

4676

As a more complicated example, let’s define our own toy N-dimensional sparse-like array type built on top of Dict:

julia> struct SparseArray{T,N} <: AbstractArray{T,N}

data::Dict{NTuple{N,Int}, T}

dims::NTuple{N,Int}

end

julia> SparseArray{T}(::Type{T}, dims::Int...) = SparseArray(T, dims);

julia> SparseArray{T,N}(::Type{T}, dims::NTuple{N,Int}) = SparseArray{T,N}(Dict{NTuple{N,Int}, T

}(), dims);

julia> Base.size(A::SparseArray) = A.dims

julia> Base.similar(A::SparseArray, ::Type{T}, dims::Dims) where {T} = SparseArray(T, dims)

julia> Base.getindex(A::SparseArray{T,N}, I::Vararg{Int,N}) where {T,N} = get(A.data, I, zero(T))

julia> Base.setindex!(A::SparseArray{T,N}, v, I::Vararg{Int,N}) where {T,N} = (A.data[I] = v)

Notice that this is an IndexCartesian array, so we must manually define getindex() and setindex!() at the

dimensionality of the array. Unlike the SquaresVector, we are able to define setindex!(), and so we can mutate

the array:

julia> A = SparseArray(Float64, 3, 3)

3×3 SparseArray{Float64,2}:

0.0 0.0 0.0

0.0 0.0 0.0

0.0 0.0 0.0

julia> fill!(A, 2)

3×3 SparseArray{Float64,2}:

2.0 2.0 2.0

2.0 2.0 2.0

2.0 2.0 2.0

julia> A[:] = 1:length(A); A

3×3 SparseArray{Float64,2}:

1.0 4.0 7.0

2.0 5.0 8.0

3.0 6.0 9.0

The result of indexing an AbstractArray can itself be an array (for instance when indexing by a Range). The Ab-

stractArray fallback methods use similar() to allocate an Array of the appropriate size and element type, which

is filled in using the basic indexing method described above. However, when implementing an arraywrapper you often

want the result to be wrapped as well:

julia> A[1:2,:]

18.3. ABSTRACTARRAYS 167

2×3 SparseArray{Float64,2}:

1.0 4.0 7.0

2.0 5.0 8.0

In this example it is accomplished by defining Base.similar{T}(A::SparseArray, ::Type{T}, dims::Dims)

to create the appropriate wrapped array. (Note that while similar supports 1- and 2-argument forms, in most case

you only need to specialize the 3-argument form.) For this to work it’s important that SparseArray is mutable (sup-

ports setindex!). Defining similar(), getindex() and setindex!() for SparseArray also makes it possible

to copy() the array:

julia> copy(A)

3×3 SparseArray{Float64,2}:

1.0 4.0 7.0

2.0 5.0 8.0

3.0 6.0 9.0

In addition to all the iterable and indexable methods from above, these types can also interact with each other and

use most of the methods defined in the standard library for AbstractArrays:

julia> A[SquaresVector(3)]

3-element SparseArray{Float64,1}:

1.0

4.0

9.0

julia> dot(A[:,1],A[:,2])

32.0

If you are defining an array type that allows non-traditional indexing (indices that start at something other than 1), you

should specialize indices. You should also specialize similar so that the dims argument (ordinarily a Dims size-

tuple) can accept AbstractUnitRange objects, perhaps range-types Ind of your own design. For more information,

see Arrays with custom indices.

Chapter 19

Modules

Modules in Julia are separate variable workspaces, i.e. they introduce a new global scope. They are delimited syntacti-

cally, inside module Name ... end. Modules allow you to create top-level definitions (aka global variables) without

worrying about name conflicts when your code is used together with somebody else’s. Within a module, you can

control which names from other modules are visible (via importing), and specify which of your names are intended to

be public (via exporting).

The following example demonstrates the major features of modules. It is not meant to be run, but is shown for

illustrative purposes:

module MyModule

using Lib

using BigLib: thing1, thing2

import Base.show

importall OtherLib

export MyType, foo

struct MyType

x

end

bar(x) = 2x

foo(a::MyType) = bar(a.x) + 1

show(io::IO, a::MyType) = print(io, "MyType $(a.x)")

end

Note that the style is not to indent the bodyof themodule, since thatwould typically lead towhole files being indented.

This module defines a type MyType, and two functions. Function foo and type MyType are exported, and so will be

available for importing into other modules. Function bar is private to MyModule.

The statement using Lib means that a module called Lib will be available for resolving names as needed. When a

global variable is encountered that has no definition in the current module, the systemwill search for it among variables

exported by Lib and import it if it is found there. This means that all uses of that global within the current module will

resolve to the definition of that variable in Lib.

The statementusing BigLib: thing1, thing2 is a syntactic shortcut forusing BigLib.thing1, BigLib.thing2.

169

170 CHAPTER 19. MODULES

The import keyword supports all the same syntax as using, but only operates on a single name at a time. It does not

add modules to be searched the way using does. import also differs from using in that functions must be imported

using import to be extended with new methods.

InMyModule abovewewanted to add amethod to the standardshow function, sowehad towriteimport Base.show.

Functions whose names are only visible via using cannot be extended.

The keyword importall explicitly imports all names exported by the specified module, as if importwere individually

used on all of them.

Once a variable is made visible via using or import, a module may not create its own variable with the same name.

Imported variables are read-only; assigning to a global variable always affects a variable owned by the current module,

or else raises an error.

19.1 Summary of module usage

To load a module, two main keywords can be used: using and import. To understand their differences, consider the

following example:

module MyModule

export x, y

x() = "x"

y() = "y"

p() = "p"

end

In this module we export the x and y functions (with the keyword export), and also have the non-exported function

p. There are several different ways to load the Module and its inner functions into the current workspace:

Import Command What is brought into scope Available for method

extension

using MyModule All exported names (x and y), MyModule.x,

MyModule.y and MyModule.p

MyModule.x, MyModule.y

and MyModule.p

using MyModule.x,

MyModule.p

x and p

using MyModule: x,

p

x and p

import MyModule MyModule.x, MyModule.y and MyModule.p MyModule.x, MyModule.y

and MyModule.p

import MyModule.x,

MyModule.p

x and p x and p

import MyModule: x,

p

x and p x and p

importall MyModule All exported names (x and y) x and y

Modules and files

Files and file names are mostly unrelated to modules; modules are associated only with module expressions. One can

have multiple files per module, and multiple modules per file:

19.1. SUMMARYOFMODULE USAGE 171

module Foo

include("file1.jl")

include("file2.jl")

end

Including the same code in different modules provides mixin-like behavior. One could use this to run the same code

with different base definitions, for example testing code by running it with ”safe” versions of some operators:

module Normal

include("mycode.jl")

end

module Testing

include("safe_operators.jl")

include("mycode.jl")

end

Standard modules

There are three important standard modules: Main, Core, and Base.

Main is the top-level module, and Julia starts with Main set as the current module. Variables defined at the prompt go

in Main, and whos() lists variables in Main.

Core contains all identifiers considered ”built in” to the language, i.e. part of the core language and not libraries. Every

module implicitly specifies using Core, since you can’t do anything without those definitions.

Base is the standard library (the contents of base/). All modules implicitly contain using Base, since this is needed

in the vast majority of cases.

Default top-level definitions and bare modules

In addition to using Base, modules also automatically contain a definition of the eval function, which evaluates

expressions within the context of that module.

If these default definitions are not wanted, modules can be defined using the keyword baremodule instead (note:

Core is still imported, as per above). In terms of baremodule, a standard module looks like this:

baremodule Mod

using Base

eval(x) = Core.eval(Mod, x)

eval(m,x) = Core.eval(m, x)

...

end

Relative and absolute module paths

Given the statement using Foo, the system looks for Foo within Main. If the module does not exist, the system

attempts to require("Foo"), which typically results in loading code from an installed package.

172 CHAPTER 19. MODULES

However, somemodules contain submodules, whichmeans you sometimes need to access amodule that is not directly

available in Main. There are two ways to do this. The first is to use an absolute path, for example using Base.Sort.

The second is to use a relative path, which makes it easier to import submodules of the current module or any of its

enclosing modules:

module Parent

module Utils

...

end

using .Utils

...

end

Here module Parent contains a submodule Utils, and code in Parent wants the contents of Utils to be visible.

This is done by starting the using path with a period. Adding more leading periods moves up additional levels in the

module hierarchy. For example using ..Utils would look for Utils in Parent’s enclosing module rather than in

Parent itself.

Note that relative-import qualifiers are only valid in using and import statements.

Module file paths

The global variable LOAD_PATH contains the directories Julia searches for modules when calling require. It can be

extended using push!:

push!(LOAD_PATH, "/Path/To/My/Module/")

Putting this statement in the file ~/.juliarc.jl will extend LOAD_PATH on every Julia startup. Alternatively, the

module load path can be extended by defining the environment variable JULIA_LOAD_PATH.

Namespace miscellanea

If a name is qualified (e.g. Base.sin), then it can be accessed even if it is not exported. This is often useful when

debugging. It can also have methods added to it by using the qualified name as the function name. However, due to

syntactic ambiguities that arise, if you wish to add methods to a function in a different module whose name contains

only symbols, such as an operator, Base.+ for example, you must use Base.:+ to refer to it. If the operator is more

than one character in length you must surround it in brackets, such as: Base.:(==).

Macro names are written with @ in import and export statements, e.g. import Mod.@mac. Macros in other modules

can be invoked as Mod.@mac or @Mod.mac.

The syntax M.x = y does not work to assign a global in another module; global assignment is always module-local.

A variable can be ”reserved” for the current module without assigning to it by declaring it as global x at the top level.

This can be used to prevent name conflicts for globals initialized after load time.

Module initialization and precompilation

Large modules can take several seconds to load because executing all of the statements in a module often involves

compiling a large amount of code. Julia provides the ability to create precompiled versions of modules to reduce this

time.

19.1. SUMMARYOFMODULE USAGE 173

To create an incremental precompiled module file, add __precompile__() at the top of your module file (before the

module starts). Thiswill cause it to be automatically compiled the first time it is imported. Alternatively, you canmanu-

ally callBase.compilecache(modulename). The resulting cache fileswill be stored inBase.LOAD_CACHE_PATH[1].

Subsequently, the module is automatically recompiled upon import whenever any of its dependencies change; de-

pendencies are modules it imports, the Julia build, files it includes, or explicit dependencies declared by include_de-

pendency(path) in the module file(s).

For file dependencies, a change is determined by examining whether the modification time (mtime) of each file loaded

by include or added explicitly by include_dependency is unchanged, or equal to the modification time truncated

to the nearest second (to accommodate systems that can’t copy mtime with sub-second accuracy). It also takes into

account whether the path to the file chosen by the search logic in require matches the path that had created the

precompile file.

It also takes into account the set of dependencies already loaded into the current process and won’t recompile those

modules, even if their files change or disappear, in order to avoid creating incompatibilities between the running system

and the precompile cache. If you want to have changes to the source reflected in the running system, you should call

reload("Module") on the module you changed, and any module that depended on it in which you want to see the

change reflected.

Precompiling a module also recursively precompiles any modules that are imported therein. If you know that it is not

safe to precompile your module (for the reasons described below), you should put __precompile__(false) in the

module file to cause Base.compilecache to throw an error (and thereby prevent the module from being imported

by any other precompiled module).

__precompile__() should not be used in amodule unless all of its dependencies are also using __precompile__().

Failure to do so can result in a runtime error when loading the module.

In order to make your module work with precompilation, however, you may need to change your module to explicitly

separate any initialization steps that must occur at runtime from steps that can occur at compile time. For this purpose,

Julia allows you to define an __init__() function in your module that executes any initialization steps that must

occur at runtime. This function will not be called during compilation (--output-* or __precompile__()). You

may, of course, call it manually if necessary, but the default is to assume this function deals with computing state

for the local machine, which does not need to be – or even should not be – captured in the compiled image. It

will be called after the module is loaded into a process, including if it is being loaded into an incremental compile

(--output-incremental=yes), but not if it is being loaded into a full-compilation process.

In particular, if you define a function __init__() in a module, then Julia will call __init__() immediately after

the module is loaded (e.g., by import, using, or require) at runtime for the first time (i.e., __init__ is only called

once, and only after all statements in the module have been executed). Because it is called after the module is fully

imported, any submodules or other imported modules have their __init__ functions called before the __init__ of

the enclosing module.

Two typical uses of __init__ are calling runtime initialization functions of external C libraries and initializing global

constants that involve pointers returned by external libraries. For example, suppose that we are calling a C library

libfoo that requires us to call a foo_init() initialization function at runtime. Suppose that we also want to define

a global constant foo_data_ptr that holds the return value of a void *foo_data() function defined by libfoo –

this constant must be initialized at runtime (not at compile time) because the pointer address will change from run to

run. You could accomplish this by defining the following __init__ function in your module:

const foo_data_ptr = Ref{Ptr{Void}}(0)

function __init__()

ccall((:foo_init, :libfoo), Void, ())

foo_data_ptr[] = ccall((:foo_data, :libfoo), Ptr{Void}, ())

end

174 CHAPTER 19. MODULES

Notice that it is perfectly possible to define a global inside a function like __init__; this is one of the advantages of

using a dynamic language. But by making it a constant at global scope, we can ensure that the type is known to the

compiler and allow it to generate better optimized code. Obviously, any other globals in your module that depends on

foo_data_ptrwould also have to be initialized in __init__.

Constants involving most Julia objects that are not produced by ccall do not need to be placed in __init__: their

definitions can be precompiled and loaded from the cached module image. This includes complicated heap-allocated

objects like arrays. However, any routine that returns a raw pointer value must be called at runtime for precompilation

to work (Ptr objects will turn into null pointers unless they are hidden inside an isbits object). This includes the return

values of the Julia functions cfunction and pointer.

Dictionary and set types, or in general anything that depends on the output of a hash(key) method, are a trickier

case. In the common case where the keys are numbers, strings, symbols, ranges, Expr, or compositions of these types

(via arrays, tuples, sets, pairs, etc.) they are safe to precompile. However, for a few other key types, such as Function

or DataType and generic user-defined types where you haven’t defined a hash method, the fallback hash method

depends on the memory address of the object (via its object_id) and hence may change from run to run. If you have

one of these key types, or if you aren’t sure, to be safe you can initialize this dictionary from within your __init__

function. Alternatively, you can use the ObjectIdDict dictionary type, which is specially handled by precompilation

so that it is safe to initialize at compile-time.

When using precompilation, it is important to keep a clear sense of the distinction between the compilation phase and

the execution phase. In this mode, it will often be much more clearly apparent that Julia is a compiler which allows

execution of arbitrary Julia code, not a standalone interpreter that also generates compiled code.

Other known potential failure scenarios include:

1. Global counters (for example, for attempting to uniquely identify objects) Consider the following code snippet:

mutable struct UniquedById

myid::Int

let counter = 0

UniquedById() = new(counter += 1)

end

end

while the intent of this code was to give every instance a unique id, the counter value is recorded at the end

of compilation. All subsequent usages of this incrementally compiled module will start from that same counter

value.

Note that object_id (whichworks by hashing the memory pointer) has similar issues (see notes on Dict usage

below).

One alternative is to store both current_module() and the current counter value, however, it may be better

to redesign the code to not depend on this global state.

2. Associative collections (such as Dict and Set) need to be re-hashed in __init__. (In the future, a mechanism

may be provided to register an initializer function.)

3. Depending on compile-time side-effects persisting through load-time. Example include: modifying arrays or

other variables in other Julia modules; maintaining handles to open files or devices; storing pointers to other

system resources (including memory);

4. Creating accidental ”copies” of global state from another module, by referencing it directly instead of via its

lookup path. For example, (in global scope):

#mystdout = Base.STDOUT #= will not work correctly, since this will copy Base.STDOUT into

this module =#↪→

instead use accessor functions:

19.1. SUMMARYOFMODULE USAGE 175

getstdout() = Base.STDOUT #= best option =#

or move the assignment into the runtime:

__init__() = global mystdout = Base.STDOUT #= also works =#

Several additional restrictions are placed on the operations that can be done while precompiling code to help the user

avoid other wrong-behavior situations:

1. Calling eval to cause a side-effect in another module. This will also cause a warning to be emitted when the

incremental precompile flag is set.

2. global const statements from local scope after __init__() has been started (see issue #12010 for plans

to add an error for this)

3. Replacing a module (or calling workspace()) is a runtime error while doing an incremental precompile.

A few other points to be aware of:

1. No code reload / cache invalidation is performed after changes are made to the source files themselves, (in-

cluding by Pkg.update), and no cleanup is done after Pkg.rm

2. Thememory sharing behavior of a reshaped array is disregarded by precompilation (each view gets its own copy)

3. Expecting the filesystem to be unchanged between compile-time and runtimee.g. @__FILE__/source_path()

to find resources at runtime, or the BinDeps @checked_lib macro. Sometimes this is unavoidable. However,

when possible, it can be good practice to copy resources into the module at compile-time so they won’t need

to be found at runtime.

4. WeakRef objects and finalizers are not currently handled properly by the serializer (this will be fixed in an up-

coming release).

5. It is usually best to avoid capturing references to instances of internal metadata objects such as Method,

MethodInstance, MethodTable, TypeMapLevel, TypeMapEntry and fields of those objects, as this can

confuse the serializer and may not lead to the outcome you desire. It is not necessarily an error to do this,

but you simply need to be prepared that the systemwill try to copy some of these and to create a single unique

instance of others.

It is sometimes helpful during module development to turn off incremental precompilation. The command line flag

--compilecache={yes|no} enables you to toggle module precompilation on and off. When Julia is started with

--compilecache=no the serialized modules in the compile cache are ignored when loading modules and module

dependencies. Base.compilecache() can still be called manually and it will respect __precompile__() directives

for the module. The state of this command line flag is passed to Pkg.build() to disable automatic precompilation

triggering when installing, updating, and explicitly building packages.

Chapter 20

Documentation

Julia enables package developers and users to document functions, types and other objects easily via a built-in docu-

mentation system since Julia 0.4.

The basic syntax is very simple: any string appearing at the top-level right before an object (function, macro, type or

instance) will be interpreted as documenting it (these are called docstrings). Here is a very simple example:

"Tell whether there are too foo items in the array."

foo(xs::Array) = ...

Documentation is interpreted as Markdown, so you can use indentation and code fences to delimit code examples

from text. Technically, any object can be associated with any other as metadata; Markdown happens to be the default,

but one can construct other string macros and pass them to the @doc macro just as well.

Here is a more complex example, still using Markdown:

"""

bar(x[, y])

Compute the Bar index between `x` and `y`. If `y` is missing, compute

the Bar index between all pairs of columns of `x`.

Examples

```julia-repl

julia> bar([1, 2], [1, 2])

1

```

"""

function bar(x, y) ...

As in the example above, we recommend following some simple conventions when writing documentation:

1. Always show the signature of a function at the top of the documentation, with a four-space indent so that it is

printed as Julia code.

This can be identical to the signature present in the Julia code (like mean(x::AbstractArray)), or a simplified

form. Optional arguments should be represented with their default values (i.e. f(x, y=1)) when possible, fol-

lowing the actual Julia syntax. Optional arguments which do not have a default value should be put in brackets

(i.e. f(x[, y]) and f(x[, y[, z]])). An alternative solution is to use several lines: one without optional

177

https://en.wikipedia.org/wiki/Markdown

178 CHAPTER 20. DOCUMENTATION

arguments, the other(s) with them. This solution can also be used to document several related methods of a

given function. When a function accepts many keyword arguments, only include a <keyword arguments>

placeholder in the signature (i.e. f(x; <keyword arguments>)), and give the complete list under an # Ar-

guments section (see point 4 below).

2. Include a single one-line sentence describing what the function does or what the object represents after the

simplified signature block. If needed, provide more details in a second paragraph, after a blank line.

The one-line sentence should use the imperative form (”Do this”, ”Return that”) instead of the third person (do

not write ”Returns the length...”) when documenting functions. It should end with a period. If the meaning

of a function cannot be summarized easily, splitting it into separate composable parts could be beneficial (this

should not be taken as an absolute requirement for every single case though).

3. Do not repeat yourself.

Since the function name is given by the signature, there is no need to start the documentationwith ”The function

bar...”: go straight to the point. Similarly, if the signature specifies the types of the arguments, mentioning them

in the description is redundant.

4. Only provide an argument list when really necessary.

For simple functions, it is often clearer to mention the role of the arguments directly in the description of the

function’s purpose. An argument list would only repeat information already provided elsewhere. However,

providing an argument list can be a good idea for complex functions with many arguments (in particular key-

word arguments). In that case, insert it after the general description of the function, under an # Arguments

header, with one - bullet for each argument. The list should mention the types and default values (if any) of the

arguments:

"""

...

Arguments

- `n::Integer`: the number of elements to compute.

- `dim::Integer=1`: the dimensions along which to perform the computation.

...

"""

5. Include any code examples in an # Examples section.

Examples should, whenever possible, be written as doctests. A doctest is a fenced code block (see Code blocks)

starting with ```jldoctest and contains any number of julia> prompts together with inputs and expected

outputs that mimic the Julia REPL.

For example in the following docstring a variable a is defined and the expected result, as printed in a Julia REPL,

appears afterwards:

"""

Some nice documentation here.

Examples

```jldoctest

julia> a = [1 2; 3 4]

2×2 Array{Int64,2}:

1 2

3 4

```

"""

20.1. ACCESSING DOCUMENTATION 179

Warning

Calling rand and other RNG-related functions should be avoided in doctests since they will not

produce consistent outputs during different Julia sessions.

Operating systemword size (Int32 or Int64) as well as path separator differences (/ or \) will also

affect the reproducibility of some doctests.

Note that whitespace in your doctest is significant! The doctest will fail if you misalign the output

of pretty-printing an array, for example.

You can then run make -C doc doctest to run all the doctests in the Julia Manual, which will ensure that

your example works.

Examples that are untestable should be written within fenced code blocks starting with ```julia so that they

are highlighted correctly in the generated documentation.

Tip

Wherever possible examples should be self-contained and runnable so that readers are able to try

them out without having to include any dependencies.

6. Use backticks to identify code and equations.

Julia identifiers and code excerpts should always appear between backticks ` to enable highlighting. Equations

in the LaTeX syntax can be inserted between double backticks ``. Use Unicode characters rather than their

LaTeX escape sequence, i.e. ``α = 1`` rather than ``\\alpha = 1``.

7. Place the starting and ending """ characters on lines by themselves.

That is, write:

"""

...

...

"""

f(x, y) = ...

rather than:

"""...

..."""

f(x, y) = ...

This makes it more clear where docstrings start and end.

8. Respect the line length limit used in the surrounding code.

Docstrings are edited using the same tools as code. Therefore, the same conventions should apply. It it advised

to add line breaks after 92 characters.

20.1 Accessing Documentation

Documentation can be accessed at the REPL or in IJulia by typing ? followed by the name of a function or macro, and

pressing Enter. For example,

?fft

?@time

?r""

https://github.com/JuliaLang/IJulia.jl

180 CHAPTER 20. DOCUMENTATION

will bring up docs for the relevant function, macro or string macro respectively. In Juno using Ctrl-J, Ctrl-D will

bring up documentation for the object under the cursor.

20.2 Functions & Methods

Functions in Julia may have multiple implementations, known as methods. While it’s good practice for generic func-

tions to have a single purpose, Julia allows methods to be documented individually if necessary. In general, only the

most generic method should be documented, or even the function itself (i.e. the object created without any meth-

ods by function bar end). Specific methods should only be documented if their behaviour differs from the more

generic ones. In any case, they should not repeat the information provided elsewhere. For example:

"""

*(x, y, z...)

Multiplication operator. `x * y * z *...` calls this function with multiple

arguments, i.e. `*(x, y, z...)`.

"""

function *(x, y, z...)

... [implementation sold separately] ...

end

"""

*(x::AbstractString, y::AbstractString, z::AbstractString...)

When applied to strings, concatenates them.

"""

function *(x::AbstractString, y::AbstractString, z::AbstractString...)

... [insert secret sauce here] ...

end

help?> *

search: * .*

*(x, y, z...)

Multiplication operator. x * y * z *... calls this function with multiple

arguments, i.e. *(x,y,z...).

*(x::AbstractString, y::AbstractString, z::AbstractString...)

When applied to strings, concatenates them.

When retrieving documentation for a generic function, themetadata for eachmethod is concatenatedwith the catdoc

function, which can of course be overridden for custom types.

20.3 Advanced Usage

The @doc macro associates its first argument with its second in a per-module dictionary called META. By default,

documentation is expected to bewritten inMarkdown, and the doc"" stringmacro simply creates an object represent-

ing the Markdown content. In the future it is likely to do more advanced things such as allowing for relative image or

link paths.

When used for retrieving documentation, the @docmacro (or equally, the doc function)will search all META dictionaries

for metadata relevant to the given object and return it. The returned object (some Markdown content, for example)

http://junolab.org

20.4. SYNTAX GUIDE 181

will by default display itself intelligently. This design also makes it easy to use the doc system in a programmatic way;

for example, to re-use documentation between different versions of a function:

@doc "..." foo!

@doc (@doc foo!) foo

Or for use with Julia’s metaprogramming functionality:

for (f, op) in ((:add, :+), (:subtract, :-), (:multiply, :*), (:divide, :/))

@eval begin

$f(a,b) = $op(a,b)

end

end

@doc "`add(a,b)` adds `a` and `b` together" add

@doc "`subtract(a,b)` subtracts `b` from `a`" subtract

Documentationwritten in non-toplevel blocks, such as begin, if, for, and let, is added to the documentation system

as blocks are evaluated. For example:

if VERSION > v"0.5"

"..."

f(x) = x

end

will add documentation to f(x) when the condition is true. Note that even if f(x) goes out of scope at the end of

the block, its documentation will remain.

Dynamic documentation

Sometimes the appropriate documentation for an instance of a type depends on the field values of that instance, rather

than just on the type itself. In these cases, you can add a method to Docs.getdoc for your custom type that returns

the documentation on a per-instance basis. For instance,

struct MyType

value::String

end

Docs.getdoc(t::MyType) = "Documentation for MyType with value $(t.value)"

x = MyType("x")

y = MyType("y")

?xwill display ”Documentation for MyType with value x” while ?ywill display ”Documentation for MyType with value

y”.

20.4 Syntax Guide

A comprehensive overview of all documentable Julia syntax.

In the following examples "..." is used to illustrate an arbitrary docstringwhichmay be one of the follow four variants

and contain arbitrary text:

182 CHAPTER 20. DOCUMENTATION

"..."

doc"..."

"""

...

"""

doc"""

...

"""

@doc_str should only be used when the docstring contains $ or \ characters that should not be parsed by Julia such

as LaTeX syntax or Julia source code examples containing interpolation.

Functions and Methods

"..."

function f end

"..."

f

Adds docstring "..." to Functionf. The first version is the preferred syntax, however both are equivalent.

"..."

f(x) = x

"..."

function f(x)

x

end

"..."

f(x)

Adds docstring "..." to Methodf(::Any).

"..."

f(x, y = 1) = x + y

Adds docstring "..." to two Methods, namely f(::Any) and f(::Any, ::Any).

Macros

"..."

macro m(x) end

Adds docstring "..." to the @m(::Any) macro definition.

"..."

:(@m)

Adds docstring "..." to the macro named @m.

20.4. SYNTAX GUIDE 183

Types

"..."

abstract type T1 end

"..."

mutable struct T2

...

end

"..."

struct T3

...

end

Adds the docstring "..." to types T1, T2, and T3.

"..."

struct T

"x"

x

"y"

y

end

Adds docstring "..." to type T, "x" to field T.x and "y" to field T.y. Also applicable to mutable struct types.

Modules

"..."

module M end

module M

"..."

M

end

Adds docstring "..." to the ModuleM. Adding the docstring above the Module is the preferred syntax, however both

are equivalent.

"..."

baremodule M

...

end

baremodule M

import Base: @doc

"..."

f(x) = x

end

184 CHAPTER 20. DOCUMENTATION

Documenting a baremodule by placing a docstring above the expression automatically imports @doc into the module.

These imports must be done manually when the module expression is not documented. Empty baremodules cannot

be documented.

Global Variables

"..."

const a = 1

"..."

b = 2

"..."

global c = 3

Adds docstring "..." to the Bindings a, b, and c.

Bindings are used to store a reference to a particular Symbol in a Modulewithout storing the referenced value itself.

Note

When a const definition is only used to define an alias of another definition, such as is the case with

the function div and its alias ÷ in Base, do not document the alias and instead document the actual

function.

If the alias is documented and not the real definition then the docsystem (? mode) will not return the

docstring attached to the alias when the real definition is searched for.

For example you should write

"..."

f(x) = x + 1

const alias = f

rather than

f(x) = x + 1

"..."

const alias = f

"..."

sym

Adds docstring "..." to the value associated with sym. Users should prefer documenting sym at it’s definition.

Multiple Objects

"..."

a, b

Adds docstring "..." to a and b each of which should be a documentable expression. This syntax is equivalent to

"..."

a

"..."

b

20.5. MARKDOWN SYNTAX 185

Any number of expressions many be documented together in this way. This syntax can be useful when two functions

are related, such as non-mutating and mutating versions f and f!.

Macro-generated code

"..."

@m expression

Adds docstring "..." to expression generated by expanding @m expression. This allows for expressions decorated

with @inline, @noinline, @generated, or any other macro to be documented in the same way as undecorated

expressions.

Macro authors should take note that only macros that generate a single expression will automatically support doc-

strings. If a macro returns a block containing multiple subexpressions then the subexpression that should be docu-

mented must be marked using the @__doc__ macro.

The @enum macro makes use of @__doc__ to allow for documenting Enums. Examining it’s definition should serve as

an example of how to use @__doc__ correctly.

Core.@__doc__ – Macro.

@__doc__(ex)

Low-level macro used to mark expressions returned by a macro that should be documented. If more than one

expression is marked then the same docstring is applied to each expression.

macro example(f)

quote

$(f)() = 0

@__doc__ $(f)(x) = 1

$(f)(x, y) = 2

end |> esc

end

@__doc__ has no effect when a macro that uses it is not documented.

source

20.5 Markdown syntax

The following markdown syntax is supported in Julia.

Inline elements

Here ”inline” refers to elements that can be found within blocks of text, i.e. paragraphs. These include the following

elements.

Bold

Surround words with two asterisks, **, to display the enclosed text in boldface.

A paragraph containing a **bold** word.

Italics

Surround words with one asterisk, *, to display the enclosed text in italics.

A paragraph containing an *emphasised* word.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/Docs.jl#L570-L585

186 CHAPTER 20. DOCUMENTATION

Literals

Surround text that should be displayed exactly as written with single backticks, ` .

A paragraph containing a `literal` word.

Literals should be used whenwriting text that refers to names of variables, functions, or other parts of a Julia program.

Tip

To include a backtick character within literal text use three backticks rather than one to enclose the text.

A paragraph containing a ``` `backtick` character ```.

By extension any odd number of backticks may be used to enclose a lesser number of backticks.

LATEX

Surround text that should be displayed as mathematics using LATEXsyntax with double backticks, `` .

A paragraph containing some ``\LaTeX`` markup.

Tip

As with literals in the previous section, if literal backticks need to be written within double backticks

use an even number greater than two. Note that if a single literal backtick needs to be included within

LATEXmarkup then two enclosing backticks is sufficient.

Links

Links to either external or internal addresses can be written using the following syntax, where the text enclosed in

square brackets, [], is the name of the link and the text enclosed in parentheses, (), is the URL.

A paragraph containing a link to [Julia](http://www.julialang.org).

It’s also possible to add cross-references to other documented functions/methods/variableswithin the Julia documen-

tation itself. For example:

"""

eigvals!(A,[irange,][vl,][vu]) -> values

Same as [`eigvals`](@ref), but saves space by overwriting the input `A`, instead of creating a

copy.↪→

"""

This will create a link in the generated docs to the eigvals documentation (which has more information about what

this function actually does). It’s good to include cross references to mutating/non-mutating versions of a function, or

to highlight a difference between two similar-seeming functions.

Note

The above cross referencing is not a Markdown feature, and relies on Documenter.jl, which is used to

build base Julia’s documentation.

https://github.com/JuliaDocs/Documenter.jl

20.5. MARKDOWN SYNTAX 187

Footnote references

Named and numbered footnote references can be written using the following syntax. A footnote name must be a

single alphanumeric word containing no punctuation.

A paragraph containing a numbered footnote [^1] and a named one [^named].

Note

The text associated with a footnote can be written anywhere within the same page as the footnote

reference. The syntax used to define the footnote text is discussed in the Footnotes section below.

Toplevel elements

The following elements can be written either at the ”toplevel” of a document or within another ”toplevel” element.

Paragraphs

A paragraph is a block of plain text, possibly containing any number of inline elements defined in the Inline elements

section above, with one or more blank lines above and below it.

This is a paragraph.

And this is *another* one containing some emphasised text.

A new line, but still part of the same paragraph.

Headers

A document can be split up into different sections using headers. Headers use the following syntax:

Level One

Level Two

Level Three

Level Four

Level Five

Level Six

A header line can contain any inline syntax in the same way as a paragraph can.

Tip

Try to avoid using too many levels of header within a single document. A heavily nested document may

be indicative of a need to restructure it or split it into several pages covering separate topics.

Code blocks

Source code can be displayed as a literal block using an indent of four spaces as shown in the following example.

This is a paragraph.

function func(x)

...

end

Another paragraph.

188 CHAPTER 20. DOCUMENTATION

Additionally, code blocks can be enclosed using triple backticks with an optional ”language” to specify how a block of

code should be highlighted.

A code block without a "language":

```

function func(x)

# ...

end

```

and another one with the "language" specified as `julia`:

```julia

function func(x)

# ...

end

```

Note

”Fenced” code blocks, as shown in the last example, should be prefered over indented code blocks since

there is no way to specify what language an indented code block is written in.

Block quotes

Text from external sources, such as quotations from books or websites, can be quoted using > characters prepended

to each line of the quote as follows.

Here's a quote:

> Julia is a high-level, high-performance dynamic programming language for

> technical computing, with syntax that is familiar to users of other

> technical computing environments.

Note that a single space must appear after the > character on each line. Quoted blocks may themselves contain other

toplevel or inline elements.

Images

The syntax for images is similar to the link syntax mentioned above. Prepending a ! character to a link will display an

image from the specified URL rather than a link to it.

![alternative text](link/to/image.png)

Lists

Unordered lists can be written by prepending each item in a list with either *, +, or -.

A list of items:

* item one

* item two

* item three

20.5. MARKDOWN SYNTAX 189

Note the two spaces before each * and the single space after each one.

Lists can contain other nested toplevel elements such as lists, code blocks, or quoteblocks. A blank line should be left

between each list item when including any toplevel elements within a list.

Another list:

* item one

* item two

```

f(x) = x

```

* And a sublist:

+ sub-item one

+ sub-item two

Note

The contents of each item in the list must line up with the first line of the item. In the above example the

fenced code block must be indented by four spaces to align with the i in item two.

Ordered lists are written by replacing the ”bullet” character, either *, +, or -, with a positive integer followed by either

. or).

Two ordered lists:

1. item one

2. item two

3. item three

5) item five

6) item six

7) item seven

Anordered listmay start from a number other than one, as in the second list of the above example, where it is numbered

from five. As with unordered lists, ordered lists can contain nested toplevel elements.

Display equations

Large LATEXequations that do not fit inline within a paragraph may be written as display equations using a fenced code

block with the ”language” math as in the example below.

```math

f(a) = \frac{1}{2\pi}\int_{0}^{2\pi} (\alpha+R\cos(\theta))d\theta

```

Footnotes

This syntax is paired with the inline syntax for Footnote references. Make sure to read that section as well.

Footnote text is defined using the following syntax, which is similar to footnote reference syntax, aside from the :

character that is appended to the footnote label.

190 CHAPTER 20. DOCUMENTATION

[^1]: Numbered footnote text.

[^note]:

Named footnote text containing several toplevel elements.

* item one

* item two

* item three

```julia

function func(x)

# ...

end

```

Note

No checks are done during parsing to make sure that all footnote references have matching footnotes.

Horizontal rules

The equivalent of an <hr> HTML tag can be written using the following syntax:

Text above the line.

And text below the line.

Tables

Basic tables can be written using the syntax described below. Note that markdown tables have limited features and

cannot contain nested toplevel elements unlike other elements discussed above – only inline elements are allowed.

Tables must always contain a header rowwith column names. Cells cannot span multiple rows or columns of the table.

| Column One | Column Two | Column Three |

|:---------- | ---------- |:------------:|

| Row `1` | Column `2` | |

| *Row* 2 | **Row** 2 | Column ``3`` |

Note

As illustrated in the above example each column of | characters must be aligned vertically.

A : character on either end of a column’s header separator (the row containing - characters) specifies

whether the row is left-aligned, right-aligned, or (when : appears on both ends) center-aligned. Providing

no : characters will default to right-aligning the column.

Admonitions

Specially formatted blocks with titles such as ”Notes”, ”Warning”, or ”Tips” are known as admonitions and are used

when some part of a document needs special attention. They can be defined using the following !!! syntax:

20.6. MARKDOWN SYNTAX EXTENSIONS 191

!!! note

This is the content of the note.

!!! warning "Beware!"

And this is another one.

This warning admonition has a custom title: `"Beware!"`.

Admonitions, like most other toplevel elements, can contain other toplevel elements. When no title text, specified

after the admonition type in double quotes, is included then the title used will be the type of the block, i.e. "Note" in

the case of the note admonition.

20.6 Markdown Syntax Extensions

Julia’s markdown supports interpolation in a very similar way to basic string literals, with the difference that it will

store the object itself in the Markdown tree (as opposed to converting it to a string). When the Markdown content

is rendered the usual show methods will be called, and these can be overridden as usual. This design allows the

Markdown to be extended with arbitrarily complex features (such as references) without cluttering the basic syntax.

In principle, the Markdown parser itself can also be arbitrarily extended by packages, or an entirely custom flavour of

Markdown can be used, but this should generally be unnecessary.

Chapter 21

Metaprogramming

The strongest legacy of Lisp in the Julia language is its metaprogramming support. Like Lisp, Julia represents its own

code as a data structure of the language itself. Since code is represented by objects that can be created and ma-

nipulated from within the language, it is possible for a program to transform and generate its own code. This allows

sophisticated code generation without extra build steps, and also allows true Lisp-style macros operating at the level

of abstract syntax trees. In contrast, preprocessor ”macro” systems, like that of C and C++, perform textual manipula-

tion and substitution before any actual parsing or interpretation occurs. Because all data types and code in Julia are

represented by Julia data structures, powerful reflection capabilities are available to explore the internals of a program

and its types just like any other data.

21.1 Program representation

Every Julia program starts life as a string:

julia> prog = "1 + 1"

"1 + 1"

What happens next?

The next step is to parse each string into an object called an expression, represented by the Julia type Expr:

julia> ex1 = parse(prog)

:(1 + 1)

julia> typeof(ex1)

Expr

Expr objects contain three parts:

• a Symbol identifying the kind of expression. A symbol is an interned string identifier (more discussion below).

julia> ex1.head

:call

• the expression arguments, which may be symbols, other expressions, or literal values:

julia> ex1.args

3-element Array{Any,1}:

:+

1

1

193

https://en.wikipedia.org/wiki/Abstract_syntax_tree
https://en.wikipedia.org/wiki/Reflection_%28computer_programming%29
https://en.wikipedia.org/wiki/Parsing#Computer_languages
https://en.wikipedia.org/wiki/String_interning

194 CHAPTER 21. METAPROGRAMMING

• finally, the expression result type, which may be annotated by the user or inferred by the compiler (and may be

ignored completely for the purposes of this chapter):

julia> ex1.typ

Any

Expressions may also be constructed directly in prefix notation:

julia> ex2 = Expr(:call, :+, 1, 1)

:(1 + 1)

The two expressions constructed above – by parsing and by direct construction – are equivalent:

julia> ex1 == ex2

true

The key point here is that Julia code is internally represented as a data structure that is accessible from the language

itself.

The dump() function provides indented and annotated display of Expr objects:

julia> dump(ex2)

Expr

head: Symbol call

args: Array{Any}((3,))

1: Symbol +

2: Int64 1

3: Int64 1

typ: Any

Expr objects may also be nested:

julia> ex3 = parse("(4 + 4) / 2")

:((4 + 4) / 2)

Another way to view expressions is with Meta.show_sexpr, which displays the S-expression form of a given Expr,

which may look very familiar to users of Lisp. Here’s an example illustrating the display on a nested Expr:

julia> Meta.show_sexpr(ex3)

(:call, :/, (:call, :+, 4, 4), 2)

Symbols

The : character has two syntactic purposes in Julia. The first form creates a Symbol, an interned string used as one

building-block of expressions:

julia> :foo

:foo

julia> typeof(ans)

Symbol

The Symbol constructor takes any number of arguments and creates a new symbol by concatenating their string

representations together:

https://en.wikipedia.org/wiki/Polish_notation
https://en.wikipedia.org/wiki/S-expression
https://en.wikipedia.org/wiki/String_interning

21.2. EXPRESSIONS AND EVALUATION 195

julia> :foo == Symbol("foo")

true

julia> Symbol("func",10)

:func10

julia> Symbol(:var,'_',"sym")

:var_sym

In the context of an expression, symbols are used to indicate access to variables; when an expression is evaluated, a

symbol is replaced with the value bound to that symbol in the appropriate scope.

Sometimes extra parentheses around the argument to : are needed to avoid ambiguity in parsing.:

julia> :(:)

:(:)

julia> :(::)

:(::)

21.2 Expressions and evaluation

Quoting

The second syntactic purpose of the : character is to create expression objects without using the explicit Expr con-

structor. This is referred to as quoting. The : character, followed by paired parentheses around a single statement of

Julia code, produces an Expr object based on the enclosed code. Here is example of the short form used to quote an

arithmetic expression:

julia> ex = :(a+b*c+1)

:(a + b * c + 1)

julia> typeof(ex)

Expr

(to view the structure of this expression, try ex.head and ex.args, or use dump() as above)

Note that equivalent expressions may be constructed using parse() or the direct Expr form:

julia> :(a + b*c + 1) ==

parse("a + b*c + 1") ==

Expr(:call, :+, :a, Expr(:call, :*, :b, :c), 1)

true

Expressions provided by the parser generally only have symbols, other expressions, and literal values as their args,

whereas expressions constructed by Julia code can have arbitrary run-time values without literal forms as args. In this

specific example, + and a are symbols, *(b,c) is a subexpression, and 1 is a literal 64-bit signed integer.

There is a second syntactic form of quoting for multiple expressions: blocks of code enclosed in quote ... end.

Note that this form introduces QuoteNode elements to the expression tree, which must be considered when directly

manipulating an expression tree generated from quote blocks. For other purposes, :(...) and quote .. end

blocks are treated identically.

196 CHAPTER 21. METAPROGRAMMING

julia> ex = quote

x = 1

y = 2

x + y

end

quote # none, line 2:

x = 1 # none, line 3:

y = 2 # none, line 4:

x + y

end

julia> typeof(ex)

Expr

Interpolation

Direct construction of Expr objectswith value arguments is powerful, but Expr constructors can be tedious compared

to ”normal” Julia syntax. As an alternative, Julia allows ”splicing” or interpolation of literals or expressions into quoted

expressions. Interpolation is indicated by the $ prefix.

In this example, the literal value of a is interpolated:

julia> a = 1;

julia> ex = :($a + b)

:(1 + b)

Interpolating into an unquoted expression is not supported and will cause a compile-time error:

julia> $a + b

ERROR: unsupported or misplaced expression $

...

In this example, the tuple (1,2,3) is interpolated as an expression into a conditional test:

julia> ex = :(a in $:((1,2,3)))

:(a in (1, 2, 3))

Interpolating symbols into a nested expression requires enclosing each symbol in an enclosing quote block:

julia> :(:a in $(:(:a + :b)))

^^^^^^^^^^

quoted inner expression

The use of $ for expression interpolation is intentionally reminiscent of string interpolation and command interpolation.

Expression interpolation allows convenient, readable programmatic construction of complex Julia expressions.

eval() and effects

Given an expression object, one can cause Julia to evaluate (execute) it at global scope using eval():

julia> :(1 + 2)

:(1 + 2)

julia> eval(ans)

3

21.2. EXPRESSIONS AND EVALUATION 197

julia> ex = :(a + b)

:(a + b)

julia> eval(ex)

ERROR: UndefVarError: b not defined

[...]

julia> a = 1; b = 2;

julia> eval(ex)

3

Every module has its own eval() function that evaluates expressions in its global scope. Expressions passed to

eval() are not limited to returning values – they can also have side-effects that alter the state of the enclosing

module’s environment:

julia> ex = :(x = 1)

:(x = 1)

julia> x

ERROR: UndefVarError: x not defined

julia> eval(ex)

1

julia> x

1

Here, the evaluation of an expression object causes a value to be assigned to the global variable x.

Since expressions are just Expr objects which can be constructed programmatically and then evaluated, it is possible

to dynamically generate arbitrary code which can then be run using eval(). Here is a simple example:

julia> a = 1;

julia> ex = Expr(:call, :+, a, :b)

:(1 + b)

julia> a = 0; b = 2;

julia> eval(ex)

3

The value of a is used to construct the expression ex which applies the + function to the value 1 and the variable b.

Note the important distinction between the way a and b are used:

• The value of the variablea at expression construction time is used as an immediate value in the expression.

Thus, the value of awhen the expression is evaluated no longer matters: the value in the expression is already

1, independent of whatever the value of a might be.

• On the other hand, the symbol:b is used in the expression construction, so the value of the variable b at that

time is irrelevant – :b is just a symbol and the variable b need not even be defined. At expression evaluation

time, however, the value of the symbol :b is resolved by looking up the value of the variable b.

198 CHAPTER 21. METAPROGRAMMING

Functions on Expressions

As hinted above, one extremely useful feature of Julia is the capability to generate and manipulate Julia code within

Julia itself. We have already seen one example of a function returning Expr objects: the parse() function, which

takes a string of Julia code and returns the corresponding Expr. A function can also take one or more Expr objects as

arguments, and return another Expr. Here is a simple, motivating example:

julia> function math_expr(op, op1, op2)

expr = Expr(:call, op, op1, op2)

return expr

end

math_expr (generic function with 1 method)

julia> ex = math_expr(:+, 1, Expr(:call, :*, 4, 5))

:(1 + 4 * 5)

julia> eval(ex)

21

As another example, here is a function that doubles any numeric argument, but leaves expressions alone:

julia> function make_expr2(op, opr1, opr2)

opr1f, opr2f = map(x -> isa(x, Number) ? 2*x : x, (opr1, opr2))

retexpr = Expr(:call, op, opr1f, opr2f)

return retexpr

end

make_expr2 (generic function with 1 method)

julia> make_expr2(:+, 1, 2)

:(2 + 4)

julia> ex = make_expr2(:+, 1, Expr(:call, :*, 5, 8))

:(2 + 5 * 8)

julia> eval(ex)

42

21.3 Macros

Macros provide a method to include generated code in the final body of a program. Amacro maps a tuple of arguments

to a returned expression, and the resulting expression is compiled directly rather than requiring a runtime eval() call.

Macro arguments may include expressions, literal values, and symbols.

Basics

Here is an extraordinarily simple macro:

julia> macro sayhello()

return :(println("Hello, world!"))

end

@sayhello (macro with 1 method)

Macros have a dedicated character in Julia’s syntax: the @ (at-sign), followed by the unique name declared in a macro

NAME ... end block. In this example, the compiler will replace all instances of @sayhellowith:

21.3. MACROS 199

:(println("Hello, world!"))

When @sayhello is entered in the REPL, the expression executes immediately, thuswe only see the evaluation result:

julia> @sayhello()

Hello, world!

Now, consider a slightly more complex macro:

julia> macro sayhello(name)

return :(println("Hello, ", $name))

end

@sayhello (macro with 1 method)

This macro takes one argument: name. When @sayhello is encountered, the quoted expression is expanded to

interpolate the value of the argument into the final expression:

julia> @sayhello("human")

Hello, human

We can view the quoted return expression using the function macroexpand() (important note: this is an extremely

useful tool for debugging macros):

julia> ex = macroexpand(:(@sayhello("human")))

:((println)("Hello, ", "human"))

julia> typeof(ex)

Expr

We can see that the "human" literal has been interpolated into the expression.

There also exists a macro @macroexpand that is perhaps a bit more convenient than the macroexpand function:

julia> @macroexpand @sayhello "human"

:((println)("Hello, ", "human"))

Hold up: why macros?

We have already seen a function f(::Expr...) -> Expr in a previous section. In fact, macroexpand() is also

such a function. So, why do macros exist?

Macros are necessary because they executewhen code is parsed, therefore, macros allow the programmer to generate

and include fragments of customized code before the full program is run. To illustrate the difference, consider the

following example:

julia> macro twostep(arg)

println("I execute at parse time. The argument is: ", arg)

return :(println("I execute at runtime. The argument is: ", $arg))

end

@twostep (macro with 1 method)

julia> ex = macroexpand(:(@twostep :(1, 2, 3)));

I execute at parse time. The argument is: $(Expr(:quote, :((1, 2, 3))))

The first call to println() is executed when macroexpand() is called. The resulting expression contains only the

second println:

200 CHAPTER 21. METAPROGRAMMING

julia> typeof(ex)

Expr

julia> ex

:((println)("I execute at runtime. The argument is: ", $(Expr(:copyast, :($(QuoteNode(:((1, 2, 3)

))))))))

julia> eval(ex)

I execute at runtime. The argument is: (1, 2, 3)

Macro invocation

Macros are invoked with the following general syntax:

@name expr1 expr2 ...

@name(expr1, expr2, ...)

Note the distinguishing @ before the macro name and the lack of commas between the argument expressions in the

first form, and the lack of whitespace after @name in the second form. The two styles should not be mixed. For

example, the following syntax is different from the examples above; it passes the tuple (expr1, expr2, ...) as

one argument to the macro:

@name (expr1, expr2, ...)

It is important to emphasize that macros receive their arguments as expressions, literals, or symbols. One way to

explore macro arguments is to call the show() function within the macro body:

julia> macro showarg(x)

show(x)

... remainder of macro, returning an expression

end

@showarg (macro with 1 method)

julia> @showarg(a)

:a

julia> @showarg(1+1)

:(1 + 1)

julia> @showarg(println("Yo!"))

:(println("Yo!"))

Building an advanced macro

Here is a simplified definition of Julia’s @assert macro:

julia> macro assert(ex)

return :($ex ? nothing : throw(AssertionError($(string(ex)))))

end

@assert (macro with 1 method)

This macro can be used like this:

21.3. MACROS 201

julia> @assert 1 == 1.0

julia> @assert 1 == 0

ERROR: AssertionError: 1 == 0

In place of the written syntax, the macro call is expanded at parse time to its returned result. This is equivalent to

writing:

1 == 1.0 ? nothing : throw(AssertionError("1 == 1.0"))

1 == 0 ? nothing : throw(AssertionError("1 == 0"))

That is, in the first call, the expression:(1 == 1.0) is spliced into the test condition slot, while thevalue ofstring(:(1

== 1.0)) is spliced into the assertion message slot. The entire expression, thus constructed, is placed into the syn-

tax tree where the @assert macro call occurs. Then at execution time, if the test expression evaluates to true, then

nothing is returned, whereas if the test is false, an error is raised indicating the asserted expression that was false.

Notice that it would not be possible to write this as a function, since only the value of the condition is available and it

would be impossible to display the expression that computed it in the error message.

The actual definition of @assert in the standard library is more complicated. It allows the user to optionally specify

their own error message, instead of just printing the failed expression. Just like in functions with a variable number of

arguments, this is specified with an ellipses following the last argument:

julia> macro assert(ex, msgs...)

msg_body = isempty(msgs) ? ex : msgs[1]

msg = string(msg_body)

return :($ex ? nothing : throw(AssertionError($msg)))

end

@assert (macro with 1 method)

Now @assert has two modes of operation, depending upon the number of arguments it receives! If there’s only one

argument, the tuple of expressions captured by msgs will be empty and it will behave the same as the simpler def-

inition above. But now if the user specifies a second argument, it is printed in the message body instead of the failing

expression. You can inspect the result of a macro expansion with the aptly named macroexpand() function:

julia> macroexpand(:(@assert a == b))

:(if a == b

nothing

else

(throw)((AssertionError)("a == b"))

end)

julia> macroexpand(:(@assert a==b "a should equal b!"))

:(if a == b

nothing

else

(throw)((AssertionError)("a should equal b!"))

end)

There is yet another case that the actual @assertmacro handles: what if, in addition to printing ”a should equal b,” we

wanted to print their values? One might naively try to use string interpolation in the custom message, e.g., @assert

a==b "a ($a) should equal b ($b)!", but this won’t work as expected with the above macro. Can you see

why? Recall from string interpolation that an interpolated string is rewritten to a call to string(). Compare:

julia> typeof(:("a should equal b"))

String

202 CHAPTER 21. METAPROGRAMMING

julia> typeof(:("a ($a) should equal b ($b)!"))

Expr

julia> dump(:("a ($a) should equal b ($b)!"))

Expr

head: Symbol string

args: Array{Any}((5,))

1: String "a ("

2: Symbol a

3: String ") should equal b ("

4: Symbol b

5: String ")!"

typ: Any

So now instead of getting a plain string in msg_body, the macro is receiving a full expression that will need to be

evaluated in order to display as expected. This can be spliced directly into the returned expression as an argument to

the string() call; see error.jl for the complete implementation.

The @assert macro makes great use of splicing into quoted expressions to simplify the manipulation of expressions

inside the macro body.

Hygiene

An issue that arises in more complex macros is that of hygiene. In short, macros must ensure that the variables they

introduce in their returned expressions do not accidentally clash with existing variables in the surrounding code they

expand into. Conversely, the expressions that are passed into a macro as arguments are often expected to evaluate

in the context of the surrounding code, interacting with and modifying the existing variables. Another concern arises

from the fact that a macro may be called in a different module from where it was defined. In this case we need to

ensure that all global variables are resolved to the correct module. Julia already has a major advantage over languages

with textual macro expansion (like C) in that it only needs to consider the returned expression. All the other variables

(such as msg in @assert above) follow the normal scoping block behavior.

To demonstrate these issues, let us consider writing a @time macro that takes an expression as its argument, records

the time, evaluates the expression, records the time again, prints the difference between the before and after times,

and then has the value of the expression as its final value. The macro might look like this:

macro time(ex)

return quote

local t0 = time()

local val = $ex

local t1 = time()

println("elapsed time: ", t1-t0, " seconds")

val

end

end

Here, we want t0, t1, and val to be private temporary variables, and we want time to refer to the time() function

in the standard library, not to any time variable the user might have (the same applies to println). Imagine the

problems that could occur if the user expression ex also contained assignments to a variable called t0, or defined its

own time variable. We might get errors, or mysteriously incorrect behavior.

Julia’s macro expander solves these problems in the following way. First, variables within a macro result are classified

as either local or global. A variable is considered local if it is assigned to (and not declared global), declared local, or

https://github.com/JuliaLang/julia/blob/master/base/error.jl
https://en.wikipedia.org/wiki/Hygienic_macro

21.4. CODE GENERATION 203

used as a function argument name. Otherwise, it is considered global. Local variables are then renamed to be unique

(using the gensym() function, which generates new symbols), and global variables are resolved within the macro def-

inition environment. Therefore both of the above concerns are handled; the macro’s locals will not conflict with any

user variables, and time and printlnwill refer to the standard library definitions.

One problem remains however. Consider the following use of this macro:

module MyModule

import Base.@time

time() = ... # compute something

@time time()

end

Here the user expression ex is a call to time, but not the same time function that the macro uses. It clearly refers to

MyModule.time. Therefore we must arrange for the code in ex to be resolved in the macro call environment. This is

done by ”escaping” the expression with esc():

macro time(ex)

...

local val = $(esc(ex))

...

end

An expression wrapped in this manner is left alone by the macro expander and simply pasted into the output verbatim.

Therefore it will be resolved in the macro call environment.

This escaping mechanism can be used to ”violate” hygiene when necessary, in order to introduce or manipulate user

variables. For example, the following macro sets x to zero in the call environment:

julia> macro zerox()

return esc(:(x = 0))

end

@zerox (macro with 1 method)

julia> function foo()

x = 1

@zerox

return x # is zero

end

foo (generic function with 1 method)

julia> foo()

0

This kind of manipulation of variables should be used judiciously, but is occasionally quite handy.

21.4 Code Generation

When a significant amount of repetitive boilerplate code is required, it is common to generate it programmatically

to avoid redundancy. In most languages, this requires an extra build step, and a separate program to generate the

repetitive code. In Julia, expression interpolation and eval() allow such code generation to take place in the normal

204 CHAPTER 21. METAPROGRAMMING

course of program execution. For example, the following code defines a series of operators on three arguments in

terms of their 2-argument forms:

for op = (:+, :*, :&, :|, :$)

eval(quote

($op)(a,b,c) = ($op)(($op)(a,b),c)

end)

end

In this manner, Julia acts as its own preprocessor, and allows code generation from inside the language. The above

code could be written slightly more tersely using the : prefix quoting form:

for op = (:+, :*, :&, :|, :$)

eval(:(($op)(a,b,c) = ($op)(($op)(a,b),c)))

end

This sort of in-language code generation, however, using the eval(quote(...)) pattern, is common enough that

Julia comes with a macro to abbreviate this pattern:

for op = (:+, :*, :&, :|, :$)

@eval ($op)(a,b,c) = ($op)(($op)(a,b),c)

end

The @eval macro rewrites this call to be precisely equivalent to the above longer versions. For longer blocks of

generated code, the expression argument given to @eval can be a block:

@eval begin

multiple lines

end

21.5 Non-Standard String Literals

Recall from Strings that string literals prefixed by an identifier are called non-standard string literals, and can have

different semantics than un-prefixed string literals. For example:

• r"^\s*(?:#|$)" produces a regular expression object rather than a string

• b"DATA\xff\u2200" is a byte array literal for [68,65,84,65,255,226,136,128].

Perhaps surprisingly, these behaviors are not hard-coded into the Julia parser or compiler. Instead, they are custom

behaviors provided by a general mechanism that anyone can use: prefixed string literals are parsed as calls to specially-

named macros. For example, the regular expression macro is just the following:

macro r_str(p)

Regex(p)

end

That’s all. This macro says that the literal contents of the string literal r"^\s*(?:#|$)" should be passed to the

@r_str macro and the result of that expansion should be placed in the syntax tree where the string literal occurs. In

other words, the expression r"^\s*(?:#|$)" is equivalent to placing the following object directly into the syntax

tree:

https://en.wikipedia.org/wiki/Preprocessor

21.5. NON-STANDARD STRING LITERALS 205

Regex("^\\s*(?:#|\$)")

Not only is the string literal form shorter and far more convenient, but it is also more efficient: since the regular

expression is compiled and the Regex object is actually created when the code is compiled, the compilation occurs only

once, rather than every time the code is executed. Consider if the regular expression occurs in a loop:

for line = lines

m = match(r"^\s*(?:#|$)", line)

if m === nothing

non-comment

else

comment

end

end

Since the regular expression r"^\s*(?:#|$)" is compiled and inserted into the syntax tree when this code is parsed,

the expression is only compiled once instead of each time the loop is executed. In order to accomplish this without

macros, one would have to write this loop like this:

re = Regex("^\\s*(?:#|\$)")

for line = lines

m = match(re, line)

if m === nothing

non-comment

else

comment

end

end

Moreover, if the compiler could not determine that the regex object was constant over all loops, certain optimizations

might not be possible, making this version still less efficient than the more convenient literal form above. Of course,

there are still situations where the non-literal form is more convenient: if one needs to interpolate a variable into the

regular expression, one must take this more verbose approach; in cases where the regular expression pattern itself is

dynamic, potentially changing upon each loop iteration, a new regular expression object must be constructed on each

iteration. In the vast majority of use cases, however, regular expressions are not constructed based on run-time data.

In this majority of cases, the ability to write regular expressions as compile-time values is invaluable.

Like non-standard string literals, non-standard command literals exist using a prefixed variant of the command literal

syntax. The command literal custom`literal` is parsed as @custom_cmd "literal". Julia itself does not contain

any non-standard command literals, but packages can make use of this syntax. Aside from the different syntax and the

_cmd suffix instead of the _str suffix, non-standard command literals behave exactly like non-standard string literals.

In the event that two modules provide non-standard string or command literals with the same name, it is possible to

qualify the string or command literal with a module name. For instance, if both Foo and Bar provide non-standard

string literal @x_str, then one can write Foo.x"literal" or Bar.x"literal" to disambiguate between the two.

The mechanism for user-defined string literals is deeply, profoundly powerful. Not only are Julia’s non-standard literals

implemented using it, but also the command literal syntax (`echo "Hello, $person"`) is implemented with the

following innocuous-looking macro:

macro cmd(str)

:(cmd_gen($(shell_parse(str)[1])))

end

206 CHAPTER 21. METAPROGRAMMING

Of course, a large amount of complexity is hidden in the functions used in this macro definition, but they are just

functions, written entirely in Julia. You can read their source and see precisely what they do – and all they do is

construct expression objects to be inserted into your program’s syntax tree.

21.6 Generated functions

A very special macro is @generated, which allows you to define so-called generated functions. These have the capa-

bility to generate specialized code depending on the types of their arguments with more flexibility and/or less code

than what can be achieved with multiple dispatch. While macros work with expressions at parsing-time and cannot

access the types of their inputs, a generated function gets expanded at a time when the types of the arguments are

known, but the function is not yet compiled.

Instead of performing some calculation or action, a generated function declaration returns a quoted expression which

then forms the body for the method corresponding to the types of the arguments. When called, the body expression

is first evaluated and compiled, then the returned expression is compiled and run. To make this efficient, the result is

often cached. And to make this inferable, only a limited subset of the language is usable. Thus, generated functions

provide a flexible framework to move work from run-time to compile-time, at the expense of greater restrictions on

the allowable constructs.

When defining generated functions, there are four main differences to ordinary functions:

1. You annotate the function declaration with the @generated macro. This adds some information to the AST

that lets the compiler know that this is a generated function.

2. In the body of the generated function you only have access to the types of the arguments – not their values –

and any function that was defined before the definition of the generated function.

3. Instead of calculating something or performing some action, you return a quoted expression which, when eval-

uated, does what you want.

4. Generated functionsmust notmutate or observe any non-constant global state (including, for example, IO, locks,

non-local dictionaries, or using method_exists). This means they can only read global constants, and cannot

have any side effects. In other words, they must be completely pure. Due to an implementation limitation, this

also means that they currently cannot define a closure or untyped generator.

It’s easiest to illustrate this with an example. We can declare a generated function foo as

julia> @generated function foo(x)

Core.println(x)

return :(x * x)

end

foo (generic function with 1 method)

Note that the body returns a quoted expression, namely :(x * x), rather than just the value of x * x.

From the caller’s perspective, they are very similar to regular functions; in fact, you don’t have to know if you’re calling

a regular or generated function - the syntax and result of the call is just the same. Let’s see how foo behaves:

julia> x = foo(2); # note: output is from println() statement in the body

Int64

julia> x # now we print x

4

julia> y = foo("bar");

21.6. GENERATED FUNCTIONS 207

String

julia> y

"barbar"

So, we see that in the body of the generated function, x is the type of the passed argument, and the value returned by

the generated function, is the result of evaluating the quoted expression we returned from the definition, now with

the value of x.

What happens if we evaluate foo again with a type that we have already used?

julia> foo(4)

16

Note that there is no printout of Int64. We can see that the body of the generated function was only executed once

here, for the specific set of argument types, and the result was cached. After that, for this example, the expression

returned from the generated function on the first invocation was re-used as the method body. However, the actual

caching behavior is an implementation-defined performance optimization, so it is invalid to depend too closely on this

behavior.

The number of times a generated function is generated might be only once, but it might also be more often, or appear

to not happen at all. As a consequence, you should neverwrite a generated functionwith side effects - when, and how

often, the side effects occur is undefined. (This is true for macros too - and just like for macros, the use of eval()

in a generated function is a sign that you’re doing something the wrong way.) However, unlike macros, the runtime

system cannot correctly handle a call to eval(), so it is disallowed.

It is also important to see how @generated functions interact with method redefinition. Following the principle that

a correct @generated function must not observe any mutable state or cause any mutation of global state, we see

the following behavior. Observe that the generated function cannot call any method that was not defined prior to the

definition of the generated function itself.

Initially f(x) has one definition

julia> f(x) = "original definition";

Define other operations that use f(x):

julia> g(x) = f(x);

julia> @generated gen1(x) = f(x);

julia> @generated gen2(x) = :(f(x));

We now add some new definitions for f(x):

julia> f(x::Int) = "definition for Int";

julia> f(x::Type{Int}) = "definition for Type{Int}";

and compare how these results differ:

julia> f(1)

"definition for Int"

julia> g(1)

"definition for Int"

julia> gen1(1)

208 CHAPTER 21. METAPROGRAMMING

"original definition"

julia> gen2(1)

"definition for Int"

Each method of a generated function has its own view of defined functions:

julia> @generated gen1(x::Real) = f(x);

julia> gen1(1)

"definition for Type{Int}"

The example generated function foo above did not do anything a normal function foo(x) = x * x could not do

(except printing the type on the first invocation, and incurring higher overhead). However, the power of a generated

function lies in its ability to compute different quoted expressions depending on the types passed to it:

julia> @generated function bar(x)

if x <: Integer

return :(x ^ 2)

else

return :(x)

end

end

bar (generic function with 1 method)

julia> bar(4)

16

julia> bar("baz")

"baz"

(although of course this contrived example would be more easily implemented using multiple dispatch...)

Abusing this will corrupt the runtime system and cause undefined behavior:

julia> @generated function baz(x)

if rand() < .9

return :(x^2)

else

return :("boo!")

end

end

baz (generic function with 1 method)

Since the body of the generated function is non-deterministic, its behavior, and the behavior of all subsequent code is

undefined.

Don’t copy these examples!

These examples are hopefully helpful to illustrate how generated functions work, both in the definition end and at the

call site; however, don’t copy them, for the following reasons:

• the foo function has side-effects (the call to Core.println), and it is undefined exactly when, how often or

how many times these side-effects will occur

21.6. GENERATED FUNCTIONS 209

• the bar function solves a problem that is better solved with multiple dispatch - defining bar(x) = x and

bar(x::Integer) = x ^ 2 will do the same thing, but it is both simpler and faster.

• the baz function is pathologically insane

Note that the set of operations that should not be attempted in a generated function is unbounded, and the runtime

system can currently only detect a subset of the invalid operations. There are many other operations that will simply

corrupt the runtime systemwithout notification, usually in subtle ways not obviously connected to the bad definition.

Because the function generator is run during inference, it must respect all of the limitations of that code.

Some operations that should not be attempted include:

1. Caching of native pointers.

2. Interacting with the contents or methods of Core.Inference in any way.

3. Observing any mutable state.

– Inference on the generated function may be run at any time, including while your code is attempting to

observe or mutate this state.

4. Taking any locks: C code you call out to may use locks internally, (for example, it is not problematic to call

malloc, even though most implementations require locks internally) but don’t attempt to hold or acquire any

while executing Julia code.

5. Calling any function that is defined after the body of the generated function. This condition is relaxed for

incrementally-loaded precompiled modules to allow calling any function in the module.

Alright, now that we have a better understanding of how generated functions work, let’s use them to build some more

advanced (and valid) functionality...

An advanced example

Julia’s base library has a sub2ind() function to calculate a linear index into an n-dimensional array, based on a set of

n multilinear indices - in other words, to calculate the index i that can be used to index into an array A using A[i],

instead of A[x,y,z,...]. One possible implementation is the following:

julia> function sub2ind_loop(dims::NTuple{N}, I::Integer...) where N

ind = I[N] - 1

for i = N-1:-1:1

ind = I[i]-1 + dims[i]*ind

end

return ind + 1

end

sub2ind_loop (generic function with 1 method)

julia> sub2ind_loop((3, 5), 1, 2)

4

The same thing can be done using recursion:

julia> sub2ind_rec(dims::Tuple{}) = 1;

julia> sub2ind_rec(dims::Tuple{}, i1::Integer, I::Integer...) =

i1 == 1 ? sub2ind_rec(dims, I...) : throw(BoundsError());

210 CHAPTER 21. METAPROGRAMMING

julia> sub2ind_rec(dims::Tuple{Integer, Vararg{Integer}}, i1::Integer) = i1;

julia> sub2ind_rec(dims::Tuple{Integer, Vararg{Integer}}, i1::Integer, I::Integer...) =

i1 + dims[1] * (sub2ind_rec(Base.tail(dims), I...) - 1);

julia> sub2ind_rec((3, 5), 1, 2)

4

Both these implementations, although different, do essentially the same thing: a runtime loop over the dimensions of

the array, collecting the offset in each dimension into the final index.

However, all the informationwe need for the loop is embedded in the type information of the arguments. Thus, we can

utilize generated functions to move the iteration to compile-time; in compiler parlance, we use generated functions

to manually unroll the loop. The body becomes almost identical, but instead of calculating the linear index, we build

up an expression that calculates the index:

julia> @generated function sub2ind_gen(dims::NTuple{N}, I::Integer...) where N

ex = :(I[$N] - 1)

for i = (N - 1):-1:1

ex = :(I[$i] - 1 + dims[$i] * $ex)

end

return :($ex + 1)

end

sub2ind_gen (generic function with 1 method)

julia> sub2ind_gen((3, 5), 1, 2)

4

What code will this generate?

An easy way to find out is to extract the body into another (regular) function:

julia> @generated function sub2ind_gen(dims::NTuple{N}, I::Integer...) where N

return sub2ind_gen_impl(dims, I...)

end

sub2ind_gen (generic function with 1 method)

julia> function sub2ind_gen_impl(dims::Type{T}, I...) where T <: NTuple{N,Any} where N

length(I) == N || return :(error("partial indexing is unsupported"))

ex = :(I[$N] - 1)

for i = (N - 1):-1:1

ex = :(I[$i] - 1 + dims[$i] * $ex)

end

return :($ex + 1)

end

sub2ind_gen_impl (generic function with 1 method)

We can now execute sub2ind_gen_impl and examine the expression it returns:

julia> sub2ind_gen_impl(Tuple{Int,Int}, Int, Int)

:(((I[1] - 1) + dims[1] * (I[2] - 1)) + 1)

So, themethod body thatwill be used here doesn’t include a loop at all - just indexing into the two tuples, multiplication

and addition/subtraction. All the looping is performed compile-time, and we avoid looping during execution entirely.

Thus, we only loop once per type, in this case once per N (except in edge cases where the function is generated more

than once - see disclaimer above).

Chapter 22

Multi-dimensional Arrays

Julia, like most technical computing languages, provides a first-class array implementation. Most technical comput-

ing languages pay a lot of attention to their array implementation at the expense of other containers. Julia does

not treat arrays in any special way. The array library is implemented almost completely in Julia itself, and derives its

performance from the compiler, just like any other code written in Julia. As such, it’s also possible to define custom

array types by inheriting from AbstractArray. See the manual section on the AbstractArray interface for more

details on implementing a custom array type.

An array is a collection of objects stored in a multi-dimensional grid. In the most general case, an array may contain

objects of type Any. For most computational purposes, arrays should contain objects of a more specific type, such as

Float64 or Int32.

In general, unlike many other technical computing languages, Julia does not expect programs to be written in a vector-

ized style for performance. Julia’s compiler uses type inference and generates optimized code for scalar array indexing,

allowing programs to be written in a style that is convenient and readable, without sacrificing performance, and using

less memory at times.

In Julia, all arguments to functions are passed by reference. Some technical computing languages pass arrays by value,

and this is convenient in many cases. In Julia, modifications made to input arrays within a function will be visible in the

parent function. The entire Julia array library ensures that inputs are not modified by library functions. User code, if it

needs to exhibit similar behavior, should take care to create a copy of inputs that it may modify.

22.1 Arrays

Basic Functions

Function Description

eltype(A) the type of the elements contained in A

length(A) the number of elements in A

ndims(A) the number of dimensions of A

size(A) a tuple containing the dimensions of A

size(A,n) the size of A along dimension n

indices(A) a tuple containing the valid indices of A

indices(A,n) a range expressing the valid indices along dimension n

eachindex(A) an efficient iterator for visiting each position in A

stride(A,k) the stride (linear index distance between adjacent elements) along dimension k

strides(A) a tuple of the strides in each dimension

211

212 CHAPTER 22. MULTI-DIMENSIONALARRAYS

Construction and Initialization

Many functions for constructing and initializing arrays are provided. In the following list of such functions, calls with a

dims... argument can either take a single tuple of dimension sizes or a series of dimension sizes passed as a variable

number of arguments. Most of these functions also accept a first input T, which is the element type of the array. If

the type T is omitted it will default to Float64.

Function Description

Ar-

ray{T}(dims...)

an uninitialized dense Array

zeros(T,

dims...)

an Array of all zeros

zeros(A) an array of all zeros with the same type, element type and shape as A

ones(T,

dims...)

an Array of all ones

ones(A) an array of all ones with the same type, element type and shape as A

trues(dims...) a BitArraywith all values true

trues(A) a BitArraywith all values true and the same shape as A

falses(dims...)a BitArraywith all values false

falses(A) a BitArraywith all values false and the same shape as A

reshape(A,

dims...)

an array containing the same data as A, but with different dimensions

copy(A) copy A

deepcopy(A) copy A, recursively copying its elements

similar(A,

T, dims...)

an uninitialized array of the same type as A (dense, sparse, etc.), but with the specified

element type and dimensions. The second and third arguments are both optional, defaulting

to the element type and dimensions of A if omitted.

reinter-

pret(T,

A)

an array with the same binary data as A, but with element type T

rand(T,

dims...)

an Arraywith random, iid 1 and uniformly distributed values in the half-open interval [0, 1)

randn(T,

dims...)

an Arraywith random, iid and standard normally distributed values

eye(T, n) n-by-n identity matrix

eye(T, m, n) m-by-n identity matrix

linspace(start,

stop, n)

range of n linearly spaced elements from start to stop

fill!(A, x) fill the array Awith the value x

fill(x,

dims...)

an Array filled with the value x

The syntax [A, B, C, ...] constructs a 1-d array (vector) of its arguments. If all arguments have a common pro-

motion type then they get converted to that type using convert().

Concatenation

Arrays can be constructed and also concatenated using the following functions:

Scalar values passed to these functions are treated as 1-element arrays.

1 iid, independently and identically distributed.

22.1. ARRAYS 213

Function Description

cat(k, A...) concatenate input n-d arrays along the dimension k

vcat(A...) shorthand for cat(1, A...)

hcat(A...) shorthand for cat(2, A...)

The concatenation functions are used so often that they have special syntax:

Expression Calls

[A; B; C; ...] vcat()

[A B C ...] hcat()

[A B; C D; ...] hvcat()

hvcat() concatenates in both dimension 1 (with semicolons) and dimension 2 (with spaces).

Typed array initializers

An array with a specific element type can be constructed using the syntax T[A, B, C, ...]. This will construct a

1-d array with element type T, initialized to contain elements A, B, C, etc. For example Any[x, y, z] constructs a

heterogeneous array that can contain any values.

Concatenation syntax can similarly be prefixed with a type to specify the element type of the result.

julia> [[1 2] [3 4]]

1×4 Array{Int64,2}:

1 2 3 4

julia> Int8[[1 2] [3 4]]

1×4 Array{Int8,2}:

1 2 3 4

Comprehensions

Comprehensions provide a general and powerful way to construct arrays. Comprehension syntax is similar to set

construction notation in mathematics:

A = [F(x,y,...) for x=rx, y=ry, ...]

The meaning of this form is that F(x,y,...) is evaluated with the variables x, y, etc. taking on each value in their

given list of values. Values can be specified as any iterable object, but will commonly be ranges like 1:n or 2:(n-1),

or explicit arrays of values like [1.2, 3.4, 5.7]. The result is an N-d dense array with dimensions that are the

concatenation of the dimensions of the variable ranges rx, ry, etc. and each F(x,y,...) evaluation returns a scalar.

The following example computes a weighted average of the current element and its left and right neighbor along a 1-d

grid. :

julia> x = rand(8)

8-element Array{Float64,1}:

0.843025

0.869052

0.365105

0.699456

0.977653

0.994953

214 CHAPTER 22. MULTI-DIMENSIONALARRAYS

0.41084

0.809411

julia> [0.25*x[i-1] + 0.5*x[i] + 0.25*x[i+1] for i=2:length(x)-1]

6-element Array{Float64,1}:

0.736559

0.57468

0.685417

0.912429

0.8446

0.656511

The resulting array type depends on the types of the computed elements. In order to control the type explicitly, a

type can be prepended to the comprehension. For example, we could have requested the result in single precision by

writing:

Float32[0.25*x[i-1] + 0.5*x[i] + 0.25*x[i+1] for i=2:length(x)-1]

Generator Expressions

Comprehensions can also bewrittenwithout the enclosing square brackets, producing an object known as a generator.

This object can be iterated to produce values on demand, instead of allocating an array and storing them in advance

(see Iteration). For example, the following expression sums a series without allocating memory:

julia> sum(1/n^2 for n=1:1000)

1.6439345666815615

When writing a generator expression with multiple dimensions inside an argument list, parentheses are needed to

separate the generator from subsequent arguments:

julia> map(tuple, 1/(i+j) for i=1:2, j=1:2, [1:4;])

ERROR: syntax: invalid iteration specification

All comma-separated expressions after for are interpreted as ranges. Adding parentheses lets us add a third argument

to map:

julia> map(tuple, (1/(i+j) for i=1:2, j=1:2), [1 3; 2 4])

2×2 Array{Tuple{Float64,Int64},2}:

(0.5, 1) (0.333333, 3)

(0.333333, 2) (0.25, 4)

Ranges in generators and comprehensions can depend on previous ranges by writing multiple for keywords:

julia> [(i,j) for i=1:3 for j=1:i]

6-element Array{Tuple{Int64,Int64},1}:

(1, 1)

(2, 1)

(2, 2)

(3, 1)

(3, 2)

(3, 3)

22.1. ARRAYS 215

In such cases, the result is always 1-d.

Generated values can be filtered using the if keyword:

julia> [(i,j) for i=1:3 for j=1:i if i+j == 4]

2-element Array{Tuple{Int64,Int64},1}:

(2, 2)

(3, 1)

Indexing

The general syntax for indexing into an n-dimensional array A is:

X = A[I_1, I_2, ..., I_n]

where each I_k may be a scalar integer, an array of integers, or any other supported index. This includes Colon (:)

to select all indices within the entire dimension, ranges of the form a:c or a:b:c to select contiguous or strided

subsections, and arrays of booleans to select elements at their true indices.

If all the indices are scalars, then the result X is a single element from the array A. Otherwise, X is an array with the

same number of dimensions as the sum of the dimensionalities of all the indices.

If all indices arevectors, for example, then the shape ofXwould be(length(I_1), length(I_2), ..., length(I_n)),

with location (i_1, i_2, ..., i_n) of X containing the value A[I_1[i_1], I_2[i_2], ..., I_n[i_n]]. If

I_1 is changed to a two-dimensional matrix, then X becomes an n+1-dimensional array of shape (size(I_1, 1),

size(I_1, 2), length(I_2), ..., length(I_n)). The matrix adds a dimension. The location (i_1, i_2,

i_3, ..., i_{n+1}) contains the value at A[I_1[i_1, i_2], I_2[i_3], ..., I_n[i_{n+1}]]. All dimen-

sions indexed with scalars are dropped. For example, the result of A[2, I, 3] is an array with size size(I). Its ith

element is populated by A[2, I[i], 3].

As a special part of this syntax, the end keyword may be used to represent the last index of each dimension within the

indexing brackets, as determined by the size of the innermost array being indexed. Indexing syntax without the end

keyword is equivalent to a call to getindex:

X = getindex(A, I_1, I_2, ..., I_n)

Example:

julia> x = reshape(1:16, 4, 4)

4×4 Base.ReshapedArray{Int64,2,UnitRange{Int64},Tuple{}}:

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

julia> x[2:3, 2:end-1]

2×2 Array{Int64,2}:

6 10

7 11

julia> x[1, [2 3; 4 1]]

2×2 Array{Int64,2}:

5 9

13 1

216 CHAPTER 22. MULTI-DIMENSIONALARRAYS

Empty ranges of the form n:n-1 are sometimes used to indicate the inter-index location between n-1 and n. For

example, the searchsorted() function uses this convention to indicate the insertion point of a value not found in a

sorted array:

julia> a = [1,2,5,6,7];

julia> searchsorted(a, 3)

3:2

Assignment

The general syntax for assigning values in an n-dimensional array A is:

A[I_1, I_2, ..., I_n] = X

where each I_k may be a scalar integer, an array of integers, or any other supported index. This includes Colon (:)

to select all indices within the entire dimension, ranges of the form a:c or a:b:c to select contiguous or strided

subsections, and arrays of booleans to select elements at their true indices.

IfX is an array, itmust have the samenumberof elements as the product of the lengths of the indices: prod(length(I_1),

length(I_2), ..., length(I_n)). Thevalue in location I_1[i_1], I_2[i_2], ..., I_n[i_n] of A is over-

written with the value X[i_1, i_2, ..., i_n]. If X is not an array, its value is written to all referenced locations

of A.

Just as in Indexing, the end keyword may be used to represent the last index of each dimension within the indexing

brackets, as determined by the size of the array being assigned into. Indexed assignment syntax without the end

keyword is equivalent to a call to setindex!():

setindex!(A, X, I_1, I_2, ..., I_n)

Example:

julia> x = collect(reshape(1:9, 3, 3))

3×3 Array{Int64,2}:

1 4 7

2 5 8

3 6 9

julia> x[1:2, 2:3] = -1

-1

julia> x

3×3 Array{Int64,2}:

1 -1 -1

2 -1 -1

3 6 9

Supported index types

In the expression A[I_1, I_2, ..., I_n], each I_k may be a scalar index, an array of scalar indices, or an object

that represents an array of scalar indices and can be converted to such by to_indices:

1. A scalar index. By default this includes:

– Non-boolean integers

22.1. ARRAYS 217

– CartesianIndex{N}s, which behave like an N-tuple of integers spanningmultiple dimensions (see below

for more details)

2. An array of scalar indices. This includes:

– Vectors and multidimensional arrays of integers

– Empty arrays like [], which select no elements

– Ranges of the form a:c or a:b:c, which select contiguous or strided subsections from a to c (inclusive)

– Any custom array of scalar indices that is a subtype of AbstractArray

– Arrays of CartesianIndex{N} (see below for more details)

3. An object that represents an array of scalar indices and can be converted to such by to_indices. By default

this includes:

– Colon() (:), which represents all indices within an entire dimension or across the entire array

– Arrays of booleans, which select elements at their true indices (see below for more details)

Cartesian indices

The special CartesianIndex{N} object represents a scalar index that behaves like an N-tuple of integers spanning

multiple dimensions. For example:

julia> A = reshape(1:32, 4, 4, 2);

julia> A[3, 2, 1]

7

julia> A[CartesianIndex(3, 2, 1)] == A[3, 2, 1] == 7

true

Considered alone, this may seem relatively trivial; CartesianIndex simply gathers multiple integers together into

one object that represents a single multidimensional index. When combined with other indexing forms and iterators

that yield CartesianIndexes, however, this can lead directly to very elegant and efficient code. See Iteration below,

and for some more advanced examples, see this blog post on multidimensional algorithms and iteration.

Arrays of CartesianIndex{N} are also supported. They represent a collection of scalar indices that each span N

dimensions, enabling a form of indexing that is sometimes referred to as pointwise indexing. For example, it enables

accessing the diagonal elements from the first ”page” of A from above:

julia> page = A[:,:,1]

4×4 Array{Int64,2}:

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

julia> page[[CartesianIndex(1,1),

CartesianIndex(2,2),

CartesianIndex(3,3),

CartesianIndex(4,4)]]

4-element Array{Int64,1}:

1

6

11

16

https://julialang.org/blog/2016/02/iteration

218 CHAPTER 22. MULTI-DIMENSIONALARRAYS

This can be expressedmuchmore simplywith dot broadcasting and by combining itwith a normal integer index (instead

of extracting the first page from A as a separate step). It can even be combined with a : to extract both diagonals

from the two pages at the same time:

julia> A[CartesianIndex.(indices(A, 1), indices(A, 2)), 1]

4-element Array{Int64,1}:

1

6

11

16

julia> A[CartesianIndex.(indices(A, 1), indices(A, 2)), :]

4×2 Array{Int64,2}:

1 17

6 22

11 27

16 32

Warning

CartesianIndex and arrays of CartesianIndex are not compatible with the end keyword to rep-

resent the last index of a dimension. Do not use end in indexing expressions that may contain either

CartesianIndex or arrays thereof.

Logical indexing

Often referred to as logical indexing or indexing with a logical mask, indexing by a boolean array selects elements

at the indices where its values are true. Indexing by a boolean vector B is effectively the same as indexing by the

vector of integers that is returned by find(B). Similarly, indexing by a N-dimensional boolean array is effectively

the same as indexing by the vector of CartesianIndex{N}s where its values are true. A logical index must be a

vector of the same length as the dimension it indexes into, or it must be the only index provided and match the size

and dimensionality of the array it indexes into. It is generally more efficient to use boolean arrays as indices directly

instead of first calling find().

julia> x = reshape(1:16, 4, 4)

4×4 Base.ReshapedArray{Int64,2,UnitRange{Int64},Tuple{}}:

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

julia> x[[false, true, true, false], :]

2×4 Array{Int64,2}:

2 6 10 14

3 7 11 15

julia> mask = map(ispow2, x)

4×4 Array{Bool,2}:

true false false false

true false false false

false false false false

true true false true

julia> x[mask]

5-element Array{Int64,1}:

22.1. ARRAYS 219

1

2

4

8

16

Iteration

The recommended ways to iterate over a whole array are

for a in A

Do something with the element a

end

for i in eachindex(A)

Do something with i and/or A[i]

end

The first construct is used when you need the value, but not index, of each element. In the second construct, iwill be

an Int if A is an array type with fast linear indexing; otherwise, it will be a CartesianIndex:

julia> A = rand(4,3);

julia> B = view(A, 1:3, 2:3);

julia> for i in eachindex(B)

@show i

end

i = CartesianIndex{2}((1, 1))

i = CartesianIndex{2}((2, 1))

i = CartesianIndex{2}((3, 1))

i = CartesianIndex{2}((1, 2))

i = CartesianIndex{2}((2, 2))

i = CartesianIndex{2}((3, 2))

In contrast with for i = 1:length(A), iteratingwith eachindex provides an efficientway to iterate over any array

type.

Array traits

If you write a custom AbstractArray type, you can specify that it has fast linear indexing using

Base.IndexStyle(::Type{<:MyArray}) = IndexLinear()

This setting will cause eachindex iteration over a MyArray to use integers. If you don’t specify this trait, the default

value IndexCartesian() is used.

Array and Vectorized Operators and Functions

The following operators are supported for arrays:

1. Unary arithmetic – -, +

220 CHAPTER 22. MULTI-DIMENSIONALARRAYS

2. Binary arithmetic – -, +, *, /, \, ^

3. Comparison – ==, !=, ≈ (isapprox),

Most of the binary arithmetic operators listed above also operate elementwise when one argument is scalar: -, +, and

* when either argument is scalar, and / and \ when the denominator is scalar. For example, [1, 2] + 3 == [4,

5] and [6, 4] / 2 == [3, 2].

Additionally, to enable convenient vectorization of mathematical and other operations, Julia provides the dot syntax

f.(args...), e.g. sin.(x) or min.(x,y), for elementwise operations over arrays or mixtures of arrays and scalars

(a Broadcasting operation); these have the additional advantage of ”fusing” into a single loop when combined with

other dot calls, e.g. sin.(cos.(x)).

Also, every binary operator supports a dot version that can be applied to arrays (and combinations of arrays and scalars)

in such fused broadcasting operations, e.g. z .== sin.(x .* y).

Note that comparisons such as == operate on whole arrays, giving a single boolean answer. Use dot operators like

.== for elementwise comparisons. (For comparison operations like <, only the elementwise .< version is applicable to

arrays.)

Also notice the difference between max.(a,b), which broadcasts max() elementwise over a and b, and maxi-

mum(a), which finds the largest value within a. The same relationship holds for min.(a,b) and minimum(a).

Broadcasting

It is sometimes useful to perform element-by-element binary operations on arrays of different sizes, such as adding

a vector to each column of a matrix. An inefficient way to do this would be to replicate the vector to the size of the

matrix:

julia> a = rand(2,1); A = rand(2,3);

julia> repmat(a,1,3)+A

2×3 Array{Float64,2}:

1.20813 1.82068 1.25387

1.56851 1.86401 1.67846

This is wasteful when dimensions get large, so Julia offers broadcast(), which expands singleton dimensions in array

arguments to match the corresponding dimension in the other arraywithout using extra memory, and applies the given

function elementwise:

julia> broadcast(+, a, A)

2×3 Array{Float64,2}:

1.20813 1.82068 1.25387

1.56851 1.86401 1.67846

julia> b = rand(1,2)

1×2 Array{Float64,2}:

0.867535 0.00457906

julia> broadcast(+, a, b)

2×2 Array{Float64,2}:

1.71056 0.847604

1.73659 0.873631

22.1. ARRAYS 221

Dotted operators such as .+ and .* are equivalent to broadcast calls (except that they fuse, as described below).

There is also a broadcast!() function to specify an explicit destination (which can also be accessed in a fusing fash-

ion by .= assignment), and functions broadcast_getindex() and broadcast_setindex!() that broadcast the

indices before indexing. Moreover, f.(args...) is equivalent to broadcast(f, args...), providing a convenient

syntax to broadcast any function (dot syntax). Nested ”dot calls” f.(...) (including calls to .+ etcetera) automatically

fuse into a single broadcast call.

Additionally, broadcast() is not limited to arrays (see the function documentation), it also handles tuples and treats

any argument that is not an array, tuple or Ref (except for Ptr) as a ”scalar”.

julia> convert.(Float32, [1, 2])

2-element Array{Float32,1}:

1.0

2.0

julia> ceil.((UInt8,), [1.2 3.4; 5.6 6.7])

2×2 Array{UInt8,2}:

0x02 0x04

0x06 0x07

julia> string.(1:3, ". ", ["First", "Second", "Third"])

3-element Array{String,1}:

"1. First"

"2. Second"

"3. Third"

Implementation

The base array type in Julia is the abstract type AbstractArray{T,N}. It is parametrized by the number of dimensions

N and the element type T. AbstractVector and AbstractMatrix are aliases for the 1-d and 2-d cases. Operations

on AbstractArray objects are defined using higher level operators and functions, in a way that is independent of

the underlying storage. These operations generally work correctly as a fallback for any specific array implementation.

The AbstractArray type includes anything vaguely array-like, and implementations of it might be quite differ-

ent from conventional arrays. For example, elements might be computed on request rather than stored. However,

any concrete AbstractArray{T,N} type should generally implement at least size(A) (returning an Int tuple),

getindex(A,i) and getindex(A,i1,...,iN); mutable arrays should also implement setindex!(). It is rec-

ommended that these operations have nearly constant time complexity, or technically Õ(1) complexity, as otherwise

some array functions may be unexpectedly slow. Concrete types should also typically provide a similar(A,T=el-

type(A),dims=size(A))method, which is used to allocate a similar array for copy() and other out-of-place oper-

ations. No matter how an AbstractArray{T,N} is represented internally, T is the type of object returned by integer

indexing (A[1, ..., 1], when A is not empty) and N should be the length of the tuple returned by size().

DenseArray is an abstract subtype of AbstractArray intended to include all arrays that are laid out at regular

offsets in memory, and which can therefore be passed to external C and Fortran functions expecting this memory

layout. Subtypes should provide a method stride(A,k) that returns the ”stride” of dimension k: increasing the

index of dimension k by 1 should increase the index i of getindex(A,i) by stride(A,k). If a pointer conversion

method Base.unsafe_convert(Ptr{T}, A) is provided, the memory layout should correspond in the same way

to these strides.

The Array type is a specific instance of DenseArraywhere elements are stored in column-major order (see additional

notes in Performance Tips). Vector and Matrix are aliases for the 1-d and 2-d cases. Specific operations such as

scalar indexing, assignment, and a few other basic storage-specific operations are all that have to be implemented for

Array, so that the rest of the array library can be implemented in a generic manner.

222 CHAPTER 22. MULTI-DIMENSIONALARRAYS

SubArray is a specialization of AbstractArray that performs indexing by reference rather than by copying. A Sub-

Array is created with the view() function, which is called the same way as getindex() (with an array and a series

of index arguments). The result of view() looks the same as the result of getindex(), except the data is left in

place. view() stores the input index vectors in a SubArray object, which can later be used to index the original array

indirectly. By putting the @views macro in front of an expression or block of code, any array[...] slice in that

expression will be converted to create a SubArray view instead.

StridedVector and StridedMatrix are convenient aliases defined to make it possible for Julia to call a wider range

of BLAS and LAPACK functions bypassing them either Array or SubArray objects, and thus saving inefficiencies from

memory allocation and copying.

The following example computes the QR decomposition of a small section of a larger array, without creating any tem-

poraries, and by calling the appropriate LAPACK function with the right leading dimension size and stride parameters.

julia> a = rand(10,10)

10×10 Array{Float64,2}:

0.561255 0.226678 0.203391 0.308912 … 0.750307 0.235023 0.217964

0.718915 0.537192 0.556946 0.996234 0.666232 0.509423 0.660788

0.493501 0.0565622 0.118392 0.493498 0.262048 0.940693 0.252965

0.0470779 0.736979 0.264822 0.228787 0.161441 0.897023 0.567641

0.343935 0.32327 0.795673 0.452242 0.468819 0.628507 0.511528

0.935597 0.991511 0.571297 0.74485 … 0.84589 0.178834 0.284413

0.160706 0.672252 0.133158 0.65554 0.371826 0.770628 0.0531208

0.306617 0.836126 0.301198 0.0224702 0.39344 0.0370205 0.536062

0.890947 0.168877 0.32002 0.486136 0.096078 0.172048 0.77672

0.507762 0.573567 0.220124 0.165816 0.211049 0.433277 0.539476

julia> b = view(a, 2:2:8,2:2:4)

4×2 SubAr-

ray{Float64,2,Array{Float64,2},Tuple{StepRange{Int64,Int64},StepRange{Int64,Int64}},false}:↪→

0.537192 0.996234

0.736979 0.228787

0.991511 0.74485

0.836126 0.0224702

julia> (q,r) = qr(b);

julia> q

4×2 Array{Float64,2}:

-0.338809 0.78934

-0.464815 -0.230274

-0.625349 0.194538

-0.527347 -0.534856

julia> r

2×2 Array{Float64,2}:

-1.58553 -0.921517

0.0 0.866567

22.2 Sparse Matrices

Sparse matrices are matrices that contain enough zeros that storing them in a special data structure leads to savings in

space and execution time. Sparse matrices may be usedwhen operations on the sparse representation of a matrix lead

to considerable gains in either time or space when compared to performing the same operations on a dense matrix.

https://en.wikipedia.org/wiki/Sparse_matrix

22.2. SPARSE MATRICES 223

Compressed Sparse Column (CSC) Storage

In Julia, sparse matrices are stored in the Compressed Sparse Column (CSC) format. Julia sparse matrices have the

type SparseMatrixCSC{Tv,Ti}, where Tv is the type of the stored values, and Ti is the integer type for storing

column pointers and row indices.:

struct SparseMatrixCSC{Tv,Ti<:Integer} <: AbstractSparseMatrix{Tv,Ti}

m::Int # Number of rows

n::Int # Number of columns

colptr::Vector{Ti} # Column i is in colptr[i]:(colptr[i+1]-1)

rowval::Vector{Ti} # Row indices of stored values

nzval::Vector{Tv} # Stored values, typically nonzeros

end

The compressed sparse column storage makes it easy and quick to access the elements in the column of a sparse

matrix, whereas accessing the sparse matrix by rows is considerably slower. Operations such as insertion of previously

unstored entries one at a time in the CSC structure tend to be slow. This is because all elements of the sparse matrix

that are beyond the point of insertion have to be moved one place over.

All operations on sparse matrices are carefully implemented to exploit the CSC data structure for performance, and to

avoid expensive operations.

If you have data in CSC format from a different application or library, and wish to import it in Julia, make sure that you

use 1-based indexing. The row indices in every column need to be sorted. If your SparseMatrixCSC object contains

unsorted row indices, one quick way to sort them is by doing a double transpose.

In some applications, it is convenient to store explicit zero values in a SparseMatrixCSC. These are accepted by func-

tions in Base (but there is no guarantee that theywill be preserved inmutating operations). Such explicitly stored zeros

are treated as structural nonzeros by many routines. The nnz() function returns the number of elements explicitly

stored in the sparse data structure, including structural nonzeros. In order to count the exact number of actual values

that are nonzero, use countnz(), which inspects every stored element of a sparse matrix.

Sparse matrix constructors

The simplest way to create sparse matrices is to use functions equivalent to the zeros() and eye() functions that

Julia provides for working with dense matrices. To produce sparse matrices instead, you can use the same names with

an sp prefix:

julia> spzeros(3,5)

3×5 SparseMatrixCSC{Float64,Int64} with 0 stored entries

julia> speye(3,5)

3×5 SparseMatrixCSC{Float64,Int64} with 3 stored entries:

[1, 1] = 1.0

[2, 2] = 1.0

[3, 3] = 1.0

The sparse() function is often a handyway to construct sparsematrices. It takes as its input a vector I of row indices,

a vector J of column indices, and a vector V of stored values. sparse(I,J,V) constructs a sparse matrix such that

S[I[k], J[k]] = V[k].

julia> I = [1, 4, 3, 5]; J = [4, 7, 18, 9]; V = [1, 2, -5, 3];

julia> S = sparse(I,J,V)

5×18 SparseMatrixCSC{Int64,Int64} with 4 stored entries:

https://en.wikipedia.org/wiki/Sparse_matrix#Compressed_sparse_column_.28CSC_or_CCS.29

224 CHAPTER 22. MULTI-DIMENSIONALARRAYS

[1 , 4] = 1

[4 , 7] = 2

[5 , 9] = 3

[3 , 18] = -5

The inverse of the sparse() function is findn(), which retrieves the inputs used to create the sparse matrix.

julia> findn(S)

([1, 4, 5, 3], [4, 7, 9, 18])

julia> findnz(S)

([1, 4, 5, 3], [4, 7, 9, 18], [1, 2, 3, -5])

Another way to create sparse matrices is to convert a dense matrix into a sparse matrix using the sparse() function:

julia> sparse(eye(5))

5×5 SparseMatrixCSC{Float64,Int64} with 5 stored entries:

[1, 1] = 1.0

[2, 2] = 1.0

[3, 3] = 1.0

[4, 4] = 1.0

[5, 5] = 1.0

You can go in the other direction using the full() function. The issparse() function can be used to query if a

matrix is sparse.

julia> issparse(speye(5))

true

Sparse matrix operations

Arithmetic operations on sparse matrices also work as they do on dense matrices. Indexing of, assignment into, and

concatenation of sparse matrices work in the sameway as dense matrices. Indexing operations, especially assignment,

are expensive, when carried out one element at a time. In many cases it may be better to convert the sparse matrix

into (I,J,V) format using findnz(), manipulate the values or the structure in the dense vectors (I,J,V), and then

reconstruct the sparse matrix.

Correspondence of dense and sparse methods

The following table gives a correspondence between built-in methods on sparse matrices and their corresponding

methods on densematrix types. In general, methods that generate sparsematrices differ from their dense counterparts

in that the resulting matrix follows the same sparsity pattern as a given sparse matrix S, or that the resulting sparse

matrix has density d, i.e. each matrix element has a probability d of being non-zero.

Details can be found in the Sparse Vectors and Matrices section of the standard library reference.

22.2. SPARSE MATRICES 225

Sparse Dense Description

spze-

ros(m,n)

ze-

ros(m,n)

Creates a m-by-n matrix of zeros. (spzeros(m,n) is empty.)

spones(S) ones(m,n)Creates a matrix filled with ones. Unlike the dense version, spones() has the same

sparsity pattern as S.

speye(n) eye(n) Creates a n-by-n identity matrix.

full(S) sparse(A)Interconverts between dense and sparse formats.

sprand(m,n,d)rand(m,n)Creates a m-by-n random matrix (of density d) with iid non-zero elements distributed

uniformly on the half-open interval [0, 1).
sprandn(m,n,d)randn(m,n)Creates a m-by-n random matrix (of density d) with iid non-zero elements distributed

according to the standard normal (Gaussian) distribution.

sprandn(m,n,d,X)randn(m,n,X)Creates a m-by-n random matrix (of density d) with iid non-zero elements distributed

according to the X distribution. (Requires the Distributions package.)

Chapter 23

Linear algebra

In addition to (and as part of) its support for multi-dimensional arrays, Julia provides native implementations of many

common and useful linear algebra operations. Basic operations, such as trace, det, and inv are all supported:

julia> A = [1 2 3; 4 1 6; 7 8 1]

3×3 Array{Int64,2}:

1 2 3

4 1 6

7 8 1

julia> trace(A)

3

julia> det(A)

104.0

julia> inv(A)

3×3 Array{Float64,2}:

-0.451923 0.211538 0.0865385

0.365385 -0.192308 0.0576923

0.240385 0.0576923 -0.0673077

As well as other useful operations, such as finding eigenvalues or eigenvectors:

julia> A = [1.5 2 -4; 3 -1 -6; -10 2.3 4]

3×3 Array{Float64,2}:

1.5 2.0 -4.0

3.0 -1.0 -6.0

-10.0 2.3 4.0

julia> eigvals(A)

3-element Array{Complex{Float64},1}:

9.31908+0.0im

-2.40954+2.72095im

-2.40954-2.72095im

julia> eigvecs(A)

3×3 Array{Complex{Float64},2}:

-0.488645+0.0im 0.182546-0.39813im 0.182546+0.39813im

-0.540358+0.0im 0.692926+0.0im 0.692926-0.0im

0.68501+0.0im 0.254058-0.513301im 0.254058+0.513301im

227

228 CHAPTER 23. LINEAR ALGEBRA

In addition, Julia provides many factorizations which can be used to speed up problems such as linear solve or matrix

exponentiation by pre-factorizing a matrix into a form more amenable (for performance or memory reasons) to the

problem. See the documentation on factorize for more information. As an example:

julia> A = [1.5 2 -4; 3 -1 -6; -10 2.3 4]

3×3 Array{Float64,2}:

1.5 2.0 -4.0

3.0 -1.0 -6.0

-10.0 2.3 4.0

julia> factorize(A)

Base.LinAlg.LU{Float64,Array{Float64,2}} with factors L and U:

[1.0 0.0 0.0; -0.15 1.0 0.0; -0.3 -0.132196 1.0]

[-10.0 2.3 4.0; 0.0 2.345 -3.4; 0.0 0.0 -5.24947]

Since A is not Hermitian, symmetric, triangular, tridiagonal, or bidiagonal, an LU factorization may be the best we can

do. Compare with:

julia> B = [1.5 2 -4; 2 -1 -3; -4 -3 5]

3×3 Array{Float64,2}:

1.5 2.0 -4.0

2.0 -1.0 -3.0

-4.0 -3.0 5.0

julia> factorize(B)

Base.LinAlg.BunchKaufman{Float64,Array{Float64,2}}([-1.64286 0.142857 -0.8; 2.0 -2.8 -0.6; -4.0

-3.0 5.0], [1, 2, 3], 'U', true, false, 0)↪→

Here, Julia was able to detect that B is in fact symmetric, and used a more appropriate factorization. Often it’s possible

to write more efficient code for a matrix that is known to have certain properties e.g. it is symmetric, or tridiagonal.

Julia provides some special types so that you can ”tag” matrices as having these properties. For instance:

julia> B = [1.5 2 -4; 2 -1 -3; -4 -3 5]

3×3 Array{Float64,2}:

1.5 2.0 -4.0

2.0 -1.0 -3.0

-4.0 -3.0 5.0

julia> sB = Symmetric(B)

3×3 Symmetric{Float64,Array{Float64,2}}:

1.5 2.0 -4.0

2.0 -1.0 -3.0

-4.0 -3.0 5.0

sB has been tagged as a matrix that’s (real) symmetric, so for later operationswemight perform on it, such as eigenfac-

torization or computing matrix-vector products, efficiencies can be found by only referencing half of it. For example:

julia> B = [1.5 2 -4; 2 -1 -3; -4 -3 5]

3×3 Array{Float64,2}:

1.5 2.0 -4.0

2.0 -1.0 -3.0

-4.0 -3.0 5.0

23.1. SPECIALMATRICES 229

julia> sB = Symmetric(B)

3×3 Symmetric{Float64,Array{Float64,2}}:

1.5 2.0 -4.0

2.0 -1.0 -3.0

-4.0 -3.0 5.0

julia> x = [1; 2; 3]

3-element Array{Int64,1}:

1

2

3

julia> sB\x

3-element Array{Float64,1}:

-1.73913

-1.1087

-1.45652

The \ operation here performs the linear solution. Julia’s parser provides convenient dispatch to specialized methods

for the transpose of a matrix left-divided by a vector, or for the various combinations of transpose operations in matrix-

matrix solutions. Many of these are further specialized for certain special matrix types. For example, A\B will end up

calling Base.LinAlg.A_ldiv_B! while A'\B will end up calling Base.LinAlg.Ac_ldiv_B, even though we used

the same left-division operator. This works for matrices too: A.'\B.' would call Base.LinAlg.At_ldiv_Bt. The

left-division operator is pretty powerful and it’s easy to write compact, readable code that is flexible enough to solve

all sorts of systems of linear equations.

23.1 Special matrices

Matriceswith special symmetries and structures arise often in linear algebra and are frequently associatedwith various

matrix factorizations. Julia features a rich collection of special matrix types, which allow for fast computation with

specialized routines that are specially developed for particular matrix types.

The following tables summarize the types of special matrices that have been implemented in Julia, as well as whether

hooks to various optimized methods for them in LAPACK are available.

Type Description

Hermitian Hermitian matrix

UpperTriangular Upper triangular matrix

LowerTriangular Lower triangular matrix

Tridiagonal Tridiagonal matrix

SymTridiagonal Symmetric tridiagonal matrix

Bidiagonal Upper/lower bidiagonal matrix

Diagonal Diagonal matrix

UniformScaling Uniform scaling operator

Elementary operations

Legend:

Matrix factorizations

Legend:

http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=3274
https://en.wikipedia.org/wiki/Hermitian_matrix
https://en.wikipedia.org/wiki/Triangular_matrix
https://en.wikipedia.org/wiki/Triangular_matrix
https://en.wikipedia.org/wiki/Tridiagonal_matrix
https://en.wikipedia.org/wiki/Bidiagonal_matrix
https://en.wikipedia.org/wiki/Diagonal_matrix
https://en.wikipedia.org/wiki/Uniform_scaling

230 CHAPTER 23. LINEAR ALGEBRA

Matrix type + - * \ Other functions with optimized methods

Hermitian MV inv(), sqrtm(), expm()

UpperTriangular MV MV inv(), det()

LowerTriangular MV MV inv(), det()

SymTridiagonal M M MS MV eigmax(), eigmin()

Tridiagonal M M MS MV

Bidiagonal M M MS MV

Diagonal M M MV MV inv(), det(), logdet(), /()

UniformScaling M M MVS MVS /()

Key Description

M (matrix) An optimized method for matrix-matrix operations is available

V (vector) An optimized method for matrix-vector operations is available

S (scalar) An optimized method for matrix-scalar operations is available

Matrix type LAPACK eig() eigvals() eigvecs() svd() svdvals()

Hermitian HE ARI

UpperTriangular TR A A A

LowerTriangular TR A A A

SymTridiagonal ST A ARI AV

Tridiagonal GT

Bidiagonal BD A A

Diagonal DI A

The uniform scaling operator

A UniformScaling operator represents a scalar times the identity operator, λ*I. The identity operator I is defined

as a constant and is an instance of UniformScaling. The size of these operators are generic and match the other

matrix in the binary operations +, -, * and \. For A+I and A-I this means that A must be square. Multiplication with

the identity operator I is a noop (except for checking that the scaling factor is one) and therefore almost without

overhead.

23.2 Matrix factorizations

Matrix factorizations (a.k.a. matrix decompositions) compute the factorization of a matrix into a product of matrices,

and are one of the central concepts in linear algebra.

The following table summarizes the types of matrix factorizations that have been implemented in Julia. Details of their

associated methods can be found in the Linear Algebra section of the standard library documentation.

https://en.wikipedia.org/wiki/Matrix_decomposition

23.2. MATRIX FACTORIZATIONS 231

Key Description Example

A (all) An optimized method to find all the characteristic values and/or vectors is available e.g.

eigvals(M)

R

(range)

An optimized method to find the ilth through the ihth characteristic values are

available

eigvals(M,

il, ih)

I (in-

terval)

An optimized method to find the characteristic values in the interval [vl, vh] is

available

eigvals(M,

vl, vh)

V (vec-

tors)

An optimized method to find the characteristic vectors corresponding to the

characteristic values x=[x1, x2,...] is available

eigvecs(M,

x)

Type Description

Cholesky Cholesky factorization

CholeskyPivoted Pivoted Cholesky factorization

LU LU factorization

LUTridiagonal LU factorization for Tridiagonal matrices

UmfpackLU LU factorization for sparse matrices (computed by UMFPack)

QR QR factorization

QRCompactWY Compact WY form of the QR factorization

QRPivoted Pivoted QR factorization

Hessenberg Hessenberg decomposition

Eigen Spectral decomposition

SVD Singular value decomposition

GeneralizedSVD Generalized SVD

https://en.wikipedia.org/wiki/Cholesky_decomposition
https://en.wikipedia.org/wiki/Pivot_element
https://en.wikipedia.org/wiki/LU_decomposition
https://en.wikipedia.org/wiki/QR_decomposition
https://en.wikipedia.org/wiki/QR_decomposition
http://mathworld.wolfram.com/HessenbergDecomposition.html
https://en.wikipedia.org/wiki/Eigendecomposition_(matrix)
https://en.wikipedia.org/wiki/Singular_value_decomposition
https://en.wikipedia.org/wiki/Generalized_singular_value_decomposition#Higher_order_version

Chapter 24

Networking and Streams

Julia provides a rich interface to deal with streaming I/O objects such as terminals, pipes and TCP sockets. This in-

terface, though asynchronous at the system level, is presented in a synchronous manner to the programmer and it is

usually unnecessary to think about the underlying asynchronous operation. This is achieved by making heavy use of

Julia cooperative threading (coroutine) functionality.

24.1 Basic Stream I/O

All Julia streams expose at least a read() and a write() method, taking the stream as their first argument, e.g.:

julia> write(STDOUT,"Hello World"); # suppress return value 11 with ;

Hello World

julia> read(STDIN,Char)

'\n': ASCII/Unicode U+000a (category Cc: Other, control)

Note that write() returns 11, the number of bytes (in "Hello World") written to STDOUT, but this return value is

suppressed with the ;.

Here Enter was pressed again so that Julia would read the newline. Now, as you can see from this example, write()

takes the data to write as its second argument, while read() takes the type of the data to be read as the second

argument.

For example, to read a simple byte array, we could do:

julia> x = zeros(UInt8, 4)

4-element Array{UInt8,1}:

0x00

0x00

0x00

0x00

julia> read!(STDIN, x)

abcd

4-element Array{UInt8,1}:

0x61

0x62

0x63

0x64

233

234 CHAPTER 24. NETWORKING AND STREAMS

However, since this is slightly cumbersome, there are several convenience methods provided. For example, we could

have written the above as:

julia> read(STDIN,4)

abcd

4-element Array{UInt8,1}:

0x61

0x62

0x63

0x64

or if we had wanted to read the entire line instead:

julia> readline(STDIN)

abcd

"abcd"

Note that depending on your terminal settings, your TTY may be line buffered and might thus require an additional

enter before the data is sent to Julia.

To read every line from STDIN you can use eachline():

for line in eachline(STDIN)

print("Found $line")

end

or read() if you wanted to read by character instead:

while !eof(STDIN)

x = read(STDIN, Char)

println("Found: $x")

end

24.2 Text I/O

Note that the write() method mentioned above operates on binary streams. In particular, values do not get con-

verted to any canonical text representation but are written out as is:

julia> write(STDOUT,0x61); # suppress return value 1 with ;

a

Note that a is written to STDOUT by the write() function and that the returned value is 1 (since 0x61 is one byte).

For text I/O, use the print() or show()methods, depending on your needs (see the standard library reference for a

detailed discussion of the difference between the two):

julia> print(STDOUT, 0x61)

97

24.3. IO OUTPUT CONTEXTUAL PROPERTIES 235

24.3 IO Output Contextual Properties

Sometimes IO output can benefit from the ability to pass contextual information into showmethods. The IOContext

object provides this framework for associating arbitrary metadata with an IO object. For example, showcompact adds

a hinting parameter to the IO object that the invoked show method should print a shorter output (if applicable).

24.4 Working with Files

Like many other environments, Julia has an open() function, which takes a filename and returns an IOStream object

that you can use to read and write things from the file. For example if we have a file, hello.txt, whose contents are

Hello, World!:

julia> f = open("hello.txt")

IOStream(<file hello.txt>)

julia> readlines(f)

1-element Array{String,1}:

"Hello, World!"

If you want to write to a file, you can open it with the write ("w") flag:

julia> f = open("hello.txt","w")

IOStream(<file hello.txt>)

julia> write(f,"Hello again.")

12

If you examine the contents of hello.txt at this point, you will notice that it is empty; nothing has actually been

written to disk yet. This is because the IOStream must be closed before the write is actually flushed to disk:

julia> close(f)

Examining hello.txt again will show its contents have been changed.

Opening a file, doing something to its contents, and closing it again is a very common pattern. To make this easier,

there exists another invocation of open() which takes a function as its first argument and filename as its second,

opens the file, calls the function with the file as an argument, and then closes it again. For example, given a function:

function read_and_capitalize(f::IOStream)

return uppercase(readstring(f))

end

You can call:

julia> open(read_and_capitalize, "hello.txt")

"HELLO AGAIN."

to open hello.txt, call read_and_capitalize on it, close hello.txt and return the capitalized contents.

To avoid even having to define a named function, you can use the do syntax, which creates an anonymous function

on the fly:

236 CHAPTER 24. NETWORKING AND STREAMS

julia> open("hello.txt") do f

uppercase(readstring(f))

end

"HELLO AGAIN."

24.5 A simple TCP example

Let’s jump right in with a simple example involving TCP sockets. Let’s first create a simple server:

julia> @async begin

server = listen(2000)

while true

sock = accept(server)

println("Hello World\n")

end

end

Task (runnable) @0x00007fd31dc11ae0

To those familiarwith the Unix socket API, the method nameswill feel familiar, though their usage is somewhat simpler

than the raw Unix socket API. The first call to listen() will create a server waiting for incoming connections on the

specified port (2000) in this case. The same function may also be used to create various other kinds of servers:

julia> listen(2000) # Listens on localhost:2000 (IPv4)

TCPServer(active)

julia> listen(ip"127.0.0.1",2000) # Equivalent to the first

TCPServer(active)

julia> listen(ip"::1",2000) # Listens on localhost:2000 (IPv6)

TCPServer(active)

julia> listen(IPv4(0),2001) # Listens on port 2001 on all IPv4 interfaces

TCPServer(active)

julia> listen(IPv6(0),2001) # Listens on port 2001 on all IPv6 interfaces

TCPServer(active)

julia> listen("testsocket") # Listens on a UNIX domain socket/named pipe

PipeServer(active)

Note that the return type of the last invocation is different. This is because this server does not listen on TCP, but

rather on a named pipe (Windows) or UNIX domain socket. The difference is subtle and has to do with the accept()

and connect()methods. The accept()method retrieves a connection to the client that is connecting on the server

we just created, while the connect() function connects to a server using the specified method. The connect()

function takes the same arguments as listen(), so, assuming the environment (i.e. host, cwd, etc.) is the same you

should be able to pass the same arguments to connect() as you did to listen to establish the connection. So let’s try

that out (after having created the server above):

julia> connect(2000)

TCPSocket(open, 0 bytes waiting)

julia> Hello World

24.6. RESOLVING IP ADDRESSES 237

As expected we saw ”Hello World” printed. So, let’s actually analyze what happened behind the scenes. When we

called connect(), we connect to the serverwe had just created. Meanwhile, the accept function returns a server-side

connection to the newly created socket and prints ”Hello World” to indicate that the connection was successful.

A great strength of Julia is that since the API is exposed synchronously even though the I/O is actually happening

asynchronously, we didn’t have to worry callbacks or even making sure that the server gets to run. When we called

connect() the current task waited for the connection to be established and only continued executing after that was

done. In this pause, the server task resumed execution (because a connection request was now available), accepted

the connection, printed the message and waited for the next client. Reading and writing works in the same way. To

see this, consider the following simple echo server:

julia> @async begin

server = listen(2001)

while true

sock = accept(server)

@async while isopen(sock)

write(sock,readline(sock))

end

end

end

Task (runnable) @0x00007fd31dc12e60

julia> clientside = connect(2001)

TCPSocket(RawFD(28) open, 0 bytes waiting)

julia> @async while true

write(STDOUT,readline(clientside))

end

Task (runnable) @0x00007fd31dc11870

julia> println(clientside,"Hello World from the Echo Server")

Hello World from the Echo Server

As with other streams, use close() to disconnect the socket:

julia> close(clientside)

24.6 Resolving IP Addresses

One of the connect() methods that does not follow the listen() methods is connect(host::String,port),

which will attempt to connect to the host given by the host parameter on the port given by the port parameter. It

allows you to do things like:

julia> connect("google.com",80)

TCPSocket(RawFD(30) open, 0 bytes waiting)

At the base of this functionality is getaddrinfo(), which will do the appropriate address resolution:

julia> getaddrinfo("google.com")

ip"74.125.226.225"

Chapter 25

Parallel Computing

Most modern computers possess more than one CPU, and several computers can be combined together in a cluster.

Harnessing the power of these multiple CPUs allows many computations to be completed more quickly. There are

two major factors that influence performance: the speed of the CPUs themselves, and the speed of their access to

memory. In a cluster, it’s fairly obvious that a given CPUwill have fastest access to the RAMwithin the same computer

(node). Perhaps more surprisingly, similar issues are relevant on a typical multicore laptop, due to differences in the

speed of main memory and the cache. Consequently, a good multiprocessing environment should allow control over

the ”ownership” of a chunk of memory by a particular CPU. Julia provides a multiprocessing environment based on

message passing to allow programs to run on multiple processes in separate memory domains at once.

Julia’s implementation of message passing is different from other environments such as MPI 1. Communication in Julia

is generally ”one-sided”, meaning that the programmer needs to explicitly manage only one process in a two-process

operation. Furthermore, these operations typically do not look like ”message send” and ”message receive” but rather

resemble higher-level operations like calls to user functions.

Parallel programming in Julia is built on two primitives: remote references and remote calls. A remote reference is an

object that can be used from any process to refer to an object stored on a particular process. A remote call is a request

by one process to call a certain function on certain arguments on another (possibly the same) process.

Remote references come in two flavors: Future and RemoteChannel.

A remote call returns a Future to its result. Remote calls return immediately; the process that made the call proceeds

to its next operation while the remote call happens somewhere else. You can wait for a remote call to finish by calling

wait() on the returned Future, and you can obtain the full value of the result using fetch().

On the other hand, RemoteChannel s are rewritable. For example, multiple processes can co-ordinate their processing

by referencing the same remote Channel.

Each process has an associated identifier. The process providing the interactive Julia prompt always has an id equal to

1. The processes used by default for parallel operations are referred to as ”workers”. When there is only one process,

process 1 is considered a worker. Otherwise, workers are considered to be all processes other than process 1.

Let’s try this out. Starting with julia -p n provides n worker processes on the local machine. Generally it makes

sense for n to equal the number of CPU cores on the machine.

$./julia -p 2

julia> r = remotecall(rand, 2, 2, 2)

Future(2, 1, 4, Nullable{Any}())

julia> s = @spawnat 2 1 .+ fetch(r)

Future(2, 1, 5, Nullable{Any}())

239

https://www.akkadia.org/drepper/cpumemory.pdf

240 CHAPTER 25. PARALLEL COMPUTING

julia> fetch(s)

2×2 Array{Float64,2}:

1.18526 1.50912

1.16296 1.60607

The first argument to remotecall() is the function to call. Most parallel programming in Julia does not reference

specific processes or the number of processes available, but remotecall() is considered a low-level interface pro-

viding finer control. The second argument to remotecall() is the id of the process that will do the work, and the

remaining arguments will be passed to the function being called.

As you can see, in the first line we asked process 2 to construct a 2-by-2 random matrix, and in the second line we

asked it to add 1 to it. The result of both calculations is available in the two futures, r and s. The @spawnat macro

evaluates the expression in the second argument on the process specified by the first argument.

Occasionally you might want a remotely-computed value immediately. This typically happens when you read from a

remote object to obtain data needed by the next local operation. The function remotecall_fetch() exists for this

purpose. It is equivalent to fetch(remotecall(...)) but is more efficient.

julia> remotecall_fetch(getindex, 2, r, 1, 1)

0.18526337335308085

Remember that getindex(r,1,1) is equivalent to r[1,1], so this call fetches the first element of the future r.

The syntax of remotecall() is not especially convenient. The macro @spawn makes things easier. It operates on an

expression rather than a function, and picks where to do the operation for you:

julia> r = @spawn rand(2,2)

Future(2, 1, 4, Nullable{Any}())

julia> s = @spawn 1 .+ fetch(r)

Future(3, 1, 5, Nullable{Any}())

julia> fetch(s)

2×2 Array{Float64,2}:

1.38854 1.9098

1.20939 1.57158

Note that we used 1 .+ fetch(r) instead of 1 .+ r. This is because we do not know where the code will run, so

in general a fetch() might be required to move r to the process doing the addition. In this case, @spawn is smart

enough to perform the computation on the process that owns r, so the fetch()will be a no-op (no work is done).

(It is worth noting that @spawn is not built-in but defined in Julia as a macro. It is possible to define your own such

constructs.)

An important thing to remember is that, once fetched, a Futurewill cache its value locally. Further fetch() calls do

not entail a network hop. Once all referencing Futures have fetched, the remote stored value is deleted.

25.1 Code Availability and Loading Packages

Your code must be available on any process that runs it. For example, type the following into the Julia prompt:

25.1. CODE AVAILABILITYAND LOADING PACKAGES 241

julia> function rand2(dims...)

return 2*rand(dims...)

end

julia> rand2(2,2)

2×2 Array{Float64,2}:

0.153756 0.368514

1.15119 0.918912

julia> fetch(@spawn rand2(2,2))

ERROR: RemoteException(2, CapturedException(UndefVarError(Symbol("#rand2"))

[...]

Process 1 knew about the function rand2, but process 2 did not.

Most commonly you’ll be loading code from files or packages, and you have a considerable amount of flexibility in

controlling which processes load code. Consider a file, DummyModule.jl, containing the following code:

module DummyModule

export MyType, f

mutable struct MyType

a::Int

end

f(x) = x^2+1

println("loaded")

end

Starting Julia with julia -p 2, you can use this to verify the following:

• include("DummyModule.jl") loads the file on just a single process (whichever one executes the statement).

• using DummyModule causes the module to be loaded on all processes; however, the module is brought into

scope only on the one executing the statement.

• As long as DummyModule is loaded on process 2, commands like

rr = RemoteChannel(2)

put!(rr, MyType(7))

allow you to store an object of type MyType on process 2 even if DummyModule is not in scope on process 2.

You can force a command to run on all processes using the @everywheremacro. For example, @everywhere can also

be used to directly define a function on all processes:

julia> @everywhere id = myid()

julia> remotecall_fetch(()->id, 2)

2

242 CHAPTER 25. PARALLEL COMPUTING

A file can also be preloaded on multiple processes at startup, and a driver script can be used to drive the computation:

julia -p <n> -L file1.jl -L file2.jl driver.jl

The Julia process running the driver script in the example above has an id equal to 1, just like a process providing an

interactive prompt.

The base Julia installation has in-built support for two types of clusters:

• A local cluster specified with the -p option as shown above.

• A cluster spanning machines using the --machinefile option. This uses a passwordless ssh login to start

Julia worker processes (from the same path as the current host) on the specified machines.

Functions addprocs(), rmprocs(), workers(), and others are available as a programmatic means of adding, re-

moving and querying the processes in a cluster.

Note that workers do not run a .juliarc.jl startup script, nor do they synchronize their global state (such as global

variables, new method definitions, and loaded modules) with any of the other running processes.

Other types of clusters can be supported by writing your own custom ClusterManager, as described below in the

ClusterManagers section.

25.2 Data Movement

Sending messages and moving data constitute most of the overhead in a parallel program. Reducing the number of

messages and the amount of data sent is critical to achieving performance and scalability. To this end, it is important

to understand the data movement performed by Julia’s various parallel programming constructs.

fetch() can be considered an explicit data movement operation, since it directly asks that an object be moved to the

local machine. @spawn (and a few related constructs) also moves data, but this is not as obvious, hence it can be called

an implicit data movement operation. Consider these two approaches to constructing and squaring a random matrix:

Method 1:

julia> A = rand(1000,1000);

julia> Bref = @spawn A^2;

[...]

julia> fetch(Bref);

Method 2:

julia> Bref = @spawn rand(1000,1000)^2;

[...]

julia> fetch(Bref);

The difference seems trivial, but in fact is quite significant due to the behavior of @spawn. In the first method, a random

matrix is constructed locally, then sent to another process where it is squared. In the second method, a randommatrix

25.2. DATAMOVEMENT 243

is both constructed and squared on another process. Therefore the second method sends much less data than the

first.

In this toy example, the two methods are easy to distinguish and choose from. However, in a real program designing

data movement might require more thought and likely some measurement. For example, if the first process needs

matrix A then the first method might be better. Or, if computing A is expensive and only the current process has it,

then moving it to another process might be unavoidable. Or, if the current process has very little to do between the

@spawn and fetch(Bref), it might be better to eliminate the parallelism altogether. Or imagine rand(1000,1000)

is replaced with a more expensive operation. Then it might make sense to add another @spawn statement just for this

step.

Chapter 26

Global variables

Expressions executed remotely via @spawn, or closures specified for remote execution using remotecall may refer

to global variables. Global bindings under module Main are treated a little differently compared to global bindings in

other modules. Consider the following code snippet:

A = rand(10,10)

remotecall_fetch(()->foo(A), 2)

Note that A is a global variable defined in the local workspace. Worker 2 does not have a variable called A under Main.

The act of shipping the closure ()->foo(A) to worker 2 results in Main.A being defined on 2. Main.A continues

to exist on worker 2 even after the call remotecall_fetch returns. Remote calls with embedded global references

(under Main module only) manage globals as follows:

• New global bindings are created on destination workers if they are referenced as part of a remote call.

• Global constants are declared as constants on remote nodes too.

• Globals are re-sent to a destination worker only in the context of a remote call, and then only if its value has

changed. Also, the cluster does not synchronize global bindings across nodes. For example:

A = rand(10,10)

remotecall_fetch(()->foo(A), 2) # worker 2

A = rand(10,10)

remotecall_fetch(()->foo(A), 3) # worker 3

A = nothing

Executing the above snippet results in Main.A on worker 2 having a different value from Main.A on worker 3,

while the value of Main.A on node 1 is set to nothing.

As you may have realized, while memory associated with globals may be collected when they are reassigned on the

master, no such action is taken on the workers as the bindings continue to be valid. clear! can be used to manually

reassign specific globals on remote nodes to nothing once they are no longer required. This will release any memory

associated with them as part of a regular garbage collection cycle.

Thus programs should be careful referencing globals in remote calls. In fact, it is preferable to avoid them altogether

if possible. If you must reference globals, consider using let blocks to localize global variables.

For example:

245

246 CHAPTER 26. GLOBALVARIABLES

julia> A = rand(10,10);

julia> remotecall_fetch(()->A, 2);

julia> B = rand(10,10);

julia> let B = B

remotecall_fetch(()->B, 2)

end;

julia> @spawnat 2 whos();

julia> From worker 2: A 800 bytes 10×10 Array{Float64,2}

From worker 2: Base Module

From worker 2: Core Module

From worker 2: Main Module

As can be seen, global variable A is defined on worker 2, but B is captured as a local variable and hence a binding for B

does not exist on worker 2.

26.1 Parallel Map and Loops

Fortunately, many useful parallel computations do not require data movement. A common example is a Monte Carlo

simulation, where multiple processes can handle independent simulation trials simultaneously. We can use @spawn to

flip coins on two processes. First, write the following function in count_heads.jl:

function count_heads(n)

c::Int = 0

for i = 1:n

c += rand(Bool)

end

c

end

The function count_heads simply adds together n random bits. Here is how we can perform some trials on two

machines, and add together the results:

julia> @everywhere include("count_heads.jl")

julia> a = @spawn count_heads(100000000)

Future(2, 1, 6, Nullable{Any}())

julia> b = @spawn count_heads(100000000)

Future(3, 1, 7, Nullable{Any}())

julia> fetch(a)+fetch(b)

100001564

This example demonstrates a powerful and often-used parallel programming pattern. Many iterations run indepen-

dently over several processes, and then their results are combined using some function. The combination process is

called a reduction, since it is generally tensor-rank-reducing: a vector of numbers is reduced to a single number, or a

matrix is reduced to a single row or column, etc. In code, this typically looks like the pattern x = f(x,v[i]), where

26.1. PARALLELMAPAND LOOPS 247

x is the accumulator, f is the reduction function, and the v[i] are the elements being reduced. It is desirable for f to

be associative, so that it does not matter what order the operations are performed in.

Notice that our use of this pattern with count_heads can be generalized. We used two explicit @spawn statements,

which limits the parallelism to two processes. To run on any number of processes, we can use a parallel for loop, which

can be written in Julia using @parallel like this:

nheads = @parallel (+) for i = 1:200000000

Int(rand(Bool))

end

This construct implements the pattern of assigning iterations to multiple processes, and combining themwith a speci-

fied reduction (in this case (+)). The result of each iteration is taken as the value of the last expression inside the loop.

The whole parallel loop expression itself evaluates to the final answer.

Note that although parallel for loops look like serial for loops, their behavior is dramatically different. In particular, the

iterations do not happen in a specified order, andwrites to variables or arrayswill not be globally visible since iterations

run on different processes. Any variables used inside the parallel loop will be copied and broadcast to each process.

For example, the following code will not work as intended:

a = zeros(100000)

@parallel for i = 1:100000

a[i] = i

end

This code will not initialize all of a, since each process will have a separate copy of it. Parallel for loops like these must

be avoided. Fortunately, Shared Arrays can be used to get around this limitation:

a = SharedArray{Float64}(10)

@parallel for i = 1:10

a[i] = i

end

Using ”outside” variables in parallel loops is perfectly reasonable if the variables are read-only:

a = randn(1000)

@parallel (+) for i = 1:100000

f(a[rand(1:end)])

end

Here each iteration applies f to a randomly-chosen sample from a vector a shared by all processes.

As you could see, the reduction operator can be omitted if it is not needed. In that case, the loop executes asyn-

chronously, i.e. it spawns independent tasks on all available workers and returns an array of Future immediately

without waiting for completion. The caller can wait for the Future completions at a later point by calling fetch() on

them, or wait for completion at the end of the loop by prefixing it with @sync, like @sync @parallel for.

In some cases no reduction operator is needed, andwemerelywish to apply a function to all integers in some range (or,

more generally, to all elements in some collection). This is another useful operation called parallel map, implemented

in Julia as the pmap() function. For example, we could compute the singular values of several large random matrices

in parallel as follows:

248 CHAPTER 26. GLOBALVARIABLES

julia> M = Matrix{Float64}[rand(1000,1000) for i = 1:10];

julia> pmap(svd, M);

Julia’s pmap() is designed for the case where each function call does a large amount of work. In contrast, @parallel

for can handle situations where each iteration is tiny, perhaps merely summing two numbers. Onlyworker processes

are used by both pmap() and @parallel for for the parallel computation. In case of @parallel for, the final

reduction is done on the calling process.

26.2 SynchronizationWith Remote References

26.3 Scheduling

Julia’s parallel programming platform uses Tasks (aka Coroutines) to switch among multiple computations. Whenever

code performs a communication operation like fetch() or wait(), the current task is suspended and a scheduler

picks another task to run. A task is restarted when the event it is waiting for completes.

For many problems, it is not necessary to think about tasks directly. However, they can be used to wait for multiple

events at the same time, which provides for dynamic scheduling. In dynamic scheduling, a program decides what to

compute or where to compute it based on when other jobs finish. This is needed for unpredictable or unbalanced

workloads, where we want to assign more work to processes only when they finish their current tasks.

As an example, consider computing the singular values of matrices of different sizes:

julia> M = Matrix{Float64}[rand(800,800), rand(600,600), rand(800,800), rand(600,600)];

julia> pmap(svd, M);

If one process handles both 800×800 matrices and another handles both 600×600 matrices, we will not get as much

scalability aswe could. The solution is to make a local task to ”feed”work to each processwhen it completes its current

task. For example, consider a simple pmap() implementation:

function pmap(f, lst)

np = nprocs() # determine the number of processes available

n = length(lst)

results = Vector{Any}(n)

i = 1

function to produce the next work item from the queue.

in this case it's just an index.

nextidx() = (idx=i; i+=1; idx)

@sync begin

for p=1:np

if p != myid() || np == 1

@async begin

while true

idx = nextidx()

if idx > n

break

end

results[idx] = remotecall_fetch(f, p, lst[idx])

end

end

end

26.4. CHANNELS 249

end

end

results

end

@async is similar to @spawn, but only runs tasks on the local process. We use it to create a ”feeder” task for each

process. Each task picks the next index that needs to be computed, then waits for its process to finish, then repeats

until we run out of indexes. Note that the feeder tasks do not begin to execute until the main task reaches the end of

the @sync block, at which point it surrenders control andwaits for all the local tasks to complete before returning from

the function. The feeder tasks are able to share state via nextidx() because they all run on the same process. No

locking is required, since the threads are scheduled cooperatively and not preemptively. This means context switches

only occur at well-defined points: in this case, when remotecall_fetch() is called.

26.4 Channels

The section on Tasks in Control Flow discussed the execution of multiple functions in a co-operative manner. Chan-

nels can be quite useful to pass data between running tasks, particularly those involving I/O operations.

Examples of operations involving I/O include reading/writing to files, accessing web services, executing external pro-

grams, etc. In all these cases, overall execution time can be improved if other tasks can be runwhile a file is being read,

or while waiting for an external service/program to complete.

A channel can be visualized as a pipe, i.e., it has a write end and read end.

• Multiple writers in different tasks can write to the same channel concurrently via put!() calls.

• Multiple readers in different tasks can read data concurrently via take!() calls.

• As an example:

Given Channels c1 and c2,

c1 = Channel(32)

c2 = Channel(32)

and a function `foo()` which reads items from from c1, processes the item read

and writes a result to c2,

function foo()

while true

data = take!(c1)

[...] # process data

put!(c2, result) # write out result

end

end

we can schedule `n` instances of `foo()` to be active concurrently.

for _ in 1:n

@schedule foo()

end

• Channels are created via the Channel{T}(sz) constructor. The channel will only hold objects of type T. If the

type is not specified, the channel can hold objects of any type. sz refers to the maximum number of elements

that can be held in the channel at any time. For example, Channel(32) creates a channel that can hold a

maximum of 32 objects of any type. A Channel{MyType}(64) can hold up to 64 objects of MyType at any

time.

250 CHAPTER 26. GLOBALVARIABLES

• If a Channel is empty, readers (on a take!() call) will block until data is available.

• If a Channel is full, writers (on a put!() call) will block until space becomes available.

• isready() tests for the presence of any object in the channel, while wait() waits for an object to become

available.

• A Channel is in an open state initially. This means that it can be read from and written to freely via take!()

and put!() calls. close() closes a Channel. On a closed Channel, put!()will fail. For example:

julia> c = Channel(2);

julia> put!(c, 1) # `put!` on an open channel succeeds

1

julia> close(c);

julia> put!(c, 2) # `put!` on a closed channel throws an exception.

ERROR: InvalidStateException("Channel is closed.",:closed)

[...]

• take!() and fetch() (which retrieves but does not remove the value) on a closed channel successfully return

any existing values until it is emptied. Continuing the above example:

julia> fetch(c) # Any number of `fetch` calls succeed.

1

julia> fetch(c)

1

julia> take!(c) # The first `take!` removes the value.

1

julia> take!(c) # No more data available on a closed channel.

ERROR: InvalidStateException("Channel is closed.",:closed)

[...]

A Channel can be used as an iterable object in a for loop, in which case the loop runs as long as the Channel has

data or is open. The loop variable takes on all values added to the Channel. The for loop is terminated once the

Channel is closed and emptied.

For example, the following would cause the for loop to wait for more data:

julia> c = Channel{Int}(10);

julia> foreach(i->put!(c, i), 1:3) # add a few entries

julia> data = [i for i in c]

while this will return after reading all data:

julia> c = Channel{Int}(10);

julia> foreach(i->put!(c, i), 1:3); # add a few entries

26.4. CHANNELS 251

julia> close(c); # `for` loops can exit

julia> data = [i for i in c]

3-element Array{Int64,1}:

1

2

3

Consider a simple example using channels for inter-task communication. We start 4 tasks to process data from a

single jobs channel. Jobs, identified by an id (job_id), are written to the channel. Each task in this simulation reads

a job_id, waits for a random amout of time and writes back a tuple of job_id and the simulated time to the results

channel. Finally all the results are printed out.

julia> const jobs = Channel{Int}(32);

julia> const results = Channel{Tuple}(32);

julia> function do_work()

for job_id in jobs

exec_time = rand()

sleep(exec_time) # simulates elapsed time doing actual work

typically performed externally.

put!(results, (job_id, exec_time))

end

end;

julia> function make_jobs(n)

for i in 1:n

put!(jobs, i)

end

end;

julia> n = 12;

julia> @schedule make_jobs(n); # feed the jobs channel with "n" jobs

julia> for i in 1:4 # start 4 tasks to process requests in parallel

@schedule do_work()

end

julia> @elapsed while n > 0 # print out results

job_id, exec_time = take!(results)

println("$job_id finished in $(round(exec_time,2)) seconds")

n = n - 1

end

4 finished in 0.22 seconds

3 finished in 0.45 seconds

1 finished in 0.5 seconds

7 finished in 0.14 seconds

2 finished in 0.78 seconds

5 finished in 0.9 seconds

9 finished in 0.36 seconds

6 finished in 0.87 seconds

8 finished in 0.79 seconds

252 CHAPTER 26. GLOBALVARIABLES

10 finished in 0.64 seconds

12 finished in 0.5 seconds

11 finished in 0.97 seconds

0.029772311

The current version of Julia multiplexes all tasks onto a single OS thread. Thus, while tasks involving I/O operations

benefit from parallel execution, compute bound tasks are effectively executed sequentially on a single OS thread.

Future versions of Julia may support scheduling of tasks on multiple threads, in which case compute bound tasks will

see benefits of parallel execution too.

26.5 Remote References and AbstractChannels

Remote references always refer to an implementation of an AbstractChannel.

A concrete implementation of an AbstractChannel (like Channel), is required to implement put!(), take!(),

fetch(), isready() and wait(). The remote object referred to by a Future is stored in a Channel{Any}(1), i.e.,

a Channel of size 1 capable of holding objects of Any type.

RemoteChannel, which is rewritable, can point to any type and size of channels, or any other implementation of an

AbstractChannel.

The constructor RemoteChannel(f::Function, pid)() allows us to construct references to channels holding

more than one value of a specific type. f() is a function executed on pid and it must return an AbstractChannel.

For example, RemoteChannel(()->Channel{Int}(10), pid), will return a reference to a channel of type Int

and size 10. The channel exists on worker pid.

Methods put!(), take!(), fetch(), isready() and wait() on a RemoteChannel are proxied onto the backing

store on the remote process.

RemoteChannel can thus be used to refer to user implemented AbstractChannel objects. A simple example of this

is provided in examples/dictchannel.jlwhich uses a dictionary as its remote store.

26.6 Channels and RemoteChannels

• A Channel is local to a process. Worker 2 cannot directly refer to a Channel on worker 3 and vice-versa. A

RemoteChannel, however, can put and take values across workers.

• A RemoteChannel can be thought of as a handle to a Channel.

• The process id, pid, associated with a RemoteChannel identifies the process where the backing store, i.e., the

backing Channel exists.

• Any process with a reference to a RemoteChannel can put and take items from the channel. Data is automat-

ically sent to (or retrieved from) the process a RemoteChannel is associated with.

• Serializing a Channel also serializes any data present in the channel. Deserializing it therefore effectivelymakes

a copy of the original object.

• On the other hand, serializing a RemoteChannel only involves the serialization of an identifier that identifies

the location and instance of Channel referred to by the handle. A deserialized RemoteChannel object (on any

worker), therefore also points to the same backing store as the original.

The channels example from above can be modified for interprocess communication, as shown below.

26.6. CHANNELS AND REMOTECHANNELS 253

We start 4 workers to process a single jobs remote channel. Jobs, identified by an id (job_id), are written to the

channel. Each remotely executing task in this simulation reads a job_id, waits for a random amount of time andwrites

back a tuple of job_id, time taken and its own pid to the results channel. Finally all the results are printed out on

the master process.

julia> addprocs(4); # add worker processes

julia> const jobs = RemoteChannel(()->Channel{Int}(32));

julia> const results = RemoteChannel(()->Channel{Tuple}(32));

julia> @everywhere function do_work(jobs, results) # define work function everywhere

while true

job_id = take!(jobs)

exec_time = rand()

sleep(exec_time) # simulates elapsed time doing actual work

put!(results, (job_id, exec_time, myid()))

end

end

julia> function make_jobs(n)

for i in 1:n

put!(jobs, i)

end

end;

julia> n = 12;

julia> @schedule make_jobs(n); # feed the jobs channel with "n" jobs

julia> for p in workers() # start tasks on the workers to process requests in parallel

@async remote_do(do_work, p, jobs, results)

end

julia> @elapsed while n > 0 # print out results

job_id, exec_time, where = take!(results)

println("$job_id finished in $(round(exec_time,2)) seconds on worker $where")

n = n - 1

end

1 finished in 0.18 seconds on worker 4

2 finished in 0.26 seconds on worker 5

6 finished in 0.12 seconds on worker 4

7 finished in 0.18 seconds on worker 4

5 finished in 0.35 seconds on worker 5

4 finished in 0.68 seconds on worker 2

3 finished in 0.73 seconds on worker 3

11 finished in 0.01 seconds on worker 3

12 finished in 0.02 seconds on worker 3

9 finished in 0.26 seconds on worker 5

8 finished in 0.57 seconds on worker 4

10 finished in 0.58 seconds on worker 2

0.055971741

254 CHAPTER 26. GLOBALVARIABLES

26.7 Remote References and Distributed Garbage Collection

Objects referred to by remote references can be freed only when all held references in the cluster are deleted.

The node where the value is stored keeps track of which of the workers have a reference to it. Every time a Re-

moteChannel or a (unfetched) Future is serialized to a worker, the node pointed to by the reference is notified. And

every time a RemoteChannel or a (unfetched) Future is garbage collected locally, the node owning the value is again

notified.

The notifications are done via sending of ”tracking” messages–an ”add reference” message when a reference is serial-

ized to a different process and a ”delete reference” message when a reference is locally garbage collected.

Since Futures are write-once and cached locally, the act of fetch()ing a Future also updates reference tracking

information on the node owning the value.

The node which owns the value frees it once all references to it are cleared.

With Futures, serializing an already fetched Future to a different node also sends the value since the original remote

store may have collected the value by this time.

It is important to note thatwhen an object is locally garbage collected depends on the size of the object and the current

memory pressure in the system.

In case of remote references, the size of the local reference object is quite small, while the value stored on the remote

node may be quite large. Since the local object may not be collected immediately, it is a good practice to explicitly

call finalize() on local instances of a RemoteChannel, or on unfetched Futures. Since calling fetch() on a

Future also removes its reference from the remote store, this is not required on fetched Futures. Explicitly calling

finalize() results in an immediate message sent to the remote node to go ahead and remove its reference to the

value.

Once finalized, a reference becomes invalid and cannot be used in any further calls.

26.8 Shared Arrays

SharedArrays use system shared memory to map the same array across many processes. While there are some similar-

ities to a DArray, the behavior of a SharedArray is quite different. In a DArray, each process has local access to just

a chunk of the data, and no two processes share the same chunk; in contrast, in a SharedArray each ”participating”

process has access to the entire array. A SharedArray is a good choice when you want to have a large amount of

data jointly accessible to two or more processes on the same machine.

SharedArray indexing (assignment and accessing values) works just as with regular arrays, and is efficient because

the underlying memory is available to the local process. Therefore, most algorithms work naturally on SharedArrays,

albeit in single-process mode. In cases where an algorithm insists on an Array input, the underlying array can be

retrieved from a SharedArray by calling sdata(). For other AbstractArray types, sdata() just returns the object

itself, so it’s safe to use sdata() on any Array-type object.

The constructor for a shared array is of the form:

SharedArray{T,N}(dims::NTuple; init=false, pids=Int[])

which creates an N-dimensional shared array of a bits type T and size dims across the processes specified by pids.

Unlike distributed arrays, a shared array is accessible only from those participating workers specified by the pids

named argument (and the creating process too, if it is on the same host).

If an init function, of signature initfn(S::SharedArray), is specified, it is called on all the participating work-

ers. You can specify that each worker runs the init function on a distinct portion of the array, thereby parallelizing

initialization.

https://github.com/JuliaParallel/DistributedArrays.jl
https://github.com/JuliaParallel/DistributedArrays.jl

26.8. SHARED ARRAYS 255

Here’s a brief example:

julia> addprocs(3)

3-element Array{Int64,1}:

2

3

4

julia> S = SharedArray{Int,2}((3,4), init = S -> S[Base.localindexes(S)] = myid())

3×4 SharedArray{Int64,2}:

2 2 3 4

2 3 3 4

2 3 4 4

julia> S[3,2] = 7

7

julia> S

3×4 SharedArray{Int64,2}:

2 2 3 4

2 3 3 4

2 7 4 4

Base.localindexes() provides disjoint one-dimensional ranges of indexes, and is sometimes convenient for split-

ting up tasks among processes. You can, of course, divide the work any way you wish:

julia> S = SharedArray{Int,2}((3,4), init = S -> S[indexpids(S):length(procs(S)):length(S)] =

myid())↪→

3×4 SharedArray{Int64,2}:

2 2 2 2

3 3 3 3

4 4 4 4

Since all processes have access to the underlying data, you do have to be careful not to set up conflicts. For example:

@sync begin

for p in procs(S)

@async begin

remotecall_wait(fill!, p, S, p)

end

end

end

would result in undefined behavior. Because each process fills the entire array with its own pid, whichever process is

the last to execute (for any particular element of S) will have its pid retained.

As a more extended and complex example, consider running the following ”kernel” in parallel:

q[i,j,t+1] = q[i,j,t] + u[i,j,t]

In this case, if we try to split up the work using a one-dimensional index, we are likely to run into trouble: if q[i,j,t]

is near the end of the block assigned to one worker and q[i,j,t+1] is near the beginning of the block assigned to

another, it’s very likely that q[i,j,t] will not be ready at the time it’s needed for computing q[i,j,t+1]. In such

cases, one is better off chunking the array manually. Let’s split along the second dimension. Define a function that

returns the (irange, jrange) indexes assigned to this worker:

256 CHAPTER 26. GLOBALVARIABLES

julia> @everywhere function myrange(q::SharedArray)

idx = indexpids(q)

if idx == 0 # This worker is not assigned a piece

return 1:0, 1:0

end

nchunks = length(procs(q))

splits = [round(Int, s) for s in linspace(0,size(q,2),nchunks+1)]

1:size(q,1), splits[idx]+1:splits[idx+1]

end

Next, define the kernel:

julia> @everywhere function advection_chunk!(q, u, irange, jrange, trange)

@show (irange, jrange, trange) # display so we can see what's happening

for t in trange, j in jrange, i in irange

q[i,j,t+1] = q[i,j,t] + u[i,j,t]

end

q

end

We also define a convenience wrapper for a SharedArray implementation

julia> @everywhere advection_shared_chunk!(q, u) =

advection_chunk!(q, u, myrange(q)..., 1:size(q,3)-1)

Now let’s compare three different versions, one that runs in a single process:

julia> advection_serial!(q, u) = advection_chunk!(q, u, 1:size(q,1), 1:size(q,2), 1:size(q,3)-1);

one that uses @parallel:

julia> function advection_parallel!(q, u)

for t = 1:size(q,3)-1

@sync @parallel for j = 1:size(q,2)

for i = 1:size(q,1)

q[i,j,t+1]= q[i,j,t] + u[i,j,t]

end

end

end

q

end;

and one that delegates in chunks:

julia> function advection_shared!(q, u)

@sync begin

for p in procs(q)

@async remotecall_wait(advection_shared_chunk!, p, q, u)

end

end

q

end;

26.9. SHARED ARRAYS AND DISTRIBUTED GARBAGE COLLECTION 257

If we create SharedArrays and time these functions, we get the following results (with julia -p 4):

julia> q = SharedArray{Float64,3}((500,500,500));

julia> u = SharedArray{Float64,3}((500,500,500));

Run the functions once to JIT-compile and @time them on the second run:

julia> @time advection_serial!(q, u);

(irange,jrange,trange) = (1:500,1:500,1:499)

830.220 milliseconds (216 allocations: 13820 bytes)

julia> @time advection_parallel!(q, u);

2.495 seconds (3999 k allocations: 289 MB, 2.09% gc time)

julia> @time advection_shared!(q,u);

From worker 2: (irange,jrange,trange) = (1:500,1:125,1:499)

From worker 4: (irange,jrange,trange) = (1:500,251:375,1:499)

From worker 3: (irange,jrange,trange) = (1:500,126:250,1:499)

From worker 5: (irange,jrange,trange) = (1:500,376:500,1:499)

238.119 milliseconds (2264 allocations: 169 KB)

The biggest advantage of advection_shared! is that it minimizes traffic among the workers, allowing each to com-

pute for an extended time on the assigned piece.

26.9 Shared Arrays and Distributed Garbage Collection

Like remote references, shared arrays are also dependent on garbage collection on the creating node to release ref-

erences from all participating workers. Code which creates many short lived shared array objects would benefit from

explicitly finalizing these objects as soon as possible. This results in both memory and file handles mapping the shared

segment being released sooner.

26.10 ClusterManagers

The launching, management and networking of Julia processes into a logical cluster is done via cluster managers. A

ClusterManager is responsible for

• launching worker processes in a cluster environment

• managing events during the lifetime of each worker

• optionally, providing data transport

A Julia cluster has the following characteristics:

• The initial Julia process, also called the master, is special and has an id of 1.

• Only the master process can add or remove worker processes.

• All processes can directly communicate with each other.

Connections between workers (using the in-built TCP/IP transport) is established in the following manner:

258 CHAPTER 26. GLOBALVARIABLES

• addprocs() is called on the master process with a ClusterManager object.

• addprocs() calls the appropriate launch() method which spawns required number of worker processes on

appropriate machines.

• Each worker starts listening on a free port and writes out its host and port information to STDOUT.

• The cluster manager captures the STDOUT of each worker and makes it available to the master process.

• The master process parses this information and sets up TCP/IP connections to each worker.

• Every worker is also notified of other workers in the cluster.

• Each worker connects to all workers whose id is less than the worker’s own id.

• In this way a mesh network is established, wherein every worker is directly connected with every other worker.

While the default transport layer uses plain TCPSocket, it is possible for a Julia cluster to provide its own transport.

Julia provides two in-built cluster managers:

• LocalManager, used when addprocs() or addprocs(np::Integer) are called

• SSHManager, used when addprocs(hostnames::Array) is called with a list of hostnames

LocalManager is used to launch additional workers on the same host, thereby leveraging multi-core and multi-

processor hardware.

Thus, a minimal cluster manager would need to:

• be a subtype of the abstract ClusterManager

• implement launch(), a method responsible for launching newworkers

• implement manage(), which is called at various events during a worker’s lifetime (for example, sending an

interrupt signal)

addprocs(manager::FooManager) requires FooManager to implement:

function launch(manager::FooManager, params::Dict, launched::Array, c::Condition)

[...]

end

function manage(manager::FooManager, id::Integer, config::WorkerConfig, op::Symbol)

[...]

end

As an example let us see how the LocalManager, the manager responsible for starting workers on the same host, is

implemented:

26.10. CLUSTERMANAGERS 259

struct LocalManager <: ClusterManager

np::Integer

end

function launch(manager::LocalManager, params::Dict, launched::Array, c::Condition)

[...]

end

function manage(manager::LocalManager, id::Integer, config::WorkerConfig, op::Symbol)

[...]

end

The launch() method takes the following arguments:

• manager::ClusterManager: the cluster manager that addprocs() is called with

• params::Dict: all the keyword arguments passed to addprocs()

• launched::Array: the array to append one or more WorkerConfig objects to

• c::Condition: the condition variable to be notified as and when workers are launched

The launch() method is called asynchronously in a separate task. The termination of this task signals that all re-

quested workers have been launched. Hence the launch() function MUST exit as soon as all the requested workers

have been launched.

Newly launched workers are connected to each other, and the master process, in an all-to-all manner. Specifying the

command argument --worker <cookie> results in the launched processes initializing themselves as workers and

connections being set up via TCP/IP sockets. Optionally, --bind-to bind_addr[:port] may also be specified to

enable other workers to connect to it at the specified bind_addr and port. This is useful for multi-homed hosts.

As an example of a non-TCP/IP transport, an implementation may choose to use MPI, in which case --worker must

NOT be specified. Instead, newly launched workers should call init_worker(cookie) before using any of the par-

allel constructs.

For every worker launched, the launch() method must add a WorkerConfig object (with appropriate fields initial-

ized) to launched

mutable struct WorkerConfig

Common fields relevant to all cluster managers

io::Nullable{IO}

host::Nullable{AbstractString}

port::Nullable{Integer}

Used when launching additional workers at a host

count::Nullable{Union{Int, Symbol}}

exename::Nullable{AbstractString}

exeflags::Nullable{Cmd}

External cluster managers can use this to store information at a per-worker level

Can be a dict if multiple fields need to be stored.

userdata::Nullable{Any}

SSHManager / SSH tunnel connections to workers

tunnel::Nullable{Bool}

260 CHAPTER 26. GLOBALVARIABLES

bind_addr::Nullable{AbstractString}

sshflags::Nullable{Cmd}

max_parallel::Nullable{Integer}

connect_at::Nullable{Any}

[...]

end

Most of the fields in WorkerConfig are used by the inbuilt managers. Custom clustermanagerswould typically specify

only io or host / port:

• If io is specified, it is used to read host/port information. A Julia worker prints out its bind address and port

at startup. This allows Julia workers to listen on any free port available instead of requiring worker ports to be

configured manually.

• If io is not specified, host and port are used to connect.

• count, exename and exeflags are relevant for launching additional workers from a worker. For example, a

cluster manager may launch a single worker per node, and use that to launch additional workers.

– countwith an integer value nwill launch a total of nworkers.

– countwith a value of :autowill launch as many workers as the number of cores on that machine.

– exename is the name of the julia executable including the full path.

– exeflags should be set to the required command line arguments for new workers.

• tunnel, bind_addr, sshflags and max_parallel are used when a ssh tunnel is required to connect to the

workers from the master process.

• userdata is provided for custom cluster managers to store their own worker-specific information.

manage(manager::FooManager, id::Integer, config::WorkerConfig, op::Symbol) is called at differ-

ent times during the worker’s lifetime with appropriate op values:

• with :register/:deregisterwhen a worker is added / removed from the Julia worker pool.

• with :interruptwhen interrupt(workers) is called. The ClusterManager should signal the appropriate

worker with an interrupt signal.

• with :finalize for cleanup purposes.

26.11 Cluster Managers with Custom Transports

Replacing the default TCP/IP all-to-all socket connections with a custom transport layer is a little more involved. Each

Julia process has as many communication tasks as the workers it is connected to. For example, consider a Julia cluster

of 32 processes in an all-to-all mesh network:

• Each Julia process thus has 31 communication tasks.

• Each task handles all incoming messages from a single remote worker in a message-processing loop.

• The message-processing loop waits on an IO object (for example, a TCPSocket in the default implementation),

reads an entire message, processes it and waits for the next one.

26.12. NETWORK REQUIREMENTS FOR LOCALMANAGER AND SSHMANAGER 261

• Sending messages to a process is done directly from any Julia task–not just communication tasks–again, via the

appropriate IO object.

Replacing the default transport requires the new implementation to set up connections to remote workers and to

provide appropriate IO objects that the message-processing loops can wait on. The manager-specific callbacks to be

implemented are:

connect(manager::FooManager, pid::Integer, config::WorkerConfig)

kill(manager::FooManager, pid::Int, config::WorkerConfig)

The default implementation (which uses TCP/IP sockets) is implemented as connect(manager::ClusterManager,

pid::Integer, config::WorkerConfig).

connect should return a pair of IO objects, one for reading data sent from worker pid, and the other to write data

that needs to be sent toworker pid. Custom cluster managers can use an in-memory BufferStream as the plumbing

to proxy data between the custom, possibly non-IO transport and Julia’s in-built parallel infrastructure.

A BufferStream is an in-memory IOBuffer which behaves like an IO–it is a stream which can be handled asyn-

chronously.

Folder examples/clustermanager/0mq contains an example of using ZeroMQ to connect Julia workers in a star

topologywith a 0MQ broker in the middle. Note: The Julia processes are still all logically connected to each other–any

worker can message any other worker directly without any awareness of 0MQ being used as the transport layer.

When using custom transports:

• Julia workers must NOT be started with --worker. Starting with --worker will result in the newly launched

workers defaulting to the TCP/IP socket transport implementation.

• For every incoming logical connection with a worker, Base.process_messages(rd::IO, wr::IO)()must

be called. This launches a new task that handles reading and writing of messages from/to the worker repre-

sented by the IO objects.

• init_worker(cookie, manager::FooManager)MUST be called as part of worker process initialization.

• Field connect_at::Any in WorkerConfig can be set by the cluster manager when launch() is called. The

value of this field is passed in in all connect() callbacks. Typically, it carries information on how to connect to a

worker. For example, the TCP/IP socket transport uses this field to specify the (host, port) tuple at which

to connect to a worker.

kill(manager, pid, config) is called to remove a worker from the cluster. On the master process, the corre-

sponding IO objects must be closed by the implementation to ensure proper cleanup. The default implementation

simply executes an exit() call on the specified remote worker.

examples/clustermanager/simple is an example that shows a simple implementation using UNIX domain sockets

for cluster setup.

26.12 Network Requirements for LocalManager and SSHManager

Julia clusters are designed to be executed on already secured environments on infrastructure such as local laptops,

departmental clusters, or even the cloud. This section covers network security requirements for the inbuilt Local-

Manager and SSHManager:

• The master process does not listen on any port. It only connects out to the workers.

262 CHAPTER 26. GLOBALVARIABLES

• Each worker binds to only one of the local interfaces and listens on the first free port starting from 9009.

• LocalManager, used by addprocs(N), by default binds only to the loopback interface. This means that work-

ers started later on remote hosts (or by anyone with malicious intentions) are unable to connect to the cluster.

An addprocs(4) followed by an addprocs(["remote_host"]) will fail. Some users may need to create

a cluster comprising their local system and a few remote systems. This can be done by explicitly requesting

LocalManager to bind to an external network interface via the restrict keyword argument: addprocs(4;

restrict=false).

• SSHManager, used by addprocs(list_of_remote_hosts), launches workers on remote hosts via SSH. By

default SSH is only used to launch Julia workers. Subsequent master-worker and worker-worker connections

use plain, unencrypted TCP/IP sockets. The remote hosts must have passwordless login enabled. Additional

SSH flags or credentials may be specified via keyword argument sshflags.

• addprocs(list_of_remote_hosts; tunnel=true, sshflags=<ssh keys and other flags>) is use-

ful when we wish to use SSH connections for master-worker too. A typical scenario for this is a local laptop

running the Julia REPL (i.e., the master) with the rest of the cluster on the cloud, say on Amazon EC2. In this

case only port 22 needs to be opened at the remote cluster coupled with SSH client authenticated via public

key infrastructure (PKI). Authentication credentials can be supplied via sshflags, for example sshflags=`-e

<keyfile>`.

Note that worker-worker connections are still plain TCP and the local security policy on the remote cluster must

allow for free connections between worker nodes, at least for ports 9009 and above.

Securing and encrypting all worker-worker traffic (via SSH) or encrypting individual messages can be done via

a custom ClusterManager.

26.13 Cluster Cookie

All processes in a cluster share the same cookiewhich, by default, is a randomly generated string on themaster process:

• Base.cluster_cookie() returns the cookie, while Base.cluster_cookie(cookie)() sets it and returns

the new cookie.

• All connections are authenticated on both sides to ensure that only workers started by the master are allowed

to connect to each other.

• The cookie must be passed to the workers at startup via argument --worker <cookie>. Custom Cluster-

Managers can retrieve the cookie on the master by calling Base.cluster_cookie(). Cluster managers not

using the default TCP/IP transport (and hence not specifying --worker) must call init_worker(cookie,

manager)with the same cookie as on the master.

Note that environments requiring higher levels of security can implement this via a custom ClusterManager. For

example, cookies can be pre-shared and hence not specified as a startup argument.

26.14 Specifying Network Topology (Experimental)

The keyword argument topology passed to addprocs is used to specify how theworkers must be connected to each

other:

• :all_to_all, the default: all workers are connected to each other.

• :master_slave: only the driver process, i.e. pid 1, has connections to the workers.

26.15. MULTI-THREADING (EXPERIMENTAL) 263

• :custom: the launchmethod of the clustermanager specifies the connection topologyvia the fields ident and

connect_idents in WorkerConfig. A worker with a cluster-manager-provided identity ident will connect

to all workers specified in connect_idents.

Currently, sending a message between unconnected workers results in an error. This behaviour, as with the function-

ality and interface, should be considered experimental in nature and may change in future releases.

26.15 Multi-Threading (Experimental)

In addition to tasks, remote calls, and remote references, Julia fromv0.5 forwardswill natively supportmulti-threading.

Note that this section is experimental and the interfaces may change in the future.

Setup

Bydefault, Julia starts upwith a single thread of execution. This can beverified byusing the commandThreads.nthreads():

julia> Threads.nthreads()

1

The number of threads Julia starts upwith is controlled by an environment variable called JULIA_NUM_THREADS. Now,

let’s start up Julia with 4 threads:

export JULIA_NUM_THREADS=4

(The above command works on bourne shells on Linux and OSX. Note that if you’re using a C shell on these platforms,

you should use the keyword set instead of export. If you’re on Windows, start up the command line in the location

of julia.exe and use set instead of export.)

Let’s verify there are 4 threads at our disposal.

julia> Threads.nthreads()

4

But we are currently on the master thread. To check, we use the command Threads.threadid()

julia> Threads.threadid()

1

The @threadsMacro

Let’s work a simple example using our native threads. Let us create an array of zeros:

julia> a = zeros(10)

10-element Array{Float64,1}:

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

264 CHAPTER 26. GLOBALVARIABLES

Let us operate on this array simultaneously using 4 threads. We’ll have each thread write its thread ID into each

location.

Julia supports parallel loops using the Threads.@threads macro. This macro is affixed in front of a for loop to

indicate to Julia that the loop is a multi-threaded region:

julia> Threads.@threads for i = 1:10

a[i] = Threads.threadid()

end

The iteration space is split amongst the threads, after which each thread writes its thread ID to its assigned locations:

julia> a

10-element Array{Float64,1}:

1.0

1.0

1.0

2.0

2.0

2.0

3.0

3.0

4.0

4.0

Note that Threads.@threads does not have an optional reduction parameter like @parallel.

26.16 @threadcall (Experimental)

All I/O tasks, timers, REPL commands, etc are multiplexed onto a single OS thread via an event loop. A patched version

of libuv (http://docs.libuv.org/en/v1.x/) provides this functionality. Yield points provide for co-operatively scheduling

multiple tasks onto the same OS thread. I/O tasks and timers yield implicitly while waiting for the event to occur.

Calling yield() explicitly allows for other tasks to be scheduled.

Thus, a task executing a ccall effectively prevents the Julia scheduler from executing any other tasks till the call

returns. This is true for all calls into external libraries. Exceptions are calls into custom C code that call back into Julia

(which may then yield) or C code that calls jl_yield() (C equivalent of yield()).

Note that while Julia code runs on a single thread (by default), libraries used by Julia may launch their own internal

threads. For example, the BLAS library may start as many threads as there are cores on a machine.

The @threadcall macro addresses scenarios where we do not want a ccall to block the main Julia event loop. It

schedules a C function for execution in a separate thread. A threadpool with a default size of 4 is used for this. The

size of the threadpool is controlled via environment variable UV_THREADPOOL_SIZE. While waiting for a free thread,

and during function execution once a thread is available, the requesting task (on the main Julia event loop) yields to

other tasks. Note that @threadcall does not return till the execution is complete. From a user point of view, it is

therefore a blocking call like other Julia APIs.

It is very important that the called function does not call back into Julia.

@threadcall may be removed/changed in future versions of Julia.

1In this context, MPI refers to theMPI-1 standard. BeginningwithMPI-2, theMPI standards committee introduced a newset of communication

mechanisms, collectively referred to as Remote Memory Access (RMA). The motivation for adding RMA to the MPI standard was to facilitate one-

sided communication patterns. For additional information on the latest MPI standard, see http://mpi-forum.org/docs.

http://docs.libuv.org/en/v1.x/
http://mpi-forum.org/docs/

Chapter 27

Date and DateTime

The Datesmodule provides two types forworking with dates: Date and DateTime, representing day and millisecond

precision, respectively; both are subtypes of the abstract TimeType. The motivation for distinct types is simple: some

operations are much simpler, both in terms of code and mental reasoning, when the complexities of greater precision

don’t have to be dealt with. For example, since the Date type only resolves to the precision of a single date (i.e. no

hours, minutes, or seconds), normal considerations for time zones, daylight savings/summer time, and leap seconds

are unnecessary and avoided.

Both Date and DateTime are basically immutable Int64 wrappers. The single instant field of either type is actu-

ally a UTInstant{P} type, which represents a continuously increasing machine timeline based on the UT second 1.

The DateTime type is not aware of time zones (naive, in Python parlance), analogous to a LocalDateTime in Java 8.

Additional time zone functionality can be added through the TimeZones.jl package, which compiles the IANA time

zone database. Both Date and DateTime are based on the ISO 8601 standard, which follows the proleptic Gregorian

calendar. One note is that the ISO 8601 standard is particular about BC/BCE dates. In general, the last day of the

BC/BCE era, 1-12-31 BC/BCE, was followed by 1-1-1 AD/CE, thus no year zero exists. The ISO standard, however,

states that 1 BC/BCE is year zero, so 0000-12-31 is the day before 0001-01-01, and year -0001 (yes, negative one

for the year) is 2 BC/BCE, year -0002 is 3 BC/BCE, etc.

27.1 Constructors

Date and DateTime types can be constructed by integer or Period types, by parsing, or through adjusters (more on

those later):

julia> DateTime(2013)

2013-01-01T00:00:00

julia> DateTime(2013,7)

2013-07-01T00:00:00

julia> DateTime(2013,7,1)

2013-07-01T00:00:00

1The notion of the UT second is actually quite fundamental. There are basically two different notions of time generally accepted, one based on

the physical rotation of the earth (one full rotation = 1 day), the other based on the SI second (a fixed, constant value). These are radically different!

Think about it, a ”UT second”, as defined relative to the rotation of the earth, may have a different absolute length depending on the day! Anyway,

the fact that Date and DateTime are based on UT seconds is a simplifying, yet honest assumption so that things like leap seconds and all their

complexity can be avoided. This basis of time is formally called UT or UT1. Basing types on the UT second basically means that every minute has

60 seconds and every day has 24 hours and leads to more natural calculations when working with calendar dates.

265

https://github.com/JuliaTime/TimeZones.jl/
http://www.iana.org/time-zones
http://www.iana.org/time-zones
https://en.wikipedia.org/wiki/ISO_8601
https://en.wikipedia.org/wiki/Universal_Time

266 CHAPTER 27. DATE AND DATETIME

julia> DateTime(2013,7,1,12)

2013-07-01T12:00:00

julia> DateTime(2013,7,1,12,30)

2013-07-01T12:30:00

julia> DateTime(2013,7,1,12,30,59)

2013-07-01T12:30:59

julia> DateTime(2013,7,1,12,30,59,1)

2013-07-01T12:30:59.001

julia> Date(2013)

2013-01-01

julia> Date(2013,7)

2013-07-01

julia> Date(2013,7,1)

2013-07-01

julia> Date(Dates.Year(2013),Dates.Month(7),Dates.Day(1))

2013-07-01

julia> Date(Dates.Month(7),Dates.Year(2013))

2013-07-01

Date or DateTime parsing is accomplished by the use of format strings. Format strings work by the notion of defining

delimited or fixed-width ”slots” that contain a period to parse and passing the text to parse and format string to a Date

or DateTime constructor, of the form Date("2015-01-01","y-m-d") or DateTime("20150101","yyyymmdd").

Delimited slots are marked by specifying the delimiter the parser should expect between two subsequent periods; so

"y-m-d" lets the parser know that between the first and second slots in a date string like "2014-07-16", it should

find the - character. The y, m, and d characters let the parser knowwhich periods to parse in each slot.

Fixed-width slots are specified by repeating the period character the number of times corresponding to the width

with no delimiter between characters. So "yyyymmdd" would correspond to a date string like "20140716". The

parser distinguishes a fixed-width slot by the absence of a delimiter, noting the transition "yyyymm" from one period

character to the next.

Support for text-form month parsing is also supported through the u and U characters, for abbreviated and full-length

month names, respectively. By default, only English month names are supported, so u corresponds to ”Jan”, ”Feb”,

”Mar”, etc. And U corresponds to ”January”, ”February”, ”March”, etc. Similar to other name=>value mapping functions

dayname() and monthname(), custom locales can be loaded by passing in the locale=>Dict{String,Int}map-

ping to the MONTHTOVALUEABBR and MONTHTOVALUE dicts for abbreviated and full-name month names, respectively.

One note on parsing performance: using the Date(date_string,format_string) function is fine if only called a

few times. If there are many similarly formatted date strings to parse however, it is much more efficient to first create

a Dates.DateFormat, and pass it instead of a raw format string.

julia> df = DateFormat("y-m-d");

julia> dt = Date("2015-01-01",df)

2015-01-01

27.2. DURATIONS/COMPARISONS 267

julia> dt2 = Date("2015-01-02",df)

2015-01-02

You can also use the dateformat"" string macro. This macro creates the DateFormat object once when the macro

is expanded and uses the same DateFormat object even if a code snippet is run multiple times.

julia> for i = 1:10^5

Date("2015-01-01", dateformat"y-m-d")

end

A full suite of parsing and formatting tests and examples is available in tests/dates/io.jl.

27.2 Durations/Comparisons

Finding the length of time between two Date or DateTime is straightforward given their underlying representation

as UTInstant{Day} and UTInstant{Millisecond}, respectively. The difference between Date is returned in the

number of Day, and DateTime in the number of Millisecond. Similarly, comparing TimeType is a simple matter of

comparing the underlying machine instants (which in turn compares the internal Int64 values).

julia> dt = Date(2012,2,29)

2012-02-29

julia> dt2 = Date(2000,2,1)

2000-02-01

julia> dump(dt)

Date

instant: Base.Dates.UTInstant{Base.Dates.Day}

periods: Base.Dates.Day

value: Int64 734562

julia> dump(dt2)

Date

instant: Base.Dates.UTInstant{Base.Dates.Day}

periods: Base.Dates.Day

value: Int64 730151

julia> dt > dt2

true

julia> dt != dt2

true

julia> dt + dt2

ERROR: MethodError: no method matching +(::Date, ::Date)

[...]

julia> dt * dt2

ERROR: MethodError: no method matching *(::Date, ::Date)

[...]

julia> dt / dt2

ERROR: MethodError: no method matching /(::Date, ::Date)

https://github.com/JuliaLang/julia/blob/master/test/dates/io.jl

268 CHAPTER 27. DATE AND DATETIME

[...]

julia> dt - dt2

4411 days

julia> dt2 - dt

-4411 days

julia> dt = DateTime(2012,2,29)

2012-02-29T00:00:00

julia> dt2 = DateTime(2000,2,1)

2000-02-01T00:00:00

julia> dt - dt2

381110400000 milliseconds

27.3 Accessor Functions

Because the Date and DateTime types are stored as single Int64 values, date parts or fields can be retrieved through

accessor functions. The lowercase accessors return the field as an integer:

julia> t = Date(2014, 1, 31)

2014-01-31

julia> Dates.year(t)

2014

julia> Dates.month(t)

1

julia> Dates.week(t)

5

julia> Dates.day(t)

31

While propercase return the same value in the corresponding Period type:

julia> Dates.Year(t)

2014 years

julia> Dates.Day(t)

31 days

Compound methods are provided, as they provide a measure of efficiency if multiple fields are needed at the same

time:

julia> Dates.yearmonth(t)

(2014, 1)

julia> Dates.monthday(t)

(1, 31)

julia> Dates.yearmonthday(t)

(2014, 1, 31)

27.4. QUERY FUNCTIONS 269

One may also access the underlying UTInstant or integer value:

julia> dump(t)

Date

instant: Base.Dates.UTInstant{Base.Dates.Day}

periods: Base.Dates.Day

value: Int64 735264

julia> t.instant

Base.Dates.UTInstant{Base.Dates.Day}(735264 days)

julia> Dates.value(t)

735264

27.4 Query Functions

Query functions provide calendrical information about a TimeType. They include information about the day of the

week:

julia> t = Date(2014, 1, 31)

2014-01-31

julia> Dates.dayofweek(t)

5

julia> Dates.dayname(t)

"Friday"

julia> Dates.dayofweekofmonth(t) # 5th Friday of January

5

Month of the year:

julia> Dates.monthname(t)

"January"

julia> Dates.daysinmonth(t)

31

As well as information about the TimeType’s year and quarter:

julia> Dates.isleapyear(t)

false

julia> Dates.dayofyear(t)

31

julia> Dates.quarterofyear(t)

1

julia> Dates.dayofquarter(t)

31

The dayname() and monthname()methods can also take an optional locale keyword that can be used to return the

name of the day or month of the year for other languages/locales. There are also versions of these functions returning

the abbreviated names, namely dayabbr() and monthabbr(). First themapping is loaded into the LOCALES variable:

270 CHAPTER 27. DATE AND DATETIME

julia> french_months = ["janvier", "février", "mars", "avril", "mai", "juin",

"juillet", "août", "septembre", "octobre", "novembre", "décembre"];

julia> french_monts_abbrev = ["janv","févr","mars","avril","mai","juin",

"juil","août","sept","oct","nov","déc"];

julia> french_days = ["lundi","mardi","mercredi","jeudi","vendredi","samedi","dimanche"];

julia> Dates.LOCALES["french"] = Dates.DateLocale(french_months, french_monts_abbrev, french_days

, [""]);

The above mentioned functions can then be used to perform the queries:

julia> Dates.dayname(t;locale="french")

"vendredi"

julia> Dates.monthname(t;locale="french")

"janvier"

julia> Dates.monthabbr(t;locale="french")

"janv"

Since the abbreviated versions of the days are not loaded, trying to use the function dayabbr()will error.

julia> Dates.dayabbr(t;locale="french")

ERROR: BoundsError: attempt to access 1-element Array{String,1} at index [5]

Stacktrace:

[1] #dayabbr#6(::String, ::Function, ::Int64) at ./dates/query.jl:114

[2] (::Base.Dates.#kw##dayabbr)(::Array{Any,1}, ::Base.Dates.#dayabbr, ::Int64) at ./<missing>:0

(repeats 2 times)

27.5 TimeType-Period Arithmetic

It’s good practice when using any language/date framework to be familiar with how date-period arithmetic is handled

as there are some tricky issues to deal with (though much less so for day-precision types).

The Dates module approach tries to follow the simple principle of trying to change as little as possible when doing

Period arithmetic. This approach is also often known as calendrical arithmetic or what you would probably guess if

someone were to ask you the same calculation in a conversation. Why all the fuss about this? Let’s take a classic

example: add 1 month to January 31st, 2014. What’s the answer? Javascript will say March 3 (assumes 31 days).

PHP says March 2 (assumes 30 days). The fact is, there is no right answer. In the Dates module, it gives the result of

February 28th. How does it figure that out? I like to think of the classic 7-7-7 gambling game in casinos.

Now just imagine that instead of 7-7-7, the slots are Year-Month-Day, or in our example, 2014-01-31. When you

ask to add 1 month to this date, the month slot is incremented, so now we have 2014-02-31. Then the day number

is checked if it is greater than the last valid day of the new month; if it is (as in the case above), the day number is

adjusted down to the last valid day (28). What are the ramifications with this approach? Go ahead and add another

month to our date, 2014-02-28 + Month(1) == 2014-03-28. What? Were you expecting the last day of March?

Nope, sorry, remember the 7-7-7 slots. As few slots as possible are going to change, so we first increment the month

slot by 1, 2014-03-28, and boom, we’re done because that’s a valid date. On the other hand, if we were to add 2

months to our original date, 2014-01-31, then we end up with 2014-03-31, as expected. The other ramification of

this approach is a loss in associativity when a specific ordering is forced (i.e. adding things in different orders results

in different outcomes). For example:

julia> (Date(2014,1,29)+Dates.Day(1)) + Dates.Month(1)

2014-02-28

https://codeblog.jonskeet.uk/2010/12/01/the-joys-of-date-time-arithmetic/
http://www.markhneedham.com/blog/2009/01/07/javascript-add-a-month-to-a-date/
http://stackoverflow.com/questions/5760262/php-adding-months-to-a-date-while-not-exceeding-the-last-day-of-the-month

27.6. ADJUSTER FUNCTIONS 271

julia> (Date(2014,1,29)+Dates.Month(1)) + Dates.Day(1)

2014-03-01

What’s going on there? In the first line, we’re adding 1 day to January 29th, which results in 2014-01-30; then we add

1 month, so we get 2014-02-30, which then adjusts down to 2014-02-28. In the second example, we add 1 month

first, where we get 2014-02-29, which adjusts down to 2014-02-28, and then add 1 day, which results in 2014-03-01.

One design principle that helps in this case is that, in the presence of multiple Periods, the operations will be ordered

by the Periods’ types, not their value or positional order; this means Yearwill always be added first, then Month, then

Week, etc. Hence the following does result in associativity and Just Works:

julia> Date(2014,1,29) + Dates.Day(1) + Dates.Month(1)

2014-03-01

julia> Date(2014,1,29) + Dates.Month(1) + Dates.Day(1)

2014-03-01

Tricky? Perhaps. What is an innocent Dates user to do? The bottom line is to be aware that explicitly forcing a certain

associativity, when dealing with months, may lead to some unexpected results, but otherwise, everything should work

as expected. Thankfully, that’s pretty much the extent of the odd cases in date-period arithmetic when dealing with

time in UT (avoiding the ”joys” of dealing with daylight savings, leap seconds, etc.).

As a bonus, all period arithmetic objects work directly with ranges:

julia> dr = Date(2014,1,29):Date(2014,2,3)

2014-01-29:1 day:2014-02-03

julia> collect(dr)

6-element Array{Date,1}:

2014-01-29

2014-01-30

2014-01-31

2014-02-01

2014-02-02

2014-02-03

julia> dr = Date(2014,1,29):Dates.Month(1):Date(2014,07,29)

2014-01-29:1 month:2014-07-29

julia> collect(dr)

7-element Array{Date,1}:

2014-01-29

2014-02-28

2014-03-29

2014-04-29

2014-05-29

2014-06-29

2014-07-29

27.6 Adjuster Functions

As convenient as date-period arithmetics are, often the kinds of calculations needed on dates take on a calendrical

or temporal nature rather than a fixed number of periods. Holidays are a perfect example; most follow rules such

272 CHAPTER 27. DATE AND DATETIME

as ”Memorial Day = Last Monday of May”, or ”Thanksgiving = 4th Thursday of November”. These kinds of temporal

expressions deal with rules relative to the calendar, like first or last of the month, next Tuesday, or the first and third

Wednesdays, etc.

The Dates module provides the adjuster API through several convenient methods that aid in simply and succinctly

expressing temporal rules. The first group of adjuster methods deal with the first and last of weeks, months, quarters,

and years. They each take a single TimeType as input and return or adjust to the first or last of the desired period

relative to the input.

julia> Dates.firstdayofweek(Date(2014,7,16)) # Adjusts the input to the Monday of the input's week

2014-07-14

julia> Dates.lastdayofmonth(Date(2014,7,16)) # Adjusts to the last day of the input's month

2014-07-31

julia> Dates.lastdayofquarter(Date(2014,7,16)) # Adjusts to the last day of the input's quarter

2014-09-30

The next two higher-order methods, tonext(), and toprev(), generalize working with temporal expressions by

taking a DateFunction as first argument, alongwith a starting TimeType. A DateFunction is just a function, usually

anonymous, that takes a single TimeType as input and returns a Bool, true indicating a satisfied adjustment criterion.

For example:

julia> istuesday = x->Dates.dayofweek(x) == Dates.Tuesday # Returns true if the day of the week of

x is Tuesday↪→

(::#1) (generic function with 1 method)

julia> Dates.tonext(istuesday, Date(2014,7,13)) # 2014-07-13 is a Sunday

2014-07-15

julia> Dates.tonext(Date(2014,7,13), Dates.Tuesday) # Convenience method provided for day of the

week adjustments↪→

2014-07-15

This is useful with the do-block syntax for more complex temporal expressions:

julia> Dates.tonext(Date(2014,7,13)) do x

Return true on the 4th Thursday of November (Thanksgiving)

Dates.dayofweek(x) == Dates.Thursday &&

Dates.dayofweekofmonth(x) == 4 &&

Dates.month(x) == Dates.November

end

2014-11-27

The Base.filter() method can be used to obtain all valid dates/moments in a specified range:

Pittsburgh street cleaning; Every 2nd Tuesday from April to November

Date range from January 1st, 2014 to January 1st, 2015

julia> dr = Dates.Date(2014):Dates.Date(2015);

julia> filter(dr) do x

Dates.dayofweek(x) == Dates.Tue &&

Dates.April <= Dates.month(x) <= Dates.Nov &&

27.7. PERIOD TYPES 273

Dates.dayofweekofmonth(x) == 2

end

8-element Array{Date,1}:

2014-04-08

2014-05-13

2014-06-10

2014-07-08

2014-08-12

2014-09-09

2014-10-14

2014-11-11

Additional examples and tests are available in test/dates/adjusters.jl.

27.7 Period Types

Periods are a human view of discrete, sometimes irregular durations of time. Consider 1 month; it could represent, in

days, a value of 28, 29, 30, or 31 depending on the year and month context. Or a year could represent 365 or 366

days in the case of a leap year. Period types are simple Int64wrappers and are constructed bywrapping any Int64

convertible type, i.e. Year(1) or Month(3.0). Arithmetic between Period of the same type behave like integers,

and limited Period-Real arithmetic is available.

julia> y1 = Dates.Year(1)

1 year

julia> y2 = Dates.Year(2)

2 years

julia> y3 = Dates.Year(10)

10 years

julia> y1 + y2

3 years

julia> div(y3,y2)

5

julia> y3 - y2

8 years

julia> y3 % y2

0 years

julia> div(y3,3) # mirrors integer division

3 years

27.8 Rounding

Date and DateTime values can be rounded to a specified resolution (e.g., 1 month or 15 minutes) with floor(),

ceil(), or round():

julia> floor(Date(1985, 8, 16), Dates.Month)

1985-08-01

https://github.com/JuliaLang/julia/blob/master/test/dates/adjusters.jl

274 CHAPTER 27. DATE AND DATETIME

julia> ceil(DateTime(2013, 2, 13, 0, 31, 20), Dates.Minute(15))

2013-02-13T00:45:00

julia> round(DateTime(2016, 8, 6, 20, 15), Dates.Day)

2016-08-07T00:00:00

Unlike the numeric round() method, which breaks ties toward the even number by default, the TimeTyperound()

method uses the RoundNearestTiesUp rounding mode. (It’s difficult to guess what breaking ties to nearest ”even”

TimeTypewould entail.) Further details on the available RoundingMode s can be found in the API reference.

Rounding should generally behave as expected, but there are a few cases in which the expected behaviour is not

obvious.

Rounding Epoch

In many cases, the resolution specified for rounding (e.g., Dates.Second(30)) divides evenly into the next largest pe-

riod (in this case, Dates.Minute(1)). But rounding behaviour in cases in which this is not true may lead to confusion.

What is the expected result of rounding a DateTime to the nearest 10 hours?

julia> round(DateTime(2016, 7, 17, 11, 55), Dates.Hour(10))

2016-07-17T12:00:00

That may seem confusing, given that the hour (12) is not divisible by 10. The reason that 2016-07-17T12:00:00

was chosen is that it is 17,676,660 hours after 0000-01-01T00:00:00, and 17,676,660 is divisible by 10.

As Julia Date and DateTime values are represented according to the ISO 8601 standard, 0000-01-01T00:00:00

was chosen as base (or ”rounding epoch”) from which to begin the count of days (and milliseconds) used in rounding

calculations. (Note that this differs slightly from Julia’s internal representation of Date s using Rata Die notation; but

since the ISO 8601 standard is most visible to the end user, 0000-01-01T00:00:00 was chosen as the rounding

epoch instead of the 0000-12-31T00:00:00 used internally to minimize confusion.)

The only exception to the use of 0000-01-01T00:00:00 as the rounding epoch iswhen rounding toweeks. Rounding

to the nearest week will always return a Monday (the first day of the week as specified by ISO 8601). For this reason,

we use 0000-01-03T00:00:00 (the first day of the first week of year 0000, as defined by ISO 8601) as the base

when rounding to a number of weeks.

Here is a related case in which the expected behaviour is not necessarily obvious: What happens when we round

to the nearest P(2), where P is a Period type? In some cases (specifically, when P <: Dates.TimePeriod) the

answer is clear:

julia> round(DateTime(2016, 7, 17, 8, 55, 30), Dates.Hour(2))

2016-07-17T08:00:00

julia> round(DateTime(2016, 7, 17, 8, 55, 30), Dates.Minute(2))

2016-07-17T08:56:00

This seems obvious, because two of each of these periods still divides evenly into the next larger order period. But in

the case of two months (which still divides evenly into one year), the answer may be surprising:

julia> round(DateTime(2016, 7, 17, 8, 55, 30), Dates.Month(2))

2016-07-01T00:00:00

27.8. ROUNDING 275

Why round to the first day in July, even though it is month 7 (an odd number)? The key is that months are 1-indexed

(the first month is assigned 1), unlike hours, minutes, seconds, and milliseconds (the first of which are assigned 0).

This means that rounding a DateTime to an even multiple of seconds, minutes, hours, or years (because the ISO 8601

specification includes a year zero) will result in a DateTimewith an even value in that field, while rounding a DateTime

to an even multiple of months will result in the months field having an odd value. Because both months and years may

contain an irregular number of days, whether rounding to an even number of days will result in an even value in the

days field is uncertain.

See the API reference for additional information on methods exported from the Dates module.

Chapter 28

InteractingWith Julia

Julia comes with a full-featured interactive command-line REPL (read-eval-print loop) built into the julia executable.

In addition to allowing quick and easy evaluation of Julia statements, it has a searchable history, tab-completion, many

helpful keybindings, and dedicated help and shell modes. The REPL can be started by simply calling julia with no

arguments or double-clicking on the executable:

$ julia

_

_ _ _(_)_ | A fresh approach to technical computing

(_) | (_) (_) | Documentation: https://docs.julialang.org

_ _ _| |_ __ _ | Type "?help" for help.

| | | | | | |/ _` | |

| | |_| | | | (_| | | Version 0.6.0-dev.2493 (2017-01-31 18:53 UTC)

_/ |__'_|_|_|__'_| | Commit c99e12c* (0 days old master)

|__/ | x86_64-linux-gnu

julia>

To exit the interactive session, type ^D – the control key together with the d key on a blank line – or type quit()

followed by the return or enter key. The REPL greets you with a banner and a julia> prompt.

28.1 The different prompt modes

The Julian mode

The REPL has four main modes of operation. The first and most common is the Julian prompt. It is the default mode of

operation; each new line initially starts with julia>. It is here that you can enter Julia expressions. Hitting return or

enter after a complete expression has been entered will evaluate the entry and show the result of the last expression.

julia> string(1 + 2)

"3"

There are a number useful features unique to interactive work. In addition to showing the result, the REPL also binds

the result to the variable ans. A trailing semicolon on the line can be used as a flag to suppress showing the result.

julia> string(3 * 4);

julia> ans

"12"

277

278 CHAPTER 28. INTERACTINGWITH JULIA

In Julia mode, the REPL supports something called prompt pasting. This activates when pasting text that starts with

julia>  into the REPL. In that case, only expressions starting with julia>  are parsed, others are removed. This

makes it is possible to paste a chunk of code that has been copied from a REPL session without having to scrub away

prompts and outputs. This feature is enabled by default but can be disabled or enabled at will with Base.REPL.en-

able_promptpaste(::Bool). If it is enabled, you can try it out by pasting the code block above this paragraph

straight into the REPL. This feature does not work on the standardWindows command prompt due to its limitation at

detecting when a paste occurs.

Help mode

When the cursor is at the beginning of the line, the prompt can be changed to a help mode by typing ?. Julia will

attempt to print help or documentation for anything entered in help mode:

julia> ? # upon typing ?, the prompt changes (in place) to: help?>

help?> string

search: string String stringmime Cstring Cwstring RevString readstring randstring bytestring

SubString↪→

string(xs...)

Create a string from any values using the print function.

Macros, types and variables can also be queried:

help?> @time

@time

A macro to execute an expression, printing the time it took to execute, the number of

allocations,

and the total number of bytes its execution caused to be allocated, before returning the value

of the

expression.

See also @timev, @timed, @elapsed, and @allocated.

help?> AbstractString

search: AbstractString AbstractSparseMatrix AbstractSparseVector AbstractSet

No documentation found.

Summary:

abstract AbstractString <: Any

Subtypes:

Base.Test.GenericString

DirectIndexString

String

Help mode can be exited by pressing backspace at the beginning of the line.

28.2. KEY BINDINGS 279

Shell mode

Just as help mode is useful for quick access to documentation, another common task is to use the system shell to

execute system commands. Just as ? entered help mode when at the beginning of the line, a semicolon (;) will enter

the shell mode. And it can be exited by pressing backspace at the beginning of the line.

julia> ; # upon typing ;, the prompt changes (in place) to: shell>

shell> echo hello

hello

Search modes

In all of the abovemodes, the executed lines get saved to a historyfile, which can be searched. To initiate an incremental

search through the previous history, type ^R – the control key together with the r key. The prompt will change to

(reverse-i-search)`':, and as you type the search query will appear in the quotes. The most recent result that

matches the query will dynamically update to the right of the colon as more is typed. To find an older result using the

same query, simply type ^R again.

Just as ^R is a reverse search, ^S is a forward search, with the prompt (i-search)`':. The two may be used in

conjunction with each other to move through the previous or next matching results, respectively.

28.2 Key bindings

The Julia REPLmakes great use of key bindings. Several control-key bindingswere already introduced above (^D to exit,

^R and ^S for searching), but there are many more. In addition to the control-key, there are also meta-key bindings.

These vary more by platform, but most terminals default to using alt- or option- held down with a key to send the

meta-key (or can be configured to do so).

Customizing keybindings

Julia’s REPL keybindings may be fully customized to a user’s preferences by passing a dictionary to REPL.setup_in-

terface(). The keys of this dictionary may be characters or strings. The key '*' refers to the default action.

Control plus character x bindings are indicated with "^x". Meta plus x can be written "\\Mx". The values of the

custom keymap must be nothing (indicating that the input should be ignored) or functions that accept the signa-

ture (PromptState, AbstractREPL, Char). The REPL.setup_interface() function must be called before

the REPL is initialized, by registering the operation with atreplinit(). For example, to bind the up and down arrow

keys to move through history without prefix search, one could put the following code in .juliarc.jl:

import Base: LineEdit, REPL

const mykeys = Dict{Any,Any}(

Up Arrow

"\e[A" => (s,o...)->(LineEdit.edit_move_up(s) || LineEdit.history_prev(s,

LineEdit.mode(s).hist)),↪→

Down Arrow

"\e[B" => (s,o...)->(LineEdit.edit_move_up(s) || LineEdit.history_next(s,

LineEdit.mode(s).hist))↪→

)

function customize_keys(repl)

repl.interface = REPL.setup_interface(repl; extra_repl_keymap = mykeys)

end

280 CHAPTER 28. INTERACTINGWITH JULIA

Keybinding Description

Program control

^D Exit (when buffer is empty)

^C Interrupt or cancel

^L Clear console screen

Return/Enter, ^J New line, executing if it is complete

meta-Return/Enter Insert new line without executing it

? or ; Enter help or shell mode (when at start of a line)

^R, ^S Incremental history search, described above

Cursor movement

Right arrow, ^F Move right one character

Left arrow, ^B Move left one character

Home, ^A Move to beginning of line

End, ^E Move to end of line

^P Change to the previous or next history entry

^N Change to the next history entry

Up arrow Move up one line (or to the previous history entry)

Down arrow Move down one line (or to the next history entry)

Page-up Change to the previous history entry that matches the text before the cursor

Page-down Change to the next history entry that matches the text before the cursor

meta-F Move right one word

meta-B Move left one word

Editing

Backspace, ^H Delete the previous character

Delete, ^D Forward delete one character (when buffer has text)

meta-Backspace Delete the previous word

meta-D Forward delete the next word

^W Delete previous text up to the nearest whitespace

^K ”Kill” to end of line, placing the text in a buffer

^Y ”Yank” insert the text from the kill buffer

^T Transpose the characters about the cursor

^Q Write a number in REPL and press ^Q to open editor at corresponding stackframe

atreplinit(customize_keys)

Users should refer to base/LineEdit.jl to discover the available actions on key input.

28.3 Tab completion

In both the Julian and help modes of the REPL, one can enter the first few characters of a function or type and then

press the tab key to get a list all matches:

julia> stri[TAB]

stride strides string stringmime strip

julia> Stri[TAB]

StridedArray StridedMatrix StridedVecOrMat StridedVector String

28.3. TAB COMPLETION 281

The tab key can also be used to substitute LaTeX math symbols with their Unicode equivalents, and get a list of LaTeX

matches as well:

julia> \pi[TAB]

julia> π

π = 3.1415926535897...

julia> e_1[TAB] = [1,0]

julia> e = [1,0]

2-element Array{Int64,1}:

1

0

julia> e\^1[TAB] = [1 0]

julia> e¹ = [1 0]

1×2 Array{Int64,2}:

1 0

julia> \sqrt[TAB]2 # √ is equivalent to the sqrt() function

julia> √2

1.4142135623730951

julia> \hbar[TAB](h) = h / 2\pi[TAB]

julia> ħ(h) = h / 2π

ħ (generic function with 1 method)

julia> \h[TAB]

\hat \hermitconjmatrix \hkswarow \hrectangle

\hatapprox \hexagon \hookleftarrow \hrectangleblack

\hbar \hexagonblack \hookrightarrow \hslash

\heartsuit \hksearow \house \hspace

julia> α="\alpha[TAB]" # LaTeX completion also works in strings

julia> α="α"

A full list of tab-completions can be found in the Unicode Input section of the manual.

Completion of paths works for strings and julia’s shell mode:

julia> path="/[TAB]"

.dockerenv .juliabox/ boot/ etc/ lib/ media/ opt/ root/

sbin/ sys/ usr/↪→

.dockerinit bin/ dev/ home/ lib64/ mnt/ proc/ run/

srv/ tmp/ var/↪→

shell> /[TAB]

.dockerenv .juliabox/ boot/ etc/ lib/ media/ opt/ root/

sbin/ sys/ usr/↪→

.dockerinit bin/ dev/ home/ lib64/ mnt/ proc/ run/

srv/ tmp/ var/↪→

Tab completion can help with investigation of the available methods matching the input arguments:

julia> max([TAB] # All methods are displayed, not shown here due to size of the list

282 CHAPTER 28. INTERACTINGWITH JULIA

julia> max([1, 2], [TAB] # All methods where `Vector{Int}` matches as first argument

max(x, y) in Base at operators.jl:215

max(a, b, c, xs...) in Base at operators.jl:281

julia> max([1, 2], max(1, 2), [TAB] # All methods matching the arguments.

max(x, y) in Base at operators.jl:215

max(a, b, c, xs...) in Base at operators.jl:281

Keywords are also displayed in the suggested methods, see second line after ; where limit and keep are keyword

arguments:

julia> split("1 1 1", [TAB]

split(str::AbstractString) in Base at strings/util.jl:278

split{T<:AbstractString}(str::T, splitter; limit, keep) in Base at strings/util.jl:254

The completion of themethods uses type inference and can therefore see if the argumentsmatch even if the arguments

are output from functions. The function needs to be type stable for the completion to be able to remove non-matching

methods.

Tab completion can also help completing fields:

julia> Pkg.a[TAB]

add available

Fields for output from functions can also be completed:

julia> split("","")[1].[TAB]

endof offset string

The completion of fields for output from functions uses type inference, and it can only suggest fields if the function is

type stable.

28.4 Customizing Colors

The colors used by Julia and the REPL can be customized, as well. To change the color of the Julia prompt you can add

something like the following to your .juliarc.jl file, which is to be placed inside your home directory:

function customize_colors(repl)

repl.prompt_color = Base.text_colors[:cyan]

end

atreplinit(customize_colors)

The available color keys can be seen by typing Base.text_colors in the help mode of the REPL. In addition, the

integers 0 to 255 can be used as color keys for terminals with 256 color support.

You can also change the colors for the help and shell prompts and input and answer text by setting the appropriate

field of repl in the customize_colors function above (respectively, help_color, shell_color, input_color,

and answer_color). For the latter two, be sure that the envcolors field is also set to false.

It is also possible to apply boldface formatting by using Base.text_colors[:bold] as a color. For instance, to print

answers in boldface font, one can use the following as a .juliarc.jl:

28.4. CUSTOMIZING COLORS 283

function customize_colors(repl)

repl.envcolors = false

repl.answer_color = Base.text_colors[:bold]

end

atreplinit(customize_colors)

You can also customize the color used to render warning and informational messages by setting the appropriate envi-

ronment variables. For instance, to render error, warning, and informational messages respectively in magenta, yellow,

and cyan you can add the following to your .juliarc.jl file:

ENV["JULIA_ERROR_COLOR"] = :magenta

ENV["JULIA_WARN_COLOR"] = :yellow

ENV["JULIA_INFO_COLOR"] = :cyan

Chapter 29

Running External Programs

Julia borrows backtick notation for commands from the shell, Perl, and Ruby. However, in Julia, writing

julia> `echo hello`

`echo hello`

differs in several aspects from the behavior in various shells, Perl, or Ruby:

• Instead of immediately running the command, backticks create a Cmd object to represent the command. You

can use this object to connect the command to others via pipes, run it, and read or write to it.

• When the command is run, Julia does not capture its output unless you specifically arrange for it to. Instead,

the output of the command by default goes to STDOUT as it would using libc’s system call.

• The command is never run with a shell. Instead, Julia parses the command syntax directly, appropriately inter-

polating variables and splitting on words as the shell would, respecting shell quoting syntax. The command is

run as julia’s immediate child process, using fork and exec calls.

Here’s a simple example of running an external program:

julia> mycommand = `echo hello`

`echo hello`

julia> typeof(mycommand)

Cmd

julia> run(mycommand)

hello

The hello is the output of the echo command, sent to STDOUT. The run method itself returns nothing, and throws

an ErrorException if the external command fails to run successfully.

If you want to read the output of the external command, readstring() can be used instead:

julia> a = readstring(`echo hello`)

"hello\n"

julia> chomp(a) == "hello"

true

285

286 CHAPTER 29. RUNNING EXTERNAL PROGRAMS

More generally, you can use open() to read from or write to an external command.

julia> open(`less`, "w", STDOUT) do io

for i = 1:3

println(io, i)

end

end

1

2

3

29.1 Interpolation

Suppose you want to do something a bit more complicated and use the name of a file in the variable file as an

argument to a command. You can use $ for interpolation much as you would in a string literal (see Strings):

julia> file = "/etc/passwd"

"/etc/passwd"

julia> `sort $file`

`sort /etc/passwd`

A common pitfall when running external programs via a shell is that if a file name contains characters that are special

to the shell, they may cause undesirable behavior. Suppose, for example, rather than /etc/passwd, we wanted to

sort the contents of the file /Volumes/External HD/data.csv. Let’s try it:

julia> file = "/Volumes/External HD/data.csv"

"/Volumes/External HD/data.csv"

julia> `sort $file`

`sort '/Volumes/External HD/data.csv'`

Howdid the file name get quoted? Julia knows that file is meant to be interpolated as a single argument, so it quotes

the word for you. Actually, that is not quite accurate: the value of file is never interpreted by a shell, so there’s no

need for actual quoting; the quotes are inserted only for presentation to the user. This will evenwork if you interpolate

a value as part of a shell word:

julia> path = "/Volumes/External HD"

"/Volumes/External HD"

julia> name = "data"

"data"

julia> ext = "csv"

"csv"

julia> `sort $path/$name.$ext`

`sort '/Volumes/External HD/data.csv'`

As you can see, the space in the path variable is appropriately escaped. But what if you want to interpolate multiple

words? In that case, just use an array (or any other iterable container):

29.2. QUOTING 287

julia> files = ["/etc/passwd","/Volumes/External HD/data.csv"]

2-element Array{String,1}:

"/etc/passwd"

"/Volumes/External HD/data.csv"

julia> `grep foo $files`

`grep foo /etc/passwd '/Volumes/External HD/data.csv'`

If you interpolate an array as part of a shell word, Julia emulates the shell’s {a,b,c} argument generation:

julia> names = ["foo","bar","baz"]

3-element Array{String,1}:

"foo"

"bar"

"baz"

julia> `grep xylophone $names.txt`

`grep xylophone foo.txt bar.txt baz.txt`

Moreover, if you interpolate multiple arrays into the same word, the shell’s Cartesian product generation behavior is

emulated:

julia> names = ["foo","bar","baz"]

3-element Array{String,1}:

"foo"

"bar"

"baz"

julia> exts = ["aux","log"]

2-element Array{String,1}:

"aux"

"log"

julia> `rm -f $names.$exts`

`rm -f foo.aux foo.log bar.aux bar.log baz.aux baz.log`

Since you can interpolate literal arrays, you can use this generative functionality without needing to create temporary

array objects first:

julia> `rm -rf $["foo","bar","baz","qux"].$["aux","log","pdf"]`

`rm -rf foo.aux foo.log foo.pdf bar.aux bar.log bar.pdf baz.aux baz.log baz.pdf qux.aux qux.log

qux.pdf`↪→

29.2 Quoting

Inevitably, one wants to write commands that aren’t quite so simple, and it becomes necessary to use quotes. Here’s

a simple example of a Perl one-liner at a shell prompt:

sh$ perl -le '$|=1; for (0..3) { print }'

0

1

2

3

288 CHAPTER 29. RUNNING EXTERNAL PROGRAMS

The Perl expression needs to be in single quotes for two reasons: so that spaces don’t break the expression into

multiple shell words, and so that uses of Perl variables like $| (yes, that’s the name of a variable in Perl), don’t cause

interpolation. In other instances, you may want to use double quotes so that interpolation does occur:

sh$ first="A"

sh$ second="B"

sh$ perl -le '$|=1; print for @ARGV' "1: $first" "2: $second"

1: A

2: B

In general, the Julia backtick syntax is carefully designed so that you can just cut-and-paste shell commands as is into

backticks and they will work: the escaping, quoting, and interpolation behaviors are the same as the shell’s. The only

difference is that the interpolation is integrated and aware of Julia’s notion of what is a single string value, and what is

a container for multiple values. Let’s try the above two examples in Julia:

julia> A = `perl -le '$|=1; for (0..3) { print }'`

`perl -le '$|=1; for (0..3) { print }'`

julia> run(A)

0

1

2

3

julia> first = "A"; second = "B";

julia> B = `perl -le 'print for @ARGV' "1: $first" "2: $second"`

`perl -le 'print for @ARGV' '1: A' '2: B'`

julia> run(B)

1: A

2: B

The results are identical, and Julia’s interpolation behavior mimics the shell’s with some improvements due to the fact

that Julia supports first-class iterable objects while most shells use strings split on spaces for this, which introduces

ambiguities. When trying to port shell commands to Julia, try cut and pasting first. Since Julia shows commands to

you before running them, you can easily and safely just examine its interpretation without doing any damage.

29.3 Pipelines

Shell metacharacters, such as |, &, and >, need to be quoted (or escaped) inside of Julia’s backticks:

julia> run(`echo hello '|' sort`)

hello | sort

julia> run(`echo hello \| sort`)

hello | sort

This expression invokes the echo command with three words as arguments: hello, |, and sort. The result is that

a single line is printed: hello | sort. How, then, does one construct a pipeline? Instead of using '|' inside of

backticks, one uses pipeline():

julia> run(pipeline(`echo hello`, `sort`))

hello

29.3. PIPELINES 289

This pipes the output of the echo command to the sort command. Of course, this isn’t terribly interesting since

there’s only one line to sort, but we can certainly do much more interesting things:

julia> run(pipeline(`cut -d: -f3 /etc/passwd`, `sort -n`, `tail -n5`))

210

211

212

213

214

This prints the highest five user IDs on a UNIX system. The cut, sort and tail commands are all spawned as

immediate children of the current julia process, with no intervening shell process. Julia itself does the work to setup

pipes and connect file descriptors that is normally done by the shell. Since Julia does this itself, it retains better control

and can do some things that shells cannot.

Julia can run multiple commands in parallel:

julia> run(`echo hello` & `echo world`)

world

hello

The order of the output here is non-deterministic because the two echo processes are started nearly simultaneously,

and race to make the first write to the STDOUT descriptor they share with each other and the julia parent process.

Julia lets you pipe the output from both of these processes to another program:

julia> run(pipeline(`echo world` & `echo hello`, `sort`))

hello

world

In terms of UNIX plumbing, what’s happening here is that a single UNIX pipe object is created and written to by both

echo processes, and the other end of the pipe is read from by the sort command.

IO redirection can be accomplished by passing keyword arguments stdin, stdout, and stderr to the pipeline function:

pipeline(`do_work`, stdout=pipeline(`sort`, "out.txt"), stderr="errs.txt")

Avoiding Deadlock in Pipelines

When reading and writing to both ends of a pipeline from a single process, it is important to avoid forcing the kernel

to buffer all of the data.

For example, when reading all of the output from a command, call readstring(out), not wait(process), since the

former will actively consume all of the data written by the process, whereas the latter will attempt to store the data in

the kernel’s buffers while waiting for a reader to be connected.

Another common solution is to separate the reader and writer of the pipeline into separate Tasks:

writer = @async writeall(process, "data")

reader = @async do_compute(readstring(process))

wait(process)

fetch(reader)

290 CHAPTER 29. RUNNING EXTERNAL PROGRAMS

Complex Example

The combination of a high-level programming language, a first-class command abstraction, and automatic setup of

pipes between processes is a powerful one. To give some sense of the complex pipelines that can be created easily,

here are some more sophisticated examples, with apologies for the excessive use of Perl one-liners:

julia> prefixer(prefix, sleep) = `perl -nle '$|=1; print "'$prefix' ", $_; sleep '$sleep';'`;

julia> run(pipeline(`perl -le '$|=1; for(0..9){ print; sleep 1 }'`, prefixer("A",2) &

prefixer("B",2)))↪→

A 0

B 1

A 2

B 3

A 4

B 5

A 6

B 7

A 8

B 9

This is a classic example of a single producer feeding two concurrent consumers: one perl process generates lines

with the numbers 0 through 9 on them, while two parallel processes consume that output, one prefixing lines with the

letter ”A”, the other with the letter ”B”. Which consumer gets the first line is non-deterministic, but once that race has

been won, the lines are consumed alternately by one process and then the other. (Setting $|=1 in Perl causes each

print statement to flush the STDOUT handle, which is necessary for this example to work. Otherwise all the output is

buffered and printed to the pipe at once, to be read by just one consumer process.)

Here is an even more complex multi-stage producer-consumer example:

julia> run(pipeline(`perl -le '$|=1; for(0..9){ print; sleep 1 }'`,

prefixer("X",3) & prefixer("Y",3) & prefixer("Z",3),

prefixer("A",2) & prefixer("B",2)))

A X 0

B Y 1

A Z 2

B X 3

A Y 4

B Z 5

A X 6

B Y 7

A Z 8

B X 9

This example is similar to the previous one, except there are two stages of consumers, and the stages have different

latency so they use a different number of parallel workers, to maintain saturated throughput.

We strongly encourage you to try all these examples to see how they work.

Chapter 30

Calling C and Fortran Code

Thoughmost code can bewritten in Julia, there aremanyhigh-quality, mature libraries for numerical computing already

written in C and Fortran. To allow easy use of this existing code, Julia makes it simple and efficient to call C and Fortran

functions. Julia has a ”no boilerplate” philosophy: functions can be called directly from Julia without any ”glue” code,

code generation, or compilation – even from the interactive prompt. This is accomplished just bymaking an appropriate

call with ccall syntax, which looks like an ordinary function call.

The code to be called must be available as a shared library. Most C and Fortran libraries ship compiled as shared

libraries already, but if you are compiling the code yourself using GCC (or Clang), you will need to use the -shared

and -fPIC options. The machine instructions generated by Julia’s JIT are the same as a native C call would be, so the

resulting overhead is the same as calling a library function from C code. (Non-library function calls in both C and Julia

can be inlined and thus may have even less overhead than calls to shared library functions. When both libraries and

executables are generated by LLVM, it is possible to perform whole-program optimizations that can even optimize

across this boundary, but Julia does not yet support that. In the future, however, it may do so, yielding even greater

performance gains.)

Shared libraries and functions are referenced by a tuple of the form (:function, "library") or ("function",

"library") where function is the C-exported function name. library refers to the shared library name: shared

libraries available in the (platform-specific) load path will be resolved by name, and if necessary a direct path may be

specified.

A function name may be used alone in place of the tuple (just :function or "function"). In this case the name is

resolved within the current process. This form can be used to call C library functions, functions in the Julia runtime,

or functions in an application linked to Julia.

By default, Fortran compilers generatemangled names (for example, converting function names to lowercase or upper-

case, often appending an underscore), and so to call a Fortran function via ccall you must pass the mangled identifier

corresponding to the rule followed by your Fortran compiler. Also, when calling a Fortran function, all inputs must be

passed by reference.

Finally, you can use ccall to actually generate a call to the library function. Arguments to ccall are as follows:

1. A (:function, "library") pair, which must be written as a literal constant,

OR

a function pointer (for example, from dlsym).

2. Return type (see below for mapping the declared C type to Julia)

– This argument will be evaluated at compile-time, when the containing method is defined.

291

https://en.wikipedia.org/wiki/Name_mangling#Fortran

292 CHAPTER 30. CALLING C AND FORTRAN CODE

3. A tuple of input types. The input types must be written as a literal tuple, not a tuple-valued variable or expres-

sion.

– This argument will be evaluated at compile-time, when the containing method is defined.

4. The following arguments, if any, are the actual argument values passed to the function.

As a complete but simple example, the following calls the clock function from the standard C library:

julia> t = ccall((:clock, "libc"), Int32, ())

2292761

julia> t

2292761

julia> typeof(ans)

Int32

clock takes no arguments and returns an Int32. One common gotcha is that a 1-tuple must be writtenwith a trailing

comma. For example, to call the getenv function to get a pointer to the value of an environment variable, one makes

a call like this:

julia> path = ccall((:getenv, "libc"), Cstring, (Cstring,), "SHELL")

Cstring(@0x00007fff5fbffc45)

julia> unsafe_string(path)

"/bin/bash"

Note that the argument type tuplemust bewritten as(Cstring,), rather than(Cstring). This is because(Cstring)

is just the expression Cstring surrounded by parentheses, rather than a 1-tuple containing Cstring:

julia> (Cstring)

Cstring

julia> (Cstring,)

(Cstring,)

In practice, especially when providing reusable functionality, one generally wraps ccall uses in Julia functions that

set up arguments and then check for errors in whatever manner the C or Fortran function indicates them, propagating

to the Julia caller as exceptions. This is especially important since C and Fortran APIs are notoriously inconsistent

about how they indicate error conditions. For example, the getenv C library function is wrapped in the following Julia

function, which is a simplified version of the actual definition from env.jl:

function getenv(var::AbstractString)

val = ccall((:getenv, "libc"),

Cstring, (Cstring,), var)

if val == C_NULL

error("getenv: undefined variable: ", var)

end

unsafe_string(val)

end

https://github.com/JuliaLang/julia/blob/master/base/env.jl

30.1. CREATING C-COMPATIBLE JULIA FUNCTION POINTERS 293

The C getenv function indicates an error by returning NULL, but other standard C functions indicate errors in various

different ways, including by returning -1, 0, 1 and other special values. This wrapper throws an exception clearly

indicating the problem if the caller tries to get a non-existent environment variable:

julia> getenv("SHELL")

"/bin/bash"

julia> getenv("FOOBAR")

getenv: undefined variable: FOOBAR

Here is a slightly more complex example that discovers the local machine’s hostname:

function gethostname()

hostname = Vector{UInt8}(128)

ccall((:gethostname, "libc"), Int32,

(Ptr{UInt8}, Csize_t),

hostname, sizeof(hostname))

hostname[end] = 0; # ensure null-termination

return unsafe_string(pointer(hostname))

end

This example first allocates an array of bytes, then calls the C library function gethostname to fill the array in with

the hostname, takes a pointer to the hostname buffer, and converts the pointer to a Julia string, assuming that it is a

NUL-terminated C string. It is common for C libraries to use this pattern of requiring the caller to allocate memory to

be passed to the callee and filled in. Allocation of memory from Julia like this is generally accomplished by creating

an uninitialized array and passing a pointer to its data to the C function. This is why we don’t use the Cstring type

here: as the array is uninitialized, it could contain NUL bytes. Converting to a Cstring as part of the ccall checks

for contained NUL bytes and could therefore throw a conversion error.

30.1 Creating C-Compatible Julia Function Pointers

It is possible to pass Julia functions to native C functions that accept function pointer arguments. For example, to

match C prototypes of the form:

typedef returntype (*functiontype)(argumenttype,...)

The function cfunction() generates the C-compatible function pointer for a call to a Julia library function. Argu-

ments to cfunction() are as follows:

1. A Julia Function

2. Return type

3. A tuple of input types

A classic example is the standard C library qsort function, declared as:

void qsort(void *base, size_t nmemb, size_t size,

int(*compare)(const void *a, const void *b));

The base argument is a pointer to an array of length nmemb, with elements of size bytes each. compare is a callback

functionwhich takes pointers to two elements a and b and returns an integer less/greater than zero if a should appear

before/after b (or zero if any order is permitted). Now, suppose that we have a 1d array A of values in Julia that we

want to sort using the qsort function (rather than Julia’s built-in sort function). Beforeweworry about calling qsort

and passing arguments, we need to write a comparison function that works for some arbitrary type T:

294 CHAPTER 30. CALLING C AND FORTRAN CODE

julia> function mycompare(a::T, b::T) where T

return convert(Cint, a < b ? -1 : a > b ? +1 : 0)::Cint

end

mycompare (generic function with 1 method)

Notice that we have to be careful about the return type: qsort expects a function returning a C int, so we must be

sure to return Cint via a call to convert and a typeassert.

In order to pass this function to C, we obtain its address using the function cfunction:

julia> const mycompare_c = cfunction(mycompare, Cint, (Ref{Cdouble}, Ref{Cdouble}));

cfunction() accepts three arguments: the Julia function (mycompare), the return type (Cint), and a tuple of the

argument types, in this case to sort an array of Cdouble (Float64) elements.

The final call to qsort looks like this:

julia> A = [1.3, -2.7, 4.4, 3.1]

4-element Array{Float64,1}:

1.3

-2.7

4.4

3.1

julia> ccall(:qsort, Void, (Ptr{Cdouble}, Csize_t, Csize_t, Ptr{Void}),

A, length(A), sizeof(eltype(A)), mycompare_c)

julia> A

4-element Array{Float64,1}:

-2.7

1.3

3.1

4.4

As can be seen, A is changed to the sorted array [-2.7, 1.3, 3.1, 4.4]. Note that Julia knows how to convert

an array into a Ptr{Cdouble}, how to compute the size of a type in bytes (identical to C’s sizeof operator), and so

on. For fun, try inserting a println("mycompare($a,$b)") line into mycompare, which will allow you to see the

comparisons that qsort is performing (and to verify that it is really calling the Julia function that you passed to it).

30.2 Mapping C Types to Julia

It is critical to exactlymatch the declared C typewith its declaration in Julia. Inconsistencies can cause code thatworks

correctly on one system to fail or produce indeterminate results on a different system.

Note that no C header files are used anywhere in the process of calling C functions: you are responsible for making

sure that your Julia types and call signatures accurately reflect those in the C header file. (The Clang package can be

used to auto-generate Julia code from a C header file.)

Auto-conversion:

Julia automatically inserts calls to the Base.cconvert() function to convert each argument to the specified type.

For example, the following call:

ccall((:foo, "libfoo"), Void, (Int32, Float64), x, y)

will behave as if the following were written:

https://github.com/ihnorton/Clang.jl

30.2. MAPPING C TYPES TO JULIA 295

ccall((:foo, "libfoo"), Void, (Int32, Float64),

Base.unsafe_convert(Int32, Base.cconvert(Int32, x)),

Base.unsafe_convert(Float64, Base.cconvert(Float64, y)))

Base.cconvert() normally just calls convert(), but can be defined to return an arbitrary new object more appro-

priate for passing to C. For example, this is used to convert an Array of objects (e.g. strings) to an array of pointers.

Base.unsafe_convert() handles conversion to Ptr types. It is considered unsafe because converting an object to

a native pointer can hide the object from the garbage collector, causing it to be freed prematurely.

Type Correspondences:

First, a review of some relevant Julia type terminology:

Syntax /

Keyword

Example Description

mutable

struct

String ”Leaf Type” :: A group of related data that includes a type-tag, is managed by

the Julia GC, and is defined by object-identity. The type parameters of a leaf

type must be fully defined (no TypeVars are allowed) in order for the

instance to be constructed.

ab-

stract

type

Any, Abstrac-

tArray{T, N},

Complex{T}

”Super Type” :: A super-type (not a leaf-type) that cannot be instantiated, but

can be used to describe a group of types.

T{A} Vector{Int} ”Type Parameter” :: A specialization of a type (typically used for dispatch or

storage optimization).

”TypeVar” :: The T in the type parameter declaration is referred to as a

TypeVar (short for type variable).

primi-

tive

type

Int, Float64 ”Primitive Type” :: A type with no fields, but a size. It is stored and defined

by-value.

struct Pair{Int, Int} ”Struct” :: A type with all fields defined to be constant. It is defined by-value,

and may be stored with a type-tag.

Complex128

(isbits)

”Is-Bits” :: A primitive type, or a struct type where all fields are other

isbits types. It is defined by-value, and is stored without a type-tag.

struct

...;

end

nothing ”Singleton” :: a Leaf Type or Struct with no fields.

(...) or

tu-

ple(...)

(1, 2, 3) ”Tuple” :: an immutable data-structure similar to an anonymous struct type,

or a constant array. Represented as either an array or a struct.

Bits Types:

There are several special types to be aware of, as no other type can be defined to behave the same:

• Float32

Exactly corresponds to the float type in C (or REAL*4 in Fortran).

• Float64

Exactly corresponds to the double type in C (or REAL*8 in Fortran).

296 CHAPTER 30. CALLING C AND FORTRAN CODE

• Complex64

Exactly corresponds to the complex float type in C (or COMPLEX*8 in Fortran).

• Complex128

Exactly corresponds to the complex double type in C (or COMPLEX*16 in Fortran).

• Signed

Exactly corresponds to the signed type annotation in C (or any INTEGER type in Fortran). Any Julia type that

is not a subtype of Signed is assumed to be unsigned.

• Ref{T}

Behaves like a Ptr{T} that can manage its memory via the Julia GC.

• Array{T,N}

When an array is passed to C as a Ptr{T} argument, it is not reinterpret-cast: Julia requires that the element

type of the array matches T, and the address of the first element is passed.

Therefore, if an Array contains data in the wrong format, it will have to be explicitly converted using a call such

as trunc(Int32, a).

To pass an array A as a pointer of a different type without converting the data beforehand (for example, to

pass a Float64 array to a function that operates on uninterpreted bytes), you can declare the argument as

Ptr{Void}.

If an array of eltype Ptr{T} is passed as a Ptr{Ptr{T}} argument, Base.cconvert() will attempt to first

make a null-terminated copy of the arraywith each element replaced by its Base.cconvert() version. This al-

lows, for example, passing anargv pointer arrayof typeVector{String} to an argument of typePtr{Ptr{Cchar}}.

On all systemswe currently support, basic C/C++ value types may be translated to Julia types as follows. Every C type

also has a corresponding Julia type with the same name, prefixed by C. This can help for writing portable code (and

remembering that an int in C is not the same as an Int in Julia).

System Independent:

The Cstring type is essentially a synonym for Ptr{UInt8}, except the conversion to Cstring throws an error if

the Julia string contains any embedded NUL characters (which would cause the string to be silently truncated if the C

routine treats NUL as the terminator). If you are passing a char* to a C routine that does not assume NUL termination

(e.g. because you pass an explicit string length), or if you know for certain that your Julia string does not contain NUL

and want to skip the check, you can use Ptr{UInt8} as the argument type. Cstring can also be used as the ccall

return type, but in that case it obviously does not introduce any extra checks and is only meant to improve readability

of the call.

System-dependent:

Note

When calling a Fortran function, all inputs must be passed by reference, so all type correspondences

above should contain an additional Ptr{..} or Ref{..} wrapper around their type specification.

Warning

For string arguments (char*) the Julia type should be Cstring (if NUL- terminated data is expected)

or either Ptr{Cchar} or Ptr{UInt8} otherwise (these two pointer types have the same effect), as

described above, not String. Similarly, for array arguments (T[] or T*), the Julia type should again be

Ptr{T}, not Vector{T}.

30.2. MAPPING C TYPES TO JULIA 297

Warning

Julia’s Char type is 32 bits, which is not the same as the wide character type (wchar_t or wint_t) on

all platforms.

Warning

A return type of Union{}means the function will not return i.e. C++11 [[noreturn]] or C11 _Nore-

turn (e.g. jl_throw or longjmp). Do not use this for functions that return no value (void) but do

return, use Void instead.

Note

For wchar_t* arguments, the Julia type should be Cwstring (if the C routine expects a NUL-terminated

string) orPtr{Cwchar_t} otherwise. Note also thatUTF-8 string data in Julia is internallyNUL-terminated,

so it can be passed to C functions expecting NUL-terminated data without making a copy (but using the

Cwstring type will cause an error to be thrown if the string itself contains NUL characters).

Note

C functions that take an argument of the type char** can be called by using a Ptr{Ptr{UInt8}} type

within Julia. For example, C functions of the form:

int main(int argc, char **argv);

can be called via the following Julia code:

argv = ["a.out", "arg1", "arg2"]

ccall(:main, Int32, (Int32, Ptr{Ptr{UInt8}}), length(argv), argv)

Note

A C function declared to return Voidwill return the value nothing in Julia.

Struct Type correspondences

Composite types, aka struct in C or TYPE in Fortran90 (or STRUCTURE / RECORD in some variants of F77), can be

mirrored in Julia by creating a struct definition with the same field layout.

When used recursively, isbits types are stored inline. All other types are stored as a pointer to the data. When

mirroring a struct used by-value inside another struct in C, it is imperative that you do not attempt to manually copy

the fields over, as this will not preserve the correct field alignment. Instead, declare an isbits struct type and use

that instead. Unnamed structs are not possible in the translation to Julia.

Packed structs and union declarations are not supported by Julia.

You can get a near approximation of a union if you know, a priori, the field that will have the greatest size (potentially

including padding). When translating your fields to Julia, declare the Julia field to be only of that type.

Arrays of parameters can be expressed with NTuple:

in C:

struct B {

int A[3];

};

b_a_2 = B.A[2];

in Julia:

298 CHAPTER 30. CALLING C AND FORTRAN CODE

struct B

A::NTuple{3, CInt}

end

b_a_2 = B.A[3] # note the difference in indexing (1-based in Julia, 0-based in C)

Arrays of unknown size (C99-compliant variable length structs specified by [] or [0]) are not directly supported. Of-

ten the best way to deal with these is to deal with the byte offsets directly. For example, if a C library declared a proper

string type and returned a pointer to it:

struct String {

int strlen;

char data[];

};

In Julia, we can access the parts independently to make a copy of that string:

str = from_c::Ptr{Void}

len = unsafe_load(Ptr{Cint}(str))

unsafe_string(str + Core.sizeof(Cint), len)

Type Parameters

The type arguments to ccall are evaluated statically, when the method containing the ccall is defined. They therefore

must take the form of a literal tuple, not a variable, and cannot reference local variables.

This may sound like a strange restriction, but remember that since C is not a dynamic language like Julia, its functions

can only accept argument types with a statically-known, fixed signature.

However, while the type layout must be known statically to compute the ccall ABI, the static parameters of the

function are considered to be part of this static environment. The static parameters of the functionmaybe used as type

parameters in the ccall signature, as long as they don’t affect the layout of the type. For example, f(x::T) where

{T} = ccall(:valid, Ptr{T}, (Ptr{T},), x) is valid, since Ptr is always a word-size primitive type. But,

g(x::T) where {T} = ccall(:notvalid, T, (T,), x) is not valid, since the type layout of T is not known

statically.

SIMDValues

Note: This feature is currently implemented on 64-bit x86 and AArch64 platforms only.

If a C/C++ routine has an argument or return value that is a native SIMD type, the corresponding Julia type is a

homogeneous tuple of VecElement that naturally maps to the SIMD type. Specifically:

• The tuple must be the same size as the SIMD type. For example, a tuple representing an __m128

on x86 must have a size of 16 bytes.

• The element type of the tuple must be an instance of VecElement{T}where T is a primitive type

that is 1, 2, 4 or 8 bytes.

For instance, consider this C routine that uses AVX intrinsics:

#include <immintrin.h>

__m256 dist(__m256 a, __m256 b) {

return _mm256_sqrt_ps(_mm256_add_ps(_mm256_mul_ps(a, a),

_mm256_mul_ps(b, b)));

}

30.3. MAPPING C FUNCTIONS TO JULIA 299

The following Julia code calls dist using ccall:

const m256 = NTuple{8, VecElement{Float32}}

a = m256(ntuple(i -> VecElement(sin(Float32(i))), 8))

b = m256(ntuple(i -> VecElement(cos(Float32(i))), 8))

function call_dist(a::m256, b::m256)

ccall((:dist, "libdist"), m256, (m256, m256), a, b)

end

println(call_dist(a,b))

The host machine must have the requisite SIMD registers. For example, the code abovewill not work on hosts without

AVX support.

Memory Ownership

malloc/free

Memory allocation and deallocation of such objects must be handled by calls to the appropriate cleanup routines in the

libraries being used, just like in any C program. Do not try to free an object received from a C library with Libc.free

in Julia, as this may result in the free function being called via the wrong libc library and cause Julia to crash. The

reverse (passing an object allocated in Julia to be freed by an external library) is equally invalid.

When to use T, Ptr{T} and Ref{T}

In Julia code wrapping calls to external C routines, ordinary (non-pointer) data should be declared to be of type T

inside the ccall, as they are passed by value. For C code accepting pointers, Ref{T} should generally be used for the

types of input arguments, allowing the use of pointers to memory managed by either Julia or C through the implicit

call to Base.cconvert(). In contrast, pointers returned by the C function called should be declared to be of output

type Ptr{T}, reflecting that the memory pointed to is managed by C only. Pointers contained in C structs should

be represented as fields of type Ptr{T} within the corresponding Julia struct types designed to mimic the internal

structure of corresponding C structs.

In Julia code wrapping calls to external Fortran routines, all input arguments should be declared as of type Ref{T},

as Fortran passes all variables by reference. The return type should either be Void for Fortran subroutines, or a T for

Fortran functions returning the type T.

30.3 Mapping C Functions to Julia

ccall/cfunction argument translation guide

For translating a C argument list to Julia:

• T, where T is one of the primitive types: char, int, long, short, float, double, complex, enum or any of

their typedef equivalents

– T, where T is an equivalent Julia Bits Type (per the table above)

– if T is an enum, the argument type should be equivalent to Cint or Cuint

– argument value will be copied (passed by value)

• struct T (including typedef to a struct)

300 CHAPTER 30. CALLING C AND FORTRAN CODE

– T, where T is a Julia leaf type

– argument value will be copied (passed by value)

• void*

– depends on how this parameter is used, first translate this to the intended pointer type, then determine

the Julia equivalent using the remaining rules in this list

– this argument may be declared as Ptr{Void}, if it really is just an unknown pointer

• jl_value_t*

– Any

– argument value must be a valid Julia object

– currently unsupported by cfunction()

• jl_value_t**

– Ref{Any}

– argument value must be a valid Julia object (or C_NULL)

– currently unsupported by cfunction()

• T*

– Ref{T}, where T is the Julia type corresponding to T

– argument value will be copied if it is an isbits type otherwise, the value must be a valid Julia object

• (T*)(...) (e.g. a pointer to a function)

– Ptr{Void} (you may need to use cfunction() explicitly to create this pointer)

• ... (e.g. a vararg)

– T..., where T is the Julia type

• va_arg

– not supported

ccall/cfunction return type translation guide

For translating a C return type to Julia:

• void

– Void (this will return the singleton instance nothing::Void)

• T, where T is one of the primitive types: char, int, long, short, float, double, complex, enum or any of

their typedef equivalents

– T, where T is an equivalent Julia Bits Type (per the table above)

– if T is an enum, the argument type should be equivalent to Cint or Cuint

– argument value will be copied (returned by-value)

30.3. MAPPING C FUNCTIONS TO JULIA 301

• struct T (including typedef to a struct)

– T, where T is a Julia Leaf Type

– argument value will be copied (returned by-value)

• void*

– depends on how this parameter is used, first translate this to the intended pointer type, then determine

the Julia equivalent using the remaining rules in this list

– this argument may be declared as Ptr{Void}, if it really is just an unknown pointer

• jl_value_t*

– Any

– argument value must be a valid Julia object

• jl_value_t**

– Ref{Any}

– argument value must be a valid Julia object (or C_NULL)

• T*

– If the memory is already owned by Julia, or is an isbits type, and is known to be non-null:

* Ref{T}, where T is the Julia type corresponding to T

* a return type of Ref{Any} is invalid, it should either be Any (corresponding to jl_value_t*) or

Ptr{Any} (corresponding to Ptr{Any})

* CMUSTNOT modify the memory returned via Ref{T} if T is an isbits type

– If the memory is owned by C:

* Ptr{T}, where T is the Julia type corresponding to T

• (T*)(...) (e.g. a pointer to a function)

– Ptr{Void} (you may need to use cfunction() explicitly to create this pointer)

Passing Pointers for Modifying Inputs

Because C doesn’t support multiple return values, often C functions will take pointers to data that the function will

modify. To accomplish this within a ccall, you need to first encapsulate the value inside an Ref{T} of the appropriate

type. When you pass this Ref object as an argument, Julia will automatically pass a C pointer to the encapsulated data:

width = Ref{Cint}(0)

range = Ref{Cfloat}(0)

ccall(:foo, Void, (Ref{Cint}, Ref{Cfloat}), width, range)

Upon return, the contents of width and range can be retrieved (if they were changed by foo) by width[] and

range[]; that is, they act like zero-dimensional arrays.

302 CHAPTER 30. CALLING C AND FORTRAN CODE

Special Reference Syntax for ccall (deprecated):

The & syntax is deprecated, use the Ref{T} argument type instead.

A prefix & is used on an argument to ccall to indicate that a pointer to a scalar argument should be passed instead of

the scalar value itself (required for all Fortran function arguments, as noted above). The following example computes

a dot product using a BLAS function.

function compute_dot(DX::Vector{Float64}, DY::Vector{Float64})

@assert length(DX) == length(DY)

n = length(DX)

incx = incy = 1

product = ccall((:ddot_, "libLAPACK"),

Float64,

(Ptr{Int32}, Ptr{Float64}, Ptr{Int32}, Ptr{Float64}, Ptr{Int32}),

&n, DX, &incx, DY, &incy)

return product

end

The meaning of prefix & is not quite the same as in C. In particular, any changes to the referenced variables will not be

visible in Julia unless the type is mutable (declared via type). However, even for immutable structs it will not cause

any harm for called functions to attempt such modifications (that is, writing through the passed pointers). Moreover,

& may be used with any expression, such as &0 or &f(x).

When a scalar value is passed with & as an argument of type Ptr{T}, the value will first be converted to type T.

30.4 Some Examples of CWrappers

Here is a simple example of a C wrapper that returns a Ptr type:

mutable struct gsl_permutation

end

The corresponding C signature is

gsl_permutation * gsl_permutation_alloc (size_t n);

function permutation_alloc(n::Integer)

output_ptr = ccall(

(:gsl_permutation_alloc, :libgsl), # name of C function and library

Ptr{gsl_permutation}, # output type

(Csize_t,), # tuple of input types

n # name of Julia variable to pass in

)

if output_ptr == C_NULL # Could not allocate memory

throw(OutOfMemoryError())

end

return output_ptr

end

The GNU Scientific Library (here assumed to be accessible through :libgsl) defines an opaque pointer, gsl_permu-

tation *, as the return type of the C function gsl_permutation_alloc(). As user code never has to look inside

the gsl_permutation struct, the corresponding Julia wrapper simply needs a new type declaration, gsl_permu-

tation, that has no internal fields and whose sole purpose is to be placed in the type parameter of a Ptr type. The

return type of the ccall is declared as Ptr{gsl_permutation}, since the memory allocated and pointed to by

output_ptr is controlled by C (and not Julia).

https://www.gnu.org/software/gsl/

30.4. SOME EXAMPLES OF CWRAPPERS 303

The input n is passed byvalue, and so the function’s input signature is simply declared as (Csize_t,)without any Ref

or Ptr necessary. (If the wrapper was calling a Fortran function instead, the corresponding function input signature

should instead be (Ref{Csize_t},), since Fortran variables are passed by reference.) Furthermore, n can be any

type that is convertable to a Csize_t integer; the ccall implicitly calls Base.cconvert(Csize_t, n).

Here is a second example wrapping the corresponding destructor:

The corresponding C signature is

void gsl_permutation_free (gsl_permutation * p);

function permutation_free(p::Ref{gsl_permutation})

ccall(

(:gsl_permutation_free, :libgsl), # name of C function and library

Void, # output type

(Ref{gsl_permutation},), # tuple of input types

p # name of Julia variable to pass in

)

end

Here, the input p is declared to be of type Ref{gsl_permutation}, meaning that the memory that p points to may

be managed by Julia or by C. A pointer to memory allocated by C should be of type Ptr{gsl_permutation}, but

it is convertable using Base.cconvert() and therefore can be used in the same (covariant) context of the input

argument to a ccall. A pointer to memory allocated by Julia must be of type Ref{gsl_permutation}, to ensure

that the memory address pointed to is valid and that Julia’s garbage collector manages the chunk of memory pointed

to correctly. Therefore, the Ref{gsl_permutation} declaration allows pointers managed by C or Julia to be used.

If the C wrapper never expects the user to pass pointers to memory managed by Julia, then using p::Ptr{gsl_per-

mutation} for the method signature of the wrapper and similarly in the ccall is also acceptable.

Here is a third example passing Julia arrays:

The corresponding C signature is

int gsl_sf_bessel_Jn_array (int nmin, int nmax, double x,

double result_array[])

function sf_bessel_Jn_array(nmin::Integer, nmax::Integer, x::Real)

if nmax < nmin

throw(DomainError())

end

result_array = Vector{Cdouble}(nmax - nmin + 1)

errorcode = ccall(

(:gsl_sf_bessel_Jn_array, :libgsl), # name of C function and library

Cint, # output type

(Cint, Cint, Cdouble, Ref{Cdouble}),# tuple of input types

nmin, nmax, x, result_array # names of Julia variables to pass in

)

if errorcode != 0

error("GSL error code $errorcode")

end

return result_array

end

The C function wrapped returns an integer error code; the results of the actual evaluation of the Bessel J function

populate the Julia array result_array. This variable can only be used with corresponding input type declaration

Ref{Cdouble}, since itsmemory is allocated andmanaged byJulia, not C.The implicit call toBase.cconvert(Ref{Cdou-

ble}, result_array) unpacks the Julia pointer to a Julia array data structure into a form understandable by C.

304 CHAPTER 30. CALLING C AND FORTRAN CODE

Note that for this code to work correctly, result_array must be declared to be of type Ref{Cdouble} and not

Ptr{Cdouble}. The memory is managed by Julia and the Ref signature alerts Julia’s garbage collector to keep man-

aging the memory for result_array while the ccall executes. If Ptr{Cdouble} were used instead, the ccall

may still work, but Julia’s garbage collector would not be aware that the memory declared for result_array is being

used by the external C function. As a result, the code may produce a memory leak if result_array never gets freed

by the garbage collector, or if the garbage collector prematurely frees result_array, the C function may end up

throwing an invalid memory access exception.

30.5 Garbage Collection Safety

When passing data to a ccall, it is best to avoid using the pointer() function. Instead define a convert method and

pass the variables directly to the ccall. ccall automatically arranges that all of its arguments will be preserved from

garbage collection until the call returns. If a C API will store a reference to memory allocated by Julia, after the ccall

returns, you must arrange that the object remains visible to the garbage collector. The suggested way to handle this is

to make a global variable of type Array{Ref,1} to hold these values, until the C library notifies you that it is finished

with them.

Whenever you have created a pointer to Julia data, you must ensure the original data exists until you are done with

using the pointer. Manymethods in Julia such as unsafe_load() and String()make copies of data instead of taking

ownership of the buffer, so that it is safe to free (or alter) the original data without affecting Julia. A notable exception

is unsafe_wrap()which, for performance reasons, shares (or can be told to take ownership of) the underlying buffer.

The garbage collector does not guarantee any order of finalization. That is, if a contained a reference to b and both a

and b are due for garbage collection, there is no guarantee that bwould be finalized after a. If proper finalization of a

depends on b being valid, it must be handled in other ways.

30.6 Non-constant Function Specifications

A (name, library) function specification must be a constant expression. However, it is possible to use computed

values as function names by staging through eval as follows:

@eval ccall(($(string("a", "b")), "lib"), ...

This expression constructs a name using string, then substitutes this name into a new ccall expression, which is

then evaluated. Keep in mind that eval only operates at the top level, so within this expression local variables will not

be available (unless their values are substituted with $). For this reason, eval is typically only used to form top-level

definitions, for example when wrapping libraries that contain many similar functions.

If your usage is more dynamic, use indirect calls as described in the next section.

30.7 Indirect Calls

The first argument to ccall can also be an expression evaluated at run time. In this case, the expressionmust evaluate

to a Ptr, which will be used as the address of the native function to call. This behavior occurs when the first ccall

argument contains references to non-constants, such as local variables, function arguments, or non-constant globals.

For example, you might look up the function via dlsym, then cache it in a global variable for that session. For example:

macro dlsym(func, lib)

z, zlocal = gensym(string(func)), gensym()

eval(current_module(), :(global $z = C_NULL))

z = esc(z)

quote

let $zlocal::Ptr{Void} = $z::Ptr{Void}

30.8. CALLING CONVENTION 305

if $zlocal == C_NULL

$zlocal = dlsym($(esc(lib))::Ptr{Void}, $(esc(func)))

global $z = $zlocal

end

$zlocal

end

end

end

mylibvar = Libdl.dlopen("mylib")

ccall(@dlsym("myfunc", mylibvar), Void, ())

30.8 Calling Convention

The second argument to ccall can optionally be a calling convention specifier (immediately preceding return type).

Without any specifier, the platform-default C calling convention is used. Other supported conventions are: stdcall,

cdecl, fastcall, and thiscall. For example (from base/libc.jl) we see the same gethostnameccall as

above, but with the correct signature for Windows:

hn = Vector{UInt8}(256)

err = ccall(:gethostname, stdcall, Int32, (Ptr{UInt8}, UInt32), hn, length(hn))

For more information, please see the LLVM Language Reference.

There is one additional special calling convention llvmcall, which allows inserting calls to LLVM intrinsics directly.

This can be especially useful when targeting unusual platforms such as GPGPUs. For example, for CUDA, we need to

be able to read the thread index:

ccall("llvm.nvvm.read.ptx.sreg.tid.x", llvmcall, Int32, ())

As with any ccall, it is essential to get the argument signature exactly correct. Also, note that there is no compat-

ibility layer that ensures the intrinsic makes sense andworks on the current target, unlike the equivalent Julia functions

exposed by Core.Intrinsics.

30.9 Accessing Global Variables

Global variables exported by native libraries can be accessed by name using the cglobal() function. The arguments

to cglobal() are a symbol specification identical to that used by ccall, and a type describing the value stored in

the variable:

julia> cglobal((:errno, :libc), Int32)

Ptr{Int32} @0x00007f418d0816b8

The result is a pointer giving the address of the value. The value can be manipulated through this pointer using un-

safe_load() and unsafe_store!().

http://llvm.org/docs/LangRef.html#calling-conventions
http://llvm.org/docs/NVPTXUsage.html

306 CHAPTER 30. CALLING C AND FORTRAN CODE

30.10 Accessing Data through a Pointer

The followingmethods are described as ”unsafe” because a bad pointer or type declaration can cause Julia to terminate

abruptly.

Given a Ptr{T}, the contents of type T can generally be copied from the referenced memory into a Julia object using

unsafe_load(ptr, [index]). The index argument is optional (default is 1), and follows the Julia-convention of

1-based indexing. This function is intentionally similar to the behavior of getindex() and setindex!() (e.g. []

access syntax).

The return value will be a new object initialized to contain a copy of the contents of the referenced memory. The

referenced memory can safely be freed or released.

If T is Any, then the memory is assumed to contain a reference to a Julia object (a jl_value_t*), the result will be a

reference to this object, and the object will not be copied. You must be careful in this case to ensure that the object

was always visible to the garbage collector (pointers do not count, but the new reference does) to ensure the memory

is not prematurely freed. Note that if the object was not originally allocated by Julia, the new object will never be

finalized by Julia’s garbage collector. If the Ptr itself is actually a jl_value_t*, it can be converted back to a Julia

object reference by unsafe_pointer_to_objref(ptr). (Julia values v can be converted to jl_value_t* pointers,

as Ptr{Void}, by calling pointer_from_objref(v).)

The reverse operation (writing data to a Ptr{T}), can be performed using unsafe_store!(ptr, value, [in-

dex]). Currently, this is only supported for primitive types or other pointer-free (isbits) immutable struct types.

Any operation that throws an error is probably currently unimplemented and should be posted as a bug so that it can

be resolved.

If the pointer of interest is a plain-data array (primitive type or immutable struct), the function unsafe_wrap(Array,

ptr,dims,[own]) may be more useful. The final parameter should be true if Julia should ”take ownership” of the

underlying buffer and call free(ptr)when the returned Array object is finalized. If the own parameter is omitted or

false, the caller must ensure the buffer remains in existence until all access is complete.

Arithmetic on the Ptr type in Julia (e.g. using +) does not behave the same as C’s pointer arithmetic. Adding an

integer to a Ptr in Julia always moves the pointer by some number of bytes, not elements. This way, the address

values obtained from pointer arithmetic do not depend on the element types of pointers.

30.11 Thread-safety

Some C libraries execute their callbacks from a different thread, and since Julia isn’t thread-safe you’ll need to take

some extra precautions. In particular, you’ll need to set up a two-layered system: the C callback should only schedule

(via Julia’s event loop) the execution of your ”real” callback. To do this, create a AsyncCondition object and wait on

it:

cond = Base.AsyncCondition()

wait(cond)

The callback you pass to C should only execute a ccall to :uv_async_send, passing cond.handle as the argument,

taking care to avoid any allocations or other interactions with the Julia runtime.

Note that events may be coalesced, so multiple calls to uv_async_sendmay result in a single wakeup notification to

the condition.

30.12 More About Callbacks

For more details on how to pass callbacks to C libraries, see this blog post.

https://julialang.org/blog/2013/05/callback

30.13. C++ 307

30.13 C++

For direct C++ interfacing, see the Cxx package. For tools to create C++ bindings, see the CxxWrap package.

https://github.com/Keno/Cxx.jl
https://github.com/JuliaInterop/CxxWrap.jl

308 CHAPTER 30. CALLING C AND FORTRAN CODE

C name Fortran

name

Standard

Julia Alias

Julia Base Type

unsigned char CHARACTER Cuchar UInt8

bool (only in C++) Cuchar UInt8

short INTEGER*2,

LOGICAL*2

Cshort Int16

unsigned short Cushort UInt16

int, BOOL (C, typical) INTEGER*4,

LOGICAL*4

Cint Int32

unsigned int Cuint UInt32

long long INTEGER*8,

LOGICAL*8

Clong-

long

Int64

unsigned long long Culong-

long

UInt64

intmax_t Cint-

max_t

Int64

uintmax_t Cuint-

max_t

UInt64

float REAL*4i Cfloat Float32

double REAL*8 Cdouble Float64

complex float COMPLEX*8 Com-

plex64

Complex{Float32}

complex double COM-

PLEX*16

Com-

plex128

Complex{Float64}

ptrdiff_t Cp-

trdiff_t

Int

ssize_t Cs-

size_t

Int

size_t Csize_t UInt

void Void

void and [[noreturn]]

or _Noreturn

 Union{}

void* Ptr{Void}

T* (where T represents an

appropriately defined type)

 Ref{T}

char* (or char[], e.g. a

string)

CHARAC-

TER*N

 Cstring if NUL-terminated, or Ptr{UInt8} if not

char** (or *char[]) Ptr{Ptr{UInt8}}

jl_value_t* (any Julia

Type)

 Any

jl_value_t** (a

reference to a Julia Type)

 Ref{Any}

va_arg Not supported

... (variadic function

specification)

 T... (where T is one of the above types, variadic

functions of different argument types are not

supported)

30.13. C++ 309

C name Standard Julia Alias Julia Base Type

char Cchar Int8 (x86, x86_64), UInt8 (powerpc, arm)

long Clong Int (UNIX), Int32 (Windows)

unsigned long Culong UInt (UNIX), UInt32 (Windows)

wchar_t Cwchar_t Int32 (UNIX), UInt16 (Windows)

Chapter 31

Handling Operating System Variation

When dealing with platform libraries, it is often necessary to provide special cases for various platforms. The variable

Sys.KERNEL can be used to write these special cases. There are several functions intended to make this easier:

is_unix, is_linux, is_apple, is_bsd, and is_windows. These may be used as follows:

if is_windows()

some_complicated_thing(a)

end

Note thatis_linux andis_apple aremutually exclusive subsets ofis_unix. Additionally, there is amacro@static

which makes it possible to use these functions to conditionally hide invalid code, as demonstrated in the following

examples.

Simple blocks:

ccall((@static is_windows() ? :_fopen : :fopen), ...)

Complex blocks:

@static if is_linux()

some_complicated_thing(a)

else

some_different_thing(a)

end

When chaining conditionals (including if/elseif/end), the @static must be repeated for each level (parentheses op-

tional, but recommended for readability):

@static is_windows() ? :a : (@static is_apple() ? :b : :c)

311

Chapter 32

Environment Variables

Julia may be configured with a number of environment variables, either in the usual way of the operating system, or

in a portable way from within Julia. Suppose you want to set the environment variable JULIA_EDITOR to vim, then

either type ENV["JULIA_EDITOR"] = "vim" for instance in the REPL to make this change on a case by case basis,

or add the same to the user configuration file .juliarc.jl in the user’s home directory to have a permanent effect.

The current value of the same environment variable is determined by evaluating ENV["JULIA_EDITOR"].

The environment variables that Julia uses generally start with JULIA. If Base.versioninfo is called with verbose

equal to true, then the output will list defined environment variables relevant for Julia, including those for which

JULIA appears in the name.

32.1 File locations

JULIA_HOME

The absolute path of the directory containing the Julia executable, which sets the global variable Base.JULIA_HOME.

If $JULIA_HOME is not set, then Julia determines the value Base.JULIA_HOME at run-time.

The executable itself is one of

$JULIA_HOME/julia

$JULIA_HOME/julia-debug

by default.

The global variable Base.DATAROOTDIR determines a relative path from Base.JULIA_HOME to the data directory

associated with Julia. Then the path

$JULIA_HOME/$DATAROOTDIR/julia/base

determines the directory in which Julia initially searches for source files (via Base.find_source_file()).

Likewise, the global variable Base.SYSCONFDIR determines a relative path to the configuration file directory. Then

Julia searches for a juliarc.jl file at

$JULIA_HOME/$SYSCONFDIR/julia/juliarc.jl

$JULIA_HOME/../etc/julia/juliarc.jl

by default (via Base.load_juliarc()).

For example, a Linux installation with a Julia executable located at /bin/julia, a DATAROOTDIR of ../share, and a

SYSCONFDIR of ../etcwill have JULIA_HOME set to /bin, a source-file search path of

/share/julia/base

313

314 CHAPTER 32. ENVIRONMENTVARIABLES

and a global configuration search path of

/etc/julia/juliarc.jl

JULIA_LOAD_PATH

A separated list of absolute paths that are to be appended to the variable LOAD_PATH. (In Unix-like systems, the path

separator is :; in Windows systems, the path separator is ;.) The LOAD_PATH variable is where Base.require and

Base.load_in_path() look for code; it defaults to the absolute paths

$JULIA_HOME/../local/share/julia/site/v$(VERSION.major).$(VERSION.minor)

$JULIA_HOME/../share/julia/site/v$(VERSION.major).$(VERSION.minor)

so that, e.g., version 0.6 ofJulia on a Linux systemwith a Julia executable at /bin/juliawill have a default LOAD_PATH

of

/local/share/julia/site/v0.6

/share/julia/site/v0.6

JULIA_PKGDIR

The path of the parent directory Pkg.Dir._pkgroot() for the version-specific Julia package repositories. If the path

is relative, then it is taken with respect to the working directory. If $JULIA_PKGDIR is not set, then Pkg.Dir._pkg-

root() defaults to

$HOME/.julia

Then the repository location Pkg.dir for a given Julia version is

$JULIA_PKGDIR/v$(VERSION.major).$(VERSION.minor)

For example, for a Linux userwhose home directory is /home/alice, the directory containing the package repositories

would by default be

/home/alice/.julia

and the package repository for version 0.6 of Julia would be

/home/alice/.julia/v0.6

JULIA_HISTORY

The absolute path Base.REPL.find_hist_file() of the REPL’s history file. If $JULIA_HISTORY is not set, then

Base.REPL.find_hist_file() defaults to

$HOME/.julia_history

JULIA_PKGRESOLVE_ACCURACY

A positive Int that determines how much time the max-sum subroutine MaxSum.maxsum() of the package depen-

dency resolver Base.Pkg.resolve will devote to attempting satisfying constraints before giving up: this value is by

default 1, and larger values correspond to larger amounts of time.

Suppose the value of $JULIA_PKGRESOLVE_ACCURACY is n. Then

• the number of pre-decimation iterations is 20*n,

• the number of iterations between decimation steps is 10*n, and

• at decimation steps, at most one in every 20*n packages is decimated.

32.2. EXTERNALAPPLICATIONS 315

32.2 External applications

JULIA_SHELL

The absolute path of the shell with which Julia should execute external commands (via Base.repl_cmd()). Defaults

to the environment variable $SHELL, and falls back to /bin/sh if $SHELL is unset.

Note

OnWindows, this environment variable is ignored, and external commands are executed directly.

JULIA_EDITOR

The editor returned by Base.editor() and used in, e.g., Base.edit, referring to the command of the preferred

editor, for instance vim.

$JULIA_EDITOR takes precedence over $VISUAL, which in turn takes precedence over $EDITOR. If none of these

environment variables is set, then the editor is taken to be open onWindows and OS X, or /etc/alternatives/ed-

itor if it exists, or emacs otherwise.

Note

$JULIA_EDITOR is not used in the determination of the editor for Base.Pkg.edit: this function checks

$VISUAL and $EDITOR alone.

32.3 Parallelization

JULIA_CPU_CORES

Overrides the global variable Base.Sys.CPU_CORES, the number of logical CPU cores available.

JULIA_WORKER_TIMEOUT

A Float64 that sets the value of Base.worker_timeout() (default: 60.0). This function gives the number of

seconds a worker process will wait for a master process to establish a connection before dying.

JULIA_NUM_THREADS

Anunsigned 64-bit integer (uint64_t) that sets themaximumnumberof threads available to Julia. If$JULIA_NUM_THREADS

exceeds the number of available physical CPU cores, then the number of threads is set to the number of cores. If $JU-

LIA_NUM_THREADS is not positive or is not set, or if the number of CPU cores cannot be determined through system

calls, then the number of threads is set to 1.

JULIA_THREAD_SLEEP_THRESHOLD

If set to a string that starts with the case-insensitive substring "infinite", then spinning threads never sleep. Oth-

erwise, $JULIA_THREAD_SLEEP_THRESHOLD is interpreted as an unsigned 64-bit integer (uint64_t) and gives, in

nanoseconds, the amount of time after which spinning threads should sleep.

JULIA_EXCLUSIVE

If set to anything besides 0, then Julia’s thread policy is consistent with running on a dedicated machine: the master

thread is on proc 0, and threads are affinitized. Otherwise, Julia lets the operating system handle thread policy.

316 CHAPTER 32. ENVIRONMENTVARIABLES

32.4 REPL formatting

Environment variables that determine how REPL output should be formatted at the terminal. Generally, these vari-

ables should be set to ANSI terminal escape sequences. Julia provides a high-level interface with much of the same

functionality: see the section on Interacting With Julia.

JULIA_ERROR_COLOR

The formatting Base.error_color() (default: light red, "\033[91m") that errors should have at the terminal.

JULIA_WARN_COLOR

The formatting Base.warn_color() (default: yellow, "\033[93m") that warnings should have at the terminal.

JULIA_INFO_COLOR

The formatting Base.info_color() (default: cyan, "\033[36m") that info should have at the terminal.

JULIA_INPUT_COLOR

The formatting Base.input_color() (default: normal, "\033[0m") that input should have at the terminal.

JULIA_ANSWER_COLOR

The formatting Base.answer_color() (default: normal, "\033[0m") that output should have at the terminal.

JULIA_STACKFRAME_LINEINFO_COLOR

The formatting Base.stackframe_lineinfo_color() (default: bold, "\033[1m") that line info should have during

a stack trace at the terminal.

JULIA_STACKFRAME_FUNCTION_COLOR

The formatting Base.stackframe_function_color() (default: bold, "\033[1m") that function calls should have

during a stack trace at the terminal.

32.5 Debugging and profiling

JULIA_GC_ALLOC_POOL, JULIA_GC_ALLOC_OTHER, JULIA_GC_ALLOC_PRINT

If set, these environment variables take strings that optionally start with the character 'r', followed by a string inter-

polation of a colon-separated list of three signed 64-bit integers (int64_t). This triple of integers a:b:c represents

the arithmetic sequence a, a + b, a + 2*b, ... c.

• If it’s the nth time that jl_gc_pool_alloc() has been called, and n belongs to the arithmetic sequence

represented by $JULIA_GC_ALLOC_POOL, then garbage collection is forced.

• If it’s the nth time that maybe_collect() has been called, and n belongs to the arithmetic sequence repre-

sented by $JULIA_GC_ALLOC_OTHER, then garbage collection is forced.

• If it’s the nth time that jl_gc_collect() has been called, and n belongs to the arithmetic sequence rep-

resented by $JULIA_GC_ALLOC_PRINT, then counts for the number of calls to jl_gc_pool_alloc() and

maybe_collect() are printed.

http://ascii-table.com/ansi-escape-sequences.php

32.5. DEBUGGING AND PROFILING 317

If the value of the environment variable begins with the character 'r', then the interval between garbage collection

events is randomized.

Note

These environment variables only have an effect if Julia was compiledwith garbage-collection debugging

(that is, if WITH_GC_DEBUG_ENV is set to 1 in the build configuration).

JULIA_GC_NO_GENERATIONAL

If set to anything besides 0, then the Julia garbage collector never performs ”quick sweeps” of memory.

Note

This environment variable only has an effect if Julia was compiled with garbage-collection debugging

(that is, if WITH_GC_DEBUG_ENV is set to 1 in the build configuration).

JULIA_GC_WAIT_FOR_DEBUGGER

If set to anything besides 0, then the Julia garbage collector will wait for a debugger to attach instead of aborting

whenever there’s a critical error.

Note

This environment variable only has an effect if Julia was compiled with garbage-collection debugging

(that is, if WITH_GC_DEBUG_ENV is set to 1 in the build configuration).

ENABLE_JITPROFILING

If set to anything besides 0, then the compiler will create and register an event listener for just-in-time (JIT) profiling.

Note

This environment variable only has an effect if Julia was compiled with JIT profiling support, using either

• Intel’s VTune™ Amplifier (USE_INTEL_JITEVENTS set to 1 in the build configuration), or

• OProfile (USE_OPROFILE_JITEVENTS set to 1 in the build configuration).

JULIA_LLVM_ARGS

Arguments to be passed to the LLVM backend.

Note

This environment variable has an effect only if Julia was compiled with JL_DEBUG_BUILD set — in par-

ticular, the julia-debug executable is always compiled with this build variable.

JULIA_DEBUG_LOADING

If set, then Julia prints detailed information about the cache in the loading process of Base.require.

https://software.intel.com/en-us/intel-vtune-amplifier-xe
http://oprofile.sourceforge.net/news/

Chapter 33

Embedding Julia

As we have seen in Calling C and Fortran Code, Julia has a simple and efficient way to call functions written in C. But

there are situations where the opposite is needed: calling Julia function from C code. This can be used to integrate

Julia code into a larger C/C++ project, without the need to rewrite everything in C/C++. Julia has a C API to make this

possible. As almost all programming languages have some way to call C functions, the Julia C API can also be used to

build further language bridges (e.g. calling Julia from Python or C#).

33.1 High-Level Embedding

We start with a simple C program that initializes Julia and calls some Julia code:

#include <julia.h>

int main(int argc, char *argv[])

{

/* required: setup the Julia context */

jl_init();

/* run Julia commands */

jl_eval_string("print(sqrt(2.0))");

/* strongly recommended: notify Julia that the

program is about to terminate. this allows

Julia time to cleanup pending write requests

and run all finalizers

*/

jl_atexit_hook(0);

return 0;

}

In order to build this program you have to put the path to the Julia header into the include path and link against

libjulia. For instance, when Julia is installed to $JULIA_DIR, one can compile the above test program test.cwith

gcc using:

gcc -o test -fPIC -I$JULIA_DIR/include/julia -L$JULIA_DIR/lib test.c -ljulia $JULIA_DIR/lib/julia

/libstdc++.so.6

Then if the environment variable JULIA_HOME is set to $JULIA_DIR/bin, the output test program can be executed.

Alternatively, look at the embedding.c program in the Julia source tree in the examples/ folder. The file ui/repl.c

program is another simple example of how to set jl_options options while linking against libjulia.

319

320 CHAPTER 33. EMBEDDING JULIA

The first thing that has to be done before calling any other Julia C function is to initialize Julia. This is done by calling

jl_init, which tries to automatically determine Julia’s install location. If you need to specify a custom location, or

specify which system image to load, use jl_init_with_image instead.

The second statement in the test program evaluates a Julia statement using a call to jl_eval_string.

Before the program terminates, it is strongly recommended to call jl_atexit_hook. The above example program

calls this before returning from main.

Note

Currently, dynamically linking with the libjulia shared library requires passing the RTLD_GLOBAL op-

tion. In Python, this looks like:

>>> julia=CDLL('./libjulia.dylib',RTLD_GLOBAL)

>>> julia.jl_init.argtypes = []

>>> julia.jl_init()

250593296

Note

If the julia program needs to access symbols from the main executable, it may be necessary to add -

Wl,--export-dynamic linkerflag at compile timeon Linux in addition to the ones generated byjulia-

config.jl described below. This is not necessary when compiling a shared library.

Using julia-config to automatically determine build parameters

The script julia-config.jlwas created to aid in determining what build parameters are required by a program that

uses embedded Julia. This script uses the build parameters and system configuration of the particular Julia distribution

it is invoked by to export the necessary compiler flags for an embedding program to interact with that distribution.

This script is located in the Julia shared data directory.

Example

#include <julia.h>

int main(int argc, char *argv[])

{

jl_init();

(void)jl_eval_string("println(sqrt(2.0))");

jl_atexit_hook(0);

return 0;

}

On the command line

Asimple use of this script is from the command line. Assuming that julia-config.jl is located in /usr/local/ju-

lia/share/julia, it can be invoked on the command line directly and takes any combination of 3 flags:

/usr/local/julia/share/julia/julia-config.jl

Usage: julia-config [--cflags|--ldflags|--ldlibs]

If the above example source is saved in the file embed_example.c, then the following command will compile it into a

running program on Linux and Windows (MSYS2 environment), or if on OS/X, then substitute clang for gcc.:

/usr/local/julia/share/julia/julia-config.jl --cflags --ldflags --ldlibs | xargs gcc

embed_example.c

33.2. CONVERTING TYPES 321

Use in Makefiles

But in general, embedding projects will be more complicated than the above, and so the following allows general

makefile support as well – assuming GNUmake because of the use of the shellmacro expansions. Additionally, though

many times julia-config.jl may be found in the directory /usr/local, this is not necessarily the case, but Julia

can be used to locate julia-config.jl too, and the makefile can be used to take advantage of that. The above

example is extended to use a Makefile:

JL_SHARE = $(shell julia -e 'print(joinpath(JULIA_HOME,Base.DATAROOTDIR,"julia"))')

CFLAGS += $(shell $(JL_SHARE)/julia-config.jl --cflags)

CXXFLAGS += $(shell $(JL_SHARE)/julia-config.jl --cflags)

LDFLAGS += $(shell $(JL_SHARE)/julia-config.jl --ldflags)

LDLIBS += $(shell $(JL_SHARE)/julia-config.jl --ldlibs)

all: embed_example

Now the build command is simply make.

33.2 Converting Types

Real applicationswill not just need to execute expressions, but also return theirvalues to the host program. jl_eval_string

returns a jl_value_t*, which is a pointer to a heap-allocated Julia object. Storing simple data types like Float64 in

this way is called boxing, and extracting the stored primitive data is called unboxing. Our improved sample program

that calculates the square root of 2 in Julia and reads back the result in C looks as follows:

jl_value_t *ret = jl_eval_string("sqrt(2.0)");

if (jl_typeis(ret, jl_float64_type)) {

double ret_unboxed = jl_unbox_float64(ret);

printf("sqrt(2.0) in C: %e \n", ret_unboxed);

}

else {

printf("ERROR: unexpected return type from sqrt(::Float64)\n");

}

In order to checkwhether ret is of a specific Julia type, we can use the jl_isa, jl_typeis, or jl_is_... functions.

By typing typeof(sqrt(2.0)) into the Julia shell we can see that the return type is Float64 (double in C). To

convert the boxed Julia value into a C double the jl_unbox_float64 function is used in the above code snippet.

Corresponding jl_box_... functions are used to convert the other way:

jl_value_t *a = jl_box_float64(3.0);

jl_value_t *b = jl_box_float32(3.0f);

jl_value_t *c = jl_box_int32(3);

As we will see next, boxing is required to call Julia functions with specific arguments.

33.3 Calling Julia Functions

While jl_eval_string allows C to obtain the result of a Julia expression, it does not allow passing arguments com-

puted in C to Julia. For this you will need to invoke Julia functions directly, using jl_call:

jl_function_t *func = jl_get_function(jl_base_module, "sqrt");

jl_value_t *argument = jl_box_float64(2.0);

jl_value_t *ret = jl_call1(func, argument);

322 CHAPTER 33. EMBEDDING JULIA

In the first step, a handle to the Julia function sqrt is retrieved by calling jl_get_function. The first argument

passed to jl_get_function is a pointer to the Base module in which sqrt is defined. Then, the double value is

boxed using jl_box_float64. Finally, in the last step, the function is called using jl_call1. jl_call0, jl_call2,

and jl_call3 functions also exist, to conveniently handle different numbers of arguments. To pass more arguments,

use jl_call:

jl_value_t *jl_call(jl_function_t *f, jl_value_t **args, int32_t nargs)

Its second argument args is an array of jl_value_t* arguments and nargs is the number of arguments.

33.4 MemoryManagement

As we have seen, Julia objects are represented in C as pointers. This raises the question of who is responsible for

freeing these objects.

Typically, Julia objects are freed by a garbage collector (GC), but the GC does not automatically know that we are

holding a reference to a Julia value from C. This means the GC can free objects out from under you, rendering pointers

invalid.

The GC can only run when Julia objects are allocated. Calls like jl_box_float64 perform allocation, and allocation

might also happen at any point in running Julia code. However, it is generally safe to use pointers in between jl_...

calls. But in order to make sure that values can survive jl_... calls, we have to tell Julia that we hold a reference to

a Julia value. This can be done using the JL_GC_PUSH macros:

jl_value_t *ret = jl_eval_string("sqrt(2.0)");

JL_GC_PUSH1(&ret);

// Do something with ret

JL_GC_POP();

The JL_GC_POP call releases the references established by the previous JL_GC_PUSH. Note that JL_GC_PUSH is work-

ing on the stack, so it must be exactly paired with a JL_GC_POP before the stack frame is destroyed.

Several Julia values can be pushed at once using the JL_GC_PUSH2 , JL_GC_PUSH3 , and JL_GC_PUSH4 macros. To

push an array of Julia values one can use the JL_GC_PUSHARGS macro, which can be used as follows:

jl_value_t **args;

JL_GC_PUSHARGS(args, 2); // args can now hold 2 `jl_value_t*` objects

args[0] = some_value;

args[1] = some_other_value;

// Do something with args (e.g. call jl_... functions)

JL_GC_POP();

The garbage collector also operates under the assumption that it is aware of every old-generation object pointing to

a young-generation one. Any time a pointer is updated breaking that assumption, it must be signaled to the collector

with the jl_gc_wb (write barrier) function like so:

jl_value_t *parent = some_old_value, *child = some_young_value;

((some_specific_type*)parent)->field = child;

jl_gc_wb(parent, child);

It is in general impossible to predict which values will be old at runtime, so the write barrier must be inserted after all

explicit stores. One notable exception is if the parent object was just allocated and garbage collection was not run

since then. Remember that most jl_... functions can sometimes invoke garbage collection.

The write barrier is also necessary for arrays of pointers when updating their data directly. For example:

33.5. WORKINGWITH ARRAYS 323

jl_array_t *some_array = ...; // e.g. a Vector{Any}

void **data = (void**)jl_array_data(some_array);

jl_value_t *some_value = ...;

data[0] = some_value;

jl_gc_wb(some_array, some_value);

Manipulating the Garbage Collector

There are some functions to control the GC. In normal use cases, these should not be necessary.

Function Description

jl_gc_collect() Force a GC run

jl_gc_enable(0) Disable the GC, return previous state as int

jl_gc_enable(1) Enable the GC, return previous state as int

jl_gc_is_enabled() Return current state as int

33.5 Working with Arrays

Julia and C can share array data without copying. The next example will show how this works.

Julia arrays are represented in C by the datatype jl_array_t*. Basically, jl_array_t is a struct that contains:

• Information about the datatype

• A pointer to the data block

• Information about the sizes of the array

To keep things simple, we start with a 1D array. Creating an array containing Float64 elements of length 10 is done

by:

jl_value_t* array_type = jl_apply_array_type(jl_float64_type, 1);

jl_array_t* x = jl_alloc_array_1d(array_type, 10);

Alternatively, if you have already allocated the array you can generate a thin wrapper around its data:

double *existingArray = (double*)malloc(sizeof(double)*10);

jl_array_t *x = jl_ptr_to_array_1d(array_type, existingArray, 10, 0);

The last argument is a boolean indicatingwhether Julia should take ownership of the data. If this argument is non-zero,

the GC will call free on the data pointer when the array is no longer referenced.

In order to access the data of x, we can use jl_array_data:

double *xData = (double*)jl_array_data(x);

Nowwe can fill the array:

for(size_t i=0; i<jl_array_len(x); i++)

xData[i] = i;

Now let us call a Julia function that performs an in-place operation on x:

jl_function_t *func = jl_get_function(jl_base_module, "reverse!");

jl_call1(func, (jl_value_t*)x);

By printing the array, one can verify that the elements of x are now reversed.

324 CHAPTER 33. EMBEDDING JULIA

Accessing Returned Arrays

If a Julia function returns an array, the return value of jl_eval_string and jl_call can be cast to a jl_array_t*:

jl_function_t *func = jl_get_function(jl_base_module, "reverse");

jl_array_t *y = (jl_array_t*)jl_call1(func, (jl_value_t*)x);

Now the content of y can be accessed as before using jl_array_data. As always, be sure to keep a reference to the

array while it is in use.

Multidimensional Arrays

Julia’s multidimensional arrays are stored in memory in column-major order. Here is some code that creates a 2D array

and accesses its properties:

// Create 2D array of float64 type

jl_value_t *array_type = jl_apply_array_type(jl_float64_type, 2);

jl_array_t *x = jl_alloc_array_2d(array_type, 10, 5);

// Get array pointer

double *p = (double*)jl_array_data(x);

// Get number of dimensions

int ndims = jl_array_ndims(x);

// Get the size of the i-th dim

size_t size0 = jl_array_dim(x,0);

size_t size1 = jl_array_dim(x,1);

// Fill array with data

for(size_t i=0; i<size1; i++)

for(size_t j=0; j<size0; j++)

p[j + size0*i] = i + j;

Notice that while Julia arrays use 1-based indexing, the C API uses 0-based indexing (for example in calling jl_ar-

ray_dim) in order to read as idiomatic C code.

33.6 Exceptions

Julia code can throw exceptions. For example, consider:

jl_eval_string("this_function_does_not_exist()");

This call will appear to do nothing. However, it is possible to check whether an exception was thrown:

if (jl_exception_occurred())

printf("%s \n", jl_typeof_str(jl_exception_occurred()));

If you are using the Julia C API from a language that supports exceptions (e.g. Python, C#, C++), it makes sense to

wrap each call into libjulia with a function that checks whether an exception was thrown, and then rethrows the

exception in the host language.

Throwing Julia Exceptions

When writing Julia callable functions, it might be necessary to validate arguments and throw exceptions to indicate

errors. A typical type check looks like:

if (!jl_typeis(val, jl_float64_type)) {

jl_type_error(function_name, (jl_value_t*)jl_float64_type, val);

}

33.6. EXCEPTIONS 325

General exceptions can be raised using the functions:

void jl_error(const char *str);

void jl_errorf(const char *fmt, ...);

jl_error takes a C string, and jl_errorf is called like printf:

jl_errorf("argument x = %d is too large", x);

where in this example x is assumed to be an integer.

Chapter 34

Packages

Julia has a built-in package manager for installing add-on functionality written in Julia. It can also install external

libraries using your operating system’s standard system for doing so, or by compiling from source. The list of registered

Julia packages can be found at http://pkg.julialang.org. All package manager commands are found in the Pkg module,

included in Julia’s Base install.

First we’ll go over the mechanics of the Pkg family of commands and then we’ll provide some guidance on how to get

your package registered. Be sure to read the section below on package naming conventions, tagging versions and the

importance of a REQUIRE file for when you’re ready to add your code to the curated METADATA repository.

34.1 Package Status

The Pkg.status() function prints out a summary of the state of packages you have installed. Initially, you’ll have no

packages installed:

julia> Pkg.status()

INFO: Initializing package repository /Users/stefan/.julia/v0.6

INFO: Cloning METADATA from git://github.com/JuliaLang/METADATA.jl

No packages installed.

Your package directory is automatically initialized the first time you run a Pkg command that expects it to exist –which

includes Pkg.status(). Here’s an example non-trivial set of required and additional packages:

julia> Pkg.status()

Required packages:

- Distributions 0.2.8

- SHA 0.3.2

Additional packages:

- NumericExtensions 0.2.17

- Stats 0.2.6

These packages are all on registered versions, managed by Pkg. Packages can be in more complicated states, indi-

cated by annotations to the right of the installed package version; we will explain these states and annotations as we

encounter them. For programmatic usage, Pkg.installed() returns a dictionary, mapping installed package names

to the version of that package which is installed:

julia> Pkg.installed()

Dict{String,VersionNumber} with 4 entries:

327

http://pkg.julialang.org

328 CHAPTER 34. PACKAGES

"Distributions" => v"0.2.8"

"Stats" => v"0.2.6"

"SHA" => v"0.3.2"

"NumericExtensions" => v"0.2.17"

34.2 Adding and Removing Packages

Julia’s package manager is a little unusual in that it is declarative rather than imperative. This means that you tell it

what you want and it figures out what versions to install (or remove) to satisfy those requirements optimally – and

minimally. So rather than installing a package, you just add it to the list of requirements and then ”resolve” what needs

to be installed. In particular, this means that if some package had been installed because it was needed by a previous

version of something you wanted, and a newer version doesn’t have that requirement anymore, updating will actually

remove that package.

Your package requirements are in the file ~/.julia/v0.6/REQUIRE. You can edit this file by hand and then call

Pkg.resolve() to install, upgrade or remove packages to optimally satisfy the requirements, oryou can doPkg.edit(),

which will open REQUIRE in your editor (configured via the EDITOR or VISUAL environment variables), and then auto-

matically call Pkg.resolve() afterwards if necessary. If you only want to add or remove the requirement for a single

package, you can also use the non-interactive Pkg.add() and Pkg.rm() commands, which add or remove a single

requirement to REQUIRE and then call Pkg.resolve().

You can add a package to the list of requirements with the Pkg.add() function, and the package and all the packages

that it depends on will be installed:

julia> Pkg.status()

No packages installed.

julia> Pkg.add("Distributions")

INFO: Cloning cache of Distributions from git://github.com/JuliaStats/Distributions.jl.git

INFO: Cloning cache of NumericExtensions from git://github.com/lindahua/NumericExtensions.jl.git

INFO: Cloning cache of Stats from git://github.com/JuliaStats/Stats.jl.git

INFO: Installing Distributions v0.2.7

INFO: Installing NumericExtensions v0.2.17

INFO: Installing Stats v0.2.6

INFO: REQUIRE updated.

julia> Pkg.status()

Required packages:

- Distributions 0.2.7

Additional packages:

- NumericExtensions 0.2.17

- Stats 0.2.6

What this is doing is first adding Distributions to your ~/.julia/v0.6/REQUIRE file:

$ cat ~/.julia/v0.6/REQUIRE

Distributions

It then runs Pkg.resolve() using these new requirements, which leads to the conclusion that the Distributions

package should be installed since it is required but not installed. As stated before, you can accomplish the same thing

by editing your ~/.julia/v0.6/REQUIRE file by hand and then running Pkg.resolve() yourself:

$ echo SHA >> ~/.julia/v0.6/REQUIRE

34.2. ADDING AND REMOVING PACKAGES 329

julia> Pkg.resolve()

INFO: Cloning cache of SHA from git://github.com/staticfloat/SHA.jl.git

INFO: Installing SHA v0.3.2

julia> Pkg.status()

Required packages:

- Distributions 0.2.7

- SHA 0.3.2

Additional packages:

- NumericExtensions 0.2.17

- Stats 0.2.6

This is functionally equivalent to calling Pkg.add("SHA"), except that Pkg.add() doesn’t change REQUIRE until

after installation has completed, so if there are problems, REQUIREwill be left as it was before calling Pkg.add(). The

format of the REQUIRE file is described in Requirements Specification; it allows, among other things, requiring specific

ranges of versions of packages.

When you decide that you don’t want to have a package around any more, you can use Pkg.rm() to remove the

requirement for it from the REQUIRE file:

julia> Pkg.rm("Distributions")

INFO: Removing Distributions v0.2.7

INFO: Removing Stats v0.2.6

INFO: Removing NumericExtensions v0.2.17

INFO: REQUIRE updated.

julia> Pkg.status()

Required packages:

- SHA 0.3.2

julia> Pkg.rm("SHA")

INFO: Removing SHA v0.3.2

INFO: REQUIRE updated.

julia> Pkg.status()

No packages installed.

Once again, this is equivalent to editing the REQUIRE file to remove the line with each package name on it then

running Pkg.resolve() to update the set of installed packages to match. While Pkg.add() and Pkg.rm() are

convenient for adding and removing requirements for a single package, when you want to add or remove multiple

packages, you can call Pkg.edit() to manually change the contents of REQUIRE and then update your packages

accordingly. Pkg.edit() does not roll back the contents of REQUIRE if Pkg.resolve() fails – rather, you have to

run Pkg.edit() again to fix the files contents yourself.

Because the package manager uses libgit2 internally to manage the package git repositories, users may run into pro-

tocol issues (if behind a firewall, for example), when running Pkg.add(). By default, all GitHub-hosted packages wil

be accessed via ’https’; this default can be modified by calling Pkg.setprotocol!(). The following command can be

run from the command line in order to tell git to use ’https’ instead of the ’git’ protocol when cloning all repositories,

wherever they are hosted:

git config --global url."https://".insteadOf git://

However, this change will be system-wide and thus the use of Pkg.setprotocol!() is preferable.

330 CHAPTER 34. PACKAGES

Note

The packagemanager functions also accept the.jl suffixon package names, though the suffix is stripped

internally. For example:

Pkg.add("Distributions.jl")

Pkg.rm("Distributions.jl")

34.3 Offline Installation of Packages

For machines with no Internet connection, packages may be installed by copying the package root directory (given by

Pkg.dir()) from a machine with the same operating system and environment.

Pkg.add() does the following within the package root directory:

1. Adds the name of the package to REQUIRE.

2. Downloads the package to .cache, then copies the package to the package root directory.

3. Recursively performs step 2 against all the packages listed in the package’s REQUIRE file.

4. Runs Pkg.build()

Warning

Copying installed packages from a different machine is brittle for packages requiring binary external de-

pendencies. Such packages may break due to differences in operating system versions, build environ-

ments, and/or absolute path dependencies.

34.4 Installing Unregistered Packages

Julia packages are simply git repositories, clonable via any of the protocols that git supports, and containing Julia code

that follows certain layout conventions. Official Julia packages are registered in theMETADATA.jl repository, available

at a well-known location 1. The Pkg.add() and Pkg.rm() commands in the previous section interact with registered

packages, but the package manager can install and work with unregistered packages too. To install an unregistered

package, use Pkg.clone(url), where url is a git URL from which the package can be cloned:

julia> Pkg.clone("git://example.com/path/to/Package.jl.git")

INFO: Cloning Package from git://example.com/path/to/Package.jl.git

Cloning into 'Package'...

remote: Counting objects: 22, done.

remote: Compressing objects: 100% (10/10), done.

remote: Total 22 (delta 8), reused 22 (delta 8)

Receiving objects: 100% (22/22), 2.64 KiB, done.

Resolving deltas: 100% (8/8), done.

By convention, Julia repository names endwith .jl (the additional .git indicates a ”bare” git repository), which keeps

them from colliding with repositories for other languages, and also makes Julia packages easy to find in search engines.

When packages are installed in your .julia/v0.6 directory, however, the extension is redundant so we leave it off.

If unregistered packages contain a REQUIRE file at the top of their source tree, that file will be used to determine

which registered packages the unregistered package depends on, and theywill automatically be installed. Unregistered

https://www.kernel.org/pub/software/scm/git/docs/git-clone.html#URLS
https://github.com/JuliaLang/METADATA.jl

34.5. UPDATING PACKAGES 331

packages participate in the same version resolution logic as registered packages, so installed package versions will be

adjusted as necessary to satisfy the requirements of both registered and unregistered packages.

34.5 Updating Packages

When package developers publish new registered versions of packages that you’re using, you will, of course, want the

new shiny versions. To get the latest and greatest versions of all your packages, just do Pkg.update():

julia> Pkg.update()

INFO: Updating METADATA...

INFO: Computing changes...

INFO: Upgrading Distributions: v0.2.8 => v0.2.10

INFO: Upgrading Stats: v0.2.7 => v0.2.8

The first step of updating packages is to pull newchanges to ~/.julia/v0.6/METADATA and see if anynew registered

package versions have been published. After this, Pkg.update() attempts to update packages that are checked out

on a branch and not dirty (i.e. no changes have been made to files tracked by git) by pulling changes from the package’s

upstream repository. Upstream changes will only be applied if no merging or rebasing is necessary – i.e. if the branch

can be ”fast-forwarded”. If the branch cannot be fast-forwarded, it is assumed that you’reworking on it andwill update

the repository yourself.

Finally, the update process recomputes an optimal set of package versions to have installed to satisfy your top-level

requirements and the requirements of ”fixed” packages. A package is considered fixed if it is one of the following:

1. Unregistered: the package is not in METADATA – you installed it with Pkg.clone().

2. Checked out: the package repo is on a development branch.

3. Dirty: changes have been made to files in the repo.

If any of these are the case, the package manager cannot freely change the installed version of the package, so its

requirementsmust be satisfied bywhatever other package versions it picks. The combination of top-level requirements

in ~/.julia/v0.6/REQUIRE and the requirement of fixed packages are used to determine what should be installed.

You can also update only a subset of the installed packages, by providing arguments to the Pkg.update function. In

that case, only the packages provided as arguments and their dependencies will be updated:

julia> Pkg.update("Example")

INFO: Updating METADATA...

INFO: Computing changes...

INFO: Upgrading Example: v0.4.0 => 0.4.1

This partial update process still computes the new set of package versions according to top-level requirements and

”fixed” packages, but it additionally considers all other packages except those explicitly provided, and their dependen-

cies, as fixed.

1The official set of packages is at https://github.com/JuliaLang/METADATA.jl, but individuals and organizations can easily use a different meta-

data repository. This allows control which packages are available for automatic installation. One can allow only audited and approved package

versions, and make private packages or forks available. See Custom METADATA Repository for details.

https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging
https://github.com/JuliaLang/METADATA.jl

332 CHAPTER 34. PACKAGES

34.6 Checkout, Pin and Free

You may want to use the master version of a package rather than one of its registered versions. There might be fixes

or functionality on master that you need that aren’t yet published in any registered versions, or you may be a developer

of the package and need to make changes on master or some other development branch. In such cases, you can do

Pkg.checkout(pkg) to checkout the master branch of pkg or Pkg.checkout(pkg,branch) to checkout some

other branch:

julia> Pkg.add("Distributions")

INFO: Installing Distributions v0.2.9

INFO: Installing NumericExtensions v0.2.17

INFO: Installing Stats v0.2.7

INFO: REQUIRE updated.

julia> Pkg.status()

Required packages:

- Distributions 0.2.9

Additional packages:

- NumericExtensions 0.2.17

- Stats 0.2.7

julia> Pkg.checkout("Distributions")

INFO: Checking out Distributions master...

INFO: No packages to install, update or remove.

julia> Pkg.status()

Required packages:

- Distributions 0.2.9+ master

Additional packages:

- NumericExtensions 0.2.17

- Stats 0.2.7

Immediately after installing Distributions with Pkg.add() it is on the current most recent registered version –

0.2.9 at the time of writing this. Then after running Pkg.checkout("Distributions"), you can see from the

output of Pkg.status() that Distributions is on an unregistered version greater than 0.2.9, indicated by the

”pseudo-version” number 0.2.9+.

When you checkout an unregistered version of a package, the copy of the REQUIRE file in the package repo takes

precedence over any requirements registered in METADATA, so it is important that developers keep this file accurate

and up-to-date, reflecting the actual requirements of the current version of the package. If the REQUIRE file in the

package repo is incorrect or missing, dependencies may be removed when the package is checked out. This file is

also used to populate newly published versions of the package if you use the API that Pkg provides for this (described

below).

When you decide that you no longer want to have a package checked out on a branch, you can ”free” it back to the

control of the package manager with Pkg.free(pkg):

julia> Pkg.free("Distributions")

INFO: Freeing Distributions...

INFO: No packages to install, update or remove.

julia> Pkg.status()

Required packages:

- Distributions 0.2.9

Additional packages:

34.6. CHECKOUT, PIN AND FREE 333

- NumericExtensions 0.2.17

- Stats 0.2.7

After this, since the package is on a registered version and not on a branch, its versionwill be updated as new registered

versions of the package are published.

If you want to pin a package at a specific version so that calling Pkg.update()won’t change the version the package

is on, you can use the Pkg.pin() function:

julia> Pkg.pin("Stats")

INFO: Creating Stats branch pinned.47c198b1.tmp

julia> Pkg.status()

Required packages:

- Distributions 0.2.9

Additional packages:

- NumericExtensions 0.2.17

- Stats 0.2.7 pinned.47c198b1.tmp

After this, the Stats package will remain pinned at version 0.2.7 – or more specifically, at commit 47c198b1, but

since versions are permanently associated a given git hash, this is the same thing. Pkg.pin() works by creating a

throw-away branch for the commit you want to pin the package at and then checking that branch out. By default, it

pins a package at the current commit, but you can choose a different version by passing a second argument:

julia> Pkg.pin("Stats",v"0.2.5")

INFO: Creating Stats branch pinned.1fd0983b.tmp

INFO: No packages to install, update or remove.

julia> Pkg.status()

Required packages:

- Distributions 0.2.9

Additional packages:

- NumericExtensions 0.2.17

- Stats 0.2.5 pinned.1fd0983b.tmp

Now the Stats package is pinned at commit 1fd0983b, which corresponds to version 0.2.5. When you decide to

”unpin” a package and let the package manager update it again, you can use Pkg.free() like you would to move off

of any branch:

julia> Pkg.free("Stats")

INFO: Freeing Stats...

INFO: No packages to install, update or remove.

julia> Pkg.status()

Required packages:

- Distributions 0.2.9

Additional packages:

- NumericExtensions 0.2.17

- Stats 0.2.7

After this, the Stats package is managed by the package manager again, and future calls to Pkg.update() will

upgrade it to newer versions when they are published. The throw-away pinned.1fd0983b.tmp branch remains in

334 CHAPTER 34. PACKAGES

your local Stats repo, but since git branches are extremely lightweight, this doesn’t really matter; if you feel like

cleaning them up, you can go into the repo and delete those branches 2.

34.7 Custom METADATA Repository

Bydefault, Julia assumes youwill be using the officialMETADATA.jl repository for downloading and installing packages.

You can also provide a different metadata repository location. A common approach is to keep your metadata-v2

branch up to date with the Julia official branch and add another branch with your custom packages. You can initialize

your local metadata repository using that custom location and branch and then periodically rebase your custom branch

with the official metadata-v2 branch. In order to use a custom repository and branch, issue the following command:

julia> Pkg.init("https://me.example.com/METADATA.jl.git", "branch")

The branch argument is optional and defaults to metadata-v2. Once initialized, a file named META_BRANCH in your

~/.julia/vX.Y/ path will track the branch that your METADATA repository was initialized with. If you want to

change branches, you will need to either modify the META_BRANCH file directly (be careful!) or remove the vX.Y

directory and re-initialize your METADATA repository using the Pkg.init command.

2Packages that aren’t on branches will also be marked as dirty if you make changes in the repo, but that’s a less common thing to do.

https://github.com/JuliaLang/METADATA.jl

Chapter 35

Package Development

Julia’s package manager is designed so that when you have a package installed, you are already in a position to look at

its source code and full development history. You are also able to make changes to packages, commit them using git,

and easily contribute fixes and enhancements upstream. Similarly, the system is designed so that if you want to create

a new package, the simplest way to do so is within the infrastructure provided by the package manager.

35.1 Initial Setup

Since packages are git repositories, before doing any package development you should setup the following standard

global git configuration settings:

$ git config --global user.name "FULL NAME"

$ git config --global user.email "EMAIL"

where FULL NAME is your actual full name (spaces are allowed between the double quotes) and EMAIL is your actual

email address. Although it isn’t necessary to use GitHub to create or publish Julia packages, most Julia packages as of

writing this are hosted on GitHub and the package manager knows how to format origin URLs correctly and otherwise

work with the service smoothly. We recommend that you create a free account on GitHub and then do:

$ git config --global github.user "USERNAME"

where USERNAME is your actual GitHub user name. Once you do this, the package manager knows your GitHub user

name and can configure things accordingly. You should also upload your public SSH key to GitHub and set up an SSH

agent on your development machine so that you can push changes with minimal hassle. In the future, we will make

this system extensible and support other common git hosting options like BitBucket and allow developers to choose

their favorite. Since the package development functions has been moved to the PkgDev package, you need to run

Pkg.add("PkgDev"); import PkgDev to access the functions starting with PkgDev. in the document below.

35.2 Making changes to an existing package

Documentation changes

If you want to improve the online documentation of a package, the easiest approach (at least for small changes) is

to use GitHub’s online editing functionality. First, navigate to the repository’s GitHub ”home page,” find the file (e.g.,

README.md) within the repository’s folder structure, and click on it. You’ll see the contents displayed, along with a

small ”pencil” icon in the upper right hand corner. Clicking that icon opens the file in edit mode. Make your changes,

write a brief summary describing the changes you want to make (this is your commit message), and then hit ”Propose

file change.” Your changes will be submitted for consideration by the package owner(s) and collaborators.

For larger documentation changes–and especially ones that you expect to have to update in response to feedback–you

might find it easier to use the procedure for code changes described below.

335

https://github.com/
https://github.com/join
https://github.com/login?return_to=https%3A%2F%2Fgithub.com%2Fsettings%2Fssh
https://linux.die.net/man/1/ssh-agent
https://linux.die.net/man/1/ssh-agent
https://bitbucket.org
https://github.com/JuliaLang/PkgDev.jl

336 CHAPTER 35. PACKAGE DEVELOPMENT

Code changes

Executive summary

Here we assume you’ve already set up git on your local machine and have a GitHub account (see above). Let’s imagine

you’re fixing a bug in the Images package:

Pkg.checkout("Images") # check out the master branch

<here, make sure your bug is still a bug and hasn't been fixed already>

cd(Pkg.dir("Images"))

;git checkout -b myfixes # create a branch for your changes

<edit code> # be sure to add a test for your bug

Pkg.test("Images") # make sure everything works now

;git commit -a -m "Fix foo by calling bar" # write a descriptive message

using PkgDev

PkgDev.submit("Images")

The last line will present you with a link to submit a pull request to incorporate your changes.

Detailed description

If you want to fix a bug or add new functionality, you want to be able to test your changes before you submit them

for consideration. You also need to have an easy way to update your proposal in response to the package owner’s

feedback. Consequently, in this case the strategy is to work locally on your own machine; once you are satisfied with

your changes, you submit them for consideration. This process is called a pull request because you are asking to ”pull”

your changes into the project’s main repository. Because the online repository can’t see the code on your private

machine, you first push your changes to a publicly-visible location, your own online fork of the package (hosted on

your own personal GitHub account).

Let’s assume you already have the Foo package installed. In the description below, anything starting with Pkg. or

PkgDev. is meant to be typed at the Julia prompt; anything startingwith git is meant to be typed in julia’s shell mode

(or using the shell that comes with your operating system). Within Julia, you can combine these two modes:

julia> cd(Pkg.dir("Foo")) # go to Foo's folder

shell> git command arguments... # command will apply to Foo

Now suppose you’re ready to make some changes to Foo. While there are several possible approaches, here is one

that is widely used:

• From the Julia prompt, type Pkg.checkout("Foo"). This ensures you’re running the latest code (the master

branch), rather than just whatever ”official release” version you have installed. (If you’re planning to fix a bug, at

this point it’s a good idea to check again whether the bug has already been fixed by someone else. If it has, you

can request that a new official release be tagged so that the fix gets distributed to the rest of the community.)

If you receive an error Foo is dirty, bailing, see Dirty packages below.

• Create a branch foryour changes: navigate to the package folder (the one that Julia reports fromPkg.dir("Foo"))

and (in shell mode) create a new branch using git checkout -b <newbranch>, where <newbranch>might

be some descriptive name (e.g., fixbar). By creating a branch, you ensure that you can easily go back and forth

between your new work and the current master branch (see https://git-scm.com/book/en/v2/Git-Branching-

Branches-in-a-Nutshell).

If you forget to do this step until after you’ve already made some changes, don’t worry: see more detail about

branching below.

https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell
https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell

35.2. MAKING CHANGES TO AN EXISTING PACKAGE 337

• Make your changes. Whether it’s fixing a bug or adding new functionality, in most cases your change should

include updates to both the src/ and test/ folders. If you’re fixing a bug, add your minimal example demon-

strating the bug (on the current code) to the test suite; by contributing a test for the bug, you ensure that the

bug won’t accidentally reappear at some later time due to other changes. If you’re adding new functionality,

creating tests demonstrates to the package owner that you’ve made sure your code works as intended.

• Run the package’s tests and make sure they pass. There are several ways to run the tests:

– From Julia, run Pkg.test("Foo"): this will run your tests in a separate (new) julia process.

– From Julia, include("runtests.jl") from the package’s test/ folder (it’s possible the file has a dif-

ferent name, look for one that runs all the tests): this allows you to run the tests repeatedly in the same

session without reloading all the package code; for packages that take a while to load, this can be much

faster. With this approach, you do have to do some extra work to make changes in the package code.

– From the shell, run julia ../test/runtests.jl from within the package’s src/ folder.

• Commit your changes: see https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository.

• Submit your changes: From the Julia prompt, type PkgDev.submit("Foo"). This will push your changes to

your GitHub fork, creating it if it doesn’t already exist. (If you encounter an error, make sure you’ve set up your

SSH keys.) Julia will then give you a hyperlink; open that link, edit the message, and then click ”submit.” At that

point, the package owner will be notified of your changes and may initiate discussion. (If you are comfortable

with git, you can also do these steps manually from the shell.)

• The package owner may suggest additional improvements. To respond to those suggestions, you can easily up-

date the pull request (this only works for changes that have not already been merged; for merged pull requests,

make new changes by starting a new branch):

– If you’ve changed branches in themeantime, make sure you go back to the same branchwith git check-

out fixbar (from shell mode) or Pkg.checkout("Foo", "fixbar") (from the Julia prompt).

– As above, make your changes, run the tests, and commit your changes.

– From the shell, type git push. This will add your new commit(s) to the same pull request; you should

see them appear automatically on the page holding the discussion of your pull request.

One potential type of change the owner may request is that you squash your commits. See Squashing below.

Dirty packages

If you can’t change branches because the package manager complains that your package is dirty, it means you have

some changes that have not been committed. From the shell, use git diff to see what these changes are; you

can either discard them (git checkout changedfile.jl) or commit them before switching branches. If you can’t

easily resolve the problems manually, as a last resort you can delete the entire "Foo" folder and reinstall a fresh copy

with Pkg.add("Foo"). Naturally, this deletes any changes you’ve made.

Making a branch post hoc

Especially for newcomers to git, one often forgets to create a new branch until after some changes have already been

made. If you haven’t yet staged or committed your changes, you can create a new branch with git checkout -b

<newbranch> just as usual–git will kindly show you that some files have been modified and create the new branch

for you. Your changes have not yet been committed to this new branch, so the normal work rules still apply.

However, if you’ve alreadymade a commit to master but wish to go back to the official master (called origin/mas-

ter), use the following procedure:

https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository

338 CHAPTER 35. PACKAGE DEVELOPMENT

• Create a new branch. This branch will hold your changes.

• Make sure everything is committed to this branch.

• git checkout master. If this fails, do not proceed further until you have resolved the problems, or you may

lose your changes.

• Resetmaster (your current branch) back to an earlier state with git reset --hard origin/master (see

https://git-scm.com/blog/2011/07/11/reset.html).

This requires a bit more familiarity with git, so it’s much better to get in the habit of creating a branch at the outset.

Squashing and rebasing

Depending on the tastes of the package owner (s)he may ask you to ”squash” your commits. This is especially likely if

your change is quite simple but your commit history looks like this:

WIP: add new 1-line whizbang function (currently breaks package)

Finish whizbang function

Fix typo in variable name

Oops, don't forget to supply default argument

Split into two 1-line functions

Rats, forgot to export the second function

...

This gets into the territoryofmore advanced git usage, andyou’re encouraged to do some reading (https://git-scm.com/-

book/en/v2/Git-Branching-Rebasing). However, a brief summary of the procedure is as follows:

• To protect yourself from error, start from your fixbar branch and create a new branch with git checkout

-b fixbar_backup. Since you started from fixbar, this will be a copy. Now go back to the one you intend

to modify with git checkout fixbar.

• From the shell, type git rebase -i origin/master.

• To combine commits, change pick to squash (for additional options, consult other sources). Save the file and

close the editor window.

• Edit the combined commit message.

If the rebase goes badly, you can go back to the beginning to try again like this:

git checkout fixbar

git reset --hard fixbar_backup

Now let’s assume you’ve rebased successfully. Since your fixbar repository has now diverged from the one in your

GitHub fork, you’re going to have to do a force push:

• Tomake it easy to refer toyourGitHub fork, create a ”handle” for itwithgit remote add myfork https://github.com/my-

account/Foo.jl.git, where the URL comes from the ”clone URL” on your GitHub fork’s page.

• Force-push toyour forkwith git push myfork +fixbar. The + indicates that this should replace the fixbar

branch found at myfork.

https://git-scm.com/blog/2011/07/11/reset.html
https://git-scm.com/book/en/v2/Git-Branching-Rebasing
https://git-scm.com/book/en/v2/Git-Branching-Rebasing

35.3. CREATING A NEW PACKAGE 339

35.3 Creating a new Package

REQUIRE speaks for itself

You should have a REQUIRE file in your package repository, with a bare minimum directive of what Julia version you

expect your users to be running for the package to work. Putting a floor on what Julia version your package supports

is done by simply adding julia 0.x in this file. While this line is partly informational, it also has the consequence

of whether Pkg.update() will update code found in .julia version directories. It will not update code found in

version directories beneath the floor of what’s specified in your REQUIRE.

As the development version 0.y matures, you may find yourself using it more frequently, and wanting your package

to support it. Be warned, the development branch of Julia is the land of breakage, and you can expect things to break.

When you go about fixing whatever broke your package in the development 0.y branch, you will likely find that you

just broke your package on the stable version.

There is amechanism found in the Compat package thatwill enable you to support both the stable version and breaking

changes found in the development version. Should you decide to use this solution, you will need to add Compat to

your REQUIRE file. In this case, you will still have julia 0.x in your REQUIRE. The x is the floor version of what your

package supports.

You might also have no interest in supporting the development version of Julia. Just as you can add a floor to the

version you expect your users to be on, you can set an upper bound. In this case, you would put julia 0.x 0.y-

in your REQUIRE file. The - at the end of the version number means pre-release versions of that specific version from

the very first commit. By setting it as the ceiling, you mean the code supports everything up to but not including the

ceiling version.

Another scenario is that you are writing the bulk of the code for your package with Julia 0.y and do not want to

support the current stable version of Julia. If you choose to do this, simply add julia 0.y- to your REQUIRE. Just

remember to change the julia 0.y- to julia 0.y in your REQUIRE file once 0.y is officially released. If you don’t

edit the dash cruft you are suggesting that you support both the development and stable versions of the same version

number! That would be madness. See the Requirements Specification for the full format of REQUIRE.

Lastly, in many cases you may need extra packages for testing. Additional packages which are only required for tests

should be specified in the test/REQUIRE file. This REQUIRE file has the same specification as the standard REQUIRE

file.

Guidelines for naming a package

Package names should be sensible to most Julia users, even to those who are not domain experts. When you submit your

package toMETADATA, you can expect a little back and forth about the package namewith collaborators, especially if

it’s ambiguous or can be confused with something other than what it is. During this bike-shedding, it’s not uncommon

to get a range of different name suggestions. These are only suggestions though, with the intent being to keep a tidy

namespace in the curated METADATA repository. Since this repository belongs to the entire community, there will

likely be a few collaborators who care about your package name. Here are some guidelines to follow in naming your

package:

1. Avoid jargon. In particular, avoid acronyms unless there is minimal possibility of confusion.

– It’s ok to say USA if you’re talking about the USA.

– It’s not ok to say PMA, even if you’re talking about positive mental attitude.

2. Avoid using Julia in your package name.

– It is usually clear from context and to your users that the package is a Julia package.

https://github.com/JuliaLang/Compat.jl

340 CHAPTER 35. PACKAGE DEVELOPMENT

– Having Julia in the name can imply that the package is connected to, or endorsed by, contributors to the

Julia language itself.

3. Packages that provide most of their functionality in association with a new type should have pluralized names.

– DataFrames provides the DataFrame type.

– BloomFilters provides the BloomFilter type.

– In contrast, JuliaParser provides no newtype, but instead newfunctionality in theJuliaParser.parse()

function.

4. Err on the side of clarity, even if clarity seems long-winded to you.

– RandomMatrices is a less ambiguous name than RndMat or RMT, even though the latter are shorter.

5. A less systematic name may suit a package that implements one of several possible approaches to its domain.

– Julia does not have a single comprehensive plotting package. Instead, Gadfly, PyPlot, Winston and

other packages each implement a unique approach based on a particular design philosophy.

– In contrast, SortingAlgorithms provides a consistent interface to use many well-established sorting

algorithms.

6. Packages that wrap external libraries or programs should be named after those libraries or programs.

– CPLEX.jlwraps the CPLEX library, which can be identified easily in a web search.

– MATLAB.jl provides an interface to call the MATLAB engine from within Julia.

Generating the package

Suppose you want to create a new Julia package called FooBar. To get started, do PkgDev.generate(pkg,li-

cense)where pkg is the new package name and license is the name of a license that the package generator knows

about:

julia> PkgDev.generate("FooBar","MIT")

INFO: Initializing FooBar repo: /Users/stefan/.julia/v0.6/FooBar

INFO: Origin: git://github.com/StefanKarpinski/FooBar.jl.git

INFO: Generating LICENSE.md

INFO: Generating README.md

INFO: Generating src/FooBar.jl

INFO: Generating test/runtests.jl

INFO: Generating REQUIRE

INFO: Generating .travis.yml

INFO: Generating appveyor.yml

INFO: Generating .gitignore

INFO: Committing FooBar generated files

This creates the directory ~/.julia/v0.6/FooBar, initializes it as a git repository, generates a bunch of files that all

packages should have, and commits them to the repository:

$ cd ~/.julia/v0.6/FooBar && git show --stat

commit 84b8e266dae6de30ab9703150b3bf771ec7b6285

Author: Stefan Karpinski <stefan@karpinski.org>

Date: Wed Oct 16 17:57:58 2013 -0400

35.3. CREATING A NEW PACKAGE 341

FooBar.jl generated files.

license: MIT

authors: Stefan Karpinski

years: 2013

user: StefanKarpinski

Julia Version 0.3.0-prerelease+3217 [5fcfb13*]

.gitignore | 2 ++

.travis.yml | 13 +++++++++++++

LICENSE.md | 22 +++++++++++++++++++++++

README.md | 3 +++

REQUIRE | 1 +

appveyor.yml | 34 ++++++++++++++++++++++++++++++++++

src/FooBar.jl | 5 +++++

test/runtests.jl | 5 +++++

8 files changed, 85 insertions(+)

At the moment, the package manager knows about the MIT ”Expat” License, indicated by "MIT", the Simplified BSD

License, indicated by "BSD", and version 2.0 of the Apache Software License, indicated by "ASL". If you want to use

a different license, you can ask us to add it to the package generator, or just pick one of these three and then modify

the ~/.julia/v0.6/PACKAGE/LICENSE.md file after it has been generated.

If you created a GitHub account and configured git to know about it, PkgDev.generate() will set an appropriate

origin URL for you. It will also automatically generate a .travis.yml file for using the Travis automated testing

service, and an appveyor.yml file for using AppVeyor. You will have to enable testing on the Travis and AppVeyor

websites for your package repository, but once you’ve done that, it will already have working tests. Of course, all the

default testing does is verify that using FooBar in Julia works.

Loading Static Non-Julia Files

If your package code needs to load static files which are not Julia code, e.g. an external library or data files, and are

located within the package directory, use the @__DIR__ macro to determine the directory of the current source file.

For example if FooBar/src/FooBar.jl needs to load FooBar/data/foo.csv, use the following code:

datapath = joinpath(@__DIR__, "..", "data")

foo = readcsv(joinpath(datapath, "foo.csv"))

Making Your Package Available

Once you’ve made some commits and you’re happy with how FooBar is working, you may want to get some other

people to try it out. First you’ll need to create the remote repository and push your code to it; we don’t yet automat-

ically do this for you, but wewill in the future and it’s not too hard to figure out 3. Once you’ve done this, letting people

try out your code is as simple as sending them the URL of the published repo – in this case:

git://github.com/StefanKarpinski/FooBar.jl.git

For your package, it will be your GitHub user name and the name of your package, but you get the idea. People you

send this URL to can use Pkg.clone() to install the package and try it out:

julia> Pkg.clone("git://github.com/StefanKarpinski/FooBar.jl.git")

INFO: Cloning FooBar from git@github.com:StefanKarpinski/FooBar.jl.git

https://travis-ci.org
https://www.appveyor.com

342 CHAPTER 35. PACKAGE DEVELOPMENT

Tagging and Publishing Your Package

Tip

If you are hosting your package on GitHub, you can use the attobot integration to handle package regis-

tration, tagging and publishing.

Once you’ve decided that FooBar is ready to be registered as an official package, you can add it to your local copy of

METADATA using PkgDev.register():

julia> PkgDev.register("FooBar")

INFO: Registering FooBar at git://github.com/StefanKarpinski/FooBar.jl.git

INFO: Committing METADATA for FooBar

This creates a commit in the ~/.julia/v0.6/METADATA repo:

$ cd ~/.julia/v0.6/METADATA && git show

commit 9f71f4becb05cadacb983c54a72eed744e5c019d

Author: Stefan Karpinski <stefan@karpinski.org>

Date: Wed Oct 16 18:46:02 2013 -0400

Register FooBar

diff --git a/FooBar/url b/FooBar/url

new file mode 100644

index 0000000..30e525e

--- /dev/null

+++ b/FooBar/url

@@ -0,0 +1 @@

+git://github.com/StefanKarpinski/FooBar.jl.git

This commit is only locally visible, however. To make it visible to the Julia community, you need to merge your local

METADATA upstream into the official repo. The PkgDev.publish() command will fork the METADATA repository on

GitHub, push your changes to your fork, and open a pull request:

julia> PkgDev.publish()

INFO: Validating METADATA

INFO: No new package versions to publish

INFO: Submitting METADATA changes

INFO: Forking JuliaLang/METADATA.jl to StefanKarpinski

INFO: Pushing changes as branch pull-request/ef45f54b

INFO: To create a pull-request open:

https://github.com/StefanKarpinski/METADATA.jl/compare/pull-request/ef45f54b

Tip

If PkgDev.publish() fails with error:

ERROR: key not found: "token"

3Installing and using GitHub’s ”hub” tool is highly recommended. It allows you to do things like run hub create in the package repo and have

it automatically created via GitHub’s API.

https://github.com/attobot/attobot
https://github.com/github/hub

35.3. CREATING A NEW PACKAGE 343

then you may have encountered an issue from using the GitHub API on multiple systems. The solution

is to delete the ”Julia Package Manager” personal access token from your Github account and try again.

Other failures may require you to circumvent PkgDev.publish() by creating a pull request on GitHub.

See: Publishing METADATAmanually below.

Once the package URL for FooBar is registered in the official METADATA repo, people knowwhere to clone the pack-

age from, but there still aren’t any registered versions available. You can tag and register it with the PkgDev.tag()

command:

julia> PkgDev.tag("FooBar")

INFO: Tagging FooBar v0.0.1

INFO: Committing METADATA for FooBar

This tags v0.0.1 in the FooBar repo:

$ cd ~/.julia/v0.6/FooBar && git tag

v0.0.1

It also creates a new version entry in your local METADATA repo for FooBar:

$ cd ~/.julia/v0.6/FooBar && git show

commit de77ee4dc0689b12c5e8b574aef7f70e8b311b0e

Author: Stefan Karpinski <stefan@karpinski.org>

Date: Wed Oct 16 23:06:18 2013 -0400

Tag FooBar v0.0.1

diff --git a/FooBar/versions/0.0.1/sha1 b/FooBar/versions/0.0.1/sha1

new file mode 100644

index 0000000..c1cb1c1

--- /dev/null

+++ b/FooBar/versions/0.0.1/sha1

@@ -0,0 +1 @@

+84b8e266dae6de30ab9703150b3bf771ec7b6285

The PkgDev.tag() command takes an optional second argument that is either an explicit version number object like

v"0.0.1" or one of the symbols :patch, :minor or :major. These increment the patch, minor or major version

number of your package intelligently.

Adding a tagged version of your package will expedite the official registration into METADATA.jl by collaborators. It

is strongly recommended that you complete this process, regardless if your package is completely ready for an official

release.

As a general rule, packages should be tagged 0.0.1 first. Since Julia itself hasn’t achieved 1.0 status, it’s best to be

conservative in your package’s tagged versions.

As with PkgDev.register(), these changes to METADATA aren’t available to anyone else until they’ve been included

upstream. Again, use the PkgDev.publish() command, which first makes sure that individual package repos have

been tagged, pushes them if they haven’t already been, and then opens a pull request to METADATA:

julia> PkgDev.publish()

INFO: Validating METADATA

INFO: Pushing FooBar permanent tags: v0.0.1

INFO: Submitting METADATA changes

INFO: Forking JuliaLang/METADATA.jl to StefanKarpinski

https://github.com/login?return_to=https%3A%2F%2Fgithub.com%2Fsettings%2Ftokens
https://help.github.com/articles/creating-a-pull-request/

344 CHAPTER 35. PACKAGE DEVELOPMENT

INFO: Pushing changes as branch pull-request/3ef4f5c4

INFO: To create a pull-request open:

https://github.com/StefanKarpinski/METADATA.jl/compare/pull-request/3ef4f5c4

Publishing METADATAmanually

If PkgDev.publish() fails you can follow these instructions to manually publish your package.

By ”forking” the main METADATA repository, you can create a personal copy (of METADATA.jl) under your GitHub

account. Once that copy exists, you can push your local changes to your copy (just like any other GitHub project).

1. go to https://github.com/login?return_to=https%3A%2F%2Fgithub.com%2FJuliaLang%2FMETADATA.jl%2Ffork

and create your own fork.

2. add your fork as a remote repository for the METADATA repository on your local computer (in

the terminal where USERNAME is your github username):

cd ~/.julia/v0.6/METADATA

git remote add USERNAME https://github.com/USERNAME/METADATA.jl.git

1. push your changes to your fork:

git push USERNAME metadata-v2

2. If all of that works, then go back to the GitHub page for your fork, and click the ”pull request”

link.

35.4 Fixing Package Requirements

If you need to fix the registered requirements of an already-published package version, you can do so just by edit-

ing the metadata for that version, which will still have the same commit hash – the hash associated with a version is

permanent:

$ cd ~/.julia/v0.6/METADATA/FooBar/versions/0.0.1 && cat requires

julia 0.3-

$ vi requires

Since the commit hash stays the same, the contents of the REQUIRE file that will be checked out in the repo will

not match the requirements in METADATA after such a change; this is unavoidable. When you fix the requirements in

METADATA for a previous version of a package, however, you should also fix the REQUIRE file in the current version of

the package.

https://github.com/login?return_to=https%3A%2F%2Fgithub.com%2FJuliaLang%2FMETADATA.jl%2Ffork

35.5. REQUIREMENTS SPECIFICATION 345

35.5 Requirements Specification

The ~/.julia/v0.6/REQUIRE file, the REQUIRE file inside packages, and the METADATA package requires files use

a simple line-based format to express the ranges of package versions which need to be installed. Package REQUIRE

and METADATA requires files should also include the range of versions of julia the package is expected to work

with. Additionally, packages can include a test/REQUIRE file to specify additional packages which are only required

for testing.

Here’s how these files are parsed and interpreted.

• Everything after a # mark is stripped from each line as a comment.

• If nothing but whitespace is left, the line is ignored.

• If there are non-whitespace characters remaining, the line is a requirement and the is split on whitespace into

words.

The simplest possible requirement is just the name of a package name on a line by itself:

Distributions

This requirement is satisfied by any version of the Distributions package. The package name can be followed by

zero or more version numbers in ascending order, indicating acceptable intervals of versions of that package. One

version opens an interval, while the next closes it, and the next opens a new interval, and so on; if an odd number of

version numbers are given, then arbitrarily large versions will satisfy; if an even number of version numbers are given,

the last one is an upper limit on acceptable version numbers. For example, the line:

Distributions 0.1

is satisfied by any version of Distributions greater than or equal to 0.1.0. Suffixing a version with - allows any

pre-release versions as well. For example:

Distributions 0.1-

is satisfied by pre-release versions such as 0.1-dev or 0.1-rc1, or by any version greater than or equal to 0.1.0.

This requirement entry:

Distributions 0.1 0.2.5

is satisfied by versions from 0.1.0 up to, but not including 0.2.5. If you want to indicate that any 0.1.x version will

do, you will want to write:

Distributions 0.1 0.2-

If you want to start accepting versions after 0.2.7, you can write:

Distributions 0.1 0.2- 0.2.7

If a requirement line has leadingwords that beginwith @, it is a system-dependent requirement. If your systemmatches

these system conditionals, the requirement is included, if not, the requirement is ignored. For example:

@osx Homebrew

will require the Homebrew package only on systems where the operating system is OS X. The system conditions that

are currently supported are (hierarchically):

346 CHAPTER 35. PACKAGE DEVELOPMENT

• @unix

– @linux

– @bsd

* @osx

• @windows

The @unix condition is satisfied on all UNIX systems, including Linux and BSD. Negated system conditionals are also

supported by adding a ! after the leading @. Examples:

@!windows

@unix @!osx

The first condition applies to any system but Windows and the second condition applies to any UNIX system besides

OS X.

Runtime checks for the current version of Julia can be made using the built-in VERSION variable, which is of type

VersionNumber. Such code is occasionally necessary to keep track of new or deprecated functionality between

various releases of Julia. Examples of runtime checks:

VERSION < v"0.3-" #exclude all pre-release versions of 0.3

v"0.2-" <= VERSION < v"0.3-" #get all 0.2 versions, including pre-releases, up to the above

v"0.2" <= VERSION < v"0.3-" #To get only stable 0.2 versions (Note v"0.2" == v"0.2.0")

VERSION >= v"0.2.1" #get at least version 0.2.1

See the section on version number literals for a more complete description.

Chapter 36

Profiling

The Profile module provides tools to help developers improve the performance of their code. When used, it takes

measurements on running code, and produces output that helps you understand howmuch time is spent on individual

line(s). The most common usage is to identify ”bottlenecks” as targets for optimization.

Profile implements what is known as a ”sampling” or statistical profiler. It works by periodically taking a backtrace

during the execution of any task. Each backtrace captures the currently-running function and line number, plus the

complete chain of function calls that led to this line, and hence is a ”snapshot” of the current state of execution.

If much of your run time is spent executing a particular line of code, this line will show up frequently in the set of all

backtraces. In other words, the ”cost” of a given line–or really, the cost of the sequence of function calls up to and

including this line–is proportional to how often it appears in the set of all backtraces.

A sampling profiler does not provide complete line-by-line coverage, because the backtraces occur at intervals (by

default, 1 ms on Unix systems and 10 ms on Windows, although the actual scheduling is subject to operating system

load). Moreover, as discussed further below, because samples are collected at a sparse subset of all execution points,

the data collected by a sampling profiler is subject to statistical noise.

Despite these limitations, sampling profilers have substantial strengths:

• You do not have to make any modifications to your code to take timing measurements (in contrast to the alter-

native instrumenting profiler).

• It can profile into Julia’s core code and even (optionally) into C and Fortran libraries.

• By running ”infrequently” there is very little performance overhead; while profiling, your code can run at nearly

native speed.

For these reasons, it’s recommended that you try using the built-in sampling profiler before considering any alterna-

tives.

36.1 Basic usage

Let’s work with a simple test case:

julia> function myfunc()

A = rand(200, 200, 400)

maximum(A)

end

347

https://en.wikipedia.org/wiki/Profiling_(computer_programming)
https://github.com/timholy/IProfile.jl

348 CHAPTER 36. PROFILING

It’s a good idea to first run the code you intend to profile at least once (unless you want to profile Julia’s JIT-compiler):

julia> myfunc() # run once to force compilation

Nowwe’re ready to profile this function:

julia> @profile myfunc()

To see the profiling results, there is a graphical browser available, but here we’ll use the text-based display that comes

with the standard library:

julia> Profile.print()

80 ./event.jl:73; (::Base.REPL.##1#2{Base.REPL.REPLBackend})()

80 ./REPL.jl:97; macro expansion

80 ./REPL.jl:66; eval_user_input(::Any, ::Base.REPL.REPLBackend)

80 ./boot.jl:235; eval(::Module, ::Any)

80 ./<missing>:?; anonymous

80 ./profile.jl:23; macro expansion

52 ./REPL[1]:2; myfunc()

38 ./random.jl:431; rand!(::MersenneTwister, ::Array{Float64,3}, ::Int64, ::Type{B...

38 ./dSFMT.jl:84; dsfmt_fill_array_close_open!(::Base.dSFMT.DSFMT_state, ::Ptr{F...

14 ./random.jl:278; rand

14 ./random.jl:277; rand

14 ./random.jl:366; rand

14 ./random.jl:369; rand

28 ./REPL[1]:3; myfunc()

28 ./reduce.jl:270; _mapreduce(::Base.#identity, ::Base.#scalarmax, ::IndexLinear,...

3 ./reduce.jl:426; mapreduce_impl(::Base.#identity, ::Base.#scalarmax, ::Array{F...

25 ./reduce.jl:428; mapreduce_impl(::Base.#identity, ::Base.#scalarmax, ::Array{F...

Each line of this display represents a particular spot (line number) in the code. Indentation is used to indicate the

nested sequence of function calls, with more-indented lines being deeper in the sequence of calls. In each line, the

first ”field” is the number of backtraces (samples) taken at this line or in any functions executed by this line. The second

field is the file name and line number and the third field is the function name. Note that the specific line numbers may

change as Julia’s code changes; if you want to follow along, it’s best to run this example yourself.

In this example, we can see that the top level function called is in the file event.jl. This is the function that runs the

REPLwhen you launch Julia. If you examine line 97 of REPL.jl, you’ll see this is where the function eval_user_in-

put() is called. This is the function that evaluates what you type at the REPL, and since we’re working interactively

these functions were invoked when we entered @profile myfunc(). The next line reflects actions taken in the

@profile macro.

The first line shows that 80 backtraces were taken at line 73 of event.jl, but it’s not that this line was ”expensive” on

its own: the third line reveals that all 80 of these backtraceswere actually triggered inside its call to eval_user_input,

and so on. To find out which operations are actually taking the time, we need to look deeper in the call chain.

The first ”important” line in this output is this one:

52 ./REPL[1]:2; myfunc()

REPL refers to the fact that we defined myfunc in the REPL, rather than putting it in a file; if we had used a file, this

would show the file name. The [1] shows that the function myfunc was the first expression evaluated in this REPL

session. Line 2 of myfunc() contains the call to rand, and there were 52 (out of 80) backtraces that occurred at this

line. Below that, you can see a call to dsfmt_fill_array_close_open! inside dSFMT.jl.

A little further down, you see:

https://github.com/timholy/ProfileView.jl

36.1. BASIC USAGE 349

28 ./REPL[1]:3; myfunc()

Line 3 of myfunc contains the call to maximum, and there were 28 (out of 80) backtraces taken here. Below that,

you can see the specific places in base/reduce.jl that carry out the time-consuming operations in the maximum

function for this type of input data.

Overall, we can tentatively conclude that generating the random numbers is approximately twice as expensive as

finding the maximum element. We could increase our confidence in this result by collecting more samples:

julia> @profile (for i = 1:100; myfunc(); end)

julia> Profile.print()

[....]

3821 ./REPL[1]:2; myfunc()

3511 ./random.jl:431; rand!(::MersenneTwister, ::Array{Float64,3}, ::Int64, ::Type...

3511 ./dSFMT.jl:84; dsfmt_fill_array_close_open!(::Base.dSFMT.DSFMT_state, ::Ptr...

310 ./random.jl:278; rand

[....]

2893 ./REPL[1]:3; myfunc()

2893 ./reduce.jl:270; _mapreduce(::Base.#identity, ::Base.#scalarmax, ::IndexLinea...

[....]

In general, if you have N samples collected at a line, you can expect an uncertainty on the order of sqrt(N) (barring

other sources of noise, like how busy the computer is with other tasks). The major exception to this rule is garbage

collection, which runs infrequently but tends to be quite expensive. (Since Julia’s garbage collector is written in C, such

events can be detected using the C=true output mode described below, or by using ProfileView.jl.)

This illustrates the default ”tree” dump; an alternative is the ”flat” dump, which accumulates counts independent of

their nesting:

julia> Profile.print(format=:flat)

Count File Line Function

6714 ./<missing> -1 anonymous

6714 ./REPL.jl 66 eval_user_input(::Any, ::Base.REPL.REPLBackend)

6714 ./REPL.jl 97 macro expansion

3821 ./REPL[1] 2 myfunc()

2893 ./REPL[1] 3 myfunc()

6714 ./REPL[7] 1 macro expansion

6714 ./boot.jl 235 eval(::Module, ::Any)

3511 ./dSFMT.jl 84 dsfmt_fill_array_close_open!(::Base.dSFMT.DSFMT_s...

6714 ./event.jl 73 (::Base.REPL.##1#2{Base.REPL.REPLBackend})()

6714 ./profile.jl 23 macro expansion

3511 ./random.jl 431 rand!(::MersenneTwister, ::Array{Float64,3}, ::In...

310 ./random.jl 277 rand

310 ./random.jl 278 rand

310 ./random.jl 366 rand

310 ./random.jl 369 rand

2893 ./reduce.jl 270 _mapreduce(::Base.#identity, ::Base.#scalarmax, :...

5 ./reduce.jl 420 mapreduce_impl(::Base.#identity, ::Base.#scalarma...

253 ./reduce.jl 426 mapreduce_impl(::Base.#identity, ::Base.#scalarma...

2592 ./reduce.jl 428 mapreduce_impl(::Base.#identity, ::Base.#scalarma...

43 ./reduce.jl 429 mapreduce_impl(::Base.#identity, ::Base.#scalarma...

If your code has recursion, one potentially-confusing point is that a line in a ”child” function can accumulate more

counts than there are total backtraces. Consider the following function definitions:

https://github.com/timholy/ProfileView.jl

350 CHAPTER 36. PROFILING

dumbsum(n::Integer) = n == 1 ? 1 : 1 + dumbsum(n-1)

dumbsum3() = dumbsum(3)

If you were to profile dumbsum3, and a backtrace was taken while it was executing dumbsum(1), the backtrace would

look like this:

dumbsum3

dumbsum(3)

dumbsum(2)

dumbsum(1)

Consequently, this child function gets 3 counts, even though the parent only gets one. The ”tree” representationmakes

this much clearer, and for this reason (among others) is probably the most useful way to view the results.

36.2 Accumulation and clearing

Results from @profile accumulate in a buffer; if you run multiple pieces of code under @profile, then Pro-

file.print() will show you the combined results. This can be very useful, but sometimes you want to start fresh;

you can do so with Profile.clear().

36.3 Options for controlling the display of profile results

Profile.print() has more options than we’ve described so far. Let’s see the full declaration:

function print(io::IO = STDOUT, data = fetch(); kwargs...)

Let’s first discuss the two positional arguments, and later the keyword arguments:

• io – Allows you to save the results to a buffer, e.g. a file, but the default is to print to STDOUT (the console).

• data – Contains the data youwant to analyze; by default that is obtained from Profile.fetch(), which pulls

out the backtraces from a pre-allocated buffer. For example, if you want to profile the profiler, you could say:

data = copy(Profile.fetch())

Profile.clear()

@profile Profile.print(STDOUT, data) # Prints the previous results

Profile.print() # Prints results from Profile.print()

The keyword arguments can be any combination of:

• format– Introduced above, determineswhetherbacktraces are printedwith (default, :tree) orwithout (:flat)

indentation indicating tree structure.

• C – If true, backtraces from C and Fortran code are shown (normally they are excluded). Try running the

introductory example with Profile.print(C = true). This can be extremely helpful in deciding whether

it’s Julia code or C code that is causing a bottleneck; setting C = true also improves the interpretability of the

nesting, at the cost of longer profile dumps.

36.4. CONFIGURATION 351

• combine – Some lines of code contain multiple operations; for example, s += A[i] contains both an array

reference (A[i]) and a sum operation. These correspond to different lines in the generated machine code, and

hence there may be two ormore different addresses captured during backtraces on this line. combine = true

lumps them together, and is probably what you typically want, but you can generate an output separately for

each unique instruction pointer with combine = false.

• maxdepth – Limits frames at a depth higher than maxdepth in the :tree format.

• sortedby – Controls the order in :flat format. :filefuncline (default) sorts by the source line, whereas

:count sorts in order of number of collected samples.

• noisefloor – Limits frames that are below the heuristic noise floor of the sample (only applies to format

:tree). A suggested value to try for this is 2.0 (the default is 0). This parameter hides samples for which n

<= noisefloor * √N, where n is the number of samples on this line, and N is the number of samples for the

callee.

• mincount – Limits frames with less than mincount occurrences.

File/function names are sometimes truncated (with ...), and indentation is truncated with a +n at the beginning,

where n is the number of extra spaces that would have been inserted, had there been room. If you want a complete

profile of deeply-nested code, often a good idea is to save to a file using a wide displaysize in an IOContext:

open("/tmp/prof.txt", "w") do s

Profile.print(IOContext(s, :displaysize => (24, 500)))

end

36.4 Configuration

@profile just accumulates backtraces, and the analysis happens when you call Profile.print(). For a long-

running computation, it’s entirely possible that the pre-allocated buffer for storing backtraces will be filled. If that

happens, the backtraces stop but your computation continues. As a consequence, you may miss some important

profiling data (you will get a warning when that happens).

You can obtain and configure the relevant parameters this way:

Profile.init() # returns the current settings

Profile.init(n = 10^7, delay = 0.01)

n is the total number of instruction pointers you can store, with a default value of 10^6. If your typical backtrace is 20

instruction pointers, then you can collect 50000 backtraces, which suggests a statistical uncertainty of less than 1%.

This may be good enough for most applications.

Consequently, you are more likely to need to modify delay, expressed in seconds, which sets the amount of time

that Julia gets between snapshots to perform the requested computations. A very long-running job might not need

frequent backtraces. The default setting is delay = 0.001. Of course, you can decrease the delay as well as increase

it; however, the overhead of profiling grows once the delay becomes similar to the amount of time needed to take a

backtrace (~30 microseconds on the author’s laptop).

Chapter 37

Memory allocation analysis

One of the most common techniques to improve performance is to reduce memory allocation. The total amount of

allocation can be measured with @time and @allocated, and specific lines triggering allocation can often be inferred

from profiling via the cost of garbage collection that these lines incur. However, sometimes it is more efficient to

directly measure the amount of memory allocated by each line of code.

To measure allocation line-by-line, start Julia with the --track-allocation=<setting> command-line option, for

which you can choose none (the default, do not measure allocation), user (measure memory allocation everywhere

except Julia’s core code), or all (measure memory allocation at each line of Julia code). Allocation gets measured for

each line of compiled code. When you quit Julia, the cumulative results are written to text files with .mem appended

after the file name, residing in the same directory as the source file. Each line lists the total number of bytes allocated.

The Coverage package contains some elementary analysis tools, for example to sort the lines in order of number of

bytes allocated.

In interpreting the results, there are a few important details. Under the user setting, the first line of any function di-

rectly called from the REPLwill exhibit allocation due to events that happen in the REPL code itself. More significantly,

JIT-compilation also adds to allocation counts, because much of Julia’s compiler is written in Julia (and compilation usu-

ally requires memory allocation). The recommended procedure is to force compilation by executing all the commands

you want to analyze, then call Profile.clear_malloc_data() to reset all allocation counters. Finally, execute the

desired commands and quit Julia to trigger the generation of the .mem files.

353

https://github.com/JuliaCI/Coverage.jl

Chapter 38

Stack Traces

The StackTraces module provides simple stack traces that are both human readable and easy to use programmat-

ically.

38.1 Viewing a stack trace

The primary function used to obtain a stack trace is stacktrace():

julia> stacktrace()

4-element Array{StackFrame,1}:

eval(::Module, ::Any) at boot.jl:236

eval_user_input(::Any, ::Base.REPL.REPLBackend) at REPL.jl:66

macro expansion at REPL.jl:97 [inlined]

(::Base.REPL.##1#2{Base.REPL.REPLBackend})() at event.jl:73

Calling stacktrace() returns a vector of StackFrame s. For ease of use, the alias StackTrace can be used in place

of Vector{StackFrame}. (Examples with [...] indicate that output may vary depending on how the code is run.)

julia> example() = stacktrace()

example (generic function with 1 method)

julia> example()

5-element Array{StackFrame,1}:

example() at REPL[1]:1

eval(::Module, ::Any) at boot.jl:236

[...]

julia> @noinline child() = stacktrace()

child (generic function with 1 method)

julia> @noinline parent() = child()

parent (generic function with 1 method)

julia> grandparent() = parent()

grandparent (generic function with 1 method)

julia> grandparent()

7-element Array{StackFrame,1}:

child() at REPL[3]:1

355

356 CHAPTER 38. STACK TRACES

parent() at REPL[4]:1

grandparent() at REPL[5]:1

[...]

Note that when calling stacktrace() you’ll typically see a frame with eval(...) at boot.jl. When calling

stacktrace() from the REPL you’ll also have a few extra frames in the stack from REPL.jl, usually looking some-

thing like this:

julia> example() = stacktrace()

example (generic function with 1 method)

julia> example()

5-element Array{StackFrame,1}:

example() at REPL[1]:1

eval(::Module, ::Any) at boot.jl:236

eval_user_input(::Any, ::Base.REPL.REPLBackend) at REPL.jl:66

macro expansion at REPL.jl:97 [inlined]

(::Base.REPL.##1#2{Base.REPL.REPLBackend})() at event.jl:73

38.2 Extracting useful information

Each StackFrame contains the function name, file name, line number, lambda info, a flag indicatingwhether the frame

has been inlined, a flag indicating whether it is a C function (by default C functions do not appear in the stack trace),

and an integer representation of the pointer returned by backtrace():

julia> top_frame = stacktrace()[1]

eval(::Module, ::Any) at boot.jl:236

julia> top_frame.func

:eval

julia> top_frame.file

Symbol("./boot.jl")

julia> top_frame.line

236

julia> top_frame.linfo

Nullable{Core.MethodInstance}(MethodInstance for eval(::Module, ::Any))

julia> top_frame.inlined

false

julia> top_frame.from_c

false

julia> top_frame.pointer

0x00007f390d152a59

This makes stack trace information available programmatically for logging, error handling, and more.

38.3. ERROR HANDLING 357

38.3 Error handling

While having easy access to information about the current state of the callstack can be helpful in many places, the

most obvious application is in error handling and debugging.

julia> @noinline bad_function() = undeclared_variable

bad_function (generic function with 1 method)

julia> @noinline example() = try

bad_function()

catch

stacktrace()

end

example (generic function with 1 method)

julia> example()

5-element Array{StackFrame,1}:

example() at REPL[2]:4

eval(::Module, ::Any) at boot.jl:236

[...]

You may notice that in the example above the first stack frame points points at line 4, where stacktrace() is called,

rather than line 2, where bad_function is called, and bad_function’s frame is missing entirely. This is understandable,

given that stacktrace() is called from the context of the catch. While in this example it’s fairly easy to find the

actual source of the error, in complex cases tracking down the source of the error becomes nontrivial.

This can be remedied by calling catch_stacktrace() instead of stacktrace(). Instead of returning callstack

information for the current context, catch_stacktrace() returns stack information for the context of the most

recent exception:

julia> @noinline bad_function() = undeclared_variable

bad_function (generic function with 1 method)

julia> @noinline example() = try

bad_function()

catch

catch_stacktrace()

end

example (generic function with 1 method)

julia> example()

6-element Array{StackFrame,1}:

bad_function() at REPL[1]:1

example() at REPL[2]:2

[...]

Notice that the stack trace now indicates the appropriate line number and the missing frame.

julia> @noinline child() = error("Whoops!")

child (generic function with 1 method)

julia> @noinline parent() = child()

parent (generic function with 1 method)

358 CHAPTER 38. STACK TRACES

julia> @noinline function grandparent()

try

parent()

catch err

println("ERROR: ", err.msg)

catch_stacktrace()

end

end

grandparent (generic function with 1 method)

julia> grandparent()

ERROR: Whoops!

7-element Array{StackFrame,1}:

child() at REPL[1]:1

parent() at REPL[2]:1

grandparent() at REPL[3]:3

[...]

38.4 Comparison with backtrace()

A call to backtrace() returns a vector of Ptr{Void}, which may then be passed into stacktrace() for translation:

julia> trace = backtrace()

21-element Array{Ptr{Void},1}:

Ptr{Void} @0x00007f10049d5b2f

Ptr{Void} @0x00007f0ffeb4d29c

Ptr{Void} @0x00007f0ffeb4d2a9

Ptr{Void} @0x00007f1004993fe7

Ptr{Void} @0x00007f10049a92be

Ptr{Void} @0x00007f10049a823a

Ptr{Void} @0x00007f10049a9fb0

Ptr{Void} @0x00007f10049aa718

Ptr{Void} @0x00007f10049c0d5e

Ptr{Void} @0x00007f10049a3286

Ptr{Void} @0x00007f0ffe9ba3ba

Ptr{Void} @0x00007f0ffe9ba3d0

Ptr{Void} @0x00007f1004993fe7

Ptr{Void} @0x00007f0ded34583d

Ptr{Void} @0x00007f0ded345a87

Ptr{Void} @0x00007f1004993fe7

Ptr{Void} @0x00007f0ded34308f

Ptr{Void} @0x00007f0ded343320

Ptr{Void} @0x00007f1004993fe7

Ptr{Void} @0x00007f10049aeb67

Ptr{Void} @0x0000000000000000

julia> stacktrace(trace)

5-element Array{StackFrame,1}:

backtrace() at error.jl:46

eval(::Module, ::Any) at boot.jl:236

eval_user_input(::Any, ::Base.REPL.REPLBackend) at REPL.jl:66

macro expansion at REPL.jl:97 [inlined]

(::Base.REPL.##1#2{Base.REPL.REPLBackend})() at event.jl:73

Notice that the vector returned by backtrace() had 21 pointers, while the vector returned by stacktrace() only

38.4. COMPARISONWITH BACKTRACE() 359

has 5. This is because, by default, stacktrace() removes any lower-level C functions from the stack. If you want to

include stack frames from C calls, you can do it like this:

julia> stacktrace(trace, true)

27-element Array{StackFrame,1}:

jl_backtrace_from_here at stackwalk.c:103

backtrace() at error.jl:46

backtrace() at sys.so:?

jl_call_method_internal at julia_internal.h:248 [inlined]

jl_apply_generic at gf.c:2215

do_call at interpreter.c:75

eval at interpreter.c:215

eval_body at interpreter.c:519

jl_interpret_toplevel_thunk at interpreter.c:664

jl_toplevel_eval_flex at toplevel.c:592

jl_toplevel_eval_in at builtins.c:614

eval(::Module, ::Any) at boot.jl:236

eval(::Module, ::Any) at sys.so:?

jl_call_method_internal at julia_internal.h:248 [inlined]

jl_apply_generic at gf.c:2215

eval_user_input(::Any, ::Base.REPL.REPLBackend) at REPL.jl:66

ip:0x7f1c707f1846

jl_call_method_internal at julia_internal.h:248 [inlined]

jl_apply_generic at gf.c:2215

macro expansion at REPL.jl:97 [inlined]

(::Base.REPL.##1#2{Base.REPL.REPLBackend})() at event.jl:73

ip:0x7f1c707ea1ef

jl_call_method_internal at julia_internal.h:248 [inlined]

jl_apply_generic at gf.c:2215

jl_apply at julia.h:1411 [inlined]

start_task at task.c:261

ip:0xffffffffffffffff

Individual pointers returned by backtrace() can be translated into StackFrame s by passing them into Stack-

Traces.lookup():

julia> pointer = backtrace()[1];

julia> frame = StackTraces.lookup(pointer)

1-element Array{StackFrame,1}:

jl_backtrace_from_here at stackwalk.c:103

julia> println("The top frame is from $(frame[1].func)!")

The top frame is from jl_backtrace_from_here!

Chapter 39

Performance Tips

In the following sections, we briefly go through a few techniques that can help make your Julia code run as fast as

possible.

39.1 Avoid global variables

Aglobal variable might have its value, and therefore its type, change at any point. This makes it difficult for the compiler

to optimize code using global variables. Variables should be local, or passed as arguments to functions, whenever

possible.

Any code that is performance critical or being benchmarked should be inside a function.

We find that global names are frequently constants, and declaring them as such greatly improves performance:

const DEFAULT_VAL = 0

Uses of non-constant globals can be optimized by annotating their types at the point of use:

global x

y = f(x::Int + 1)

Writing functions is better style. It leads to more reusable code and clarifies what steps are being done, andwhat their

inputs and outputs are.

Note

All code in the REPL is evaluated in global scope, so a variable defined and assigned at toplevel will be a

global variable.

In the following REPL session:

julia> x = 1.0

is equivalent to:

julia> global x = 1.0

so all the performance issues discussed previously apply.

361

362 CHAPTER 39. PERFORMANCE TIPS

39.2 Measure performance with @time and pay attention to memory allocation

A useful tool for measuring performance is the @time macro. The following example illustrates good working style:

julia> function f(n)

s = 0

for i = 1:n

s += i/2

end

s

end

f (generic function with 1 method)

julia> @time f(1)

0.012686 seconds (2.09 k allocations: 103.421 KiB)

0.5

julia> @time f(10^6)

0.021061 seconds (3.00 M allocations: 45.777 MiB, 11.69% gc time)

2.5000025e11

On the first call (@time f(1)), f gets compiled. (If you’ve not yet used @time in this session, it will also compile

functions needed for timing.) You should not take the results of this run seriously. For the second run, note that in

addition to reporting the time, it also indicated that a large amount of memorywas allocated. This is the single biggest

advantage of @time vs. functions like tic() and toc(), which only report time.

Unexpected memory allocation is almost always a sign of some problem with your code, usually a problem with type-

stability. Consequently, in addition to the allocation itself, it’s very likely that the code generated for your function is

far from optimal. Take such indications seriously and follow the advice below.

For more serious benchmarking, consider the BenchmarkTools.jl package which evaluates the function multiple times

in order to reduce noise.

As a teaser, an improved version of this function allocates no memory (the allocation reported below is due to running

the @time macro in global scope) and has an order of magnitude faster execution after the first call:

julia> @time f_improved(1)

0.007008 seconds (1.32 k allocations: 63.640 KiB)

0.5

julia> @time f_improved(10^6)

0.002997 seconds (6 allocations: 192 bytes)

2.5000025e11

Below you’ll learn how to spot the problem with f and how to fix it.

In some situations, your function may need to allocate memory as part of its operation, and this can complicate the

simple picture above. In such cases, consider using one of the tools below to diagnose problems, or write a version of

your function that separates allocation from its algorithmic aspects (see Pre-allocating outputs).

39.3 Tools

Julia and its package ecosystem includes tools that may help you diagnose problems and improve the performance of

your code:

https://github.com/JuliaCI/BenchmarkTools.jl

39.4. AVOID CONTAINERSWITH ABSTRACT TYPE PARAMETERS 363

• Profiling allows you to measure the performance of your running code and identify lines that serve as bot-

tlenecks. For complex projects, the ProfileView package can help you visualize your profiling results.

• Unexpectedly-large memory allocations–as reported by @time, @allocated, or the profiler (through calls to

the garbage-collection routines)–hint that there might be issues with your code. If you don’t see another reason

for the allocations, suspect a type problem. You can also start Julia with the --track-allocation=user

option and examine the resulting *.mem files to see information about where those allocations occur. See

Memory allocation analysis.

• @code_warntype generates a representation of your code that can be helpful in finding expressions that result

in type uncertainty. See @code_warntype below.

• The Lint package can also warn you of certain types of programming errors.

39.4 Avoid containers with abstract type parameters

Whenworking with parameterized types, including arrays, it is best to avoid parameterizing with abstract types where

possible.

Consider the following:

a = Real[] # typeof(a) = Array{Real,1}

if (f = rand()) < .8

push!(a, f)

end

Because a is a an array of abstract type Real, it must be able to hold any Real value. Since Real objects can be

of arbitrary size and structure, a must be represented as an array of pointers to individually allocated Real objects.

Because fwill always be a Float64, we should instead, use:

a = Float64[] # typeof(a) = Array{Float64,1}

which will create a contiguous block of 64-bit floating-point values that can be manipulated efficiently.

See also the discussion under Parametric Types.

39.5 Type declarations

In many languages with optional type declarations, adding declarations is the principal way to make code run faster.

This is not the case in Julia. In Julia, the compiler generally knows the types of all function arguments, local variables,

and expressions. However, there are a few specific instances where declarations are helpful.

Avoid fields with abstract type

Types can be declared without specifying the types of their fields:

julia> struct MyAmbiguousType

a

end

This allows a to be of any type. This can often be useful, but it does have a downside: for objects of type MyAmbigu-

ousType, the compiler will not be able to generate high-performance code. The reason is that the compiler uses the

types of objects, not their values, to determine how to build code. Unfortunately, very little can be inferred about an

object of type MyAmbiguousType:

https://github.com/timholy/ProfileView.jl
https://github.com/tonyhffong/Lint.jl

364 CHAPTER 39. PERFORMANCE TIPS

julia> b = MyAmbiguousType("Hello")

MyAmbiguousType("Hello")

julia> c = MyAmbiguousType(17)

MyAmbiguousType(17)

julia> typeof(b)

MyAmbiguousType

julia> typeof(c)

MyAmbiguousType

b and c have the same type, yet their underlying representation of data in memory is very different. Even if you stored

just numeric values in field a, the fact that the memory representation of a UInt8 differs from a Float64 also means

that the CPU needs to handle them using two different kinds of instructions. Since the required information is not

available in the type, such decisions have to be made at run-time. This slows performance.

You can do better by declaring the type of a. Here, we are focused on the case where a might be any one of several

types, in which case the natural solution is to use parameters. For example:

julia> mutable struct MyType{T<:AbstractFloat}

a::T

end

This is a better choice than

julia> mutable struct MyStillAmbiguousType

a::AbstractFloat

end

because the first version specifies the type of a from the type of the wrapper object. For example:

julia> m = MyType(3.2)

MyType{Float64}(3.2)

julia> t = MyStillAmbiguousType(3.2)

MyStillAmbiguousType(3.2)

julia> typeof(m)

MyType{Float64}

julia> typeof(t)

MyStillAmbiguousType

The type of field a can be readily determined from the type of m, but not from the type of t. Indeed, in t it’s possible

to change the type of field a:

julia> typeof(t.a)

Float64

julia> t.a = 4.5f0

4.5f0

julia> typeof(t.a)

Float32

In contrast, once m is constructed, the type of m.a cannot change:

39.5. TYPE DECLARATIONS 365

julia> m.a = 4.5f0

4.5f0

julia> typeof(m.a)

Float64

The fact that the type of m.a is known from m’s type–coupledwith the fact that its type cannot changemid-function–al-

lows the compiler to generate highly-optimized code for objects like m but not for objects like t.

Of course, all of this is true only if we construct mwith a concrete type. We can break this by explicitly constructing it

with an abstract type:

julia> m = MyType{AbstractFloat}(3.2)

MyType{AbstractFloat}(3.2)

julia> typeof(m.a)

Float64

julia> m.a = 4.5f0

4.5f0

julia> typeof(m.a)

Float32

For all practical purposes, such objects behave identically to those of MyStillAmbiguousType.

It’s quite instructive to compare the sheer amount code generated for a simple function

func(m::MyType) = m.a+1

using

code_llvm(func,Tuple{MyType{Float64}})

code_llvm(func,Tuple{MyType{AbstractFloat}})

code_llvm(func,Tuple{MyType})

For reasons of length the results are not shown here, but you may wish to try this yourself. Because the type is fully-

specified in the first case, the compiler doesn’t need to generate any code to resolve the type at run-time. This results

in shorter and faster code.

Avoid fields with abstract containers

The same best practices also work for container types:

julia> mutable struct MySimpleContainer{A<:AbstractVector}

a::A

end

julia> mutable struct MyAmbiguousContainer{T}

a::AbstractVector{T}

end

For example:

366 CHAPTER 39. PERFORMANCE TIPS

julia> c = MySimpleContainer(1:3);

julia> typeof(c)

MySimpleContainer{UnitRange{Int64}}

julia> c = MySimpleContainer([1:3;]);

julia> typeof(c)

MySimpleContainer{Array{Int64,1}}

julia> b = MyAmbiguousContainer(1:3);

julia> typeof(b)

MyAmbiguousContainer{Int64}

julia> b = MyAmbiguousContainer([1:3;]);

julia> typeof(b)

MyAmbiguousContainer{Int64}

For MySimpleContainer, the object is fully-specified by its type and parameters, so the compiler can generate opti-

mized functions. In most instances, this will probably suffice.

While the compiler can now do its job perfectly well, there are cases where you might wish that your code could do

different things depending on the element type of a. Usually the best way to achieve this is to wrap your specific

operation (here, foo) in a separate function:

julia> function sumfoo(c::MySimpleContainer)

s = 0

for x in c.a

s += foo(x)

end

s

end

sumfoo (generic function with 1 method)

julia> foo(x::Integer) = x

foo (generic function with 1 method)

julia> foo(x::AbstractFloat) = round(x)

foo (generic function with 2 methods)

This keeps things simple, while allowing the compiler to generate optimized code in all cases.

However, there are cases where you may need to declare different versions of the outer function for different element

types of a. You could do it like this:

function myfun(c::MySimpleContainer{Vector{T}}) where T<:AbstractFloat

...

end

function myfun(c::MySimpleContainer{Vector{T}}) where T<:Integer

...

end

This works fine for Vector{T}, but we’d also have to write explicit versions for UnitRange{T} or other abstract

types. To prevent such tedium, you can use two parameters in the declaration of MyContainer:

julia> mutable struct MyContainer{T, A<:AbstractVector}

39.5. TYPE DECLARATIONS 367

a::A

end

julia> MyContainer(v::AbstractVector) = MyContainer{eltype(v), typeof(v)}(v)

MyContainer

julia> b = MyContainer(1:5);

julia> typeof(b)

MyContainer{Int64,UnitRange{Int64}}

Note the somewhat surprising fact that T doesn’t appear in the declaration of field a, a point that we’ll return to in a

moment. With this approach, one can write functions such as:

julia> function myfunc(c::MyContainer{<:Integer, <:AbstractArray})

return c.a[1]+1

end

myfunc (generic function with 1 method)

julia> function myfunc(c::MyContainer{<:AbstractFloat})

return c.a[1]+2

end

myfunc (generic function with 2 methods)

julia> function myfunc(c::MyContainer{T,Vector{T}}) where T<:Integer

return c.a[1]+3

end

myfunc (generic function with 3 methods)

Note

Becausewe can only define MyContainer for A<:AbstractArray, and any unspecified parameters are

arbitrary, the first function above could have beenwrittenmore succinctly asfunction myfunc{T<:In-

teger}(c::MyContainer{T})

julia> myfunc(MyContainer(1:3))

2

julia> myfunc(MyContainer(1.0:3))

3.0

julia> myfunc(MyContainer([1:3;]))

4

As you can see, with this approach it’s possible to specialize on both the element type T and the array type A.

However, there’s one remaining hole: we haven’t enforced that A has element type T, so it’s perfectly possible to

construct an object like this:

julia> b = MyContainer{Int64, UnitRange{Float64}}(UnitRange(1.3, 5.0));

julia> typeof(b)

MyContainer{Int64,UnitRange{Float64}}

To prevent this, we can add an inner constructor:

368 CHAPTER 39. PERFORMANCE TIPS

julia> mutable struct MyBetterContainer{T<:Real, A<:AbstractVector}

a::A

MyBetterContainer{T,A}(v::AbstractVector{T}) where {T,A} = new(v)

end

julia> MyBetterContainer(v::AbstractVector) = MyBetterContainer{eltype(v),typeof(v)}(v)

MyBetterContainer

julia> b = MyBetterContainer(UnitRange(1.3, 5.0));

julia> typeof(b)

MyBetterContainer{Float64,UnitRange{Float64}}

julia> b = MyBetterContainer{Int64, UnitRange{Float64}}(UnitRange(1.3, 5.0));

ERROR: MethodError: Cannot `convert` an object of type UnitRange{Float64} to an object of type

MyBetterContainer{Int64,UnitRange{Float64}}

[...]

The inner constructor requires that the element type of A be T.

Annotate values taken from untyped locations

It is often convenient to work with data structures that may contain values of any type (arrays of type Array{Any}).

But, if you’re using one of these structures and happen to know the type of an element, it helps to share this knowledge

with the compiler:

function foo(a::Array{Any,1})

x = a[1]::Int32

b = x+1

...

end

Here, we happened to know that the first element of a would be an Int32. Making an annotation like this has the

added benefit that it will raise a run-time error if the value is not of the expected type, potentially catching certain

bugs earlier.

Declare types of keyword arguments

Keyword arguments can have declared types:

function with_keyword(x; name::Int = 1)

...

end

Functions are specialized on the types of keyword arguments, so these declarationswill not affect performance of code

inside the function. However, they will reduce the overhead of calls to the function that include keyword arguments.

Functions with keyword arguments have near-zero overhead for call sites that pass only positional arguments.

Passing dynamic lists of keyword arguments, as in f(x; keywords...), can be slow and should be avoided in

performance-sensitive code.

39.6. BREAK FUNCTIONS INTO MULTIPLE DEFINITIONS 369

39.6 Break functions into multiple definitions

Writing a function as many small definitions allows the compiler to directly call the most applicable code, or even inline

it.

Here is an example of a ”compound function” that should really be written as multiple definitions:

function norm(A)

if isa(A, Vector)

return sqrt(real(dot(A,A)))

elseif isa(A, Matrix)

return maximum(svd(A)[2])

else

error("norm: invalid argument")

end

end

This can be written more concisely and efficiently as:

norm(x::Vector) = sqrt(real(dot(x,x)))

norm(A::Matrix) = maximum(svd(A)[2])

39.7 Write ”type-stable” functions

When possible, it helps to ensure that a function always returns a value of the same type. Consider the following

definition:

pos(x) = x < 0 ? 0 : x

Although this seems innocent enough, the problem is that 0 is an integer (of type Int) and x might be of any type.

Thus, depending on the value of x, this function might return a value of either of two types. This behavior is allowed,

and may be desirable in some cases. But it can easily be fixed as follows:

pos(x) = x < 0 ? zero(x) : x

There is also a one() function, and a more general oftype(x, y) function, which returns y converted to the type

of x.

39.8 Avoid changing the type of a variable

An analogous ”type-stability” problem exists for variables used repeatedly within a function:

function foo()

x = 1

for i = 1:10

x = x/bar()

end

return x

end

370 CHAPTER 39. PERFORMANCE TIPS

Local variable x starts as an integer, and after one loop iteration becomes a floating-point number (the result of /

operator). This makes it more difficult for the compiler to optimize the body of the loop. There are several possible

fixes:

• Initialize xwith x = 1.0

• Declare the type of x: x::Float64 = 1

• Use an explicit conversion: x = oneunit(T)

• Initialize with the first loop iteration, to x = 1/bar(), then loop for i = 2:10

39.9 Separate kernel functions (aka, function barriers)

Many functions follow a pattern of performing some set-up work, and then running many iterations to perform a core

computation. Where possible, it is a good idea to put these core computations in separate functions. For example,

the following contrived function returns an array of a randomly-chosen type:

julia> function strange_twos(n)

a = Vector{rand(Bool) ? Int64 : Float64}(n)

for i = 1:n

a[i] = 2

end

return a

end

strange_twos (generic function with 1 method)

julia> strange_twos(3)

3-element Array{Float64,1}:

2.0

2.0

2.0

This should be written as:

julia> function fill_twos!(a)

for i=1:length(a)

a[i] = 2

end

end

fill_twos! (generic function with 1 method)

julia> function strange_twos(n)

a = Array{rand(Bool) ? Int64 : Float64}(n)

fill_twos!(a)

return a

end

strange_twos (generic function with 1 method)

julia> strange_twos(3)

3-element Array{Float64,1}:

2.0

2.0

2.0

39.10. TYPESWITH VALUES-AS-PARAMETERS 371

Julia’s compiler specializes code for argument types at function boundaries, so in the original implementation it does

not know the type of a during the loop (since it is chosen randomly). Therefore the second version is generally faster

since the inner loop can be recompiled as part of fill_twos! for different types of a.

The second form is also often better style and can lead to more code reuse.

This pattern is used in several places in the standard library. For example, see hvcat_fill in abstractarray.jl,

or the fill! function, which we could have used instead of writing our own fill_twos!.

Functions like strange_twos occur when dealing with data of uncertain type, for example data loaded from an input

file that might contain either integers, floats, strings, or something else.

39.10 Types with values-as-parameters

Let’s say you want to create an N-dimensional array that has size 3 along each axis. Such arrays can be created like

this:

julia> A = fill(5.0, (3, 3))

3×3 Array{Float64,2}:

5.0 5.0 5.0

5.0 5.0 5.0

5.0 5.0 5.0

This approachworks verywell: the compiler can figure out that A is an Array{Float64,2} because it knows the type

of the fill value (5.0::Float64) and the dimensionality ((3, 3)::NTuple{2,Int}). This implies that the compiler

can generate very efficient code for any future usage of A in the same function.

But now let’s say you want to write a function that creates a 3×3×... array in arbitrary dimensions; you might be

tempted to write a function

julia> function array3(fillval, N)

fill(fillval, ntuple(d->3, N))

end

array3 (generic function with 1 method)

julia> array3(5.0, 2)

3×3 Array{Float64,2}:

5.0 5.0 5.0

5.0 5.0 5.0

5.0 5.0 5.0

This works, but (as you can verify for yourself using @code_warntype array3(5.0, 2)) the problem is that the

output type cannot be inferred: the argument N is a value of type Int, and type-inference does not (and cannot)

predict its value in advance. This means that code using the output of this function has to be conservative, checking

the type on each access of A; such code will be very slow.

Now, one very good way to solve such problems is by using the function-barrier technique. However, in some cases

you might want to eliminate the type-instability altogether. In such cases, one approach is to pass the dimensionality

as a parameter, for example through Val{T} (see ”Value types”):

julia> function array3(fillval, ::Type{Val{N}}) where N

fill(fillval, ntuple(d->3, Val{N}))

end

array3 (generic function with 1 method)

https://github.com/JuliaLang/julia/blob/master/base/abstractarray.jl

372 CHAPTER 39. PERFORMANCE TIPS

julia> array3(5.0, Val{2})

3×3 Array{Float64,2}:

5.0 5.0 5.0

5.0 5.0 5.0

5.0 5.0 5.0

Julia has a specialized version of ntuple that accepts a Val{::Int} as the second parameter; by passing N as a type-

parameter, you make its ”value” known to the compiler. Consequently, this version of array3 allows the compiler to

predict the return type.

However, making use of such techniques can be surprisingly subtle. For example, it would be of no help if you called

array3 from a function like this:

function call_array3(fillval, n)

A = array3(fillval, Val{n})

end

Here, you’ve created the same problem all over again: the compiler can’t guess the type of n, so it doesn’t know the type

of Val{n}. Attempting to use Val, but doing so incorrectly, can easily make performance worse in many situations.

(Only in situations where you’re effectively combining Valwith the function-barrier trick, to make the kernel function

more efficient, should code like the above be used.)

An example of correct usage of Valwould be:

function filter3(A::AbstractArray{T,N}) where {T,N}

kernel = array3(1, Val{N})

filter(A, kernel)

end

In this example, N is passed as a parameter, so its ”value” is known to the compiler. Essentially, Val{T} works only

when T is either hard-coded (Val{3}) or already specified in the type-domain.

39.11 The dangers of abusing multiple dispatch (aka, more on types with values-as-parameters)

Once one learns to appreciate multiple dispatch, there’s an understandable tendency to go crazy and try to use it for

everything. For example, you might imagine using it to store information, e.g.

struct Car{Make,Model}

year::Int

...more fields...

end

and then dispatch on objects like Car{:Honda,:Accord}(year, args...).

This might be worthwhile when the following are true:

• You require CPU-intensive processing on each Car, and it becomes vastly more efficient if you know the Make

and Model at compile time.

• You have homogenous lists of the same type of Car to process, so that you can store them all in an Ar-

ray{Car{:Honda,:Accord},N}.

39.12. ACCESS ARRAYS IN MEMORYORDER, ALONG COLUMNS 373

When the latter holds, a function processing such a homogenous array can be productively specialized: Julia knows

the type of each element in advance (all objects in the container have the same concrete type), so Julia can ”look up”

the correct method calls when the function is being compiled (obviating the need to check at run-time) and thereby

emit efficient code for processing the whole list.

When these do not hold, then it’s likely that you’ll get no benefit; worse, the resulting ”combinatorial explosion of

types” will be counterproductive. If items[i+1] has a different type than item[i], Julia has to look up the type

at run-time, search for the appropriate method in method tables, decide (via type intersection) which one matches,

determinewhether it has been JIT-compiled yet (and do so if not), and then make the call. In essence, you’re asking the

full type- system and JIT-compilationmachinery to basically execute the equivalent of a switch statement or dictionary

lookup in your own code.

Some run-time benchmarks comparing (1) type dispatch, (2) dictionary lookup, and (3) a ”switch” statement can be

found on the mailing list.

Perhaps even worse than the run-time impact is the compile-time impact: Julia will compile specialized functions

for each different Car{Make, Model}; if you have hundreds or thousands of such types, then every function that

accepts such an object as a parameter (from a custom get_year function you might write yourself, to the generic

push! function in the standard library) will have hundreds or thousands of variants compiled for it. Each of these

increases the size of the cache of compiled code, the length of internal lists of methods, etc. Excess enthusiasm for

values-as-parameters can easily waste enormous resources.

39.12 Access arrays in memory order, along columns

Multidimensional arrays in Julia are stored in column-major order. This means that arrays are stacked one column at a

time. This can be verified using the vec function or the syntax [:] as shown below (notice that the array is ordered

[1 3 2 4], not [1 2 3 4]):

julia> x = [1 2; 3 4]

2×2 Array{Int64,2}:

1 2

3 4

julia> x[:]

4-element Array{Int64,1}:

1

3

2

4

This convention for ordering arrays is common in many languages like Fortran, Matlab, and R (to name a few). The

alternative to column-major ordering is row-major ordering, which is the convention adopted by C and Python (numpy)

among other languages. Remembering the ordering of arrays can have significant performance effects when looping

over arrays. A rule of thumb to keep in mind is that with column-major arrays, the first index changes most rapidly.

Essentially this means that looping will be faster if the inner-most loop index is the first to appear in a slice expression.

Consider the following contrived example. Imagine we wanted to write a function that accepts a Vector and returns

a square Matrix with either the rows or the columns filled with copies of the input vector. Assume that it is not

important whether rows or columns are filled with these copies (perhaps the rest of the code can be easily adapted

accordingly). We could conceivably do this in at least four ways (in addition to the recommended call to the built-in

repmat()):

function copy_cols(x::Vector{T}) where T

n = size(x, 1)

https://groups.google.com/forum/#!msg/julia-users/jUMu9A3QKQQ/qjgVWr7vAwAJ

374 CHAPTER 39. PERFORMANCE TIPS

out = Array{T}(n, n)

for i = 1:n

out[:, i] = x

end

out

end

function copy_rows(x::Vector{T}) where T

n = size(x, 1)

out = Array{T}(n, n)

for i = 1:n

out[i, :] = x

end

out

end

function copy_col_row(x::Vector{T}) where T

n = size(x, 1)

out = Array{T}(n, n)

for col = 1:n, row = 1:n

out[row, col] = x[row]

end

out

end

function copy_row_col(x::Vector{T}) where T

n = size(x, 1)

out = Array{T}(n, n)

for row = 1:n, col = 1:n

out[row, col] = x[col]

end

out

end

Nowwe will time each of these functions using the same random 10000 by 1 input vector:

julia> x = randn(10000);

julia> fmt(f) = println(rpad(string(f)*": ", 14, ' '), @elapsed f(x))

julia> map(fmt, Any[copy_cols, copy_rows, copy_col_row, copy_row_col]);

copy_cols: 0.331706323

copy_rows: 1.799009911

copy_col_row: 0.415630047

copy_row_col: 1.721531501

Notice that copy_cols is much faster than copy_rows. This is expected because copy_cols respects the column-

based memory layout of the Matrix and fills it one column at a time. Additionally, copy_col_row is much faster than

copy_row_col because it follows our rule of thumb that the first element to appear in a slice expression should be

coupled with the inner-most loop.

39.13 Pre-allocating outputs

If your function returns an Array or some other complex type, it may have to allocate memory. Unfortunately, of-

tentimes allocation and its converse, garbage collection, are substantial bottlenecks.

39.13. PRE-ALLOCATING OUTPUTS 375

Sometimes you can circumvent the need to allocate memory on each function call by preallocating the output. As a

trivial example, compare

function xinc(x)

return [x, x+1, x+2]

end

function loopinc()

y = 0

for i = 1:10^7

ret = xinc(i)

y += ret[2]

end

y

end

with

function xinc!(ret::AbstractVector{T}, x::T) where T

ret[1] = x

ret[2] = x+1

ret[3] = x+2

nothing

end

function loopinc_prealloc()

ret = Array{Int}(3)

y = 0

for i = 1:10^7

xinc!(ret, i)

y += ret[2]

end

y

end

Timing results:

julia> @time loopinc()

0.529894 seconds (40.00 M allocations: 1.490 GiB, 12.14% gc time)

50000015000000

julia> @time loopinc_prealloc()

0.030850 seconds (6 allocations: 288 bytes)

50000015000000

Preallocation has other advantages, for example by allowing the caller to control the ”output” type from an algorithm.

In the example above, we could have passed a SubArray rather than an Array, had we so desired.

Taken to its extreme, pre-allocation canmake your code uglier, so performancemeasurements and some judgmentmay

be required. However, for ”vectorized” (element-wise) functions, the convenient syntax x .= f.(y) can be used for

in-place operations with fused loops and no temporary arrays (see the dot syntax for vectorizing functions).

376 CHAPTER 39. PERFORMANCE TIPS

39.14 More dots: Fuse vectorized operations

Julia has a special dot syntax that converts any scalar function into a ”vectorized” function call, and any operator into

a ”vectorized” operator, with the special property that nested ”dot calls” are fusing: they are combined at the syntax

level into a single loop, without allocating temporary arrays. If you use .= and similar assignment operators, the result

can also be stored in-place in a pre-allocated array (see above).

In a linear-algebra context, this means that even though operations like vector + vector and vector * scalar

are defined, it can be advantageous to instead use vector .+ vector and vector .* scalar because the result-

ing loops can be fused with surrounding computations. For example, consider the two functions:

f(x) = 3x.^2 + 4x + 7x.^3

fdot(x) = @. 3x^2 + 4x + 7x^3 # equivalent to 3 .* x.^2 .+ 4 .* x .+ 7 .* x.^3

Both f and fdot compute the same thing. However, fdot (defined with the help of the @. macro) is significantly

faster when applied to an array:

julia> x = rand(10^6);

julia> @time f(x);

0.010986 seconds (18 allocations: 53.406 MiB, 11.45% gc time)

julia> @time fdot(x);

0.003470 seconds (6 allocations: 7.630 MiB)

julia> @time f.(x);

0.003297 seconds (30 allocations: 7.631 MiB)

That is, fdot(x) is three times faster and allocates 1/7 the memory of f(x), because each * and + operation in f(x)

allocates a new temporary array and executes in a separate loop. (Of course, if you just do f.(x) then it is as fast as

fdot(x) in this example, but in many contexts it is more convenient to just sprinkle some dots in your expressions

rather than defining a separate function for each vectorized operation.)

39.15 Consider using views for slices

In Julia, an array ”slice” expression like array[1:5, :] creates a copy of that data (except on the left-hand side

of an assignment, where array[1:5, :] = ... assigns in-place to that portion of array). If you are doing many

operations on the slice, this can be good for performance because it is more efficient toworkwith a smaller contiguous

copy than it would be to index into the original array. On the other hand, if you are just doing a few simple operations

on the slice, the cost of the allocation and copy operations can be substantial.

An alternative is to create a ”view” of the array, which is an array object (a SubArray) that actually references the data

of the original array in-place, without making a copy. (If you write to a view, it modifies the original array’s data as

well.) This can be done for individual slices by calling view(), or more simply for a whole expression or block of code

by putting @views in front of that expression. For example:

julia> fcopy(x) = sum(x[2:end-1])

julia> @views fview(x) = sum(x[2:end-1])

julia> x = rand(10^6);

39.16. AVOID STRING INTERPOLATION FOR I/O 377

julia> @time fcopy(x);

0.003051 seconds (7 allocations: 7.630 MB)

julia> @time fview(x);

0.001020 seconds (6 allocations: 224 bytes)

Notice both the 3× speedup and the decreased memory allocation of the fview version of the function.

39.16 Avoid string interpolation for I/O

When writing data to a file (or other I/O device), forming extra intermediate strings is a source of overhead. Instead

of:

println(file, "$a $b")

use:

println(file, a, " ", b)

The first version of the code forms a string, then writes it to the file, while the second version writes values directly to

the file. Also notice that in some cases string interpolation can be harder to read. Consider:

println(file, "$(f(a))$(f(b))")

versus:

println(file, f(a), f(b))

39.17 Optimize network I/O during parallel execution

When executing a remote function in parallel:

responses = Vector{Any}(nworkers())

@sync begin

for (idx, pid) in enumerate(workers())

@async responses[idx] = remotecall_fetch(pid, foo, args...)

end

end

is faster than:

refs = Vector{Any}(nworkers())

for (idx, pid) in enumerate(workers())

refs[idx] = @spawnat pid foo(args...)

end

responses = [fetch(r) for r in refs]

The former results in a single network round-trip to every worker, while the latter results in two network calls - first

by the @spawnat and the second due to the fetch (or even a wait). The fetch/wait is also being executed serially

resulting in an overall poorer performance.

378 CHAPTER 39. PERFORMANCE TIPS

39.18 Fix deprecation warnings

A deprecated function internally performs a lookup in order to print a relevant warning only once. This extra lookup

can cause a significant slowdown, so all uses of deprecated functions should bemodified as suggested by thewarnings.

39.19 Tweaks

These are some minor points that might help in tight inner loops.

• Avoid unnecessary arrays. For example, instead of sum([x,y,z]) use x+y+z.

• Use abs2(z) instead of abs(z)^2 for complex z. In general, try to rewrite code to use abs2() instead of

abs() for complex arguments.

• Use div(x,y) for truncating division of integers instead of trunc(x/y), fld(x,y) instead of floor(x/y),

and cld(x,y) instead of ceil(x/y).

39.20 Performance Annotations

Sometimes you can enable better optimization by promising certain program properties.

• Use @inbounds to eliminate array bounds checking within expressions. Be certain before doing this. If the

subscripts are ever out of bounds, you may suffer crashes or silent corruption.

• Use @fastmath to allow floating point optimizations that are correct for real numbers, but lead to differences

for IEEE numbers. Be careful when doing this, as this may change numerical results. This corresponds to the

-ffast-math option of clang.

• Write @simd in front of for loops that are amenable to vectorization. This feature is experimental and could

change or disappear in future versions of Julia.

Note: While @simd needs to be placed directly in front of a loop, both @inbounds and @fastmath can be applied to

several statements at once, e.g. using begin ... end, or even to a whole function.

Here is an example with both @inbounds and @simd markup:

function inner(x, y)

s = zero(eltype(x))

for i=1:length(x)

@inbounds s += x[i]*y[i]

end

s

end

function innersimd(x, y)

s = zero(eltype(x))

@simd for i=1:length(x)

@inbounds s += x[i]*y[i]

end

s

end

function timeit(n, reps)

39.20. PERFORMANCE ANNOTATIONS 379

x = rand(Float32,n)

y = rand(Float32,n)

s = zero(Float64)

time = @elapsed for j in 1:reps

s+=inner(x,y)

end

println("GFlop/sec = ",2.0*n*reps/time*1E-9)

time = @elapsed for j in 1:reps

s+=innersimd(x,y)

end

println("GFlop/sec (SIMD) = ",2.0*n*reps/time*1E-9)

end

timeit(1000,1000)

On a computer with a 2.4GHz Intel Core i5 processor, this produces:

GFlop/sec = 1.9467069505224963

GFlop/sec (SIMD) = 17.578554163920018

(GFlop/sec measures the performance, and larger numbers are better.) The range for a @simd for loop should be

a one-dimensional range. A variable used for accumulating, such as s in the example, is called a reduction variable. By

using @simd, you are asserting several properties of the loop:

• It is safe to execute iterations in arbitraryor overlapping order, with special consideration for reductionvariables.

• Floating-point operations on reduction variables can be reordered, possibly causing different results than with-

out @simd.

• No iteration ever waits on another iteration to make forward progress.

A loop containing break, continue, or @gotowill cause a compile-time error.

Using @simd merely gives the compiler license to vectorize. Whether it actually does so depends on the compiler. To

actually benefit from the current implementation, your loop should have the following additional properties:

• The loop must be an innermost loop.

• The loop bodymust be straight-line code. This is why @inbounds is currently needed for all array accesses. The

compiler can sometimes turn short &&, ||, and ?: expressions into straight-line code, if it is safe to evaluate all

operands unconditionally. Consider using ifelse() instead of ?: in the loop if it is safe to do so.

• Accesses must have a stride pattern and cannot be ”gathers” (random-index reads) or ”scatters” (random-index

writes).

• The stride should be unit stride.

• In some simple cases, for example with 2-3 arrays accessed in a loop, the LLVM auto-vectorization may kick in

automatically, leading to no further speedup with @simd.

Here is an examplewith all three kinds ofmarkup. This programfirst calculates the finite difference of a one-dimensional

array, and then evaluates the L2-norm of the result:

380 CHAPTER 39. PERFORMANCE TIPS

function init!(u)

n = length(u)

dx = 1.0 / (n-1)

@fastmath @inbounds @simd for i in 1:n

u[i] = sin(2pi*dx*i)

end

end

function deriv!(u, du)

n = length(u)

dx = 1.0 / (n-1)

@fastmath @inbounds du[1] = (u[2] - u[1]) / dx

@fastmath @inbounds @simd for i in 2:n-1

du[i] = (u[i+1] - u[i-1]) / (2*dx)

end

@fastmath @inbounds du[n] = (u[n] - u[n-1]) / dx

end

function norm(u)

n = length(u)

T = eltype(u)

s = zero(T)

@fastmath @inbounds @simd for i in 1:n

s += u[i]^2

end

@fastmath @inbounds return sqrt(s/n)

end

function main()

n = 2000

u = Array{Float64}(n)

init!(u)

du = similar(u)

deriv!(u, du)

nu = norm(du)

@time for i in 1:10^6

deriv!(u, du)

nu = norm(du)

end

println(nu)

end

main()

On a computer with a 2.7 GHz Intel Core i7 processor, this produces:

$ julia wave.jl;

elapsed time: 1.207814709 seconds (0 bytes allocated)

$ julia --math-mode=ieee wave.jl;

elapsed time: 4.487083643 seconds (0 bytes allocated)

Here, the option --math-mode=ieee disables the @fastmath macro, so that we can compare results.

39.21. TREAT SUBNORMAL NUMBERS AS ZEROS 381

In this case, the speedup due to @fastmath is a factor of about 3.7. This is unusually large – in general, the speedup

will be smaller. (In this particular example, the working set of the benchmark is small enough to fit into the L1 cache

of the processor, so that memory access latency does not play a role, and computing time is dominated by CPU usage.

In many real world programs this is not the case.) Also, in this case this optimization does not change the result – in

general, the result will be slightly different. In some cases, especially for numerically unstable algorithms, the result

can be very different.

The annotation @fastmath re-arranges floating point expressions, e.g. changing the order of evaluation, or assuming

that certain special cases (inf, nan) cannot occur. In this case (and on this particular computer), the main difference is

that the expression 1 / (2*dx) in the function deriv is hoisted out of the loop (i.e. calculated outside the loop),

as if one had written idx = 1 / (2*dx). In the loop, the expression ... / (2*dx) then becomes ... * idx,

which is much faster to evaluate. Of course, both the actual optimization that is applied by the compiler as well as the

resulting speedup depend very much on the hardware. You can examine the change in generated code by using Julia’s

code_native() function.

39.21 Treat Subnormal Numbers as Zeros

Subnormal numbers, formerly called denormal numbers, are useful in many contexts, but incur a performance penalty

on some hardware. A call set_zero_subnormals(true) grants permission for floating-point operations to treat

subnormal inputs or outputs as zeros, which may improve performance on some hardware. A call set_zero_sub-

normals(false) enforces strict IEEE behavior for subnormal numbers.

Below is an example where subnormals noticeably impact performance on some hardware:

function timestep(b::Vector{T}, a::Vector{T}, Δt::T) where T

@assert length(a)==length(b)

n = length(b)

b[1] = 1 # Boundary condition

for i=2:n-1

b[i] = a[i] + (a[i-1] - T(2)*a[i] + a[i+1]) * Δt

end

b[n] = 0 # Boundary condition

end

function heatflow(a::Vector{T}, nstep::Integer) where T

b = similar(a)

for t=1:div(nstep,2) # Assume nstep is even

timestep(b,a,T(0.1))

timestep(a,b,T(0.1))

end

end

heatflow(zeros(Float32,10),2) # Force compilation

for trial=1:6

a = zeros(Float32,1000)

set_zero_subnormals(iseven(trial)) # Odd trials use strict IEEE arithmetic

@time heatflow(a,1000)

end

This example generates many subnormal numbers because the values in a become an exponentially decreasing curve,

which slowly flattens out over time.

Treating subnormals as zeros should be used with caution, because doing so breaks some identities, such as x-y ==

0 implies x == y:

https://en.wikipedia.org/wiki/Denormal_number

382 CHAPTER 39. PERFORMANCE TIPS

julia> x = 3f-38; y = 2f-38;

julia> set_zero_subnormals(true); (x - y, x == y)

(0.0f0, false)

julia> set_zero_subnormals(false); (x - y, x == y)

(1.0000001f-38, false)

In some applications, an alternative to zeroing subnormal numbers is to inject a tiny bit of noise. For example, instead

of initializing awith zeros, initialize it with:

a = rand(Float32,1000) * 1.f-9

39.22 @code_warntype

The macro @code_warntype (or its function variant code_warntype()) can sometimes be helpful in diagnosing

type-related problems. Here’s an example:

pos(x) = x < 0 ? 0 : x

function f(x)

y = pos(x)

sin(y*x+1)

end

julia> @code_warntype f(3.2)

Variables:

#self#::#f

x::Float64

y::UNION{FLOAT64,INT64}

fy::Float64

#temp#@_5::UNION{FLOAT64,INT64}

#temp#@_6::Core.MethodInstance

#temp#@_7::Float64

Body:

begin

$(Expr(:inbounds, false))

meta: location REPL[1] pos 1

meta: location float.jl < 487

fy::Float64 = (Core.typeassert)((Base.sitofp)(Float64,0)::Float64,Float64)::Float64

meta: pop location

unless

(Base.or_int)((Base.lt_float)(x::Float64,fy::Float64)::Bool,(Base.and_int)((Base.and_int)((Base.eq_float)(x::Float64,fy::Float64)::Bool,(Base.lt_float)(fy::Float64,9.223372036854776e18)::Bool)::Bool,(Base.slt_int)((Base.fptosi)(Int64,fy::Float64)::Int64,0)::Bool)::Bool)::Bool

goto 9

↪→

↪→

#temp#@_5::UNION{FLOAT64,INT64} = 0

goto 11

9:

#temp#@_5::UNION{FLOAT64,INT64} = x::Float64

11:

meta: pop location

$(Expr(:inbounds, :pop))

y::UNION{FLOAT64,INT64} = #temp#@_5::UNION{FLOAT64,INT64} # line 3:

unless (y::UNION{FLOAT64,INT64} isa Int64)::ANY goto 19

39.22. @CODE_WARNTYPE 383

#temp#@_6::Core.MethodInstance = MethodInstance for *(::Int64, ::Float64)

goto 28

19:

unless (y::UNION{FLOAT64,INT64} isa Float64)::ANY goto 23

#temp#@_6::Core.MethodInstance = MethodInstance for *(::Float64, ::Float64)

goto 28

23:

goto 25

25:

#temp#@_7::Float64 = (y::UNION{FLOAT64,INT64} * x::Float64)::Float64

goto 30

28:

#temp#@_7::Float64 = $(Expr(:invoke, :(#temp#@_6), :(Main.*), :(y), :(x)))

30:

return $(Expr(:invoke, MethodInstance for sin(::Float64), :(Main.sin),

:((Base.add_float)(#temp#@_7,(Base.sitofp)(Float64,1)::Float64)::Float64)))↪→

end::Float64

Interpreting the output of @code_warntype, like that of its cousins @code_lowered, @code_typed, @code_llvm,

and @code_native, takes a little practice. Your code is being presented in form that has been partially digested on

its way to generating compiled machine code. Most of the expressions are annotated by a type, indicated by the ::T

(where Tmight be Float64, for example). Themost important characteristic of @code_warntype is that non-concrete

types are displayed in red; in the above example, such output is shown in all-caps.

The top part of the output summarizes the type information for the different variables internal to the function. You

can see that y, one of the variables you created, is a Union{Int64,Float64}, due to the type-instability of pos.

There is another variable, _var4, which you can see also has the same type.

The next lines represent the body of f. The lines starting with a number followed by a colon (1:, 2:) are labels, and

represent targets for jumps (via goto) in your code. Looking at the body, you can see that pos has been inlined into

f–everything before 2: comes from code defined in pos.

Starting at 2:, the variable y is defined, and again annotated as a Union type. Next, we see that the compiler created

the temporary variable _var1 to hold the result of y*x. Because a Float64 times either an Int64 or Float64 yields

a Float64, all type-instability ends here. The net result is that f(x::Float64)will not be type-unstable in its output,

even if some of the intermediate computations are type-unstable.

How you use this information is up to you. Obviously, it would be far and away best to fix pos to be type-stable: if

you did so, all of the variables in f would be concrete, and its performance would be optimal. However, there are

circumstances where this kind of ephemeral type instability might not matter too much: for example, if pos is never

used in isolation, the fact that f’s output is type-stable (for Float64 inputs) will shield later code from the propagating

effects of type instability. This is particularly relevant in cases where fixing the type instability is difficult or impossible:

for example, currently it’s not possible to infer the return type of an anonymous function. In such cases, the tips above

(e.g., adding type annotations and/or breaking up functions) are your best tools to contain the ”damage” from type

instability.

The following examples may help you interpret expressions marked as containing non-leaf types:

• Function body ending in end::Union{T1,T2})

– Interpretation: function with unstable return type

– Suggestion: make the return value type-stable, even if you have to annotate it

• f(x::T)::Union{T1,T2}

– Interpretation: call to a type-unstable function

384 CHAPTER 39. PERFORMANCE TIPS

– Suggestion: fix the function, or if necessary annotate the return value

• (top(arrayref))(A::Array{Any,1},1)::Any

– Interpretation: accessing elements of poorly-typed arrays

– Suggestion: use arrays with better-defined types, or if necessary annotate the type of individual element

accesses

• (top(getfield))(A::ArrayContainer{Float64},:data)::Array{Float64,N}

– Interpretation: getting a field that is of non-leaf type. In this case, ArrayContainer had a fielddata::Ar-

ray{T}. But Array needs the dimension N, too, to be a concrete type.

– Suggestion: use concrete types like Array{T,3} or Array{T,N}, where N is now a parameter of Ar-

rayContainer

Chapter 40

WorkflowTips

Here are some tips for working with Julia efficiently.

40.1 REPL-based workflow

As already elaborated in Interacting With Julia, Julia’s REPL provides rich functionality that facilitates an efficient

interactive workflow. Here are some tips that might further enhance your experience at the command line.

A basic editor/REPLworkflow

The most basic Julia workflows involve using a text editor in conjunction with the julia command line. A common

pattern includes the following elements:

• Put code under development in a temporary module. Create a file, say Tmp.jl, and include within it

module Tmp

<your definitions here>

end

• Put your test code in another file. Create another file, say tst.jl, which begins with

import Tmp

and includes tests for the contents of Tmp. The value of using import versus using is that you can call

reload("Tmp") instead of having to restart the REPL when your definitions change. Of course, the cost is

the need to prepend Tmp. to uses of names defined in your module. (You can lower that cost by keeping your

module name short.)

Alternatively, you can wrap the contents of your test file in a module, as

module Tst

using Tmp

<scratch work>

end

The advantage is that you can now do using Tmp in your test code and can therefore avoid prepending Tmp.

everywhere. The disadvantage is that code can no longer be selectively copied to the REPL without some

tweaking.

385

386 CHAPTER 40. WORKFLOWTIPS

• Lather. Rinse. Repeat. Explore ideas at the julia command prompt. Save good ideas in tst.jl. Occasionally

restart the REPL, issuing

reload("Tmp")

include("tst.jl")

Simplify initialization

To simplify restarting the REPL, put project-specific initialization code in a file, say _init.jl, which you can run on

startup by issuing the command:

julia -L _init.jl

If you further add the following to your .juliarc.jl file

isfile("_init.jl") && include(joinpath(pwd(), "_init.jl"))

then calling julia from that directory will run the initialization code without the additional command line argument.

40.2 Browser-based workflow

It is also possible to interact with a Julia REPL in the browser via IJulia. See the package home for details.

https://github.com/JuliaLang/IJulia.jl

Chapter 41

Style Guide

The following sections explain a few aspects of idiomatic Julia coding style. None of these rules are absolute; they are

only suggestions to help familiarize you with the language and to help you choose among alternative designs.

41.1 Write functions, not just scripts

Writing code as a series of steps at the top level is a quick way to get started solving a problem, but you should try to

divide a program into functions as soon as possible. Functions are more reusable and testable, and clarify what steps

are being done and what their inputs and outputs are. Furthermore, code inside functions tends to run much faster

than top level code, due to how Julia’s compiler works.

It is also worth emphasizing that functions should take arguments, instead of operating directly on global variables

(aside from constants like pi).

41.2 Avoid writing overly-specific types

Code should be as generic as possible. Instead of writing:

convert(Complex{Float64}, x)

it’s better to use available generic functions:

complex(float(x))

The second version will convert x to an appropriate type, instead of always the same type.

This style point is especially relevant to function arguments. For example, don’t declare an argument to be of type

Int or Int32 if it really could be any integer, expressed with the abstract type Integer. In fact, in many cases you

can omit the argument type altogether, unless it is needed to disambiguate from other method definitions, since a

MethodError will be thrown anyway if a type is passed that does not support any of the requisite operations. (This

is known as duck typing.)

For example, consider the following definitions of a function addone that returns one plus its argument:

addone(x::Int) = x + 1 # works only for Int

addone(x::Integer) = x + oneunit(x) # any integer type

addone(x::Number) = x + oneunit(x) # any numeric type

addone(x) = x + oneunit(x) # any type supporting + and oneunit

387

https://en.wikipedia.org/wiki/Duck_typing

388 CHAPTER 41. STYLE GUIDE

The last definition of addone handles any type supporting oneunit (which returns 1 in the same type as x, which

avoids unwanted type promotion) and the + function with those arguments. The key thing to realize is that there

is no performance penalty to defining only the general addone(x) = x + oneunit(x), because Julia will automat-

ically compile specialized versions as needed. For example, the first time you call addone(12), Julia will automatically

compile a specialized addone function for x::Int arguments, with the call to oneunit replaced by its inlined value

1. Therefore, the first three definitions of addone above are completely redundant with the fourth definition.

41.3 Handle excess argument diversity in the caller

Instead of:

function foo(x, y)

x = Int(x); y = Int(y)

...

end

foo(x, y)

use:

function foo(x::Int, y::Int)

...

end

foo(Int(x), Int(y))

This is better style because foo does not really accept numbers of all types; it really needs Int s.

One issue here is that if a function inherently requires integers, it might be better to force the caller to decide how

non-integers should be converted (e.g. floor or ceiling). Another issue is that declaring more specific types leaves more

”space” for future method definitions.

41.4 Append ! to names of functions that modify their arguments

Instead of:

function double(a::AbstractArray{<:Number})

for i = 1:endof(a)

a[i] *= 2

end

return a

end

use:

function double!(a::AbstractArray{<:Number})

for i = 1:endof(a)

a[i] *= 2

end

return a

end

The Julia standard library uses this convention throughout and contains examples of functions with both copying and

modifying forms (e.g., sort() andsort!()), and otherswhich are justmodifying (e.g., push!(), pop!(), splice!()).

It is typical for such functions to also return the modified array for convenience.

41.5. AVOID STRANGE TYPE UNIONS 389

41.5 Avoid strange type Unions

Types such as Union{Function,AbstractString} are often a sign that some design could be cleaner.

41.6 Avoid type Unions in fields

When creating a type such as:

mutable struct MyType

...

x::Union{Void,T}

end

ask whether the option for x to be nothing (of type Void) is really necessary. Here are some alternatives to consider:

• Find a safe default value to initialize xwith

• Introduce another type that lacks x

• If there are many fields like x, store them in a dictionary

• Determine whether there is a simple rule for when x is nothing. For example, often the field will start as

nothing but get initialized at some well-defined point. In that case, consider leaving it undefined at first.

• If x really needs to hold no value at some times, define it as ::Nullable{T} instead, as this guarantees type-

stability in the code accessing this field (see Nullable types).

41.7 Avoid elaborate container types

It is usually not much help to construct arrays like the following:

a = Array{Union{Int,AbstractString,Tuple,Array}}(n)

In this case Array{Any}(n) is better. It is alsomore helpful to the compiler to annotate specific uses (e.g. a[i]::Int)

than to try to pack many alternatives into one type.

41.8 Use naming conventions consistent with Julia’s base/

• modules and type names use capitalization and camel case: module SparseArrays, struct UnitRange.

• functions are lowercase (maximum(), convert()) and, when readable, with multiple words squashed together

(isequal(), haskey()). When necessary, use underscores as word separators. Underscores are also used to

indicate a combination of concepts (remotecall_fetch() as a more efficient implementation of fetch(re-

motecall(...))) or as modifiers (sum_kbn()).

• conciseness is valued, but avoid abbreviation (indexin() rather than indxin()) as it becomes difficult to

remember whether and how particular words are abbreviated.

If a function name requires multiple words, consider whether it might represent more than one concept and might be

better split into pieces.

390 CHAPTER 41. STYLE GUIDE

41.9 Don’t overuse try-catch

It is better to avoid errors than to rely on catching them.

41.10 Don’t parenthesize conditions

Julia doesn’t require parens around conditions in if and while. Write:

if a == b

instead of:

if (a == b)

41.11 Don’t overuse ...

Splicing function arguments can be addictive. Instead of [a..., b...], use simply [a; b], which already concate-

nates arrays. collect(a) is better than [a...], but since a is already iterable it is often even better to leave it alone,

and not convert it to an array.

41.12 Don’t use unnecessary static parameters

A function signature:

foo(x::T) where {T<:Real} = ...

should be written as:

foo(x::Real) = ...

instead, especially if T is not used in the function body. Even if T is used, it can be replaced with typeof(x) if

convenient. There is no performance difference. Note that this is not a general caution against static parameters, just

against uses where they are not needed.

Note also that container types, specifically may need type parameters in function calls. See the FAQ Avoid fields with

abstract containers for more information.

41.13 Avoid confusion about whether something is an instance or a type

Sets of definitions like the following are confusing:

foo(::Type{MyType}) = ...

foo(::MyType) = foo(MyType)

Decide whether the concept in question will be written as MyType or MyType(), and stick to it.

The preferred style is to use instances by default, and only add methods involving Type{MyType} later if they become

necessary to solve some problem.

If a type is effectively an enumeration, it should be defined as a single (ideally immutable struct or primitive) type, with

the enumeration values being instances of it. Constructors and conversions can check whether values are valid. This

design is preferred over making the enumeration an abstract type, with the ”values” as subtypes.

41.14. DON’T OVERUSE MACROS 391

41.14 Don’t overuse macros

Be aware of when a macro could really be a function instead.

Calling eval() inside a macro is a particularly dangerous warning sign; it means the macro will only work when called

at the top level. If such a macro is written as a function instead, it will naturally have access to the run-time values it

needs.

41.15 Don’t expose unsafe operations at the interface level

If you have a type that uses a native pointer:

mutable struct NativeType

p::Ptr{UInt8}

...

end

don’t write definitions like the following:

getindex(x::NativeType, i) = unsafe_load(x.p, i)

The problem is that users of this type can write x[i] without realizing that the operation is unsafe, and then be

susceptible to memory bugs.

Such a function should either check the operation to ensure it is safe, or have unsafe somewhere in its name to alert

callers.

41.16 Don’t overload methods of base container types

It is possible to write definitions like the following:

show(io::IO, v::Vector{MyType}) = ...

This would provide custom showing of vectors with a specific new element type. While tempting, this should be

avoided. The trouble is that users will expect a well-known type like Vector() to behave in a certain way, and overly

customizing its behavior can make it harder to work with.

41.17 Avoid type piracy

”Type piracy” refers to the practice of extending or redefining methods in Base or other packages on types that you

have not defined. In some cases, you can get away with type piracy with little ill effect. In extreme cases, however,

you can even crash Julia (e.g. if your method extension or redefinition causes invalid input to be passed to a ccall).

Type piracy can complicate reasoning about code, and may introduce incompatibilities that are hard to predict and

diagnose.

As an example, suppose you wanted to define multiplication on symbols in a module:

module A

import Base.*

*(x::Symbol, y::Symbol) = Symbol(x,y)

end

392 CHAPTER 41. STYLE GUIDE

The problem is that now any other module that uses Base.* will also see this definition. Since Symbol is defined in

Base and is used by other modules, this can change the behavior of unrelated code unexpectedly. There are several

alternatives here, including using a different function name, or wrapping the Symbols in another type that you define.

Sometimes, coupled packages may engage in type piracy to separate features from definitions, especially when the

packages were designed by collaborating authors, and when the definitions are reusable. For example, one package

might provide some types useful for working with colors; another package could define methods for those types that

enable conversions between color spaces. Another example might be a package that acts as a thin wrapper for some

C code, which another package might then pirate to implement a higher-level, Julia-friendly API.

41.18 Be careful with type equality

You generally want to use isa() and <: (issubtype()) for testing types, not ==. Checking types for exact equality

typically only makes sense when comparing to a known concrete type (e.g. T == Float64), or if you really, really

knowwhat you’re doing.

41.19 Do not write x->f(x)

Since higher-order functions are often called with anonymous functions, it is easy to conclude that this is desirable or

even necessary. But any function can be passed directly, without being ”wrapped” in an anonymous function. Instead

of writing map(x->f(x), a), write map(f, a).

41.20 Avoid using floats for numeric literals in generic code when possible

If you write generic code which handles numbers, and which can be expected to run with many different numeric type

arguments, try using literals of a numeric type that will affect the arguments as little as possible through promotion.

For example,

julia> f(x) = 2.0 * x

f (generic function with 1 method)

julia> f(1//2)

1.0

julia> f(1/2)

1.0

julia> f(1)

2.0

while

julia> g(x) = 2 * x

g (generic function with 1 method)

julia> g(1//2)

1//1

julia> g(1/2)

1.0

julia> g(1)

2

41.20. AVOID USING FLOATS FOR NUMERIC LITERALS IN GENERIC CODEWHEN POSSIBLE 393

As you can see, the second version, where we used an Int literal, preserved the type of the input argument, while

the first didn’t. This is because e.g. promote_type(Int, Float64) == Float64, and promotion happens with

the multiplication. Similarly, Rational literals are less type disruptive than Float64 literals, but more disruptive than

Ints:

julia> h(x) = 2//1 * x

h (generic function with 1 method)

julia> h(1//2)

1//1

julia> h(1/2)

1.0

julia> h(1)

2//1

Thus, use Int literals when possible, with Rational{Int} for literal non-integer numbers, in order to make it easier

to use your code.

Chapter 42

Frequently Asked Questions

42.1 Sessions and the REPL

How do I delete an object in memory?

Julia does not have an analog of MATLAB’s clear function; once a name is defined in a Julia session (technically, in

module Main), it is always present.

If memory usage is your concern, you can always replace objects with ones that consume less memory. For example, if

A is a gigabyte-sized array that you no longer need, you can free the memorywith A = 0. The memorywill be released

the next time the garbage collector runs; you can force this to happen with gc().

How can I modify the declaration of a type in my session?

Perhaps you’ve defined a type and then realize you need to add a new field. If you try this at the REPL, you get the

error:

ERROR: invalid redefinition of constant MyType

Types in module Main cannot be redefined.

While this can be inconvenient when you are developing new code, there’s an excellent workaround. Modules can

be replaced by redefining them, and so if you wrap all your new code inside a module you can redefine types and

constants. You can’t import the type names into Main and then expect to be able to redefine them there, but you can

use the module name to resolve the scope. In other words, while developing you might use a workflow something like

this:

include("mynewcode.jl") # this defines a module MyModule

obj1 = MyModule.ObjConstructor(a, b)

obj2 = MyModule.somefunction(obj1)

Got an error. Change something in "mynewcode.jl"

include("mynewcode.jl") # reload the module

obj1 = MyModule.ObjConstructor(a, b) # old objects are no longer valid, must reconstruct

obj2 = MyModule.somefunction(obj1) # this time it worked!

obj3 = MyModule.someotherfunction(obj2, c)

...

42.2 Functions

I passed an argument x to a function, modified it inside that function, but on the outside,

the variable x is still unchanged. Why?

395

396 CHAPTER 42. FREQUENTLYASKED QUESTIONS

Suppose you call a function like this:

julia> x = 10

10

julia> function change_value!(y)

y = 17

end

change_value! (generic function with 1 method)

julia> change_value!(x)

17

julia> x # x is unchanged!

10

In Julia, the binding of a variable x cannot be changed by passing x as an argument to a function. When calling

change_value!(x) in the above example, y is a newly created variable, bound initially to the value of x, i.e. 10; then

y is rebound to the constant 17, while the variable x of the outer scope is left untouched.

But here is a thing you should pay attention to: suppose x is bound to an object of type Array (or any other mutable

type). From within the function, you cannot ”unbind” x from this Array, but you can change its content. For example:

julia> x = [1,2,3]

3-element Array{Int64,1}:

1

2

3

julia> function change_array!(A)

A[1] = 5

end

change_array! (generic function with 1 method)

julia> change_array!(x)

5

julia> x

3-element Array{Int64,1}:

5

2

3

Here we created a function change_array!(), that assigns 5 to the first element of the passed array (bound to x

at the call site, and bound to A within the function). Notice that, after the function call, x is still bound to the same

array, but the content of that array changed: the variables A and xwere distinct bindings refering to the same mutable

Array object.

Can I use using or import inside a function?

No, you are not allowed to have a using or import statement inside a function. If you want to import a module but

only use its symbols inside a specific function or set of functions, you have two options:

1. Use import:

42.2. FUNCTIONS 397

import Foo

function bar(...)

... refer to Foo symbols via Foo.baz ...

end

This loads the module Foo and defines a variable Foo that refers to the module, but does not import any of the

other symbols from the module into the current namespace. You refer to the Foo symbols by their qualified

names Foo.bar etc.

2. Wrap your function in a module:

module Bar

export bar

using Foo

function bar(...)

... refer to Foo.baz as simply baz

end

end

using Bar

This imports all the symbols from Foo, but only inside the module Bar.

What does the ... operator do?

The two uses of the ... operator: slurping and splatting

Many newcomers to Julia find the use of ... operator confusing. Part of what makes the ... operator confusing is

that it means two different things depending on context.

... combines many arguments into one argument in function definitions

In the context of function definitions, the ... operator is used to combine many different arguments into a single

argument. This use of ... for combining many different arguments into a single argument is called slurping:

julia> function printargs(args...)

@printf("%s\n", typeof(args))

for (i, arg) in enumerate(args)

@printf("Arg %d = %s\n", i, arg)

end

end

printargs (generic function with 1 method)

julia> printargs(1, 2, 3)

Tuple{Int64,Int64,Int64}

Arg 1 = 1

Arg 2 = 2

Arg 3 = 3

If Julia were a language that made more liberal use of ASCII characters, the slurping operator might have been written

as <-... instead of

398 CHAPTER 42. FREQUENTLYASKED QUESTIONS

... splits one argument into many different arguments in function calls

In contrast to the use of the ... operator to denote slurping many different arguments into one argument when

defining a function, the ... operator is also used to cause a single function argument to be split apart into many

different arguments when used in the context of a function call. This use of ... is called splatting:

julia> function threeargs(a, b, c)

@printf("a = %s::%s\n", a, typeof(a))

@printf("b = %s::%s\n", b, typeof(b))

@printf("c = %s::%s\n", c, typeof(c))

end

threeargs (generic function with 1 method)

julia> vec = [1, 2, 3]

3-element Array{Int64,1}:

1

2

3

julia> threeargs(vec...)

a = 1::Int64

b = 2::Int64

c = 3::Int64

If Julia were a language that made more liberal use of ASCII characters, the splatting operator might have been written

as ...-> instead of

42.3 Types, type declarations, and constructors

What does ”type-stable” mean?

It means that the type of the output is predictable from the types of the inputs. In particular, it means that the type

of the output cannot vary depending on the values of the inputs. The following code is not type-stable:

julia> function unstable(flag::Bool)

if flag

return 1

else

return 1.0

end

end

unstable (generic function with 1 method)

It returns either an Int or a Float64 depending on the value of its argument. Since Julia can’t predict the return type

of this function at compile-time, any computation that uses it will have to guard against both types possibly occurring,

making generation of fast machine code difficult.

Why does Julia give a DomainError for certain seemingly-sensible operations?

Certain operations make mathematical sense but result in errors:

julia> sqrt(-2.0)

ERROR: DomainError:

42.3. TYPES, TYPE DECLARATIONS, AND CONSTRUCTORS 399

sqrt will only return a complex result if called with a complex argument. Try sqrt(complex(x)).

Stacktrace:

[1] sqrt(::Float64) at ./math.jl:425

julia> 2^-5

ERROR: DomainError:

Cannot raise an integer x to a negative power -n.

Make x a float by adding a zero decimal (e.g. 2.0^-n instead of 2^-n), or write 1/x^n,

float(x)^-n, or (x//1)^-n.↪→

Stacktrace:

[1] power_by_squaring(::Int64, ::Int64) at ./intfuncs.jl:170

[2] literal_pow(::Base.#^, ::Int64, ::Type{Val{-5}}) at ./intfuncs.jl:205

This behavior is an inconvenient consequence of the requirement for type-stability. In the case of sqrt(), most users

wantsqrt(2.0) to give a real number, andwould be unhappy if it produced the complex number1.4142135623730951

+ 0.0im. One could write the sqrt() function to switch to a complex-valued output only when passed a negative

number (which is what sqrt() does in some other languages), but then the result would not be type-stable and the

sqrt() function would have poor performance.

In these and other cases, you can get the result you want by choosing an input type that conveys your willingness to

accept an output type in which the result can be represented:

julia> sqrt(-2.0+0im)

0.0 + 1.4142135623730951im

julia> 2.0^-5

0.03125

Why does Julia use native machine integer arithmetic?

Julia uses machine arithmetic for integer computations. This means that the range of Int values is bounded andwraps

around at either end so that adding, subtracting and multiplying integers can overflow or underflow, leading to some

results that can be unsettling at first:

julia> typemax(Int)

9223372036854775807

julia> ans+1

-9223372036854775808

julia> -ans

-9223372036854775808

julia> 2*ans

0

Clearly, this is far from the way mathematical integers behave, and you might think it less than ideal for a high-level

programming language to expose this to the user. For numerical work where efficiency and transparency are at a

premium, however, the alternatives are worse.

One alternative to consider would be to check each integer operation for overflow and promote results to bigger

integer types such as Int128 or BigInt in the case of overflow. Unfortunately, this introduces major overhead on

every integer operation (think incrementing a loop counter) – it requires emitting code to perform run-time overflow

checks after arithmetic instructions and branches to handle potential overflows. Worse still, this would cause every

400 CHAPTER 42. FREQUENTLYASKED QUESTIONS

computation involving integers to be type-unstable. As we mentioned above, type-stability is crucial for effective

generation of efficient code. If you can’t count on the results of integer operations being integers, it’s impossible to

generate fast, simple code the way C and Fortran compilers do.

Avariation on this approach, which avoids the appearance of type instability is tomerge the Int and BigInt types into

a single hybrid integer type, that internally changes representationwhen a result no longer fits into the size of amachine

integer. While this superficially avoids type-instability at the level of Julia code, it just sweeps the problemunder the rug

by foisting all of the same difficulties onto the C code implementing this hybrid integer type. This approach can bemade

towork and can even bemade quite fast in many cases, but has several drawbacks. One problem is that the in-memory

representation of integers and arrays of integers no longer match the natural representation used by C, Fortran and

other languages with native machine integers. Thus, to interoperate with those languages, we would ultimately need

to introduce native integer types anyway. Any unbounded representation of integers cannot have a fixed number

of bits, and thus cannot be stored inline in an array with fixed-size slots – large integer values will always require

separate heap-allocated storage. And of course, no matter how clever a hybrid integer implementation one uses,

there are always performance traps – situations where performance degrades unexpectedly. Complex representation,

lack of interoperability with C and Fortran, the inability to represent integer arrays without additional heap storage,

and unpredictable performance characteristics make even the cleverest hybrid integer implementations a poor choice

for high-performance numerical work.

An alternative to using hybrid integers or promoting to BigInts is to use saturating integer arithmetic, where adding

to the largest integer value leaves it unchanged and likewise for subtracting from the smallest integer value. This is

precisely what Matlab™ does:

>> int64(9223372036854775807)

ans =

9223372036854775807

>> int64(9223372036854775807) + 1

ans =

9223372036854775807

>> int64(-9223372036854775808)

ans =

-9223372036854775808

>> int64(-9223372036854775808) - 1

ans =

-9223372036854775808

At first blush, this seems reasonable enough since 9223372036854775807 ismuch closer to 9223372036854775808

than -9223372036854775808 is and integers are still represented with a fixed size in a natural way that is compat-

ible with C and Fortran. Saturated integer arithmetic, however, is deeply problematic. The first and most obvious

issue is that this is not the way machine integer arithmetic works, so implementing saturated operations requires

emitting instructions after each machine integer operation to check for underflow or overflow and replace the result

with typemin(Int) or typemax(Int) as appropriate. This alone expands each integer operation from a single, fast

instruction into half a dozen instructions, probably including branches. Ouch. But it gets worse – saturating integer

arithmetic isn’t associative. Consider this Matlab computation:

42.3. TYPES, TYPE DECLARATIONS, AND CONSTRUCTORS 401

>> n = int64(2)^62

4611686018427387904

>> n + (n - 1)

9223372036854775807

>> (n + n) - 1

9223372036854775806

This makes it hard to write many basic integer algorithms since a lot of common techniques depend on the fact that

machine additionwith overflow is associative. Consider finding the midpoint between integer values lo and hi in Julia

using the expression (lo + hi) >>> 1:

julia> n = 2^62

4611686018427387904

julia> (n + 2n) >>> 1

6917529027641081856

See? Noproblem. That’s the correctmidpoint between2^62 and 2^63, despite the fact thatn + 2n is -4611686018427387904.

Now try it in Matlab:

>> (n + 2*n)/2

ans =

4611686018427387904

Oops. Adding a >>> operator to Matlab wouldn’t help, because saturation that occurs when adding n and 2n has

already destroyed the information necessary to compute the correct midpoint.

Not only is lack of associativity unfortunate for programmers who cannot rely it for techniques like this, but it also

defeats almost anything compilers might want to do to optimize integer arithmetic. For example, since Julia integers

use normal machine integer arithmetic, LLVM is free to aggressively optimize simple little functions like f(k) = 5k-1.

The machine code for this function is just this:

julia> code_native(f, Tuple{Int})

.text

Filename: none

pushq %rbp

movq %rsp, %rbp

Source line: 1

leaq -1(%rdi,%rdi,4), %rax

popq %rbp

retq

nopl (%rax,%rax)

The actual body of the function is a single leaq instruction, which computes the integer multiply and add at once.

This is even more beneficial when f gets inlined into another function:

julia> function g(k, n)

for i = 1:n

k = f(k)

end

402 CHAPTER 42. FREQUENTLYASKED QUESTIONS

return k

end

g (generic function with 1 methods)

julia> code_native(g, Tuple{Int,Int})

.text

Filename: none

pushq %rbp

movq %rsp, %rbp

Source line: 2

testq %rsi, %rsi

jle L26

nopl (%rax)

Source line: 3

L16:

leaq -1(%rdi,%rdi,4), %rdi

Source line: 2

decq %rsi

jne L16

Source line: 5

L26:

movq %rdi, %rax

popq %rbp

retq

nop

Since the call to f gets inlined, the loop body ends up being just a single leaq instruction. Next, considerwhat happens

if we make the number of loop iterations fixed:

julia> function g(k)

for i = 1:10

k = f(k)

end

return k

end

g (generic function with 2 methods)

julia> code_native(g,(Int,))

.text

Filename: none

pushq %rbp

movq %rsp, %rbp

Source line: 3

imulq $9765625, %rdi, %rax # imm = 0x9502F9

addq $-2441406, %rax # imm = 0xFFDABF42

Source line: 5

popq %rbp

retq

nopw %cs:(%rax,%rax)

Because the compiler knows that integer addition and multiplication are associative and that multiplication distributes

over addition – neither ofwhich is true of saturating arithmetic – it can optimize the entire loop down to just a multiply

and an add. Saturated arithmetic completely defeats this kind of optimization since associativity and distributivity can

fail at each loop iteration, causing different outcomes depending onwhich iteration the failure occurs in. The compiler

can unroll the loop, but it cannot algebraically reduce multiple operations into fewer equivalent operations.

42.3. TYPES, TYPE DECLARATIONS, AND CONSTRUCTORS 403

The most reasonable alternative to having integer arithmetic silently overflow is to do checked arithmetic everywhere,

raising errors when adds, subtracts, and multiplies overflow, producing values that are not value-correct. In this blog

post, Dan Luu analyzes this and finds that rather than the trivial cost that this approach should in theory have, it ends

up having a substantial cost due to compilers (LLVM and GCC) not gracefully optimizing around the added overflow

checks. If this improves in the future, we could consider defaulting to checked integer arithmetic in Julia, but for now,

we have to live with the possibility of overflow.

What are the possible causes of an UndefVarError during remote execution?

As the error states, an immediate cause of an UndefVarError on a remote node is that a binding by that name does

not exist. Let us explore some of the possible causes.

julia> module Foo

foo() = remotecall_fetch(x->x, 2, "Hello")

end

julia> Foo.foo()

ERROR: On worker 2:

UndefVarError: Foo not defined

[...]

The closure x->x carries a reference to Foo, and since Foo is unavailable on node 2, an UndefVarError is thrown.

Globals under modules other than Main are not serialized by value to the remote node. Only a reference is sent.

Functions which create global bindings (except under Main) may cause an UndefVarError to be thrown later.

julia> @everywhere module Foo

function foo()

global gvar = "Hello"

remotecall_fetch(()->gvar, 2)

end

end

julia> Foo.foo()

ERROR: On worker 2:

UndefVarError: gvar not defined

[...]

In the above example, @everywhere module Foo defined Foo on all nodes. However the call to Foo.foo() created

a new global binding gvar on the local node, but this was not found on node 2 resulting in an UndefVarError error.

Note that this does not apply to globals created under module Main. Globals under module Main are serialized and

new bindings created under Main on the remote node.

julia> gvar_self = "Node1"

"Node1"

julia> remotecall_fetch(()->gvar_self, 2)

"Node1"

julia> remotecall_fetch(whos, 2)

From worker 2: Base 41762 KB Module

From worker 2: Core 27337 KB Module

From worker 2: Foo 2477 bytes Module

http://danluu.com/integer-overflow/
http://danluu.com/integer-overflow/

404 CHAPTER 42. FREQUENTLYASKED QUESTIONS

From worker 2: Main 46191 KB Module

From worker 2: gvar_self 13 bytes String

This does not apply to function or type declarations. However, anonymous functions bound to global variables are

serialized as can be seen below.

julia> bar() = 1

bar (generic function with 1 method)

julia> remotecall_fetch(bar, 2)

ERROR: On worker 2:

UndefVarError: #bar not defined

[...]

julia> anon_bar = ()->1

(::#21) (generic function with 1 method)

julia> remotecall_fetch(anon_bar, 2)

1

42.4 Packages and Modules

What is the difference between ”using” and ”importall”?

There is only one difference, and on the surface (syntax-wise) it may seem very minor. The difference between using

and importall is that with using you need to say function Foo.bar(.. to extend module Foo’s function bar

with a new method, but with importall or import Foo.bar, you only need to say function bar(... and it

automatically extends module Foo’s function bar.

If you use importall, then function Foo.bar(... and function bar(... become equivalent. If you use

using, then they are different.

The reason this is important enough to have been given separate syntax is that you don’t want to accidentally extend

a function that you didn’t know existed, because that could easily cause a bug. This is most likely to happen with

a method that takes a common type like a string or integer, because both you and the other module could define a

method to handle such a common type. If you use importall, then you’ll replace the other module’s implementation

of bar(s::AbstractString)with your new implementation, which could easily do something completely different

(and break all/many future usages of the other functions in module Foo that depend on calling bar).

42.5 Nothingness and missing values

How does ”null” or ”nothingness” work in Julia?

Unlike many languages (for example, C and Java), Julia does not have a ”null” value. When a reference (variable, object

field, or array element) is uninitialized, accessing it will immediately throw an error. This situation can be detected

using the isdefined function.

Some functions are used only for their side effects, and do not need to return a value. In these cases, the convention

is to return the value nothing, which is just a singleton object of type Void. This is an ordinary type with no fields;

there is nothing special about it except for this convention, and that the REPL does not print anything for it. Some

language constructs that would not otherwise have a value also yield nothing, for example if false; end.

For situations where a value exists only sometimes (for example, missing statistical data), it is best to use the Nul-

lable{T} type, which allows specifying the type of a missing value.

42.6. MEMORY 405

The empty tuple (()) is another form of nothingness. But, it should not really be thought of as nothing but rather a

tuple of zero values.

In code written for Julia prior to version 0.4 you may occasionally see None, which is quite different. It is the empty (or

”bottom”) type, a type with no values and no subtypes (except itself). This is nowwritten as Union{} (an empty union

type). You will generally not need to use this type.

42.6 Memory

Why does x += y allocate memorywhen x and y are arrays?

In Julia, x += y gets replaced during parsing by x = x + y. For arrays, this has the consequence that, rather than

storing the result in the same location in memory as x, it allocates a new array to store the result.

While this behavior might surprise some, the choice is deliberate. The main reason is the presence of immutable

objects within Julia, which cannot change their value once created. Indeed, a number is an immutable object; the

statements x = 5; x += 1 do not modify the meaning of 5, they modify the value bound to x. For an immutable,

the only way to change the value is to reassign it.

To amplify a bit further, consider the following function:

function power_by_squaring(x, n::Int)

ispow2(n) || error("This implementation only works for powers of 2")

while n >= 2

x *= x

n >>= 1

end

x

end

After a call like x = 5; y = power_by_squaring(x, 4), you would get the expected result: x == 5 && y ==

625. However, now suppose that *=, when used with matrices, instead mutated the left hand side. There would be

two problems:

• For general square matrices, A = A*B cannot be implemented without temporary storage: A[1,1] gets com-

puted and stored on the left hand side before you’re done using it on the right hand side.

• Suppose youwere willing to allocate a temporary for the computation (which would eliminate most of the point

of making *= work in-place); if you took advantage of the mutability of x, then this function would behave dif-

ferently for mutable vs. immutable inputs. In particular, for immutable x, after the call you’d have (in general) y

!= x, but for mutable x you’d have y == x.

Because supporting generic programming is deemed more important than potential performance optimizations that

can be achieved by other means (e.g., using explicit loops), operators like += and *=work by rebinding new values.

42.7 Asynchronous IO and concurrent synchronous writes

Why do concurrent writes to the same stream result in inter-mixed output?

While the streaming I/O API is synchronous, the underlying implementation is fully asynchronous.

Consider the printed output from the following:

406 CHAPTER 42. FREQUENTLYASKED QUESTIONS

julia> @sync for i in 1:3

@async write(STDOUT, string(i), " Foo ", " Bar ")

end

123 Foo Foo Foo Bar Bar Bar

This is happening because, while the write call is synchronous, the writing of each argument yields to other tasks

while waiting for that part of the I/O to complete.

print and println ”lock” the stream during a call. Consequently changing write to println in the above example

results in:

julia> @sync for i in 1:3

@async println(STDOUT, string(i), " Foo ", " Bar ")

end

1 Foo Bar

2 Foo Bar

3 Foo Bar

You can lock your writes with a ReentrantLock like this:

julia> l = ReentrantLock()

ReentrantLock(Nullable{Task}(), Condition(Any[]), 0)

julia> @sync for i in 1:3

@async begin

lock(l)

try

write(STDOUT, string(i), " Foo ", " Bar ")

finally

unlock(l)

end

end

end

1 Foo Bar 2 Foo Bar 3 Foo Bar

42.8 Julia Releases

Do I want to use a release, beta, or nightly version of Julia?

You may prefer the release version of Julia if you are looking for a stable code base. Releases generally occur every 6

months, giving you a stable platform for writing code.

Youmay prefer the beta version of Julia if you don’t mind being slightly behind the latest bugfixes and changes, but find

the slightly faster rate of changes more appealing. Additionally, these binaries are tested before they are published to

ensure they are fully functional.

You may prefer the nightly version of Julia if you want to take advantage of the latest updates to the language, and

don’t mind if the version available today occasionally doesn’t actually work.

Finally, you may also consider building Julia from source for yourself. This option is mainly for those individuals who

are comfortable at the command line, or interested in learning. If this describes you, you may also be interested in

reading our guidelines for contributing.

Links to each of these download types can be found on the download page at https://julialang.org/downloads/. Note

that not all versions of Julia are available for all platforms.

https://github.com/JuliaLang/julia/blob/master/CONTRIBUTING.md
https://julialang.org/downloads/

42.8. JULIA RELEASES 407

When are deprecated functions removed?

Deprecated functions are removed after the subsequent release. For example, functions marked as deprecated in the

0.1 release will not be available starting with the 0.2 release.

Chapter 43

Noteworthy Differences from other Languages

43.1 Noteworthy differences from MATLAB

Although MATLAB users may find Julia’s syntax familiar, Julia is not a MATLAB clone. There are major syntactic and

functional differences. The following are some noteworthy differences that may trip up Julia users accustomed to

MATLAB:

• Julia arrays are indexed with square brackets, A[i,j].

• Julia arrays are assigned by reference. After A=B, changing elements of Bwill modify A as well.

• Julia values are passed and assigned by reference. If a function modifies an array, the changes will be visible in

the caller.

• Julia does not automatically grow arrays in an assignment statement. Whereas in MATLAB a(4) = 3.2 can

create the array a = [0 0 0 3.2] and a(5) = 7 can grow it into a = [0 0 0 3.2 7], the corresponding

Julia statement a[5] = 7 throws an error if the length of a is less than 5 or if this statement is the first use of

the identifier a. Julia has push!() and append!(), which grow Vectors muchmore efficiently thanMATLAB’s

a(end+1) = val.

• The imaginary unit sqrt(-1) is represented in Julia as im, not i or j as in MATLAB.

• In Julia, literal numbers without a decimal point (such as 42) create integers instead of floating point numbers.

Arbitrarily large integer literals are supported. As a result, some operations such as 2^-1 will throw a domain

error as the result is not an integer (see the FAQ entry on domain errors for details).

• In Julia, multiple values are returned and assigned as tuples, e.g. (a, b) = (1, 2) or a, b = 1, 2. MAT-

LAB’s nargout, which is often used in MATLAB to do optional work based on the number of returned values,

does not exist in Julia. Instead, users can use optional and keyword arguments to achieve similar capabilities.

• Julia has true one-dimensional arrays. Column vectors are of size N, not Nx1. For example, rand(N) makes a

1-dimensional array.

• In Julia, [x,y,z]will always construct a 3-element array containing x, y and z.

– To concatenate in the first (”vertical”) dimension use either vcat(x,y,z) or separate with semicolons

([x; y; z]).

– To concatenate in the second (”horizontal”) dimension use either hcat(x,y,z) or separate with spaces

([x y z]).

– To construct block matrices (concatenating in the first two dimensions), use either hvcat() or combine

spaces and semicolons ([a b; c d]).

409

410 CHAPTER 43. NOTEWORTHYDIFFERENCES FROM OTHER LANGUAGES

• In Julia, a:b and a:b:c construct Range objects. To construct a full vector like inMATLAB, use collect(a:b).

Generally, there is no need to call collect though. Rangewill act like a normal array in most cases but is more

efficient because it lazily computes its values. This pattern of creating specialized objects instead of full arrays

is used frequently, and is also seen in functions such as linspace, or with iterators such as enumerate, and

zip. The special objects can mostly be used as if they were normal arrays.

• Functions in Julia return values from their last expression or the return keyword instead of listing the names

of variables to return in the function definition (see The return Keyword for details).

• A Julia script may contain any number of functions, and all definitions will be externally visible when the file is

loaded. Function definitions can be loaded from files outside the current working directory.

• In Julia, reductions such as sum(), prod(), and max() are performed over every element of an array when

called with a single argument, as in sum(A), even if A has more than one dimension.

• In Julia, functions such as sort() that operate column-wise by default (sort(A) is equivalent to sort(A,1))

do not have special behavior for1xN arrays; the argument is returned unmodified since it still performssort(A,1).

To sort a 1xN matrix like a vector, use sort(A,2).

• In Julia, if A is a 2-dimensional array, fft(A) computes a 2D FFT. In particular, it is not equivalent to fft(A,1),

which computes a 1D FFT acting column-wise.

• In Julia, parentheses must be used to call a function with zero arguments, like in tic() and toc().

• Julia discourages the used of semicolons to end statements. The results of statements are not automatically

printed (except at the interactive prompt), and lines of code do not need to end with semicolons. println()

or @printf() can be used to print specific output.

• In Julia, if A and B are arrays, logical comparison operations like A == B do not return an array of booleans.

Instead, use A .== B, and similarly for the other boolean operators like <, > and =.

• In Julia, the operators &, |, and (xor) perform the bitwise operations equivalent to and, or, and xor respectively

in MATLAB, and have precedence similar to Python’s bitwise operators (unlike C). They can operate on scalars

or element-wise across arrays and can be used to combine logical arrays, but note the difference in order of

operations: parentheses may be required (e.g., to select elements of A equal to 1 or 2 use (A .== 1) | (A

.== 2)).

• In Julia, the elements of a collection can be passed as arguments to a function using the splat operator ..., as

in xs=[1,2]; f(xs...).

• Julia’s svd() returns singular values as a vector instead of as a dense diagonal matrix.

• In Julia, ... is not used to continue lines of code. Instead, incomplete expressions automatically continue onto

the next line.

• In both Julia and MATLAB, the variable ans is set to the value of the last expression issued in an interactive

session. In Julia, unlike MATLAB, ans is not set when Julia code is run in non-interactive mode.

• Julia’s types do not support dynamically adding fields at runtime, unlike MATLAB’s classes. Instead, use a

Dict.

• In Julia each module has its own global scope/namespace, whereas in MATLAB there is just one global scope.

• In MATLAB, an idiomatic way to remove unwanted values is to use logical indexing, like in the expression

x(x>3) or in the statement x(x>3) = [] to modify x in-place. In contrast, Julia provides the higher order

functions filter() and filter!(), allowing users to write filter(z->z>3, x) and filter!(z->z>3,

x) as alternatives to the corresponding transliterations x[x.>3] and x = x[x.>3]. Using filter!() reduces

the use of temporary arrays.

43.2. NOTEWORTHYDIFFERENCES FROM R 411

• The analogue of extracting (or ”dereferencing”) all elements of a cell array, e.g. in vertcat(A{:}) in MATLAB,

is written using the splat operator in Julia, e.g. as vcat(A...).

43.2 Noteworthy differences from R

One of Julia’s goals is to provide an effective language for data analysis and statistical programming. For users coming

to Julia from R, these are some noteworthy differences:

• Julia’s single quotes enclose characters, not strings.

• Julia can create substrings by indexing into strings. In R, strings must be converted into character vectors before

creating substrings.

• In Julia, like Python but unlike R, strings can be created with triple quotes """ ... """. This syntax is conve-

nient for constructing strings that contain line breaks.

• In Julia, varargs are specified using the splat operator ..., which always follows the name of a specific variable,

unlike R, for which ... can occur in isolation.

• In Julia, modulus is mod(a, b), not a %% b. % in Julia is the remainder operator.

• In Julia, not all data structures support logical indexing. Furthermore, logical indexing in Julia is supported only

with vectors of length equal to the object being indexed. For example:

– In R, c(1, 2, 3, 4)[c(TRUE, FALSE)] is equivalent to c(1, 3).

– In R, c(1, 2, 3, 4)[c(TRUE, FALSE, TRUE, FALSE)] is equivalent to c(1, 3).

– In Julia, [1, 2, 3, 4][[true, false]] throws a BoundsError.

– In Julia, [1, 2, 3, 4][[true, false, true, false]] produces [1, 3].

• Like many languages, Julia does not always allow operations on vectors of different lengths, unlike R where the

vectors only need to share a common index range. For example, c(1, 2, 3, 4) + c(1, 2) is valid R but

the equivalent [1, 2, 3, 4] + [1, 2] will throw an error in Julia.

• Julia’s map() takes the function first, then its arguments, unlike lapply(<structure>, function, ...)

in R. Similarly Julia’s equivalent of apply(X, MARGIN, FUN, ...) in R is mapslices()where the function

is the first argument.

• Multivariate apply in R, e.g. mapply(choose, 11:13, 1:3), can be written as broadcast(binomial,

11:13, 1:3) in Julia. EquivalentlyJulia offers a shorter dot syntax forvectorizing functionsbinomial.(11:13,

1:3).

• Julia uses end to denote the end of conditional blocks, like if, loop blocks, like while/ for, and functions. In

lieu of the one-line if (cond) statement, Julia allows statements of the form if cond; statement;

end, cond && statement and !cond || statement. Assignment statements in the latter two syntaxes

must be explicitly wrapped in parentheses, e.g. cond && (x = value).

• In Julia, <-, <<- and -> are not assignment operators.

• Julia’s -> creates an anonymous function, like Python.

• Julia constructs vectors using brackets. Julia’s [1, 2, 3] is the equivalent of R’s c(1, 2, 3).

• Julia’s * operator can perform matrix multiplication, unlike in R. If A and B are matrices, then A * B denotes a

matrix multiplication in Julia, equivalent to R’s A %*% B. In R, this same notation would perform an element-

wise (Hadamard) product. To get the element-wise multiplication operation, you need to write A .* B in Julia.

412 CHAPTER 43. NOTEWORTHYDIFFERENCES FROM OTHER LANGUAGES

• Julia performs matrix transposition using the .' operator and conjugated transposition using the ' operator.

Julia’s A.' is therefore equivalent to R’s t(A).

• Julia does not require parentheses when writing if statements or for/while loops: use for i in [1, 2,

3] instead of for (i in c(1, 2, 3)) and if i == 1 instead of if (i == 1).

• Julia does not treat the numbers 0 and 1 as Booleans. You cannot write if (1) in Julia, because if statements

accept only booleans. Instead, you can write if true, if Bool(1), or if 1==1.

• Julia does not provide nrow and ncol. Instead, use size(M, 1) for nrow(M) and size(M, 2) for ncol(M).

• Julia is careful to distinguish scalars, vectors and matrices. In R, 1 and c(1) are the same. In Julia, they can

not be used interchangeably. One potentially confusing result of this is that x' * y for vectors x and y is a

1-element vector, not a scalar. To get a scalar, use dot(x, y).

• Julia’s diag() and diagm() are not like R’s.

• Julia cannot assign to the results of function calls on the left hand side of an assignment operation: you cannot

write diag(M) = ones(n).

• Julia discourages populating the main namespacewith functions. Most statistical functionality for Julia is found

in packages under the JuliaStats organization. For example:

– Functions pertaining to probability distributions are provided by the Distributions package.

– The DataFrames package provides data frames.

– Generalized linear models are provided by the GLM package.

• Julia provides tuples and real hash tables, but not R-style lists. When returning multiple items, you should

typically use a tuple: instead of list(a = 1, b = 2), use (1, 2).

• Julia encourages users towrite their own types, which are easier to use than S3 or S4 objects in R. Julia’s multiple

dispatch system means that table(x::TypeA) and table(x::TypeB) act like R’s table.TypeA(x) and

table.TypeB(x).

• In Julia, values are passed and assigned by reference. If a function modifies an array, the changes will be visible

in the caller. This is very different from R and allows new functions to operate on large data structures much

more efficiently.

• In Julia, vectors and matrices are concatenated using hcat(), vcat() and hvcat(), not c, rbind and cbind

like in R.

• In Julia, a range like a:b is not shorthand for a vector like in R, but is a specialized Range that is used for iteration

without high memory overhead. To convert a range into a vector, use collect(a:b).

• Julia’s max() and min() are the equivalent of pmax and pmin respectively in R, but both arguments need to

have the same dimensions. While maximum() and minimum() replace max and min in R, there are important

differences.

• Julia’s sum(), prod(), maximum(), and minimum() are different from their counterparts in R. They all accept

one or two arguments. The first argument is an iterable collection such as an array. If there is a second argument,

then this argument indicates the dimensions, over which the operation is carried out. For instance, let A=[[1

2],[3 4]] in Julia and B=rbind(c(1,2),c(3,4)) be the same matrix in R. Then sum(A) gives the same

result as sum(B), but sum(A, 1) is a row vector containing the sum over each column and sum(A, 2) is a

column vector containing the sum over each row. This contrasts to the behavior of R, where sum(B,1)=11 and

sum(B,2)=12. If the second argument is a vector, then it specifies all the dimensions over which the sum is

performed, e.g., sum(A,[1,2])=10. It should be noted that there is no error checking regarding the second

argument.

http://pkg.julialang.org/
https://github.com/JuliaStats
https://github.com/JuliaStats/Distributions.jl
https://github.com/JuliaStats/DataFrames.jl
https://github.com/JuliaStats/GLM.jl

43.3. NOTEWORTHYDIFFERENCES FROM PYTHON 413

• Julia has several functions that can mutate their arguments. For example, it has both sort() and sort!().

• In R, performance requires vectorization. In Julia, almost the opposite is true: the best performing code is often

achieved by using devectorized loops.

• Julia is eagerly evaluated and does not support R-style lazy evaluation. For most users, this means that there

are very few unquoted expressions or column names.

• Julia does not support the NULL type.

• Julia lacks the equivalent of R’s assign or get.

• In Julia, return does not require parentheses.

• In R, an idiomatic way to remove unwanted values is to use logical indexing, like in the expression x[x>3]

or in the statement x = x[x>3] to modify x in-place. In contrast, Julia provides the higher order functions

filter() and filter!(), allowing users to write filter(z->z>3, x) and filter!(z->z>3, x) as al-

ternatives to the corresponding transliterations x[x.>3] and x = x[x.>3]. Using filter!() reduces the

use of temporary arrays.

43.3 Noteworthy differences from Python

• Julia requires end to end a block. Unlike Python, Julia has no pass keyword.

• In Julia, indexing of arrays, strings, etc. is 1-based not 0-based.

• Julia’s slice indexing includes the last element, unlike in Python. a[2:3] in Julia is a[1:3] in Python.

• Julia does not support negative indexes. In particular, the last element of a list or array is indexed with end in

Julia, not -1 as in Python.

• Julia’s for, if, while, etc. blocks are terminated by the end keyword. Indentation level is not significant as it

is in Python.

• Julia has no line continuation syntax: if, at the end of a line, the input so far is a complete expression, it is

considered done; otherwise the input continues. One way to force an expression to continue is to wrap it in

parentheses.

• Julia arrays are column major (Fortran ordered) whereas NumPy arrays are rowmajor (C-ordered) by default. To

get optimal performance when looping over arrays, the order of the loops should be reversed in Julia relative

to NumPy (see relevant section of Performance Tips).

• Julia’s updating operators (e.g. +=, -=, ...) are not in-placewhereas NumPy’s are. This means A = ones(4); B

= A; B += 3 doesn’t change values in A, it rather rebinds the name B to the result of the right- hand side B =

B + 3, which is a new array. Use B[:] += 3, explicit loops, or InplaceOps.jl.

• Julia evaluates default values of function arguments every time the method is invoked, unlike in Python where

the default values are evaluated onlyoncewhen the function is defined. For example, the functionf(x=rand())

= x returns a new random number every time it is invoked without argument. On the other hand, the function

g(x=[1,2]) = push!(x,3) returns [1,2,3] every time it is called as g().

• In Julia % is the remainder operator, whereas in Python it is the modulus.

414 CHAPTER 43. NOTEWORTHYDIFFERENCES FROM OTHER LANGUAGES

43.4 Noteworthy differences from C/C++

• Julia arrays are indexed with square brackets, and can have more than one dimension A[i,j]. This syntax is

not just syntactic sugar for a reference to a pointer or address as in C/C++. See the Julia documentation for the

syntax for array construction (it has changed between versions).

• In Julia, indexing of arrays, strings, etc. is 1-based not 0-based.

• Julia arrays are assigned by reference. After A=B, changing elements of B will modify A as well. Updating

operators like += do not operate in-place, they are equivalent to A = A + B which rebinds the left-hand side

to the result of the right-hand side expression.

• Julia arrays are column major (Fortran ordered) whereas C/C++ arrays are rowmajor ordered by default. To get

optimal performance when looping over arrays, the order of the loops should be reversed in Julia relative to

C/C++ (see relevant section of Performance Tips).

• Julia values are passed and assigned by reference. If a function modifies an array, the changes will be visible in

the caller.

• In Julia, whitespace is significant, unlike C/C++, so care must be taken when adding/removing whitespace from

a Julia program.

• In Julia, literal numbers without a decimal point (such as 42) create signed integers, of type Int, but literals too

large to fit in the machine word size will automatically be promoted to a larger size type, such as Int64 (if Int

is Int32), Int128, or the arbitrarily large BigInt type. There are no numeric literal suffixes, such as L, LL, U,

UL, ULL to indicate unsigned and/or signed vs. unsigned. Decimal literals are always signed, and hexadecimal

literals (which start with 0x like C/C++), are unsigned. Hexadecimal literals also, unlike C/C++/Java and unlike

decimal literals in Julia, have a type based on the length of the literal, including leading 0s. For example, 0x0

and 0x00 have type UInt8, 0x000 and 0x0000 have type UInt16, then literals with 5 to 8 hex digits have type

UInt32, 9 to 16 hex digits type UInt64 and 17 to 32 hex digits type UInt128. This needs to be taken into

account when defining hexadecimal masks, for example ~0xf == 0xf0 is very different from ~0x000f ==

0xfff0. 64 bit Float64 and 32 bit Float32 bit literals are expressed as 1.0 and 1.0f0 respectively. Floating

point literals are rounded (and not promoted to the BigFloat type) if they can not be exactly represented.

Floating point literals are closer in behavior to C/C++. Octal (prefixed with 0o) and binary (prefixed with 0b)

literals are also treated as unsigned.

• String literals can be delimitedwith either " or """, """ delimited literals can contain " characterswithout quot-

ing it like "\"" String literals can have values of other variables or expressions interpolated into them, indicated

by $variablename or $(expression), which evaluates the variable name or the expression in the context

of the function.

• // indicates a Rational number, and not a single-line comment (which is # in Julia)

• #= indicates the start of a multiline comment, and =# ends it.

• Functions in Julia return values from their last expression(s) or the return keyword. Multiple values can be

returned from functions and assigned as tuples, e.g. (a, b) = myfunction() or a, b = myfunction(),

instead of having to pass pointers to values as one would have to do in C/C++ (i.e. a = myfunction(&b).

• Julia does not require the use of semicolons to end statements. The results of expressions are not automatically

printed (except at the interactive prompt, i.e. the REPL), and lines of code do not need to end with semicolons.

println() or @printf() can be used to print specific output. In the REPL, ; can be used to suppress output.

; also has a different meaning within [], something to watch out for. ; can be used to separate expressions

on a single line, but are not strictly necessary in many cases, and are more an aid to readability.

43.4. NOTEWORTHYDIFFERENCES FROM C/C++ 415

• In Julia, the operator (xor) performs the bitwise XOR operation, i.e. ^ in C/C++. Also, the bitwise operators do

not have the same precedence as C/++, so parenthesis may be required.

• Julia’s ^ is exponentiation (pow), not bitwise XOR as in C/C++ (use , or xor, in Julia)

• Julia has two right-shift operators, >> and >>>. >>> performs an arithmetic shift, >> always performs a logical

shift, unlike C/C++, where the meaning of >> depends on the type of the value being shifted.

• Julia’s -> creates an anonymous function, it does not access a member via a pointer.

• Julia does not require parentheses when writing if statements or for/while loops: use for i in [1, 2,

3] instead of for (int i=1; i <= 3; i++) and if i == 1 instead of if (i == 1).

• Julia does not treat the numbers 0 and 1 as Booleans. You cannot write if (1) in Julia, because if statements

accept only booleans. Instead, you can write if true, if Bool(1), or if 1==1.

• Julia uses end to denote the end of conditional blocks, like if, loop blocks, like while/ for, and functions. In

lieu of the one-line if (cond) statement, Julia allows statements of the form if cond; statement;

end, cond && statement and !cond || statement. Assignment statements in the latter two syntaxes

must be explicitly wrapped in parentheses, e.g. cond && (x = value), because of the operator precedence.

• Julia has no line continuation syntax: if, at the end of a line, the input so far is a complete expression, it is

considered done; otherwise the input continues. One way to force an expression to continue is to wrap it in

parentheses.

• Julia macros operate on parsed expressions, rather than the text of the program, which allows them to perform

sophisticated transformations of Julia code. Macro names start with the @ character, and have both a function-

like syntax, @mymacro(arg1, arg2, arg3), and a statement-like syntax, @mymacro arg1 arg2 arg3. The

forms are interchangable; the function-like form is particularly useful if the macro appears within another ex-

pression, and is often clearest. The statement-like form is often used to annotate blocks, as in the parallel for

construct: @parallel for i in 1:n; #= body =#; end. Where the end of the macro construct may be

unclear, use the function-like form.

• Julia now has an enumeration type, expressed using the macro @enum(name, value1, value2, ...) For

example: @enum(Fruit, banana=1, apple, pear)

• By convention, functions that modify their arguments have a ! at the end of the name, for example push!.

• In C++, by default, you have static dispatch, i.e. you need to annotate a function as virtual, in order to have

dynamic dispatch. On the other hand, in Julia every method is ”virtual” (although it’s more general than that

since methods are dispatched on every argument type, not only this, using the most-specific-declaration rule).

Chapter 44

Unicode Input

The following table lists Unicode characters that can be entered via tab completion of LaTeX-like abbreviations in

the Julia REPL (and in various other editing environments). You can also get information on how to type a symbol

by entering it in the REPL help, i.e. by typing ? and then entering the symbol in the REPL (e.g., by copy-paste from

somewhere you saw the symbol).

Warning

This table may appear to contain missing characters in the second column, or even show characters

that are inconsistent with the characters as they are rendered in the Julia REPL. In these cases, users

are strongly advised to check their choice of fonts in their browser and REPL environment, as there are

known issues with glyphs in many fonts.

Code

point(s)

Char-

ac-

ter(s)

Tab completion

sequence(s)

Unicode name(s)

U+000A1 ¡ \textexclamdown Inverted Exclamation Mark

U+000A3 £ \sterling Pound Sign

U+000A5 ¥ \yen Yen Sign

U+000A6 ¦ \textbrokenbar Broken Bar / Broken Vertical Bar

U+000A7 § \S Section Sign

U+000A8 ¨ \textasciidieresis Diaeresis / Spacing Diaeresis

U+000A9 © \copyright, \:copyright: Copyright Sign

U+000AA ª \textordfeminine Feminine Ordinal Indicator

U+000AC ¬ \neg Not Sign

U+000AE ® \circledR, \:registered: Registered Sign / Registered Trade Mark Sign

U+000AF ¯ \textasciimacron Macron / Spacing Macron

U+000B0 ° \degree Degree Sign

U+000B1 ± \pm Plus-minus Sign / Plus-or-minus Sign

U+000B2 ² \^2 Superscript Two / Superscript Digit Two

U+000B3 ³ \^3 Superscript Three / Superscript Digit Three

U+000B4 ´ \textasciiacute Acute Accent / Spacing Acute

U+000B6 ¶ \P Pilcrow Sign / Paragraph Sign

U+000B7 · \cdotp Middle Dot

U+000B9 ¹ \^1 Superscript One / Superscript Digit One

U+000BA º \textordmasculine Masculine Ordinal Indicator

U+000BC ¼ \textonequarter Vulgar Fraction One Quarter / Fraction One Quarter

U+000BD ½ \textonehalf Vulgar Fraction One Half / Fraction One Half

U+000BE ¾ \textthreequarters Vulgar Fraction Three Quarters / Fraction Three Quarters

U+000BF ¿ \textquestiondown Inverted Question Mark

U+000C5 Å \AA Latin Capital Letter AWith Ring Above / Latin Capital

Letter A Ring

U+000C6 Æ \AE Latin Capital Letter Ae / Latin Capital Letter A E

U+000D0 Ð \DH Latin Capital Letter Eth

U+000D7 × \times Multiplication Sign

U+000D8 Ø \O Latin Capital Letter OWith Stroke / Latin Capital Letter O

Slash

U+000DE Þ \TH Latin Capital Letter Thorn

U+000DF ß \ss Latin Small Letter Sharp S

U+000E5 å \aa Latin Small Letter AWith Ring Above / Latin Small Letter A

Ring

U+000E6 æ \ae Latin Small Letter Ae / Latin Small Letter A E

U+000F0 ð \eth Latin Small Letter Eth

U+000F7 ÷ \div Division Sign

U+000F8 ø \o Latin Small Letter OWith Stroke / Latin Small Letter O

Slash

U+000FE þ \th Latin Small Letter Thorn

U+00110 Đ \DJ Latin Capital Letter DWith Stroke / Latin Capital Letter D

Bar

U+00111 đ \dj Latin Small Letter DWith Stroke / Latin Small Letter D Bar

U+00127 ħ \Elzxh, \hbar Latin Small Letter HWith Stroke / Latin Small Letter H Bar

U+00141 Ł \L Latin Capital Letter LWith Stroke / Latin Capital Letter L

Slash

U+00142 ł \l Latin Small Letter LWith Stroke / Latin Small Letter L Slash

U+0014A Ŋ \NG Latin Capital Letter Eng

U+0014B ŋ \ng Latin Small Letter Eng

U+00152 Œ \OE Latin Capital Ligature Oe / Latin Capital Letter O E

U+00153 œ \oe Latin Small Ligature Oe / Latin Small Letter O E

U+00195 ƕ \texthvlig Latin Small Letter Hv / Latin Small Letter H V

U+0019E ƞ \textnrleg Latin Small Letter NWith Long Right Leg

U+001B5 Ƶ \Zbar Latin Capital Letter Z With Stroke / Latin Capital Letter Z

Bar

U+001C2 ǂ \textdoublepipe Latin Letter Alveolar Click / Latin Letter Pipe Double Bar

U+00250 ɐ \Elztrna Latin Small Letter Turned A

U+00252 ɒ \Elztrnsa Latin Small Letter Turned Alpha / Latin Small Letter Turned

Script A

U+00254 ɔ \Elzopeno Latin Small Letter Open O

U+00256 ɖ \Elzrtld Latin Small Letter DWith Tail / Latin Small Letter D

Retroflex Hook

U+00259 ə \Elzschwa Latin Small Letter Schwa

U+00263 ɣ \Elzpgamma Latin Small Letter Gamma

U+00264 ɤ \Elzpbgam Latin Small Letter Rams Horn / Latin Small Letter Baby

Gamma

U+00265 ɥ \Elztrnh Latin Small Letter Turned H

U+0026C ɬ \Elzbtdl Latin Small Letter LWith Belt / Latin Small Letter L Belt

U+0026D ɭ \Elzrtll Latin Small Letter LWith Retroflex Hook / Latin Small

Letter L Retroflex Hook

U+0026F ɯ \Elztrnm Latin Small Letter Turned M

U+00270 ɰ \Elztrnmlr Latin Small Letter Turned MWith Long Leg

U+00271 ɱ \Elzltlmr Latin Small Letter MWith Hook / Latin Small Letter M

Hook

U+00272 ɲ \Elzltln Latin Small Letter NWith Left Hook / Latin Small Letter N

Hook

U+00273 ɳ \Elzrtln Latin Small Letter NWith Retroflex Hook / Latin Small

Letter N Retroflex Hook

U+00277 ɷ \Elzclomeg Latin Small Letter Closed Omega

U+00278 ɸ \textphi Latin Small Letter Phi

U+00279 ɹ \Elztrnr Latin Small Letter Turned R

U+0027A ɺ \Elztrnrl Latin Small Letter Turned RWith Long Leg

U+0027B ɻ \Elzrttrnr Latin Small Letter Turned RWith Hook / Latin Small Letter

Turned R Hook

U+0027C ɼ \Elzrl Latin Small Letter R With Long Leg

U+0027D ɽ \Elzrtlr Latin Small Letter R With Tail / Latin Small Letter R Hook

U+0027E ɾ \Elzfhr Latin Small Letter R With Fishhook / Latin Small Letter

Fishhook R

U+00282 ʂ \Elzrtls Latin Small Letter S With Hook / Latin Small Letter S Hook

U+00283 ʃ \Elzesh Latin Small Letter Esh

U+00287 ʇ \Elztrnt Latin Small Letter Turned T

U+00288 ʈ \Elzrtlt Latin Small Letter TWith Retroflex Hook / Latin Small

Letter T Retroflex Hook

U+0028A ʊ \Elzpupsil Latin Small Letter Upsilon

U+0028B ʋ \Elzpscrv Latin Small Letter VWith Hook / Latin Small Letter Script V

U+0028C ʌ \Elzinvv Latin Small Letter Turned V

U+0028D ʍ \Elzinvw Latin Small Letter Turned W

U+0028E ʎ \Elztrny Latin Small Letter Turned Y

U+00290 ʐ \Elzrtlz Latin Small Letter Z With Retroflex Hook / Latin Small

Letter Z Retroflex Hook

U+00292 ʒ \Elzyogh Latin Small Letter Ezh / Latin Small Letter Yogh

U+00294 ʔ \Elzglst Latin Letter Glottal Stop

U+00295 ʕ \Elzreglst Latin Letter Pharyngeal Voiced Fricative / Latin Letter

Reversed Glottal Stop

U+00296 ʖ \Elzinglst Latin Letter Inverted Glottal Stop

U+0029E ʞ \textturnk Latin Small Letter Turned K

U+002A4 ʤ \Elzdyogh Latin Small Letter Dezh Digraph / Latin Small Letter D Yogh

U+002A7 ʧ \Elztesh Latin Small Letter Tesh Digraph / Latin Small Letter T Esh

U+002B0 ʰ \^h Modifier Letter Small H

U+002B2 ʲ \^j Modifier Letter Small J

U+002B3 ʳ \^r Modifier Letter Small R

U+002B7 ʷ \^w Modifier Letter Small W

U+002B8 ʸ \^y Modifier Letter Small Y

U+002BC ʼ \rasp Modifier Letter Apostrophe

U+002C7 ˇ \textasciicaron Caron / Modifier Letter Hacek

U+002C8 ˈ \Elzverts Modifier Letter Vertical Line

U+002CC ˌ \Elzverti Modifier Letter LowVertical Line

U+002D0 ː \Elzlmrk Modifier Letter Triangular Colon

U+002D1 ˑ \Elzhlmrk Modifier Letter Half Triangular Colon

U+002D2 ˒ \Elzsbrhr Modifier Letter Centred Right Half Ring / Modifier Letter

Centered Right Half Ring

U+002D3 ˓ \Elzsblhr Modifier Letter Centred Left Half Ring / Modifier Letter

Centered Left Half Ring

U+002D4 ˔ \Elzrais Modifier Letter Up Tack

U+002D5 ˕ \Elzlow Modifier Letter Down Tack

U+002D8 ˘ \u Breve / Spacing Breve

U+002DC ˜ \texttildelow Small Tilde / Spacing Tilde

U+002E1 ˡ \^l Modifier Letter Small L

U+002E2 ˢ \^s Modifier Letter Small S

U+002E3 ˣ \^x Modifier Letter Small X

U+00300 ◌̀ \grave Combining Grave Accent / Non-spacing Grave

U+00301 ◌́ \acute Combining Acute Accent / Non-spacing Acute

U+00302 ◌̂ \hat Combining Circumflex Accent / Non-spacing Circumflex

U+00303 ◌̃ \tilde Combining Tilde / Non-spacing Tilde

U+00304 ◌̄ \bar Combining Macron / Non-spacing Macron

U+00305 ◌̅ \overbar Combining Overline / Non-spacing Overscore

U+00306 ◌̆ \breve Combining Breve / Non-spacing Breve

U+00307 ◌̇ \dot Combining Dot Above / Non-spacing Dot Above

U+00308 ◌̈ \ddot Combining Diaeresis / Non-spacing Diaeresis

U+00309 ◌̉ \ovhook Combining Hook Above / Non-spacing Hook Above

U+0030A ◌̊ \ocirc Combining Ring Above / Non-spacing Ring Above

U+0030B ◌̋ \H Combining Double Acute Accent / Non-spacing Double

Acute

U+0030C ◌̌ \check Combining Caron / Non-spacing Hacek

U+00310 ◌̐ \candra Combining Candrabindu / Non-spacing Candrabindu

U+00312 ◌̒ \oturnedcomma Combining Turned Comma Above / Non-spacing Turned

Comma Above

U+00315 ◌̕ \ocommatopright Combining Comma Above Right / Non-spacing Comma

Above Right

U+0031A ◌̚ \droang Combining Left Angle Above / Non-spacing Left Angle

Above

U+00321 ◌̡ \Elzpalh Combining Palatalized Hook Below / Non-spacing

Palatalized Hook Below

U+00322 ◌̢ \Elzrh Combining Retroflex Hook Below / Non-spacing Retroflex

Hook Below

U+00327 ◌̧ \c Combining Cedilla / Non-spacing Cedilla

U+00328 ◌̨ \k Combining Ogonek / Non-spacing Ogonek

U+0032A ◌̪ \Elzsbbrg Combining Bridge Below / Non-spacing Bridge Below

U+00330 ◌̰ \wideutilde Combining Tilde Below / Non-spacing Tilde Below

U+00332 ◌̲ \underbar Combining Low Line / Non-spacing Underscore

U+00335 ◌̵ \Elzxl Combining Short Stroke Overlay / Non-spacing Short Bar

Overlay

U+00336 ◌̶ \Elzbar, \sout Combining Long Stroke Overlay / Non-spacing Long Bar

Overlay

U+00338 ◌̸ \not Combining Long Solidus Overlay / Non-spacing Long Slash

Overlay

U+0034D ◌͍ \underleftrightarrow Combining Left Right Arrow Below

U+00391 Α \Alpha Greek Capital Letter Alpha

U+00392 Β \Beta Greek Capital Letter Beta

U+00393 Γ \Gamma Greek Capital Letter Gamma

U+00394 Δ \Delta Greek Capital Letter Delta

U+00395 Ε \Epsilon Greek Capital Letter Epsilon

U+00396 Ζ \Zeta Greek Capital Letter Zeta

U+00397 Η \Eta Greek Capital Letter Eta

U+00398 Θ \Theta Greek Capital Letter Theta

U+00399 Ι \Iota Greek Capital Letter Iota

U+0039A Κ \Kappa Greek Capital Letter Kappa

U+0039B Λ \Lambda Greek Capital Letter Lamda / Greek Capital Letter Lambda

U+0039C Μ \upMu Greek Capital Letter Mu

U+0039D Ν \upNu Greek Capital Letter Nu

U+0039E Ξ \Xi Greek Capital Letter Xi

U+0039F Ο \upOmicron Greek Capital Letter Omicron

U+003A0 Π \Pi Greek Capital Letter Pi

U+003A1 Ρ \Rho Greek Capital Letter Rho

U+003A3 Σ \Sigma Greek Capital Letter Sigma

U+003A4 Τ \Tau Greek Capital Letter Tau

U+003A5 Υ \Upsilon Greek Capital Letter Upsilon

U+003A6 Φ \Phi Greek Capital Letter Phi

U+003A7 Χ \Chi Greek Capital Letter Chi

U+003A8 Ψ \Psi Greek Capital Letter Psi

U+003A9 Ω \Omega Greek Capital Letter Omega

U+003B1 α \alpha Greek Small Letter Alpha

U+003B2 β \beta Greek Small Letter Beta

U+003B3 γ \gamma Greek Small Letter Gamma

U+003B4 δ \delta Greek Small Letter Delta

U+003B5 ε \upepsilon, \varepsilon Greek Small Letter Epsilon

U+003B6 ζ \zeta Greek Small Letter Zeta

U+003B7 η \eta Greek Small Letter Eta

U+003B8 θ \theta Greek Small Letter Theta

U+003B9 ι \iota Greek Small Letter Iota

U+003BA κ \kappa Greek Small Letter Kappa

U+003BB λ \lambda Greek Small Letter Lamda / Greek Small Letter Lambda

U+003BC μ \mu Greek Small Letter Mu

U+003BD ν \nu Greek Small Letter Nu

U+003BE ξ \xi Greek Small Letter Xi

U+003BF ο \upomicron Greek Small Letter Omicron

U+003C0 π \pi Greek Small Letter Pi

U+003C1 ρ \rho Greek Small Letter Rho

U+003C2 ς \varsigma Greek Small Letter Final Sigma

U+003C3 σ \sigma Greek Small Letter Sigma

U+003C4 τ \tau Greek Small Letter Tau

U+003C5 υ \upsilon Greek Small Letter Upsilon

U+003C6 φ \varphi Greek Small Letter Phi

U+003C7 χ \chi Greek Small Letter Chi

U+003C8 ψ \psi Greek Small Letter Psi

U+003C9 ω \omega Greek Small Letter Omega

U+003D0 ϐ \upvarbeta Greek Beta Symbol / Greek Small Letter Curled Beta

U+003D1 ϑ \vartheta Greek Theta Symbol / Greek Small Letter Script Theta

U+003D5 ϕ \phi Greek Phi Symbol / Greek Small Letter Script Phi

U+003D6 ϖ \varpi Greek Pi Symbol / Greek Small Letter Omega Pi

U+003D8 Ϙ \upoldKoppa Greek Letter Archaic Koppa

U+003D9 ϙ \upoldkoppa Greek Small Letter Archaic Koppa

U+003DA Ϛ \Stigma Greek Letter Stigma / Greek Capital Letter Stigma

U+003DB ϛ \upstigma Greek Small Letter Stigma

U+003DC Ϝ \Digamma Greek Letter Digamma / Greek Capital Letter Digamma

U+003DD ϝ \digamma Greek Small Letter Digamma

U+003DE Ϟ \Koppa Greek Letter Koppa / Greek Capital Letter Koppa

U+003DF ϟ \upkoppa Greek Small Letter Koppa

U+003E0 Ϡ \Sampi Greek Letter Sampi / Greek Capital Letter Sampi

U+003E1 ϡ \upsampi Greek Small Letter Sampi

U+003F0 ϰ \varkappa Greek Kappa Symbol / Greek Small Letter Script Kappa

U+003F1 ϱ \varrho Greek Rho Symbol / Greek Small Letter Tailed Rho

U+003F4 ϴ \textTheta Greek Capital Theta Symbol

U+003F5 ϵ \epsilon Greek Lunate Epsilon Symbol

U+003F6 ϶ \backepsilon Greek Reversed Lunate Epsilon Symbol

U+01D2C ᴬ \^A Modifier Letter Capital A

U+01D2E ᴮ \^B Modifier Letter Capital B

U+01D30 ᴰ \^D Modifier Letter Capital D

U+01D31 ᴱ \^E Modifier Letter Capital E

U+01D33 ᴳ \^G Modifier Letter Capital G

U+01D34 ᴴ \^H Modifier Letter Capital H

U+01D35 ᴵ \^I Modifier Letter Capital I

U+01D36 ᴶ \^J Modifier Letter Capital J

U+01D37 ᴷ \^K Modifier Letter Capital K

U+01D38 ᴸ \^L Modifier Letter Capital L

U+01D39 ᴹ \^M Modifier Letter Capital M

U+01D3A ᴺ \^N Modifier Letter Capital N

U+01D3C ᴼ \^O Modifier Letter Capital O

U+01D3E ᴾ \^P Modifier Letter Capital P

U+01D3F ᴿ \^R Modifier Letter Capital R

U+01D40 ᵀ \^T Modifier Letter Capital T

U+01D41 ᵁ \^U Modifier Letter Capital U

U+01D42 ᵂ \^W Modifier Letter Capital W

U+01D43 ᵃ \^a Modifier Letter Small A

U+01D45 ᵅ \^alpha Modifier Letter Small Alpha

U+01D47 ᵇ \^b Modifier Letter Small B

U+01D48 ᵈ \^d Modifier Letter Small D

U+01D49 ᵉ \^e Modifier Letter Small E

U+01D4B ᵋ \^epsilon Modifier Letter Small Open E

U+01D4D ᵍ \^g Modifier Letter Small G

U+01D4F ᵏ \^k Modifier Letter Small K

U+01D50 ᵐ \^m Modifier Letter Small M

U+01D52 ᵒ \^o Modifier Letter Small O

U+01D56 ᵖ \^p Modifier Letter Small P

U+01D57 ᵗ \^t Modifier Letter Small T

U+01D58 ᵘ \^u Modifier Letter Small U

U+01D5B ᵛ \^v Modifier Letter Small V

U+01D5D ᵝ \^beta Modifier Letter Small Beta

U+01D5E ᵞ \^gamma Modifier Letter Small Greek Gamma

U+01D5F ᵟ \^delta Modifier Letter Small Delta

U+01D60 ᵠ \^phi Modifier Letter Small Greek Phi

U+01D61 ᵡ \^chi Modifier Letter Small Chi

U+01D62 ᵢ _i Latin Subscript Small Letter I

U+01D63 ᵣ _r Latin Subscript Small Letter R

U+01D64 ᵤ _u Latin Subscript Small Letter U

U+01D65 ᵥ _v Latin Subscript Small Letter V

U+01D66 ᵦ _beta Greek Subscript Small Letter Beta

U+01D67 ᵧ _gamma Greek Subscript Small Letter Gamma

U+01D68 ᵨ _rho Greek Subscript Small Letter Rho

U+01D69 ᵩ _phi Greek Subscript Small Letter Phi

U+01D6A ᵪ _chi Greek Subscript Small Letter Chi

U+01D9C ᶜ \^c Modifier Letter Small C

U+01DA0 ᶠ \^f Modifier Letter Small F

U+01DA5 ᶥ \^iota Modifier Letter Small Iota

U+01DB2 ᶲ \^Phi Modifier Letter Small Phi

U+01DBB ᶻ \^z Modifier Letter Small Z

U+01DBF ᶿ \^theta Modifier Letter Small Theta

U+02002   \enspace En Space

U+02003   \quad Em Space

U+02005   \thickspace Four-per-em Space

U+02009   \thinspace Thin Space

U+0200A   \hspace Hair Space

U+02013 – \endash En Dash

U+02014 — \emdash Em Dash

U+02016 ‖ \Vert Double Vertical Line / Double Vertical Bar

U+02018 ‘ \lq Left Single Quotation Mark / Single Turned Comma

Quotation Mark

U+02019 ’ \rq Right Single Quotation Mark / Single Comma Quotation

Mark

U+0201B ‛ \Elzreapos Single High-reversed-9 Quotation Mark / Single Reversed

Comma Quotation Mark

U+0201C “ \textquotedblleft Left Double Quotation Mark / Double Turned Comma

Quotation Mark

U+0201D ” \textquotedblright Right Double Quotation Mark / Double Comma Quotation

Mark

U+02020 † \dagger Dagger

U+02021 ‡ \ddagger Double Dagger

U+02022 • \bullet Bullet

U+02026 … \dots, \ldots Horizontal Ellipsis

U+02030 ‰ \textperthousand Per Mille Sign

U+02031 \textpertenthousand Per Ten Thousand Sign

U+02032 ′ \prime Prime

U+02033 ″ \pprime Double Prime

U+02034 ‴ \ppprime Triple Prime

U+02035 \backprime Reversed Prime

U+02036 \backpprime Reversed Double Prime

U+02037 \backppprime Reversed Triple Prime

U+02039 ‹ \guilsinglleft Single Left-pointing Angle Quotation Mark / Left Pointing

Single Guillemet

U+0203A › \guilsinglright Single Right-pointing Angle Quotation Mark / Right

Pointing Single Guillemet

U+0203C ‼ \:bangbang: Double Exclamation Mark

U+02040 \tieconcat Character Tie

U+02049 \:interrobang: Exclamation Question Mark

U+02057 \pppprime Quadruple Prime

U+02060 \nolinebreak Word Joiner

U+02070 ⁰ \^0 Superscript Zero / Superscript Digit Zero

U+02071 ⁱ \^i Superscript Latin Small Letter I

U+02074 ⁴ \^4 Superscript Four / Superscript Digit Four

U+02075 ⁵ \^5 Superscript Five / Superscript Digit Five

U+02076 ⁶ \^6 Superscript Six / Superscript Digit Six

U+02077 ⁷ \^7 Superscript Seven / Superscript Digit Seven

U+02078 ⁸ \^8 Superscript Eight / Superscript Digit Eight

U+02079 ⁹ \^9 Superscript Nine / Superscript Digit Nine

U+0207A ⁺ \^+ Superscript Plus Sign

U+0207B ⁻ \^- Superscript Minus / Superscript Hyphen-minus

U+0207C ⁼ \^= Superscript Equals Sign

U+0207D ⁽ \^(Superscript Left Parenthesis / Superscript Opening

Parenthesis

U+0207E ⁾ \^) Superscript Right Parenthesis / Superscript Closing

Parenthesis

U+0207F ⁿ \^n Superscript Latin Small Letter N

U+02080 ₀ _0 Subscript Zero / Subscript Digit Zero

U+02081 ₁ _1 Subscript One / Subscript Digit One

U+02082 ₂ _2 Subscript Two / Subscript Digit Two

U+02083 ₃ _3 Subscript Three / Subscript Digit Three

U+02084 ₄ _4 Subscript Four / Subscript Digit Four

U+02085 ₅ _5 Subscript Five / Subscript Digit Five

U+02086 ₆ _6 Subscript Six / Subscript Digit Six

U+02087 ₇ _7 Subscript Seven / Subscript Digit Seven

U+02088 ₈ _8 Subscript Eight / Subscript Digit Eight

U+02089 ₉ _9 Subscript Nine / Subscript Digit Nine

U+0208A ₊ _+ Subscript Plus Sign

U+0208B ₋ _- Subscript Minus / Subscript Hyphen-minus

U+0208C ₌ _= Subscript Equals Sign

U+0208D ₍ _(Subscript Left Parenthesis / Subscript Opening Parenthesis

U+0208E ₎ _) Subscript Right Parenthesis / Subscript Closing

Parenthesis

U+02090 ₐ _a Latin Subscript Small Letter A

U+02091 ₑ _e Latin Subscript Small Letter E

U+02092 ₒ _o Latin Subscript Small Letter O

U+02093 ₓ _x Latin Subscript Small Letter X

U+02094 ₔ _schwa Latin Subscript Small Letter Schwa

U+02095 _h Latin Subscript Small Letter H

U+02096 _k Latin Subscript Small Letter K

U+02097 _l Latin Subscript Small Letter L

U+02098 _m Latin Subscript Small Letter M

U+02099 _n Latin Subscript Small Letter N

U+0209A _p Latin Subscript Small Letter P

U+0209B _s Latin Subscript Small Letter S

U+0209C _t Latin Subscript Small Letter T

U+020A7 ₧ \Elzpes Peseta Sign

U+020AC € \euro Euro Sign

U+020D0 ◌ \leftharpoonaccent Combining Left Harpoon Above / Non-spacing Left

Harpoon Above

U+020D1 ◌ \rightharpoonaccent Combining Right Harpoon Above / Non-spacing Right

Harpoon Above

U+020D2 ◌ \vertoverlay Combining Long Vertical Line Overlay / Non-spacing Long

Vertical Bar Overlay

U+020D6 ◌ \overleftarrow Combining Left Arrow Above / Non-spacing Left Arrow

Above

U+020D7 ◌ \vec Combining Right Arrow Above / Non-spacing Right Arrow

Above

U+020DB ◌ \dddot Combining Three Dots Above / Non-spacing Three Dots

Above

U+020DC ◌ \ddddot Combining Four Dots Above / Non-spacing Four Dots

Above

U+020DD ◌⃝ \enclosecircle Combining Enclosing Circle / Enclosing Circle

U+020DE ◌ \enclosesquare Combining Enclosing Square / Enclosing Square

U+020DF ◌ \enclosediamond Combining Enclosing Diamond / Enclosing Diamond

U+020E1 ◌ \overleftrightarrow Combining Left Right Arrow Above / Non-spacing Left

Right Arrow Above

U+020E4 ◌ \enclosetriangle Combining Enclosing Upward Pointing Triangle

U+020E7 ◌ \annuity Combining Annuity Symbol

U+020E8 ◌ \threeunderdot Combining Triple Underdot

U+020E9 ◌ \widebridgeabove Combining Wide Bridge Above

U+020EC ◌ \underrightharpoondown Combining Rightwards Harpoon With Barb Downwards

U+020ED ◌ \underleftharpoondown Combining Leftwards Harpoon With Barb Downwards

U+020EE ◌ \underleftarrow Combining Left Arrow Below

U+020EF ◌ \underrightarrow Combining Right Arrow Below

U+020F0 ◌ \asteraccent Combining Asterisk Above

U+02102 \BbbC Double-struck Capital C / Double-struck C

U+02107 \Eulerconst Euler Constant / Eulers

U+0210A \mscrg Script Small G

U+0210B \mscrH Script Capital H / Script H

U+0210C \mfrakH Black-letter Capital H / Black-letter H

U+0210D \BbbH Double-struck Capital H / Double-struck H

U+0210E \Planckconst Planck Constant

U+0210F \hslash Planck Constant Over Two Pi / Planck Constant Over 2 Pi

U+02110 \mscrI Script Capital I / Script I

U+02111 \Im Black-letter Capital I / Black-letter I

U+02112 \mscrL Script Capital L / Script L

U+02113 ℓ \ell Script Small L

U+02115 \BbbN Double-struck Capital N / Double-struck N

U+02116 № \textnumero Numero Sign / Numero

U+02118 \wp Script Capital P / Script P

U+02119 \BbbP Double-struck Capital P / Double-struck P

U+0211A \BbbQ Double-struck Capital Q / Double-struck Q

U+0211B \mscrR Script Capital R / Script R

U+0211C \Re Black-letter Capital R / Black-letter R

U+0211D \BbbR Double-struck Capital R / Double-struck R

U+0211E \Elzxrat Prescription Take

U+02122 ™ \texttrademark, \:tm: Trade Mark Sign / Trademark

U+02124 \BbbZ Double-struck Capital Z / Double-struck Z

U+02127 \mho Inverted Ohm Sign / Mho

U+02128 \mfrakZ Black-letter Capital Z / Black-letter Z

U+02129 \turnediota Turned Greek Small Letter Iota

U+0212B \Angstrom Angstrom Sign / Angstrom Unit

U+0212C \mscrB Script Capital B / Script B

U+0212D \mfrakC Black-letter Capital C / Black-letter C

U+0212F \mscre Script Small E

U+02130 \mscrE Script Capital E / Script E

U+02131 \mscrF Script Capital F / Script F

U+02132 Ⅎ \Finv Turned Capital F / Turned F

U+02133 \mscrM Script Capital M / Script M

U+02134 \mscro Script Small O

U+02135 \aleph Alef Symbol / First Transfinite Cardinal

U+02136 \beth Bet Symbol / Second Transfinite Cardinal

U+02137 \gimel Gimel Symbol / Third Transfinite Cardinal

U+02138 \daleth Dalet Symbol / Fourth Transfinite Cardinal

U+02139 \:information_source: Information Source

U+0213C \Bbbpi Double-struck Small Pi

U+0213D \Bbbgamma Double-struck Small Gamma

U+0213E \BbbGamma Double-struck Capital Gamma

U+0213F \BbbPi Double-struck Capital Pi

U+02140 \bbsum Double-struck N-ary Summation

U+02141 \Game Turned Sans-serif Capital G

U+02142 \sansLturned Turned Sans-serif Capital L

U+02143 \sansLmirrored Reversed Sans-serif Capital L

U+02144 \Yup Turned Sans-serif Capital Y

U+02145 \mitBbbD Double-struck Italic Capital D

U+02146 \mitBbbd Double-struck Italic Small D

U+02147 \mitBbbe Double-struck Italic Small E

U+02148 \mitBbbi Double-struck Italic Small I

U+02149 \mitBbbj Double-struck Italic Small J

U+0214A \PropertyLine Property Line

U+0214B \upand Turned Ampersand

U+02190 ← \leftarrow Leftwards Arrow / Left Arrow

U+02191 ↑ \uparrow Upwards Arrow / Up Arrow

U+02192 → \to, \rightarrow Rightwards Arrow / Right Arrow

U+02193 ↓ \downarrow Downwards Arrow / Down Arrow

U+02194 ↔ \leftrightarrow,

\:left_right_arrow:

Left Right Arrow

U+02195 ↕ \updownarrow,

\:arrow_up_down:

Up Down Arrow

U+02196 ↖ \nwarrow,

\:arrow_upper_left:

North West Arrow / Upper Left Arrow

U+02197 ↗ \nearrow,

\:arrow_upper_right:

North East Arrow / Upper Right Arrow

U+02198 ↘ \searrow,

\:arrow_lower_right:

South East Arrow / Lower Right Arrow

U+02199 ↙ \swarrow,

\:arrow_lower_left:

South West Arrow / Lower Left Arrow

U+0219A \nleftarrow Leftwards ArrowWith Stroke / Left ArrowWith Stroke

U+0219B \nrightarrow Rightwards ArrowWith Stroke / Right ArrowWith Stroke

U+0219C \leftwavearrow Leftwards Wave Arrow / LeftWave Arrow

U+0219D \rightwavearrow Rightwards Wave Arrow / Right Wave Arrow

U+0219E \twoheadleftarrow Leftwards Two Headed Arrow / Left Two Headed Arrow

U+0219F \twoheaduparrow Upwards Two Headed Arrow / Up Two Headed Arrow

U+021A0 \twoheadrightarrow Rightwards Two Headed Arrow / Right Two Headed Arrow

U+021A1 \twoheaddownarrow Downwards Two Headed Arrow / Down Two Headed

Arrow

U+021A2 \leftarrowtail Leftwards ArrowWith Tail / Left ArrowWith Tail

U+021A3 \rightarrowtail Rightwards ArrowWith Tail / Right ArrowWith Tail

U+021A4 \mapsfrom Leftwards Arrow From Bar / Left Arrow From Bar

U+021A5 \mapsup Upwards Arrow From Bar / Up Arrow From Bar

U+021A6 \mapsto Rightwards Arrow From Bar / Right Arrow From Bar

U+021A7 \mapsdown Downwards Arrow From Bar / Down Arrow From Bar

U+021A8 ↨ \updownarrowbar Up Down ArrowWith Base

U+021A9 \hookleftarrow, \:left-

wards_arrow_with_hook:

Leftwards ArrowWith Hook / Left ArrowWith Hook

U+021AA \hookrightarrow,

\:arrow_right_hook:

Rightwards ArrowWith Hook / Right ArrowWith Hook

U+021AB \looparrowleft Leftwards ArrowWith Loop / Left ArrowWith Loop

U+021AC \looparrowright Rightwards ArrowWith Loop / Right ArrowWith Loop

U+021AD \leftrightsquigarrow Left Right Wave Arrow

U+021AE \nleftrightarrow Left Right ArrowWith Stroke

U+021AF \downzigzagarrow Downwards Zigzag Arrow / Down Zigzag Arrow

U+021B0 \Lsh Upwards ArrowWith Tip Leftwards / Up ArrowWith Tip

Left

U+021B1 \Rsh Upwards ArrowWith Tip Rightwards / Up ArrowWith Tip

Right

U+021B2 \Ldsh Downwards ArrowWith Tip Leftwards / Down Arrow

With Tip Left

U+021B3 \Rdsh Downwards ArrowWith Tip Rightwards / Down Arrow

With Tip Right

U+021B4 \linefeed Rightwards ArrowWith Corner Downwards / Right Arrow

With Corner Down

U+021B5 \carriagereturn Downwards ArrowWith Corner Leftwards / Down Arrow

With Corner Left

U+021B6 \curvearrowleft Anticlockwise Top Semicircle Arrow

U+021B7 \curvearrowright Clockwise Top Semicircle Arrow

U+021B8 \barovernorthwestarrow North West Arrow To Long Bar / Upper Left Arrow To Long

Bar

U+021B9 \barlef-

tarrowrightarrowbar

Leftwards Arrow To Bar Over Rightwards Arrow To Bar /

Left Arrow To Bar Over Right Arrow To Bar

U+021BA \circlearrowleft Anticlockwise Open Circle Arrow

U+021BB \circlearrowright Clockwise Open Circle Arrow

U+021BC \leftharpoonup Leftwards Harpoon With Barb Upwards / Left Harpoon

With Barb Up

U+021BD \leftharpoondown Leftwards Harpoon With Barb Downwards / Left Harpoon

With Barb Down

U+021BE \upharpoonleft Upwards Harpoon With Barb Rightwards / Up Harpoon

With Barb Right

U+021BF \upharpoonright Upwards Harpoon With Barb Leftwards / Up Harpoon

With Barb Left

U+021C0 \rightharpoonup Rightwards Harpoon With Barb Upwards / Right Harpoon

With Barb Up

U+021C1 \rightharpoondown Rightwards Harpoon With Barb Downwards / Right

Harpoon With Barb Down

U+021C2 \downharpoonright Downwards Harpoon With Barb Rightwards / Down

Harpoon With Barb Right

U+021C3 \downharpoonleft Downwards Harpoon With Barb Leftwards / Down

Harpoon With Barb Left

U+021C4 \rightleftarrows Rightwards Arrow Over Leftwards Arrow / Right Arrow

Over Left Arrow

U+021C5 \dblarrowupdown Upwards Arrow Leftwards Of Downwards Arrow / Up

Arrow Left Of Down Arrow

U+021C6 \leftrightarrows Leftwards Arrow Over Rightwards Arrow / Left Arrow

Over Right Arrow

U+021C7 \leftleftarrows Leftwards Paired Arrows / Left Paired Arrows

U+021C8 \upuparrows Upwards Paired Arrows / Up Paired Arrows

U+021C9 \rightrightarrows Rightwards Paired Arrows / Right Paired Arrows

U+021CA \downdownarrows Downwards Paired Arrows / Down Paired Arrows

U+021CB \leftrightharpoons Leftwards Harpoon Over Rightwards Harpoon / Left

Harpoon Over Right Harpoon

U+021CC \rightleftharpoons Rightwards Harpoon Over Leftwards Harpoon / Right

Harpoon Over Left Harpoon

U+021CD \nLeftarrow Leftwards Double ArrowWith Stroke / Left Double Arrow

With Stroke

U+021CE \nLeftrightarrow Left Right Double ArrowWith Stroke

U+021CF \nRightarrow Rightwards Double ArrowWith Stroke / Right Double

ArrowWith Stroke

U+021D0 \Leftarrow Leftwards Double Arrow / Left Double Arrow

U+021D1 \Uparrow Upwards Double Arrow / Up Double Arrow

U+021D2 \Rightarrow Rightwards Double Arrow / Right Double Arrow

U+021D3 \Downarrow Downwards Double Arrow / Down Double Arrow

U+021D4 \Leftrightarrow Left Right Double Arrow

U+021D5 \Updownarrow Up Down Double Arrow

U+021D6 \Nwarrow North West Double Arrow / Upper Left Double Arrow

U+021D7 \Nearrow North East Double Arrow / Upper Right Double Arrow

U+021D8 \Searrow South East Double Arrow / Lower Right Double Arrow

U+021D9 \Swarrow South West Double Arrow / Lower Left Double Arrow

U+021DA \Lleftarrow Leftwards Triple Arrow / Left Triple Arrow

U+021DB \Rrightarrow Rightwards Triple Arrow / Right Triple Arrow

U+021DC \leftsquigarrow Leftwards Squiggle Arrow / Left Squiggle Arrow

U+021DD \rightsquigarrow Rightwards Squiggle Arrow / Right Squiggle Arrow

U+021DE \nHuparrow Upwards ArrowWith Double Stroke / Up ArrowWith

Double Stroke

U+021DF \nHdownarrow Downwards ArrowWith Double Stroke / Down Arrow

With Double Stroke

U+021E0 \leftdasharrow Leftwards Dashed Arrow / Left Dashed Arrow

U+021E1 \updasharrow Upwards Dashed Arrow / Up Dashed Arrow

U+021E2 \rightdasharrow Rightwards Dashed Arrow / Right Dashed Arrow

U+021E3 \downdasharrow Downwards Dashed Arrow / Down Dashed Arrow

U+021E4 \barleftarrow Leftwards Arrow To Bar / Left Arrow To Bar

U+021E5 \rightarrowbar Rightwards Arrow To Bar / Right Arrow To Bar

U+021E6 \leftwhitearrow Leftwards White Arrow / White Left Arrow

U+021E7 \upwhitearrow Upwards White Arrow / White Up Arrow

U+021E8 \rightwhitearrow Rightwards White Arrow / White Right Arrow

U+021E9 \downwhitearrow Downwards White Arrow / White Down Arrow

U+021EA \whitearrowupfrombar Upwards White Arrow From Bar / White Up Arrow From

Bar

U+021F4 \circleonrightarrow Right ArrowWith Small Circle

U+021F5 \DownArrowUpArrow Downwards Arrow Leftwards Of Upwards Arrow

U+021F6 \rightthreearrows Three Rightwards Arrows

U+021F7 \nvleftarrow Leftwards ArrowWith Vertical Stroke

U+021F8 \nvrightarrow Rightwards ArrowWith Vertical Stroke

U+021F9 \nvleftrightarrow Left Right ArrowWith Vertical Stroke

U+021FA \nVleftarrow Leftwards ArrowWith Double Vertical Stroke

U+021FB \nVrightarrow Rightwards ArrowWith Double Vertical Stroke

U+021FC \nVleftrightarrow Left Right ArrowWith Double Vertical Stroke

U+021FD \leftarrowtriangle Leftwards Open-headed Arrow

U+021FE \rightarrowtriangle Rightwards Open-headed Arrow

U+021FF \leftrightarrowtriangle Left Right Open-headed Arrow

U+02200 \forall For All

U+02201 \complement Complement

U+02202 ∂ \partial Partial Differential

U+02203 \exists There Exists

U+02204 \nexists There Does Not Exist

U+02205 \varnothing, \emptyset Empty Set

U+02206 \increment Increment

U+02207 \del, \nabla Nabla

U+02208 \in Element Of

U+02209 \notin Not An Element Of

U+0220A \smallin Small Element Of

U+0220B \ni Contains As Member

U+0220C \nni Does Not Contain As Member

U+0220D \smallni Small Contains As Member

U+0220E \QED End Of Proof

U+0220F ∏ \prod N-ary Product

U+02210 \coprod N-ary Coproduct

U+02211 ∑ \sum N-ary Summation

U+02212 − \minus Minus Sign

U+02213 \mp Minus-or-plus Sign

U+02214 \dotplus Dot Plus

U+02216 \setminus Set Minus

U+02217 \ast Asterisk Operator

U+02218 \circ Ring Operator

U+02219 · \vysmblkcircle Bullet Operator

U+0221A √ \surd, \sqrt Square Root

U+0221B \cbrt Cube Root

U+0221C \fourthroot Fourth Root

U+0221D \propto Proportional To

U+0221E ∞ \infty Infinity

U+0221F ∟ \rightangle Right Angle

U+02220 \angle Angle

U+02221 \measuredangle Measured Angle

U+02222 \sphericalangle Spherical Angle

U+02223 \mid Divides

U+02224 \nmid Does Not Divide

U+02225 \parallel Parallel To

U+02226 \nparallel Not Parallel To

U+02227 \wedge Logical And

U+02228 \vee Logical Or

U+02229 ∩ \cap Intersection

U+0222A \cup Union

U+0222B ∫ \int Integral

U+0222C \iint Double Integral

U+0222D \iiint Triple Integral

U+0222E \oint Contour Integral

U+0222F \oiint Surface Integral

U+02230 \oiiint Volume Integral

U+02231 \clwintegral Clockwise Integral

U+02232 \varointclockwise Clockwise Contour Integral

U+02233 \ointctrclockwise Anticlockwise Contour Integral

U+02234 \therefore Therefore

U+02235 \because Because

U+02237 \Colon Proportion

U+02238 \dotminus Dot Minus

U+0223A \dotsminusdots Geometric Proportion

U+0223B \kernelcontraction Homothetic

U+0223C \sim Tilde Operator

U+0223D \backsim Reversed Tilde

U+0223E \lazysinv Inverted Lazy S

U+0223F \sinewave Sine Wave

U+02240 \wr Wreath Product

U+02241 \nsim Not Tilde

U+02242 \eqsim Minus Tilde

U+02242 +

U+00338

̸ \neqsim Minus Tilde + Combining Long Solidus Overlay /

Non-spacing Long Slash Overlay

U+02243 \simeq Asymptotically Equal To

U+02244 \nsime Not Asymptotically Equal To

U+02245 \cong Approximately Equal To

U+02246 \approxnotequal Approximately But Not Actually Equal To

U+02247 \ncong Neither Approximately Nor Actually Equal To

U+02248 ≈ \approx Almost Equal To

U+02249 \napprox Not Almost Equal To

U+0224A \approxeq Almost Equal Or Equal To

U+0224B \tildetrpl Triple Tilde

U+0224C \allequal All Equal To

U+0224D \asymp Equivalent To

U+0224E \Bumpeq Geometrically Equivalent To

U+0224E +

U+00338

̸ \nBumpeq Geometrically Equivalent To + Combining Long Solidus

Overlay / Non-spacing Long Slash Overlay

U+0224F \bumpeq Difference Between

U+0224F +

U+00338

̸ \nbumpeq Difference Between + Combining Long Solidus Overlay /

Non-spacing Long Slash Overlay

U+02250 \doteq Approaches The Limit

U+02251 \Doteq Geometrically Equal To

U+02252 \fallingdotseq Approximately Equal To Or The Image Of

U+02253 \risingdotseq Image Of Or Approximately Equal To

U+02254 \coloneq Colon Equals / Colon Equal

U+02255 \eqcolon Equals Colon / Equal Colon

U+02256 \eqcirc Ring In Equal To

U+02257 \circeq Ring Equal To

U+02258 \arceq Corresponds To

U+02259 \wedgeq Estimates

U+0225A \veeeq Equiangular To

U+0225B \starequal Star Equals

U+0225C \triangleq Delta Equal To

U+0225D \eqdef Equal To By Definition

U+0225E \measeq Measured By

U+0225F \questeq Questioned Equal To

U+02260 ≠ \ne Not Equal To

U+02261 ≡ \equiv Identical To

U+02262 \nequiv Not Identical To

U+02263 \Equiv Strictly Equivalent To

U+02264 ≤ \le Less-than Or Equal To / Less Than Or Equal To

U+02265 ≥ \ge Greater-than Or Equal To / Greater Than Or Equal To

U+02266 \leqq Less-than Over Equal To / Less Than Over Equal To

U+02267 \geqq Greater-than Over Equal To / Greater Than Over Equal To

U+02268 \lneqq Less-than But Not Equal To / Less Than But Not Equal To

U+02268 +

U+0FE00

\lvertneqq Less-than But Not Equal To / Less Than But Not Equal To +

Variation Selector-1

U+02269 \gneqq Greater-than But Not Equal To / Greater Than But Not

Equal To

U+02269 +

U+0FE00

\gvertneqq Greater-than But Not Equal To / Greater Than But Not

Equal To + Variation Selector-1

U+0226A \ll Much Less-than / Much Less Than

U+0226A +

U+00338

̸ \NotLessLess Much Less-than / Much Less Than + Combining Long

Solidus Overlay / Non-spacing Long Slash Overlay

U+0226B \gg Much Greater-than / Much Greater Than

U+0226B +

U+00338

̸ \NotGreaterGreater Much Greater-than / Much Greater Than + Combining

Long Solidus Overlay / Non-spacing Long Slash Overlay

U+0226C \between Between

U+0226D \nasymp Not Equivalent To

U+0226E \nless Not Less-than / Not Less Than

U+0226F \ngtr Not Greater-than / Not Greater Than

U+02270 \nleq Neither Less-than Nor Equal To / Neither Less Than Nor

Equal To

U+02271 \ngeq Neither Greater-than Nor Equal To / Neither Greater Than

Nor Equal To

U+02272 \lesssim Less-than Or Equivalent To / Less Than Or Equivalent To

U+02273 \gtrsim Greater-than Or Equivalent To / Greater Than Or

Equivalent To

U+02274 \nlesssim Neither Less-than Nor Equivalent To / Neither Less Than

Nor Equivalent To

U+02275 \ngtrsim Neither Greater-than Nor Equivalent To / Neither Greater

Than Nor Equivalent To

U+02276 \lessgtr Less-than Or Greater-than / Less Than Or Greater Than

U+02277 \gtrless Greater-than Or Less-than / Greater Than Or Less Than

U+02278 \notlessgreater Neither Less-than Nor Greater-than / Neither Less Than

Nor Greater Than

U+02279 \notgreaterless Neither Greater-than Nor Less-than / Neither Greater

Than Nor Less Than

U+0227A \prec Precedes

U+0227B \succ Succeeds

U+0227C \preccurlyeq Precedes Or Equal To

U+0227D \succcurlyeq Succeeds Or Equal To

U+0227E \precsim Precedes Or Equivalent To

U+0227E +

U+00338

̸ \nprecsim Precedes Or Equivalent To + Combining Long Solidus

Overlay / Non-spacing Long Slash Overlay

U+0227F \succsim Succeeds Or Equivalent To

U+0227F +

U+00338

̸ \nsuccsim Succeeds Or Equivalent To + Combining Long Solidus

Overlay / Non-spacing Long Slash Overlay

U+02280 \nprec Does Not Precede

U+02281 \nsucc Does Not Succeed

U+02282 \subset Subset Of

U+02283 \supset Superset Of

U+02284 \nsubset Not A Subset Of

U+02285 \nsupset Not A Superset Of

U+02286 \subseteq Subset Of Or Equal To

U+02287 \supseteq Superset Of Or Equal To

U+02288 \nsubseteq Neither A Subset Of Nor Equal To

U+02289 \nsupseteq Neither A Superset Of Nor Equal To

U+0228A \subsetneq Subset OfWith Not Equal To / Subset Of Or Not Equal To

U+0228A +

U+0FE00

\varsubsetneqq Subset OfWith Not Equal To / Subset Of Or Not Equal To

+ Variation Selector-1

U+0228B \supsetneq Superset OfWith Not Equal To / Superset Of Or Not Equal

To

U+0228B +

U+0FE00

\varsupsetneq Superset OfWith Not Equal To / Superset Of Or Not Equal

To + Variation Selector-1

U+0228D \cupdot Multiset Multiplication

U+0228E \uplus Multiset Union

U+0228F \sqsubset Square Image Of

U+0228F +

U+00338

̸ \NotSquareSubset Square Image Of + Combining Long Solidus Overlay /

Non-spacing Long Slash Overlay

U+02290 \sqsupset Square Original Of

U+02290 +

U+00338

̸ \NotSquareSuperset Square Original Of + Combining Long Solidus Overlay /

Non-spacing Long Slash Overlay

U+02291 \sqsubseteq Square Image Of Or Equal To

U+02292 \sqsupseteq Square Original Of Or Equal To

U+02293 \sqcap Square Cap

U+02294 \sqcup Square Cup

U+02295 \oplus Circled Plus

U+02296 \ominus Circled Minus

U+02297 \otimes Circled Times

U+02298 \oslash Circled Division Slash

U+02299 \odot Circled Dot Operator

U+0229A \circledcirc Circled Ring Operator

U+0229B \circledast Circled Asterisk Operator

U+0229C \circledequal Circled Equals

U+0229D \circleddash Circled Dash

U+0229E \boxplus Squared Plus

U+0229F \boxminus Squared Minus

U+022A0 \boxtimes Squared Times

U+022A1 \boxdot Squared Dot Operator

U+022A2 \vdash Right Tack

U+022A3 \dashv Left Tack

U+022A4 \top Down Tack

U+022A5 \bot Up Tack

U+022A7 \models Models

U+022A8 \vDash True

U+022A9 \Vdash Forces

U+022AA \Vvdash Triple Vertical Bar Right Turnstile

U+022AB \VDash Double Vertical Bar Double Right Turnstile

U+022AC \nvdash Does Not Prove

U+022AD \nvDash Not True

U+022AE \nVdash Does Not Force

U+022AF \nVDash Negated Double Vertical Bar Double Right Turnstile

U+022B0 \prurel Precedes Under Relation

U+022B1 \scurel Succeeds Under Relation

U+022B2 \vartriangleleft Normal Subgroup Of

U+022B3 \vartriangleright Contains As Normal Subgroup

U+022B4 \trianglelefteq Normal Subgroup Of Or Equal To

U+022B5 \trianglerighteq Contains As Normal Subgroup Or Equal To

U+022B6 \original Original Of

U+022B7 \image Image Of

U+022B8 \multimap Multimap

U+022B9 \hermitconjmatrix Hermitian Conjugate Matrix

U+022BA \intercal Intercalate

U+022BB \veebar, \xor Xor

U+022BC \barwedge Nand

U+022BD \barvee Nor

U+022BE \rightanglearc Right Angle With Arc

U+022BF \varlrtriangle Right Triangle

U+022C0 \bigwedge N-ary Logical And

U+022C1 \bigvee N-ary Logical Or

U+022C2 \bigcap N-ary Intersection

U+022C3 \bigcup N-ary Union

U+022C4 \diamond Diamond Operator

U+022C5 \cdot Dot Operator

U+022C6 \star Star Operator

U+022C7 \divideontimes Division Times

U+022C8 \bowtie Bowtie

U+022C9 \ltimes Left Normal Factor Semidirect Product

U+022CA \rtimes Right Normal Factor Semidirect Product

U+022CB \leftthreetimes Left Semidirect Product

U+022CC \rightthreetimes Right Semidirect Product

U+022CD \backsimeq Reversed Tilde Equals

U+022CE \curlyvee Curly Logical Or

U+022CF \curlywedge Curly Logical And

U+022D0 \Subset Double Subset

U+022D1 \Supset Double Superset

U+022D2 \Cap Double Intersection

U+022D3 \Cup Double Union

U+022D4 \pitchfork Pitchfork

U+022D5 \equalparallel Equal And Parallel To

U+022D6 \lessdot Less-than With Dot / Less Than With Dot

U+022D7 \gtrdot Greater-than With Dot / Greater Than With Dot

U+022D8 \verymuchless Very Much Less-than / Very Much Less Than

U+022D9 \ggg Very Much Greater-than / Very Much Greater Than

U+022DA \lesseqgtr Less-than Equal To Or Greater-than / Less Than Equal To

Or Greater Than

U+022DB \gtreqless Greater-than Equal To Or Less-than / Greater Than Equal

To Or Less Than

U+022DC \eqless Equal To Or Less-than / Equal To Or Less Than

U+022DD \eqgtr Equal To Or Greater-than / Equal To Or Greater Than

U+022DE \curlyeqprec Equal To Or Precedes

U+022DF \curlyeqsucc Equal To Or Succeeds

U+022E0 \npreccurlyeq Does Not Precede Or Equal

U+022E1 \nsucccurlyeq Does Not Succeed Or Equal

U+022E2 \nsqsubseteq Not Square Image Of Or Equal To

U+022E3 \nsqsupseteq Not Square Original Of Or Equal To

U+022E4 \sqsubsetneq Square Image Of Or Not Equal To

U+022E5 \Elzsqspne Square Original Of Or Not Equal To

U+022E6 \lnsim Less-than But Not Equivalent To / Less Than But Not

Equivalent To

U+022E7 \gnsim Greater-than But Not Equivalent To / Greater Than But

Not Equivalent To

U+022E8 \precnsim Precedes But Not Equivalent To

U+022E9 \succnsim Succeeds But Not Equivalent To

U+022EA \ntriangleleft Not Normal Subgroup Of

U+022EB \ntriangleright Does Not Contain As Normal Subgroup

U+022EC \ntrianglelefteq Not Normal Subgroup Of Or Equal To

U+022ED \ntrianglerighteq Does Not Contain As Normal Subgroup Or Equal

U+022EE \vdots Vertical Ellipsis

U+022EF \cdots Midline Horizontal Ellipsis

U+022F0 \adots Up Right Diagonal Ellipsis

U+022F1 \ddots Down Right Diagonal Ellipsis

U+022F2 \disin Element OfWith Long Horizontal Stroke

U+022F3 \varisins Element OfWith Vertical Bar At End Of Horizontal Stroke

U+022F4 \isins Small Element OfWith Vertical Bar At End Of Horizontal

Stroke

U+022F5 \isindot Element OfWith Dot Above

U+022F6 \varisinobar Element OfWith Overbar

U+022F7 \isinobar Small Element OfWith Overbar

U+022F8 \isinvb Element OfWith Underbar

U+022F9 \isinE Element OfWith Two Horizontal Strokes

U+022FA \nisd Contains With Long Horizontal Stroke

U+022FB \varnis Contains With Vertical Bar At End Of Horizontal Stroke

U+022FC \nis Small Contains With Vertical Bar At End Of Horizontal

Stroke

U+022FD \varniobar Contains With Overbar

U+022FE \niobar Small Contains With Overbar

U+022FF \bagmember Z Notation Bag Membership

U+02300 \diameter Diameter Sign

U+02302 ⌂ \house House

U+02305 \varbarwedge Projective

U+02306 \vardoublebarwedge Perspective

U+02308 \lceil Left Ceiling

U+02309 \rceil Right Ceiling

U+0230A \lfloor Left Floor

U+0230B \rfloor Right Floor

U+02310 ⌐ \invnot Reversed Not Sign

U+02311 \sqlozenge Square Lozenge

U+02312 \profline Arc

U+02313 \profsurf Segment

U+02315 \recorder Telephone Recorder

U+02317 \viewdata Viewdata Square

U+02319 \turnednot Turned Not Sign

U+0231A \:watch: Watch

U+0231B \:hourglass: Hourglass

U+0231C \ulcorner Top Left Corner

U+0231D \urcorner Top Right Corner

U+0231E \llcorner Bottom Left Corner

U+0231F \lrcorner Bottom Right Corner

U+02322 \frown Frown

U+02323 \smile Smile

U+0232C \varhexagonlrbonds Benzene Ring

U+02332 \conictaper Conical Taper

U+02336 \topbot Apl Functional Symbol I-beam

U+0233D \obar Apl Functional Symbol Circle Stile

U+0233F \APLnotslash Apl Functional Symbol Slash Bar

U+02340 \APLnotbackslash Apl Functional Symbol Backslash Bar

U+02353 \APLboxupcaret Apl Functional Symbol Quad Up Caret

U+02370 \APLboxquestion Apl Functional Symbol Quad Question

U+02394 \hexagon Software-function Symbol

U+023A3 \Elzdlcorn Left Square Bracket Lower Corner

U+023B0 \lmoustache Upper Left Or Lower Right Curly Bracket Section

U+023B1 \rmoustache Upper Right Or Lower Left Curly Bracket Section

U+023B4 \overbracket Top Square Bracket

U+023B5 \underbracket Bottom Square Bracket

U+023B6 \bbrktbrk Bottom Square Bracket Over Top Square Bracket

U+023B7 \sqrtbottom Radical Symbol Bottom

U+023B8 \lvboxline Left Vertical Box Line

U+023B9 \rvboxline Right Vertical Box Line

U+023CE \varcarriagereturn Return Symbol

U+023DE \overbrace Top Curly Bracket

U+023DF \underbrace Bottom Curly Bracket

U+023E2 \trapezium White Trapezium

U+023E3 \benzenr Benzene Ring With Circle

U+023E4 \strns Straightness

U+023E5 \fltns Flatness

U+023E6 \accurrent Ac Current

U+023E7 \elinters Electrical Intersection

U+023E9 \:fast_forward: Black Right-pointing Double Triangle

U+023EA \:rewind: Black Left-pointing Double Triangle

U+023EB \:arrow_double_up: Black Up-pointing Double Triangle

U+023EC \:arrow_double_down: Black Down-pointing Double Triangle

U+023F0 \:alarm_clock: Alarm Clock

U+023F3 \:hourglass_flowing_sand: Hourglass With Flowing Sand

U+02422 \blanksymbol Blank Symbol / Blank

U+02423 \textvisiblespace Open Box

U+024C2 \:m: Circled Latin Capital Letter M

U+024C8 \circledS Circled Latin Capital Letter S

U+02506 \Elzdshfnc Box Drawings Light Triple Dash Vertical / Forms Light

Triple Dash Vertical

U+02519 \Elzsqfnw Box Drawings Up Light And Left Heavy / Forms Up Light

And Left Heavy

U+02571 \diagup Box Drawings Light Diagonal Upper Right To Lower Left /

Forms Light Diagonal Upper Right To Lower Left

U+02572 \diagdown Box Drawings Light Diagonal Upper Left To Lower Right /

Forms Light Diagonal Upper Left To Lower Right

U+02580 \blockuphalf Upper Half Block

U+02584 \blocklowhalf Lower Half Block

U+02588 \blockfull Full Block

U+0258C \blocklefthalf Left Half Block

U+02590 \blockrighthalf Right Half Block

U+02591 \blockqtrshaded Light Shade

U+02592 \blockhalfshaded Medium Shade

U+02593 \blockthreeqtrshaded Dark Shade

U+025A0 \blacksquare Black Square

U+025A1 □ \square White Square

U+025A2 \squoval White Square With Rounded Corners

U+025A3 \blackinwhitesquare White Square Containing Black Small Square

U+025A4 \squarehfill Square With Horizontal Fill

U+025A5 \squarevfill Square With Vertical Fill

U+025A6 \squarehvfill Square With Orthogonal Crosshatch Fill

U+025A7 \squarenwsefill Square With Upper Left To Lower Right Fill

U+025A8 \squareneswfill Square With Upper Right To Lower Left Fill

U+025A9 \squarecrossfill Square With Diagonal Crosshatch Fill

U+025AA ▪ \smblksquare,

\:black_small_square:

Black Small Square

U+025AB ▫ \smwhtsquare,

\:white_small_square:

White Small Square

U+025AC \hrectangleblack Black Rectangle

U+025AD \hrectangle White Rectangle

U+025AE \vrectangleblack Black Vertical Rectangle

U+025AF \Elzvrecto White Vertical Rectangle

U+025B0 \parallelogramblack Black Parallelogram

U+025B1 \parallelogram White Parallelogram

U+025B2 \bigblacktriangleup Black Up-pointing Triangle / Black Up Pointing Triangle

U+025B3 \bigtriangleup White Up-pointing Triangle / White Up Pointing Triangle

U+025B4 \blacktriangle Black Up-pointing Small Triangle / Black Up Pointing Small

Triangle

U+025B5 \vartriangle White Up-pointing Small Triangle / White Up Pointing

Small Triangle

U+025B6 \blacktriangleright,

\:arrow_forward:

Black Right-pointing Triangle / Black Right Pointing

Triangle

U+025B7 \triangleright White Right-pointing Triangle / White Right Pointing

Triangle

U+025B8 \smallblacktriangleright Black Right-pointing Small Triangle / Black Right Pointing

Small Triangle

U+025B9 \smalltriangleright White Right-pointing Small Triangle / White Right Pointing

Small Triangle

U+025BA \blackpointerright Black Right-pointing Pointer / Black Right Pointing Pointer

U+025BB \whitepointerright White Right-pointing Pointer / White Right Pointing

Pointer

U+025BC \bigblacktriangledown Black Down-pointing Triangle / Black Down Pointing

Triangle

U+025BD \bigtriangledown White Down-pointing Triangle / White Down Pointing

Triangle

U+025BE \blacktriangledown Black Down-pointing Small Triangle / Black Down Pointing

Small Triangle

U+025BF \triangledown White Down-pointing Small Triangle / White Down

Pointing Small Triangle

U+025C0 \blacktriangleleft,

\:arrow_backward:

Black Left-pointing Triangle / Black Left Pointing Triangle

U+025C1 \triangleleft White Left-pointing Triangle / White Left Pointing Triangle

U+025C2 \smallblacktriangleleft Black Left-pointing Small Triangle / Black Left Pointing

Small Triangle

U+025C3 \smalltriangleleft White Left-pointing Small Triangle / White Left Pointing

Small Triangle

U+025C4 \blackpointerleft Black Left-pointing Pointer / Black Left Pointing Pointer

U+025C5 \whitepointerleft White Left-pointing Pointer / White Left Pointing Pointer

U+025C6 \mdlgblkdiamond Black Diamond

U+025C7 \mdlgwhtdiamond White Diamond

U+025C8 \blackinwhitediamond White Diamond Containing Black Small Diamond

U+025C9 \fisheye Fisheye

U+025CA ◊ \lozenge Lozenge

U+025CB ○ \bigcirc White Circle

U+025CC ◌ \dottedcircle Dotted Circle

U+025CD \circlevertfill Circle With Vertical Fill

U+025CE \bullseye Bullseye

U+025CF ● \mdlgblkcircle Black Circle

U+025D0 \Elzcirfl Circle With Left Half Black

U+025D1 \Elzcirfr Circle With Right Half Black

U+025D2 \Elzcirfb Circle With Lower Half Black

U+025D3 \circletophalfblack Circle With Upper Half Black

U+025D4 \circleurquadblack Circle With Upper Right Quadrant Black

U+025D5 \blackcircleulquadwhite Circle With All But Upper Left Quadrant Black

U+025D6 \blacklefthalfcircle Left Half Black Circle

U+025D7 \blackrighthalfcircle Right Half Black Circle

U+025D8 \Elzrvbull Inverse Bullet

U+025D9 \inversewhitecircle Inverse White Circle

U+025DA \invwhiteupperhalfcircle Upper Half Inverse White Circle

U+025DB \invwhitelowerhalfcircle Lower Half Inverse White Circle

U+025DC \ularc Upper Left Quadrant Circular Arc

U+025DD \urarc Upper Right Quadrant Circular Arc

U+025DE \lrarc Lower Right Quadrant Circular Arc

U+025DF \llarc Lower Left Quadrant Circular Arc

U+025E0 \topsemicircle Upper Half Circle

U+025E1 \botsemicircle Lower Half Circle

U+025E2 \lrblacktriangle Black Lower Right Triangle

U+025E3 \llblacktriangle Black Lower Left Triangle

U+025E4 \ulblacktriangle Black Upper Left Triangle

U+025E5 \urblacktriangle Black Upper Right Triangle

U+025E6 ◦ \smwhtcircle White Bullet

U+025E7 \Elzsqfl Square With Left Half Black

U+025E8 \Elzsqfr Square With Right Half Black

U+025E9 \squareulblack Square With Upper Left Diagonal Half Black

U+025EA \Elzsqfse Square With Lower Right Diagonal Half Black

U+025EB \boxbar White Square With Vertical Bisecting Line

U+025EC \trianglecdot White Up-pointing Triangle With Dot / White Up Pointing

Triangle With Dot

U+025ED \triangleleftblack Up-pointing Triangle With Left Half Black / Up Pointing

Triangle With Left Half Black

U+025EE \trianglerightblack Up-pointing Triangle With Right Half Black / Up Pointing

Triangle With Right Half Black

U+025EF \lgwhtcircle Large Circle

U+025F0 \squareulquad White Square With Upper Left Quadrant

U+025F1 \squarellquad White Square With Lower Left Quadrant

U+025F2 \squarelrquad White Square With Lower Right Quadrant

U+025F3 \squareurquad White Square With Upper Right Quadrant

U+025F4 \circleulquad White Circle With Upper Left Quadrant

U+025F5 \circlellquad White Circle With Lower Left Quadrant

U+025F6 \circlelrquad White Circle With Lower Right Quadrant

U+025F7 \circleurquad White Circle With Upper Right Quadrant

U+025F8 \ultriangle Upper Left Triangle

U+025F9 \urtriangle Upper Right Triangle

U+025FA \lltriangle Lower Left Triangle

U+025FB \mdwhtsquare,

\:white_medium_square:

White Medium Square

U+025FC \mdblksquare,

\:black_medium_square:

Black Medium Square

U+025FD \mdsmwhtsquare,

\:white_medium_small_square:

White Medium Small Square

U+025FE \mdsmblksquare,

\:black_medium_small_square:

Black Medium Small Square

U+025FF \lrtriangle Lower Right Triangle

U+02600 ☀ \:sunny: Black Sun With Rays

U+02601 \:cloud: Cloud

U+02605 \bigstar Black Star

U+02606 \bigwhitestar White Star

U+02609 \astrosun Sun

U+0260E \:phone: Black Telephone

U+02611 \:ballot_box_with_check: Ballot Box With Check

U+02614 \:umbrella: Umbrella With Rain Drops

U+02615 \:coffee: Hot Beverage

U+0261D \:point_up: White Up Pointing Index

U+02621 \danger Caution Sign

U+0263A \:relaxed: White Smiling Face

U+0263B \blacksmiley Black Smiling Face

U+0263C ☼ \sun White Sun With Rays

U+0263D \rightmoon First Quarter Moon

U+0263E \leftmoon Last Quarter Moon

U+0263F \mercury Mercury

U+02640 \venus, \female Female Sign

U+02642 \male, \mars Male Sign

U+02643 \jupiter Jupiter

U+02644 \saturn Saturn

U+02645 \uranus Uranus

U+02646 \neptune Neptune

U+02647 \pluto Pluto

U+02648 \aries, \:aries: Aries

U+02649 \taurus, \:taurus: Taurus

U+0264A \gemini, \:gemini: Gemini

U+0264B \cancer, \:cancer: Cancer

U+0264C \leo, \:leo: Leo

U+0264D \virgo, \:virgo: Virgo

U+0264E \libra, \:libra: Libra

U+0264F \scorpio, \:scorpius: Scorpius

U+02650 \sagittarius, \:sagittarius: Sagittarius

U+02651 \capricornus, \:capricorn: Capricorn

U+02652 \aquarius, \:aquarius: Aquarius

U+02653 \pisces, \:pisces: Pisces

U+02660 \spadesuit, \:spades: Black Spade Suit

U+02661 \heartsuit White Heart Suit

U+02662 \diamondsuit White Diamond Suit

U+02663 \clubsuit, \:clubs: Black Club Suit

U+02664 \varspadesuit White Spade Suit

U+02665 \varheartsuit, \:hearts: Black Heart Suit

U+02666 \vardiamondsuit,

\:diamonds:

Black Diamond Suit

U+02667 \varclubsuit White Club Suit

U+02668 \:hotsprings: Hot Springs

U+02669 ♩ \quarternote Quarter Note

U+0266A \eighthnote Eighth Note

U+0266B \twonotes Beamed Eighth Notes / Barred Eighth Notes

U+0266D \flat Music Flat Sign / Flat

U+0266E \natural Music Natural Sign / Natural

U+0266F \sharp Music Sharp Sign / Sharp

U+0267B \:recycle: Black Universal Recycling Symbol

U+0267E \acidfree Permanent Paper Sign

U+0267F \:wheelchair: Wheelchair Symbol

U+02680 \dicei Die Face-1

U+02681 \diceii Die Face-2

U+02682 \diceiii Die Face-3

U+02683 \diceiv Die Face-4

U+02684 \dicev Die Face-5

U+02685 \dicevi Die Face-6

U+02686 \circledrightdot White Circle With Dot Right

U+02687 \circledtwodots White Circle With Two Dots

U+02688 \blackcircledrightdot Black Circle With White Dot Right

U+02689 \blackcircledtwodots Black Circle With TwoWhite Dots

U+02693 \:anchor: Anchor

U+026A0 \:warning: Warning Sign

U+026A1 \:zap: High Voltage Sign

U+026A5 \Hermaphrodite Male And Female Sign

U+026AA \mdwhtcircle,

\:white_circle:

MediumWhite Circle

U+026AB \mdblkcircle,

\:black_circle:

Medium Black Circle

U+026AC \mdsmwhtcircle Medium Small White Circle

U+026B2 \neuter Neuter

U+026BD \:soccer: Soccer Ball

U+026BE \:baseball: Baseball

U+026C4 \:snowman: SnowmanWithout Snow

U+026C5 \:partly_sunny: Sun Behind Cloud

U+026CE \:ophiuchus: Ophiuchus

U+026D4 \:no_entry: No Entry

U+026EA \:church: Church

U+026F2 \:fountain: Fountain

U+026F3 \:golf: Flag In Hole

U+026F5 \:boat: Sailboat

U+026FA \:tent: Tent

U+026FD \:fuelpump: Fuel Pump

U+02702 \:scissors: Black Scissors

U+02705 \:white_check_mark: White Heavy Check Mark

U+02708 \:airplane: Airplane

U+02709 \:email: Envelope

U+0270A \:fist: Raised Fist

U+0270B \:hand: Raised Hand

U+0270C \:v: Victory Hand

U+0270F \:pencil2: Pencil

U+02712 \:black_nib: Black Nib

U+02713 \checkmark Check Mark

U+02714 \:heavy_check_mark: Heavy Check Mark

U+02716 \:heavy_multiplication_x: Heavy Multiplication X

U+02720 \maltese Maltese Cross

U+02728 \:sparkles: Sparkles

U+0272A \circledstar Circled White Star

U+02733 \:eight_spoked_asterisk: Eight Spoked Asterisk

U+02734 \:eight_pointed_black_star: Eight Pointed Black Star

U+02736 \varstar Six Pointed Black Star

U+0273D \dingasterisk Heavy Teardrop-spoked Asterisk

U+02744 \:snowflake: Snowflake

U+02747 \:sparkle: Sparkle

U+0274C \:x: Cross Mark

U+0274E \:nega-

tive_squared_cross_mark:

Negative Squared Cross Mark

U+02753 \:question: Black Question Mark Ornament

U+02754 \:grey_question: White Question Mark Ornament

U+02755 \:grey_exclamation: White Exclamation Mark Ornament

U+02757 \:exclamation: Heavy Exclamation Mark Symbol

U+02764 \:heart: Heavy Black Heart

U+02795 \:heavy_plus_sign: Heavy Plus Sign

U+02796 \:heavy_minus_sign: Heavy Minus Sign

U+02797 \:heavy_division_sign: Heavy Division Sign

U+0279B \draftingarrow Drafting Point Rightwards Arrow / Drafting Point Right

Arrow

U+027A1 \:arrow_right: Black Rightwards Arrow / Black Right Arrow

U+027B0 \:curly_loop: Curly Loop

U+027BF \:loop: Double Curly Loop

U+027C0 \threedangle Three Dimensional Angle

U+027C1 \whiteinwhitetriangle White Triangle Containing Small White Triangle

U+027C2 \perp Perpendicular

U+027C8 \bsolhsub Reverse Solidus Preceding Subset

U+027C9 \suphsol Superset Preceding Solidus

U+027D1 \wedgedot And With Dot

U+027D2 \upin Element Of Opening Upwards

U+027D5 \leftouterjoin Left Outer Join

U+027D6 \rightouterjoin Right Outer Join

U+027D7 \fullouterjoin Full Outer Join

U+027D8 \bigbot Large Up Tack

U+027D9 \bigtop Large Down Tack

U+027E6 \llbracket,

\openbracketleft

Mathematical LeftWhite Square Bracket

U+027E7 \openbracketright,

\rrbracket

Mathematical Right White Square Bracket

U+027E8 \langle Mathematical Left Angle Bracket

U+027E9 \rangle Mathematical Right Angle Bracket

U+027F0 \UUparrow Upwards Quadruple Arrow

U+027F1 \DDownarrow Downwards Quadruple Arrow

U+027F5 \longleftarrow Long Leftwards Arrow

U+027F6 \longrightarrow Long Rightwards Arrow

U+027F7 \longleftrightarrow Long Left Right Arrow

U+027F8 \impliedby,

\Longleftarrow

Long Leftwards Double Arrow

U+027F9 \implies, \Longrightarrow Long Rightwards Double Arrow

U+027FA \Longleftrightarrow, \iff Long Left Right Double Arrow

U+027FB \longmapsfrom Long Leftwards Arrow From Bar

U+027FC \longmapsto Long Rightwards Arrow From Bar

U+027FD \Longmapsfrom Long Leftwards Double Arrow From Bar

U+027FE \Longmapsto Long Rightwards Double Arrow From Bar

U+027FF \longrightsquigarrow Long Rightwards Squiggle Arrow

U+02900 \nvtwoheadrightarrow Rightwards Two-headed ArrowWith Vertical Stroke

U+02901 \nVtwoheadrightarrow Rightwards Two-headed ArrowWith Double Vertical

Stroke

U+02902 \nvLeftarrow Leftwards Double ArrowWith Vertical Stroke

U+02903 \nvRightarrow Rightwards Double ArrowWith Vertical Stroke

U+02904 \nvLeftrightarrow Left Right Double ArrowWith Vertical Stroke

U+02905 \twoheadmapsto Rightwards Two-headed Arrow From Bar

U+02906 \Mapsfrom Leftwards Double Arrow From Bar

U+02907 \Mapsto Rightwards Double Arrow From Bar

U+02908 \downarrowbarred Downwards ArrowWith Horizontal Stroke

U+02909 \uparrowbarred Upwards ArrowWith Horizontal Stroke

U+0290A \Uuparrow Upwards Triple Arrow

U+0290B \Ddownarrow Downwards Triple Arrow

U+0290C \leftbkarrow Leftwards Double Dash Arrow

U+0290D \bkarow Rightwards Double Dash Arrow

U+0290E \leftdbkarrow Leftwards Triple Dash Arrow

U+0290F \dbkarow Rightwards Triple Dash Arrow

U+02910 \drbkarrow Rightwards Two-headed Triple Dash Arrow

U+02911 \rightdotarrow Rightwards ArrowWith Dotted Stem

U+02912 \UpArrowBar Upwards Arrow To Bar

U+02913 \DownArrowBar Downwards Arrow To Bar

U+02914 \nvrightarrowtail Rightwards ArrowWith Tail With Vertical Stroke

U+02915 \nVrightarrowtail Rightwards ArrowWith Tail With Double Vertical Stroke

U+02916 \twoheadrightarrowtail Rightwards Two-headed ArrowWith Tail

U+02917 \nvtwoheadrightarrowtail Rightwards Two-headed ArrowWith Tail With Vertical

Stroke

U+02918 \nVtwoheadrightarrowtail Rightwards Two-headed ArrowWith Tail With Double

Vertical Stroke

U+0291D \diamondleftarrow Leftwards Arrow To Black Diamond

U+0291E \rightarrowdiamond Rightwards Arrow To Black Diamond

U+0291F \diamondleftarrowbar Leftwards Arrow From Bar To Black Diamond

U+02920 \barrightarrowdiamond Rightwards Arrow From Bar To Black Diamond

U+02925 \hksearow South East ArrowWith Hook

U+02926 \hkswarow South West ArrowWith Hook

U+02927 \tona North West Arrow And North East Arrow

U+02928 \toea North East Arrow And South East Arrow

U+02929 \tosa South East Arrow And South West Arrow

U+0292A \towa South West Arrow And North West Arrow

U+0292B \rdiagovfdiag Rising Diagonal Crossing Falling Diagonal

U+0292C \fdiagovrdiag Falling Diagonal Crossing Rising Diagonal

U+0292D \seovnearrow South East Arrow Crossing North East Arrow

U+0292E \neovsearrow North East Arrow Crossing South East Arrow

U+0292F \fdiagovnearrow Falling Diagonal Crossing North East Arrow

U+02930 \rdiagovsearrow Rising Diagonal Crossing South East Arrow

U+02931 \neovnwarrow North East Arrow Crossing North West Arrow

U+02932 \nwovnearrow North West Arrow Crossing North East Arrow

U+02934 \:arrow_heading_up: Arrow Pointing Rightwards Then Curving Upwards

U+02935 \:arrow_heading_down: Arrow Pointing Rightwards Then Curving Downwards

U+02942 \ElzRlarr Rightwards Arrow Above Short Leftwards Arrow

U+02944 \ElzrLarr Short Rightwards Arrow Above Leftwards Arrow

U+02945 \rightarrowplus Rightwards ArrowWith Plus Below

U+02946 \leftarrowplus Leftwards ArrowWith Plus Below

U+02947 \Elzrarrx Rightwards Arrow Through X

U+02948 \leftrightarrowcircle Left Right Arrow Through Small Circle

U+02949 \twoheaduparrowcircle Upwards Two-headed Arrow From Small Circle

U+0294A \leftrightharpoonupdown Left Barb Up Right Barb Down Harpoon

U+0294B \leftrightharpoondownup Left Barb Down Right Barb Up Harpoon

U+0294C \updownharpoonrightleft Up Barb Right Down Barb Left Harpoon

U+0294D \updownharpoonleftright Up Barb Left Down Barb Right Harpoon

U+0294E \LeftRightVector Left Barb Up Right Barb Up Harpoon

U+0294F \RightUpDownVector Up Barb Right Down Barb Right Harpoon

U+02950 \DownLeftRightVector Left Barb Down Right Barb Down Harpoon

U+02951 \LeftUpDownVector Up Barb Left Down Barb Left Harpoon

U+02952 \LeftVectorBar Leftwards Harpoon With Barb Up To Bar

U+02953 \RightVectorBar Rightwards Harpoon With Barb Up To Bar

U+02954 \RightUpVectorBar Upwards Harpoon With Barb Right To Bar

U+02955 \RightDownVectorBar Downwards Harpoon With Barb Right To Bar

U+02956 \DownLeftVectorBar Leftwards Harpoon With Barb Down To Bar

U+02957 \DownRightVectorBar Rightwards Harpoon With Barb Down To Bar

U+02958 \LeftUpVectorBar Upwards Harpoon With Barb Left To Bar

U+02959 \LeftDownVectorBar Downwards Harpoon With Barb Left To Bar

U+0295A \LeftTeeVector Leftwards Harpoon With Barb Up From Bar

U+0295B \RightTeeVector Rightwards Harpoon With Barb Up From Bar

U+0295C \RightUpTeeVector Upwards Harpoon With Barb Right From Bar

U+0295D \RightDownTeeVector Downwards Harpoon With Barb Right From Bar

U+0295E \DownLeftTeeVector Leftwards Harpoon With Barb Down From Bar

U+0295F \DownRightTeeVector Rightwards Harpoon With Barb Down From Bar

U+02960 \LeftUpTeeVector Upwards Harpoon With Barb Left From Bar

U+02961 \LeftDownTeeVector Downwards Harpoon With Barb Left From Bar

U+02962 \leftharpoonsupdown Leftwards Harpoon With Barb Up Above Leftwards

Harpoon With Barb Down

U+02963 \upharpoonsleftright Upwards Harpoon With Barb Left Beside Upwards

Harpoon With Barb Right

U+02964 \rightharpoonsupdown Rightwards Harpoon With Barb Up Above Rightwards

Harpoon With Barb Down

U+02965 \downharpoonsleftright Downwards Harpoon With Barb Left Beside Downwards

Harpoon With Barb Right

U+02966 \leftrightharpoonsup Leftwards Harpoon With Barb Up Above Rightwards

Harpoon With Barb Up

U+02967 \leftrightharpoonsdown Leftwards Harpoon With Barb Down Above Rightwards

Harpoon With Barb Down

U+02968 \rightleftharpoonsup Rightwards Harpoon With Barb Up Above Leftwards

Harpoon With Barb Up

U+02969 \rightleftharpoonsdown Rightwards Harpoon With Barb Down Above Leftwards

Harpoon With Barb Down

U+0296A \leftharpoonupdash Leftwards Harpoon With Barb Up Above Long Dash

U+0296B \dashleftharpoondown Leftwards Harpoon With Barb Down Below Long Dash

U+0296C \rightharpoonupdash Rightwards Harpoon With Barb Up Above Long Dash

U+0296D \dashrightharpoondown Rightwards Harpoon With Barb Down Below Long Dash

U+0296E \UpEquilibrium Upwards Harpoon With Barb Left Beside Downwards

Harpoon With Barb Right

U+0296F \ReverseUpEquilibrium Downwards Harpoon With Barb Left Beside Upwards

Harpoon With Barb Right

U+02970 \RoundImplies Right Double ArrowWith Rounded Head

U+02980 \Vvert Triple Vertical Bar Delimiter

U+02986 \Elroang Right White Parenthesis

U+02999 \Elzddfnc Dotted Fence

U+0299B \measuredangleleft Measured Angle Opening Left

U+0299C \Angle Right Angle Variant With Square

U+0299D \rightanglemdot Measured Right Angle With Dot

U+0299E \angles Angle With S Inside

U+0299F \angdnr Acute Angle

U+029A0 \Elzlpargt Spherical Angle Opening Left

U+029A1 \sphericalangleup Spherical Angle Opening Up

U+029A2 \turnangle Turned Angle

U+029A3 \revangle Reversed Angle

U+029A4 \angleubar Angle With Underbar

U+029A5 \revangleubar Reversed Angle With Underbar

U+029A6 \wideangledown Oblique Angle Opening Up

U+029A7 \wideangleup Oblique Angle Opening Down

U+029A8 \measanglerutone Measured Angle With Open Arm Ending In Arrow Pointing

Up And Right

U+029A9 \measanglelutonw Measured Angle With Open Arm Ending In Arrow Pointing

Up And Left

U+029AA \measanglerdtose Measured Angle With Open Arm Ending In Arrow Pointing

Down And Right

U+029AB \measangleldtosw Measured Angle With Open Arm Ending In Arrow Pointing

Down And Left

U+029AC \measangleurtone Measured Angle With Open Arm Ending In Arrow Pointing

Right And Up

U+029AD \measangleultonw Measured Angle With Open Arm Ending In Arrow Pointing

Left And Up

U+029AE \measangledrtose Measured Angle With Open Arm Ending In Arrow Pointing

Right And Down

U+029AF \measangledltosw Measured Angle With Open Arm Ending In Arrow Pointing

Left And Down

U+029B0 \revemptyset Reversed Empty Set

U+029B1 \emptysetobar Empty Set With Overbar

U+029B2 \emptysetocirc Empty Set With Small Circle Above

U+029B3 \emptysetoarr Empty Set With Right Arrow Above

U+029B4 \emptysetoarrl Empty Set With Left Arrow Above

U+029B7 \circledparallel Circled Parallel

U+029B8 \obslash Circled Reverse Solidus

U+029BC \odotslashdot Circled Anticlockwise-rotated Division Sign

U+029BE \circledwhitebullet Circled White Bullet

U+029BF \circledbullet Circled Bullet

U+029C0 \olessthan Circled Less-than

U+029C1 \ogreaterthan Circled Greater-than

U+029C4 \boxdiag Squared Rising Diagonal Slash

U+029C5 \boxbslash Squared Falling Diagonal Slash

U+029C6 \boxast Squared Asterisk

U+029C7 \boxcircle Squared Small Circle

U+029CA \ElzLap Triangle With Dot Above

U+029CB \Elzdefas Triangle With Underbar

U+029CF \LeftTriangleBar Left Triangle Beside Vertical Bar

U+029CF +

U+00338

̸ \NotLeftTriangleBar Left Triangle Beside Vertical Bar + Combining Long Solidus

Overlay / Non-spacing Long Slash Overlay

U+029D0 \RightTriangleBar Vertical Bar Beside Right Triangle

U+029D0

+ U+00338

̸ \NotRightTriangleBar Vertical Bar Beside Right Triangle + Combining Long

Solidus Overlay / Non-spacing Long Slash Overlay

U+029DF \dualmap Double-ended Multimap

U+029E1 \lrtriangleeq Increases As

U+029E2 \shuffle Shuffle Product

U+029E3 \eparsl Equals Sign And Slanted Parallel

U+029E4 \smeparsl Equals Sign And Slanted Parallel With Tilde Above

U+029E5 \eqvparsl Identical To And Slanted Parallel

U+029EB \blacklozenge Black Lozenge

U+029F4 \RuleDelayed Rule-delayed

U+029F6 \dsol Solidus With Overbar

U+029F7 \rsolbar Reverse Solidus With Horizontal Stroke

U+029FA \doubleplus Double Plus

U+029FB \tripleplus Triple Plus

U+02A00 \bigodot N-ary Circled Dot Operator

U+02A01 \bigoplus N-ary Circled Plus Operator

U+02A02 \bigotimes N-ary Circled Times Operator

U+02A03 \bigcupdot N-ary Union Operator With Dot

U+02A04 \biguplus N-ary Union Operator With Plus

U+02A05 \bigsqcap N-ary Square Intersection Operator

U+02A06 \bigsqcup N-ary Square Union Operator

U+02A07 \conjquant Two Logical And Operator

U+02A08 \disjquant Two Logical Or Operator

U+02A09 \bigtimes N-ary Times Operator

U+02A0A \modtwosum Modulo Two Sum

U+02A0B \sumint SummationWith Integral

U+02A0C \iiiint Quadruple Integral Operator

U+02A0D \intbar Finite Part Integral

U+02A0E \intBar Integral With Double Stroke

U+02A0F \clockoint Integral Average With Slash

U+02A10 \cirfnint Circulation Function

U+02A11 \awint Anticlockwise Integration

U+02A12 \rppolint Line Integration With Rectangular Path Around Pole

U+02A13 \scpolint Line Integration With Semicircular Path Around Pole

U+02A14 \npolint Line Integration Not Including The Pole

U+02A15 \pointint Integral Around A Point Operator

U+02A16 \sqrint Quaternion Integral Operator

U+02A18 \intx Integral With Times Sign

U+02A19 \intcap Integral With Intersection

U+02A1A \intcup Integral With Union

U+02A1B \upint Integral With Overbar

U+02A1C \lowint Integral With Underbar

U+02A1D \Join Join

U+02A22 \ringplus Plus Sign With Small Circle Above

U+02A23 \plushat Plus Sign With Circumflex Accent Above

U+02A24 \simplus Plus Sign With Tilde Above

U+02A25 \plusdot Plus Sign With Dot Below

U+02A26 \plussim Plus Sign With Tilde Below

U+02A27 \plussubtwo Plus Sign With Subscript Two

U+02A28 \plustrif Plus Sign With Black Triangle

U+02A29 \commaminus Minus Sign With Comma Above

U+02A2A \minusdot Minus Sign With Dot Below

U+02A2B \minusfdots Minus Sign With Falling Dots

U+02A2C \minusrdots Minus Sign With Rising Dots

U+02A2D \opluslhrim Plus Sign In Left Half Circle

U+02A2E \oplusrhrim Plus Sign In Right Half Circle

U+02A2F \ElzTimes Vector Or Cross Product

U+02A30 \dottimes Multiplication Sign With Dot Above

U+02A31 \timesbar Multiplication Sign With Underbar

U+02A32 \btimes Semidirect Product With Bottom Closed

U+02A33 \smashtimes Smash Product

U+02A34 \otimeslhrim Multiplication Sign In Left Half Circle

U+02A35 \otimesrhrim Multiplication Sign In Right Half Circle

U+02A36 \otimeshat Circled Multiplication Sign With Circumflex Accent

U+02A37 \Otimes Multiplication Sign In Double Circle

U+02A38 \odiv Circled Division Sign

U+02A39 \triangleplus Plus Sign In Triangle

U+02A3A \triangleminus Minus Sign In Triangle

U+02A3B \triangletimes Multiplication Sign In Triangle

U+02A3C \intprod Interior Product

U+02A3D \intprodr Righthand Interior Product

U+02A3F \amalg Amalgamation Or Coproduct

U+02A40 \capdot Intersection With Dot

U+02A41 \uminus Union With Minus Sign

U+02A42 \barcup Union With Overbar

U+02A43 \barcap Intersection With Overbar

U+02A44 \capwedge Intersection With Logical And

U+02A45 \cupvee Union With Logical Or

U+02A4A \twocups Union Beside And Joined With Union

U+02A4B \twocaps Intersection Beside And Joined With Intersection

U+02A4C \closedvarcup Closed Union With Serifs

U+02A4D \closedvarcap Closed Intersection With Serifs

U+02A4E \Sqcap Double Square Intersection

U+02A4F \Sqcup Double Square Union

U+02A50 \closedvarcupsmashprod Closed Union With Serifs And Smash Product

U+02A51 \wedgeodot Logical And With Dot Above

U+02A52 \veeodot Logical OrWith Dot Above

U+02A53 \ElzAnd Double Logical And

U+02A54 \ElzOr Double Logical Or

U+02A55 \wedgeonwedge Two Intersecting Logical And

U+02A56 \ElOr Two Intersecting Logical Or

U+02A57 \bigslopedvee Sloping Large Or

U+02A58 \bigslopedwedge Sloping Large And

U+02A5A \wedgemidvert Logical And With Middle Stem

U+02A5B \veemidvert Logical OrWith Middle Stem

U+02A5C \midbarwedge Logical And With Horizontal Dash

U+02A5D \midbarvee Logical OrWith Horizontal Dash

U+02A5E \perspcorrespond Logical And With Double Overbar

U+02A5F \Elzminhat Logical And With Underbar

U+02A60 \wedgedoublebar Logical And With Double Underbar

U+02A61 \varveebar Small Vee With Underbar

U+02A62 \doublebarvee Logical OrWith Double Overbar

U+02A63 \veedoublebar Logical OrWith Double Underbar

U+02A66 \eqdot Equals Sign With Dot Below

U+02A67 \dotequiv Identical With Dot Above

U+02A6A \dotsim Tilde Operator With Dot Above

U+02A6B \simrdots Tilde Operator With Rising Dots

U+02A6C \simminussim Similar Minus Similar

U+02A6D \congdot Congruent With Dot Above

U+02A6E \asteq Equals With Asterisk

U+02A6F \hatapprox Almost Equal To With Circumflex Accent

U+02A70 \approxeqq Approximately Equal Or Equal To

U+02A71 \eqqplus Equals Sign Above Plus Sign

U+02A72 \pluseqq Plus Sign Above Equals Sign

U+02A73 \eqqsim Equals Sign Above Tilde Operator

U+02A74 \Coloneq Double Colon Equal

U+02A75 \Equal Two Consecutive Equals Signs

U+02A76 \eqeqeq Three Consecutive Equals Signs

U+02A77 \ddotseq Equals Sign With Two Dots Above And Two Dots Below

U+02A78 \equivDD Equivalent With Four Dots Above

U+02A79 \ltcir Less-than With Circle Inside

U+02A7A \gtcir Greater-than With Circle Inside

U+02A7B \ltquest Less-than With Question Mark Above

U+02A7C \gtquest Greater-than With Question Mark Above

U+02A7D \leqslant Less-than Or Slanted Equal To

U+02A7D

+ U+00338

̸ \nleqslant Less-than Or Slanted Equal To + Combining Long Solidus

Overlay / Non-spacing Long Slash Overlay

U+02A7E \geqslant Greater-than Or Slanted Equal To

U+02A7E +

U+00338

̸ \ngeqslant Greater-than Or Slanted Equal To + Combining Long

Solidus Overlay / Non-spacing Long Slash Overlay

U+02A7F \lesdot Less-than Or Slanted Equal To With Dot Inside

U+02A80 \gesdot Greater-than Or Slanted Equal To With Dot Inside

U+02A81 \lesdoto Less-than Or Slanted Equal To With Dot Above

U+02A82 \gesdoto Greater-than Or Slanted Equal To With Dot Above

U+02A83 \lesdotor Less-than Or Slanted Equal To With Dot Above Right

U+02A84 \gesdotol Greater-than Or Slanted Equal To With Dot Above Left

U+02A85 \lessapprox Less-than Or Approximate

U+02A86 \gtrapprox Greater-than Or Approximate

U+02A87 \lneq Less-than And Single-line Not Equal To

U+02A88 \gneq Greater-than And Single-line Not Equal To

U+02A89 \lnapprox Less-than And Not Approximate

U+02A8A \gnapprox Greater-than And Not Approximate

U+02A8B \lesseqqgtr Less-than Above Double-line Equal Above Greater-than

U+02A8C \gtreqqless Greater-than Above Double-line Equal Above Less-than

U+02A8D \lsime Less-than Above Similar Or Equal

U+02A8E \gsime Greater-than Above Similar Or Equal

U+02A8F \lsimg Less-than Above Similar Above Greater-than

U+02A90 \gsiml Greater-than Above Similar Above Less-than

U+02A91 \lgE Less-than Above Greater-than Above Double-line Equal

U+02A92 \glE Greater-than Above Less-than Above Double-line Equal

U+02A93 \lesges Less-than Above Slanted Equal Above Greater-than Above

Slanted Equal

U+02A94 \gesles Greater-than Above Slanted Equal Above Less-than Above

Slanted Equal

U+02A95 \eqslantless Slanted Equal To Or Less-than

U+02A96 \eqslantgtr Slanted Equal To Or Greater-than

U+02A97 \elsdot Slanted Equal To Or Less-than With Dot Inside

U+02A98 \egsdot Slanted Equal To Or Greater-than With Dot Inside

U+02A99 \eqqless Double-line Equal To Or Less-than

U+02A9A \eqqgtr Double-line Equal To Or Greater-than

U+02A9B \eqqslantless Double-line Slanted Equal To Or Less-than

U+02A9C \eqqslantgtr Double-line Slanted Equal To Or Greater-than

U+02A9D \simless Similar Or Less-than

U+02A9E \simgtr Similar Or Greater-than

U+02A9F \simlE Similar Above Less-than Above Equals Sign

U+02AA0 \simgE Similar Above Greater-than Above Equals Sign

U+02AA1 \NestedLessLess Double Nested Less-than

U+02AA1

+ U+00338

̸ \NotNestedLessLess Double Nested Less-than + Combining Long Solidus

Overlay / Non-spacing Long Slash Overlay

U+02AA2 \NestedGreaterGreater Double Nested Greater-than

U+02AA2

+ U+00338

̸ \NotNestedGreater-

Greater

Double Nested Greater-than + Combining Long Solidus

Overlay / Non-spacing Long Slash Overlay

U+02AA3 \partialmeetcontraction Double Nested Less-than With Underbar

U+02AA4 \glj Greater-than Overlapping Less-than

U+02AA5 \gla Greater-than Beside Less-than

U+02AA6 \ltcc Less-than Closed By Curve

U+02AA7 \gtcc Greater-than Closed By Curve

U+02AA8 \lescc Less-than Closed By Curve Above Slanted Equal

U+02AA9 \gescc Greater-than Closed By Curve Above Slanted Equal

U+02AAA \smt Smaller Than

U+02AAB \lat Larger Than

U+02AAC \smte Smaller Than Or Equal To

U+02AAD \late Larger Than Or Equal To

U+02AAE \bumpeqq Equals Sign With Bumpy Above

U+02AAF \preceq Precedes Above Single-line Equals Sign

U+02AAF +

U+00338

̸ \npreceq Precedes Above Single-line Equals Sign + Combining Long

Solidus Overlay / Non-spacing Long Slash Overlay

U+02AB0 \succeq Succeeds Above Single-line Equals Sign

U+02AB0 +

U+00338

̸ \nsucceq Succeeds Above Single-line Equals Sign + Combining Long

Solidus Overlay / Non-spacing Long Slash Overlay

U+02AB1 \precneq Precedes Above Single-line Not Equal To

U+02AB2 \succneq Succeeds Above Single-line Not Equal To

U+02AB3 \preceqq Precedes Above Equals Sign

U+02AB4 \succeqq Succeeds Above Equals Sign

U+02AB5 \precneqq Precedes Above Not Equal To

U+02AB6 \succneqq Succeeds Above Not Equal To

U+02AB7 \precapprox Precedes Above Almost Equal To

U+02AB8 \succapprox Succeeds Above Almost Equal To

U+02AB9 \precnapprox Precedes Above Not Almost Equal To

U+02ABA \succnapprox Succeeds Above Not Almost Equal To

U+02ABB \Prec Double Precedes

U+02ABC \Succ Double Succeeds

U+02ABD \subsetdot Subset With Dot

U+02ABE \supsetdot Superset With Dot

U+02ABF \subsetplus Subset With Plus Sign Below

U+02AC0 \supsetplus Superset With Plus Sign Below

U+02AC1 \submult Subset With Multiplication Sign Below

U+02AC2 \supmult Superset With Multiplication Sign Below

U+02AC3 \subedot Subset Of Or Equal To With Dot Above

U+02AC4 \supedot Superset Of Or Equal To With Dot Above

U+02AC5 \subseteqq Subset Of Above Equals Sign

U+02AC5

+ U+00338

̸ \nsubseteqq Subset Of Above Equals Sign + Combining Long Solidus

Overlay / Non-spacing Long Slash Overlay

U+02AC6 \supseteqq Superset Of Above Equals Sign

U+02AC6

+ U+00338

̸ \nsupseteqq Superset Of Above Equals Sign + Combining Long Solidus

Overlay / Non-spacing Long Slash Overlay

U+02AC7 \subsim Subset Of Above Tilde Operator

U+02AC8 \supsim Superset Of Above Tilde Operator

U+02AC9 \subsetapprox Subset Of Above Almost Equal To

U+02ACA \supsetapprox Superset Of Above Almost Equal To

U+02ACB \subsetneqq Subset Of Above Not Equal To

U+02ACC \supsetneqq Superset Of Above Not Equal To

U+02ACD \lsqhook Square Left Open Box Operator

U+02ACE \rsqhook Square Right Open Box Operator

U+02ACF \csub Closed Subset

U+02AD0 \csup Closed Superset

U+02AD1 \csube Closed Subset Or Equal To

U+02AD2 \csupe Closed Superset Or Equal To

U+02AD3 \subsup Subset Above Superset

U+02AD4 \supsub Superset Above Subset

U+02AD5 \subsub Subset Above Subset

U+02AD6 \supsup Superset Above Superset

U+02AD7 \suphsub Superset Beside Subset

U+02AD8 \supdsub Superset Beside And Joined By Dash With Subset

U+02AD9 \forkv Element Of Opening Downwards

U+02ADB \mlcp Transversal Intersection

U+02ADC \forks Forking

U+02ADD \forksnot Nonforking

U+02AE3 \dashV Double Vertical Bar Left Turnstile

U+02AE4 \Dashv Vertical Bar Double Left Turnstile

U+02AF4 \interleave Triple Vertical Bar Binary Relation

U+02AF6 \Elztdcol Triple Colon Operator

U+02AF7 \lllnest Triple Nested Less-than

U+02AF8 \gggnest Triple Nested Greater-than

U+02AF9 \leqqslant Double-line Slanted Less-than Or Equal To

U+02AFA \geqqslant Double-line Slanted Greater-than Or Equal To

U+02B05 \:arrow_left: Leftwards Black Arrow

U+02B06 \:arrow_up: Upwards Black Arrow

U+02B07 \:arrow_down: Downwards Black Arrow

U+02B12 \squaretopblack Square With Top Half Black

U+02B13 \squarebotblack Square With Bottom Half Black

U+02B14 \squareurblack Square With Upper Right Diagonal Half Black

U+02B15 \squarellblack Square With Lower Left Diagonal Half Black

U+02B16 \diamondleftblack Diamond With Left Half Black

U+02B17 \diamondrightblack Diamond With Right Half Black

U+02B18 \diamondtopblack Diamond With Top Half Black

U+02B19 \diamondbotblack Diamond With Bottom Half Black

U+02B1A \dottedsquare Dotted Square

U+02B1B \lgblksquare,

\:black_large_square:

Black Large Square

U+02B1C \lgwhtsquare,

\:white_large_square:

White Large Square

U+02B1D \vysmblksquare Black Very Small Square

U+02B1E \vysmwhtsquare White Very Small Square

U+02B1F \pentagonblack Black Pentagon

U+02B20 \pentagon White Pentagon

U+02B21 \varhexagon White Hexagon

U+02B22 \varhexagonblack Black Hexagon

U+02B23 \hexagonblack Horizontal Black Hexagon

U+02B24 \lgblkcircle Black Large Circle

U+02B25 \mdblkdiamond Black Medium Diamond

U+02B26 \mdwhtdiamond White Medium Diamond

U+02B27 \mdblklozenge Black Medium Lozenge

U+02B28 \mdwhtlozenge White Medium Lozenge

U+02B29 \smblkdiamond Black Small Diamond

U+02B2A \smblklozenge Black Small Lozenge

U+02B2B \smwhtlozenge White Small Lozenge

U+02B2C \blkhorzoval Black Horizontal Ellipse

U+02B2D \whthorzoval White Horizontal Ellipse

U+02B2E \blkvertoval Black Vertical Ellipse

U+02B2F \whtvertoval White Vertical Ellipse

U+02B30 \circleonleftarrow Left ArrowWith Small Circle

U+02B31 \leftthreearrows Three Leftwards Arrows

U+02B32 \leftarrowonoplus Left ArrowWith Circled Plus

U+02B33 \longleftsquigarrow Long Leftwards Squiggle Arrow

U+02B34 \nvtwoheadleftarrow Leftwards Two-headed ArrowWith Vertical Stroke

U+02B35 \nVtwoheadleftarrow Leftwards Two-headed ArrowWith Double Vertical Stroke

U+02B36 \twoheadmapsfrom Leftwards Two-headed Arrow From Bar

U+02B37 \twoheadleftdbkarrow Leftwards Two-headed Triple Dash Arrow

U+02B38 \leftdotarrow Leftwards ArrowWith Dotted Stem

U+02B39 \nvleftarrowtail Leftwards ArrowWith Tail With Vertical Stroke

U+02B3A \nVleftarrowtail Leftwards ArrowWith Tail With Double Vertical Stroke

U+02B3B \twoheadleftarrowtail Leftwards Two-headed ArrowWith Tail

U+02B3C \nvtwoheadleftarrowtail Leftwards Two-headed ArrowWith Tail With Vertical

Stroke

U+02B3D \nVtwoheadleftarrowtail Leftwards Two-headed ArrowWith Tail With Double

Vertical Stroke

U+02B3E \leftarrowx Leftwards Arrow Through X

U+02B3F \leftcurvedarrow Wave Arrow Pointing Directly Left

U+02B40 \equalleftarrow Equals Sign Above Leftwards Arrow

U+02B41 \bsimilarleftarrow Reverse Tilde Operator Above Leftwards Arrow

U+02B42 \leftarrowbackapprox Leftwards Arrow Above Reverse Almost Equal To

U+02B43 \rightarrowgtr Rightwards Arrow Through Greater-than

U+02B44 \rightarrowsupset Rightwards Arrow Through Superset

U+02B45 \LLeftarrow Leftwards Quadruple Arrow

U+02B46 \RRightarrow Rightwards Quadruple Arrow

U+02B47 \bsimilarrightarrow Reverse Tilde Operator Above Rightwards Arrow

U+02B48 \rightarrowbackapprox Rightwards Arrow Above Reverse Almost Equal To

U+02B49 \similarleftarrow Tilde Operator Above Leftwards Arrow

U+02B4A \leftarrowapprox Leftwards Arrow Above Almost Equal To

U+02B4B \leftarrowbsimilar Leftwards Arrow Above Reverse Tilde Operator

U+02B4C \rightarrowbsimilar Rightwards Arrow Above Reverse Tilde Operator

U+02B50 \medwhitestar, \:star: White Medium Star

U+02B51 \medblackstar Black Small Star

U+02B52 \smwhitestar White Small Star

U+02B53 \rightpentagonblack Black Right-pointing Pentagon

U+02B54 \rightpentagon White Right-pointing Pentagon

U+02B55 \:o: Heavy Large Circle

U+02C7C _j Latin Subscript Small Letter J

U+02C7D \^V Modifier Letter Capital V

U+03012 \postalmark Postal Mark

U+03030 \:wavy_dash: Wavy Dash

U+0303D \:part_alternation_mark: Part Alternation Mark

U+03297 \:congratulations: Circled Ideograph Congratulation

U+03299 \:secret: Circled Ideograph Secret

U+1D400 \mbfA Mathematical Bold Capital A

U+1D401 \mbfB Mathematical Bold Capital B

U+1D402 \mbfC Mathematical Bold Capital C

U+1D403 \mbfD Mathematical Bold Capital D

U+1D404 \mbfE Mathematical Bold Capital E

U+1D405 \mbfF Mathematical Bold Capital F

U+1D406 \mbfG Mathematical Bold Capital G

U+1D407 \mbfH Mathematical Bold Capital H

U+1D408 \mbfI Mathematical Bold Capital I

U+1D409 \mbfJ Mathematical Bold Capital J

U+1D40A \mbfK Mathematical Bold Capital K

U+1D40B \mbfL Mathematical Bold Capital L

U+1D40C \mbfM Mathematical Bold Capital M

U+1D40D \mbfN Mathematical Bold Capital N

U+1D40E \mbfO Mathematical Bold Capital O

U+1D40F \mbfP Mathematical Bold Capital P

U+1D410 \mbfQ Mathematical Bold Capital Q

U+1D411 \mbfR Mathematical Bold Capital R

U+1D412 \mbfS Mathematical Bold Capital S

U+1D413 \mbfT Mathematical Bold Capital T

U+1D414 \mbfU Mathematical Bold Capital U

U+1D415 \mbfV Mathematical Bold Capital V

U+1D416 \mbfW Mathematical Bold Capital W

U+1D417 \mbfX Mathematical Bold Capital X

U+1D418 \mbfY Mathematical Bold Capital Y

U+1D419 \mbfZ Mathematical Bold Capital Z

U+1D41A \mbfa Mathematical Bold Small A

U+1D41B \mbfb Mathematical Bold Small B

U+1D41C \mbfc Mathematical Bold Small C

U+1D41D \mbfd Mathematical Bold Small D

U+1D41E \mbfe Mathematical Bold Small E

U+1D41F \mbff Mathematical Bold Small F

U+1D420 \mbfg Mathematical Bold Small G

U+1D421 \mbfh Mathematical Bold Small H

U+1D422 \mbfi Mathematical Bold Small I

U+1D423 \mbfj Mathematical Bold Small J

U+1D424 \mbfk Mathematical Bold Small K

U+1D425 \mbfl Mathematical Bold Small L

U+1D426 \mbfm Mathematical Bold Small M

U+1D427 \mbfn Mathematical Bold Small N

U+1D428 \mbfo Mathematical Bold Small O

U+1D429 \mbfp Mathematical Bold Small P

U+1D42A \mbfq Mathematical Bold Small Q

U+1D42B \mbfr Mathematical Bold Small R

U+1D42C \mbfs Mathematical Bold Small S

U+1D42D \mbft Mathematical Bold Small T

U+1D42E \mbfu Mathematical Bold Small U

U+1D42F \mbfv Mathematical Bold Small V

U+1D430 \mbfw Mathematical Bold Small W

U+1D431 \mbfx Mathematical Bold Small X

U+1D432 \mbfy Mathematical Bold Small Y

U+1D433 \mbfz Mathematical Bold Small Z

U+1D434 \mitA Mathematical Italic Capital A

U+1D435 \mitB Mathematical Italic Capital B

U+1D436 \mitC Mathematical Italic Capital C

U+1D437 \mitD Mathematical Italic Capital D

U+1D438 \mitE Mathematical Italic Capital E

U+1D439 \mitF Mathematical Italic Capital F

U+1D43A \mitG Mathematical Italic Capital G

U+1D43B \mitH Mathematical Italic Capital H

U+1D43C \mitI Mathematical Italic Capital I

U+1D43D \mitJ Mathematical Italic Capital J

U+1D43E \mitK Mathematical Italic Capital K

U+1D43F \mitL Mathematical Italic Capital L

U+1D440 \mitM Mathematical Italic Capital M

U+1D441 \mitN Mathematical Italic Capital N

U+1D442 \mitO Mathematical Italic Capital O

U+1D443 \mitP Mathematical Italic Capital P

U+1D444 \mitQ Mathematical Italic Capital Q

U+1D445 \mitR Mathematical Italic Capital R

U+1D446 \mitS Mathematical Italic Capital S

U+1D447 \mitT Mathematical Italic Capital T

U+1D448 \mitU Mathematical Italic Capital U

U+1D449 \mitV Mathematical Italic Capital V

U+1D44A \mitW Mathematical Italic Capital W

U+1D44B \mitX Mathematical Italic Capital X

U+1D44C \mitY Mathematical Italic Capital Y

U+1D44D \mitZ Mathematical Italic Capital Z

U+1D44E \mita Mathematical Italic Small A

U+1D44F \mitb Mathematical Italic Small B

U+1D450 \mitc Mathematical Italic Small C

U+1D451 \mitd Mathematical Italic Small D

U+1D452 \mite Mathematical Italic Small E

U+1D453 \mitf Mathematical Italic Small F

U+1D454 \mitg Mathematical Italic Small G

U+1D456 \miti Mathematical Italic Small I

U+1D457 \mitj Mathematical Italic Small J

U+1D458 \mitk Mathematical Italic Small K

U+1D459 \mitl Mathematical Italic Small L

U+1D45A \mitm Mathematical Italic Small M

U+1D45B \mitn Mathematical Italic Small N

U+1D45C \mito Mathematical Italic Small O

U+1D45D \mitp Mathematical Italic Small P

U+1D45E \mitq Mathematical Italic Small Q

U+1D45F \mitr Mathematical Italic Small R

U+1D460 \mits Mathematical Italic Small S

U+1D461 \mitt Mathematical Italic Small T

U+1D462 \mitu Mathematical Italic Small U

U+1D463 \mitv Mathematical Italic Small V

U+1D464 \mitw Mathematical Italic Small W

U+1D465 \mitx Mathematical Italic Small X

U+1D466 \mity Mathematical Italic Small Y

U+1D467 \mitz Mathematical Italic Small Z

U+1D468 \mbfitA Mathematical Bold Italic Capital A

U+1D469 \mbfitB Mathematical Bold Italic Capital B

U+1D46A \mbfitC Mathematical Bold Italic Capital C

U+1D46B \mbfitD Mathematical Bold Italic Capital D

U+1D46C \mbfitE Mathematical Bold Italic Capital E

U+1D46D \mbfitF Mathematical Bold Italic Capital F

U+1D46E \mbfitG Mathematical Bold Italic Capital G

U+1D46F \mbfitH Mathematical Bold Italic Capital H

U+1D470 \mbfitI Mathematical Bold Italic Capital I

U+1D471 \mbfitJ Mathematical Bold Italic Capital J

U+1D472 \mbfitK Mathematical Bold Italic Capital K

U+1D473 \mbfitL Mathematical Bold Italic Capital L

U+1D474 \mbfitM Mathematical Bold Italic Capital M

U+1D475 \mbfitN Mathematical Bold Italic Capital N

U+1D476 \mbfitO Mathematical Bold Italic Capital O

U+1D477 \mbfitP Mathematical Bold Italic Capital P

U+1D478 \mbfitQ Mathematical Bold Italic Capital Q

U+1D479 \mbfitR Mathematical Bold Italic Capital R

U+1D47A \mbfitS Mathematical Bold Italic Capital S

U+1D47B \mbfitT Mathematical Bold Italic Capital T

U+1D47C \mbfitU Mathematical Bold Italic Capital U

U+1D47D \mbfitV Mathematical Bold Italic Capital V

U+1D47E \mbfitW Mathematical Bold Italic Capital W

U+1D47F \mbfitX Mathematical Bold Italic Capital X

U+1D480 \mbfitY Mathematical Bold Italic Capital Y

U+1D481 \mbfitZ Mathematical Bold Italic Capital Z

U+1D482 \mbfita Mathematical Bold Italic Small A

U+1D483 \mbfitb Mathematical Bold Italic Small B

U+1D484 \mbfitc Mathematical Bold Italic Small C

U+1D485 \mbfitd Mathematical Bold Italic Small D

U+1D486 \mbfite Mathematical Bold Italic Small E

U+1D487 \mbfitf Mathematical Bold Italic Small F

U+1D488 \mbfitg Mathematical Bold Italic Small G

U+1D489 \mbfith Mathematical Bold Italic Small H

U+1D48A \mbfiti Mathematical Bold Italic Small I

U+1D48B \mbfitj Mathematical Bold Italic Small J

U+1D48C \mbfitk Mathematical Bold Italic Small K

U+1D48D \mbfitl Mathematical Bold Italic Small L

U+1D48E \mbfitm Mathematical Bold Italic Small M

U+1D48F \mbfitn Mathematical Bold Italic Small N

U+1D490 \mbfito Mathematical Bold Italic Small O

U+1D491 \mbfitp Mathematical Bold Italic Small P

U+1D492 \mbfitq Mathematical Bold Italic Small Q

U+1D493 \mbfitr Mathematical Bold Italic Small R

U+1D494 \mbfits Mathematical Bold Italic Small S

U+1D495 \mbfitt Mathematical Bold Italic Small T

U+1D496 \mbfitu Mathematical Bold Italic Small U

U+1D497 \mbfitv Mathematical Bold Italic Small V

U+1D498 \mbfitw Mathematical Bold Italic Small W

U+1D499 \mbfitx Mathematical Bold Italic Small X

U+1D49A \mbfity Mathematical Bold Italic Small Y

U+1D49B \mbfitz Mathematical Bold Italic Small Z

U+1D49C \mscrA Mathematical Script Capital A

U+1D49E \mscrC Mathematical Script Capital C

U+1D49F \mscrD Mathematical Script Capital D

U+1D4A2 \mscrG Mathematical Script Capital G

U+1D4A5 \mscrJ Mathematical Script Capital J

U+1D4A6 \mscrK Mathematical Script Capital K

U+1D4A9 \mscrN Mathematical Script Capital N

U+1D4AA \mscrO Mathematical Script Capital O

U+1D4AB \mscrP Mathematical Script Capital P

U+1D4AC \mscrQ Mathematical Script Capital Q

U+1D4AE \mscrS Mathematical Script Capital S

U+1D4AF \mscrT Mathematical Script Capital T

U+1D4B0 \mscrU Mathematical Script Capital U

U+1D4B1 \mscrV Mathematical Script Capital V

U+1D4B2 \mscrW Mathematical Script Capital W

U+1D4B3 \mscrX Mathematical Script Capital X

U+1D4B4 \mscrY Mathematical Script Capital Y

U+1D4B5 \mscrZ Mathematical Script Capital Z

U+1D4B6 \mscra Mathematical Script Small A

U+1D4B7 \mscrb Mathematical Script Small B

U+1D4B8 \mscrc Mathematical Script Small C

U+1D4B9 \mscrd Mathematical Script Small D

U+1D4BB \mscrf Mathematical Script Small F

U+1D4BD \mscrh Mathematical Script Small H

U+1D4BE \mscri Mathematical Script Small I

U+1D4BF \mscrj Mathematical Script Small J

U+1D4C0 \mscrk Mathematical Script Small K

U+1D4C1 \mscrl Mathematical Script Small L

U+1D4C2 \mscrm Mathematical Script Small M

U+1D4C3 \mscrn Mathematical Script Small N

U+1D4C5 \mscrp Mathematical Script Small P

U+1D4C6 \mscrq Mathematical Script Small Q

U+1D4C7 \mscrr Mathematical Script Small R

U+1D4C8 \mscrs Mathematical Script Small S

U+1D4C9 \mscrt Mathematical Script Small T

U+1D4CA \mscru Mathematical Script Small U

U+1D4CB \mscrv Mathematical Script Small V

U+1D4CC \mscrw Mathematical Script Small W

U+1D4CD \mscrx Mathematical Script Small X

U+1D4CE \mscry Mathematical Script Small Y

U+1D4CF \mscrz Mathematical Script Small Z

U+1D4D0 \mbfscrA Mathematical Bold Script Capital A

U+1D4D1 \mbfscrB Mathematical Bold Script Capital B

U+1D4D2 \mbfscrC Mathematical Bold Script Capital C

U+1D4D3 \mbfscrD Mathematical Bold Script Capital D

U+1D4D4 \mbfscrE Mathematical Bold Script Capital E

U+1D4D5 \mbfscrF Mathematical Bold Script Capital F

U+1D4D6 \mbfscrG Mathematical Bold Script Capital G

U+1D4D7 \mbfscrH Mathematical Bold Script Capital H

U+1D4D8 \mbfscrI Mathematical Bold Script Capital I

U+1D4D9 \mbfscrJ Mathematical Bold Script Capital J

U+1D4DA \mbfscrK Mathematical Bold Script Capital K

U+1D4DB \mbfscrL Mathematical Bold Script Capital L

U+1D4DC \mbfscrM Mathematical Bold Script Capital M

U+1D4DD \mbfscrN Mathematical Bold Script Capital N

U+1D4DE \mbfscrO Mathematical Bold Script Capital O

U+1D4DF \mbfscrP Mathematical Bold Script Capital P

U+1D4E0 \mbfscrQ Mathematical Bold Script Capital Q

U+1D4E1 \mbfscrR Mathematical Bold Script Capital R

U+1D4E2 \mbfscrS Mathematical Bold Script Capital S

U+1D4E3 \mbfscrT Mathematical Bold Script Capital T

U+1D4E4 \mbfscrU Mathematical Bold Script Capital U

U+1D4E5 \mbfscrV Mathematical Bold Script Capital V

U+1D4E6 \mbfscrW Mathematical Bold Script Capital W

U+1D4E7 \mbfscrX Mathematical Bold Script Capital X

U+1D4E8 \mbfscrY Mathematical Bold Script Capital Y

U+1D4E9 \mbfscrZ Mathematical Bold Script Capital Z

U+1D4EA \mbfscra Mathematical Bold Script Small A

U+1D4EB \mbfscrb Mathematical Bold Script Small B

U+1D4EC \mbfscrc Mathematical Bold Script Small C

U+1D4ED \mbfscrd Mathematical Bold Script Small D

U+1D4EE \mbfscre Mathematical Bold Script Small E

U+1D4EF \mbfscrf Mathematical Bold Script Small F

U+1D4F0 \mbfscrg Mathematical Bold Script Small G

U+1D4F1 \mbfscrh Mathematical Bold Script Small H

U+1D4F2 \mbfscri Mathematical Bold Script Small I

U+1D4F3 \mbfscrj Mathematical Bold Script Small J

U+1D4F4 \mbfscrk Mathematical Bold Script Small K

U+1D4F5 \mbfscrl Mathematical Bold Script Small L

U+1D4F6 \mbfscrm Mathematical Bold Script Small M

U+1D4F7 \mbfscrn Mathematical Bold Script Small N

U+1D4F8 \mbfscro Mathematical Bold Script Small O

U+1D4F9 \mbfscrp Mathematical Bold Script Small P

U+1D4FA \mbfscrq Mathematical Bold Script Small Q

U+1D4FB \mbfscrr Mathematical Bold Script Small R

U+1D4FC \mbfscrs Mathematical Bold Script Small S

U+1D4FD \mbfscrt Mathematical Bold Script Small T

U+1D4FE \mbfscru Mathematical Bold Script Small U

U+1D4FF \mbfscrv Mathematical Bold Script Small V

U+1D500 \mbfscrw Mathematical Bold Script Small W

U+1D501 \mbfscrx Mathematical Bold Script Small X

U+1D502 \mbfscry Mathematical Bold Script Small Y

U+1D503 \mbfscrz Mathematical Bold Script Small Z

U+1D504 \mfrakA Mathematical Fraktur Capital A

U+1D505 \mfrakB Mathematical Fraktur Capital B

U+1D507 \mfrakD Mathematical Fraktur Capital D

U+1D508 \mfrakE Mathematical Fraktur Capital E

U+1D509 \mfrakF Mathematical Fraktur Capital F

U+1D50A \mfrakG Mathematical Fraktur Capital G

U+1D50D \mfrakJ Mathematical Fraktur Capital J

U+1D50E \mfrakK Mathematical Fraktur Capital K

U+1D50F \mfrakL Mathematical Fraktur Capital L

U+1D510 \mfrakM Mathematical Fraktur Capital M

U+1D511 \mfrakN Mathematical Fraktur Capital N

U+1D512 \mfrakO Mathematical Fraktur Capital O

U+1D513 \mfrakP Mathematical Fraktur Capital P

U+1D514 \mfrakQ Mathematical Fraktur Capital Q

U+1D516 \mfrakS Mathematical Fraktur Capital S

U+1D517 \mfrakT Mathematical Fraktur Capital T

U+1D518 \mfrakU Mathematical Fraktur Capital U

U+1D519 \mfrakV Mathematical Fraktur Capital V

U+1D51A \mfrakW Mathematical Fraktur Capital W

U+1D51B \mfrakX Mathematical Fraktur Capital X

U+1D51C \mfrakY Mathematical Fraktur Capital Y

U+1D51E \mfraka Mathematical Fraktur Small A

U+1D51F \mfrakb Mathematical Fraktur Small B

U+1D520 \mfrakc Mathematical Fraktur Small C

U+1D521 \mfrakd Mathematical Fraktur Small D

U+1D522 \mfrake Mathematical Fraktur Small E

U+1D523 \mfrakf Mathematical Fraktur Small F

U+1D524 \mfrakg Mathematical Fraktur Small G

U+1D525 \mfrakh Mathematical Fraktur Small H

U+1D526 \mfraki Mathematical Fraktur Small I

U+1D527 \mfrakj Mathematical Fraktur Small J

U+1D528 \mfrakk Mathematical Fraktur Small K

U+1D529 \mfrakl Mathematical Fraktur Small L

U+1D52A \mfrakm Mathematical Fraktur Small M

U+1D52B \mfrakn Mathematical Fraktur Small N

U+1D52C \mfrako Mathematical Fraktur Small O

U+1D52D \mfrakp Mathematical Fraktur Small P

U+1D52E \mfrakq Mathematical Fraktur Small Q

U+1D52F \mfrakr Mathematical Fraktur Small R

U+1D530 \mfraks Mathematical Fraktur Small S

U+1D531 \mfrakt Mathematical Fraktur Small T

U+1D532 \mfraku Mathematical Fraktur Small U

U+1D533 \mfrakv Mathematical Fraktur Small V

U+1D534 \mfrakw Mathematical Fraktur Small W

U+1D535 \mfrakx Mathematical Fraktur Small X

U+1D536 \mfraky Mathematical Fraktur Small Y

U+1D537 \mfrakz Mathematical Fraktur Small Z

U+1D538 \BbbA Mathematical Double-struck Capital A

U+1D539 \BbbB Mathematical Double-struck Capital B

U+1D53B \BbbD Mathematical Double-struck Capital D

U+1D53C \BbbE Mathematical Double-struck Capital E

U+1D53D \BbbF Mathematical Double-struck Capital F

U+1D53E \BbbG Mathematical Double-struck Capital G

U+1D540 \BbbI Mathematical Double-struck Capital I

U+1D541 \BbbJ Mathematical Double-struck Capital J

U+1D542 \BbbK Mathematical Double-struck Capital K

U+1D543 \BbbL Mathematical Double-struck Capital L

U+1D544 \BbbM Mathematical Double-struck Capital M

U+1D546 \BbbO Mathematical Double-struck Capital O

U+1D54A \BbbS Mathematical Double-struck Capital S

U+1D54B \BbbT Mathematical Double-struck Capital T

U+1D54C \BbbU Mathematical Double-struck Capital U

U+1D54D \BbbV Mathematical Double-struck Capital V

U+1D54E \BbbW Mathematical Double-struck Capital W

U+1D54F \BbbX Mathematical Double-struck Capital X

U+1D550 \BbbY Mathematical Double-struck Capital Y

U+1D552 \Bbba Mathematical Double-struck Small A

U+1D553 \Bbbb Mathematical Double-struck Small B

U+1D554 \Bbbc Mathematical Double-struck Small C

U+1D555 \Bbbd Mathematical Double-struck Small D

U+1D556 \Bbbe Mathematical Double-struck Small E

U+1D557 \Bbbf Mathematical Double-struck Small F

U+1D558 \Bbbg Mathematical Double-struck Small G

U+1D559 \Bbbh Mathematical Double-struck Small H

U+1D55A \Bbbi Mathematical Double-struck Small I

U+1D55B \Bbbj Mathematical Double-struck Small J

U+1D55C \Bbbk Mathematical Double-struck Small K

U+1D55D \Bbbl Mathematical Double-struck Small L

U+1D55E \Bbbm Mathematical Double-struck Small M

U+1D55F \Bbbn Mathematical Double-struck Small N

U+1D560 \Bbbo Mathematical Double-struck Small O

U+1D561 \Bbbp Mathematical Double-struck Small P

U+1D562 \Bbbq Mathematical Double-struck Small Q

U+1D563 \Bbbr Mathematical Double-struck Small R

U+1D564 \Bbbs Mathematical Double-struck Small S

U+1D565 \Bbbt Mathematical Double-struck Small T

U+1D566 \Bbbu Mathematical Double-struck Small U

U+1D567 \Bbbv Mathematical Double-struck Small V

U+1D568 \Bbbw Mathematical Double-struck Small W

U+1D569 \Bbbx Mathematical Double-struck Small X

U+1D56A \Bbby Mathematical Double-struck Small Y

U+1D56B \Bbbz Mathematical Double-struck Small Z

U+1D56C \mbffrakA Mathematical Bold Fraktur Capital A

U+1D56D \mbffrakB Mathematical Bold Fraktur Capital B

U+1D56E \mbffrakC Mathematical Bold Fraktur Capital C

U+1D56F \mbffrakD Mathematical Bold Fraktur Capital D

U+1D570 \mbffrakE Mathematical Bold Fraktur Capital E

U+1D571 \mbffrakF Mathematical Bold Fraktur Capital F

U+1D572 \mbffrakG Mathematical Bold Fraktur Capital G

U+1D573 \mbffrakH Mathematical Bold Fraktur Capital H

U+1D574 \mbffrakI Mathematical Bold Fraktur Capital I

U+1D575 \mbffrakJ Mathematical Bold Fraktur Capital J

U+1D576 \mbffrakK Mathematical Bold Fraktur Capital K

U+1D577 \mbffrakL Mathematical Bold Fraktur Capital L

U+1D578 \mbffrakM Mathematical Bold Fraktur Capital M

U+1D579 \mbffrakN Mathematical Bold Fraktur Capital N

U+1D57A \mbffrakO Mathematical Bold Fraktur Capital O

U+1D57B \mbffrakP Mathematical Bold Fraktur Capital P

U+1D57C \mbffrakQ Mathematical Bold Fraktur Capital Q

U+1D57D \mbffrakR Mathematical Bold Fraktur Capital R

U+1D57E \mbffrakS Mathematical Bold Fraktur Capital S

U+1D57F \mbffrakT Mathematical Bold Fraktur Capital T

U+1D580 \mbffrakU Mathematical Bold Fraktur Capital U

U+1D581 \mbffrakV Mathematical Bold Fraktur Capital V

U+1D582 \mbffrakW Mathematical Bold Fraktur Capital W

U+1D583 \mbffrakX Mathematical Bold Fraktur Capital X

U+1D584 \mbffrakY Mathematical Bold Fraktur Capital Y

U+1D585 \mbffrakZ Mathematical Bold Fraktur Capital Z

U+1D586 \mbffraka Mathematical Bold Fraktur Small A

U+1D587 \mbffrakb Mathematical Bold Fraktur Small B

U+1D588 \mbffrakc Mathematical Bold Fraktur Small C

U+1D589 \mbffrakd Mathematical Bold Fraktur Small D

U+1D58A \mbffrake Mathematical Bold Fraktur Small E

U+1D58B \mbffrakf Mathematical Bold Fraktur Small F

U+1D58C \mbffrakg Mathematical Bold Fraktur Small G

U+1D58D \mbffrakh Mathematical Bold Fraktur Small H

U+1D58E \mbffraki Mathematical Bold Fraktur Small I

U+1D58F \mbffrakj Mathematical Bold Fraktur Small J

U+1D590 \mbffrakk Mathematical Bold Fraktur Small K

U+1D591 \mbffrakl Mathematical Bold Fraktur Small L

U+1D592 \mbffrakm Mathematical Bold Fraktur Small M

U+1D593 \mbffrakn Mathematical Bold Fraktur Small N

U+1D594 \mbffrako Mathematical Bold Fraktur Small O

U+1D595 \mbffrakp Mathematical Bold Fraktur Small P

U+1D596 \mbffrakq Mathematical Bold Fraktur Small Q

U+1D597 \mbffrakr Mathematical Bold Fraktur Small R

U+1D598 \mbffraks Mathematical Bold Fraktur Small S

U+1D599 \mbffrakt Mathematical Bold Fraktur Small T

U+1D59A \mbffraku Mathematical Bold Fraktur Small U

U+1D59B \mbffrakv Mathematical Bold Fraktur Small V

U+1D59C \mbffrakw Mathematical Bold Fraktur Small W

U+1D59D \mbffrakx Mathematical Bold Fraktur Small X

U+1D59E \mbffraky Mathematical Bold Fraktur Small Y

U+1D59F \mbffrakz Mathematical Bold Fraktur Small Z

U+1D5A0 \msansA Mathematical Sans-serif Capital A

U+1D5A1 \msansB Mathematical Sans-serif Capital B

U+1D5A2 \msansC Mathematical Sans-serif Capital C

U+1D5A3 \msansD Mathematical Sans-serif Capital D

U+1D5A4 \msansE Mathematical Sans-serif Capital E

U+1D5A5 \msansF Mathematical Sans-serif Capital F

U+1D5A6 \msansG Mathematical Sans-serif Capital G

U+1D5A7 \msansH Mathematical Sans-serif Capital H

U+1D5A8 \msansI Mathematical Sans-serif Capital I

U+1D5A9 \msansJ Mathematical Sans-serif Capital J

U+1D5AA \msansK Mathematical Sans-serif Capital K

U+1D5AB \msansL Mathematical Sans-serif Capital L

U+1D5AC \msansM Mathematical Sans-serif Capital M

U+1D5AD \msansN Mathematical Sans-serif Capital N

U+1D5AE \msansO Mathematical Sans-serif Capital O

U+1D5AF \msansP Mathematical Sans-serif Capital P

U+1D5B0 \msansQ Mathematical Sans-serif Capital Q

U+1D5B1 \msansR Mathematical Sans-serif Capital R

U+1D5B2 \msansS Mathematical Sans-serif Capital S

U+1D5B3 \msansT Mathematical Sans-serif Capital T

U+1D5B4 \msansU Mathematical Sans-serif Capital U

U+1D5B5 \msansV Mathematical Sans-serif Capital V

U+1D5B6 \msansW Mathematical Sans-serif Capital W

U+1D5B7 \msansX Mathematical Sans-serif Capital X

U+1D5B8 \msansY Mathematical Sans-serif Capital Y

U+1D5B9 \msansZ Mathematical Sans-serif Capital Z

U+1D5BA \msansa Mathematical Sans-serif Small A

U+1D5BB \msansb Mathematical Sans-serif Small B

U+1D5BC \msansc Mathematical Sans-serif Small C

U+1D5BD \msansd Mathematical Sans-serif Small D

U+1D5BE \msanse Mathematical Sans-serif Small E

U+1D5BF \msansf Mathematical Sans-serif Small F

U+1D5C0 \msansg Mathematical Sans-serif Small G

U+1D5C1 \msansh Mathematical Sans-serif Small H

U+1D5C2 \msansi Mathematical Sans-serif Small I

U+1D5C3 \msansj Mathematical Sans-serif Small J

U+1D5C4 \msansk Mathematical Sans-serif Small K

U+1D5C5 \msansl Mathematical Sans-serif Small L

U+1D5C6 \msansm Mathematical Sans-serif Small M

U+1D5C7 \msansn Mathematical Sans-serif Small N

U+1D5C8 \msanso Mathematical Sans-serif Small O

U+1D5C9 \msansp Mathematical Sans-serif Small P

U+1D5CA \msansq Mathematical Sans-serif Small Q

U+1D5CB \msansr Mathematical Sans-serif Small R

U+1D5CC \msanss Mathematical Sans-serif Small S

U+1D5CD \msanst Mathematical Sans-serif Small T

U+1D5CE \msansu Mathematical Sans-serif Small U

U+1D5CF \msansv Mathematical Sans-serif Small V

U+1D5D0 \msansw Mathematical Sans-serif Small W

U+1D5D1 \msansx Mathematical Sans-serif Small X

U+1D5D2 \msansy Mathematical Sans-serif Small Y

U+1D5D3 \msansz Mathematical Sans-serif Small Z

U+1D5D4 \mbfsansA Mathematical Sans-serif Bold Capital A

U+1D5D5 \mbfsansB Mathematical Sans-serif Bold Capital B

U+1D5D6 \mbfsansC Mathematical Sans-serif Bold Capital C

U+1D5D7 \mbfsansD Mathematical Sans-serif Bold Capital D

U+1D5D8 \mbfsansE Mathematical Sans-serif Bold Capital E

U+1D5D9 \mbfsansF Mathematical Sans-serif Bold Capital F

U+1D5DA \mbfsansG Mathematical Sans-serif Bold Capital G

U+1D5DB \mbfsansH Mathematical Sans-serif Bold Capital H

U+1D5DC \mbfsansI Mathematical Sans-serif Bold Capital I

U+1D5DD \mbfsansJ Mathematical Sans-serif Bold Capital J

U+1D5DE \mbfsansK Mathematical Sans-serif Bold Capital K

U+1D5DF \mbfsansL Mathematical Sans-serif Bold Capital L

U+1D5E0 \mbfsansM Mathematical Sans-serif Bold Capital M

U+1D5E1 \mbfsansN Mathematical Sans-serif Bold Capital N

U+1D5E2 \mbfsansO Mathematical Sans-serif Bold Capital O

U+1D5E3 \mbfsansP Mathematical Sans-serif Bold Capital P

U+1D5E4 \mbfsansQ Mathematical Sans-serif Bold Capital Q

U+1D5E5 \mbfsansR Mathematical Sans-serif Bold Capital R

U+1D5E6 \mbfsansS Mathematical Sans-serif Bold Capital S

U+1D5E7 \mbfsansT Mathematical Sans-serif Bold Capital T

U+1D5E8 \mbfsansU Mathematical Sans-serif Bold Capital U

U+1D5E9 \mbfsansV Mathematical Sans-serif Bold Capital V

U+1D5EA \mbfsansW Mathematical Sans-serif Bold Capital W

U+1D5EB \mbfsansX Mathematical Sans-serif Bold Capital X

U+1D5EC \mbfsansY Mathematical Sans-serif Bold Capital Y

U+1D5ED \mbfsansZ Mathematical Sans-serif Bold Capital Z

U+1D5EE \mbfsansa Mathematical Sans-serif Bold Small A

U+1D5EF \mbfsansb Mathematical Sans-serif Bold Small B

U+1D5F0 \mbfsansc Mathematical Sans-serif Bold Small C

U+1D5F1 \mbfsansd Mathematical Sans-serif Bold Small D

U+1D5F2 \mbfsanse Mathematical Sans-serif Bold Small E

U+1D5F3 \mbfsansf Mathematical Sans-serif Bold Small F

U+1D5F4 \mbfsansg Mathematical Sans-serif Bold Small G

U+1D5F5 \mbfsansh Mathematical Sans-serif Bold Small H

U+1D5F6 \mbfsansi Mathematical Sans-serif Bold Small I

U+1D5F7 \mbfsansj Mathematical Sans-serif Bold Small J

U+1D5F8 \mbfsansk Mathematical Sans-serif Bold Small K

U+1D5F9 \mbfsansl Mathematical Sans-serif Bold Small L

U+1D5FA \mbfsansm Mathematical Sans-serif Bold Small M

U+1D5FB \mbfsansn Mathematical Sans-serif Bold Small N

U+1D5FC \mbfsanso Mathematical Sans-serif Bold Small O

U+1D5FD \mbfsansp Mathematical Sans-serif Bold Small P

U+1D5FE \mbfsansq Mathematical Sans-serif Bold Small Q

U+1D5FF \mbfsansr Mathematical Sans-serif Bold Small R

U+1D600 \mbfsanss Mathematical Sans-serif Bold Small S

U+1D601 \mbfsanst Mathematical Sans-serif Bold Small T

U+1D602 \mbfsansu Mathematical Sans-serif Bold Small U

U+1D603 \mbfsansv Mathematical Sans-serif Bold Small V

U+1D604 \mbfsansw Mathematical Sans-serif Bold Small W

U+1D605 \mbfsansx Mathematical Sans-serif Bold Small X

U+1D606 \mbfsansy Mathematical Sans-serif Bold Small Y

U+1D607 \mbfsansz Mathematical Sans-serif Bold Small Z

U+1D608 \mitsansA Mathematical Sans-serif Italic Capital A

U+1D609 \mitsansB Mathematical Sans-serif Italic Capital B

U+1D60A \mitsansC Mathematical Sans-serif Italic Capital C

U+1D60B \mitsansD Mathematical Sans-serif Italic Capital D

U+1D60C \mitsansE Mathematical Sans-serif Italic Capital E

U+1D60D \mitsansF Mathematical Sans-serif Italic Capital F

U+1D60E \mitsansG Mathematical Sans-serif Italic Capital G

U+1D60F \mitsansH Mathematical Sans-serif Italic Capital H

U+1D610 \mitsansI Mathematical Sans-serif Italic Capital I

U+1D611 \mitsansJ Mathematical Sans-serif Italic Capital J

U+1D612 \mitsansK Mathematical Sans-serif Italic Capital K

U+1D613 \mitsansL Mathematical Sans-serif Italic Capital L

U+1D614 \mitsansM Mathematical Sans-serif Italic Capital M

U+1D615 \mitsansN Mathematical Sans-serif Italic Capital N

U+1D616 \mitsansO Mathematical Sans-serif Italic Capital O

U+1D617 \mitsansP Mathematical Sans-serif Italic Capital P

U+1D618 \mitsansQ Mathematical Sans-serif Italic Capital Q

U+1D619 \mitsansR Mathematical Sans-serif Italic Capital R

U+1D61A \mitsansS Mathematical Sans-serif Italic Capital S

U+1D61B \mitsansT Mathematical Sans-serif Italic Capital T

U+1D61C \mitsansU Mathematical Sans-serif Italic Capital U

U+1D61D \mitsansV Mathematical Sans-serif Italic Capital V

U+1D61E \mitsansW Mathematical Sans-serif Italic Capital W

U+1D61F \mitsansX Mathematical Sans-serif Italic Capital X

U+1D620 \mitsansY Mathematical Sans-serif Italic Capital Y

U+1D621 \mitsansZ Mathematical Sans-serif Italic Capital Z

U+1D622 \mitsansa Mathematical Sans-serif Italic Small A

U+1D623 \mitsansb Mathematical Sans-serif Italic Small B

U+1D624 \mitsansc Mathematical Sans-serif Italic Small C

U+1D625 \mitsansd Mathematical Sans-serif Italic Small D

U+1D626 \mitsanse Mathematical Sans-serif Italic Small E

U+1D627 \mitsansf Mathematical Sans-serif Italic Small F

U+1D628 \mitsansg Mathematical Sans-serif Italic Small G

U+1D629 \mitsansh Mathematical Sans-serif Italic Small H

U+1D62A \mitsansi Mathematical Sans-serif Italic Small I

U+1D62B \mitsansj Mathematical Sans-serif Italic Small J

U+1D62C \mitsansk Mathematical Sans-serif Italic Small K

U+1D62D \mitsansl Mathematical Sans-serif Italic Small L

U+1D62E \mitsansm Mathematical Sans-serif Italic Small M

U+1D62F \mitsansn Mathematical Sans-serif Italic Small N

U+1D630 \mitsanso Mathematical Sans-serif Italic Small O

U+1D631 \mitsansp Mathematical Sans-serif Italic Small P

U+1D632 \mitsansq Mathematical Sans-serif Italic Small Q

U+1D633 \mitsansr Mathematical Sans-serif Italic Small R

U+1D634 \mitsanss Mathematical Sans-serif Italic Small S

U+1D635 \mitsanst Mathematical Sans-serif Italic Small T

U+1D636 \mitsansu Mathematical Sans-serif Italic Small U

U+1D637 \mitsansv Mathematical Sans-serif Italic Small V

U+1D638 \mitsansw Mathematical Sans-serif Italic Small W

U+1D639 \mitsansx Mathematical Sans-serif Italic Small X

U+1D63A \mitsansy Mathematical Sans-serif Italic Small Y

U+1D63B \mitsansz Mathematical Sans-serif Italic Small Z

U+1D63C \mbfitsansA Mathematical Sans-serif Bold Italic Capital A

U+1D63D \mbfitsansB Mathematical Sans-serif Bold Italic Capital B

U+1D63E \mbfitsansC Mathematical Sans-serif Bold Italic Capital C

U+1D63F \mbfitsansD Mathematical Sans-serif Bold Italic Capital D

U+1D640 \mbfitsansE Mathematical Sans-serif Bold Italic Capital E

U+1D641 \mbfitsansF Mathematical Sans-serif Bold Italic Capital F

U+1D642 \mbfitsansG Mathematical Sans-serif Bold Italic Capital G

U+1D643 \mbfitsansH Mathematical Sans-serif Bold Italic Capital H

U+1D644 \mbfitsansI Mathematical Sans-serif Bold Italic Capital I

U+1D645 \mbfitsansJ Mathematical Sans-serif Bold Italic Capital J

U+1D646 \mbfitsansK Mathematical Sans-serif Bold Italic Capital K

U+1D647 \mbfitsansL Mathematical Sans-serif Bold Italic Capital L

U+1D648 \mbfitsansM Mathematical Sans-serif Bold Italic Capital M

U+1D649 \mbfitsansN Mathematical Sans-serif Bold Italic Capital N

U+1D64A \mbfitsansO Mathematical Sans-serif Bold Italic Capital O

U+1D64B \mbfitsansP Mathematical Sans-serif Bold Italic Capital P

U+1D64C \mbfitsansQ Mathematical Sans-serif Bold Italic Capital Q

U+1D64D \mbfitsansR Mathematical Sans-serif Bold Italic Capital R

U+1D64E \mbfitsansS Mathematical Sans-serif Bold Italic Capital S

U+1D64F \mbfitsansT Mathematical Sans-serif Bold Italic Capital T

U+1D650 \mbfitsansU Mathematical Sans-serif Bold Italic Capital U

U+1D651 \mbfitsansV Mathematical Sans-serif Bold Italic Capital V

U+1D652 \mbfitsansW Mathematical Sans-serif Bold Italic Capital W

U+1D653 \mbfitsansX Mathematical Sans-serif Bold Italic Capital X

U+1D654 \mbfitsansY Mathematical Sans-serif Bold Italic Capital Y

U+1D655 \mbfitsansZ Mathematical Sans-serif Bold Italic Capital Z

U+1D656 \mbfitsansa Mathematical Sans-serif Bold Italic Small A

U+1D657 \mbfitsansb Mathematical Sans-serif Bold Italic Small B

U+1D658 \mbfitsansc Mathematical Sans-serif Bold Italic Small C

U+1D659 \mbfitsansd Mathematical Sans-serif Bold Italic Small D

U+1D65A \mbfitsanse Mathematical Sans-serif Bold Italic Small E

U+1D65B \mbfitsansf Mathematical Sans-serif Bold Italic Small F

U+1D65C \mbfitsansg Mathematical Sans-serif Bold Italic Small G

U+1D65D \mbfitsansh Mathematical Sans-serif Bold Italic Small H

U+1D65E \mbfitsansi Mathematical Sans-serif Bold Italic Small I

U+1D65F \mbfitsansj Mathematical Sans-serif Bold Italic Small J

U+1D660 \mbfitsansk Mathematical Sans-serif Bold Italic Small K

U+1D661 \mbfitsansl Mathematical Sans-serif Bold Italic Small L

U+1D662 \mbfitsansm Mathematical Sans-serif Bold Italic Small M

U+1D663 \mbfitsansn Mathematical Sans-serif Bold Italic Small N

U+1D664 \mbfitsanso Mathematical Sans-serif Bold Italic Small O

U+1D665 \mbfitsansp Mathematical Sans-serif Bold Italic Small P

U+1D666 \mbfitsansq Mathematical Sans-serif Bold Italic Small Q

U+1D667 \mbfitsansr Mathematical Sans-serif Bold Italic Small R

U+1D668 \mbfitsanss Mathematical Sans-serif Bold Italic Small S

U+1D669 \mbfitsanst Mathematical Sans-serif Bold Italic Small T

U+1D66A \mbfitsansu Mathematical Sans-serif Bold Italic Small U

U+1D66B \mbfitsansv Mathematical Sans-serif Bold Italic Small V

U+1D66C \mbfitsansw Mathematical Sans-serif Bold Italic Small W

U+1D66D \mbfitsansx Mathematical Sans-serif Bold Italic Small X

U+1D66E \mbfitsansy Mathematical Sans-serif Bold Italic Small Y

U+1D66F \mbfitsansz Mathematical Sans-serif Bold Italic Small Z

U+1D670 \mttA Mathematical Monospace Capital A

U+1D671 \mttB Mathematical Monospace Capital B

U+1D672 \mttC Mathematical Monospace Capital C

U+1D673 \mttD Mathematical Monospace Capital D

U+1D674 \mttE Mathematical Monospace Capital E

U+1D675 \mttF Mathematical Monospace Capital F

U+1D676 \mttG Mathematical Monospace Capital G

U+1D677 \mttH Mathematical Monospace Capital H

U+1D678 \mttI Mathematical Monospace Capital I

U+1D679 \mttJ Mathematical Monospace Capital J

U+1D67A \mttK Mathematical Monospace Capital K

U+1D67B \mttL Mathematical Monospace Capital L

U+1D67C \mttM Mathematical Monospace Capital M

U+1D67D \mttN Mathematical Monospace Capital N

U+1D67E \mttO Mathematical Monospace Capital O

U+1D67F \mttP Mathematical Monospace Capital P

U+1D680 \mttQ Mathematical Monospace Capital Q

U+1D681 \mttR Mathematical Monospace Capital R

U+1D682 \mttS Mathematical Monospace Capital S

U+1D683 \mttT Mathematical Monospace Capital T

U+1D684 \mttU Mathematical Monospace Capital U

U+1D685 \mttV Mathematical Monospace Capital V

U+1D686 \mttW Mathematical Monospace Capital W

U+1D687 \mttX Mathematical Monospace Capital X

U+1D688 \mttY Mathematical Monospace Capital Y

U+1D689 \mttZ Mathematical Monospace Capital Z

U+1D68A \mtta Mathematical Monospace Small A

U+1D68B \mttb Mathematical Monospace Small B

U+1D68C \mttc Mathematical Monospace Small C

U+1D68D \mttd Mathematical Monospace Small D

U+1D68E \mtte Mathematical Monospace Small E

U+1D68F \mttf Mathematical Monospace Small F

U+1D690 \mttg Mathematical Monospace Small G

U+1D691 \mtth Mathematical Monospace Small H

U+1D692 \mtti Mathematical Monospace Small I

U+1D693 \mttj Mathematical Monospace Small J

U+1D694 \mttk Mathematical Monospace Small K

U+1D695 \mttl Mathematical Monospace Small L

U+1D696 \mttm Mathematical Monospace Small M

U+1D697 \mttn Mathematical Monospace Small N

U+1D698 \mtto Mathematical Monospace Small O

U+1D699 \mttp Mathematical Monospace Small P

U+1D69A \mttq Mathematical Monospace Small Q

U+1D69B \mttr Mathematical Monospace Small R

U+1D69C \mtts Mathematical Monospace Small S

U+1D69D \mttt Mathematical Monospace Small T

U+1D69E \mttu Mathematical Monospace Small U

U+1D69F \mttv Mathematical Monospace Small V

U+1D6A0 \mttw Mathematical Monospace Small W

U+1D6A1 \mttx Mathematical Monospace Small X

U+1D6A2 \mtty Mathematical Monospace Small Y

U+1D6A3 \mttz Mathematical Monospace Small Z

U+1D6A4 \imath Mathematical Italic Small Dotless I

U+1D6A5 \jmath Mathematical Italic Small Dotless J

U+1D6A8 \mbfAlpha Mathematical Bold Capital Alpha

U+1D6A9 \mbfBeta Mathematical Bold Capital Beta

U+1D6AA \mbfGamma Mathematical Bold Capital Gamma

U+1D6AB \mbfDelta Mathematical Bold Capital Delta

U+1D6AC \mbfEpsilon Mathematical Bold Capital Epsilon

U+1D6AD \mbfZeta Mathematical Bold Capital Zeta

U+1D6AE \mbfEta Mathematical Bold Capital Eta

U+1D6AF \mbfTheta Mathematical Bold Capital Theta

U+1D6B0 \mbfIota Mathematical Bold Capital Iota

U+1D6B1 \mbfKappa Mathematical Bold Capital Kappa

U+1D6B2 \mbfLambda Mathematical Bold Capital Lamda

U+1D6B3 \mbfMu Mathematical Bold Capital Mu

U+1D6B4 \mbfNu Mathematical Bold Capital Nu

U+1D6B5 \mbfXi Mathematical Bold Capital Xi

U+1D6B6 \mbfOmicron Mathematical Bold Capital Omicron

U+1D6B7 \mbfPi Mathematical Bold Capital Pi

U+1D6B8 \mbfRho Mathematical Bold Capital Rho

U+1D6B9 \mbfvarTheta Mathematical Bold Capital Theta Symbol

U+1D6BA \mbfSigma Mathematical Bold Capital Sigma

U+1D6BB \mbfTau Mathematical Bold Capital Tau

U+1D6BC \mbfUpsilon Mathematical Bold Capital Upsilon

U+1D6BD \mbfPhi Mathematical Bold Capital Phi

U+1D6BE \mbfChi Mathematical Bold Capital Chi

U+1D6BF \mbfPsi Mathematical Bold Capital Psi

U+1D6C0 \mbfOmega Mathematical Bold Capital Omega

U+1D6C1 \mbfnabla Mathematical Bold Nabla

U+1D6C2 \mbfalpha Mathematical Bold Small Alpha

U+1D6C3 \mbfbeta Mathematical Bold Small Beta

U+1D6C4 \mbfgamma Mathematical Bold Small Gamma

U+1D6C5 \mbfdelta Mathematical Bold Small Delta

U+1D6C6 \mbfepsilon Mathematical Bold Small Epsilon

U+1D6C7 \mbfzeta Mathematical Bold Small Zeta

U+1D6C8 \mbfeta Mathematical Bold Small Eta

U+1D6C9 \mbftheta Mathematical Bold Small Theta

U+1D6CA \mbfiota Mathematical Bold Small Iota

U+1D6CB \mbfkappa Mathematical Bold Small Kappa

U+1D6CC \mbflambda Mathematical Bold Small Lamda

U+1D6CD \mbfmu Mathematical Bold Small Mu

U+1D6CE \mbfnu Mathematical Bold Small Nu

U+1D6CF \mbfxi Mathematical Bold Small Xi

U+1D6D0 \mbfomicron Mathematical Bold Small Omicron

U+1D6D1 \mbfpi Mathematical Bold Small Pi

U+1D6D2 \mbfrho Mathematical Bold Small Rho

U+1D6D3 \mbfvarsigma Mathematical Bold Small Final Sigma

U+1D6D4 \mbfsigma Mathematical Bold Small Sigma

U+1D6D5 \mbftau Mathematical Bold Small Tau

U+1D6D6 \mbfupsilon Mathematical Bold Small Upsilon

U+1D6D7 \mbfvarphi Mathematical Bold Small Phi

U+1D6D8 \mbfchi Mathematical Bold Small Chi

U+1D6D9 \mbfpsi Mathematical Bold Small Psi

U+1D6DA \mbfomega Mathematical Bold Small Omega

U+1D6DB \mbfpartial Mathematical Bold Partial Differential

U+1D6DC \mbfvarepsilon Mathematical Bold Epsilon Symbol

U+1D6DD \mbfvartheta Mathematical Bold Theta Symbol

U+1D6DE \mbfvarkappa Mathematical Bold Kappa Symbol

U+1D6DF \mbfphi Mathematical Bold Phi Symbol

U+1D6E0 \mbfvarrho Mathematical Bold Rho Symbol

U+1D6E1 \mbfvarpi Mathematical Bold Pi Symbol

U+1D6E2 \mitAlpha Mathematical Italic Capital Alpha

U+1D6E3 \mitBeta Mathematical Italic Capital Beta

U+1D6E4 \mitGamma Mathematical Italic Capital Gamma

U+1D6E5 \mitDelta Mathematical Italic Capital Delta

U+1D6E6 \mitEpsilon Mathematical Italic Capital Epsilon

U+1D6E7 \mitZeta Mathematical Italic Capital Zeta

U+1D6E8 \mitEta Mathematical Italic Capital Eta

U+1D6E9 \mitTheta Mathematical Italic Capital Theta

U+1D6EA \mitIota Mathematical Italic Capital Iota

U+1D6EB \mitKappa Mathematical Italic Capital Kappa

U+1D6EC \mitLambda Mathematical Italic Capital Lamda

U+1D6ED \mitMu Mathematical Italic Capital Mu

U+1D6EE \mitNu Mathematical Italic Capital Nu

U+1D6EF \mitXi Mathematical Italic Capital Xi

U+1D6F0 \mitOmicron Mathematical Italic Capital Omicron

U+1D6F1 \mitPi Mathematical Italic Capital Pi

U+1D6F2 \mitRho Mathematical Italic Capital Rho

U+1D6F3 \mitvarTheta Mathematical Italic Capital Theta Symbol

U+1D6F4 \mitSigma Mathematical Italic Capital Sigma

U+1D6F5 \mitTau Mathematical Italic Capital Tau

U+1D6F6 \mitUpsilon Mathematical Italic Capital Upsilon

U+1D6F7 \mitPhi Mathematical Italic Capital Phi

U+1D6F8 \mitChi Mathematical Italic Capital Chi

U+1D6F9 \mitPsi Mathematical Italic Capital Psi

U+1D6FA \mitOmega Mathematical Italic Capital Omega

U+1D6FB \mitnabla Mathematical Italic Nabla

U+1D6FC \mitalpha Mathematical Italic Small Alpha

U+1D6FD \mitbeta Mathematical Italic Small Beta

U+1D6FE \mitgamma Mathematical Italic Small Gamma

U+1D6FF \mitdelta Mathematical Italic Small Delta

U+1D700 \mitepsilon Mathematical Italic Small Epsilon

U+1D701 \mitzeta Mathematical Italic Small Zeta

U+1D702 \miteta Mathematical Italic Small Eta

U+1D703 \mittheta Mathematical Italic Small Theta

U+1D704 \mitiota Mathematical Italic Small Iota

U+1D705 \mitkappa Mathematical Italic Small Kappa

U+1D706 \mitlambda Mathematical Italic Small Lamda

U+1D707 \mitmu Mathematical Italic Small Mu

U+1D708 \mitnu Mathematical Italic Small Nu

U+1D709 \mitxi Mathematical Italic Small Xi

U+1D70A \mitomicron Mathematical Italic Small Omicron

U+1D70B \mitpi Mathematical Italic Small Pi

U+1D70C \mitrho Mathematical Italic Small Rho

U+1D70D \mitvarsigma Mathematical Italic Small Final Sigma

U+1D70E \mitsigma Mathematical Italic Small Sigma

U+1D70F \mittau Mathematical Italic Small Tau

U+1D710 \mitupsilon Mathematical Italic Small Upsilon

U+1D711 \mitphi Mathematical Italic Small Phi

U+1D712 \mitchi Mathematical Italic Small Chi

U+1D713 \mitpsi Mathematical Italic Small Psi

U+1D714 \mitomega Mathematical Italic Small Omega

U+1D715 \mitpartial Mathematical Italic Partial Differential

U+1D716 \mitvarepsilon Mathematical Italic Epsilon Symbol

U+1D717 \mitvartheta Mathematical Italic Theta Symbol

U+1D718 \mitvarkappa Mathematical Italic Kappa Symbol

U+1D719 \mitvarphi Mathematical Italic Phi Symbol

U+1D71A \mitvarrho Mathematical Italic Rho Symbol

U+1D71B \mitvarpi Mathematical Italic Pi Symbol

U+1D71C \mbfitAlpha Mathematical Bold Italic Capital Alpha

U+1D71D \mbfitBeta Mathematical Bold Italic Capital Beta

U+1D71E \mbfitGamma Mathematical Bold Italic Capital Gamma

U+1D71F \mbfitDelta Mathematical Bold Italic Capital Delta

U+1D720 \mbfitEpsilon Mathematical Bold Italic Capital Epsilon

U+1D721 \mbfitZeta Mathematical Bold Italic Capital Zeta

U+1D722 \mbfitEta Mathematical Bold Italic Capital Eta

U+1D723 \mbfitTheta Mathematical Bold Italic Capital Theta

U+1D724 \mbfitIota Mathematical Bold Italic Capital Iota

U+1D725 \mbfitKappa Mathematical Bold Italic Capital Kappa

U+1D726 \mbfitLambda Mathematical Bold Italic Capital Lamda

U+1D727 \mbfitMu Mathematical Bold Italic Capital Mu

U+1D728 \mbfitNu Mathematical Bold Italic Capital Nu

U+1D729 \mbfitXi Mathematical Bold Italic Capital Xi

U+1D72A \mbfitOmicron Mathematical Bold Italic Capital Omicron

U+1D72B \mbfitPi Mathematical Bold Italic Capital Pi

U+1D72C \mbfitRho Mathematical Bold Italic Capital Rho

U+1D72D \mbfitvarTheta Mathematical Bold Italic Capital Theta Symbol

U+1D72E \mbfitSigma Mathematical Bold Italic Capital Sigma

U+1D72F \mbfitTau Mathematical Bold Italic Capital Tau

U+1D730 \mbfitUpsilon Mathematical Bold Italic Capital Upsilon

U+1D731 \mbfitPhi Mathematical Bold Italic Capital Phi

U+1D732 \mbfitChi Mathematical Bold Italic Capital Chi

U+1D733 \mbfitPsi Mathematical Bold Italic Capital Psi

U+1D734 \mbfitOmega Mathematical Bold Italic Capital Omega

U+1D735 \mbfitnabla Mathematical Bold Italic Nabla

U+1D736 \mbfitalpha Mathematical Bold Italic Small Alpha

U+1D737 \mbfitbeta Mathematical Bold Italic Small Beta

U+1D738 \mbfitgamma Mathematical Bold Italic Small Gamma

U+1D739 \mbfitdelta Mathematical Bold Italic Small Delta

U+1D73A \mbfitepsilon Mathematical Bold Italic Small Epsilon

U+1D73B \mbfitzeta Mathematical Bold Italic Small Zeta

U+1D73C \mbfiteta Mathematical Bold Italic Small Eta

U+1D73D \mbfittheta Mathematical Bold Italic Small Theta

U+1D73E \mbfitiota Mathematical Bold Italic Small Iota

U+1D73F \mbfitkappa Mathematical Bold Italic Small Kappa

U+1D740 \mbfitlambda Mathematical Bold Italic Small Lamda

U+1D741 \mbfitmu Mathematical Bold Italic Small Mu

U+1D742 \mbfitnu Mathematical Bold Italic Small Nu

U+1D743 \mbfitxi Mathematical Bold Italic Small Xi

U+1D744 \mbfitomicron Mathematical Bold Italic Small Omicron

U+1D745 \mbfitpi Mathematical Bold Italic Small Pi

U+1D746 \mbfitrho Mathematical Bold Italic Small Rho

U+1D747 \mbfitvarsigma Mathematical Bold Italic Small Final Sigma

U+1D748 \mbfitsigma Mathematical Bold Italic Small Sigma

U+1D749 \mbfittau Mathematical Bold Italic Small Tau

U+1D74A \mbfitupsilon Mathematical Bold Italic Small Upsilon

U+1D74B \mbfitphi Mathematical Bold Italic Small Phi

U+1D74C \mbfitchi Mathematical Bold Italic Small Chi

U+1D74D \mbfitpsi Mathematical Bold Italic Small Psi

U+1D74E \mbfitomega Mathematical Bold Italic Small Omega

U+1D74F \mbfitpartial Mathematical Bold Italic Partial Differential

U+1D750 \mbfitvarepsilon Mathematical Bold Italic Epsilon Symbol

U+1D751 \mbfitvartheta Mathematical Bold Italic Theta Symbol

U+1D752 \mbfitvarkappa Mathematical Bold Italic Kappa Symbol

U+1D753 \mbfitvarphi Mathematical Bold Italic Phi Symbol

U+1D754 \mbfitvarrho Mathematical Bold Italic Rho Symbol

U+1D755 \mbfitvarpi Mathematical Bold Italic Pi Symbol

U+1D756 \mbfsansAlpha Mathematical Sans-serif Bold Capital Alpha

U+1D757 \mbfsansBeta Mathematical Sans-serif Bold Capital Beta

U+1D758 \mbfsansGamma Mathematical Sans-serif Bold Capital Gamma

U+1D759 \mbfsansDelta Mathematical Sans-serif Bold Capital Delta

U+1D75A \mbfsansEpsilon Mathematical Sans-serif Bold Capital Epsilon

U+1D75B \mbfsansZeta Mathematical Sans-serif Bold Capital Zeta

U+1D75C \mbfsansEta Mathematical Sans-serif Bold Capital Eta

U+1D75D \mbfsansTheta Mathematical Sans-serif Bold Capital Theta

U+1D75E \mbfsansIota Mathematical Sans-serif Bold Capital Iota

U+1D75F \mbfsansKappa Mathematical Sans-serif Bold Capital Kappa

U+1D760 \mbfsansLambda Mathematical Sans-serif Bold Capital Lamda

U+1D761 \mbfsansMu Mathematical Sans-serif Bold Capital Mu

U+1D762 \mbfsansNu Mathematical Sans-serif Bold Capital Nu

U+1D763 \mbfsansXi Mathematical Sans-serif Bold Capital Xi

U+1D764 \mbfsansOmicron Mathematical Sans-serif Bold Capital Omicron

U+1D765 \mbfsansPi Mathematical Sans-serif Bold Capital Pi

U+1D766 \mbfsansRho Mathematical Sans-serif Bold Capital Rho

U+1D767 \mbfsansvarTheta Mathematical Sans-serif Bold Capital Theta Symbol

U+1D768 \mbfsansSigma Mathematical Sans-serif Bold Capital Sigma

U+1D769 \mbfsansTau Mathematical Sans-serif Bold Capital Tau

U+1D76A \mbfsansUpsilon Mathematical Sans-serif Bold Capital Upsilon

U+1D76B \mbfsansPhi Mathematical Sans-serif Bold Capital Phi

U+1D76C \mbfsansChi Mathematical Sans-serif Bold Capital Chi

U+1D76D \mbfsansPsi Mathematical Sans-serif Bold Capital Psi

U+1D76E \mbfsansOmega Mathematical Sans-serif Bold Capital Omega

U+1D76F \mbfsansnabla Mathematical Sans-serif Bold Nabla

U+1D770 \mbfsansalpha Mathematical Sans-serif Bold Small Alpha

U+1D771 \mbfsansbeta Mathematical Sans-serif Bold Small Beta

U+1D772 \mbfsansgamma Mathematical Sans-serif Bold Small Gamma

U+1D773 \mbfsansdelta Mathematical Sans-serif Bold Small Delta

U+1D774 \mbfsansepsilon Mathematical Sans-serif Bold Small Epsilon

U+1D775 \mbfsanszeta Mathematical Sans-serif Bold Small Zeta

U+1D776 \mbfsanseta Mathematical Sans-serif Bold Small Eta

U+1D777 \mbfsanstheta Mathematical Sans-serif Bold Small Theta

U+1D778 \mbfsansiota Mathematical Sans-serif Bold Small Iota

U+1D779 \mbfsanskappa Mathematical Sans-serif Bold Small Kappa

U+1D77A \mbfsanslambda Mathematical Sans-serif Bold Small Lamda

U+1D77B \mbfsansmu Mathematical Sans-serif Bold Small Mu

U+1D77C \mbfsansnu Mathematical Sans-serif Bold Small Nu

U+1D77D \mbfsansxi Mathematical Sans-serif Bold Small Xi

U+1D77E \mbfsansomicron Mathematical Sans-serif Bold Small Omicron

U+1D77F \mbfsanspi Mathematical Sans-serif Bold Small Pi

U+1D780 \mbfsansrho Mathematical Sans-serif Bold Small Rho

U+1D781 \mbfsansvarsigma Mathematical Sans-serif Bold Small Final Sigma

U+1D782 \mbfsanssigma Mathematical Sans-serif Bold Small Sigma

U+1D783 \mbfsanstau Mathematical Sans-serif Bold Small Tau

U+1D784 \mbfsansupsilon Mathematical Sans-serif Bold Small Upsilon

U+1D785 \mbfsansphi Mathematical Sans-serif Bold Small Phi

U+1D786 \mbfsanschi Mathematical Sans-serif Bold Small Chi

U+1D787 \mbfsanspsi Mathematical Sans-serif Bold Small Psi

U+1D788 \mbfsansomega Mathematical Sans-serif Bold Small Omega

U+1D789 \mbfsanspartial Mathematical Sans-serif Bold Partial Differential

U+1D78A \mbfsansvarepsilon Mathematical Sans-serif Bold Epsilon Symbol

U+1D78B \mbfsansvartheta Mathematical Sans-serif Bold Theta Symbol

U+1D78C \mbfsansvarkappa Mathematical Sans-serif Bold Kappa Symbol

U+1D78D \mbfsansvarphi Mathematical Sans-serif Bold Phi Symbol

U+1D78E \mbfsansvarrho Mathematical Sans-serif Bold Rho Symbol

U+1D78F \mbfsansvarpi Mathematical Sans-serif Bold Pi Symbol

U+1D790 \mbfitsansAlpha Mathematical Sans-serif Bold Italic Capital Alpha

U+1D791 \mbfitsansBeta Mathematical Sans-serif Bold Italic Capital Beta

U+1D792 \mbfitsansGamma Mathematical Sans-serif Bold Italic Capital Gamma

U+1D793 \mbfitsansDelta Mathematical Sans-serif Bold Italic Capital Delta

U+1D794 \mbfitsansEpsilon Mathematical Sans-serif Bold Italic Capital Epsilon

U+1D795 \mbfitsansZeta Mathematical Sans-serif Bold Italic Capital Zeta

U+1D796 \mbfitsansEta Mathematical Sans-serif Bold Italic Capital Eta

U+1D797 \mbfitsansTheta Mathematical Sans-serif Bold Italic Capital Theta

U+1D798 \mbfitsansIota Mathematical Sans-serif Bold Italic Capital Iota

U+1D799 \mbfitsansKappa Mathematical Sans-serif Bold Italic Capital Kappa

U+1D79A \mbfitsansLambda Mathematical Sans-serif Bold Italic Capital Lamda

U+1D79B \mbfitsansMu Mathematical Sans-serif Bold Italic Capital Mu

U+1D79C \mbfitsansNu Mathematical Sans-serif Bold Italic Capital Nu

U+1D79D \mbfitsansXi Mathematical Sans-serif Bold Italic Capital Xi

U+1D79E \mbfitsansOmicron Mathematical Sans-serif Bold Italic Capital Omicron

U+1D79F \mbfitsansPi Mathematical Sans-serif Bold Italic Capital Pi

U+1D7A0 \mbfitsansRho Mathematical Sans-serif Bold Italic Capital Rho

U+1D7A1 \mbfitsansvarTheta Mathematical Sans-serif Bold Italic Capital Theta Symbol

U+1D7A2 \mbfitsansSigma Mathematical Sans-serif Bold Italic Capital Sigma

U+1D7A3 \mbfitsansTau Mathematical Sans-serif Bold Italic Capital Tau

U+1D7A4 \mbfitsansUpsilon Mathematical Sans-serif Bold Italic Capital Upsilon

U+1D7A5 \mbfitsansPhi Mathematical Sans-serif Bold Italic Capital Phi

U+1D7A6 \mbfitsansChi Mathematical Sans-serif Bold Italic Capital Chi

U+1D7A7 \mbfitsansPsi Mathematical Sans-serif Bold Italic Capital Psi

U+1D7A8 \mbfitsansOmega Mathematical Sans-serif Bold Italic Capital Omega

U+1D7A9 \mbfitsansnabla Mathematical Sans-serif Bold Italic Nabla

U+1D7AA \mbfitsansalpha Mathematical Sans-serif Bold Italic Small Alpha

U+1D7AB \mbfitsansbeta Mathematical Sans-serif Bold Italic Small Beta

U+1D7AC \mbfitsansgamma Mathematical Sans-serif Bold Italic Small Gamma

U+1D7AD \mbfitsansdelta Mathematical Sans-serif Bold Italic Small Delta

U+1D7AE \mbfitsansepsilon Mathematical Sans-serif Bold Italic Small Epsilon

U+1D7AF \mbfitsanszeta Mathematical Sans-serif Bold Italic Small Zeta

U+1D7B0 \mbfitsanseta Mathematical Sans-serif Bold Italic Small Eta

U+1D7B1 \mbfitsanstheta Mathematical Sans-serif Bold Italic Small Theta

U+1D7B2 \mbfitsansiota Mathematical Sans-serif Bold Italic Small Iota

U+1D7B3 \mbfitsanskappa Mathematical Sans-serif Bold Italic Small Kappa

U+1D7B4 \mbfitsanslambda Mathematical Sans-serif Bold Italic Small Lamda

U+1D7B5 \mbfitsansmu Mathematical Sans-serif Bold Italic Small Mu

U+1D7B6 \mbfitsansnu Mathematical Sans-serif Bold Italic Small Nu

U+1D7B7 \mbfitsansxi Mathematical Sans-serif Bold Italic Small Xi

U+1D7B8 \mbfitsansomicron Mathematical Sans-serif Bold Italic Small Omicron

U+1D7B9 \mbfitsanspi Mathematical Sans-serif Bold Italic Small Pi

U+1D7BA \mbfitsansrho Mathematical Sans-serif Bold Italic Small Rho

U+1D7BB \mbfitsansvarsigma Mathematical Sans-serif Bold Italic Small Final Sigma

U+1D7BC \mbfitsanssigma Mathematical Sans-serif Bold Italic Small Sigma

U+1D7BD \mbfitsanstau Mathematical Sans-serif Bold Italic Small Tau

U+1D7BE \mbfitsansupsilon Mathematical Sans-serif Bold Italic Small Upsilon

U+1D7BF \mbfitsansphi Mathematical Sans-serif Bold Italic Small Phi

U+1D7C0 \mbfitsanschi Mathematical Sans-serif Bold Italic Small Chi

U+1D7C1 \mbfitsanspsi Mathematical Sans-serif Bold Italic Small Psi

U+1D7C2 \mbfitsansomega Mathematical Sans-serif Bold Italic Small Omega

U+1D7C3 \mbfitsanspartial Mathematical Sans-serif Bold Italic Partial Differential

U+1D7C4 \mbfitsansvarepsilon Mathematical Sans-serif Bold Italic Epsilon Symbol

U+1D7C5 \mbfitsansvartheta Mathematical Sans-serif Bold Italic Theta Symbol

U+1D7C6 \mbfitsansvarkappa Mathematical Sans-serif Bold Italic Kappa Symbol

U+1D7C7 \mbfitsansvarphi Mathematical Sans-serif Bold Italic Phi Symbol

U+1D7C8 \mbfitsansvarrho Mathematical Sans-serif Bold Italic Rho Symbol

U+1D7C9 \mbfitsansvarpi Mathematical Sans-serif Bold Italic Pi Symbol

U+1D7CA \mbfDigamma Mathematical Bold Capital Digamma

U+1D7CB \mbfdigamma Mathematical Bold Small Digamma

U+1D7CE \mbfzero Mathematical Bold Digit Zero

U+1D7CF \mbfone Mathematical Bold Digit One

U+1D7D0 \mbftwo Mathematical Bold Digit Two

U+1D7D1 \mbfthree Mathematical Bold Digit Three

U+1D7D2 \mbffour Mathematical Bold Digit Four

U+1D7D3 \mbffive Mathematical Bold Digit Five

U+1D7D4 \mbfsix Mathematical Bold Digit Six

U+1D7D5 \mbfseven Mathematical Bold Digit Seven

U+1D7D6 \mbfeight Mathematical Bold Digit Eight

U+1D7D7 \mbfnine Mathematical Bold Digit Nine

U+1D7D8 \Bbbzero Mathematical Double-struck Digit Zero

U+1D7D9 \Bbbone Mathematical Double-struck Digit One

U+1D7DA \Bbbtwo Mathematical Double-struck Digit Two

U+1D7DB \Bbbthree Mathematical Double-struck Digit Three

U+1D7DC \Bbbfour Mathematical Double-struck Digit Four

U+1D7DD \Bbbfive Mathematical Double-struck Digit Five

U+1D7DE \Bbbsix Mathematical Double-struck Digit Six

U+1D7DF \Bbbseven Mathematical Double-struck Digit Seven

U+1D7E0 \Bbbeight Mathematical Double-struck Digit Eight

U+1D7E1 \Bbbnine Mathematical Double-struck Digit Nine

U+1D7E2 \msanszero Mathematical Sans-serif Digit Zero

U+1D7E3 \msansone Mathematical Sans-serif Digit One

U+1D7E4 \msanstwo Mathematical Sans-serif Digit Two

U+1D7E5 \msansthree Mathematical Sans-serif Digit Three

U+1D7E6 \msansfour Mathematical Sans-serif Digit Four

U+1D7E7 \msansfive Mathematical Sans-serif Digit Five

U+1D7E8 \msanssix Mathematical Sans-serif Digit Six

U+1D7E9 \msansseven Mathematical Sans-serif Digit Seven

U+1D7EA \msanseight Mathematical Sans-serif Digit Eight

U+1D7EB \msansnine Mathematical Sans-serif Digit Nine

U+1D7EC \mbfsanszero Mathematical Sans-serif Bold Digit Zero

U+1D7ED \mbfsansone Mathematical Sans-serif Bold Digit One

U+1D7EE \mbfsanstwo Mathematical Sans-serif Bold Digit Two

U+1D7EF \mbfsansthree Mathematical Sans-serif Bold Digit Three

U+1D7F0 \mbfsansfour Mathematical Sans-serif Bold Digit Four

U+1D7F1 \mbfsansfive Mathematical Sans-serif Bold Digit Five

U+1D7F2 \mbfsanssix Mathematical Sans-serif Bold Digit Six

U+1D7F3 \mbfsansseven Mathematical Sans-serif Bold Digit Seven

U+1D7F4 \mbfsanseight Mathematical Sans-serif Bold Digit Eight

U+1D7F5 \mbfsansnine Mathematical Sans-serif Bold Digit Nine

U+1D7F6 \mttzero Mathematical Monospace Digit Zero

U+1D7F7 \mttone Mathematical Monospace Digit One

U+1D7F8 \mtttwo Mathematical Monospace Digit Two

U+1D7F9 \mttthree Mathematical Monospace Digit Three

U+1D7FA \mttfour Mathematical Monospace Digit Four

U+1D7FB \mttfive Mathematical Monospace Digit Five

U+1D7FC \mttsix Mathematical Monospace Digit Six

U+1D7FD \mttseven Mathematical Monospace Digit Seven

U+1D7FE \mtteight Mathematical Monospace Digit Eight

U+1D7FF \mttnine Mathematical Monospace Digit Nine

U+1F004 \:mahjong: Mahjong Tile Red Dragon

U+1F0CF \:black_joker: Playing Card Black Joker

U+1F170 \:a: Negative Squared Latin Capital Letter A

U+1F171 \:b: Negative Squared Latin Capital Letter B

U+1F17E \:o2: Negative Squared Latin Capital Letter O

U+1F17F \:parking: Negative Squared Latin Capital Letter P

U+1F18E \:ab: Negative Squared Ab

U+1F191 \:cl: Squared Cl

U+1F192 \:cool: Squared Cool

U+1F193 \:free: Squared Free

U+1F194 \:id: Squared Id

U+1F195 \:new: Squared New

U+1F196 \:ng: Squared Ng

U+1F197 \:ok: Squared Ok

U+1F198 \:sos: Squared Sos

U+1F199 \:up: Squared UpWith Exclamation Mark

U+1F19A \:vs: Squared Vs

U+1F201 \:koko: Squared Katakana Koko

U+1F202 \:sa: Squared Katakana Sa

U+1F21A \:u7121: Squared Cjk Unified Ideograph-7121

U+1F22F \:u6307: Squared Cjk Unified Ideograph-6307

U+1F232 \:u7981: Squared Cjk Unified Ideograph-7981

U+1F233 \:u7a7a: Squared Cjk Unified Ideograph-7a7a

U+1F234 \:u5408: Squared Cjk Unified Ideograph-5408

U+1F235 \:u6e80: Squared Cjk Unified Ideograph-6e80

U+1F236 \:u6709: Squared Cjk Unified Ideograph-6709

U+1F237 \:u6708: Squared Cjk Unified Ideograph-6708

U+1F238 \:u7533: Squared Cjk Unified Ideograph-7533

U+1F239 \:u5272: Squared Cjk Unified Ideograph-5272

U+1F23A \:u55b6: Squared Cjk Unified Ideograph-55b6

U+1F250 \:ideograph_advantage: Circled Ideograph Advantage

U+1F251 \:accept: Circled Ideograph Accept

U+1F300 \:cyclone: Cyclone

U+1F301 \:foggy: Foggy

U+1F302 \:closed_umbrella: Closed Umbrella

U+1F303 \:night_with_stars: Night With Stars

U+1F304 \:sunrise_over_moun-

tains:

Sunrise Over Mountains

U+1F305 \:sunrise: Sunrise

U+1F306 \:city_sunset: Cityscape At Dusk

U+1F307 \:city_sunrise: Sunset Over Buildings

U+1F308 \:rainbow: Rainbow

U+1F309 \:bridge_at_night: Bridge At Night

U+1F30A \:ocean: WaterWave

U+1F30B \:volcano: Volcano

U+1F30C \:milky_way: MilkyWay

U+1F30D \:earth_africa: Earth Globe Europe-africa

U+1F30E \:earth_americas: Earth Globe Americas

U+1F30F \:earth_asia: Earth Globe Asia-australia

U+1F310 \:globe_with_meridians: Globe With Meridians

U+1F311 \:new_moon: NewMoon Symbol

U+1F312 \:waxing_crescent_moon: Waxing Crescent Moon Symbol

U+1F313 \:first_quarter_moon: First Quarter Moon Symbol

U+1F314 \:moon: Waxing Gibbous Moon Symbol

U+1F315 \:full_moon: Full Moon Symbol

U+1F316 \:waning_gibbous_moon: Waning Gibbous Moon Symbol

U+1F317 \:last_quarter_moon: Last Quarter Moon Symbol

U+1F318 \:waning_crescent_moon: Waning Crescent Moon Symbol

U+1F319 \:crescent_moon: Crescent Moon

U+1F31A \:new_moon_with_face: NewMoonWith Face

U+1F31B \:first_quar-

ter_moon_with_face:

First Quarter Moon With Face

U+1F31C \:last_quar-

ter_moon_with_face:

Last Quarter Moon With Face

U+1F31D \:full_moon_with_face: Full Moon With Face

U+1F31E \:sun_with_face: Sun With Face

U+1F31F \:star2: Glowing Star

U+1F320 \:stars: Shooting Star

U+1F330 \:chestnut: Chestnut

U+1F331 \:seedling: Seedling

U+1F332 \:evergreen_tree: Evergreen Tree

U+1F333 \:deciduous_tree: Deciduous Tree

U+1F334 \:palm_tree: Palm Tree

U+1F335 \:cactus: Cactus

U+1F337 \:tulip: Tulip

U+1F338 \:cherry_blossom: Cherry Blossom

U+1F339 \:rose: Rose

U+1F33A \:hibiscus: Hibiscus

U+1F33B \:sunflower: Sunflower

U+1F33C \:blossom: Blossom

U+1F33D \:corn: Ear Of Maize

U+1F33E \:ear_of_rice: Ear Of Rice

U+1F33F \:herb: Herb

U+1F340 \:four_leaf_clover: Four Leaf Clover

U+1F341 \:maple_leaf: Maple Leaf

U+1F342 \:fallen_leaf: Fallen Leaf

U+1F343 \:leaves: Leaf Fluttering In Wind

U+1F344 \:mushroom: Mushroom

U+1F345 \:tomato: Tomato

U+1F346 \:eggplant: Aubergine

U+1F347 \:grapes: Grapes

U+1F348 \:melon: Melon

U+1F349 \:watermelon: Watermelon

U+1F34A \:tangerine: Tangerine

U+1F34B \:lemon: Lemon

U+1F34C \:banana: Banana

U+1F34D \:pineapple: Pineapple

U+1F34E \:apple: Red Apple

U+1F34F \:green_apple: Green Apple

U+1F350 \:pear: Pear

U+1F351 \:peach: Peach

U+1F352 \:cherries: Cherries

U+1F353 \:strawberry: Strawberry

U+1F354 \:hamburger: Hamburger

U+1F355 \:pizza: Slice Of Pizza

U+1F356 \:meat_on_bone: Meat On Bone

U+1F357 \:poultry_leg: Poultry Leg

U+1F358 \:rice_cracker: Rice Cracker

U+1F359 \:rice_ball: Rice Ball

U+1F35A \:rice: Cooked Rice

U+1F35B \:curry: Curry And Rice

U+1F35C \:ramen: Steaming Bowl

U+1F35D \:spaghetti: Spaghetti

U+1F35E \:bread: Bread

U+1F35F \:fries: French Fries

U+1F360 \:sweet_potato: Roasted Sweet Potato

U+1F361 \:dango: Dango

U+1F362 \:oden: Oden

U+1F363 \:sushi: Sushi

U+1F364 \:fried_shrimp: Fried Shrimp

U+1F365 \:fish_cake: Fish Cake With Swirl Design

U+1F366 \:icecream: Soft Ice Cream

U+1F367 \:shaved_ice: Shaved Ice

U+1F368 \:ice_cream: Ice Cream

U+1F369 \:doughnut: Doughnut

U+1F36A \:cookie: Cookie

U+1F36B \:chocolate_bar: Chocolate Bar

U+1F36C \:candy: Candy

U+1F36D \:lollipop: Lollipop

U+1F36E \:custard: Custard

U+1F36F \:honey_pot: Honey Pot

U+1F370 \:cake: Shortcake

U+1F371 \:bento: Bento Box

U+1F372 \:stew: Pot Of Food

U+1F373 \:egg: Cooking

U+1F374 \:fork_and_knife: Fork And Knife

U+1F375 \:tea: Teacup Without Handle

U+1F376 \:sake: Sake Bottle And Cup

U+1F377 \:wine_glass: Wine Glass

U+1F378 \:cocktail: Cocktail Glass

U+1F379 \:tropical_drink: Tropical Drink

U+1F37A \:beer: Beer Mug

U+1F37B \:beers: Clinking Beer Mugs

U+1F37C \:baby_bottle: Baby Bottle

U+1F380 \:ribbon: Ribbon

U+1F381 \:gift: Wrapped Present

U+1F382 \:birthday: Birthday Cake

U+1F383 \:jack_o_lantern: Jack-o-lantern

U+1F384 \:christmas_tree: Christmas Tree

U+1F385 \:santa: Father Christmas

U+1F386 \:fireworks: Fireworks

U+1F387 \:sparkler: Firework Sparkler

U+1F388 \:balloon: Balloon

U+1F389 \:tada: Party Popper

U+1F38A \:confetti_ball: Confetti Ball

U+1F38B \:tanabata_tree: Tanabata Tree

U+1F38C \:crossed_flags: Crossed Flags

U+1F38D \:bamboo: Pine Decoration

U+1F38E \:dolls: Japanese Dolls

U+1F38F \:flags: Carp Streamer

U+1F390 \:wind_chime: Wind Chime

U+1F391 \:rice_scene: Moon Viewing Ceremony

U+1F392 \:school_satchel: School Satchel

U+1F393 \:mortar_board: Graduation Cap

U+1F3A0 \:carousel_horse: Carousel Horse

U+1F3A1 \:ferris_wheel: Ferris Wheel

U+1F3A2 \:roller_coaster: Roller Coaster

U+1F3A3 \:fishing_pole_and_fish: Fishing Pole And Fish

U+1F3A4 \:microphone: Microphone

U+1F3A5 \:movie_camera: Movie Camera

U+1F3A6 \:cinema: Cinema

U+1F3A7 \:headphones: Headphone

U+1F3A8 \:art: Artist Palette

U+1F3A9 \:tophat: Top Hat

U+1F3AA \:circus_tent: Circus Tent

U+1F3AB \:ticket: Ticket

U+1F3AC \:clapper: Clapper Board

U+1F3AD \:performing_arts: Performing Arts

U+1F3AE \:video_game: Video Game

U+1F3AF \:dart: Direct Hit

U+1F3B0 \:slot_machine: Slot Machine

U+1F3B1 \:8ball: Billiards

U+1F3B2 \:game_die: Game Die

U+1F3B3 \:bowling: Bowling

U+1F3B4 \:flower_playing_cards: Flower Playing Cards

U+1F3B5 \:musical_note: Musical Note

U+1F3B6 \:notes: Multiple Musical Notes

U+1F3B7 \:saxophone: Saxophone

U+1F3B8 \:guitar: Guitar

U+1F3B9 \:musical_keyboard: Musical Keyboard

U+1F3BA \:trumpet: Trumpet

U+1F3BB \:violin: Violin

U+1F3BC \:musical_score: Musical Score

U+1F3BD \:run-

ning_shirt_with_sash:

Running Shirt With Sash

U+1F3BE \:tennis: Tennis Racquet And Ball

U+1F3BF \:ski: Ski And Ski Boot

U+1F3C0 \:basketball: Basketball And Hoop

U+1F3C1 \:checkered_flag: Chequered Flag

U+1F3C2 \:snowboarder: Snowboarder

U+1F3C3 \:runner: Runner

U+1F3C4 \:surfer: Surfer

U+1F3C6 \:trophy: Trophy

U+1F3C7 \:horse_racing: Horse Racing

U+1F3C8 \:football: American Football

U+1F3C9 \:rugby_football: Rugby Football

U+1F3CA \:swimmer: Swimmer

U+1F3E0 \:house: House Building

U+1F3E1 \:house_with_garden: House With Garden

U+1F3E2 \:office: Office Building

U+1F3E3 \:post_office: Japanese Post Office

U+1F3E4 \:european_post_office: European Post Office

U+1F3E5 \:hospital: Hospital

U+1F3E6 \:bank: Bank

U+1F3E7 \:atm: Automated Teller Machine

U+1F3E8 \:hotel: Hotel

U+1F3E9 \:love_hotel: Love Hotel

U+1F3EA \:convenience_store: Convenience Store

U+1F3EB \:school: School

U+1F3EC \:department_store: Department Store

U+1F3ED \:factory: Factory

U+1F3EE \:izakaya_lantern: Izakaya Lantern

U+1F3EF \:japanese_castle: Japanese Castle

U+1F3F0 \:european_castle: European Castle

U+1F3FB \:skin-tone-2: Emoji Modifier Fitzpatrick Type-1-2

U+1F3FC \:skin-tone-3: Emoji Modifier Fitzpatrick Type-3

U+1F3FD \:skin-tone-4: Emoji Modifier Fitzpatrick Type-4

U+1F3FE \:skin-tone-5: Emoji Modifier Fitzpatrick Type-5

U+1F3FF \:skin-tone-6: Emoji Modifier Fitzpatrick Type-6

U+1F400 \:rat: Rat

U+1F401 \:mouse2: Mouse

U+1F402 \:ox: Ox

U+1F403 \:water_buffalo: Water Buffalo

U+1F404 \:cow2: Cow

U+1F405 \:tiger2: Tiger

U+1F406 \:leopard: Leopard

U+1F407 \:rabbit2: Rabbit

U+1F408 \:cat2: Cat

U+1F409 \:dragon: Dragon

U+1F40A \:crocodile: Crocodile

U+1F40B \:whale2: Whale

U+1F40C \:snail: Snail

U+1F40D \:snake: Snake

U+1F40E \:racehorse: Horse

U+1F40F \:ram: Ram

U+1F410 \:goat: Goat

U+1F411 \:sheep: Sheep

U+1F412 \:monkey: Monkey

U+1F413 \:rooster: Rooster

U+1F414 \:chicken: Chicken

U+1F415 \:dog2: Dog

U+1F416 \:pig2: Pig

U+1F417 \:boar: Boar

U+1F418 \:elephant: Elephant

U+1F419 \:octopus: Octopus

U+1F41A \:shell: Spiral Shell

U+1F41B \:bug: Bug

U+1F41C \:ant: Ant

U+1F41D \:bee: Honeybee

U+1F41E \:beetle: Lady Beetle

U+1F41F \:fish: Fish

U+1F420 \:tropical_fish: Tropical Fish

U+1F421 \:blowfish: Blowfish

U+1F422 \:turtle: Turtle

U+1F423 \:hatching_chick: Hatching Chick

U+1F424 \:baby_chick: Baby Chick

U+1F425 \:hatched_chick: Front-facing Baby Chick

U+1F426 \:bird: Bird

U+1F427 \:penguin: Penguin

U+1F428 \:koala: Koala

U+1F429 \:poodle: Poodle

U+1F42A \:dromedary_camel: Dromedary Camel

U+1F42B \:camel: Bactrian Camel

U+1F42C \:dolphin: Dolphin

U+1F42D \:mouse: Mouse Face

U+1F42E \:cow: Cow Face

U+1F42F \:tiger: Tiger Face

U+1F430 \:rabbit: Rabbit Face

U+1F431 \:cat: Cat Face

U+1F432 \:dragon_face: Dragon Face

U+1F433 \:whale: Spouting Whale

U+1F434 \:horse: Horse Face

U+1F435 \:monkey_face: Monkey Face

U+1F436 \:dog: Dog Face

U+1F437 \:pig: Pig Face

U+1F438 \:frog: Frog Face

U+1F439 \:hamster: Hamster Face

U+1F43A \:wolf: Wolf Face

U+1F43B \:bear: Bear Face

U+1F43C \:panda_face: Panda Face

U+1F43D \:pig_nose: Pig Nose

U+1F43E \:feet: Paw Prints

U+1F440 \:eyes: Eyes

U+1F442 \:ear: Ear

U+1F443 \:nose: Nose

U+1F444 \:lips: Mouth

U+1F445 \:tongue: Tongue

U+1F446 \:point_up_2: White Up Pointing Backhand Index

U+1F447 \:point_down: White Down Pointing Backhand Index

U+1F448 \:point_left: White Left Pointing Backhand Index

U+1F449 \:point_right: White Right Pointing Backhand Index

U+1F44A \:facepunch: Fisted Hand Sign

U+1F44B \:wave: Waving Hand Sign

U+1F44C \:ok_hand: Ok Hand Sign

U+1F44D \:+1: Thumbs Up Sign

U+1F44E \:-1: Thumbs Down Sign

U+1F44F \:clap: Clapping Hands Sign

U+1F450 \:open_hands: Open Hands Sign

U+1F451 \:crown: Crown

U+1F452 \:womans_hat: Womans Hat

U+1F453 \:eyeglasses: Eyeglasses

U+1F454 \:necktie: Necktie

U+1F455 \:shirt: T-shirt

U+1F456 \:jeans: Jeans

U+1F457 \:dress: Dress

U+1F458 \:kimono: Kimono

U+1F459 \:bikini: Bikini

U+1F45A \:womans_clothes: Womans Clothes

U+1F45B \:purse: Purse

U+1F45C \:handbag: Handbag

U+1F45D \:pouch: Pouch

U+1F45E \:mans_shoe: Mans Shoe

U+1F45F \:athletic_shoe: Athletic Shoe

U+1F460 \:high_heel: High-heeled Shoe

U+1F461 \:sandal: Womans Sandal

U+1F462 \:boot: Womans Boots

U+1F463 \:footprints: Footprints

U+1F464 \:bust_in_silhouette: Bust In Silhouette

U+1F465 \:busts_in_silhouette: Busts In Silhouette

U+1F466 \:boy: Boy

U+1F467 \:girl: Girl

U+1F468 \:man: Man

U+1F469 \:woman: Woman

U+1F46A \:family: Family

U+1F46B \:couple: Man And Woman Holding Hands

U+1F46C \:two_men_hold-

ing_hands:

Two Men Holding Hands

U+1F46D \:two_women_hold-

ing_hands:

TwoWomen Holding Hands

U+1F46E \:cop: Police Officer

U+1F46F \:dancers: WomanWith Bunny Ears

U+1F470 \:bride_with_veil: Bride With Veil

U+1F471 \:person_with_blond_hair: Person With Blond Hair

U+1F472 \:man_with_gua_pi_mao: Man With Gua Pi Mao

U+1F473 \:man_with_turban: Man With Turban

U+1F474 \:older_man: Older Man

U+1F475 \:older_woman: Older Woman

U+1F476 \:baby: Baby

U+1F477 \:construction_worker: Construction Worker

U+1F478 \:princess: Princess

U+1F479 \:japanese_ogre: Japanese Ogre

U+1F47A \:japanese_goblin: Japanese Goblin

U+1F47B \:ghost: Ghost

U+1F47C \:angel: Baby Angel

U+1F47D \:alien: Extraterrestrial Alien

U+1F47E \:space_invader: Alien Monster

U+1F47F \:imp: Imp

U+1F480 \:skull: Skull

U+1F481 \:information_desk_per-

son:

Information Desk Person

U+1F482 \:guardsman: Guardsman

U+1F483 \:dancer: Dancer

U+1F484 \:lipstick: Lipstick

U+1F485 \:nail_care: Nail Polish

U+1F486 \:massage: Face Massage

U+1F487 \:haircut: Haircut

U+1F488 \:barber: Barber Pole

U+1F489 \:syringe: Syringe

U+1F48A \:pill: Pill

U+1F48B \:kiss: Kiss Mark

U+1F48C \:love_letter: Love Letter

U+1F48D \:ring: Ring

U+1F48E \:gem: Gem Stone

U+1F48F \:couplekiss: Kiss

U+1F490 \:bouquet: Bouquet

U+1F491 \:couple_with_heart: Couple With Heart

U+1F492 \:wedding: Wedding

U+1F493 \:heartbeat: Beating Heart

U+1F494 \:broken_heart: Broken Heart

U+1F495 \:two_hearts: Two Hearts

U+1F496 \:sparkling_heart: Sparkling Heart

U+1F497 \:heartpulse: Growing Heart

U+1F498 \:cupid: Heart With Arrow

U+1F499 \:blue_heart: Blue Heart

U+1F49A \:green_heart: Green Heart

U+1F49B \:yellow_heart: Yellow Heart

U+1F49C \:purple_heart: Purple Heart

U+1F49D \:gift_heart: Heart With Ribbon

U+1F49E \:revolving_hearts: Revolving Hearts

U+1F49F \:heart_decoration: Heart Decoration

U+1F4A0 \:dia-

mond_shape_with_a_dot_in-

side:

Diamond Shape With A Dot Inside

U+1F4A1 \:bulb: Electric Light Bulb

U+1F4A2 \:anger: Anger Symbol

U+1F4A3 \:bomb: Bomb

U+1F4A4 \:zzz: Sleeping Symbol

U+1F4A5 \:boom: Collision Symbol

U+1F4A6 \:sweat_drops: Splashing Sweat Symbol

U+1F4A7 \:droplet: Droplet

U+1F4A8 \:dash: Dash Symbol

U+1F4A9 \:hankey: Pile Of Poo

U+1F4AA \:muscle: Flexed Biceps

U+1F4AB \:dizzy: Dizzy Symbol

U+1F4AC \:speech_balloon: Speech Balloon

U+1F4AD \:thought_balloon: Thought Balloon

U+1F4AE \:white_flower: White Flower

U+1F4AF \:100: Hundred Points Symbol

U+1F4B0 \:moneybag: Money Bag

U+1F4B1 \:currency_exchange: Currency Exchange

U+1F4B2 \:heavy_dollar_sign: Heavy Dollar Sign

U+1F4B3 \:credit_card: Credit Card

U+1F4B4 \:yen: Banknote With Yen Sign

U+1F4B5 \:dollar: Banknote With Dollar Sign

U+1F4B6 \:euro: Banknote With Euro Sign

U+1F4B7 \:pound: Banknote With Pound Sign

U+1F4B8 \:money_with_wings: MoneyWith Wings

U+1F4B9 \:chart: Chart With Upwards Trend And Yen Sign

U+1F4BA \:seat: Seat

U+1F4BB \:computer: Personal Computer

U+1F4BC \:briefcase: Briefcase

U+1F4BD \:minidisc: Minidisc

U+1F4BE \:floppy_disk: Floppy Disk

U+1F4BF \:cd: Optical Disc

U+1F4C0 \:dvd: Dvd

U+1F4C1 \:file_folder: File Folder

U+1F4C2 \:open_file_folder: Open File Folder

U+1F4C3 \:page_with_curl: Page With Curl

U+1F4C4 \:page_facing_up: Page Facing Up

U+1F4C5 \:date: Calendar

U+1F4C6 \:calendar: Tear-off Calendar

U+1F4C7 \:card_index: Card Index

U+1F4C8 \:chart_with_up-

wards_trend:

Chart With Upwards Trend

U+1F4C9 \:chart_with_down-

wards_trend:

Chart With Downwards Trend

U+1F4CA \:bar_chart: Bar Chart

U+1F4CB \:clipboard: Clipboard

U+1F4CC \:pushpin: Pushpin

U+1F4CD \:round_pushpin: Round Pushpin

U+1F4CE \:paperclip: Paperclip

U+1F4CF \:straight_ruler: Straight Ruler

U+1F4D0 \:triangular_ruler: Triangular Ruler

U+1F4D1 \:bookmark_tabs: Bookmark Tabs

U+1F4D2 \:ledger: Ledger

U+1F4D3 \:notebook: Notebook

U+1F4D4 \:notebook_with_decora-

tive_cover:

Notebook With Decorative Cover

U+1F4D5 \:closed_book: Closed Book

U+1F4D6 \:book: Open Book

U+1F4D7 \:green_book: Green Book

U+1F4D8 \:blue_book: Blue Book

U+1F4D9 \:orange_book: Orange Book

U+1F4DA \:books: Books

U+1F4DB \:name_badge: Name Badge

U+1F4DC \:scroll: Scroll

U+1F4DD \:memo: Memo

U+1F4DE \:telephone_receiver: Telephone Receiver

U+1F4DF \:pager: Pager

U+1F4E0 \:fax: Fax Machine

U+1F4E1 \:satellite: Satellite Antenna

U+1F4E2 \:loudspeaker: Public Address Loudspeaker

U+1F4E3 \:mega: Cheering Megaphone

U+1F4E4 \:outbox_tray: Outbox Tray

U+1F4E5 \:inbox_tray: Inbox Tray

U+1F4E6 \:package: Package

U+1F4E7 \:e-mail: E-mail Symbol

U+1F4E8 \:incoming_envelope: Incoming Envelope

U+1F4E9 \:envelope_with_arrow: Envelope With Downwards Arrow Above

U+1F4EA \:mailbox_closed: Closed Mailbox With Lowered Flag

U+1F4EB \:mailbox: Closed Mailbox With Raised Flag

U+1F4EC \:mailbox_with_mail: Open Mailbox With Raised Flag

U+1F4ED \:mailbox_with_no_mail: Open Mailbox With Lowered Flag

U+1F4EE \:postbox: Postbox

U+1F4EF \:postal_horn: Postal Horn

U+1F4F0 \:newspaper: Newspaper

U+1F4F1 \:iphone: Mobile Phone

U+1F4F2 \:calling: Mobile Phone With Rightwards Arrow At Left

U+1F4F3 \:vibration_mode: Vibration Mode

U+1F4F4 \:mobile_phone_off: Mobile Phone Off

U+1F4F5 \:no_mobile_phones: No Mobile Phones

U+1F4F6 \:signal_strength: Antenna With Bars

U+1F4F7 \:camera: Camera

U+1F4F9 \:video_camera: Video Camera

U+1F4FA \:tv: Television

U+1F4FB \:radio: Radio

U+1F4FC \:vhs: Videocassette

U+1F500 \:twisted_rightwards_ar-

rows:

Twisted Rightwards Arrows

U+1F501 \:repeat: Clockwise Rightwards And Leftwards Open Circle Arrows

U+1F502 \:repeat_one: Clockwise Rightwards And Leftwards Open Circle Arrows

With Circled One Overlay

U+1F503 \:arrows_clockwise: Clockwise Downwards And Upwards Open Circle Arrows

U+1F504 \:arrows_counterclock-

wise:

Anticlockwise Downwards And Upwards Open Circle

Arrows

U+1F505 \:low_brightness: Low Brightness Symbol

U+1F506 \:high_brightness: High Brightness Symbol

U+1F507 \:mute: SpeakerWith Cancellation Stroke

U+1F508 \:speaker: Speaker

U+1F509 \:sound: SpeakerWith One Sound Wave

U+1F50A \:loud_sound: SpeakerWith Three Sound Waves

U+1F50B \:battery: Battery

U+1F50C \:electric_plug: Electric Plug

U+1F50D \:mag: Left-pointing Magnifying Glass

U+1F50E \:mag_right: Right-pointing Magnifying Glass

U+1F50F \:lock_with_ink_pen: Lock With Ink Pen

U+1F510 \:closed_lock_with_key: Closed Lock With Key

U+1F511 \:key: Key

U+1F512 \:lock: Lock

U+1F513 \:unlock: Open Lock

U+1F514 \:bell: Bell

U+1F515 \:no_bell: Bell With Cancellation Stroke

U+1F516 \:bookmark: Bookmark

U+1F517 \:link: Link Symbol

U+1F518 \:radio_button: Radio Button

U+1F519 \:back: Back With Leftwards Arrow Above

U+1F51A \:end: End With Leftwards Arrow Above

U+1F51B \:on: OnWith Exclamation Mark With Left Right Arrow Above

U+1F51C \:soon: Soon With Rightwards Arrow Above

U+1F51D \:top: Top With Upwards Arrow Above

U+1F51E \:underage: No One Under Eighteen Symbol

U+1F51F \:keycap_ten: Keycap Ten

U+1F520 \:capital_abcd: Input Symbol For Latin Capital Letters

U+1F521 \:abcd: Input Symbol For Latin Small Letters

U+1F522 \:1234: Input Symbol For Numbers

U+1F523 \:symbols: Input Symbol For Symbols

U+1F524 \:abc: Input Symbol For Latin Letters

U+1F525 \:fire: Fire

U+1F526 \:flashlight: Electric Torch

U+1F527 \:wrench: Wrench

U+1F528 \:hammer: Hammer

U+1F529 \:nut_and_bolt: Nut And Bolt

U+1F52A \:hocho: Hocho

U+1F52B \:gun: Pistol

U+1F52C \:microscope: Microscope

U+1F52D \:telescope: Telescope

U+1F52E \:crystal_ball: Crystal Ball

U+1F52F \:six_pointed_star: Six Pointed Star With Middle Dot

U+1F530 \:beginner: Japanese Symbol For Beginner

U+1F531 \:trident: Trident Emblem

U+1F532 \:black_square_button: Black Square Button

U+1F533 \:white_square_button: White Square Button

U+1F534 \:red_circle: Large Red Circle

U+1F535 \:large_blue_circle: Large Blue Circle

U+1F536 \:large_orange_diamond: Large Orange Diamond

U+1F537 \:large_blue_diamond: Large Blue Diamond

U+1F538 \:small_orange_diamond: Small Orange Diamond

U+1F539 \:small_blue_diamond: Small Blue Diamond

U+1F53A \:small_red_triangle: Up-pointing Red Triangle

U+1F53B \:small_red_trian-

gle_down:

Down-pointing Red Triangle

U+1F53C \:arrow_up_small: Up-pointing Small Red Triangle

U+1F53D \:arrow_down_small: Down-pointing Small Red Triangle

U+1F550 \:clock1: Clock Face One Oclock

U+1F551 \:clock2: Clock Face Two Oclock

U+1F552 \:clock3: Clock Face Three Oclock

U+1F553 \:clock4: Clock Face Four Oclock

U+1F554 \:clock5: Clock Face Five Oclock

U+1F555 \:clock6: Clock Face Six Oclock

U+1F556 \:clock7: Clock Face Seven Oclock

U+1F557 \:clock8: Clock Face Eight Oclock

U+1F558 \:clock9: Clock Face Nine Oclock

U+1F559 \:clock10: Clock Face Ten Oclock

U+1F55A \:clock11: Clock Face Eleven Oclock

U+1F55B \:clock12: Clock Face Twelve Oclock

U+1F55C \:clock130: Clock Face One-thirty

U+1F55D \:clock230: Clock Face Two-thirty

U+1F55E \:clock330: Clock Face Three-thirty

U+1F55F \:clock430: Clock Face Four-thirty

U+1F560 \:clock530: Clock Face Five-thirty

U+1F561 \:clock630: Clock Face Six-thirty

U+1F562 \:clock730: Clock Face Seven-thirty

U+1F563 \:clock830: Clock Face Eight-thirty

U+1F564 \:clock930: Clock Face Nine-thirty

U+1F565 \:clock1030: Clock Face Ten-thirty

U+1F566 \:clock1130: Clock Face Eleven-thirty

U+1F567 \:clock1230: Clock Face Twelve-thirty

U+1F5FB \:mount_fuji: Mount Fuji

U+1F5FC \:tokyo_tower: Tokyo Tower

U+1F5FD \:statue_of_liberty: Statue Of Liberty

U+1F5FE \:japan: Silhouette Of Japan

U+1F5FF \:moyai: Moyai

U+1F600 \:grinning: Grinning Face

U+1F601 \:grin: Grinning Face With Smiling Eyes

U+1F602 \:joy: Face With Tears Of Joy

U+1F603 \:smiley: Smiling Face With Open Mouth

U+1F604 \:smile: Smiling Face With Open Mouth And Smiling Eyes

U+1F605 \:sweat_smile: Smiling Face With Open Mouth And Cold Sweat

U+1F606 \:laughing: Smiling Face With Open Mouth And Tightly-closed Eyes

U+1F607 \:innocent: Smiling Face With Halo

U+1F608 \:smiling_imp: Smiling Face With Horns

U+1F609 \:wink: Winking Face

U+1F60A \:blush: Smiling Face With Smiling Eyes

U+1F60B \:yum: Face Savouring Delicious Food

U+1F60C \:relieved: Relieved Face

U+1F60D \:heart_eyes: Smiling Face With Heart-shaped Eyes

U+1F60E \:sunglasses: Smiling Face With Sunglasses

U+1F60F \:smirk: Smirking Face

U+1F610 \:neutral_face: Neutral Face

U+1F611 \:expressionless: Expressionless Face

U+1F612 \:unamused: Unamused Face

U+1F613 \:sweat: Face With Cold Sweat

U+1F614 \:pensive: Pensive Face

U+1F615 \:confused: Confused Face

U+1F616 \:confounded: Confounded Face

U+1F617 \:kissing: Kissing Face

U+1F618 \:kissing_heart: Face Throwing A Kiss

U+1F619 \:kissing_smiling_eyes: Kissing Face With Smiling Eyes

U+1F61A \:kissing_closed_eyes: Kissing Face With Closed Eyes

U+1F61B \:stuck_out_tongue: Face With Stuck-out Tongue

U+1F61C \:stuck_out_tongue_wink-

ing_eye:

Face With Stuck-out Tongue And Winking Eye

U+1F61D \:stuck_out_tongue_closed_eyes:Face With Stuck-out Tongue And Tightly-closed Eyes

U+1F61E \:disappointed: Disappointed Face

U+1F61F \:worried: Worried Face

U+1F620 \:angry: Angry Face

U+1F621 \:rage: Pouting Face

U+1F622 \:cry: Crying Face

U+1F623 \:persevere: Persevering Face

U+1F624 \:triumph: Face With Look Of Triumph

U+1F625 \:disappointed_relieved: Disappointed But Relieved Face

U+1F626 \:frowning: Frowning Face With Open Mouth

U+1F627 \:anguished: Anguished Face

U+1F628 \:fearful: Fearful Face

U+1F629 \:weary: Weary Face

U+1F62A \:sleepy: Sleepy Face

U+1F62B \:tired_face: Tired Face

U+1F62C \:grimacing: Grimacing Face

U+1F62D \:sob: Loudly Crying Face

U+1F62E \:open_mouth: Face With Open Mouth

U+1F62F \:hushed: Hushed Face

U+1F630 \:cold_sweat: Face With Open Mouth And Cold Sweat

U+1F631 \:scream: Face Screaming In Fear

U+1F632 \:astonished: Astonished Face

U+1F633 \:flushed: Flushed Face

U+1F634 \:sleeping: Sleeping Face

U+1F635 \:dizzy_face: Dizzy Face

U+1F636 \:no_mouth: Face Without Mouth

U+1F637 \:mask: Face With Medical Mask

U+1F638 \:smile_cat: Grinning Cat Face With Smiling Eyes

U+1F639 \:joy_cat: Cat Face With Tears Of Joy

U+1F63A \:smiley_cat: Smiling Cat Face With Open Mouth

U+1F63B \:heart_eyes_cat: Smiling Cat Face With Heart-shaped Eyes

U+1F63C \:smirk_cat: Cat Face With Wry Smile

U+1F63D \:kissing_cat: Kissing Cat Face With Closed Eyes

U+1F63E \:pouting_cat: Pouting Cat Face

U+1F63F \:crying_cat_face: Crying Cat Face

U+1F640 \:scream_cat: Weary Cat Face

U+1F645 \:no_good: Face With No Good Gesture

U+1F646 \:ok_woman: Face With Ok Gesture

U+1F647 \:bow: Person Bowing Deeply

U+1F648 \:see_no_evil: See-no-evil Monkey

U+1F649 \:hear_no_evil: Hear-no-evil Monkey

U+1F64A \:speak_no_evil: Speak-no-evil Monkey

U+1F64B \:raising_hand: Happy Person Raising One Hand

U+1F64C \:raised_hands: Person Raising Both Hands In Celebration

U+1F64D \:person_frowning: Person Frowning

U+1F64E \:person_with_pout-

ing_face:

Person With Pouting Face

U+1F64F \:pray: Person With Folded Hands

U+1F680 \:rocket: Rocket

U+1F681 \:helicopter: Helicopter

U+1F682 \:steam_locomotive: Steam Locomotive

U+1F683 \:railway_car: Railway Car

U+1F684 \:bullettrain_side: High-speed Train

U+1F685 \:bullettrain_front: High-speed Train With Bullet Nose

U+1F686 \:train2: Train

U+1F687 \:metro: Metro

U+1F688 \:light_rail: Light Rail

U+1F689 \:station: Station

U+1F68A \:tram: Tram

U+1F68B \:train: Tram Car

U+1F68C \:bus: Bus

U+1F68D \:oncoming_bus: Oncoming Bus

U+1F68E \:trolleybus: Trolleybus

U+1F68F \:busstop: Bus Stop

U+1F690 \:minibus: Minibus

U+1F691 \:ambulance: Ambulance

U+1F692 \:fire_engine: Fire Engine

U+1F693 \:police_car: Police Car

U+1F694 \:oncoming_police_car: Oncoming Police Car

U+1F695 \:taxi: Taxi

U+1F696 \:oncoming_taxi: Oncoming Taxi

U+1F697 \:car: Automobile

U+1F698 \:oncoming_automobile: Oncoming Automobile

U+1F699 \:blue_car: Recreational Vehicle

U+1F69A \:truck: Delivery Truck

U+1F69B \:articulated_lorry: Articulated Lorry

U+1F69C \:tractor: Tractor

U+1F69D \:monorail: Monorail

U+1F69E \:mountain_railway: Mountain Railway

U+1F69F \:suspension_railway: Suspension Railway

U+1F6A0 \:mountain_cableway: Mountain Cableway

U+1F6A1 \:aerial_tramway: Aerial Tramway

U+1F6A2 \:ship: Ship

U+1F6A3 \:rowboat: Rowboat

U+1F6A4 \:speedboat: Speedboat

U+1F6A5 \:traffic_light: Horizontal Traffic Light

U+1F6A6 \:vertical_traffic_light: Vertical Traffic Light

U+1F6A7 \:construction: Construction Sign

U+1F6A8 \:rotating_light: Police Cars Revolving Light

U+1F6A9 \:triangular_flag_on_post: Triangular Flag On Post

U+1F6AA \:door: Door

U+1F6AB \:no_entry_sign: No Entry Sign

U+1F6AC \:smoking: Smoking Symbol

U+1F6AD \:no_smoking: No Smoking Symbol

U+1F6AE \:put_litter_in_its_place: Put Litter In Its Place Symbol

U+1F6AF \:do_not_litter: Do Not Litter Symbol

U+1F6B0 \:potable_water: Potable Water Symbol

U+1F6B1 \:non-potable_water: Non-potable Water Symbol

U+1F6B2 \:bike: Bicycle

U+1F6B3 \:no_bicycles: No Bicycles

U+1F6B4 \:bicyclist: Bicyclist

U+1F6B5 \:mountain_bicyclist: Mountain Bicyclist

U+1F6B6 \:walking: Pedestrian

U+1F6B7 \:no_pedestrians: No Pedestrians

U+1F6B8 \:children_crossing: Children Crossing

U+1F6B9 \:mens: Mens Symbol

U+1F6BA \:womens: Womens Symbol

U+1F6BB \:restroom: Restroom

U+1F6BC \:baby_symbol: Baby Symbol

U+1F6BD \:toilet: Toilet

U+1F6BE \:wc: Water Closet

U+1F6BF \:shower: Shower

U+1F6C0 \:bath: Bath

U+1F6C1 \:bathtub: Bathtub

U+1F6C2 \:passport_control: Passport Control

U+1F6C3 \:customs: Customs

U+1F6C4 \:baggage_claim: Baggage Claim

U+1F6C5 \:left_luggage: Left Luggage

417

Part IV

Standard Library

419

Chapter 45

Essentials

45.1 Introduction

The Julia standard library contains a range of functions and macros appropriate for performing scientific and numerical

computing, but is also as broad as those of many general purpose programming languages. Additional functionality is

available from a growing collection of available packages. Functions are grouped by topic below.

Some general notes:

• Except for functions in built-in modules (Pkg, Collections, Test and Profile), all functions documented

here are directly available for use in programs.

• To use module functions, use import Module to import the module, and Module.fn(x) to use the functions.

• Alternatively, using Modulewill import all exported Module functions into the current namespace.

• By convention, function names ending with an exclamation point (!) modify their arguments. Some functions

have both modifying (e.g., sort!) and non-modifying (sort) versions.

45.2 Getting Around

Base.exit – Function.

exit([code])

Quit (or control-D at the prompt). The default exit code is zero, indicating that the processes completed success-

fully.

source

Base.quit – Function.

quit()

Quit the program indicating that the processes completed successfully. This function calls exit(0) (see exit).

source

Base.atexit – Function.

atexit(f)

421

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L2213-L2218
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1147-L1152

422 CHAPTER 45. ESSENTIALS

Register a zero-argument function f() to be called at process exit. atexit() hooks are called in last in first out

(LIFO) order and run before object finalizers.

source

Base.atreplinit – Function.

atreplinit(f)

Register a one-argument function to be called before the REPL interface is initialized in interactive sessions; this

is useful to customize the interface. The argument of f is the REPL object. This function should be called from

within the .juliarc.jl initialization file.

source

Base.isinteractive – Function.

isinteractive() -> Bool

Determine whether Julia is running an interactive session.

source

Base.whos – Function.

whos(io::IO=STDOUT, m::Module=current_module(), pattern::Regex=r"")

Print information about exported global variables in a module, optionally restricted to those matching pattern.

The memory consumption estimate is an approximate lower bound on the size of the internal structure of the

object.

source

Base.summarysize – Function.

Base.summarysize(obj; exclude=Union{...}, chargeall=Union{...}) -> Int

Compute the amount of memory used by all unique objects reachable from the argument.

Keyword Arguments

• exclude: specifies the types of objects to exclude from the traversal.

• chargeall: specifies the types of objects to always charge the size of all of their fields, even if those fields

would normally be excluded.

source

Base.edit – Method.

edit(path::AbstractString, line::Integer=0)

Edit a file or directory optionally providing a line number to edit the file at. Returns to the julia prompt when

you quit the editor. The editor can be changed by setting JULIA_EDITOR, VISUAL or EDITOR as an environment

variable.

source

Base.edit – Method.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1323-L1328
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/client.jl#L344-L351
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L504-L508
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/interactiveutil.jl#L678-L684
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/summarysize.jl#L12-L21
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/interactiveutil.jl#L26-L32

45.2. GETTING AROUND 423

edit(function, [types])

Edit the definition of a function, optionally specifying a tuple of types to indicatewhich method to edit. The editor

can be changed by setting JULIA_EDITOR, VISUAL or EDITOR as an environment variable.

source

Base.@edit – Macro.

@edit

Evaluates the arguments to the function or macro call, determines their types, and calls the edit function on the

resulting expression.

source

Base.less – Method.

less(file::AbstractString, [line::Integer])

Show a file using the default pager, optionally providing a starting line number. Returns to the julia prompt

when you quit the pager.

source

Base.less – Method.

less(function, [types])

Show the definition of a function using the default pager, optionally specifying a tuple of types to indicate which

method to see.

source

Base.@less – Macro.

@less

Evaluates the arguments to the function or macro call, determines their types, and calls the less function on the

resulting expression.

source

Base.clipboard – Method.

clipboard(x)

Send a printed form of x to the operating system clipboard (”copy”).

source

Base.clipboard – Method.

clipboard() -> AbstractString

Return a string with the contents of the operating system clipboard (”paste”).

source

Base.reload – Function.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/interactiveutil.jl#L80-L86
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/interactiveutil.jl#L448-L453
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/interactiveutil.jl#L106-L111
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/interactiveutil.jl#L114-L119
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/interactiveutil.jl#L440-L445
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/interactiveutil.jl#L203-L207
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/interactiveutil.jl#L210-L214

424 CHAPTER 45. ESSENTIALS

reload(name::AbstractString)

Force reloading of a package, even if it has been loaded before. This is intended for use during package develop-

ment as code is modified.

source

Base.require – Function.

require(module::Symbol)

This function is part of the implementation of using / import, if a module is not already defined in Main. It can

also be called directly to force reloading a module, regardless of whether it has been loaded before (for example,

when interactively developing libraries).

Loads a source file, in the context of the Mainmodule, on every active node, searching standard locations for files.

require is considered a top-level operation, so it sets the current include path but does not use it to search for

files (see help for include). This function is typically used to load library code, and is implicitly called by using

to load packages.

When searching for files, require first looks for package code under Pkg.dir(), then tries paths in the global

array LOAD_PATH. require is case-sensitive on all platforms, including those with case-insensitive filesystems

like macOS and Windows.

source

Base.compilecache – Function.

Base.compilecache(module::String)

Creates a precompiled cache file for a module and all of its dependencies. This can be used to reduce package

load times. Cache files are stored in LOAD_CACHE_PATH[1], which defaults to ~/.julia/lib/VERSION. See

Module initialization and precompilation for important notes.

source

Base.__precompile__ – Function.

__precompile__(isprecompilable::Bool=true)

Specify whether the file calling this function is precompilable. If isprecompilable is true, then __precom-

pile__ throws an exception when the file is loaded by using/import/require unless the file is being precom-

piled, and in a module file it causes the module to be automatically precompiled when it is imported. Typically,

__precompile__() should occur before the module declaration in the file, or better yet VERSION >= v"0.4"

&& __precompile__() in order to be backward-compatible with Julia 0.3.

If a module or file is not safely precompilable, it should call __precompile__(false) in order to throw an error

if Julia attempts to precompile it.

__precompile__() should not be used in a module unless all of its dependencies are also using __precom-

pile__(). Failure to do so can result in a runtime error when loading the module.

source

Base.include – Function.

include(path::AbstractString)

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/loading.jl#L359-L364
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/loading.jl#L378-L396
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/loading.jl#L659-L668
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/loading.jl#L314-L329

45.2. GETTING AROUND 425

Evaluate the contents of the input source file in the current context. Returns the result of the last evaluated

expression of the input file. During including, a task-local include path is set to the directory containing the file.

Nested calls to includewill search relative to that path. All paths refer to files on node 1when running in parallel,

and files will be fetched from node 1. This function is typically used to load source interactively, or to combine

files in packages that are broken into multiple source files.

source

Base.include_string – Function.

include_string(code::AbstractString, filename::AbstractString="string")

Like include, except reads code from the given string rather than from a file. Since there is no file path involved,

no path processing or fetching from node 1 is done.

source

Base.include_dependency – Function.

include_dependency(path::AbstractString)

In a module, declare that the file specified by path (relative or absolute) is a dependency for precompilation; that

is, the module will need to be recompiled if this file changes.

This is only needed if your module depends on a file that is not used via include. It has no effect outside of

compilation.

source

Base.Docs.apropos – Function.

apropos(string)

Search through all documentation for a string, ignoring case.

source

Base.which – Method.

which(f, types)

Returns the method of f (a Method object) that would be called for arguments of the given types.

If types is an abstract type, then the method that would be called by invoke is returned.

source

Base.which – Method.

which(symbol)

Return the module in which the binding for the variable referenced by symbolwas created.

source

Base.@which – Macro.

@which

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/loading.jl#L584-L593
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/loading.jl#L509-L514
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/loading.jl#L280-L289
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/utils.jl#L439-L443
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reflection.jl#L809-L815
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reflection.jl#L841-L845

426 CHAPTER 45. ESSENTIALS

Applied to a function ormacro call, it evaluates the arguments to the specified call, and returns the Method object

for the method that would be called for those arguments. Applied to a variable, it returns the module in which

the variable was bound. It calls out to the which function.

source

Base.methods – Function.

methods(f, [types])

Returns the method table for f.

If types is specified, returns an array of methods whose types match.

source

Base.methodswith – Function.

methodswith(typ[, module or function][, showparents::Bool=false])

Return an array of methods with an argument of type typ.

The optional second argument restricts the search to a particular module or function (the default is all modules,

starting from Main).

If optional showparents is true, also return arguments with a parent type of typ, excluding type Any.

source

Base.@show – Macro.

@show

Show an expression and result, returning the result.

source

Base.versioninfo – Function.

versioninfo(io::IO=STDOUT, verbose::Bool=false)

Print information about the version of Julia in use. If the verbose argument is true, detailed system information

is shown as well.

source

Base.workspace – Function.

workspace()

Replace the top-level module (Main) with a new one, providing a clean workspace. The previous Main module

is made available as LastMain. A previously-loaded package can be accessed using a statement such as using

LastMain.Package.

This function should only be used interactively.

source

ans – Keyword.

ans

A variable referring to the last computed value, automatically set at the interactive prompt.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/interactiveutil.jl#L430-L437
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reflection.jl#L572-L578
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/interactiveutil.jl#L513-L523
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L743-L747
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/interactiveutil.jl#L247-L252
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/interactiveutil.jl#L627-L635
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/basedocs.jl#L684-L688

45.3. ALL OBJECTS 427

45.3 All Objects

Core.:=== – Function.

===(x,y) -> Bool

(x,y) -> Bool

Determinewhether x and y are identical, in the sense that no program could distinguish them. Compares mutable

objects by address in memory, and compares immutable objects (such as numbers) by contents at the bit level.

This function is sometimes called egal.

julia> a = [1, 2]; b = [1, 2];

julia> a == b

true

julia> a === b

false

julia> a === a

true

source

Core.isa – Function.

isa(x, type) -> Bool

Determine whether x is of the given type. Can also be used as an infix operator, e.g. x isa type.

source

Base.isequal – Method.

isequal(x, y)

Similar to ==, except treats all floating-point NaN values as equal to each other, and treats -0.0 as unequal to

0.0. The default implementation of isequal calls ==, so if you have a type that doesn’t have these floating-

point subtleties then you probably only need to define ==.

isequal is the comparison function used by hash tables (Dict). isequal(x,y) must imply that hash(x) ==

hash(y).

This typically means that if you define your own == function then you must define a corresponding hash (and vice

versa). Collections typically implement isequal by calling isequal recursively on all contents.

Scalar types generally do not need to implement isequal separate from ==, unless they represent floating-point

numbers amenable to a more efficient implementation than that provided as a generic fallback (based on isnan,

signbit, and ==).

julia> isequal([1., NaN], [1., NaN])

true

julia> [1., NaN] == [1., NaN]

false

julia> 0.0 == -0.0

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/operators.jl#L132-L152
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1898-L1903

428 CHAPTER 45. ESSENTIALS

true

julia> isequal(0.0, -0.0)

false

source

Base.isequal – Method.

isequal(x, y)

Similar to ==, except treats all floating-point NaN values as equal to each other, and treats -0.0 as unequal to

0.0. The default implementation of isequal calls ==, so if you have a type that doesn’t have these floating-

point subtleties then you probably only need to define ==.

isequal is the comparison function used by hash tables (Dict). isequal(x,y) must imply that hash(x) ==

hash(y).

This typically means that if you define your own == function then you must define a corresponding hash (and vice

versa). Collections typically implement isequal by calling isequal recursively on all contents.

Scalar types generally do not need to implement isequal separate from ==, unless they represent floating-point

numbers amenable to a more efficient implementation than that provided as a generic fallback (based on isnan,

signbit, and ==).

julia> isequal([1., NaN], [1., NaN])

true

julia> [1., NaN] == [1., NaN]

false

julia> 0.0 == -0.0

true

julia> isequal(0.0, -0.0)

false

source

isequal(x::Nullable, y::Nullable)

If neither x nor y is null, compare them according to their values (i.e. isequal(get(x), get(y))). Else, return

true if both arguments are null, and false if one is null but not the other: nulls are considered equal.

source

Base.isless – Function.

isless(x, y)

Test whether x is less than y, according to a canonical total order. Values that are normally unordered, such as

NaN, are ordered in an arbitrary but consistent fashion. This is the default comparison used by sort. Non-numeric

types with a canonical total order should implement this function. Numeric types only need to implement it if

they have special values such as NaN.

source

Base.isless – Method.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/operators.jl#L54-L86
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/operators.jl#L54-L86
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/nullable.jl#L198-L204
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1495-L1503

45.3. ALL OBJECTS 429

isless(x::Nullable, y::Nullable)

If neither x nor y is null, compare them according to their values (i.e. isless(get(x), get(y))). Else, return

true if only y is null, and false otherwise: nulls are always considered greater than non-nulls, but not greater

than another null.

source

Base.ifelse – Function.

ifelse(condition::Bool, x, y)

Return x if condition is true, otherwise return y. This differs from ? or if in that it is an ordinary function, so

all the arguments are evaluated first. In some cases, using ifelse instead of an if statement can eliminate the

branch in generated code and provide higher performance in tight loops.

julia> ifelse(1 > 2, 1, 2)

2

source

Base.lexcmp – Function.

lexcmp(x, y)

Compare x and y lexicographically and return -1, 0, or 1 depending on whether x is less than, equal to, or greater

than y, respectively. This function should be defined for lexicographically comparable types, and lexless will

call lexcmp by default.

julia> lexcmp("abc", "abd")

-1

julia> lexcmp("abc", "abc")

0

source

Base.lexless – Function.

lexless(x, y)

Determine whether x is lexicographically less than y.

julia> lexless("abc", "abd")

true

source

Core.typeof – Function.

typeof(x)

Get the concrete type of x.

source

Core.tuple – Function.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/nullable.jl#L217-L224
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/operators.jl#L269-L281
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/operators.jl#L305-L319
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/operators.jl#L322-L331
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L868-L872

430 CHAPTER 45. ESSENTIALS

tuple(xs...)

Construct a tuple of the given objects.

julia> tuple(1, 'a', pi)

(1, 'a', π = 3.1415926535897...)

source

Base.ntuple – Function.

ntuple(f::Function, n::Integer)

Create a tuple of length n, computing each element as f(i), where i is the index of the element.

julia> ntuple(i -> 2*i, 4)

(2, 4, 6, 8)

source

Base.object_id – Function.

object_id(x)

Get a hash value for x based on object identity. object_id(x)==object_id(y) if x === y.

source

Base.hash – Function.

hash(x[, h::UInt])

Compute an integer hash code such that isequal(x,y) implies hash(x)==hash(y). The optional second ar-

gument h is a hash code to be mixed with the result.

New types should implement the 2-argument form, typically by calling the 2-argument hash method recursively

in order to mix hashes of the contents with each other (and with h). Typically, any type that implements hash

should also implement its own == (hence isequal) to guarantee the property mentioned above.

source

Base.finalizer – Function.

finalizer(x, f)

Register a function f(x) to be called when there are no program-accessible references to x. The type of x must

be a mutable struct, otherwise the behavior of this function is unpredictable.

source

Base.finalize – Function.

finalize(x)

Immediately run finalizers registered for object x.

source

Base.copy – Function.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L547-L556
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/tuple.jl#L96-L106
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1581-L1585
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1224-L1234
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1630-L1636
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L978-L982

45.3. ALL OBJECTS 431

copy(x)

Create a shallow copy of x: the outer structure is copied, but not all internal values. For example, copying an array

produces a new array with identically-same elements as the original.

source

Base.deepcopy – Function.

deepcopy(x)

Create a deep copy of x: everything is copied recursively, resulting in a fully independent object. For example,

deep-copying an array produces a new array whose elements are deep copies of the original elements. Calling

deepcopy on an object should generally have the same effect as serializing and then deserializing it.

As a special case, functions can only be actually deep-copied if they are anonymous, otherwise they are just

copied. The difference is only relevant in the case of closures, i.e. functions which may contain hidden internal

references.

While it isn’t normally necessary, user-defined types can override the default deepcopy behavior by defining

a specialized version of the function deepcopy_internal(x::T, dict::ObjectIdDict) (which shouldn’t

otherwise be used), where T is the type to be specialized for, and dict keeps track of objects copied so far within

the recursion. Within the definition, deepcopy_internal should be used in place of deepcopy, and the dict

variable should be updated as appropriate before returning.

source

Core.isdefined – Function.

isdefined([m::Module,] s::Symbol)

isdefined(object, s::Symbol)

isdefined(object, index::Int)

Tests whether an assignable location is defined. The arguments can be a module and a symbol or a composite

object and field name (as a symbol) or index. With a single symbol argument, tests whether a global variable with

that name is defined in current_module().

source

Base.convert – Function.

convert(T, x)

Convert x to a value of type T.

If T is an Integer type, an InexactError will be raised if x is not representable by T, for example if x is not

integer-valued, or is outside the range supported by T.

julia> convert(Int, 3.0)

3

julia> convert(Int, 3.5)

ERROR: InexactError()

Stacktrace:

[1] convert(::Type{Int64}, ::Float64) at ./float.jl:679

If T is a AbstractFloat or Rational type, then it will return the closest value to x representable by T.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1331-L1337
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L2245-L2263
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1280-L1288

432 CHAPTER 45. ESSENTIALS

julia> x = 1/3

0.3333333333333333

julia> convert(Float32, x)

0.33333334f0

julia> convert(Rational{Int32}, x)

1//3

julia> convert(Rational{Int64}, x)

6004799503160661//18014398509481984

If T is a collection type and x a collection, the result of convert(T, x) may alias x.

julia> x = Int[1,2,3];

julia> y = convert(Vector{Int}, x);

julia> y === x

true

Similarly, if T is a composite type and x a related instance, the result of convert(T, x)may alias part or all of x.

julia> x = speye(5);

julia> typeof(x)

SparseMatrixCSC{Float64,Int64}

julia> y = convert(SparseMatrixCSC{Float64,Int64}, x);

julia> z = convert(SparseMatrixCSC{Float32,Int64}, y);

julia> y === x

true

julia> z === x

false

julia> z.colptr === x.colptr

true

source

Base.promote – Function.

promote(xs...)

Convert all arguments to their common promotion type (if any), and return them all (as a tuple).

source

Base.oftype – Function.

oftype(x, y)

Convert y to the type of x (convert(typeof(x), y)).

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1924-L1991
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L398-L402
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L369-L373

45.4. TYPES 433

Base.widen – Function.

widen(x)

If x is a type, return a ”larger” type (for numeric types, this will be a type with at least as much range and precision

as the argument, and usually more). Otherwise x is converted to widen(typeof(x)).

julia> widen(Int32)

Int64

julia> widen(1.5f0)

1.5

source

Base.identity – Function.

identity(x)

The identity function. Returns its argument.

julia> identity("Well, what did you expect?")

"Well, what did you expect?"

source

45.4 Types

Base.supertype – Function.

supertype(T::DataType)

Return the supertype of DataType T.

julia> supertype(Int32)

Signed

source

Core.issubtype – Function.

issubtype(type1, type2)

Return true if and only if all values of type1 are also of type2. Can also be written using the <: infix operator

as type1 <: type2.

julia> issubtype(Int8, Int32)

false

julia> Int8 <: Integer

true

source

Base.:<: – Function.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L2266-L2280
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/operators.jl#L387-L396
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/operators.jl#L30-L39
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1614-L1627

434 CHAPTER 45. ESSENTIALS

<:(T1, T2)

Subtype operator, equivalent to issubtype(T1, T2).

julia> Float64 <: AbstractFloat

true

julia> Vector{Int} <: AbstractArray

true

julia> Matrix{Float64} <: Matrix{AbstractFloat}

false

source

Base.:>: – Function.

>:(T1, T2)

Supertype operator, equivalent to issubtype(T2, T1).

source

Base.subtypes – Function.

subtypes(T::DataType)

Return a list of immediate subtypes of DataType T. Note that all currently loaded subtypes are included, including

those not visible in the current module.

julia> subtypes(Integer)

4-element Array{Union{DataType, UnionAll},1}:

BigInt

Bool

Signed

Unsigned

source

Base.typemin – Function.

typemin(T)

The lowest value representable by the given (real) numeric DataType T.

julia> typemin(Float16)

-Inf16

julia> typemin(Float32)

-Inf32

source

Base.typemax – Function.

typemax(T)

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/operators.jl#L5-L20
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/operators.jl#L23-L27
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reflection.jl#L445-L459
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L853-L865

45.4. TYPES 435

The highest value representable by the given (real) numeric DataType.

source

Base.realmin – Function.

realmin(T)

The smallest in absolute value non-subnormal value representable by the given floating-point DataType T.

source

Base.realmax – Function.

realmax(T)

The highest finite value representable by the given floating-point DataType T.

julia> realmax(Float16)

Float16(6.55e4)

julia> realmax(Float32)

3.4028235f38

source

Base.maxintfloat – Function.

maxintfloat(T)

The largest integer losslessly representable by the given floating-point DataType T.

source

Base.sizeof – Method.

sizeof(T)

Size, in bytes, of the canonical binary representation of the given DataType T, if any.

julia> sizeof(Float32)

4

julia> sizeof(Complex128)

16

If T does not have a specific size, an error is thrown.

julia> sizeof(Base.LinAlg.LU)

ERROR: argument is an abstract type; size is indeterminate

Stacktrace:

[1] sizeof(::Type{T} where T) at ./essentials.jl:159

source

Base.eps – Method.

eps(::Type{T}) where T<:AbstractFloat

eps()

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1369-L1373
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L2231-L2235
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L827-L839
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1116-L1120
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L325-L346

436 CHAPTER 45. ESSENTIALS

Returns the machine epsilon of the floating point type T (T = Float64 by default). This is defined as the gap

between 1 and the next largest value representable by T, and is equivalent to eps(one(T)).

julia> eps()

2.220446049250313e-16

julia> eps(Float32)

1.1920929f-7

julia> 1.0 + eps()

1.0000000000000002

julia> 1.0 + eps()/2

1.0

source

Base.eps – Method.

eps(x::AbstractFloat)

Returns the unit in last place (ulp) of x. This is the distance between consecutive representable floating point

values at x. In most cases, if the distance on either side of x is different, then the larger of the two is taken, that is

eps(x) == max(x-prevfloat(x), nextfloat(x)-x)

The exceptions to this rule are the smallest and largest finite values (e.g. nextfloat(-Inf) andprevfloat(Inf)

for Float64), which round to the smaller of the values.

The rationale for this behavior is that eps bounds the floating point rounding error. Under the default Round-

Nearest rounding mode, if y is a real number and x is the nearest floating point number to y, then

|y − x| ≤ eps(x)/2.

julia> eps(1.0)

2.220446049250313e-16

julia> eps(prevfloat(2.0))

2.220446049250313e-16

julia> eps(2.0)

4.440892098500626e-16

julia> x = prevfloat(Inf) # largest finite Float64

1.7976931348623157e308

julia> x + eps(x)/2 # rounds up

Inf

julia> x + prevfloat(eps(x)/2) # rounds down

1.7976931348623157e308

source

Base.promote_type – Function.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/float.jl#L718-L739
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/float.jl#L742-L782

45.4. TYPES 437

promote_type(type1, type2)

Determine a type big enough to hold values of each argument type without loss, whenever possible. In some

cases, where no type exists to which both types can be promoted losslessly, some loss is tolerated; for example,

promote_type(Int64, Float64) returns Float64 even though strictly, not all Int64 values can be repre-

sented exactly as Float64 values.

julia> promote_type(Int64, Float64)

Float64

julia> promote_type(Int32, Int64)

Int64

julia> promote_type(Float32, BigInt)

BigFloat

source

Base.promote_rule – Function.

promote_rule(type1, type2)

Specifies what type should be used by promote when given values of types type1 and type2. This function

should not be called directly, but should have definitions added to it for new types as appropriate.

source

Core.getfield – Function.

getfield(value, name::Symbol)

Extract a named field from a value of composite type. The syntax a.b calls getfield(a, :b).

julia> a = 1//2

1//2

julia> getfield(a, :num)

1

source

Core.setfield! – Function.

setfield!(value, name::Symbol, x)

Assign x to a named field in value of composite type. The syntax a.b = c calls setfield!(a, :b, c).

source

Base.fieldoffset – Function.

fieldoffset(type, i)

The byte offset of field i of a type relative to the data start. For example, we could use it in the following manner

to summarize information about a struct:

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/promotion.jl#L134-L153
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1839-L1845
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L764-L777
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1660-L1665

438 CHAPTER 45. ESSENTIALS

julia> structinfo(T) = [(fieldoffset(T,i), fieldname(T,i), fieldtype(T,i)) for i =

1:nfields(T)];↪→

julia> structinfo(Base.Filesystem.StatStruct)

12-element Array{Tuple{UInt64,Symbol,DataType},1}:

(0x0000000000000000, :device, UInt64)

(0x0000000000000008, :inode, UInt64)

(0x0000000000000010, :mode, UInt64)

(0x0000000000000018, :nlink, Int64)

(0x0000000000000020, :uid, UInt64)

(0x0000000000000028, :gid, UInt64)

(0x0000000000000030, :rdev, UInt64)

(0x0000000000000038, :size, Int64)

(0x0000000000000040, :blksize, Int64)

(0x0000000000000048, :blocks, Int64)

(0x0000000000000050, :mtime, Float64)

(0x0000000000000058, :ctime, Float64)

source

Core.fieldtype – Function.

fieldtype(T, name::Symbol | index::Int)

Determine the declared type of a field (specified by name or index) in a composite DataType T.

julia> struct Foo

x::Int64

y::String

end

julia> fieldtype(Foo, :x)

Int64

julia> fieldtype(Foo, 2)

String

source

Base.isimmutable – Function.

isimmutable(v)

Return true iff value v is immutable. See Mutable Composite Types for a discussion of immutability. Note that

this function works on values, so if you give it a type, it will tell you that a value of DataType is mutable.

julia> isimmutable(1)

true

julia> isimmutable([1,2])

false

source

Base.isbits – Function.

isbits(T)

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reflection.jl#L310-L334
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reflection.jl#L337-L354
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reflection.jl#L199-L213

45.4. TYPES 439

Return true if T is a ”plain data” type, meaning it is immutable and contains no references to other values. Typical

examples are numeric types such as UInt8, Float64, and Complex{Float64}.

julia> isbits(Complex{Float64})

true

julia> isbits(Complex)

false

source

Base.isleaftype – Function.

isleaftype(T)

Determine whether T’s only subtypes are itself and Union{}. This means T is a concrete type that can have

instances.

julia> isleaftype(Complex)

false

julia> isleaftype(Complex{Float32})

true

julia> isleaftype(Vector{Complex})

true

julia> isleaftype(Vector{Complex{Float32}})

true

source

Base.typejoin – Function.

typejoin(T, S)

Compute a type that contains both T and S.

source

Base.typeintersect – Function.

typeintersect(T, S)

Compute a type that contains the intersection of T and S. Usually this will be the smallest such type or one close

to it.

source

Base.Val – Type.

Val{c}

Create a ”value type” out of c, which must be an isbits value. The intent of this construct is to be able to dis-

patch on constants, e.g., f(Val{false}) allows you to dispatch directly (at compile-time) to an implementation

f(::Type{Val{false}}), without having to test the boolean value at runtime.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reflection.jl#L218-L232
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reflection.jl#L237-L256
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1155-L1159
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reflection.jl#L301-L306
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L2300-L2307

440 CHAPTER 45. ESSENTIALS

Base.Enums.@enum – Macro.

@enum EnumName[::BaseType] EnumValue1[=x] EnumValue2[=y]

Create an Enum{BaseType} subtypewith name EnumName and enummember values of EnumValue1 and Enum-

Value2 with optional assigned values of x and y, respectively. EnumName can be used just like other types and

enum member values as regular values, such as

julia> @enum Fruit apple=1 orange=2 kiwi=3

julia> f(x::Fruit) = "I'm a Fruit with value: $(Int(x))"

f (generic function with 1 method)

julia> f(apple)

"I'm a Fruit with value: 1"

BaseType, which defaults to Int32, must be a primitive subtype of Integer. Member values can be converted

between the enum type and BaseType. read and write perform these conversions automatically.

source

Base.instances – Function.

instances(T::Type)

Return a collection of all instances of the given type, if applicable. Mostly used for enumerated types (see @enum).

julia> @enum Colors Red Blue Green

julia> instances(Colors)

(Red::Colors = 0, Blue::Colors = 1, Green::Colors = 2)

source

45.5 Generic Functions

Core.Function – Type.

Function

Abstract type of all functions.

julia> isa(+, Function)

true

julia> typeof(sin)

Base.#sin

julia> ans <: Function

true

source

Base.method_exists – Function.

method_exists(f, Tuple type, world=typemax(UInt)) -> Bool

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/Enums.jl#L31-L51
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reflection.jl#L386-L398
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/basedocs.jl#L726-L741

45.5. GENERIC FUNCTIONS 441

Determine whether the given generic function has a method matching the given Tuple of argument types with

the upper bound of world age given by world.

julia> method_exists(length, Tuple{Array})

true

source

Core.applicable – Function.

applicable(f, args...) -> Bool

Determine whether the given generic function has a method applicable to the given arguments.

julia> function f(x, y)

x + y

end;

julia> applicable(f, 1)

false

julia> applicable(f, 1, 2)

true

source

Core.invoke – Function.

invoke(f, types <: Tuple, args...)

Invoke a method for the given generic function matching the specified types, on the specified arguments. The

arguments must be compatible with the specified types. This allows invoking a method other than the most

specific matching method, which is useful when the behavior of a more general definition is explicitly needed

(often as part of the implementation of a more specific method of the same function).

source

Base.invokelatest – Function.

invokelatest(f, args...)

Calls f(args...), but guarantees that the most recent method of fwill be executed. This is useful in specialized

circumstances, e.g. long-running event loops or callback functions that may call obsolete versions of a function

f. (The drawback is that invokelatest is somewhat slower than calling f directly, and the type of the result

cannot be inferred by the compiler.)

source

Base.:|> – Function.

|>(x, f)

Applies a function to the preceding argument. This allows for easy function chaining.

julia> [1:5;] |> x->x.^2 |> sum |> inv

0.01818181818181818

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reflection.jl#L921-L931
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1994-L2010
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L992-L1000
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/essentials.jl#L360-L369

442 CHAPTER 45. ESSENTIALS

source

Base.: – Function.

f g

Compose functions: i.e. (f g)(args...) means f(g(args...)). The symbol can be entered in the Julia

REPL (and most editors, appropriately configured) by typing \circ<tab>. Example:

julia> map(uppercasehex, 250:255)

6-element Array{String,1}:

"FA"

"FB"

"FC"

"FD"

"FE"

"FF"

source

45.6 Syntax

Core.eval – Function.

eval([m::Module], expr::Expr)

Evaluate an expression in the given module and return the result. Every Module (except those defined with

baremodule) has its own 1-argument definition of eval, which evaluates expressions in that module.

source

Base.@eval – Macro.

@eval [mod,] ex

Evaluate an expression with values interpolated into it using eval. If two arguments are provided, the first is the

module to evaluate in.

source

Base.evalfile – Function.

evalfile(path::AbstractString, args::Vector{String}=String[])

Load the file using include, evaluate all expressions, and return the value of the last one.

source

Base.esc – Function.

esc(e::ANY)

Only valid in the context of an Expr returned from a macro. Prevents the macro hygiene pass from turning em-

bedded variables into gensym variables. See the Macros section of the Metaprogramming chapter of the manual

for more details and examples.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/operators.jl#L852-L861
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/operators.jl#L866-L883
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/expr.jl#L102-L108
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/essentials.jl#L46-L51
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/loading.jl#L596-L601
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/essentials.jl#L193-L199

45.6. SYNTAX 443

Base.@inbounds – Macro.

@inbounds(blk)

Eliminates array bounds checking within expressions.

In the example below the bound check of array A is skipped to improve performance.

function sum(A::AbstractArray)

r = zero(eltype(A))

for i = 1:length(A)

@inbounds r += A[i]

end

return r

end

Warning

Using @inbounds may return incorrect results/crashes/corruption for out-of-bounds indices. The

user is responsible for checking it manually.

source

Base.@inline – Macro.

@inline

Give a hint to the compiler that this function is worth inlining.

Small functions typically do not need the @inline annotation, as the compiler does it automatically. By using

@inline on bigger functions, an extra nudge can be given to the compiler to inline it. This is shown in the

following example:

@inline function bigfunction(x)

#=

Function Definition

=#

end

source

Base.@noinline – Macro.

@noinline

Prevents the compiler from inlining a function.

Small functions are typically inlined automatically. By using @noinline on small functions, auto-inlining can be

prevented. This is shown in the following example:

@noinline function smallfunction(x)

#=

Function Definition

=#

end

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/essentials.jl#L209-L230
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/expr.jl#L111-L128
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/expr.jl#L133-L149

444 CHAPTER 45. ESSENTIALS

Base.gensym – Function.

gensym([tag])

Generates a symbol which will not conflict with other variable names.

source

Base.@gensym – Macro.

@gensym

Generates a gensym symbol for a variable. For example, @gensym x y is transformed into x = gensym("x");

y = gensym("y").

source

Base.@polly – Macro.

@polly

Tells the compiler to apply the polyhedral optimizer Polly to a function.

source

Base.parse – Method.

parse(str, start; greedy=true, raise=true)

Parse the expression string and return an expression (which could later be passed to eval for execution). start

is the index of the first character to start parsing. If greedy is true (default), parse will try to consume as

much input as it can; otherwise, it will stop as soon as it has parsed a valid expression. Incomplete but otherwise

syntactically valid expressions will return Expr(:incomplete, "(error message)"). If raise is true (de-

fault), syntax errors other than incomplete expressions will raise an error. If raise is false, parsewill return an

expression that will raise an error upon evaluation.

source

Base.parse – Method.

parse(str; raise=true)

Parse the expression string greedily, returning a single expression. An error is thrown if there are additional

characters after the first expression. If raise is true (default), syntax errors will raise an error; otherwise, parse

will return an expression that will raise an error upon evaluation.

source

45.7 Nullables

Base.Nullable – Type.

Nullable(x, hasvalue::Bool=true)

Wrap value x in an object of type Nullable, which indicates whether a value is present. Nullable(x) yields

a non-empty wrapper and Nullable{T}() yields an empty instance of a wrapper that might contain a value of

type T.

Nullable(x, false) yields Nullable{typeof(x)}()with x stored in the result’s value field.

Examples

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/expr.jl#L5-L9
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/expr.jl#L18-L23
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/expr.jl#L173-L177
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1003-L1013
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1016-L1023

45.7. NULLABLES 445

julia> Nullable(1)

Nullable{Int64}(1)

julia> Nullable{Int64}()

Nullable{Int64}()

julia> Nullable(1, false)

Nullable{Int64}()

julia> dump(Nullable(1, false))

Nullable{Int64}

hasvalue: Bool false

value: Int64 1

source

Base.get – Method.

get(x::Nullable[, y])

Attempt to access the value of x. Returns the value if it is present; otherwise, returns y if provided, or throws a

NullException if not.

source

Base.isnull – Function.

isnull(x)

Return whether or not x is null for Nullable x; return false for all other x.

Examples

julia> x = Nullable(1, false)

Nullable{Int64}()

julia> isnull(x)

true

julia> x = Nullable(1, true)

Nullable{Int64}(1)

julia> isnull(x)

false

julia> x = 1

1

julia> isnull(x)

false

source

Base.unsafe_get – Function.

unsafe_get(x)

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/nullable.jl#L6-L33
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/nullable.jl#L78-L83
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/nullable.jl#L128-L155

446 CHAPTER 45. ESSENTIALS

Return the value of x for Nullable x; return x for all other x.

This method does not check whether or not x is null before attempting to access the value of x for x::Nullable

(hence ”unsafe”).

julia> x = Nullable(1)

Nullable{Int64}(1)

julia> unsafe_get(x)

1

julia> x = Nullable{String}()

Nullable{String}()

julia> unsafe_get(x)

ERROR: UndefRefError: access to undefined reference

Stacktrace:

[1] unsafe_get(::Nullable{String}) at ./nullable.jl:125

julia> x = 1

1

julia> unsafe_get(x)

1

source

45.8 System

Base.run – Function.

run(command, args...)

Run a command object, constructedwith backticks. Throws an error if anything goeswrong, including the process

exiting with a non-zero status.

source

Base.spawn – Function.

spawn(command)

Run a command object asynchronously, returning the resulting Process object.

source

Base.DevNull – Constant.

DevNull

Used in a stream redirect to discard all data written to it. Essentially equivalent to /dev/null on Unix or NUL on

Windows. Usage:

run(pipeline(`cat test.txt`, DevNull))

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/nullable.jl#L94-L124
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/process.jl#L643-L648
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1273-L1277
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/basedocs.jl#L714-L723

45.8. SYSTEM 447

Base.success – Function.

success(command)

Run a command object, constructed with backticks, and tell whether it was successful (exited with a code of 0).

An exception is raised if the process cannot be started.

source

Base.process_running – Function.

process_running(p::Process)

Determine whether a process is currently running.

source

Base.process_exited – Function.

process_exited(p::Process)

Determine whether a process has exited.

source

Base.kill – Method.

kill(p::Process, signum=SIGTERM)

Send a signal to a process. The default is to terminate the process.

source

Base.Sys.set_process_title – Function.

Sys.set_process_title(title::AbstractString)

Set the process title. No-op on some operating systems.

source

Base.Sys.get_process_title – Function.

Sys.get_process_title()

Get the process title. On some systems, will always return an empty string.

source

Base.readandwrite – Function.

readandwrite(command)

Starts running a command asynchronously, and returns a tuple (stdout,stdin,process) of the output stream and

input stream of the process, and the process object itself.

source

Base.ignorestatus – Function.

ignorestatus(command)

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/process.jl#L672-L677
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/process.jl#L728-L732
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/process.jl#L737-L741
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/process.jl#L705-L709
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/sysinfo.jl#L181-L185
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/sysinfo.jl#L169-L173
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/process.jl#L614-L619

448 CHAPTER 45. ESSENTIALS

Mark a command object so that running it will not throw an error if the result code is non-zero.

source

Base.detach – Function.

detach(command)

Mark a command object so that it will be run in a new process group, allowing it to outlive the julia process, and

not have Ctrl-C interrupts passed to it.

source

Base.Cmd – Type.

Cmd(cmd::Cmd; ignorestatus, detach, windows_verbatim, windows_hide, env, dir)

Construct a new Cmd object, representing an external program and arguments, from cmd, while changing the

settings of the optional keyword arguments:

• ignorestatus::Bool: If true (defaults to false), then the Cmdwill not throw an error if the return code

is nonzero.

• detach::Bool: If true (defaults to false), then the Cmdwill be run in a new process group, allowing it to

outlive the julia process and not have Ctrl-C passed to it.

• windows_verbatim::Bool: If true (defaults to false), then onWindows the Cmdwill send a command-

line string to the process with no quoting or escaping of arguments, even arguments containing spaces. (On

Windows, arguments are sent to a program as a single ”command-line” string, and programs are responsible

for parsing it into arguments. By default, empty arguments and arguments with spaces or tabs are quoted

with double quotes " in the command line, and \ or " are preceded by backslashes. windows_verba-

tim=true is useful for launching programs that parse their command line in nonstandard ways.) Has no

effect on non-Windows systems.

• windows_hide::Bool: If true (defaults to false), then onWindows no new consolewindow is displayed

when the Cmd is executed. This has no effect if a console is already open or on non-Windows systems.

• env: Set environment variables to use when running the Cmd. env is either a dictionary mapping strings

to strings, an array of strings of the form "var=val", an array or tuple of "var"=>val pairs, or nothing.

In order to modify (rather than replace) the existing environment, create env by copy(ENV) and then set

env["var"]=val as desired.

• dir::AbstractString: Specify a working directory for the command (instead of the current directory).

For any keywords that are not specified, the current settings from cmd are used. Normally, to create a Cmd object

in the first place, one uses backticks, e.g.

Cmd(`echo "Hello world"`, ignorestatus=true, detach=false)

source

Base.setenv – Function.

setenv(command::Cmd, env; dir="")

Set environment variables to use when running the given command. env is either a dictionary mapping strings to

strings, an arrayof strings of the form "var=val", or zero ormore "var"=>val pair arguments. In order tomodify

(rather than replace) the existing environment, create env by copy(ENV) and then setting env["var"]=val as

desired, or use withenv.

The dir keyword argument can be used to specify a working directory for the command.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/process.jl#L180-L184
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/process.jl#L189-L193
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/process.jl#L33-L67
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/process.jl#L214-L224

45.8. SYSTEM 449

Base.withenv – Function.

withenv(f::Function, kv::Pair...)

Executef() in an environment that is temporarilymodified (not replaced as insetenv) by zero ormore"var"=>val

arguments kv. withenv is generally used via the withenv(kv...) do ... end syntax. A value of nothing

can be used to temporarily unset an environment variable (if it is set). When withenv returns, the original envi-

ronment has been restored.

source

Base.pipeline – Method.

pipeline(from, to, ...)

Create a pipeline from a data source to a destination. The source and destination can be commands, I/O streams,

strings, or results of other pipeline calls. At least one argument must be a command. Strings refer to file-

names. When called with more than two arguments, they are chained together from left to right. For example

pipeline(a,b,c) is equivalent to pipeline(pipeline(a,b),c). This provides a more concise way to spec-

ify multi-stage pipelines.

Examples:

run(pipeline(`ls`, `grep xyz`))

run(pipeline(`ls`, "out.txt"))

run(pipeline("out.txt", `grep xyz`))

source

Base.pipeline – Method.

pipeline(command; stdin, stdout, stderr, append=false)

Redirect I/O to or from the given command. Keyword arguments specify which of the command’s streams should

be redirected. append controls whether file output appends to the file. This is a more general version of the

2-argument pipeline function. pipeline(from, to) is equivalent to pipeline(from, stdout=to)when

from is a command, and to pipeline(to, stdin=from)when from is another kind of data source.

Examples:

run(pipeline(`dothings`, stdout="out.txt", stderr="errs.txt"))

run(pipeline(`update`, stdout="log.txt", append=true))

source

Base.Libc.gethostname – Function.

gethostname() -> AbstractString

Get the local machine’s host name.

source

Base.getipaddr – Function.

getipaddr() -> IPAddr

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/env.jl#L142-L150
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/process.jl#L283-L300
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/process.jl#L248-L263
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libc.jl#L236-L240

450 CHAPTER 45. ESSENTIALS

Get the IP address of the local machine.

source

Base.Libc.getpid – Function.

getpid() -> Int32

Get Julia’s process ID.

source

Base.Libc.time – Method.

time()

Get the system time in seconds since the epoch, with fairly high (typically, microsecond) resolution.

source

Base.time_ns – Function.

time_ns()

Get the time in nanoseconds. The time corresponding to 0 is undefined, and wraps every 5.8 years.

source

Base.tic – Function.

tic()

Set a timer to be read by the next call to toc or toq. The macro call @time expr can also be used to time

evaluation.

julia> tic()

0x0000c45bc7abac95

julia> sleep(0.3)

julia> toc()

elapsed time: 0.302745944 seconds

0.302745944

source

Base.toc – Function.

toc()

Print and return the time elapsed since the last tic. The macro call @time expr can also be used to time evalu-

ation.

julia> tic()

0x0000c45bc7abac95

julia> sleep(0.3)

julia> toc()

elapsed time: 0.302745944 seconds

0.302745944

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/socket.jl#L662-L666
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libc.jl#L227-L231
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1677-L1681
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/util.jl#L9-L13
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/util.jl#L79-L95

45.8. SYSTEM 451

source

Base.toq – Function.

toq()

Return, but do not print, the time elapsed since the last tic. The macro calls @timed expr and @elapsed expr

also return evaluation time.

julia> tic()

0x0000c46477a9675d

julia> sleep(0.3)

julia> toq()

0.302251004

source

Base.@time – Macro.

@time

A macro to execute an expression, printing the time it took to execute, the number of allocations, and the total

number of bytes its execution caused to be allocated, before returning the value of the expression.

See also @timev, @timed, @elapsed, and @allocated.

julia> @time rand(10^6);

0.001525 seconds (7 allocations: 7.630 MiB)

julia> @time begin

sleep(0.3)

1+1

end

0.301395 seconds (8 allocations: 336 bytes)

source

Base.@timev – Macro.

@timev

This is a verbose version of the @time macro. It first prints the same information as @time, then any non-zero

memory allocation counters, and then returns the value of the expression.

See also @time, @timed, @elapsed, and @allocated.

julia> @timev rand(10^6);

0.001006 seconds (7 allocations: 7.630 MiB)

elapsed time (ns): 1005567

bytes allocated: 8000256

pool allocs: 6

malloc() calls: 1

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/util.jl#L129-L145
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/util.jl#L102-L117
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/util.jl#L212-L232
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/util.jl#L246-L264

452 CHAPTER 45. ESSENTIALS

Base.@timed – Macro.

@timed

A macro to execute an expression, and return the value of the expression, elapsed time, total bytes allocated,

garbage collection time, and an object with various memory allocation counters.

See also @time, @timev, @elapsed, and @allocated.

julia> val, t, bytes, gctime, memallocs = @timed rand(10^6);

julia> t

0.006634834

julia> bytes

8000256

julia> gctime

0.0055765

julia> fieldnames(typeof(memallocs))

9-element Array{Symbol,1}:

:allocd

:malloc

:realloc

:poolalloc

:bigalloc

:freecall

:total_time

:pause

:full_sweep

julia> memallocs.total_time

5576500

source

Base.@elapsed – Macro.

@elapsed

Amacro to evaluate an expression, discarding the resulting value, instead returning the number of seconds it took

to execute as a floating-point number.

See also @time, @timev, @timed, and @allocated.

julia> @elapsed sleep(0.3)

0.301391426

source

Base.@allocated – Macro.

@allocated

A macro to evaluate an expression, discarding the resulting value, instead returning the total number of bytes

allocated during evaluation of the expression. Note: the expression is evaluated inside a local function, instead of

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/util.jl#L336-L373
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/util.jl#L276-L289

45.8. SYSTEM 453

the current context, in order to eliminate the effects of compilation, however, there still may be some allocations

due to JIT compilation. This also makes the results inconsistent with the @timemacros, which do not try to adjust

for the effects of compilation.

See also @time, @timev, @timed, and @elapsed.

julia> @allocated rand(10^6)

8000080

source

Base.EnvHash – Type.

EnvHash() -> EnvHash

A singleton of this type provides a hash table interface to environment variables.

source

Base.ENV – Constant.

ENV

Reference to the singleton EnvHash, providing a dictionary interface to system environment variables.

source

Base.is_unix – Function.

is_unix([os])

Predicate for testing if the OS provides a Unix-like interface. See documentation in Handling Operating System

Variation.

source

Base.is_apple – Function.

is_apple([os])

Predicate for testing if the OS is a derivative of Apple Macintosh OS X or Darwin. See documentation in Handling

Operating System Variation.

source

Base.is_linux – Function.

is_linux([os])

Predicate for testing if the OS is a derivative of Linux. See documentation in Handling Operating SystemVariation.

source

Base.is_bsd – Function.

is_bsd([os])

Predicate for testing if the OS is a derivative of BSD. See documentation in Handling Operating SystemVariation.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/util.jl#L304-L321
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/env.jl#L61-L65
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/env.jl#L68-L73
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/osutils.jl#L3-L8
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/osutils.jl#L43-L48
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/osutils.jl#L19-L24
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/osutils.jl#L27-L32

454 CHAPTER 45. ESSENTIALS

Base.is_windows – Function.

is_windows([os])

Predicate for testing if the OS is a derivative ofMicrosoftWindows NT. See documentation in Handling Operating

System Variation.

source

Base.Sys.windows_version – Function.

Sys.windows_version()

Returns the version number for the Windows NT Kernel as a (major, minor) pair, or (0, 0) if this is not running

on Windows.

source

Base.@static – Macro.

@static

Partially evaluates an expression at parse time.

For example, @static is_windows() ? foo : bar will evaluate is_windows() and insert either foo or

bar into the expression. This is useful in cases where a construct would be invalid on other platforms, such as a

ccall to a non-existent function. @static if is_apple() foo end and @static foo <&&,||> bar are

also valid syntax.

source

45.9 Errors

Base.error – Function.

error(message::AbstractString)

Raise an ErrorExceptionwith the given message.

source

Core.throw – Function.

throw(e)

Throw an object as an exception.

source

Base.rethrow – Function.

rethrow([e])

Throw an objectwithout changing the current exception backtrace. The default argument is the current exception

(if called within a catch block).

source

Base.backtrace – Function.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/osutils.jl#L35-L40
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/sysinfo.jl#L201-L206
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/osutils.jl#L51-L60
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1513-L1517
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L2068-L2072
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/error.jl#L32-L37

45.9. ERRORS 455

backtrace()

Get a backtrace object for the current program point.

source

Base.catch_backtrace – Function.

catch_backtrace()

Get the backtrace of the current exception, for use within catch blocks.

source

Base.assert – Function.

assert(cond)

Throw an AssertionError if cond is false. Also available as the macro @assert expr.

source

Base.@assert – Macro.

@assert cond [text]

Throw an AssertionError if cond is false. Preferred syntax forwriting assertions. Message text is optionally

displayed upon assertion failure.

source

Base.ArgumentError – Type.

ArgumentError(msg)

The parameters to a function call do not match a valid signature. Argument msg is a descriptive error string.

source

Base.AssertionError – Type.

AssertionError([msg])

The asserted condition did not evaluate to true. Optional argument msg is a descriptive error string.

source

Core.BoundsError – Type.

BoundsError([a],[i])

An indexing operation into an array, a, tried to access an out-of-bounds element, i.

source

Base.DimensionMismatch – Type.

DimensionMismatch([msg])

The objects called do not have matching dimensionality. Optional argument msg is a descriptive error string.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/error.jl#L41-L45
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/error.jl#L48-L52
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L177-L182
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1738-L1743
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/base.jl#L27-L32
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/base.jl#L79-L84
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L985-L989
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/base.jl#L68-L73

456 CHAPTER 45. ESSENTIALS

Core.DivideError – Type.

DivideError()

Integer division was attempted with a denominator value of 0.

source

Core.DomainError – Type.

DomainError()

The arguments to a function or constructor are outside the valid domain.

source

Base.EOFError – Type.

EOFError()

No more data was available to read from a file or stream.

source

Core.ErrorException – Type.

ErrorException(msg)

Generic error type. The error message, in the .msg field, may provide more specific details.

source

Core.InexactError – Type.

InexactError()

Type conversion cannot be done exactly.

source

Core.InterruptException – Type.

InterruptException()

The process was stopped by a terminal interrupt (CTRL+C).

source

Base.KeyError – Type.

KeyError(key)

An indexing operation into an Associative (Dict) or Set like object tried to access or delete a non-existent

element.

source

Base.LoadError – Type.

LoadError(file::AbstractString, line::Int, error)

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L2384-L2388
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1376-L1380
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/base.jl#L61-L65
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L656-L660
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1362-L1366
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1782-L1786
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/base.jl#L37-L42

45.9. ERRORS 457

An error occurred while includeing, requireing, or using a file. The error specifics should be available in the

.error field.

source

Base.MethodError – Type.

MethodError(f, args)

Amethod with the required type signature does not exist in the given generic function. Alternatively, there is no

unique most-specific method.

source

Base.NullException – Type.

NullException()

An attempted access to a Nullablewith no defined value.

source

Core.OutOfMemoryError – Type.

OutOfMemoryError()

An operation allocated too much memory for either the system or the garbage collector to handle properly.

source

Core.ReadOnlyMemoryError – Type.

ReadOnlyMemoryError()

An operation tried to write to memory that is read-only.

source

Core.OverflowError – Type.

OverflowError()

The result of an expression is too large for the specified type and will cause a wraparound.

source

Base.ParseError – Type.

ParseError(msg)

The expression passed to the parse function could not be interpreted as a valid Julia expression.

source

Base.Distributed.ProcessExitedException – Type.

ProcessExitedException()

After a client Julia process has exited, further attempts to reference the dead child will throw this exception.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/base.jl#L95-L100
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/base.jl#L47-L52
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1796-L1800
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L970-L975
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L349-L353
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1574-L1578
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/base.jl#L17-L22
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/distributed/cluster.jl#L815-L820

458 CHAPTER 45. ESSENTIALS

Core.StackOverflowError – Type.

StackOverflowError()

The function call grew beyond the size of the call stack. This usually happens when a call recurses infinitely.

source

Base.SystemError – Type.

SystemError(prefix::AbstractString, [errno::Int32])

A system call failed with an error code (in the errno global variable).

source

Core.TypeError – Type.

TypeError(func::Symbol, context::AbstractString, expected::Type, got)

A type assertion failure, or calling an intrinsic function with an incorrect argument type.

source

Core.UndefRefError – Type.

UndefRefError()

The item or field is not defined for the given object.

source

Core.UndefVarError – Type.

UndefVarError(var::Symbol)

A symbol in the current scope is not defined.

source

Base.InitError – Type.

InitError(mod::Symbol, error)

An error occurredwhen running amodule’s __init__ function. The actual error thrown is available in the .error

field.

source

Base.retry – Function.

retry(f::Function; delays=ExponentialBackOff(), check=nothing) -> Function

Returns an anonymous function that calls function f. If an exception arises, f is repeatedly called again, each time

check returns true, after waiting the number of seconds specified in delays. check should input delays’s

current state and the Exception.

Examples

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1418-L1423
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/base.jl#L3-L7
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1653-L1657
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L677-L681
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1527-L1531
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/base.jl#L107-L112

45.10. EVENTS 459

retry(f, delays=fill(5.0, 3))

retry(f, delays=rand(5:10, 2))

retry(f, delays=Base.ExponentialBackOff(n=3, first_delay=5, max_delay=1000))

retry(http_get, check=(s,e)->e.status == "503")(url)

retry(read, check=(s,e)->isa(e, UVError))(io, 128; all=false)

source

Base.ExponentialBackOff – Type.

ExponentialBackOff(; n=1, first_delay=0.05, max_delay=10.0, factor=5.0, jitter=0.1)

A Float64 iterator of length n whose elements exponentially increase at a rate in the interval factor * (1 ±

jitter). The first element is first_delay and all elements are clamped to max_delay.

source

45.10 Events

Base.Timer – Method.

Timer(callback::Function, delay, repeat=0)

Create a timer to call the given callback function. The callback is passed one argument, the timer object

itself. The callback will be invoked after the specified initial delay, and then repeating with the given repeat

interval. If repeat is 0, the timer is only triggered once. Times are in seconds. A timer is stopped and has its

resources freed by calling close on it.

source

Base.Timer – Type.

Timer(delay, repeat=0)

Create a timer that wakes up tasks waiting for it (by calling wait on the timer object) at a specified interval. Times

are in seconds. Waiting tasks are woken with an error when the timer is closed (by close. Use isopen to check

whether a timer is still active.

source

Base.AsyncCondition – Type.

AsyncCondition()

Create a async condition that wakes up tasks waiting for it (by calling wait on the object) when notified from C

by a call to uv_async_send. Waiting tasks are woken with an error when the object is closed (by close. Use

isopen to check whether it is still active.

source

Base.AsyncCondition – Method.

AsyncCondition(callback::Function)

Create a async condition that calls the given callback function. The callback is passed one argument, the

async condition object itself.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/error.jl#L117-L133
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/error.jl#L98-L104
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/event.jl#L416-L424
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/event.jl#L316-L322
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/event.jl#L259-L267
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/event.jl#L289-L294

460 CHAPTER 45. ESSENTIALS

45.11 Reflection

Base.module_name – Function.

module_name(m::Module) -> Symbol

Get the name of a Module as a Symbol.

julia> module_name(Base.LinAlg)

:LinAlg

source

Base.module_parent – Function.

module_parent(m::Module) -> Module

Get a module’s enclosing Module. Main is its own parent, as is LastMain after workspace().

julia> module_parent(Main)

Main

julia> module_parent(Base.LinAlg.BLAS)

Base.LinAlg

source

Base.current_module – Function.

current_module() -> Module

Get the dynamically current Module, which is the Module code is currently being read from. In general, this is not

the same as the module containing the call to this function.

source

Base.fullname – Function.

fullname(m::Module)

Get the fully-qualified name of a module as a tuple of symbols. For example,

julia> fullname(Base.Pkg)

(:Base, :Pkg)

julia> fullname(Main)

()

source

Base.names – Function.

names(x::Module, all::Bool=false, imported::Bool=false)

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reflection.jl#L5-L14
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reflection.jl#L17-L29
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reflection.jl#L32-L37
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reflection.jl#L40-L52

45.11. REFLECTION 461

Get an array of the names exported by a Module, excluding deprecated names. If all is true, then the list also

includes non-exported names defined in the module, deprecated names, and compiler-generated names. If im-

ported is true, then names explicitly imported from other modules are also included.

As a special case, all names defined in Main are considered ”exported”, since it is not idiomatic to explicitly export

names from Main.

source

Core.nfields – Function.

nfields(x::DataType) -> Int

Get the number of fields of a DataType.

source

Base.fieldnames – Function.

fieldnames(x::DataType)

Get an array of the fields of a DataType.

julia> fieldnames(Hermitian)

2-element Array{Symbol,1}:

:data

:uplo

source

Base.fieldname – Function.

fieldname(x::DataType, i::Integer)

Get the name of field i of a DataType.

julia> fieldname(SparseMatrixCSC,1)

:m

julia> fieldname(SparseMatrixCSC,5)

:nzval

source

Base.datatype_module – Function.

Base.datatype_module(t::DataType) -> Module

Determine the module containing the definition of a DataType.

source

Base.datatype_name – Function.

Base.datatype_name(t) -> Symbol

Get the name of a (potentially UnionAll-wrapped) DataType (without its parent module) as a symbol.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reflection.jl#L75-L86
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1450-L1454
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reflection.jl#L124-L135
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reflection.jl#L107-L119
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reflection.jl#L155-L159
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reflection.jl#L147-L151

462 CHAPTER 45. ESSENTIALS

Base.isconst – Function.

isconst([m::Module], s::Symbol) -> Bool

Determinewhether a global is declared const in a given Module. The default Module argument is current_mod-

ule().

source

Base.function_name – Function.

Base.function_name(f::Function) -> Symbol

Get the name of a generic Function as a symbol, or :anonymous.

source

Base.function_module – Method.

Base.function_module(f::Function) -> Module

Determine the module containing the (first) definition of a generic function.

source

Base.function_module – Method.

Base.function_module(f::Function, types) -> Module

Determine the module containing a given definition of a generic function.

source

Base.functionloc – Method.

functionloc(f::Function, types)

Returns a tuple (filename,line) giving the location of a generic Function definition.

source

Base.functionloc – Method.

functionloc(m::Method)

Returns a tuple (filename,line) giving the location of a Method definition.

source

Base.@functionloc – Macro.

@functionloc

Applied to a function or macro call, it evaluates the arguments to the specified call, and returns a tuple (file-

name,line) giving the location for the method that would be called for those arguments. It calls out to the

functionloc function.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reflection.jl#L164-L169
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reflection.jl#L856-L860
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reflection.jl#L900-L905
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reflection.jl#L908-L912
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reflection.jl#L878-L882
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reflection.jl#L865-L869
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/interactiveutil.jl#L456-L462

45.12. INTERNALS 463

45.12 Internals

Base.gc – Function.

gc()

Perform garbage collection. This should not generally be used.

source

Base.gc_enable – Function.

gc_enable(on::Bool)

Control whether garbage collection is enabled using a boolean argument (true for enabled, false for disabled).

Returns previous GC state. Disabling garbage collection should be used onlywith extreme caution, as it can cause

memory use to grow without bound.

source

Base.macroexpand – Function.

macroexpand(x)

Takes the expression x and returns an equivalent expression with all macros removed (expanded).

source

Base.@macroexpand – Macro.

@macroexpand

Return equivalent expression with all macros removed (expanded).

There is a subtle difference between @macroexpand and macroexpand in that expansion takes place in different

contexts. This is best seen in the following example:

julia> module M

macro m()

1

end

function f()

(@macroexpand(@m), macroexpand(:(@m)))

end

end

M

julia> macro m()

2

end

@m (macro with 1 method)

julia> M.f()

(1, 2)

With @macroexpand the expression expands where @macroexpand appears in the code (module M in the exam-

ple). With macroexpand the expression expands in the current module where the code was finally called (REPL

in the example). Note that when calling macroexpand or @macroexpand directly from the REPL, both of these

contexts coincide, hence there is no difference.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1534-L1538
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1558-L1564
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/expr.jl#L56-L60
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/expr.jl#L63-L94

464 CHAPTER 45. ESSENTIALS

Base.expand – Function.

expand(x)

Takes the expression x and returns an equivalent expression in lowered form. See also code_lowered.

source

Base.code_lowered – Function.

code_lowered(f, types)

Returns an array of lowered ASTs for the methods matching the given generic function and type signature.

source

Base.@code_lowered – Macro.

@code_lowered

Evaluates the arguments to the function or macro call, determines their types, and calls code_lowered on the

resulting expression.

source

Base.code_typed – Function.

code_typed(f, types; optimize=true)

Returns an array of lowered and type-inferredASTs for the methods matching the given generic function and type

signature. The keyword argument optimize controls whether additional optimizations, such as inlining, are also

applied.

source

Base.@code_typed – Macro.

@code_typed

Evaluates the arguments to the function or macro call, determines their types, and calls code_typed on the

resulting expression.

source

Base.code_warntype – Function.

code_warntype([io::IO], f, types)

Prints lowered and type-inferred ASTs for the methods matching the given generic function and type signature to

iowhich defaults to STDOUT. TheASTs are annotated in such away as to cause ”non-leaf” types to be emphasized

(if color is available, displayed in red). This serves as a warning of potential type instability. Not all non-leaf types

are particularly problematic for performance, so the results need to be used judiciously. See @code_warntype

for more information.

source

Base.@code_warntype – Macro.

@code_warntype

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/expr.jl#L48-L53
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reflection.jl#L479-L483
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/interactiveutil.jl#L481-L486
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reflection.jl#L766-L772
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/interactiveutil.jl#L465-L470
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/interactiveutil.jl#L316-L325

45.12. INTERNALS 465

Evaluates the arguments to the function or macro call, determines their types, and calls code_warntype on the

resulting expression.

source

Base.code_llvm – Function.

code_llvm([io], f, types)

Prints the LLVM bitcodes generated for running the method matching the given generic function and type signa-

ture to iowhich defaults to STDOUT.

All metadata and dbg.* calls are removed from the printed bitcode. Use code_llvm_raw for the full IR.

source

Base.@code_llvm – Macro.

@code_llvm

Evaluates the arguments to the function or macro call, determines their types, and calls code_llvm on the result-

ing expression.

source

Base.code_native – Function.

code_native([io], f, types, [syntax])

Prints the native assembly instructions generated for running the method matching the given generic function

and type signature to iowhich defaults to STDOUT. Switch assembly syntax using syntax symbol parameter set

to :att for AT&T syntax or :intel for Intel syntax. Output is AT&T syntax by default.

source

Base.@code_native – Macro.

@code_native

Evaluates the arguments to the function or macro call, determines their types, and calls code_native on the

resulting expression.

source

Base.precompile – Function.

precompile(f,args::Tuple{Vararg{Any}})

Compile the given function f for the argument tuple (of types) args, but do not execute it.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/interactiveutil.jl#L473-L478
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reflection.jl#L732-L739
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/interactiveutil.jl#L489-L494
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reflection.jl#L745-L751
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/interactiveutil.jl#L497-L502
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1170-L1174

Chapter 46

Collections and Data Structures

46.1 Iteration

Sequential iteration is implemented by the methods start(), done(), and next(). The general for loop:

for i = I # or "for i in I"

body

end

is translated into:

state = start(I)

while !done(I, state)

(i, state) = next(I, state)

body

end

The state object may be anything, and should be chosen appropriately for each iterable type. See the manual section

on the iteration interface for more details about defining a custom iterable type.

Base.start – Function.

start(iter) -> state

Get initial iteration state for an iterable object.

julia> start(1:5)

1

julia> start([1;2;3])

1

julia> start([4;2;3])

1

source

Base.done – Function.

done(iter, state) -> Bool

467

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1872-L1887

468 CHAPTER 46. COLLECTIONS AND DATA STRUCTURES

Test whether we are done iterating.

julia> done(1:5, 3)

false

julia> done(1:5, 5)

false

julia> done(1:5, 6)

true

source

Base.next – Function.

next(iter, state) -> item, state

For a given iterable object and iteration state, return the current item and the next iteration state.

julia> next(1:5, 3)

(3, 4)

julia> next(1:5, 5)

(5, 6)

source

Base.iteratorsize – Function.

iteratorsize(itertype::Type) -> IteratorSize

Given the type of an iterator, returns one of the following values:

• SizeUnknown() if the length (number of elements) cannot be determined in advance.

• HasLength() if there is a fixed, finite length.

• HasShape() if there is a known length plus a notion ofmultidimensional shape (as for an array). In this case

the size function is valid for the iterator.

• IsInfinite() if the iterator yields values forever.

The default value (for iterators that do not define this function) is HasLength(). This means that most iterators

are assumed to implement length.

This trait is generally used to select between algorithms that pre-allocate space for their result, and algorithms

that resize their result incrementally.

julia> Base.iteratorsize(1:5)

Base.HasShape()

julia> Base.iteratorsize((2,3))

Base.HasLength()

source

Base.iteratoreltype – Function.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1906-L1921
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L948-L960
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/generator.jl#L57-L81

46.2. GENERAL COLLECTIONS 469

iteratoreltype(itertype::Type) -> IteratorEltype

Given the type of an iterator, returns one of the following values:

• EltypeUnknown() if the type of elements yielded by the iterator is not known in advance.

• HasEltype() if the element type is known, and eltypewould return a meaningful value.

HasEltype() is the default, since iterators are assumed to implement eltype.

This trait is generally used to select between algorithms that pre-allocate a specific type of result, and algorithms

that pick a result type based on the types of yielded values.

julia> Base.iteratoreltype(1:5)

Base.HasEltype()

source

Fully implemented by:

• Range

• UnitRange

• Tuple

• Number

• AbstractArray

• IntSet

• ObjectIdDict

• Dict

• WeakKeyDict

• EachLine

• AbstractString

• Set

46.2 General Collections

Base.isempty – Function.

isempty(collection) -> Bool

Determine whether a collection is empty (has no elements).

julia> isempty([])

true

julia> isempty([1 2 3])

false

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/generator.jl#L89-L107

470 CHAPTER 46. COLLECTIONS AND DATA STRUCTURES

source

Base.empty! – Function.

empty!(collection) -> collection

Remove all elements from a collection.

julia> A = Dict("a" => 1, "b" => 2)

Dict{String,Int64} with 2 entries:

"b" => 2

"a" => 1

julia> empty!(A);

julia> A

Dict{String,Int64} with 0 entries

source

Base.length – Method.

length(collection) -> Integer

For ordered, indexable collections, returns the maximum index i for which getindex(collection, i) is valid.

For unordered collections, returns the number of elements.

julia> length(1:5)

5

julia> length([1; 2; 3; 4])

4

source

Base.endof – Function.

endof(collection) -> Integer

Returns the last index of the collection.

julia> endof([1,2,4])

3

source

Fully implemented by:

• Range

• UnitRange

• Tuple

• Number

• AbstractArray

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1340-L1352
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dict.jl#L286-L302
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1757-L1771
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L936-L945

46.3. ITERABLE COLLECTIONS 471

• IntSet

• ObjectIdDict

• Dict

• WeakKeyDict

• AbstractString

• Set

46.3 Iterable Collections

Base.in – Function.

in(item, collection) -> Bool

(item,collection) -> Bool

(collection,item) -> Bool

(item,collection) -> Bool

(collection,item) -> Bool

Determine whether an item is in the given collection, in the sense that it is == to one of the values generated

by iterating over the collection. Some collections need a slightly different definition; for example Sets check

whether the item isequal to one of the elements. Dicts look for (key,value) pairs, and the key is compared

using isequal. To test for the presence of a key in a dictionary, use haskey or k in keys(dict).

julia> a = 1:3:20

1:3:19

julia> 4 in a

true

julia> 5 in a

false

source

Base.eltype – Function.

eltype(type)

Determine the type of the elements generated by iterating a collection of the given type. For associative col-

lection types, this will be a Pair{KeyType,ValType}. The definition eltype(x) = eltype(typeof(x)) is

provided for convenience so that instances can be passed instead of types. However the form that accepts a type

argument should be defined for new types.

julia> eltype(ones(Float32,2,2))

Float32

julia> eltype(ones(Int8,2,2))

Int8

source

Base.indexin – Function.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reduce.jl#L606-L630
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/array.jl#L26-L42

472 CHAPTER 46. COLLECTIONS AND DATA STRUCTURES

indexin(a, b)

Returns a vector containing the highest index in b for each value in a that is a member of b . The output vector

contains 0 wherever a is not a member of b.

julia> a = ['a', 'b', 'c', 'b', 'd', 'a'];

julia> b = ['a','b','c'];

julia> indexin(a,b)

6-element Array{Int64,1}:

1

2

3

2

0

1

julia> indexin(b,a)

3-element Array{Int64,1}:

6

4

3

source

Base.findin – Function.

findin(a, b)

Returns the indices of elements in collection a that appear in collection b.

julia> a = collect(1:3:15)

5-element Array{Int64,1}:

1

4

7

10

13

julia> b = collect(2:4:10)

3-element Array{Int64,1}:

2

6

10

julia> findin(a,b) # 10 is the only common element

1-element Array{Int64,1}:

4

source

Base.unique – Function.

unique(itr)

Returns an array containing one value from itr for each unique value, as determined by isequal.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/array.jl#L1707-L1734
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/array.jl#L1740-L1764

46.3. ITERABLE COLLECTIONS 473

julia> unique([1; 2; 2; 6])

3-element Array{Int64,1}:

1

2

6

source

unique(f, itr)

Returns an array containing one value from itr for each unique value produced by f applied to elements of itr.

julia> unique(isodd, [1; 2; 2; 6])

2-element Array{Int64,1}:

1

2

source

unique(itr[, dim])

Returns an array containing only the unique elements of the iterable itr, in the order that the first of each set of

equivalent elements originally appears. If dim is specified, returns unique regions of the array itr along dim.

julia> A = map(isodd, reshape(collect(1:8), (2,2,2)))

2×2×2 Array{Bool,3}:

[:, :, 1] =

true true

false false

[:, :, 2] =

true true

false false

julia> unique(A)

2-element Array{Bool,1}:

true

false

julia> unique(A, 2)

2×1×2 Array{Bool,3}:

[:, :, 1] =

true

false

[:, :, 2] =

true

false

julia> unique(A, 3)

2×2×1 Array{Bool,3}:

[:, :, 1] =

true true

false false

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/set.jl#L115-L128
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/set.jl#L170-L182
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/multidimensional.jl#L1299-L1338

474 CHAPTER 46. COLLECTIONS AND DATA STRUCTURES

Base.allunique – Function.

allunique(itr) -> Bool

Return true if all values from itr are distinct when compared with isequal.

julia> a = [1; 2; 3]

3-element Array{Int64,1}:

1

2

3

julia> allunique([a, a])

false

source

Base.reduce – Method.

reduce(op, v0, itr)

Reduce the given collection ìtrwith the given binary operator op. v0 must be a neutral element for op that will

be returned for empty collections. It is unspecified whether v0 is used for non-empty collections.

Reductions for certain commonly-used operators have special implementations which should be used instead:

maximum(itr), minimum(itr), sum(itr), prod(itr), any(itr), all(itr).

The associativity of the reduction is implementation dependent. This means that you can’t use non-associative

operations like - because it is undefined whether reduce(-,[1,2,3]) should be evaluated as (1-2)-3 or 1-

(2-3). Use foldl or foldr instead for guaranteed left or right associativity.

Some operations accumulate error, and parallelism will also be easier if the reduction can be executed in groups.

Future versions of Julia might change the algorithm. Note that the elements are not reordered if you use an

ordered collection.

Examples

julia> reduce(*, 1, [2; 3; 4])

24

source

Base.reduce – Method.

reduce(op, itr)

Like reduce(op, v0, itr). This cannot be used with empty collections, except for some special cases (e.g.

when op is one of +, *, max, min, &, |) when Julia can determine the neutral element of op.

julia> reduce(*, [2; 3; 4])

24

source

Base.foldl – Method.

foldl(op, v0, itr)

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/set.jl#L196-L211
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reduce.jl#L289-L315
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reduce.jl#L318-L329

46.3. ITERABLE COLLECTIONS 475

Like reduce, but with guaranteed left associativity. v0will be used exactly once.

julia> foldl(-, 1, 2:5)

-13

source

Base.foldl – Method.

foldl(op, itr)

Like foldl(op, v0, itr), but using the first element of itr as v0. In general, this cannot be used with empty

collections (see reduce(op, itr)).

julia> foldl(-, 2:5)

-10

source

Base.foldr – Method.

foldr(op, v0, itr)

Like reduce, but with guaranteed right associativity. v0will be used exactly once.

julia> foldr(-, 1, 2:5)

-1

source

Base.foldr – Method.

foldr(op, itr)

Like foldr(op, v0, itr), but using the last element of itr as v0. In general, this cannot be used with empty

collections (see reduce(op, itr)).

julia> foldr(-, 2:5)

-2

source

Base.maximum – Method.

maximum(itr)

Returns the largest element in a collection.

julia> maximum(-20.5:10)

9.5

julia> maximum([1,2,3])

3

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reduce.jl#L76-L86
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reduce.jl#L89-L99
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reduce.jl#L142-L152
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reduce.jl#L155-L165
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reduce.jl#L441-L453

476 CHAPTER 46. COLLECTIONS AND DATA STRUCTURES

Base.maximum – Method.

maximum(A, dims)

Compute the maximum value of an array over the given dimensions. See also the max(a,b) function to take the

maximum of two or more arguments, which can be applied elementwise to arrays via max.(a,b).

julia> A = [1 2; 3 4]

2×2 Array{Int64,2}:

1 2

3 4

julia> maximum(A, 1)

1×2 Array{Int64,2}:

3 4

julia> maximum(A, 2)

2×1 Array{Int64,2}:

2

4

source

Base.maximum! – Function.

maximum!(r, A)

Compute the maximum value of A over the singleton dimensions of r, and write results to r.

julia> A = [1 2; 3 4]

2×2 Array{Int64,2}:

1 2

3 4

julia> maximum!([1; 1], A)

2-element Array{Int64,1}:

2

4

julia> maximum!([1 1], A)

1×2 Array{Int64,2}:

3 4

source

Base.minimum – Method.

minimum(itr)

Returns the smallest element in a collection.

julia> minimum(-20.5:10)

-20.5

julia> minimum([1,2,3])

1

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reducedim.jl#L372-L394
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reducedim.jl#L397-L417

46.3. ITERABLE COLLECTIONS 477

source

Base.minimum – Method.

minimum(A, dims)

Compute the minimum value of an array over the given dimensions. See also the min(a,b) function to take the

minimum of two or more arguments, which can be applied elementwise to arrays via min.(a,b).

julia> A = [1 2; 3 4]

2×2 Array{Int64,2}:

1 2

3 4

julia> minimum(A, 1)

1×2 Array{Int64,2}:

1 2

julia> minimum(A, 2)

2×1 Array{Int64,2}:

1

3

source

Base.minimum! – Function.

minimum!(r, A)

Compute the minimum value of A over the singleton dimensions of r, and write results to r.

julia> A = [1 2; 3 4]

2×2 Array{Int64,2}:

1 2

3 4

julia> minimum!([1; 1], A)

2-element Array{Int64,1}:

1

3

julia> minimum!([1 1], A)

1×2 Array{Int64,2}:

1 2

source

Base.extrema – Method.

extrema(itr) -> Tuple

Compute both the minimum and maximum element in a single pass, and return them as a 2-tuple.

julia> extrema(2:10)

(2, 10)

julia> extrema([9,pi,4.5])

(3.141592653589793, 9.0)

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reduce.jl#L456-L468
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reducedim.jl#L420-L442
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reducedim.jl#L445-L465

478 CHAPTER 46. COLLECTIONS AND DATA STRUCTURES

source

Base.extrema – Method.

extrema(A, dims) -> Array{Tuple}

Compute the minimum and maximum elements of an array over the given dimensions.

Example

julia> A = reshape(collect(1:2:16), (2,2,2))

2×2×2 Array{Int64,3}:

[:, :, 1] =

1 5

3 7

[:, :, 2] =

9 13

11 15

julia> extrema(A, (1,2))

1×1×2 Array{Tuple{Int64,Int64},3}:

[:, :, 1] =

(1, 7)

[:, :, 2] =

(9, 15)

source

Base.indmax – Function.

indmax(itr) -> Integer

Returns the index of the maximum element in a collection. If there are multiple maximal elements, then the first

one will be returned. NaN values are ignored, unless all elements are NaN.

The collection must not be empty.

julia> indmax([8,0.1,-9,pi])

1

julia> indmax([1,7,7,6])

2

julia> indmax([1,7,7,NaN])

2

source

Base.indmin – Function.

indmin(itr) -> Integer

Returns the index of the minimum element in a collection. If there are multiple minimal elements, then the first

one will be returned. NaN values are ignored, unless all elements are NaN.

The collection must not be empty.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reduce.jl#L476-L488
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/multidimensional.jl#L1410-L1435
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/array.jl#L1662-L1681

46.3. ITERABLE COLLECTIONS 479

julia> indmin([8,0.1,-9,pi])

3

julia> indmin([7,1,1,6])

2

julia> indmin([7,1,1,NaN])

2

source

Base.findmax – Method.

findmax(itr) -> (x, index)

Returns the maximum element of the collection itr and its index. If there are multiple maximal elements, then

the first one will be returned. NaN values are ignored, unless all elements are NaN.

The collection must not be empty.

julia> findmax([8,0.1,-9,pi])

(8.0, 1)

julia> findmax([1,7,7,6])

(7, 2)

julia> findmax([1,7,7,NaN])

(7.0, 2)

source

Base.findmax – Method.

findmax(A, region) -> (maxval, index)

For an array input, returns the value and index of the maximum over the given region.

julia> A = [1 2; 3 4]

2×2 Array{Int64,2}:

1 2

3 4

julia> findmax(A,1)

([3 4], [2 4])

julia> findmax(A,2)

([2; 4], [3; 4])

source

Base.findmin – Method.

findmin(itr) -> (x, index)

Returns the minimum element of the collection itr and its index. If there are multiple minimal elements, then

the first one will be returned. NaN values are ignored, unless all elements are NaN.

The collection must not be empty.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/array.jl#L1684-L1703
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/array.jl#L1586-L1605
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reducedim.jl#L673-L690

480 CHAPTER 46. COLLECTIONS AND DATA STRUCTURES

julia> findmin([8,0.1,-9,pi])

(-9.0, 3)

julia> findmin([7,1,1,6])

(1, 2)

julia> findmin([7,1,1,NaN])

(1.0, 2)

source

Base.findmin – Method.

findmin(A, region) -> (minval, index)

For an array input, returns the value and index of the minimum over the given region.

julia> A = [1 2; 3 4]

2×2 Array{Int64,2}:

1 2

3 4

julia> findmin(A, 1)

([1 2], [1 3])

julia> findmin(A, 2)

([1; 3], [1; 2])

source

Base.findmax! – Function.

findmax!(rval, rind, A, [init=true]) -> (maxval, index)

Find the maximum of A and the corresponding linear index along singleton dimensions of rval and rind, and

store the results in rval and rind.

source

Base.findmin! – Function.

findmin!(rval, rind, A, [init=true]) -> (minval, index)

Find the minimum of A and the corresponding linear index along singleton dimensions of rval and rind, and

store the results in rval and rind.

source

Base.sum – Function.

sum(f, itr)

Sum the results of calling function f on each element of itr.

julia> sum(abs2, [2; 3; 4])

29

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/array.jl#L1624-L1643
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reducedim.jl#L635-L652
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reducedim.jl#L662-L667
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reducedim.jl#L624-L629
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reduce.jl#L337-L346

46.3. ITERABLE COLLECTIONS 481

sum(itr)

Returns the sum of all elements in a collection.

julia> sum(1:20)

210

source

sum(A, dims)

Sum elements of an array over the given dimensions.

julia> A = [1 2; 3 4]

2×2 Array{Int64,2}:

1 2

3 4

julia> sum(A, 1)

1×2 Array{Int64,2}:

4 6

julia> sum(A, 2)

2×1 Array{Int64,2}:

3

7

source

Base.sum! – Function.

sum!(r, A)

Sum elements of A over the singleton dimensions of r, and write results to r.

julia> A = [1 2; 3 4]

2×2 Array{Int64,2}:

1 2

3 4

julia> sum!([1; 1], A)

2-element Array{Int64,1}:

3

7

julia> sum!([1 1], A)

1×2 Array{Int64,2}:

4 6

source

Base.prod – Function.

prod(f, itr)

Returns the product of f applied to each element of itr.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reduce.jl#L349-L358
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reducedim.jl#L280-L300
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reducedim.jl#L303-L323

482 CHAPTER 46. COLLECTIONS AND DATA STRUCTURES

julia> prod(abs2, [2; 3; 4])

576

source

prod(itr)

Returns the product of all elements of a collection.

julia> prod(1:20)

2432902008176640000

source

prod(A, dims)

Multiply elements of an array over the given dimensions.

julia> A = [1 2; 3 4]

2×2 Array{Int64,2}:

1 2

3 4

julia> prod(A, 1)

1×2 Array{Int64,2}:

3 8

julia> prod(A, 2)

2×1 Array{Int64,2}:

2

12

source

Base.prod! – Function.

prod!(r, A)

Multiply elements of A over the singleton dimensions of r, and write results to r.

julia> A = [1 2; 3 4]

2×2 Array{Int64,2}:

1 2

3 4

julia> prod!([1; 1], A)

2-element Array{Int64,1}:

2

12

julia> prod!([1 1], A)

1×2 Array{Int64,2}:

3 8

source

Base.any – Method.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reduce.jl#L395-L404
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reduce.jl#L407-L416
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reducedim.jl#L326-L346
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reducedim.jl#L349-L369

46.3. ITERABLE COLLECTIONS 483

any(itr) -> Bool

Test whether any elements of a boolean collection are true, returning true as soon as the first true value in

itr is encountered (short-circuiting).

julia> a = [true,false,false,true]

4-element Array{Bool,1}:

true

false

false

true

julia> any(a)

true

julia> any((println(i); v) for (i, v) in enumerate(a))

1

true

source

Base.any – Method.

any(A, dims)

Test whether any values along the given dimensions of an array are true.

julia> A = [true false; true false]

2×2 Array{Bool,2}:

true false

true false

julia> any(A, 1)

1×2 Array{Bool,2}:

true false

julia> any(A, 2)

2×1 Array{Bool,2}:

true

true

source

Base.any! – Function.

any!(r, A)

Test whether any values in A along the singleton dimensions of r are true, and write results to r.

julia> A = [true false; true false]

2×2 Array{Bool,2}:

true false

true false

julia> any!([1; 1], A)

2-element Array{Int64,1}:

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reduce.jl#L504-L525
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reducedim.jl#L514-L534

484 CHAPTER 46. COLLECTIONS AND DATA STRUCTURES

1

1

julia> any!([1 1], A)

1×2 Array{Int64,2}:

1 0

source

Base.all – Method.

all(itr) -> Bool

Test whether all elements of a boolean collection are true, returning false as soon as the first false value in

itr is encountered (short-circuiting).

julia> a = [true,false,false,true]

4-element Array{Bool,1}:

true

false

false

true

julia> all(a)

false

julia> all((println(i); v) for (i, v) in enumerate(a))

1

2

false

source

Base.all – Method.

all(A, dims)

Test whether all values along the given dimensions of an array are true.

julia> A = [true false; true true]

2×2 Array{Bool,2}:

true false

true true

julia> all(A, 1)

1×2 Array{Bool,2}:

true false

julia> all(A, 2)

2×1 Array{Bool,2}:

false

true

source

Base.all! – Function.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reducedim.jl#L537-L558
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reduce.jl#L528-L550
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reducedim.jl#L468-L488

46.3. ITERABLE COLLECTIONS 485

all!(r, A)

Test whether all values in A along the singleton dimensions of r are true, and write results to r.

julia> A = [true false; true false]

2×2 Array{Bool,2}:

true false

true false

julia> all!([1; 1], A)

2-element Array{Int64,1}:

0

0

julia> all!([1 1], A)

1×2 Array{Int64,2}:

1 0

source

Base.count – Function.

count(p, itr) -> Integer

count(itr) -> Integer

Count the number of elements in itr for which predicate p returns true. If p is omitted, counts the number of

true elements in itr (which should be a collection of boolean values).

julia> count(i->(4<=i<=6), [2,3,4,5,6])

3

julia> count([true, false, true, true])

3

source

Base.any – Method.

any(p, itr) -> Bool

Determine whether predicate p returns true for any elements of itr, returning true as soon as the first item in

itr for which p returns true is encountered (short-circuiting).

julia> any(i->(4<=i<=6), [3,5,7])

true

julia> any(i -> (println(i); i > 3), 1:10)

1

2

3

4

true

source

Base.all – Method.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reducedim.jl#L491-L511
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reduce.jl#L673-L688
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reduce.jl#L553-L571

486 CHAPTER 46. COLLECTIONS AND DATA STRUCTURES

all(p, itr) -> Bool

Determine whether predicate p returns true for all elements of itr, returning false as soon as the first item in

itr for which p returns false is encountered (short-circuiting).

julia> all(i->(4<=i<=6), [4,5,6])

true

julia> all(i -> (println(i); i < 3), 1:10)

1

2

3

false

source

Base.foreach – Function.

foreach(f, c...) -> Void

Call function f on each element of iterable c. For multiple iterable arguments, f is called elementwise. foreach

should be used instead of mapwhen the results of f are not needed, for example in foreach(println, array).

julia> a = 1:3:7;

julia> foreach(x -> println(x^2), a)

1

16

49

source

Base.map – Function.

map(f, c...) -> collection

Transform collection c by applying f to each element. For multiple collection arguments, apply f elementwise.

julia> map(x -> x * 2, [1, 2, 3])

3-element Array{Int64,1}:

2

4

6

julia> map(+, [1, 2, 3], [10, 20, 30])

3-element Array{Int64,1}:

11

22

33

source

map(f, x::Nullable)

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reduce.jl#L579-L596
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/abstractarray.jl#L1713-L1729
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/abstractarray.jl#L1868-L1887

46.3. ITERABLE COLLECTIONS 487

Return f applied to the value of x if it has one, as a Nullable. If x is null, then return a null value of type

Nullable{S}. S is guaranteed to be either Union{} or a concrete type. Whichever of these is chosen is an

implementation detail, but typically the choice that maximizes performance would be used. If x has a value, then

the return type is guaranteed to be of type Nullable{typeof(f(x))}.

source

Base.map! – Function.

map!(function, destination, collection...)

Like map, but stores the result in destination rather than a new collection. destination must be at least as

large as the first collection.

julia> x = zeros(3);

julia> map!(x -> x * 2, x, [1, 2, 3]);

julia> x

3-element Array{Float64,1}:

2.0

4.0

6.0

source

Base.mapreduce – Method.

mapreduce(f, op, v0, itr)

Apply function f to each element in itr, and then reduce the result using the binary function op. v0 must be

a neutral element for op that will be returned for empty collections. It is unspecified whether v0 is used for

non-empty collections.

mapreduce is functionally equivalent to calling reduce(op, v0, map(f, itr)), but will in general execute

faster since no intermediate collection needs to be created. See documentation for reduce and map.

julia> mapreduce(x->x^2, +, [1:3;]) # == 1 + 4 + 9

14

The associativity of the reduction is implementation-dependent. Additionally, some implementations may reuse

the return value of f for elements that appear multiple times in itr. Use mapfoldl or mapfoldr instead for

guaranteed left or right associativity and invocation of f for every value.

source

Base.mapreduce – Method.

mapreduce(f, op, itr)

Like mapreduce(f, op, v0, itr). In general, this cannot be used with empty collections (see reduce(op,

itr)).

source

Base.mapfoldl – Method.

mapfoldl(f, op, v0, itr)

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/nullable.jl#L270-L279
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/abstractarray.jl#L1910-L1927
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reduce.jl#L208-L228
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reduce.jl#L200-L205

488 CHAPTER 46. COLLECTIONS AND DATA STRUCTURES

Like mapreduce, but with guaranteed left associativity, as in foldl. v0will be used exactly once.

source

Base.mapfoldl – Method.

mapfoldl(f, op, itr)

Like mapfoldl(f, op, v0, itr), but using the first element of itr as v0. In general, this cannot be usedwith

empty collections (see reduce(op, itr)).

source

Base.mapfoldr – Method.

mapfoldr(f, op, v0, itr)

Like mapreduce, but with guaranteed right associativity, as in foldr. v0will be used exactly once.

source

Base.mapfoldr – Method.

mapfoldr(f, op, itr)

Like mapfoldr(f, op, v0, itr), but using the first element of itr as v0. In general, this cannot be usedwith

empty collections (see reduce(op, itr)).

source

Base.first – Function.

first(coll)

Get the first element of an iterable collection. Returns the start point of a Range even if it is empty.

julia> first(2:2:10)

2

julia> first([1; 2; 3; 4])

1

source

Base.last – Function.

last(coll)

Get the last element of an ordered collection, if it can be computed in O(1) time. This is accomplished by calling

endof to get the last index. Returns the end point of a Range even if it is empty.

julia> last(1:2:10)

9

julia> last([1; 2; 3; 4])

4

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reduce.jl#L52-L57
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reduce.jl#L60-L65
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reduce.jl#L120-L125
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reduce.jl#L128-L133
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/abstractarray.jl#L137-L150
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/abstractarray.jl#L157-L171

46.3. ITERABLE COLLECTIONS 489

Base.step – Function.

step(r)

Get the step size of a Range object.

julia> step(1:10)

1

julia> step(1:2:10)

2

julia> step(2.5:0.3:10.9)

0.3

julia> step(linspace(2.5,10.9,85))

0.1

source

Base.collect – Method.

collect(collection)

Return an Array of all items in a collection or iterator. For associative collections, returns Pair{KeyType,

ValType}. If the argument is array-like or is an iterator with the HasShape() trait, the result will have the same

shape and number of dimensions as the argument.

julia> collect(1:2:13)

7-element Array{Int64,1}:

1

3

5

7

9

11

13

source

Base.collect – Method.

collect(element_type, collection)

Return an Arraywith the given element type of all items in a collection or iterable. The result has the same shape

and number of dimensions as collection.

julia> collect(Float64, 1:2:5)

3-element Array{Float64,1}:

1.0

3.0

5.0

source

Base.issubset – Method.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/range.jl#L343-L360
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/array.jl#L378-L396
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/array.jl#L346-L359

490 CHAPTER 46. COLLECTIONS AND DATA STRUCTURES

issubset(a, b)

(a,b) -> Bool

(a,b) -> Bool

(a,b) -> Bool

Determine whether every element of a is also in b, using in.

source

Base.filter – Function.

filter(function, collection)

Return a copy of collection, removing elements for which function is false. For associative collections, the

function is passed two arguments (key and value).

julia> a = 1:10

1:10

julia> filter(isodd, a)

5-element Array{Int64,1}:

1

3

5

7

9

source

filter(p, x::Nullable)

Return null if either x is null or p(get(x)) is false, and x otherwise.

source

Base.filter! – Function.

filter!(function, collection)

Update collection, removing elements for which function is false. For associative collections, the function

is passed two arguments (key and value).

julia> filter!(isodd, collect(1:10))

5-element Array{Int64,1}:

1

3

5

7

9

source

46.4 Indexable Collections

Base.getindex – Method.

getindex(collection, key...)

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L2075-L2082
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/array.jl#L1800-L1818
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/nullable.jl#L251-L255
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L307-L322

46.4. INDEXABLE COLLECTIONS 491

Retrieve the value(s) stored at the given key or index within a collection. The syntax a[i,j,...] is converted

by the compiler to getindex(a, i, j, ...).

julia> A = Dict("a" => 1, "b" => 2)

Dict{String,Int64} with 2 entries:

"b" => 2

"a" => 1

julia> getindex(A, "a")

1

source

Base.setindex! – Method.

setindex!(collection, value, key...)

Store the given value at the given key or index within a collection. The syntax a[i,j,...] = x is converted by

the compiler to (setindex!(a, x, i, j, ...); x).

source

Fully implemented by:

• Array

• BitArray

• AbstractArray

• SubArray

• ObjectIdDict

• Dict

• WeakKeyDict

• AbstractString

Partially implemented by:

• Range

• UnitRange

• Tuple

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L146-L161
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L2044-L2049

492 CHAPTER 46. COLLECTIONS AND DATA STRUCTURES

46.5 Associative Collections

Dict is the standard associative collection. Its implementation uses hash() as the hashing function for the key, and

isequal() to determine equality. Define these two functions for custom types to override how they are stored in a

hash table.

ObjectIdDict is a special hash table where the keys are always object identities.

WeakKeyDict is a hash table implementationwhere the keys areweak references to objects, and thus may be garbage

collected even when referenced in a hash table.

Dicts can be created bypassing pair objects constructedwith =>() to a Dict constructor: Dict("A"=>1, "B"=>2).

This call will attempt to infer type information from the keys and values (i.e. this example creates a Dict{String,

Int64}). To explicitly specify types use the syntaxDict{KeyType,ValueType}(...). For example, Dict{String,Int32}("A"=>1,

"B"=>2).

Associative collections may also be created with generators. For example, Dict(i => f(i) for i = 1:10).

Given a dictionary D, the syntax D[x] returns the value of key x (if it exists) or throws an error, and D[x] = y stores the

key-value pair x => y in D (replacing any existing value for the key x). Multiple arguments to D[...] are converted

to tuples; for example, the syntax D[x,y] is equivalent to D[(x,y)], i.e. it refers to the value keyed by the tuple

(x,y).

Base.Dict – Type.

Dict([itr])

Dict{K,V}() constructs a hash table with keys of type K and values of type V.

Given a single iterable argument, constructs a Dictwhose key-value pairs are taken from 2-tuples (key,value)

generated by the argument.

julia> Dict([("A", 1), ("B", 2)])

Dict{String,Int64} with 2 entries:

"B" => 2

"A" => 1

Alternatively, a sequence of pair arguments may be passed.

julia> Dict("A"=>1, "B"=>2)

Dict{String,Int64} with 2 entries:

"B" => 2

"A" => 1

source

Base.ObjectIdDict – Type.

ObjectIdDict([itr])

ObjectIdDict() constructs a hash table where the keys are (always) object identities. Unlike Dict it is not

parameterized on its key and value type and thus its eltype is always Pair{Any,Any}.

See Dict for further help.

source

Base.WeakKeyDict – Type.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dict.jl#L68-L91
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/associative.jl#L379-L387

46.5. ASSOCIATIVE COLLECTIONS 493

WeakKeyDict([itr])

WeakKeyDict() constructs a hash table where the keys areweak references to objects, and thus may be garbage

collected even when referenced in a hash table.

See Dict for further help.

source

Base.haskey – Function.

haskey(collection, key) -> Bool

Determine whether a collection has a mapping for a given key.

julia> a = Dict('a'=>2, 'b'=>3)

Dict{Char,Int64} with 2 entries:

'b' => 3

'a' => 2

julia> haskey(a,'a')

true

julia> haskey(a,'c')

false

source

Base.get – Method.

get(collection, key, default)

Return the value stored for the given key, or the given default value if no mapping for the key is present.

source

Base.get – Function.

get(f::Function, collection, key)

Return the value stored for the given key, or if no mapping for the key is present, return f(). Use get! to also

store the default value in the dictionary.

This is intended to be called using do block syntax

get(dict, key) do

default value calculated here

time()

end

source

Base.get! – Method.

get!(collection, key, default)

Return the value stored for the given key, or if no mapping for the key is present, store key => default, and

return default.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/weakkeydict.jl#L5-L13
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dict.jl#L487-L504
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1184-L1189
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1192-L1206

494 CHAPTER 46. COLLECTIONS AND DATA STRUCTURES

julia> d = Dict("a"=>1, "b"=>2, "c"=>3);

julia> get!(d, "a", 5)

1

julia> get!(d, "d", 4)

4

julia> d

Dict{String,Int64} with 4 entries:

"c" => 3

"b" => 2

"a" => 1

"d" => 4

source

Base.get! – Method.

get!(f::Function, collection, key)

Return the value stored for the given key, or if no mapping for the key is present, store key => f(), and return

f().

This is intended to be called using do block syntax:

get!(dict, key) do

default value calculated here

time()

end

source

Base.getkey – Function.

getkey(collection, key, default)

Return the key matching argument key if one exists in collection, otherwise return default.

julia> a = Dict('a'=>2, 'b'=>3)

Dict{Char,Int64} with 2 entries:

'b' => 3

'a' => 2

julia> getkey(a,'a',1)

'a': ASCII/Unicode U+0061 (category Ll: Letter, lowercase)

julia> getkey(a,'d','a')

'a': ASCII/Unicode U+0061 (category Ll: Letter, lowercase)

source

Base.delete! – Function.

delete!(collection, key)

Delete the mapping for the given key in a collection, and return the collection.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1698-L1720
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1723-L1735
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dict.jl#L508-L525
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1123-L1127

46.5. ASSOCIATIVE COLLECTIONS 495

Base.pop! – Method.

pop!(collection, key[, default])

Delete and return the mapping for key if it exists in collection, otherwise return default, or throw an error

if default is not specified.

julia> d = Dict("a"=>1, "b"=>2, "c"=>3);

julia> pop!(d, "a")

1

julia> pop!(d, "d")

ERROR: KeyError: key "d" not found

Stacktrace:

[1] pop!(::Dict{String,Int64}, ::String) at ./dict.jl:539

julia> pop!(d, "e", 4)

4

source

Base.keys – Function.

keys(a::Associative)

Return an iterator over all keys in a collection. collect(keys(a)) returns an array of keys. Since the keys are

stored internally in a hash table, the order in which they are returned may vary. But keys(a) and values(a)

both iterate a and return the elements in the same order.

julia> a = Dict('a'=>2, 'b'=>3)

Dict{Char,Int64} with 2 entries:

'b' => 3

'a' => 2

julia> collect(keys(a))

2-element Array{Char,1}:

'b'

'a'

source

Base.values – Function.

values(a::Associative)

Return an iterator over all values in a collection. collect(values(a)) returns an array of values. Since the

values are stored internally in a hash table, the order in which they are returned may vary. But keys(a) and

values(a) both iterate a and return the elements in the same order.

julia> a = Dict('a'=>2, 'b'=>3)

Dict{Char,Int64} with 2 entries:

'b' => 3

'a' => 2

julia> collect(values(a))

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L2325-L2345
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/associative.jl#L63-L84

496 CHAPTER 46. COLLECTIONS AND DATA STRUCTURES

2-element Array{Int64,1}:

3

2

source

Base.merge – Function.

merge(d::Associative, others::Associative...)

Construct a merged collection from the given collections. If necessary, the types of the resulting collectionwill be

promoted to accommodate the types of the merged collections. If the same key is present in another collection,

the value for that key will be the value it has in the last collection listed.

julia> a = Dict("foo" => 0.0, "bar" => 42.0)

Dict{String,Float64} with 2 entries:

"bar" => 42.0

"foo" => 0.0

julia> b = Dict("baz" => 17, "bar" => 4711)

Dict{String,Int64} with 2 entries:

"bar" => 4711

"baz" => 17

julia> merge(a, b)

Dict{String,Float64} with 3 entries:

"bar" => 4711.0

"baz" => 17.0

"foo" => 0.0

julia> merge(b, a)

Dict{String,Float64} with 3 entries:

"bar" => 42.0

"baz" => 17.0

"foo" => 0.0

source

merge(combine, d::Associative, others::Associative...)

Construct a merged collection from the given collections. If necessary, the types of the resulting collection will

be promoted to accommodate the types of the merged collections. Values with the same key will be combined

using the combiner function.

julia> a = Dict("foo" => 0.0, "bar" => 42.0)

Dict{String,Float64} with 2 entries:

"bar" => 42.0

"foo" => 0.0

julia> b = Dict("baz" => 17, "bar" => 4711)

Dict{String,Int64} with 2 entries:

"bar" => 4711

"baz" => 17

julia> merge(+, a, b)

Dict{String,Float64} with 3 entries:

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/associative.jl#L88-L109
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/associative.jl#L224-L255

46.5. ASSOCIATIVE COLLECTIONS 497

"bar" => 4753.0

"baz" => 17.0

"foo" => 0.0

source

Base.merge! – Function.

Merge changes into current head

source

Internal implementation of merge. Returns true if merge was successful, otherwise false

source

merge!(repo::GitRepo; kwargs...) -> Bool

Perform a git merge on the repository repo, merging commits with diverging history into the current branch.

Returns true if the merge succeeded, false if not.

The keyword arguments are:

• committish::AbstractString="": Merge the named commit(s) in committish.

• branch::AbstractString="": Merge the branch branch and all its commits since it diverged from the

current branch.

• fastforward::Bool=false: If fastforward is true, only merge if the merge is a fast-forward (the

current branch head is an ancestor of the commits to be merged), otherwise refuse to merge and return

false. This is equivalent to the git CLI option --ff-only.

• merge_opts::MergeOptions=MergeOptions(): merge_opts specifies options for the merge, such as

merge strategy in case of conflicts.

• checkout_opts::CheckoutOptions=CheckoutOptions(): checkout_opts specifies options for the

checkout step.

Equivalent to git merge [--ff-only] [<committish> | <branch>].

Note

If you specify a branch, this must be done in reference format, since the string will be turned into a

GitReference. For example, if youwanted tomerge branchbranch_a, youwould callmerge!(repo,

branch="refs/heads/branch_a").

source

merge!(d::Associative, others::Associative...)

Update collection with pairs from the other collections. See also merge.

julia> d1 = Dict(1 => 2, 3 => 4);

julia> d2 = Dict(1 => 4, 4 => 5);

julia> merge!(d1, d2);

julia> d1

Dict{Int64,Int64} with 3 entries:

4 => 5

3 => 4

1 => 4

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/associative.jl#L259-L284
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/merge.jl#L66
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/merge.jl#L80-L83
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/libgit2.jl#L625-L652

498 CHAPTER 46. COLLECTIONS AND DATA STRUCTURES

source

merge!(combine, d::Associative, others::Associative...)

Update collection with pairs from the other collections. Values with the same key will be combined using the

combiner function.

julia> d1 = Dict(1 => 2, 3 => 4);

julia> d2 = Dict(1 => 4, 4 => 5);

julia> merge!(+, d1, d2);

julia> d1

Dict{Int64,Int64} with 3 entries:

4 => 5

3 => 4

1 => 6

julia> merge!(-, d1, d1);

julia> d1

Dict{Int64,Int64} with 3 entries:

4 => 0

3 => 0

1 => 0

source

Base.sizehint! – Function.

sizehint!(s, n)

Suggest that collection s reserve capacity for at least n elements. This can improve performance.

source

Base.keytype – Function.

keytype(type)

Get the key type of an associative collection type. Behaves similarly to eltype.

julia> keytype(Dict(Int32(1) => "foo"))

Int32

source

Base.valtype – Function.

valtype(type)

Get the value type of an associative collection type. Behaves similarly to eltype.

julia> valtype(Dict(Int32(1) => "foo"))

String

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/associative.jl#L120-L139
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/associative.jl#L149-L177
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L963-L967
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/associative.jl#L196-L205

46.6. SET-LIKE COLLECTIONS 499

source

Fully implemented by:

• ObjectIdDict

• Dict

• WeakKeyDict

Partially implemented by:

• IntSet

• Set

• EnvHash

• Array

• BitArray

46.6 Set-Like Collections

Base.Set – Type.

Set([itr])

Construct a Set of the values generated by the given iterable object, or an empty set. Should be used instead of

IntSet for sparse integer sets, or for sets of arbitrary objects.

source

Base.IntSet – Type.

IntSet([itr])

Construct a sorted set of positive Ints generated by the given iterable object, or an empty set. Implemented as

a bit string, and therefore designed for dense integer sets. Only Ints greater than 0 can be stored. If the set will

be sparse (for example holding a few very large integers), use Set instead.

source

Base.union – Function.

union(s1,s2...)

(s1,s2...)

Construct the union of two or more sets. Maintains order with arrays.

source

Base.union! – Function.

union!(s, iterable)

Union each element of iterable into set s in-place.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/associative.jl#L210-L219
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L2283-L2289
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1383-L1390
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L819-L824
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L2238-L2242

500 CHAPTER 46. COLLECTIONS AND DATA STRUCTURES

Base.intersect – Function.

intersect(s1,s2...)

(s1,s2)

Construct the intersection of two or more sets. Maintains order and multiplicity of the first argument for arrays

and ranges.

source

Base.setdiff – Function.

setdiff(a, b)

Construct the set of elements in a but not b. Maintains order with arrays. Note that both arguments must be

collections, and both will be iterated over. In particular, setdiff(set,element) where element is a potential

member of set, will not work in general.

julia> setdiff([1,2,3],[3,4,5])

2-element Array{Int64,1}:

1

2

source

Base.setdiff! – Function.

setdiff!(s, iterable)

Remove each element of iterable from set s in-place.

source

Base.symdiff – Function.

symdiff(a, b, rest...)

Construct the symmetric difference of elements in the passed in sets or arrays. Maintains order with arrays.

julia> symdiff([1,2,3],[3,4,5],[4,5,6])

3-element Array{Int64,1}:

1

2

6

source

Base.symdiff! – Method.

symdiff!(s, n)

The set s is destructively modified to toggle the inclusion of integer n.

source

Base.symdiff! – Method.

symdiff!(s, itr)

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1822-L1828
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/array.jl#L1884-L1898
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L721-L725
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/array.jl#L1919-L1932
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/intset.jl#L137-L141

46.7. DEQUEUES 501

For each element in itr, destructively toggle its inclusion in set s.

source

Base.symdiff! – Method.

symdiff!(s, itr)

For each element in itr, destructively toggle its inclusion in set s.

source

Base.intersect! – Function.

intersect!(s1::IntSet, s2::IntSet)

Intersects sets s1 and s2 and overwrites the set s1with the result. If needed, s1will be expanded to the size of

s2.

source

Base.issubset – Function.

issubset(A, S) -> Bool

(A,S) -> Bool

Return true if A is a subset of or equal to S.

source

Fully implemented by:

• IntSet

• Set

Partially implemented by:

• Array

46.7 Dequeues

Base.push! – Function.

push!(collection, items...) -> collection

Insert one or more items at the end of collection.

julia> push!([1, 2, 3], 4, 5, 6)

6-element Array{Int64,1}:

1

2

3

4

5

6

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/intset.jl#L131-L135
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/intset.jl#L131-L135
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/intset.jl#L112-L117
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L2085-L2090

502 CHAPTER 46. COLLECTIONS AND DATA STRUCTURES

Use append! to add all the elements of another collection to collection. The result of the preceding example

is equivalent to append!([1, 2, 3], [4, 5, 6]).

source

Base.pop! – Method.

pop!(collection) -> item

Remove the last item in collection and return it.

julia> A=[1, 2, 3, 4, 5, 6]

6-element Array{Int64,1}:

1

2

3

4

5

6

julia> pop!(A)

6

julia> A

5-element Array{Int64,1}:

1

2

3

4

5

source

Base.unshift! – Function.

unshift!(collection, items...) -> collection

Insert one or more items at the beginning of collection.

julia> unshift!([1, 2, 3, 4], 5, 6)

6-element Array{Int64,1}:

5

6

1

2

3

4

source

Base.shift! – Function.

shift!(collection) -> item

Remove the first item from collection.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L376-L395
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L2348-L2374
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/array.jl#L761-L776

46.7. DEQUEUES 503

julia> A = [1, 2, 3, 4, 5, 6]

6-element Array{Int64,1}:

1

2

3

4

5

6

julia> shift!(A)

1

julia> A

5-element Array{Int64,1}:

2

3

4

5

6

source

Base.insert! – Function.

insert!(a::Vector, index::Integer, item)

Insert an item into a at the given index. index is the index of item in the resulting a.

julia> insert!([6, 5, 4, 2, 1], 4, 3)

6-element Array{Int64,1}:

6

5

4

3

2

1

source

Base.deleteat! – Function.

deleteat!(a::Vector, i::Integer)

Remove the item at the given i and return the modified a. Subsequent items are shifted to fill the resulting gap.

julia> deleteat!([6, 5, 4, 3, 2, 1], 2)

5-element Array{Int64,1}:

6

4

3

2

1

source

deleteat!(a::Vector, inds)

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1244-L1270
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/array.jl#L793-L809
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/array.jl#L819-L834

504 CHAPTER 46. COLLECTIONS AND DATA STRUCTURES

Remove the items at the indices given by inds, and return the modified a. Subsequent items are shifted to fill

the resulting gap.

inds can be either an iterator or a collection of sorted and unique integer indices, or a boolean vector of the same

length as awith true indicating entries to delete.

julia> deleteat!([6, 5, 4, 3, 2, 1], 1:2:5)

3-element Array{Int64,1}:

5

3

1

julia> deleteat!([6, 5, 4, 3, 2, 1], [true, false, true, false, true, false])

3-element Array{Int64,1}:

5

3

1

julia> deleteat!([6, 5, 4, 3, 2, 1], (2, 2))

ERROR: ArgumentError: indices must be unique and sorted

Stacktrace:

[1] _deleteat!(::Array{Int64,1}, ::Tuple{Int64,Int64}) at ./array.jl:885

[2] deleteat!(::Array{Int64,1}, ::Tuple{Int64,Int64}) at ./array.jl:872

source

Base.splice! – Function.

splice!(a::Vector, index::Integer, [replacement]) -> item

Remove the item at the given index, and return the removed item. Subsequent items are shifted left to fill the

resulting gap. If specified, replacement values from an ordered collection will be spliced in place of the removed

item.

julia> A = [6, 5, 4, 3, 2, 1]; splice!(A, 5)

2

julia> A

5-element Array{Int64,1}:

6

5

4

3

1

julia> splice!(A, 5, -1)

1

julia> A

5-element Array{Int64,1}:

6

5

4

3

-1

julia> splice!(A, 1, [-1, -2, -3])

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/array.jl#L843-L871

46.7. DEQUEUES 505

6

julia> A

7-element Array{Int64,1}:

-1

-2

-3

5

4

3

-1

To insert replacement before an index n without removing any items, use splice!(collection, n:n-1,

replacement).

source

splice!(a::Vector, range, [replacement]) -> items

Remove items in the specified index range, and return a collection containing the removed items. Subsequent

items are shifted left to fill the resulting gap. If specified, replacement values from an ordered collection will be

spliced in place of the removed items.

To insert replacement before an index n without removing any items, use splice!(collection, n:n-1,

replacement).

julia> splice!(A, 4:3, 2)

0-element Array{Int64,1}

julia> A

8-element Array{Int64,1}:

-1

-2

-3

2

5

4

3

-1

source

Base.resize! – Function.

resize!(a::Vector, n::Integer) -> Vector

Resize a to contain n elements. If n is smaller than the current collection length, the first n elements will be

retained. If n is larger, the new elements are not guaranteed to be initialized.

julia> resize!([6, 5, 4, 3, 2, 1], 3)

3-element Array{Int64,1}:

6

5

4

julia> resize!([6, 5, 4, 3, 2, 1], 8)

8-element Array{Int64,1}:

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/array.jl#L919-L966
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/array.jl#L985-L1012

506 CHAPTER 46. COLLECTIONS AND DATA STRUCTURES

6

5

4

3

2

1

0

0

source

Base.append! – Function.

append!(collection, collection2) -> collection.

Add the elements of collection2 to the end of collection.

julia> append!([1],[2,3])

3-element Array{Int64,1}:

1

2

3

julia> append!([1, 2, 3], [4, 5, 6])

6-element Array{Int64,1}:

1

2

3

4

5

6

Use push! to add individual items to collection which are not already themselves in another collection. The

result is of the preceding example is equivalent to push!([1, 2, 3], 4, 5, 6).

source

Base.prepend! – Function.

prepend!(a::Vector, items) -> collection

Insert the elements of items to the beginning of a.

julia> prepend!([3],[1,2])

3-element Array{Int64,1}:

1

2

3

source

Fully implemented by:

• Vector (a.k.a. 1-dimensional Array)

• BitVector (a.k.a. 1-dimensional BitArray)

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/array.jl#L706-L733
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L684-L711
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/array.jl#L656-L668

Chapter 47

Mathematics

47.1 Mathematical Operators

Base.:- – Method.

-(x)

Unary minus operator.

source

Base.:+ – Function.

+(x, y...)

Addition operator. x+y+z+... calls this function with all arguments, i.e. +(x, y, z, ...).

source

Base.:- – Method.

-(x, y)

Subtraction operator.

source

Base.:* – Method.

*(x, y...)

Multiplication operator. x*y*z*... calls this function with all arguments, i.e. *(x, y, z, ...).

source

Base.:/ – Function.

/(x, y)

Right division operator: multiplication of x by the inverse of y on the right. Gives floating-point results for integer

arguments.

source

Base.:\ – Method.

507

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L65-L69
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L2030-L2034
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L72-L76
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1668-L1674
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L489-L494

508 CHAPTER 47. MATHEMATICS

\(x, y)

Left division operator: multiplication of y by the inverse of x on the left. Gives floating-point results for integer

arguments.

julia> 3 \ 6

2.0

julia> inv(3) * 6

2.0

julia> A = [1 2; 3 4]; x = [5, 6];

julia> A \ x

2-element Array{Float64,1}:

-4.0

4.5

julia> inv(A) * x

2-element Array{Float64,1}:

-4.0

4.5

source

Base.:^ – Method.

^(x, y)

Exponentiation operator. If x is a matrix, computes matrix exponentiation.

If y is an Int literal (e.g. 2 in x^2 or -3 in x^-3), the Julia code x^y is transformed by the compiler to Base.lit-

eral_pow(^, x, Val{y}), to enable compile-time specialization on the value of the exponent. (As a default

fallback we have Base.literal_pow(^, x, Val{y}) = ^(x,y), where usually ^ == Base.^ unless ^ has

been defined in the calling namespace.)

julia> 3^5

243

julia> A = [1 2; 3 4]

2×2 Array{Int64,2}:

1 2

3 4

julia> A^3

2×2 Array{Int64,2}:

37 54

81 118

source

Base.fma – Function.

fma(x, y, z)

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/operators.jl#L431-L456
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/promotion.jl#L254-L280

47.1. MATHEMATICAL OPERATORS 509

Computes x*y+z without rounding the intermediate result x*y. On some systems this is significantly more ex-

pensive than x*y+z. fma is used to improve accuracy in certain algorithms. See muladd.

source

Base.muladd – Function.

muladd(x, y, z)

Combined multiply-add, computes x*y+z in an efficient manner. This may on some systems be equivalent to

x*y+z, or to fma(x,y,z). muladd is used to improve performance. See fma.

Example

julia> muladd(3, 2, 1)

7

julia> 3 * 2 + 1

7

source

Base.div – Function.

div(x, y)

÷(x, y)

The quotient from Euclidean division. Computes x/y, truncated to an integer.

julia> 9 ÷ 4

2

julia> -5 ÷ 3

-1

source

Base.fld – Function.

fld(x, y)

Largest integer less than or equal to x/y.

julia> fld(7.3,5.5)

1.0

source

Base.cld – Function.

cld(x, y)

Smallest integer larger than or equal to x/y.

julia> cld(5.5,2.2)

3.0

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L2013-L2019
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/math.jl#L927-L942
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/operators.jl#L616-L629
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/operators.jl#L568-L577

510 CHAPTER 47. MATHEMATICS

source

Base.mod – Function.

mod(x, y)

rem(x, y, RoundDown)

The reduction of x modulo y, or equivalently, the remainder of x after floored division by y, i.e.

x - y*fld(x,y)

if computed without intermediate rounding.

The result will have the same sign as y, and magnitude less than abs(y) (with some exceptions, see note below).

Note

When used with floating point values, the exact result may not be representable by the type, and so

rounding error may occur. In particular, if the exact result is very close to y, then it may be rounded

to y.

julia> mod(8, 3)

2

julia> mod(9, 3)

0

julia> mod(8.9, 3)

2.9000000000000004

julia> mod(eps(), 3)

2.220446049250313e-16

julia> mod(-eps(), 3)

3.0

source

rem(x::Integer, T::Type{<:Integer}) -> T

mod(x::Integer, T::Type{<:Integer}) -> T

%(x::Integer, T::Type{<:Integer}) -> T

Find y::T such that x ≡ y (mod n), where n is the number of integers representable in T, and y is an integer

in [typemin(T),typemax(T)]. If T can represent any integer (e.g. T == BigInt), then this operation corre-

sponds to a conversion to T.

julia> 129 % Int8

-127

source

Base.rem – Function.

rem(x, y)

%(x, y)

Remainder from Euclidean division, returning a value of the same sign as x, and smaller in magnitude than y. This

value is always exact.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/operators.jl#L580-L588
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/int.jl#L132-L168
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/int.jl#L369-L383

47.1. MATHEMATICAL OPERATORS 511

julia> x = 15; y = 4;

julia> x % y

3

julia> x == div(x, y) * y + rem(x, y)

true

source

Base.Math.rem2pi – Function.

rem2pi(x, r::RoundingMode)

Compute the remainder of x after integer division by 2π, with the quotient rounded according to the rounding

mode r. In other words, the quantity

x - π2*round(xπ/(2),r)

without any intermediate rounding. This internally uses a high precision approximation of 2π, and so will give a

more accurate result than rem(x,2π,r)

• if r == RoundNearest, then the result is in the interval [−,]. This will generally be the most accurate
result.

• if r == RoundToZero, then the result is in the interval [0, 2] if x is positive,. or [−2, 0] otherwise.

• if r == RoundDown, then the result is in the interval [0, 2].

• if r == RoundUp, then the result is in the interval [−2, 0].

Example

julia> rem2pi(7pi/4, RoundNearest)

-0.7853981633974485

julia> rem2pi(7pi/4, RoundDown)

5.497787143782138

source

Base.Math.mod2pi – Function.

mod2pi(x)

Modulus after division by 2π, returning in the range [0, 2).

This function computes a floating point representation of the modulus after division by numerically exact 2π, and

is therefore not exactly the same as mod(x,2π), which would compute the modulus of x relative to division by

the floating-point number 2π.

Example

julia> mod2pi(9*pi/4)

0.7853981633974481

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/operators.jl#L596-L612
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/math.jl#L761-L790
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/math.jl#L908-L922

512 CHAPTER 47. MATHEMATICS

Base.divrem – Function.

divrem(x, y)

The quotient and remainder from Euclidean division. Equivalent to (div(x,y), rem(x,y)) or (x÷y, x%y).

julia> divrem(3,7)

(0, 3)

julia> divrem(7,3)

(2, 1)

source

Base.fldmod – Function.

fldmod(x, y)

The floored quotient and modulus after division. Equivalent to (fld(x,y), mod(x,y)).

source

Base.fld1 – Function.

fld1(x, y)

Flooring division, returning a value consistent with mod1(x,y)

See also: mod1.

julia> x = 15; y = 4;

julia> fld1(x, y)

4

julia> x == fld(x, y) * y + mod(x, y)

true

julia> x == (fld1(x, y) - 1) * y + mod1(x, y)

true

source

Base.mod1 – Function.

mod1(x, y)

Modulus after flooring division, returning a value r such that mod(r, y) == mod(x, y) in the range (0, y] for
positive y and in the range [y, 0) for negative y.

julia> mod1(4, 2)

2

julia> mod1(4, 3)

1

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/number.jl#L50-L63
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/number.jl#L66-L70
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/operators.jl#L652-L671
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/operators.jl#L633-L646

47.1. MATHEMATICAL OPERATORS 513

Base.fldmod1 – Function.

fldmod1(x, y)

Return (fld1(x,y), mod1(x,y)).

See also: fld1, mod1.

source

Base.:// – Function.

//(num, den)

Divide two integers or rational numbers, giving a Rational result.

julia> 3 // 5

3//5

julia> (3 // 5) // (2 // 1)

3//10

source

Base.rationalize – Function.

rationalize([T<:Integer=Int,] x; tol::Real=eps(x))

Approximate floating point number x as a Rational number with components of the given integer type. The

result will differ from x by no more than tol. If T is not provided, it defaults to Int.

julia> rationalize(5.6)

28//5

julia> a = rationalize(BigInt, 10.3)

103//10

julia> typeof(numerator(a))

BigInt

source

Base.numerator – Function.

numerator(x)

Numerator of the rational representation of x.

julia> numerator(2//3)

2

julia> numerator(4)

4

source

Base.denominator – Function.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/operators.jl#L676-L682
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/rational.jl#L27-L39
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/rational.jl#L109-L126
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/rational.jl#L189-L201

514 CHAPTER 47. MATHEMATICS

denominator(x)

Denominator of the rational representation of x.

julia> denominator(2//3)

3

julia> denominator(4)

1

source

Base.:<< – Function.

<<(x, n)

Left bit shift operator, x << n. For n >= 0, the result is x shifted left by n bits, filling with 0s. This is equivalent

to x * 2^n. For n < 0, this is equivalent to x >> -n.

julia> Int8(3) << 2

12

julia> bits(Int8(3))

"00000011"

julia> bits(Int8(12))

"00001100"

See also >>, >>>.

source

<<(B::BitVector, n) -> BitVector

Left bit shift operator, B << n. For n >= 0, the result is B with elements shifted n positions backwards, filling

with false values. If n < 0, elements are shifted forwards. Equivalent to B >> -n.

Examples

julia> B = BitVector([true, false, true, false, false])

5-element BitArray{1}:

true

false

true

false

false

julia> B << 1

5-element BitArray{1}:

false

true

false

false

false

julia> B << -1

5-element BitArray{1}:

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/rational.jl#L205-L217
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/operators.jl#L463-L481

47.1. MATHEMATICAL OPERATORS 515

false

true

false

true

false

source

Base.:>> – Function.

>>(x, n)

Right bit shift operator, x >> n. For n >= 0, the result is x shifted right by n bits, where n >= 0, filling with 0s

if x >= 0, 1s if x < 0, preserving the sign of x. This is equivalent to fld(x, 2^n). For n < 0, this is equivalent

to x << -n.

julia> Int8(13) >> 2

3

julia> bits(Int8(13))

"00001101"

julia> bits(Int8(3))

"00000011"

julia> Int8(-14) >> 2

-4

julia> bits(Int8(-14))

"11110010"

julia> bits(Int8(-4))

"11111100"

See also >>>, <<.

source

>>(B::BitVector, n) -> BitVector

Right bit shift operator, B >> n. For n >= 0, the result is Bwith elements shifted n positions forward, filling with

false values. If n < 0, elements are shifted backwards. Equivalent to B << -n.

Example

julia> B = BitVector([true, false, true, false, false])

5-element BitArray{1}:

true

false

true

false

false

julia> B >> 1

5-element BitArray{1}:

false

true

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/bitarray.jl#L1421-L1456
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/operators.jl#L491-L520

516 CHAPTER 47. MATHEMATICS

false

true

false

julia> B >> -1

5-element BitArray{1}:

false

true

false

false

false

source

Base.:>>> – Function.

>>>(x, n)

Unsigned right bit shift operator, x >>> n. For n >= 0, the result is x shifted right by n bits, where n >= 0,

filling with 0s. For n < 0, this is equivalent to x << -n.

For Unsigned integer types, this is equivalent to >>. For Signed integer types, this is equivalent to signed(un-

signed(x) >> n).

julia> Int8(-14) >>> 2

60

julia> bits(Int8(-14))

"11110010"

julia> bits(Int8(60))

"00111100"

BigInts are treated as if having infinite size, so no filling is required and this is equivalent to >>.

See also >>, <<.

source

>>>(B::BitVector, n) -> BitVector

Unsigned right bitshift operator, B >>> n. Equivalent to B >> n. See >> for details and examples.

source

Base.colon – Function.

colon(start, [step], stop)

Called by : syntax for constructing ranges.

julia> colon(1, 2, 5)

1:2:5

source

:(start, [step], stop)

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/bitarray.jl#L1382-L1417
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/operators.jl#L530-L555
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/bitarray.jl#L1459-L1464
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/range.jl#L18-L27

47.1. MATHEMATICAL OPERATORS 517

Range operator. a:b constructs a range from a to bwith a step size of 1, and a:s:b is similar but uses a step size

of s. These syntaxes call the function colon. The colon is also used in indexing to select whole dimensions.

source

Base.range – Function.

range(start, [step], length)

Construct a range by length, given a starting value and optional step (defaults to 1).

source

Base.OneTo – Type.

Base.OneTo(n)

Define an AbstractUnitRange that behaves like 1:n, with the added distinction that the lower limit is guaran-

teed (by the type system) to be 1.

source

Base.StepRangeLen – Type.

StepRangeLen{T,R,S}(ref::R, step::S, len, [offset=1])

A range r where r[i] produces values of type T, parametrized by a reference value, a step, and the length.

By default ref is the starting value r[1], but alternatively you can supply it as the value of r[offset] for some

other index 1 <= offset <= len. In conjunctionwith TwicePrecision this can be used to implement ranges

that are free of roundoff error.

source

Base.:== – Function.

==(x, y)

Generic equality operator, giving a single Bool result. Falls back to ===. Should be implemented for all types with

a notion of equality, based on the abstract value that an instance represents. For example, all numeric types are

compared by numeric value, ignoring type. Strings are compared as sequences of characters, ignoring encoding.

Follows IEEE semantics for floating-point numbers.

Collections should generally implement == by calling == recursively on all contents.

New numeric types should implement this function for two arguments of the new type, and handle comparison

to other types via promotion rules where possible.

source

Base.:!= – Function.

!=(x, y)≠

(x,y)

Not-equals comparison operator. Always gives the opposite answer as ==. New types should generally not im-

plement this, and rely on the fallback definition !=(x,y) = !(x==y) instead.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/range.jl#L39-L45
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/range.jl#L55-L59
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/range.jl#L166-L172
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/range.jl#L181-L190
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1426-L1440

518 CHAPTER 47. MATHEMATICS

julia> 3 != 2

true

julia> "foo" ≠ "foo"

false

source

Base.:!== – Function.

!==(x, y)

(x,y)

Equivalent to !(x === y).

julia> a = [1, 2]; b = [1, 2];

julia> a b

true

julia> a a

false

source

Base.:< – Function.

<(x, y)

Less-than comparison operator. Newnumeric types should implement this function for two arguments of the new

type. Because of the behavior of floating-point NaN values, < implements a partial order. Types with a canonical

partial order should implement <, and types with a canonical total order should implement isless.

julia> 'a' < 'b'

true

julia> "abc" < "abd"

true

julia> 5 < 3

false

source

Base.:<= – Function.

<=(x, y)≤

(x,y)

Less-than-or-equals comparison operator.

julia> 'a' <= 'b'

true

julia> 7 ≤ 7 ≤ 9

true

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/operators.jl#L114-L128
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/operators.jl#L156-L171
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/operators.jl#L175-L193

47.1. MATHEMATICAL OPERATORS 519

julia> "abc" ≤ "abc"

true

julia> 5 <= 3

false

source

Base.:> – Function.

>(x, y)

Greater-than comparison operator. Generally, new types should implement < instead of this function, and rely on

the fallback definition >(x, y) = y < x.

julia> 'a' > 'b'

false

julia> 7 > 3 > 1

true

julia> "abc" > "abd"

false

julia> 5 > 3

true

source

Base.:>= – Function.

>=(x, y)≥

(x,y)

Greater-than-or-equals comparison operator.

julia> 'a' >= 'b'

false

julia> 7 ≥ 7 ≥ 3

true

julia> "abc" ≥ "abc"

true

julia> 5 >= 3

true

source

Base.cmp – Function.

cmp(x,y)

Return -1, 0, or 1 depending on whether x is less than, equal to, or greater than y, respectively. Uses the total

order implemented by isless. For floating-point numbers, uses < but throws an error for unordered arguments.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/operators.jl#L218-L237
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/operators.jl#L196-L215
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/operators.jl#L241-L260

520 CHAPTER 47. MATHEMATICS

julia> cmp(1, 2)

-1

julia> cmp(2, 1)

1

julia> cmp(2+im, 3-im)

ERROR: MethodError: no method matching isless(::Complex{Int64}, ::Complex{Int64})

[...]

source

Base.:~ – Function.

~(x)

Bitwise not.

julia> ~4

-5

julia> ~10

-11

julia> ~true

false

source

Base.:& – Function.

&(x, y)

Bitwise and.

julia> 4 & 10

0

julia> 4 & 12

4

source

Base.:| – Function.

|(x, y)

Bitwise or.

julia> 4 | 10

14

julia> 4 | 1

5

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/operators.jl#L284-L302
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1077-L1092
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L603-L615
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L2310-L2322

47.1. MATHEMATICAL OPERATORS 521

Base.xor – Function.

xor(x, y)

(x, y)

Bitwise exclusive or of x and y. The infix operation a b is a synonym for xor(a,b), and can be typed by

tab-completing \xor or \veebar in the Julia REPL.

julia> [true; true; false] . [true; false; false]

3-element BitArray{1}:

false

true

false

source

Base.:! – Function.

!(x)

Boolean not.

julia> !true

false

julia> !false

true

julia> .![true false true]

1×3 BitArray{2}:

false true false

source

!f::Function

Predicate function negation: when the argument of ! is a function, it returns a function which computes the

boolean negation of f. Example:

julia> str = " ε > 0, δ > 0: |x-y| < δ |f(x)-f(y)| < ε"

" ε > 0, δ > 0: |x-y| < δ |f(x)-f(y)| < ε"

julia> filter(isalpha, str)

"εδxyδfxfyε"

julia> filter(!isalpha, str)

" > 0, > 0: |-| < |()-()| < "

source

&& – Keyword.

x && y

Short-circuiting boolean AND.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/bool.jl#L44-L60
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/bool.jl#L17-L33
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/operators.jl#L887-L903
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/basedocs.jl#L543-L547

522 CHAPTER 47. MATHEMATICS

|| – Keyword.

x || y

Short-circuiting boolean OR.

source

47.2 Mathematical Functions

Base.isapprox – Function.

isapprox(x, y; rtol::Real=sqrt(eps), atol::Real=0, nans::Bool=false, norm::Function)

Inexact equality comparison: true if norm(x-y) <= atol + rtol*max(norm(x), norm(y)). The default

atol is zero and the default rtol depends on the types of x and y. The keyword argument nans determines

whether or not NaN values are considered equal (defaults to false).

For real or complex floating-point values, rtol defaults to sqrt(eps(typeof(real(x-y)))). This corresponds

to requiring equality of about half of the significand digits. For other types, rtol defaults to zero.

x and y may also be arrays of numbers, in which case norm defaults to vecnorm but may be changed by passing

a norm::Function keyword argument. (For numbers, norm is the same thing as abs.) When x and y are arrays,

if norm(x-y) is not finite (i.e. ±Inf or NaN), the comparison falls back to checking whether all elements of x and

y are approximately equal component-wise.

The binary operator ≈ is equivalent to isapprox with the default arguments, and x y is equivalent to !isap-

prox(x,y).

julia> 0.1 ≈ (0.1 - 1e-10)

true

julia> isapprox(10, 11; atol = 2)

true

julia> isapprox([10.0^9, 1.0], [10.0^9, 2.0])

true

source

Base.sin – Function.

sin(x)

Compute sine of x, where x is in radians.

source

Base.cos – Function.

cos(x)

Compute cosine of x, where x is in radians.

source

Base.tan – Function.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/basedocs.jl#L550-L554
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/floatfuncs.jl#L172-L202
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/math.jl#L303-L307
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/math.jl#L310-L314

47.2. MATHEMATICAL FUNCTIONS 523

tan(x)

Compute tangent of x, where x is in radians.

source

Base.Math.sind – Function.

sind(x)

Compute sine of x, where x is in degrees.

source

Base.Math.cosd – Function.

cosd(x)

Compute cosine of x, where x is in degrees.

source

Base.Math.tand – Function.

tand(x)

Compute tangent of x, where x is in degrees.

source

Base.Math.sinpi – Function.

sinpi(x)

Compute sin(πx) more accurately than sin(pi*x), especially for large x.

source

Base.Math.cospi – Function.

cospi(x)

Compute cos(πx) more accurately than cos(pi*x), especially for large x.

source

Base.sinh – Function.

sinh(x)

Compute hyperbolic sine of x.

source

Base.cosh – Function.

cosh(x)

Compute hyperbolic cosine of x.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/math.jl#L317-L321
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/special/trig.jl#L413-L415
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/special/trig.jl#L413-L415
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/special/trig.jl#L413-L415
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/special/trig.jl#L101-L105
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/special/trig.jl#L164-L168
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/math.jl#L195-L199
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/math.jl#L202-L206

524 CHAPTER 47. MATHEMATICS

Base.tanh – Function.

tanh(x)

Compute hyperbolic tangent of x.

source

Base.asin – Function.

asin(x)

Compute the inverse sine of x, where the output is in radians.

source

Base.acos – Function.

acos(x)

Compute the inverse cosine of x, where the output is in radians

source

Base.atan – Function.

atan(x)

Compute the inverse tangent of x, where the output is in radians.

source

Base.Math.atan2 – Function.

atan2(y, x)

Compute the inverse tangent of y/x, using the signs of both x and y to determine the quadrant of the return

value.

source

Base.Math.asind – Function.

asind(x)

Compute the inverse sine of x, where the output is in degrees.

source

Base.Math.acosd – Function.

acosd(x)

Compute the inverse cosine of x, where the output is in degrees.

source

Base.Math.atand – Function.

atand(x)

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/math.jl#L209-L213
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/math.jl#L324-L328
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/math.jl#L331-L335
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/math.jl#L216-L220
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/math.jl#L488-L493
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/special/trig.jl#L423-L426
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/special/trig.jl#L423-L426

47.2. MATHEMATICAL FUNCTIONS 525

Compute the inverse tangent of x, where the output is in degrees.

source

Base.Math.sec – Function.

sec(x)

Compute the secant of x, where x is in radians.

source

Base.Math.csc – Function.

csc(x)

Compute the cosecant of x, where x is in radians.

source

Base.Math.cot – Function.

cot(x)

Compute the cotangent of x, where x is in radians.

source

Base.Math.secd – Function.

secd(x)

Compute the secant of x, where x is in degrees.

source

Base.Math.cscd – Function.

cscd(x)

Compute the cosecant of x, where x is in degrees.

source

Base.Math.cotd – Function.

cotd(x)

Compute the cotangent of x, where x is in degrees.

source

Base.Math.asec – Function.

asec(x)

Compute the inverse secant of x, where the output is in radians.

source

Base.Math.acsc – Function.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/special/trig.jl#L423-L426
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1646-L1650
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1217-L1221
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1177-L1181
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1567-L1571
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L2198-L2202
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1291-L1295
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/special/trig.jl#L323-L325

526 CHAPTER 47. MATHEMATICS

acsc(x)

Compute the inverse cosecant of x, where the output is in radians.

source

Base.Math.acot – Function.

acot(x)

Compute the inverse cotangent of x, where the output is in radians.

source

Base.Math.asecd – Function.

asecd(x)

Compute the inverse secant of x, where the output is in degrees.

source

Base.Math.acscd – Function.

acscd(x)

Compute the inverse cosecant of x, where the output is in degrees.

source

Base.Math.acotd – Function.

acotd(x)

Compute the inverse cotangent of x, where the output is in degrees.

source

Base.Math.sech – Function.

sech(x)

Compute the hyperbolic secant of x

source

Base.Math.csch – Function.

csch(x)

Compute the hyperbolic cosecant of x.

source

Base.Math.coth – Function.

coth(x)

Compute the hyperbolic cotangent of x.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/special/trig.jl#L323-L325
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/special/trig.jl#L323-L325
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/special/trig.jl#L423-L426
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/special/trig.jl#L423-L426
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/special/trig.jl#L423-L426
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L185-L189
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1639-L1643
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1865-L1869

47.2. MATHEMATICAL FUNCTIONS 527

Base.asinh – Function.

asinh(x)

Compute the inverse hyperbolic sine of x.

source

Base.acosh – Function.

acosh(x)

Compute the inverse hyperbolic cosine of x.

source

Base.atanh – Function.

atanh(x)

Compute the inverse hyperbolic tangent of x.

source

Base.Math.asech – Function.

asech(x)

Compute the inverse hyperbolic secant of x.

source

Base.Math.acsch – Function.

acsch(x)

Compute the inverse hyperbolic cosecant of x.

source

Base.Math.acoth – Function.

acoth(x)

Compute the inverse hyperbolic cotangent of x.

source

Base.Math.sinc – Function.

sinc(x)

Compute sin(πx)/(πx) if x 6= 0, and 1 if x = 0.

source

Base.Math.cosc – Function.

cosc(x)

Compute cos(πx)/x− sin(πx)/(πx2) if x 6= 0, and 0 if x = 0. This is the derivative of sinc(x).

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/math.jl#L223-L227
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/math.jl#L338-L342
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/math.jl#L345-L349
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/special/trig.jl#L326-L328
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/special/trig.jl#L326-L328
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/special/trig.jl#L326-L328
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/special/trig.jl#L288-L292
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/special/trig.jl#L298-L303

528 CHAPTER 47. MATHEMATICS

Base.Math.deg2rad – Function.

deg2rad(x)

Convert x from degrees to radians.

julia> deg2rad(90)

1.5707963267948966

source

Base.Math.rad2deg – Function.

rad2deg(x)

Convert x from radians to degrees.

julia> rad2deg(pi)

180.0

source

Base.Math.hypot – Function.

hypot(x, y)

Compute the hypotenuse
√
x2 + y2 avoiding overflow and underflow.

Examples

julia> a = 10^10;

julia> hypot(a, a)

1.4142135623730951e10

julia> √(a^2 + a^2) # a^2 overflows

ERROR: DomainError:

sqrt will only return a complex result if called with a complex argument. Try

sqrt(complex(x)).↪→

Stacktrace:

[1] sqrt(::Int64) at ./math.jl:434

source

hypot(x...)

Compute the hypotenuse
√∑

x2
i avoiding overflow and underflow.

source

Base.log – Method.

log(x)

Compute the natural logarithm of x. Throws DomainError for negative Real arguments. Use complex negative

arguments to obtain complex results.

There is an experimental variant in the Base.Math.JuliaLibmmodule, which is typically faster and more accu-

rate.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/math.jl#L145-L154
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/math.jl#L133-L142
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/math.jl#L436-L454
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/math.jl#L481-L485
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/math.jl#L352-L360

47.2. MATHEMATICAL FUNCTIONS 529

Base.log – Method.

log(b,x)

Compute the base b logarithm of x. Throws DomainError for negative Real arguments.

julia> log(4,8)

1.5

julia> log(4,2)

0.5

Note

If b is a power of 2 or 10, log2 or log10 should be used, as these will typically be faster and more

accurate. For example,

julia> log(100,1000000)

2.9999999999999996

julia> log10(1000000)/2

3.0

source

Base.log2 – Function.

log2(x)

Compute the logarithm of x to base 2. Throws DomainError for negative Real arguments.

Example

julia> log2(4)

2.0

julia> log2(10)

3.321928094887362

source

Base.log10 – Function.

log10(x)

Compute the logarithm of x to base 10. Throws DomainError for negative Real arguments.

Example

julia> log10(100)

2.0

julia> log10(2)

0.3010299956639812

source

Base.log1p – Function.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/math.jl#L161-L186
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/math.jl#L363-L377
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/math.jl#L380-L394

530 CHAPTER 47. MATHEMATICS

log1p(x)

Accurate natural logarithm of 1+x. Throws DomainError for Real arguments less than -1.

There is an experimental variant in the Base.Math.JuliaLibmmodule, which is typically faster and more accu-

rate.

Examples

julia> log1p(-0.5)

-0.6931471805599453

julia> log1p(0)

0.0

source

Base.Math.frexp – Function.

frexp(val)

Return (x,exp) such that x has a magnitude in the interval [1/2, 1) or 0, and val is equal to x× 2exp.

source

Base.exp – Function.

exp(x)

Compute the natural base exponential of x, in other words ex.

source

Base.exp2 – Function.

exp2(x)

Compute 2x.

julia> exp2(5)

32.0

source

Base.exp10 – Function.

exp10(x)

Compute 10x.

julia> exp10(2)

100.0

julia> exp10(0.2)

1.5848931924611136

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/math.jl#L397-L414
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/math.jl#L614-L619
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/special/exp.jl#L62-L66
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/math.jl#L262-L271
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L588-L600

47.2. MATHEMATICAL FUNCTIONS 531

Base.Math.ldexp – Function.

ldexp(x, n)

Compute x× 2n.

Example

julia> ldexp(5., 2)

20.0

source

Base.Math.modf – Function.

modf(x)

Return a tuple (fpart,ipart) of the fractional and integral parts of a number. Both parts have the same sign as the

argument.

Example

julia> modf(3.5)

(0.5, 3.0)

source

Base.expm1 – Function.

expm1(x)

Accurately compute ex − 1.

source

Base.round – Method.

round([T,] x, [digits, [base]], [r::RoundingMode])

Rounds x to an integer value according to the provided RoundingMode, returning a value of the same type as x.

When not specifying a rounding mode the global mode will be used (see rounding), which by default is round to

the nearest integer (RoundNearest mode), with ties (fractional values of 0.5) being rounded to the nearest even

integer.

julia> round(1.7)

2.0

julia> round(1.5)

2.0

julia> round(2.5)

2.0

The optional RoundingMode argument will change how the number gets rounded.

round(T, x, [r::RoundingMode]) converts the result to type T, throwing an InexactError if the value is

not representable.

round(x, digits) rounds to the specified number of digits after the decimal place (or before if negative).

round(x, digits, base) rounds using a base other than 10.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/math.jl#L512-L522
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/math.jl#L673-L684
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/math.jl#L230-L234

532 CHAPTER 47. MATHEMATICS

julia> round(pi, 2)

3.14

julia> round(pi, 3, 2)

3.125

Note

Rounding to specified digits in bases other than 2 can be inexact when operating on binary floating

point numbers. For example, the Float64 value represented by 1.15 is actually less than 1.15, yet

will be rounded to 1.2.

julia> x = 1.15

1.15

julia> @sprintf "%.20f" x

"1.14999999999999991118"

julia> x < 115//100

true

julia> round(x, 1)

1.2

source

Base.Rounding.RoundingMode – Type.

RoundingMode

A type used for controlling the rounding mode of floating point operations (via rounding/setrounding func-

tions), or as optional arguments for rounding to the nearest integer (via the round function).

Currently supported rounding modes are:

• RoundNearest (default)

• RoundNearestTiesAway

• RoundNearestTiesUp

• RoundToZero

• RoundFromZero (BigFloat only)

• RoundUp

• RoundDown

source

Base.Rounding.RoundNearest – Constant.

RoundNearest

The default rounding mode. Rounds to the nearest integer, with ties (fractional values of 0.5) being rounded to

the nearest even integer.

source

Base.Rounding.RoundNearestTiesAway – Constant.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/floatfuncs.jl#L41-L98
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/rounding.jl#L26-L43
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/rounding.jl#L46-L51

47.2. MATHEMATICAL FUNCTIONS 533

RoundNearestTiesAway

Rounds to nearest integer, with ties rounded away from zero (C/C++ round behaviour).

source

Base.Rounding.RoundNearestTiesUp – Constant.

RoundNearestTiesUp

Rounds to nearest integer, with ties rounded toward positive infinity (Java/JavaScript round behaviour).

source

Base.Rounding.RoundToZero – Constant.

RoundToZero

round using this rounding mode is an alias for trunc.

source

Base.Rounding.RoundUp – Constant.

RoundUp

round using this rounding mode is an alias for ceil.

source

Base.Rounding.RoundDown – Constant.

RoundDown

round using this rounding mode is an alias for floor.

source

Base.round – Method.

round(z, RoundingModeReal, RoundingModeImaginary)

Returns the nearest integral value of the same type as the complex-valued z to z, breaking ties using the specified

RoundingModes. The first RoundingMode is used for rounding the real components while the second is used for

rounding the imaginary components.

source

Base.ceil – Function.

ceil([T,] x, [digits, [base]])

ceil(x) returns the nearest integral value of the same type as x that is greater than or equal to x.

ceil(T, x) converts the result to type T, throwing an InexactError if the value is not representable.

digits and basework as for round.

source

Base.floor – Function.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/rounding.jl#L77-L82
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/rounding.jl#L85-L90
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/rounding.jl#L54-L58
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/rounding.jl#L61-L65
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/rounding.jl#L68-L72
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/complex.jl#L876-L883
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L356-L366

534 CHAPTER 47. MATHEMATICS

floor([T,] x, [digits, [base]])

floor(x) returns the nearest integral value of the same type as x that is less than or equal to x.

floor(T, x) converts the result to type T, throwing an InexactError if the value is not representable.

digits and basework as for round.

source

Base.trunc – Function.

trunc([T,] x, [digits, [base]])

trunc(x) returns the nearest integral value of the same type as x whose absolute value is less than or equal to

x.

trunc(T, x) converts the result to type T, throwing an InexactError if the value is not representable.

digits and basework as for round.

source

Base.unsafe_trunc – Function.

unsafe_trunc(T, x)

unsafe_trunc(T, x) returns the nearest integral value of type Twhose absolute value is less than or equal to

x. If the value is not representable by T, an arbitrary value will be returned.

source

Base.signif – Function.

signif(x, digits, [base])

Rounds (in the sense of round) x so that there are digits significant digits, under a base base representation,

default 10. E.g., signif(123.456, 2) is 120.0, and signif(357.913, 4, 2) is 352.0.

source

Base.min – Function.

min(x, y, ...)

Return the minimum of the arguments. See also the minimum function to take the minimum element from a

collection.

julia> min(2, 5, 1)

1

source

Base.max – Function.

max(x, y, ...)

Return the maximum of the arguments. See also the maximum function to take the maximum element from a

collection.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L643-L653
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L875-L885
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1541-L1547
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L2052-L2058
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/operators.jl#L350-L360

47.2. MATHEMATICAL FUNCTIONS 535

julia> max(2, 5, 1)

5

source

Base.minmax – Function.

minmax(x, y)

Return (min(x,y), max(x,y)). See also: extrema that returns (minimum(x), maximum(x)).

julia> minmax('c','b')

('b', 'c')

source

Base.Math.clamp – Function.

clamp(x, lo, hi)

Return x if lo <= x <= hi. If x < lo, return lo. If x > hi, return hi. Arguments are promoted to a common

type.

julia> clamp.([pi, 1.0, big(10.)], 2., 9.)

3-element Array{BigFloat,1}:

3.141592653589793238462643383279502884197169399375105820974944592307816406286198

2.00

9.00

source

Base.Math.clamp! – Function.

clamp!(array::AbstractArray, lo, hi)

Restrict values in array to the specified range, in-place. See also clamp.

source

Base.abs – Function.

abs(x)

The absolute value of x.

When abs is applied to signed integers, overflow may occur, resulting in the return of a negative value. This

overflow occurs only when abs is applied to the minimum representable value of a signed integer. That is, when

x == typemin(typeof(x)), abs(x) == x < 0, not -x as might be expected.

julia> abs(-3)

3

julia> abs(1 + im)

1.4142135623730951

julia> abs(typemin(Int64))

-9223372036854775808

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/operators.jl#L337-L347
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/operators.jl#L363-L372
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/math.jl#L42-L55
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/math.jl#L62-L67

536 CHAPTER 47. MATHEMATICS

source

Base.Checked.checked_abs – Function.

Base.checked_abs(x)

Calculates abs(x), checking for overflow errors where applicable. For example, standard two’s complement

signed integers (e.g. Int) cannot represent abs(typemin(Int)), thus leading to an overflow.

The overflow protection may impose a perceptible performance penalty.

source

Base.Checked.checked_neg – Function.

Base.checked_neg(x)

Calculates -x, checking for overflow errors where applicable. For example, standard two’s complement signed

integers (e.g. Int) cannot represent -typemin(Int), thus leading to an overflow.

The overflow protection may impose a perceptible performance penalty.

source

Base.Checked.checked_add – Function.

Base.checked_add(x, y)

Calculates x+y, checking for overflow errors where applicable.

The overflow protection may impose a perceptible performance penalty.

source

Base.Checked.checked_sub – Function.

Base.checked_sub(x, y)

Calculates x-y, checking for overflow errors where applicable.

The overflow protection may impose a perceptible performance penalty.

source

Base.Checked.checked_mul – Function.

Base.checked_mul(x, y)

Calculates x*y, checking for overflow errors where applicable.

The overflow protection may impose a perceptible performance penalty.

source

Base.Checked.checked_div – Function.

Base.checked_div(x, y)

Calculates div(x,y), checking for overflow errors where applicable.

The overflow protection may impose a perceptible performance penalty.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/int.jl#L87-L108
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/checked.jl#L107-L115
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/checked.jl#L81-L89
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/checked.jl#L155-L161
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/checked.jl#L212-L218
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/checked.jl#L277-L283
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/checked.jl#L306-L312

47.2. MATHEMATICAL FUNCTIONS 537

Base.Checked.checked_rem – Function.

Base.checked_rem(x, y)

Calculates x%y, checking for overflow errors where applicable.

The overflow protection may impose a perceptible performance penalty.

source

Base.Checked.checked_fld – Function.

Base.checked_fld(x, y)

Calculates fld(x,y), checking for overflow errors where applicable.

The overflow protection may impose a perceptible performance penalty.

source

Base.Checked.checked_mod – Function.

Base.checked_mod(x, y)

Calculates mod(x,y), checking for overflow errors where applicable.

The overflow protection may impose a perceptible performance penalty.

source

Base.Checked.checked_cld – Function.

Base.checked_cld(x, y)

Calculates cld(x,y), checking for overflow errors where applicable.

The overflow protection may impose a perceptible performance penalty.

source

Base.Checked.add_with_overflow – Function.

Base.add_with_overflow(x, y) -> (r, f)

Calculates r = x+y, with the flag f indicating whether overflow has occurred.

source

Base.Checked.sub_with_overflow – Function.

Base.sub_with_overflow(x, y) -> (r, f)

Calculates r = x-y, with the flag f indicating whether overflow has occurred.

source

Base.Checked.mul_with_overflow – Function.

Base.mul_with_overflow(x, y) -> (r, f)

Calculates r = x*y, with the flag f indicating whether overflow has occurred.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/checked.jl#L315-L321
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/checked.jl#L324-L330
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/checked.jl#L333-L339
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/checked.jl#L342-L348
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/checked.jl#L128-L132
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/checked.jl#L187-L191
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/checked.jl#L227-L231

538 CHAPTER 47. MATHEMATICS

Base.abs2 – Function.

abs2(x)

Squared absolute value of x.

source

Base.copysign – Function.

copysign(x, y) -> z

Return zwhich has the magnitude of x and the same sign as y.

julia> copysign(1, -2)

-1

julia> copysign(-1, 2)

1

source

Base.sign – Function.

sign(x)

Return zero if x==0 and x/|x| otherwise (i.e., ±1 for real x).

source

Base.signbit – Function.

signbit(x)

Returns true if the value of the sign of x is negative, otherwise false.

julia> signbit(-4)

true

julia> signbit(5)

false

julia> signbit(5.5)

false

julia> signbit(-4.1)

true

source

Base.flipsign – Function.

flipsign(x, y)

Return xwith its sign flipped if y is negative. For example abs(x) = flipsign(x,x).

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/number.jl#L84-L88
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L728-L740
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/number.jl#L74-L78
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L2177-L2195
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/number.jl#L91-L95

47.2. MATHEMATICAL FUNCTIONS 539

Base.sqrt – Function.

sqrt(x)

Return
√
x. Throws DomainError for negative Real arguments. Use complex negative arguments instead. The

prefix operator √ is equivalent to sqrt.

source

Base.isqrt – Function.

isqrt(n::Integer)

Integer square root: the largest integer m such that m*m <= n.

julia> isqrt(5)

2

source

Base.Math.cbrt – Function.

cbrt(x::Real)

Return the cube root of x, i.e. x1/3. Negative values are accepted (returning the negative real root when x < 0).

The prefix operator is equivalent to cbrt.

julia> cbrt(big(27))

3.00

source

Base.real – Method.

real(z)

Return the real part of the complex number z.

julia> real(1 + 3im)

1

source

Base.imag – Function.

imag(z)

Return the imaginary part of the complex number z.

julia> imag(1 + 3im)

3

source

Base.reim – Function.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/math.jl#L428-L433
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/intfuncs.jl#L569-L578
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/math.jl#L247-L259
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/complex.jl#L44-L53
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/complex.jl#L56-L65

540 CHAPTER 47. MATHEMATICS

reim(z)

Return both the real and imaginary parts of the complex number z.

julia> reim(1 + 3im)

(1, 3)

source

Base.conj – Function.

conj(v::RowVector)

Returns a ConjArray lazy view of the input, where each element is conjugated.

Example

julia> v = [1+im, 1-im].'

1×2 RowVector{Complex{Int64},Array{Complex{Int64},1}}:

1+1im 1-1im

julia> conj(v)

1×2 RowVector{Complex{Int64},ConjArray{Complex{Int64},1,Array{Complex{Int64},1}}}:

1-1im 1+1im

source

conj(z)

Compute the complex conjugate of a complex number z.

julia> conj(1 + 3im)

1 - 3im

source

Base.angle – Function.

angle(z)

Compute the phase angle in radians of a complex number z.

source

Base.cis – Function.

cis(z)

Return exp(iz).

source

Base.binomial – Function.

binomial(n,k)

Number of ways to choose k out of n items.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/complex.jl#L70-L79
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/rowvector.jl#L88-L104
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/complex.jl#L204-L213
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/complex.jl#L444-L448
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/complex.jl#L434-L438
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/intfuncs.jl#L600-L604

47.2. MATHEMATICAL FUNCTIONS 541

Base.factorial – Function.

factorial(n)

Factorial of n. If n is an Integer, the factorial is computed as an integer (promoted to at least 64 bits). Note

that this may overflow if n is not small, but you can use factorial(big(n)) to compute the result exactly in

arbitrary precision. If n is not an Integer, factorial(n) is equivalent to gamma(n+1).

julia> factorial(6)

720

julia> factorial(21)

ERROR: OverflowError()

[...]

julia> factorial(21.0)

5.109094217170944e19

julia> factorial(big(21))

51090942171709440000

source

Base.gcd – Function.

gcd(x,y)

Greatest common (positive) divisor (or zero if x and y are both zero).

julia> gcd(6,9)

3

julia> gcd(6,-9)

3

source

Base.lcm – Function.

lcm(x,y)

Least common (non-negative) multiple.

julia> lcm(2,3)

6

julia> lcm(-2,3)

6

source

Base.gcdx – Function.

gcdx(x,y)

Computes the greatest common (positive) divisor of x and y and their Bézout coefficients, i.e. the integer coef-

ficients u and v that satisfy ux+ vy = d = gcd(x, y). gcdx(x, y) returns (d, u, v).

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/number.jl#L190-L212
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/intfuncs.jl#L5-L17
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/intfuncs.jl#L50-L61

542 CHAPTER 47. MATHEMATICS

julia> gcdx(12, 42)

(6, -3, 1)

julia> gcdx(240, 46)

(2, -9, 47)

Note

Bézout coefficients are not uniquely defined. gcdx returns the minimal Bézout coefficients that are

computed by the extended Euclidean algorithm. (Ref: D. Knuth, TAoCP, 2/e, p. 325, Algorithm X.)

For signed integers, these coefficients u and v are minimal in the sense that |u| < |y/d| and |v| <
|x/d|. Furthermore, the signs of u and v are chosen so that d is positive. For unsigned integers, the
coefficients u and v might be near their typemax, and the identity then holds only via the unsigned

integers’ modulo arithmetic.

source

Base.ispow2 – Function.

ispow2(n::Integer) -> Bool

Test whether n is a power of two.

julia> ispow2(4)

true

julia> ispow2(5)

false

source

Base.nextpow2 – Function.

nextpow2(n::Integer)

The smallest power of two not less than n. Returns 0 for n==0, and returns -nextpow2(-n) for negative argu-

ments.

julia> nextpow2(16)

16

julia> nextpow2(17)

32

source

Base.prevpow2 – Function.

prevpow2(n::Integer)

The largest power of two not greater than n. Returns 0 for n==0, and returns -prevpow2(-n) for negative

arguments.

julia> prevpow2(5)

4

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/intfuncs.jl#L82-L109
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/intfuncs.jl#L285-L297
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/intfuncs.jl#L254-L267

47.2. MATHEMATICAL FUNCTIONS 543

source

Base.nextpow – Function.

nextpow(a, x)

The smallest a^n not less than x, where n is a non-negative integer. a must be greater than 1, and x must be

greater than 0.

source

Base.prevpow – Function.

prevpow(a, x)

The largest a^n not greater than x, where n is a non-negative integer. a must be greater than 1, and x must not

be less than 1.

source

Base.nextprod – Function.

nextprod([k_1, k_2,...], n)

Next integer greater than or equal to n that can be written as
∏

kpi

i for integers p1, p2, etc.

julia> nextprod([2, 3], 105)

108

julia> 2^2 * 3^3

108

source

Base.invmod – Function.

invmod(x,m)

Take the inverse of x modulo m: y such that xy = 1 (mod m), with div(x, y) = 0. This is undefined for
m = 0, or if gcd(x,m) 6= 1.

julia> invmod(2,5)

3

julia> invmod(2,3)

2

julia> invmod(5,6)

5

source

Base.powermod – Function.

powermod(x::Integer, p::Integer, m)

Compute xp (mod m).

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/intfuncs.jl#L271-L281
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/intfuncs.jl#L300-L305
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/intfuncs.jl#L315-L320
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/combinatorics.jl#L230-L243
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/intfuncs.jl#L127-L144
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/intfuncs.jl#L223-L227

544 CHAPTER 47. MATHEMATICS

Base.Math.gamma – Function.

gamma(x)

Compute the gamma function of x.

source

Base.Math.lgamma – Function.

lgamma(x)

Compute the logarithm of the absolute value of gamma for Real x, while for Complex x compute the principal

branch cut of the logarithm of gamma(x) (defined for negative real(x) by analytic continuation from positive

real(x)).

source

Base.Math.lfact – Function.

lfact(x)

Compute the logarithmic factorial of a nonnegative integer x. Equivalent to lgamma of x + 1, but lgamma ex-

tends this function to non-integer x.

source

Base.Math.beta – Function.

beta(x, y)

Euler integral of the first kind B(x, y) = Γ(x)Γ(y)/Γ(x+ y).

source

Base.Math.lbeta – Function.

lbeta(x, y)

Natural logarithm of the absolute value of the beta function log(|B(x, y)|).

source

Base.ndigits – Function.

ndigits(n::Integer, b::Integer=10)

Compute the number of digits in integer nwritten in base b.

source

Base.widemul – Function.

widemul(x, y)

Multiply x and y, giving the result as a larger type.

julia> widemul(Float32(3.), 4.)

1.2000e+01

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/special/gamma.jl#L6-L10
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/special/gamma.jl#L36-L43
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/special/gamma.jl#L27-L33
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/special/gamma.jl#L139-L143
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/special/gamma.jl#L151-L156
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/intfuncs.jl#L389-L393

47.3. STATISTICS 545

source

Base.Math.@evalpoly – Macro.

@evalpoly(z, c...)

Evaluate the polynomial
∑

k c[k]z
k−1 for the coefficients c[1], c[2], ...; that is, the coefficients are given in

ascending order by power of z. This macro expands to efficient inline code that uses either Horner’s method or,

for complex z, a more efficient Goertzel-like algorithm.

julia> @evalpoly(3, 1, 0, 1)

10

julia> @evalpoly(2, 1, 0, 1)

5

julia> @evalpoly(2, 1, 1, 1)

7

source

47.3 Statistics

Base.mean – Function.

mean(f::Function, v)

Apply the function f to each element of v and take the mean.

julia> mean(√, [1, 2, 3])

1.3820881233139908

julia> mean([√1, √2, √3])

1.3820881233139908

source

mean(v[, region])

Compute the mean of whole array v, or optionally along the dimensions in region.

Note

Julia does not ignore NaN values in the computation. For applications requiring the handling ofmissing

data, the DataArrays.jl package is recommended.

source

Base.mean! – Function.

mean!(r, v)

Compute the mean of v over the singleton dimensions of r, and write results to r.

source

Base.std – Function.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/number.jl#L105-L114
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/math.jl#L89-L107
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/statistics.jl#L5-L17
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/statistics.jl#L48-L56
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1488-L1492

546 CHAPTER 47. MATHEMATICS

std(v[, region]; corrected::Bool=true, mean=nothing)

Compute the sample standard deviation of a vector or array v, optionally along dimensions in region. The

algorithm returns an estimator of the generative distribution’s standard deviation under the assumption that

each entry of v is an IID drawn from that generative distribution. This computation is equivalent to calculat-

ing sqrt(sum((v - mean(v)).^2) / (length(v) - 1)). A pre-computed meanmay be provided. If cor-

rected is true, then the sum is scaled with n-1, whereas the sum is scaled with n if corrected is falsewhere

n = length(x).

Note

Julia does not ignore NaN values in the computation. For applications requiring the handling ofmissing

data, the DataArrays.jl package is recommended.

source

Base.stdm – Function.

stdm(v, m::Number; corrected::Bool=true)

Compute the sample standard deviation of a vector v with known mean m. If corrected is true, then the sum

is scaled with n-1, whereas the sum is scaled with n if corrected is falsewhere n = length(x).

Note

Julia does not ignore NaN values in the computation. For applications requiring the handling ofmissing

data, the DataArrays.jl package is recommended.

source

Base.var – Function.

var(v[, region]; corrected::Bool=true, mean=nothing)

Compute the sample variance of a vector or array v, optionally along dimensions in region. The algorithm

will return an estimator of the generative distribution’s variance under the assumption that each entry of v is

an IID drawn from that generative distribution. This computation is equivalent to calculating sum(abs2, v -

mean(v)) / (length(v) - 1). If corrected is true, then the sum is scaled with n-1, whereas the sum is

scaled with n if corrected is falsewhere n = length(x). The mean mean over the region may be provided.

Note

Julia does not ignore NaN values in the computation. For applications requiring the handling ofmissing

data, the DataArrays.jl package is recommended.

source

Base.varm – Function.

varm(v, m[, region]; corrected::Bool=true)

Compute the sample variance of a collection v with known mean(s) m, optionally over region. m may contain

means for each dimension of v. If corrected is true, then the sum is scaled with n-1, whereas the sum is scaled

with n if corrected is falsewhere n = length(x).

Note

Julia does not ignore NaN values in the computation. For applications requiring the handling ofmissing

data, the DataArrays.jl package is recommended.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/statistics.jl#L247-L262
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/statistics.jl#L269-L281
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/statistics.jl#L188-L203

47.3. STATISTICS 547

source

Base.middle – Function.

middle(x)

Compute the middle of a scalar value, which is equivalent to x itself, but of the type of middle(x, x) for con-

sistency.

source

middle(x, y)

Compute the middle of two reals x and y, which is equivalent in both value and type to computing their mean ((x

+ y) / 2).

source

middle(range)

Compute the middle of a range, which consists of computing the mean of its extrema. Since a range is sorted, the

mean is performed with the first and last element.

julia> middle(1:10)

5.5

source

middle(a)

Compute the middle of an array a, which consists of finding its extrema and then computing their mean.

julia> a = [1,2,3.6,10.9]

4-element Array{Float64,1}:

1.0

2.0

3.6

10.9

julia> middle(a)

5.95

source

Base.median – Function.

median(v[, region])

Compute the median of an entire array v, or, optionally, along the dimensions in region. For an even number of

elements no exact median element exists, so the result is equivalent to calculating mean of two median elements.

Note

Julia does not ignore NaN values in the computation. For applications requiring the handling ofmissing

data, the DataArrays.jl package is recommended.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/statistics.jl#L167-L179
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/statistics.jl#L531-L535
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/statistics.jl#L541-L546
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/statistics.jl#L549-L559
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/statistics.jl#L562-L579
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/statistics.jl#L607-L618

548 CHAPTER 47. MATHEMATICS

Base.median! – Function.

median!(v)

Like median, but may overwrite the input vector.

source

Base.quantile – Function.

quantile(v, p; sorted=false)

Compute the quantile(s) of a vector v at a specified probability or vector p. The keyword argument sorted

indicates whether v can be assumed to be sorted.

The p should be on the interval [0,1], and v should not have any NaN values.

Quantiles are computed via linear interpolation between the points ((k-1)/(n-1), v[k]), for k = 1:nwhere

n = length(v). This corresponds to Definition 7 of Hyndman and Fan (1996), and is the same as the R default.

Note

Julia does not ignore NaN values in the computation. For applications requiring the handling ofmissing

data, the DataArrays.jl package is recommended. quantilewill throwan ArgumentError in the

presence of NaN values in the data array.

• Hyndman, R.J and Fan, Y. (1996) ”Sample Quantiles in Statistical Packages”, The American Statistician, Vol.

50, No. 4, pp. 361-365

source

Base.quantile! – Function.

quantile!([q,] v, p; sorted=false)

Compute the quantile(s) of a vector v at the probabilities p, with optional output into array q (if not provided, a

new output array is created). The keyword argument sorted indicates whether v can be assumed to be sorted;

if false (the default), then the elements of v may be partially sorted.

The elements of p should be on the interval [0,1], and v should not have any NaN values.

Quantiles are computed via linear interpolation between the points ((k-1)/(n-1), v[k]), for k = 1:nwhere

n = length(v). This corresponds to Definition 7 of Hyndman and Fan (1996), and is the same as the R default.

Note

Julia does not ignore NaN values in the computation. For applications requiring the handling ofmissing

data, the DataArrays.jl package is recommended. quantile! will throw an ArgumentError in

the presence of NaN values in the data array.

• Hyndman, R.J and Fan, Y. (1996) ”Sample Quantiles in Statistical Packages”, The American Statistician, Vol.

50, No. 4, pp. 361-365

source

Base.cov – Function.

cov(x[, corrected=true])

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/statistics.jl#L582-L586
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/statistics.jl#L717-L736
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/statistics.jl#L623-L645

47.4. SIGNAL PROCESSING 549

Compute the variance of the vector x. If corrected is true (the default) then the sum is scaledwith n-1, whereas

the sum is scaled with n if corrected is falsewhere n = length(x).

source

cov(X[, vardim=1, corrected=true])

Compute the covariance matrix of the matrix X along the dimension vardim. If corrected is true (the default)

then the sum is scaled with n-1, whereas the sum is scaled with n if corrected is false where n = size(X,

vardim).

source

cov(x, y[, corrected=true])

Compute the covariance between thevectorsx andy. Ifcorrected istrue (the default), computes
1

n−1

∑n
i=1(xi−

x̄)(yi − ȳ)∗ where ∗ denotes the complex conjugate and n = length(x) = length(y). If corrected is

false, computes rac1nsumn
i=1(xi − x̄)(yi − ȳ)∗.

source

cov(X, Y[, vardim=1, corrected=true])

Compute the covariance between the vectors or matrices X and Y along the dimension vardim. If corrected

is true (the default) then the sum is scaled with n-1, whereas the sum is scaled with n if corrected is false

where n = size(X, vardim) = size(Y, vardim).

source

Base.cor – Function.

cor(x)

Return the number one.

source

cor(X[, vardim=1])

Compute the Pearson correlation matrix of the matrix X along the dimension vardim.

source

cor(x, y)

Compute the Pearson correlation between the vectors x and y.

source

cor(X, Y[, vardim=1])

Compute the Pearson correlation between the vectors or matrices X and Y along the dimension vardim.

source

47.4 Signal Processing

Fast Fourier transform (FFT) functions in Julia are implemented by calling functions from FFTW.

Base.DFT.fft – Function.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/statistics.jl#L340-L345
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/statistics.jl#L350-L356
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/statistics.jl#L362-L369
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/statistics.jl#L376-L382
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/statistics.jl#L492-L496
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/statistics.jl#L500-L504
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/statistics.jl#L509-L513
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/statistics.jl#L517-L521
http://www.fftw.org

550 CHAPTER 47. MATHEMATICS

fft(A [, dims])

Performs a multidimensional FFT of the array A. The optional dims argument specifies an iterable subset of di-

mensions (e.g. an integer, range, tuple, or array) to transform along. Most efficient if the size of A along the

transformed dimensions is a product of small primes; see nextprod(). See also plan_fft() for even greater

efficiency.

A one-dimensional FFT computes the one-dimensional discrete Fourier transform (DFT) as defined by

DFT(A)[k] =

length(A)∑
n=1

exp
(
−i

2π(n− 1)(k − 1)

length(A)

)
A[n].

Amultidimensional FFT simply performs this operation along each transformed dimension of A.

Note

• Julia starts FFTW up with 1 thread by default. Higher performance is usually possible by in-

creasing number of threads. Use FFTW.set_num_threads(Sys.CPU_CORES) to use as many

threads as cores on your system.

• This performs a multidimensional FFT by default. FFT libraries in other languages such as Python

and Octave perform a one-dimensional FFT along the first non-singleton dimension of the array.

This is worth noting while performing comparisons. For more details, refer to the Noteworthy

Differences from other Languages section of the manual.

source

Base.DFT.fft! – Function.

fft!(A [, dims])

Same as fft, but operates in-place on A, which must be an array of complex floating-point numbers.

source

Base.DFT.ifft – Function.

ifft(A [, dims])

Multidimensional inverse FFT.

A one-dimensional inverse FFT computes

IDFT(A)[k] =
1

length(A)

length(A)∑
n=1

exp
(
+i

2π(n− 1)(k − 1)

length(A)

)
A[n].

Amultidimensional inverse FFT simply performs this operation along each transformed dimension of A.

source

Base.DFT.ifft! – Function.

ifft!(A [, dims])

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dft.jl#L401-L431
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dft.jl#L169-L174
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dft.jl#L152-L166

47.4. SIGNAL PROCESSING 551

Same as ifft, but operates in-place on A.

source

Base.DFT.bfft – Function.

bfft(A [, dims])

Similar to ifft, but computes an unnormalized inverse (backward) transform, which must be divided by the

product of the sizes of the transformed dimensions in order to obtain the inverse. (This is slightly more efficient

than ifft because it omits a scaling step, which in some applications can be combined with other computational

steps elsewhere.)

BDFT(A)[k] = length(A) IDFT(A)[k]

source

Base.DFT.bfft! – Function.

bfft!(A [, dims])

Same as bfft, but operates in-place on A.

source

Base.DFT.plan_fft – Function.

plan_fft(A [, dims]; flags=FFTW.ESTIMATE; timelimit=Inf)

Pre-plan an optimized FFT along given dimensions (dims) of arrays matching the shape and type of A. (The first

two arguments have the same meaning as for fft.) Returns an object P which represents the linear operator

computed by the FFT, and which contains all of the information needed to compute fft(A, dims) quickly.

To apply P to an array A, use P * A; in general, the syntax for applying plans is much like that of matrices. (A

plan can only be applied to arrays of the same size as the A for which the plan was created.) You can also apply a

plan with a preallocated output array Â by calling A_mul_B!(Â, plan, A). (For A_mul_B!, however, the input

array Amust be a complex floating-point array like the output Â.) You can compute the inverse-transform plan by

inv(P) and apply the inverse plan with P \ Â (the inverse plan is cached and reused for subsequent calls to inv

or \), and apply the inverse plan to a pre-allocated output array Awith A_ldiv_B!(A, P, Â).

Theflags argument is a bitwise-or of FFTWplannerflags, defaulting toFFTW.ESTIMATE. e.g. passingFFTW.MEA-

SURE or FFTW.PATIENT will instead spend several seconds (or more) benchmarking different possible FFT al-

gorithms and picking the fastest one; see the FFTW manual for more information on planner flags. The op-

tional timelimit argument specifies a rough upper bound on the allowed planning time, in seconds. Passing

FFTW.MEASURE or FFTW.PATIENTmay cause the input array A to be overwrittenwith zeros during plan creation.

plan_fft! is the same as plan_fft but creates a plan that operates in-place on its argument (which must be

an array of complex floating-point numbers). plan_ifft and so on are similar but produce plans that perform

the equivalent of the inverse transforms ifft and so on.

source

Base.DFT.plan_ifft – Function.

plan_ifft(A [, dims]; flags=FFTW.ESTIMATE; timelimit=Inf)

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dft.jl#L145-L149
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dft.jl#L177-L189
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dft.jl#L192-L196
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dft.jl#L92-L121

552 CHAPTER 47. MATHEMATICS

Same as plan_fft, but produces a plan that performs inverse transforms ifft.

source

Base.DFT.plan_bfft – Function.

plan_bfft(A [, dims]; flags=FFTW.ESTIMATE; timelimit=Inf)

Same as plan_fft, but produces a plan that performs an unnormalized backwards transform bfft.

source

Base.DFT.plan_fft! – Function.

plan_fft!(A [, dims]; flags=FFTW.ESTIMATE; timelimit=Inf)

Same as plan_fft, but operates in-place on A.

source

Base.DFT.plan_ifft! – Function.

plan_ifft!(A [, dims]; flags=FFTW.ESTIMATE; timelimit=Inf)

Same as plan_ifft, but operates in-place on A.

source

Base.DFT.plan_bfft! – Function.

plan_bfft!(A [, dims]; flags=FFTW.ESTIMATE; timelimit=Inf)

Same as plan_bfft, but operates in-place on A.

source

Base.DFT.rfft – Function.

rfft(A [, dims])

Multidimensional FFT of a real array A, exploiting the fact that the transform has conjugate symmetry in order to

save roughly half the computational time and storage costs compared with fft. If A has size (n_1, ..., n_d),

the result has size (div(n_1,2)+1, ..., n_d).

The optional dims argument specifies an iterable subset of one or more dimensions of A to transform, similar to

fft. Instead of (roughly) halving the first dimension of A in the result, the dims[1] dimension is (roughly) halved

in the same way.

source

Base.DFT.irfft – Function.

irfft(A, d [, dims])

Inverse of rfft: for a complex array A, gives the corresponding real array whose FFT yields A in the first half. As

for rfft, dims is an optional subset of dimensions to transform, defaulting to 1:ndims(A).

d is the length of the transformed real array along the dims[1] dimension, which must satisfy div(d,2)+1 ==

size(A,dims[1]). (This parameter cannot be inferred from size(A) since both 2*size(A,dims[1])-2 as

well as 2*size(A,dims[1])-1 are valid sizes for the transformed real array.)

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dft.jl#L62-L67
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dft.jl#L84-L89
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dft.jl#L124-L128
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dft.jl#L70-L74
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dft.jl#L77-L81
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dft.jl#L131-L142
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dft.jl#L302-L313

47.4. SIGNAL PROCESSING 553

Base.DFT.brfft – Function.

brfft(A, d [, dims])

Similar to irfft but computes an unnormalized inverse transform (similar to bfft), which must be divided by

the product of the sizes of the transformed dimensions (of the real output array) in order to obtain the inverse

transform.

source

Base.DFT.plan_rfft – Function.

plan_rfft(A [, dims]; flags=FFTW.ESTIMATE; timelimit=Inf)

Pre-plan an optimized real-input FFT, similar to plan_fft except for rfft instead of fft. The first two argu-

ments, and the size of the transformed result, are the same as for rfft.

source

Base.DFT.plan_brfft – Function.

plan_brfft(A, d [, dims]; flags=FFTW.ESTIMATE; timelimit=Inf)

Pre-plan an optimized real-input unnormalized transform, similar to plan_rfft except for brfft instead of rfft.

The first two arguments and the size of the transformed result, are the same as for brfft.

source

Base.DFT.plan_irfft – Function.

plan_irfft(A, d [, dims]; flags=FFTW.ESTIMATE; timelimit=Inf)

Pre-plan an optimized inverse real-input FFT, similar to plan_rfft except for irfft and brfft, respectively.

The first three arguments have the same meaning as for irfft.

source

Base.DFT.FFTW.dct – Function.

dct(A [, dims])

Performs amultidimensional type-II discrete cosine transform (DCT) of the array A, using the unitary normalization

of the DCT. The optional dims argument specifies an iterable subset of dimensions (e.g. an integer, range, tuple,

or array) to transform along. Most efficient if the size of A along the transformed dimensions is a product of small

primes; see nextprod. See also plan_dct for even greater efficiency.

source

Base.DFT.FFTW.dct! – Function.

dct!(A [, dims])

Same as dct!, except that it operates in-place on A, which must be an array of real or complex floating-point

values.

source

Base.DFT.FFTW.idct – Function.

idct(A [, dims])

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dft.jl#L316-L322
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dft.jl#L434-L440
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dft.jl#L443-L450
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dft.jl#L344-L350
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dft.jl#L494-L503
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dft.jl#L518-L523

554 CHAPTER 47. MATHEMATICS

Computes the multidimensional inverse discrete cosine transform (DCT) of the array A (technically, a type-III DCT

with the unitary normalization). The optional dims argument specifies an iterable subset of dimensions (e.g. an

integer, range, tuple, or array) to transform along. Most efficient if the size of A along the transformed dimensions

is a product of small primes; see nextprod. See also plan_idct for even greater efficiency.

source

Base.DFT.FFTW.idct! – Function.

idct!(A [, dims])

Same as idct!, but operates in-place on A.

source

Base.DFT.FFTW.plan_dct – Function.

plan_dct(A [, dims [, flags [, timelimit]]])

Pre-plan an optimized discrete cosine transform (DCT), similar to plan_fft except producing a function that

computes dct. The first two arguments have the same meaning as for dct.

source

Base.DFT.FFTW.plan_dct! – Function.

plan_dct!(A [, dims [, flags [, timelimit]]])

Same as plan_dct, but operates in-place on A.

source

Base.DFT.FFTW.plan_idct – Function.

plan_idct(A [, dims [, flags [, timelimit]]])

Pre-plan an optimized inverse discrete cosine transform (DCT), similar to plan_fft except producing a function

that computes idct. The first two arguments have the same meaning as for idct.

source

Base.DFT.FFTW.plan_idct! – Function.

plan_idct!(A [, dims [, flags [, timelimit]]])

Same as plan_idct, but operates in-place on A.

source

Base.DFT.fftshift – Method.

fftshift(x)

Swap the first and second halves of each dimension of x.

source

Base.DFT.fftshift – Method.

fftshift(x,dim)

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dft.jl#L506-L515
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dft.jl#L526-L530
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dft.jl#L477-L484
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dft.jl#L460-L464
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dft.jl#L467-L474
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dft.jl#L487-L491
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dft.jl#L359-L363

47.4. SIGNAL PROCESSING 555

Swap the first and second halves of the given dimension or iterable of dimensions of array x.

source

Base.DFT.ifftshift – Function.

ifftshift(x, [dim])

Undoes the effect of fftshift.

source

Base.DSP.filt – Function.

filt(b, a, x, [si])

Apply filter described by vectors a and b to vector x, with an optional initial filter state vector si (defaults to

zeros).

source

Base.DSP.filt! – Function.

filt!(out, b, a, x, [si])

Same as filt but writes the result into the out argument, which may alias the input x to modify it in-place.

source

Base.DSP.deconv – Function.

deconv(b,a) -> c

Construct vector c such that b = conv(a,c) + r. Equivalent to polynomial division.

source

Base.DSP.conv – Function.

conv(u,v)

Convolution of two vectors. Uses FFT algorithm.

source

Base.DSP.conv2 – Function.

conv2(u,v,A)

2-D convolution of the matrix A with the 2-D separable kernel generated by the vectors u and v. Uses 2-D FFT

algorithm.

source

conv2(B,A)

2-D convolution of the matrix Bwith the matrix A. Uses 2-D FFT algorithm.

source

Base.DSP.xcorr – Function.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dft.jl#L374-L378
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dft.jl#L383-L387
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dsp.jl#L11-L16
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dsp.jl#L25-L30
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dsp.jl#L105-L110
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dsp.jl#L123-L127
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dsp.jl#L148-L154
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dsp.jl#L169-L173

556 CHAPTER 47. MATHEMATICS

xcorr(u,v)

Compute the cross-correlation of two vectors.

source

The following functions are defined within the Base.FFTW module.

Base.DFT.FFTW.r2r – Function.

r2r(A, kind [, dims])

Performs a multidimensional real-input/real-output (r2r) transform of type kind of the array A, as defined in the

FFTWmanual. kind specifies either a discrete cosine transformofvarious types (FFTW.REDFT00, FFTW.REDFT01,

FFTW.REDFT10, or FFTW.REDFT11), a discrete sine transform of various types (FFTW.RODFT00, FFTW.RODFT01,

FFTW.RODFT10, orFFTW.RODFT11), a real-inputDFTwith halfcomplex-format output (FFTW.R2HC and its inverse

FFTW.HC2R), or a discrete Hartley transform (FFTW.DHT). The kind argument may be an array or tuple in order

to specify different transform types along the different dimensions of A; kind[end] is used for any unspecified

dimensions. See the FFTWmanual for precise definitions of these transform types, at http://www.fftw.org/doc.

The optional dims argument specifies an iterable subset of dimensions (e.g. an integer, range, tuple, or array)

to transform along. kind[i] is then the transform type for dims[i], with kind[end] being used for i >

length(kind).

See also plan_r2r to pre-plan optimized r2r transforms.

source

Base.DFT.FFTW.r2r! – Function.

r2r!(A, kind [, dims])

Same as r2r, but operates in-place on A, which must be an array of real or complex floating-point numbers.

source

Base.DFT.FFTW.plan_r2r – Function.

plan_r2r(A, kind [, dims [, flags [, timelimit]]])

Pre-plan an optimized r2r transform, similar to plan_fft except that the transforms (and the first three argu-

ments) correspond to r2r and r2r!, respectively.

source

Base.DFT.FFTW.plan_r2r! – Function.

plan_r2r!(A, kind [, dims [, flags [, timelimit]]])

Similar to plan_fft, but corresponds to r2r!.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dsp.jl#L192-L196
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dft.jl#L533-L556
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dft.jl#L559-L564
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dft.jl#L574-L580
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dft.jl#L567-L571

Chapter 48

Numbers

48.1 Standard Numeric Types

Abstract number types

Core.Number – Type.

Number

Abstract supertype for all number types.

source

Core.Real – Type.

Real <: Number

Abstract supertype for all real numbers.

source

Core.AbstractFloat – Type.

AbstractFloat <: Real

Abstract supertype for all floating point numbers.

source

Core.Integer – Type.

Integer <: Real

Abstract supertype for all integers.

source

Core.Signed – Type.

Signed <: Integer

Abstract supertype for all signed integers.

source

557

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L2391-L2395
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L2398-L2402
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L2405-L2409
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L2412-L2416
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L2419-L2423

558 CHAPTER 48. NUMBERS

Core.Unsigned – Type.

Unsigned <: Integer

Abstract supertype for all unsigned integers.

source

Concrete number types

Core.Float16 – Type.

Float16 <: AbstractFloat

16-bit floating point number type.

source

Core.Float32 – Type.

Float32 <: AbstractFloat

32-bit floating point number type.

source

Core.Float64 – Type.

Float64 <: AbstractFloat

64-bit floating point number type.

source

Base.MPFR.BigFloat – Type.

BigFloat <: AbstractFloat

Arbitrary precision floating point number type.

source

Core.Bool – Type.

Bool <: Integer

Boolean type.

source

Core.Int8 – Type.

Int8 <: Signed

8-bit signed integer type.

source

Core.UInt8 – Type.

UInt8 <: Unsigned

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L2426-L2430
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L2442-L2446
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L2442-L2446
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L2442-L2446
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/mpfr.jl#L43-L47
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L2433-L2437
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L2453-L2457

48.1. STANDARD NUMERIC TYPES 559

8-bit unsigned integer type.

source

Core.Int16 – Type.

Int16 <: Signed

16-bit signed integer type.

source

Core.UInt16 – Type.

UInt16 <: Unsigned

16-bit unsigned integer type.

source

Core.Int32 – Type.

Int32 <: Signed

32-bit signed integer type.

source

Core.UInt32 – Type.

UInt32 <: Unsigned

32-bit unsigned integer type.

source

Core.Int64 – Type.

Int64 <: Signed

64-bit signed integer type.

source

Core.UInt64 – Type.

UInt64 <: Unsigned

64-bit unsigned integer type.

source

Core.Int128 – Type.

Int128 <: Signed

128-bit signed integer type.

source

Core.UInt128 – Type.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L2460-L2464
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L2453-L2457
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L2460-L2464
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L2453-L2457
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L2460-L2464
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L2453-L2457
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L2460-L2464
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L2453-L2457

560 CHAPTER 48. NUMBERS

UInt128 <: Unsigned

128-bit unsigned integer type.

source

Base.GMP.BigInt – Type.

BigInt <: Integer

Arbitrary precision integer type.

source

Base.Complex – Type.

Complex{T<:Real} <: Number

Complex number type with real and imaginary part of type T.

Complex32, Complex64 and Complex128 are aliases for Complex{Float16}, Complex{Float32} and Com-

plex{Float64} respectively.

source

Base.Rational – Type.

Rational{T<:Integer} <: Real

Rational number type, with numerator and denominator of type T.

source

Base.Irrational – Type.

Irrational <: Real

Irrational number type.

source

48.2 Data Formats

Base.bin – Function.

bin(n, pad::Int=1)

Convert an integer to a binary string, optionally specifying a number of digits to pad to.

julia> bin(10,2)

"1010"

julia> bin(10,8)

"00001010"

source

Base.hex – Function.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L2460-L2464
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/gmp.jl#L40-L44
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/complex.jl#L3-L10
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/rational.jl#L3-L7
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/irrationals.jl#L5-L9
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/intfuncs.jl#L496-L508

48.2. DATA FORMATS 561

hex(n, pad::Int=1)

Convert an integer to a hexadecimal string, optionally specifying a number of digits to pad to.

source

Base.dec – Function.

dec(n, pad::Int=1)

Convert an integer to a decimal string, optionally specifying a number of digits to pad to.

source

Base.oct – Function.

oct(n, pad::Int=1)

Convert an integer to an octal string, optionally specifying a number of digits to pad to.

source

Base.base – Function.

base(base::Integer, n::Integer, pad::Integer=1)

Convert an integer n to a string in the given base, optionally specifying a number of digits to pad to.

julia> base(13,5,4)

"0005"

julia> base(5,13,4)

"0023"

source

Base.digits – Function.

digits([T<:Integer], n::Integer, base::T=10, pad::Integer=1)

Returns an arraywith element type T (default Int) of the digits of n in the given base, optionally paddedwith zeros

to a specified size. More significant digits are at higher indexes, such that n == sum([digits[k]*base^(k-1)

for k=1:length(digits)]).

source

Base.digits! – Function.

digits!(array, n::Integer, base::Integer=10)

Fills an array of the digits of n in the given base. More significant digits are at higher indexes. If the array length is

insufficient, the least significant digits are filled up to the array length. If the array length is excessive, the excess

portion is filled with zeros.

source

Base.bits – Function.

bits(n)

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/intfuncs.jl#L511-L515
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/intfuncs.jl#L525-L529
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/intfuncs.jl#L518-L522
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/intfuncs.jl#L469-L482
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/intfuncs.jl#L538-L544
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/intfuncs.jl#L552-L558

562 CHAPTER 48. NUMBERS

A string giving the literal bit representation of a number.

julia> bits(4)

"000100"

julia> bits(2.2)

"0100000000000001100110011001100110011001100110011001100110011010"

source

Base.parse – Method.

parse(type, str, [base])

Parse a string as a number. If the type is an integer type, then a base can be specified (the default is 10). If the

type is a floating point type, the string is parsed as a decimal floating point number. If the string does not contain

a valid number, an error is raised.

source

Base.tryparse – Function.

tryparse(type, str, [base])

Like parse, but returns a Nullable of the requested type. The result will be null if the string does not contain a

valid number.

source

Base.big – Function.

big(x)

Convert a number to a maximum precision representation (typically BigInt or BigFloat). See BigFloat for

information about some pitfalls with floating-point numbers.

source

Base.signed – Function.

signed(x)

Convert a number to a signed integer. If the argument is unsigned, it is reinterpreted as signed without checking

for overflow.

source

Base.unsigned – Function.

unsigned(x) -> Unsigned

Convert a number to an unsigned integer. If the argument is signed, it is reinterpreted as unsigned without check-

ing for negative values.

source

Base.float – Method.

float(x)

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L79-L91
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1026-L1032
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L2205-L2210
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1139-L1144
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L2292-L2297
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L2160-L2165

48.2. DATA FORMATS 563

Convert a number or array to a floating point data type. When passed a string, this function is equivalent to

parse(Float64, x).

source

Base.Math.significand – Function.

significand(x)

Extract the significand(s) (a.k.a. mantissa), in binary representation, of a floating-point number. If x is a

non-zero finite number, then the result will be a number of the same type on the interval [1, 2). Otherwise x is
returned.

Examples

julia> significand(15.2)/15.2

0.125

julia> significand(15.2)*8

15.2

source

Base.Math.exponent – Function.

exponent(x) -> Int

Get the exponent of a normalized floating-point number.

source

Base.complex – Method.

complex(r, [i])

Convert real numbers or arrays to complex. i defaults to zero.

source

Base.bswap – Function.

bswap(n)

Byte-swap an integer. Flip the bits of its binary representation.

julia> a = bswap(4)

288230376151711744

julia> bswap(a)

4

julia> bin(1)

"1"

julia> bin(bswap(1))

"100"

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/float.jl#L252-L257
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/math.jl#L584-L599
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/math.jl#L567-L571
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/complex.jl#L122-L126
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1095-L1113

564 CHAPTER 48. NUMBERS

Base.num2hex – Function.

num2hex(f)

Get a hexadecimal string of the binary representation of a floating point number.

julia> num2hex(2.2)

"400199999999999a"

source

Base.hex2num – Function.

hex2num(str)

Convert a hexadecimal string to the floating point number it represents.

source

Base.hex2bytes – Function.

hex2bytes(s::AbstractString)

Convert an arbitrarily long hexadecimal string to its binary representation. Returns an Array{UInt8,1}, i.e. an

array of bytes.

julia> a = hex(12345)

"3039"

julia> hex2bytes(a)

2-element Array{UInt8,1}:

0x30

0x39

source

Base.bytes2hex – Function.

bytes2hex(bin_arr::Array{UInt8, 1}) -> String

Convert an array of bytes to its hexadecimal representation. All characters are in lower-case.

julia> a = hex(12345)

"3039"

julia> b = hex2bytes(a)

2-element Array{UInt8,1}:

0x30

0x39

julia> bytes2hex(b)

"3039"

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L568-L577
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1355-L1359
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/strings/util.jl#L408-L423
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/strings/util.jl#L446-L464

48.3. GENERAL NUMBER FUNCTIONS AND CONSTANTS 565

48.3 General Number Functions and Constants

Base.one – Function.

one(x)

one(T::type)

Return a multiplicative identity for x: a value such that one(x)*x == x*one(x) == x. Alternatively one(T)

can take a type T, in which case one returns a multiplicative identity for any x of type T.

If possible, one(x) returns a value of the same type as x, and one(T) returns a value of type T. However, this

may not be the case for types representing dimensionful quantities (e.g. time in days), since the multiplicative

identity must be dimensionless. In that case, one(x) should return an identity value of the same precision (and

shape, for matrices) as x.

If you want a quantity that is of the same type as x, or of type T, even if x is dimensionful, use oneunit instead.

julia> one(3.7)

1.0

julia> one(Int)

1

julia> one(Dates.Day(1))

1

source

Base.oneunit – Function.

oneunit(x::T)

oneunit(T::Type)

Returns T(one(x)), where T is either the type of the argument or (if a type is passed) the argument. This differs

from one for dimensionful quantities: one is dimensionless (a multiplicative identity) while oneunit is dimen-

sionful (of the same type as x, or of type T).

julia> oneunit(3.7)

1.0

julia> oneunit(Dates.Day)

1 day

source

Base.zero – Function.

zero(x)

Get the additive identity element for the type of x (x can also specify the type itself).

source

Base.pi – Constant.

piπ

The constant pi.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/number.jl#L133-L162
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/number.jl#L168-L184
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/number.jl#L125-L129

566 CHAPTER 48. NUMBERS

julia> pi

π = 3.1415926535897...

source

Base.im – Constant.

im

The imaginary unit.

source

Base.eu – Constant.

e

eu

The constant e.

julia> e

e = 2.7182818284590...

source

Base.catalan – Constant.

catalan

Catalan’s constant.

julia> catalan

catalan = 0.9159655941772...

source

Base.eulergamma – Constant.

γ

eulergamma

Euler’s constant.

julia> eulergamma

γ = 0.5772156649015...

source

Base.golden – Constant.

φ

golden

The golden ratio.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/irrationals.jl#L149-L159
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/complex.jl#L18-L22
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/irrationals.jl#L162-L172
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/irrationals.jl#L201-L210
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/irrationals.jl#L175-L185

48.3. GENERAL NUMBER FUNCTIONS AND CONSTANTS 567

julia> golden

φ = 1.6180339887498...

source

Base.Inf – Constant.

Inf

Positive infinity of type Float64.

source

Base.Inf32 – Constant.

Inf32

Positive infinity of type Float32.

source

Base.Inf16 – Constant.

Inf16

Positive infinity of type Float16.

source

Base.NaN – Constant.

NaN

A not-a-number value of type Float64.

source

Base.NaN32 – Constant.

NaN32

A not-a-number value of type Float32.

source

Base.NaN16 – Constant.

NaN16

A not-a-number value of type Float16.

source

Base.issubnormal – Function.

issubnormal(f) -> Bool

Test whether a floating point number is subnormal.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/irrationals.jl#L188-L198
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/float.jl#L32-L36
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/float.jl#L17-L21
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/float.jl#L5-L9
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/float.jl#L38-L42
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/float.jl#L23-L27
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/float.jl#L11-L15
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1789-L1793

568 CHAPTER 48. NUMBERS

Base.isfinite – Function.

isfinite(f) -> Bool

Test whether a number is finite.

julia> isfinite(5)

true

julia> isfinite(NaN32)

false

source

Base.isinf – Function.

isinf(f) -> Bool

Test whether a number is infinite.

source

Base.isnan – Function.

isnan(f) -> Bool

Test whether a floating point number is not a number (NaN).

source

Base.iszero – Function.

iszero(x)

Return true if x == zero(x); if x is an array, this checks whether all of the elements of x are zero.

source

Base.nextfloat – Function.

nextfloat(x::AbstractFloat, n::Integer)

The result of n iterative applications of nextfloat to x if n >= 0, or -n applications of prevfloat if n < 0.

source

nextfloat(x::AbstractFloat)

Returns the smallest floating point number y of the same type as x such x < y. If no such y exists (e.g. if x is

Inf or NaN), then returns x.

source

Base.prevfloat – Function.

prevfloat(x::AbstractFloat)

Returns the largest floating point number y of the same type as x such y < x. If no such y exists (e.g. if x is -Inf

or NaN), then returns x.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/float.jl#L525-L537
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/float.jl#L543-L547
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/float.jl#L516-L520
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/number.jl#L16-L21
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/float.jl#L580-L585
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/float.jl#L624-L629
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/float.jl#L632-L637

48.3. GENERAL NUMBER FUNCTIONS AND CONSTANTS 569

Base.isinteger – Function.

isinteger(x) -> Bool

Test whether x is numerically equal to some integer.

julia> isinteger(4.0)

true

source

Base.isreal – Function.

isreal(x) -> Bool

Test whether x or all its elements are numerically equal to some real number.

julia> isreal(5.)

true

julia> isreal([4.; complex(0,1)])

false

source

Core.Float32 – Method.

Float32(x [, mode::RoundingMode])

Create a Float32 from x. If x is not exactly representable then mode determines how x is rounded.

julia> Float32(1/3, RoundDown)

0.3333333f0

julia> Float32(1/3, RoundUp)

0.33333334f0

See RoundingMode for available rounding modes.

source

Core.Float64 – Method.

Float64(x [, mode::RoundingMode])

Create a Float64 from x. If x is not exactly representable then mode determines how x is rounded.

julia> Float64(pi, RoundDown)

3.141592653589793

julia> Float64(pi, RoundUp)

3.1415926535897936

See RoundingMode for available rounding modes.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/number.jl#L4-L13
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/complex.jl#L101-L113
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L216-L231
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L801-L816

570 CHAPTER 48. NUMBERS

Base.GMP.BigInt – Method.

BigInt(x)

Create an arbitrary precision integer. x may be an Int (or anything that can be converted to an Int). The usual

mathematical operators are defined for this type, and results are promoted to a BigInt.

Instances can be constructed from strings via parse, or using the big string literal.

julia> parse(BigInt, "42")

42

julia> big"313"

313

source

Base.MPFR.BigFloat – Method.

BigFloat(x)

Create an arbitrary precision floating point number. x may be an Integer, a Float64 or a BigInt. The usual

mathematical operators are defined for this type, and results are promoted to a BigFloat.

Note that because decimal literals are converted to floating point numbers when parsed, BigFloat(2.1) may

not yield what you expect. You may instead prefer to initialize constants from strings via parse, or using the big

string literal.

julia> BigFloat(2.1)

2.100000000000000088817841970012523233890533447265625000000000000000000000000000

julia> big"2.1"

2.099986

source

Base.Rounding.rounding – Function.

rounding(T)

Get the current floating point rounding mode for type T, controlling the rounding of basic arithmetic functions (+,

-, *, / and sqrt) and type conversion.

See RoundingMode for available modes.

source

Base.Rounding.setrounding – Method.

setrounding(T, mode)

Set the roundingmode of floating point type T, controlling the rounding of basic arithmetic functions (+, -, *, / and

sqrt) and type conversion. Other numerical functions may give incorrect or invalid values when using rounding

modes other than the default RoundNearest.

Note that this may affect other types, for instance changing the rounding mode of Float64 will change the

rounding mode of Float32. See RoundingMode for available modes.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/gmp.jl#L61-L78
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/mpfr.jl#L68-L86
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/rounding.jl#L131-L139

48.3. GENERAL NUMBER FUNCTIONS AND CONSTANTS 571

Warning

This feature is still experimental, and may give unexpected or incorrect values.

source

Base.Rounding.setrounding – Method.

setrounding(f::Function, T, mode)

Change the rounding mode of floating point type T for the duration of f. It is logically equivalent to:

old = rounding(T)

setrounding(T, mode)

f()

setrounding(T, old)

See RoundingMode for available rounding modes.

Warning

This feature is still experimental, and may give unexpected or incorrect values. A known problem is

the interaction with compiler optimisations, e.g.

julia> setrounding(Float64,RoundDown) do

1.1 + 0.1

end

1.2000000000000002

Here the compiler is constant folding, that is evaluating a known constant expression at compile time,

however the rounding mode is only changed at runtime, so this is not reflected in the function result.

This can be avoided by moving constants outside the expression, e.g.

julia> x = 1.1; y = 0.1;

julia> setrounding(Float64,RoundDown) do

x + y

end

1.2

source

Base.Rounding.get_zero_subnormals – Function.

get_zero_subnormals() -> Bool

Returns false if operations on subnormal floating-point values (”denormals”) obey rules for IEEE arithmetic, and

true if they might be converted to zeros.

source

Base.Rounding.set_zero_subnormals – Function.

set_zero_subnormals(yes::Bool) -> Bool

If yes is false, subsequent floating-point operations follow rules for IEEE arithmetic on subnormal values (”de-

normals”). Otherwise, floating-point operations are permitted (but not required) to convert subnormal inputs

or outputs to zero. Returns true unless yes==true but the hardware does not support zeroing of subnormal

numbers.

set_zero_subnormals(true) can speed up some computations on some hardware. However, it can break

identities such as (x-y==0) == (x==y).

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/rounding.jl#L112-L128
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/rounding.jl#L148-L182
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/rounding.jl#L235-L240
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/rounding.jl#L222-L232

572 CHAPTER 48. NUMBERS

Integers

Base.count_ones – Function.

count_ones(x::Integer) -> Integer

Number of ones in the binary representation of x.

julia> count_ones(7)

3

source

Base.count_zeros – Function.

count_zeros(x::Integer) -> Integer

Number of zeros in the binary representation of x.

julia> count_zeros(Int32(2 ^ 16 - 1))

16

source

Base.leading_zeros – Function.

leading_zeros(x::Integer) -> Integer

Number of zeros leading the binary representation of x.

julia> leading_zeros(Int32(1))

31

source

Base.leading_ones – Function.

leading_ones(x::Integer) -> Integer

Number of ones leading the binary representation of x.

julia> leading_ones(UInt32(2 ^ 32 - 2))

31

source

Base.trailing_zeros – Function.

trailing_zeros(x::Integer) -> Integer

Number of zeros trailing the binary representation of x.

julia> trailing_zeros(2)

1

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/int.jl#L216-L225
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/int.jl#L252-L261
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/int.jl#L228-L237
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/int.jl#L264-L273
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/int.jl#L240-L249

48.4. BIGFLOATS 573

Base.trailing_ones – Function.

trailing_ones(x::Integer) -> Integer

Number of ones trailing the binary representation of x.

julia> trailing_ones(3)

2

source

Base.isodd – Function.

isodd(x::Integer) -> Bool

Returns true if x is odd (that is, not divisible by 2), and false otherwise.

julia> isodd(9)

true

julia> isodd(10)

false

source

Base.iseven – Function.

iseven(x::Integer) -> Bool

Returns true is x is even (that is, divisible by 2), and false otherwise.

julia> iseven(9)

false

julia> iseven(10)

true

source

48.4 BigFloats

The BigFloat type implements arbitrary-precision floating-point arithmetic using the GNU MPFR library.

Base.precision – Function.

precision(num::AbstractFloat)

Get the precision of a floating point number, as defined by the effective number of bits in the mantissa.

source

Base.precision – Method.

precision(BigFloat)

Get the precision (in bits) currently used for BigFloat arithmetic.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/int.jl#L276-L285
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/int.jl#L40-L52
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/int.jl#L55-L67
http://www.mpfr.org/
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L57-L62
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/mpfr.jl#L715-L719

574 CHAPTER 48. NUMBERS

Base.MPFR.setprecision – Function.

setprecision([T=BigFloat,] precision::Int)

Set the precision (in bits) to be used for T arithmetic.

source

setprecision(f::Function, [T=BigFloat,] precision::Integer)

Change the T arithmetic precision (in bits) for the duration of f. It is logically equivalent to:

old = precision(BigFloat)

setprecision(BigFloat, precision)

f()

setprecision(BigFloat, old)

Often used as setprecision(T, precision) do ... end

source

Base.MPFR.BigFloat – Method.

BigFloat(x, prec::Int)

Create a representation of x as a BigFloatwith precision prec.

source

Base.MPFR.BigFloat – Method.

BigFloat(x, rounding::RoundingMode)

Create a representation of x as a BigFloatwith the current global precision and rounding mode rounding.

source

Base.MPFR.BigFloat – Method.

BigFloat(x, prec::Int, rounding::RoundingMode)

Create a representation of x as a BigFloatwith precision prec and rounding mode rounding.

source

Base.MPFR.BigFloat – Method.

BigFloat(x::String)

Create a representation of the string x as a BigFloat.

source

48.5 Random Numbers

Random number generation in Julia uses the Mersenne Twister library via MersenneTwister objects. Julia has a

global RNG, which is used by default. Other RNG types can be plugged in by inheriting the AbstractRNG type; they

can then be used to have multiple streams of random numbers. Besides MersenneTwister, Julia also provides the

RandomDevice RNG type, which is a wrapper over the OS provided entropy.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/mpfr.jl#L722-L726
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/mpfr.jl#L859-L871
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/mpfr.jl#L129-L133
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/mpfr.jl#L152-L157
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/mpfr.jl#L140-L145
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/mpfr.jl#L162-L166
http://www.math.sci.hiroshima-u.ac.jp/{~}m-mat/MT/SFMT/#dSFMT

48.5. RANDOM NUMBERS 575

Most functions related to random generation accept an optional AbstractRNG as the first argument, rng , which

defaults to the global one if not provided. Morever, some of them accept optionally dimension specifications dims...

(which can be given as a tuple) to generate arrays of random values.

AMersenneTwister orRandomDeviceRNGcan generate randomnumbers of the following types: Float16, Float32,

Float64, Bool, Int8, UInt8, Int16, UInt16, Int32, UInt32, Int64, UInt64, Int128, UInt128, BigInt (or com-

plex numbers of those types). Random floating point numbers are generated uniformly in [0, 1). As BigInt represents
unbounded integers, the interval must be specified (e.g. rand(big(1:6))).

Base.Random.srand – Function.

srand([rng=GLOBAL_RNG], [seed]) -> rng

srand([rng=GLOBAL_RNG], filename, n=4) -> rng

Reseed the random number generator. If a seed is provided, the RNG will give a reproducible sequence of num-

bers, otherwise Julia will get entropy from the system. For MersenneTwister, the seed may be a non-negative

integer, a vector of UInt32 integers or a filename, in which case the seed is read from a file (4n bytes are read

from the file, where n is an optional argument). RandomDevice does not support seeding.

source

Base.Random.MersenneTwister – Type.

MersenneTwister(seed)

Create a MersenneTwister RNG object. Different RNG objects can have their own seeds, which may be useful

for generating different streams of random numbers.

source

Base.Random.RandomDevice – Type.

RandomDevice()

Create aRandomDeviceRNGobject. Two such objectswill always generate different streams of randomnumbers.

source

Base.Random.rand – Function.

rand([rng=GLOBAL_RNG], [S], [dims...])

Pick a random element or array of random elements from the set of values specified by S; S can be

• an indexable collection (for example 1:n or ['x','y','z']), or

• a type: the set of values to pick from is then equivalent to typemin(S):typemax(S) for integers (this is

not applicable to BigInt), and to [0, 1) for floating point numbers;

S defaults to Float64.

source

Base.Random.rand! – Function.

rand!([rng=GLOBAL_RNG], A, [coll])

Populate the array A with random values. If the indexable collection coll is specified, the values are picked ran-

domly from coll. This is equivalent to copy!(A, rand(rng, coll, size(A))) or copy!(A, rand(rng,

eltype(A), size(A))) but without allocating a new array.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/random.jl#L222-L231
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/random.jl#L91-L96
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/random.jl#L58-L62
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/random.jl#L265-L276
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/random.jl#L287-L293

576 CHAPTER 48. NUMBERS

Base.Random.bitrand – Function.

bitrand([rng=GLOBAL_RNG], [dims...])

Generate a BitArray of random boolean values.

source

Base.Random.randn – Function.

randn([rng=GLOBAL_RNG], [T=Float64], [dims...])

Generate a normally-distributed random number of type Twith mean 0 and standard deviation 1. Optionally gen-

erate an array of normally-distributed random numbers. The Base module currently provides an implementation

for the types Float16, Float32, and Float64 (the default).

source

Base.Random.randn! – Function.

randn!([rng=GLOBAL_RNG], A::AbstractArray) -> A

Fill the array A with normally-distributed (mean 0, standard deviation 1) random numbers. Also see the rand

function.

source

Base.Random.randexp – Function.

randexp([rng=GLOBAL_RNG], [T=Float64], [dims...])

Generate a random number of type T according to the exponential distribution with scale 1. Optionally generate

an array of such random numbers. The Basemodule currently provides an implementation for the types Float16,

Float32, and Float64 (the default).

source

Base.Random.randexp! – Function.

randexp!([rng=GLOBAL_RNG], A::AbstractArray) -> A

Fill the array Awith random numbers following the exponential distribution (with scale 1).

source

Base.Random.randjump – Function.

randjump(r::MersenneTwister, jumps::Integer, [jumppoly::AbstractString=dSFMT.JPOLY1e21]) ->

Vector{MersenneTwister}

Create an array of the size jumps of initialized MersenneTwister RNG objects. The first RNG object given as a

parameter and following MersenneTwister RNGs in the array are initialized such that a state of the RNG object

in the arraywould be moved forward (without generating numbers) from a previous RNG object array element on

a particular number of steps encoded by the jump polynomial jumppoly.

Default jump polynomial moves forward MersenneTwister RNG state by 10^20 steps.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/random.jl#L691-L695
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/random.jl#L1196-L1203
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/random.jl#L1258-L1263
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/random.jl#L1230-L1237
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/random.jl#L1266-L1270
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/random.jl#L153-L163

Chapter 49

Strings

Base.length – Method.

length(s::AbstractString)

The number of characters in string s.

julia> length("jμΛIα")

5

source

Base.sizeof – Method.

sizeof(s::AbstractString)

The number of bytes in string s.

julia> sizeof("")

3

source

Base.:* – Method.

*(x, y...)

Multiplication operator. x*y*z*... calls this function with all arguments, i.e. *(x, y, z, ...).

source

Base.:^ – Method.

^(s::AbstractString, n::Integer)

Repeat n times the string s. The repeat function is an alias to this operator.

julia> "Test "^3

"Test Test Test "

source

577

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/strings/basic.jl#L76-L85
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/strings/basic.jl#L44-L53
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1668-L1674
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/strings/types.jl#L143-L153

578 CHAPTER 49. STRINGS

Base.string – Function.

string(xs...)

Create a string from any values using the print function.

julia> string("a", 1, true)

"a1true"

source

Base.repr – Function.

repr(x)

Create a string from any value using the showall function.

source

Core.String – Method.

String(s::AbstractString)

Convert a string to a contiguous byte array representation encoded as UTF-8 bytes. This representation is often

appropriate for passing strings to C.

source

Base.transcode – Function.

transcode(T, src)

Convert string data between Unicode encodings. src is either a String or a Vector{UIntXX} of UTF-XX code

units, where XX is 8, 16, or 32. T indicates the encoding of the return value: String to return a (UTF-8 encoded)

String or UIntXX to return a Vector{UIntXX} of UTF-XX data. (The alias Cwchar_t can also be used as the

integer type, for converting wchar_t* strings used by external C libraries.)

The transcode function succeeds as long as the input data can be reasonably represented in the target encoding;

it always succeeds for conversions between UTF-XX encodings, even for invalid Unicode data.

Only conversion to/from UTF-8 is currently supported.

source

Base.unsafe_string – Function.

unsafe_string(p::Ptr{UInt8}, [length::Integer])

Copy a string from the address of a C-style (NUL-terminated) string encoded as UTF-8. (The pointer can be

safely freed afterwards.) If length is specified (the length of the data in bytes), the string does not have to be

NUL-terminated.

This function is labelled ”unsafe” because it will crash if p is not a valid memory address to data of the requested

length.

source

Base.codeunit – Method.

codeunit(s::AbstractString, i::Integer)

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/strings/io.jl#L110-L119
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/strings/io.jl#L139-L143
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/strings/basic.jl#L13-L18
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/c.jl#L142-L158
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/strings/string.jl#L24-L33

579

Get the ith code unit of an encoded string. For example, returns the ith byte of the representation of a UTF-8

string.

source

Base.ascii – Function.

ascii(s::AbstractString)

Convert a string to String type and check that it contains onlyASCII data, otherwise throwing an ArgumentEr-

ror indicating the position of the first non-ASCII byte.

julia> ascii("abcdeγfgh")

ERROR: ArgumentError: invalid ASCII at index 6 in "abcdeγfgh"

Stacktrace:

[1] ascii(::String) at ./strings/util.jl:479

julia> ascii("abcdefgh")

"abcdefgh"

source

Base.@r_str – Macro.

@r_str -> Regex

Construct a regex, such as r"^[a-z]*$". The regex also accepts one or more flags, listed after the ending quote,

to change its behaviour:

• i enables case-insensitive matching

• m treats the ^ and $ tokens as matching the start and end of individual lines, as opposed to the whole string.

• s allows the . modifier to match newlines.

• x enables ”comment mode”: whitespace is enabled except when escaped with \, and # is treated as starting

a comment.

For example, this regex has all three flags enabled:

julia> match(r"a+.*b+.*?d$"ism, "Goodbye,\nOh, angry,\nBad world\n")

RegexMatch("angry,\nBad world")

source

Base.Docs.@html_str – Macro.

@html_str -> Docs.HTML

Create an HTML object from a literal string.

source

Base.Docs.@text_str – Macro.

@text_str -> Docs.Text

Create a Text object from a literal string.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/strings/string.jl#L56-L61
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/strings/util.jl#L484-L499
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/regex.jl#L63-L82
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/utils.jl#L37-L41
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/utils.jl#L78-L82

580 CHAPTER 49. STRINGS

Base.UTF8proc.normalize_string – Function.

normalize_string(s::AbstractString, normalform::Symbol)

Normalize the string s according to one of the four ”normal forms” of the Unicode standard: normalform can be

:NFC, :NFD, :NFKC, or :NFKD. Normal forms C (canonical composition) and D (canonical decomposition) convert

different visually identical representations of the same abstract string into a single canonical form, with form C

being more compact. Normal forms KC and KD additionally canonicalize ”compatibility equivalents”: they convert

characters that are abstractly similar but visually distinct into a single canonical choice (e.g. they expand ligatures

into the individual characters), with form KC being more compact.

Alternatively, finer control and additional transformations may be be obtained by calling normalize_string(s;

keywords...), where any number of the following boolean keywords options (which all default to false except

for compose) are specified:

• compose=false: do not perform canonical composition

• decompose=true: do canonical decomposition instead of canonical composition (compose=true is ig-

nored if present)

• compat=true: compatibility equivalents are canonicalized

• casefold=true: perform Unicode case folding, e.g. for case-insensitive string comparison

• newline2lf=true, newline2ls=true, or newline2ps=true: convert various newline sequences (LF,

CRLF, CR, NEL) into a linefeed (LF), line-separation (LS), or paragraph-separation (PS) character, respectively

• stripmark=true: strip diacritical marks (e.g. accents)

• stripignore=true: strip Unicode’s ”default ignorable” characters (e.g. the soft hyphen or the left-to-right

marker)

• stripcc=true: strip control characters; horizontal tabs and form feeds are converted to spaces; newlines

are also converted to spaces unless a newline-conversion flag was specified

• rejectna=true: throw an error if unassigned code points are found

• stable=true: enforce Unicode Versioning Stability

For example, NFKC corresponds to the options compose=true, compat=true, stable=true.

source

Base.UTF8proc.graphemes – Function.

graphemes(s::AbstractString) -> GraphemeIterator

Returns an iterator over substrings of s that correspond to the extended graphemes in the string, as defined by

Unicode UAX #29. (Roughly, these are what users would perceive as single characters, even though they may

contain more than one codepoint; for example a letter combined with an accent mark is a single grapheme.)

source

Base.isvalid – Method.

isvalid(value) -> Bool

Returns true if the given value is valid for its type, which currently can be either Char or String.

source

Base.isvalid – Method.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/strings/utf8proc.jl#L146-L180
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/strings/utf8proc.jl#L346-L353
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L2143-L2148

581

isvalid(T, value) -> Bool

Returns true if the given value is valid for that type. Types currently can be either Char or String. Values for

Char can be of type Char or UInt32. Values for String can be of that type, or Vector{UInt8}.

source

Base.isvalid – Method.

isvalid(str::AbstractString, i::Integer)

Tells whether index i is valid for the given string.

julia> str = "αβγdef";

julia> isvalid(str, 1)

true

julia> str[1]

'α': Unicode U+03b1 (category Ll: Letter, lowercase)

julia> isvalid(str, 2)

false

julia> str[2]

ERROR: UnicodeError: invalid character index

[...]

source

Base.UTF8proc.is_assigned_char – Function.

is_assigned_char(c) -> Bool

Returns true if the given char or integer is an assigned Unicode code point.

source

Base.ismatch – Function.

ismatch(r::Regex, s::AbstractString) -> Bool

Test whether a string contains a match of the given regular expression.

source

Base.match – Function.

match(r::Regex, s::AbstractString[, idx::Integer[, addopts]])

Search for the first match of the regular expression r in s and return a RegexMatch object containing the match,

or nothing if the match failed. The matching substring can be retrieved by accessing m.match and the captured

sequences can be retrieved by accessing m.captures The optional idx argument specifies an index at which to

start the search.

source

Base.eachmatch – Function.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L2151-L2157
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/strings/basic.jl#L136-L157
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/strings/utf8proc.jl#L213-L217
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1684-L1688
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1855-L1862

582 CHAPTER 49. STRINGS

eachmatch(r::Regex, s::AbstractString[, overlap::Bool=false])

Search for all matches of a the regular expression r in s and return a iterator over the matches. If overlap is true,

the matching sequences are allowed to overlap indices in the original string, otherwise theymust be from distinct

character ranges.

source

Base.matchall – Function.

matchall(r::Regex, s::AbstractString[, overlap::Bool=false]) -> Vector{AbstractString}

Return a vector of the matching substrings from eachmatch.

source

Base.lpad – Function.

lpad(s, n::Integer, p::AbstractString=" ")

Make a string at least n columns wide when printed by padding s on the left with copies of p.

julia> lpad("March",10)

" March"

source

Base.rpad – Function.

rpad(s, n::Integer, p::AbstractString=" ")

Make a string at least n columns wide when printed by padding s on the right with copies of p.

julia> rpad("March",20)

"March "

source

Base.search – Function.

search(string::AbstractString, chars::Chars, [start::Integer])

Search for the first occurrence of the given characters within the given string. The second argument may be a

single character, a vector or a set of characters, a string, or a regular expression (though regular expressions are only

allowed on contiguous strings, such as ASCII or UTF-8 strings). The third argument optionally specifies a starting

index. The return value is a range of indexes where the matching sequence is found, such that s[search(s,x)]

== x:

search(string, "substring") = start:end such that string[start:end] == "substring", or 0:-1

if unmatched.

search(string, 'c') = index such that string[index] == 'c', or 0 if unmatched.

julia> search("Hello to the world", "z")

0:-1

julia> search("JuliaLang","Julia")

1:5

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L559-L565
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1691-L1695
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/strings/util.jl#L224-L234
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/strings/util.jl#L237-L247

583

source

Base.rsearch – Function.

rsearch(s::AbstractString, chars::Chars, [start::Integer])

Similar to search, but returning the last occurrence of the given characters within the given string, searching in

reverse from start.

julia> rsearch("aaabbb","b")

6:6

source

Base.searchindex – Function.

searchindex(s::AbstractString, substring, [start::Integer])

Similar to search, but return only the start index at which the substring is found, or 0 if it is not.

julia> searchindex("Hello to the world", "z")

0

julia> searchindex("JuliaLang","Julia")

1

julia> searchindex("JuliaLang","Lang")

6

source

Base.rsearchindex – Function.

rsearchindex(s::AbstractString, substring, [start::Integer])

Similar to rsearch, but return only the start index at which the substring is found, or 0 if it is not.

julia> rsearchindex("aaabbb","b")

6

julia> rsearchindex("aaabbb","a")

3

source

Base.contains – Method.

contains(haystack::AbstractString, needle::AbstractString)

Determine whether the second argument is a substring of the first.

julia> contains("JuliaLang is pretty cool!", "Julia")

true

source

Base.reverse – Method.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/strings/search.jl#L5-L26
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/strings/search.jl#L199-L209
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/strings/search.jl#L149-L165
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/strings/search.jl#L314-L326
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/strings/search.jl#L368-L377

584 CHAPTER 49. STRINGS

reverse(s::AbstractString) -> AbstractString

Reverses a string.

julia> reverse("JuliaLang")

"gnaLailuJ"

source

Base.replace – Function.

replace(string::AbstractString, pat, r[, n::Integer=0])

Search for the given pattern pat, and replace each occurrence with r. If n is provided, replace at most n occur-

rences. As with search, the second argument may be a single character, a vector or a set of characters, a string, or

a regular expression. If r is a function, each occurrence is replaced with r(s) where s is the matched substring.

If pat is a regular expression and r is a SubstitutionString, then capture group references in r are replaced

with the corresponding matched text.

source

Base.split – Function.

split(s::AbstractString, [chars]; limit::Integer=0, keep::Bool=true)

Return an array of substrings by splitting the given string on occurrences of the given character delimiters, which

may be specified in any of the formats allowed by search’s second argument (i.e. a single character, collection

of characters, string, or regular expression). If chars is omitted, it defaults to the set of all space characters, and

keep is taken to be false. The two keyword arguments are optional: they are a maximum size for the result and

a flag determining whether empty fields should be kept in the result.

julia> a = "Ma.rch"

"Ma.rch"

julia> split(a,".")

2-element Array{SubString{String},1}:

"Ma"

"rch"

source

Base.rsplit – Function.

rsplit(s::AbstractString, [chars]; limit::Integer=0, keep::Bool=true)

Similar to split, but starting from the end of the string.

julia> a = "M.a.r.c.h"

"M.a.r.c.h"

julia> rsplit(a,".")

5-element Array{SubString{String},1}:

"M"

"a"

"r"

"c"

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/strings/types.jl#L116-L124
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/strings/util.jl#L393-L402
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/strings/util.jl#L256-L276

585

"h"

julia> rsplit(a,".";limit=1)

1-element Array{SubString{String},1}:

"M.a.r.c.h"

julia> rsplit(a,".";limit=2)

2-element Array{SubString{String},1}:

"M.a.r.c"

"h"

source

Base.strip – Function.

strip(s::AbstractString, [chars::Chars])

Return s with any leading and trailing whitespace removed. If chars (a character, or vector or set of characters)

is provided, instead remove characters contained in it.

julia> strip("{3, 5}\n", ['{', '}', '\n'])

"3, 5"

source

Base.lstrip – Function.

lstrip(s::AbstractString[, chars::Chars])

Return s with any leading whitespace and delimiters removed. The default delimiters to remove are ' ', \t,

\n, \v, \f, and \r. If chars (a character, or vector or set of characters) is provided, instead remove characters

contained in it.

julia> a = lpad("March", 20)

" March"

julia> lstrip(a)

"March"

source

Base.rstrip – Function.

rstrip(s::AbstractString[, chars::Chars])

Return s with any trailing whitespace and delimiters removed. The default delimiters to remove are ' ', \t,

\n, \v, \f, and \r. If chars (a character, or vector or set of characters) is provided, instead remove characters

contained in it.

julia> a = rpad("March", 20)

"March "

julia> rstrip(a)

"March"

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/strings/util.jl#L307-L333
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/strings/util.jl#L181-L192
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/strings/util.jl#L122-L138
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/strings/util.jl#L151-L167

586 CHAPTER 49. STRINGS

Base.startswith – Function.

startswith(s::AbstractString, prefix::AbstractString)

Returns true if s starts with prefix. If prefix is a vector or set of characters, tests whether the first character

of s belongs to that set.

See also endswith.

julia> startswith("JuliaLang", "Julia")

true

source

Base.endswith – Function.

endswith(s::AbstractString, suffix::AbstractString)

Returns true if s ends with suffix. If suffix is a vector or set of characters, tests whether the last character

of s belongs to that set.

See also startswith.

julia> endswith("Sunday", "day")

true

source

Base.uppercase – Function.

uppercase(s::AbstractString)

Returns swith all characters converted to uppercase.

julia> uppercase("Julia")

"JULIA"

source

Base.lowercase – Function.

lowercase(s::AbstractString)

Returns swith all characters converted to lowercase.

julia> lowercase("STRINGS AND THINGS")

"strings and things"

source

Base.titlecase – Function.

titlecase(s::AbstractString)

Capitalizes the first character of each word in s.

julia> titlecase("the julia programming language")

"The Julia Programming Language"

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/strings/util.jl#L5-L17
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/strings/util.jl#L30-L42
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/strings/basic.jl#L369-L378
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/strings/basic.jl#L381-L390

587

source

Base.ucfirst – Function.

ucfirst(s::AbstractString)

Returns stringwith the first character converted to uppercase.

julia> ucfirst("python")

"Python"

source

Base.lcfirst – Function.

lcfirst(s::AbstractString)

Returns stringwith the first character converted to lowercase.

julia> lcfirst("Julia")

"julia"

source

Base.join – Function.

join(io::IO, strings, delim, [last])

Join an array of strings into a single string, inserting the given delimiter between adjacent strings. If last is

given, it will be used instead of delim between the last two strings. For example,

julia> join(["apples", "bananas", "pineapples"], ", ", " and ")

"apples, bananas and pineapples"

strings can be any iterable over elements x which are convertible to strings via print(io::IOBuffer, x).

stringswill be printed to io.

source

Base.chop – Function.

chop(s::AbstractString)

Remove the last character from s.

julia> a = "March"

"March"

julia> chop(a)

"Marc"

source

Base.chomp – Function.

chomp(s::AbstractString)

Remove a single trailing newline from a string.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/strings/basic.jl#L393-L402
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/strings/basic.jl#L418-L427
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/strings/basic.jl#L432-L441
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/strings/io.jl#L172-L186
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/strings/util.jl#L66-L78

588 CHAPTER 49. STRINGS

julia> chomp("Hello\n")

"Hello"

source

Base.ind2chr – Function.

ind2chr(s::AbstractString, i::Integer)

Convert a byte index i to a character index with respect to string s.

See also chr2ind.

julia> str = "αβγdef";

julia> ind2chr(str, 3)

2

julia> chr2ind(str, 2)

3

source

Base.chr2ind – Function.

chr2ind(s::AbstractString, i::Integer)

Convert a character index i to a byte index.

See also ind2chr.

julia> str = "αβγdef";

julia> chr2ind(str, 2)

3

julia> ind2chr(str, 3)

2

source

Base.nextind – Function.

nextind(str::AbstractString, i::Integer)

Get the next valid string index after i. Returns a value greater than endof(str) at or after the end of the string.

julia> str = "αβγdef";

julia> nextind(str, 1)

3

julia> endof(str)

9

julia> nextind(str, 9)

10

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/strings/util.jl#L81-L90
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/strings/basic.jl#L250-L267
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/strings/basic.jl#L282-L298

589

source

Base.prevind – Function.

prevind(str::AbstractString, i::Integer)

Get the previous valid string index before i. Returns a value less than 1 at the beginning of the string.

julia> prevind("αβγdef", 3)

1

julia> prevind("αβγdef", 1)

0

source

Base.Random.randstring – Function.

randstring([rng,] len=8)

Create a random ASCII string of length len, consisting of upper- and lower-case letters and the digits 0-9. The

optional rng argument specifies a random number generator, see Random Numbers.

source

Base.UTF8proc.charwidth – Function.

charwidth(c)

Gives the number of columns needed to print a character.

source

Base.strwidth – Function.

strwidth(s::AbstractString)

Gives the number of columns needed to print a string.

julia> strwidth("March")

5

source

Base.UTF8proc.isalnum – Function.

isalnum(c::Char) -> Bool

Tests whether a character is alphanumeric. A character is classified as alphabetic if it belongs to the Unicode

general category Letter or Number, i.e. a character whose category code begins with ’L’ or ’N’.

source

Base.UTF8proc.isalpha – Function.

isalpha(c::Char) -> Bool

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/strings/basic.jl#L205-L223
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/strings/basic.jl#L176-L189
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L792-L798
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/strings/utf8proc.jl#L193-L197
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/strings/basic.jl#L326-L335
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/strings/utf8proc.jl#L270-L276

590 CHAPTER 49. STRINGS

Tests whether a character is alphabetic. A character is classified as alphabetic if it belongs to the Unicode general

category Letter, i.e. a character whose category code begins with ’L’.

source

Base.isascii – Function.

isascii(c::Union{Char,AbstractString}) -> Bool

Tests whether a character belongs to the ASCII character set, or whether this is true for all elements of a string.

source

Base.UTF8proc.iscntrl – Function.

iscntrl(c::Char) -> Bool

Tests whether a character is a control character. Control characters are the non-printing characters of the Latin-1

subset of Unicode.

source

Base.UTF8proc.isdigit – Function.

isdigit(c::Char) -> Bool

Tests whether a character is a numeric digit (0-9).

source

Base.UTF8proc.isgraph – Function.

isgraph(c::Char) -> Bool

Tests whether a character is printable, and not a space. Any character that would cause a printer to use ink should

be classified with isgraph(c)==true.

source

Base.UTF8proc.islower – Function.

islower(c::Char) -> Bool

Tests whether a character is a lowercase letter. A character is classified as lowercase if it belongs to Unicode

category Ll, Letter: Lowercase.

source

Base.UTF8proc.isnumber – Function.

isnumber(c::Char) -> Bool

Tests whether a character is numeric. A character is classified as numeric if it belongs to the Unicode general

category Number, i.e. a character whose category code begins with ’N’.

source

Base.UTF8proc.isprint – Function.

isprint(c::Char) -> Bool

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/strings/utf8proc.jl#L252-L258
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/strings/basic.jl#L338-L343
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/strings/utf8proc.jl#L285-L290
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/strings/utf8proc.jl#L245-L249
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/strings/utf8proc.jl#L321-L327
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/strings/utf8proc.jl#L222-L228
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/strings/utf8proc.jl#L261-L267

591

Tests whether a character is printable, including spaces, but not a control character.

source

Base.UTF8proc.ispunct – Function.

ispunct(c::Char) -> Bool

Tests whether a character belongs to the Unicode general category Punctuation, i.e. a character whose category

code begins with ’P’.

source

Base.UTF8proc.isspace – Function.

isspace(c::Char) -> Bool

Tests whether a character is anywhitespace character. IncludesASCII characters ’\t’, ’\n’, ’\v’, ’\f’, ’\r’, and ’ ’, Latin-1

character U+0085, and characters in Unicode category Zs.

source

Base.UTF8proc.isupper – Function.

isupper(c::Char) -> Bool

Tests whether a character is an uppercase letter. A character is classified as uppercase if it belongs to Unicode

category Lu, Letter: Uppercase, or Lt, Letter: Titlecase.

source

Base.isxdigit – Function.

isxdigit(c::Char) -> Bool

Tests whether a character is a valid hexadecimal digit. Note that this does not include x (as in the standard 0x

prefix).

julia> isxdigit('a')

true

julia> isxdigit('x')

false

source

Core.Symbol – Type.

Symbol(x...) -> Symbol

Create a Symbol by concatenating the string representations of the arguments together.

source

Base.escape_string – Function.

escape_string([io,] str::AbstractString[, esc::AbstractString]) -> AbstractString

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/strings/utf8proc.jl#L312-L316
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/strings/utf8proc.jl#L293-L298
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/strings/utf8proc.jl#L303-L309
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/strings/utf8proc.jl#L233-L239
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/strings/basic.jl#L351-L364
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L2136-L2140

592 CHAPTER 49. STRINGS

General escaping of traditional C and Unicode escape sequences. Any characters in esc are also escaped (with a

backslash). See also unescape_string.

source

Base.unescape_string – Function.

unescape_string([io,] s::AbstractString) -> AbstractString

General unescaping of traditional C and Unicode escape sequences. Reverse of escape_string.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/strings/io.jl#L225-L231
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/strings/io.jl#L278-L283

Chapter 50

Arrays

50.1 Constructors and Types

Core.AbstractArray – Type.

AbstractArray{T, N}

Abstract array supertype which arrays inherit from.

source

Core.Array – Type.

Array{T}(dims)

Array{T,N}(dims)

Construct an uninitialized N-dimensional dense arraywith element type T, where N is determined from the length

or number of dims. dims may be a tuple or a series of integer arguments corresponding to the lengths in each

dimension. If the rank N is supplied explicitly as in Array{T,N}(dims), then it must match the length or number

of dims.

Example

julia> A = Array{Float64, 2}(2, 2);

julia> ndims(A)

2

julia> eltype(A)

Float64

source

Base.getindex – Method.

getindex(type[, elements...])

Construct a 1-d array of the specified type. This is usually called with the syntax Type[]. Element values can be

specified using Type[a,b,c,...].

julia> Int8[1, 2, 3]

3-element Array{Int8,1}:

593

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/abstractarray.jl#L5-L9
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/array.jl#L51-L72

594 CHAPTER 50. ARRAYS

1

2

3

julia> getindex(Int8, 1, 2, 3)

3-element Array{Int8,1}:

1

2

3

source

Base.zeros – Function.

zeros([A::AbstractArray,] [T=eltype(A)::Type,] [dims=size(A)::Tuple])

Create an array of all zeros with the same layout as A, element type T and size dims. The A argument can be

skipped, which behaves like Array{Float64,0}() was passed. For convenience dims may also be passed in

variadic form.

julia> zeros(1)

1-element Array{Float64,1}:

0.0

julia> zeros(Int8, 2, 3)

2×3 Array{Int8,2}:

0 0 0

0 0 0

julia> A = [1 2; 3 4]

2×2 Array{Int64,2}:

1 2

3 4

julia> zeros(A)

2×2 Array{Int64,2}:

0 0

0 0

julia> zeros(A, Float64)

2×2 Array{Float64,2}:

0.0 0.0

0.0 0.0

julia> zeros(A, Bool, (3,))

3-element Array{Bool,1}:

false

false

false

See also ones, similar.

source

Base.ones – Function.

ones([A::AbstractArray,] [T=eltype(A)::Type,] [dims=size(A)::Tuple])

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L94-L113
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L2093-L2133

50.1. CONSTRUCTORS AND TYPES 595

Create an array of all ones with the same layout as A, element type T and size dims. The A argument can be

skipped, which behaves like Array{Float64,0}() was passed. For convenience dims may also be passed in

variadic form.

julia> ones(Complex128, 2, 3)

2×3 Array{Complex{Float64},2}:

1.0+0.0im 1.0+0.0im 1.0+0.0im

1.0+0.0im 1.0+0.0im 1.0+0.0im

julia> ones(1,2)

1×2 Array{Float64,2}:

1.0 1.0

julia> A = [1 2; 3 4]

2×2 Array{Int64,2}:

1 2

3 4

julia> ones(A)

2×2 Array{Int64,2}:

1 1

1 1

julia> ones(A, Float64)

2×2 Array{Float64,2}:

1.0 1.0

1.0 1.0

julia> ones(A, Bool, (3,))

3-element Array{Bool,1}:

true

true

true

See also zeros, similar.

source

Base.BitArray – Type.

BitArray(dims::Integer...)

BitArray{N}(dims::NTuple{N,Int})

Construct an uninitialized BitArraywith the given dimensions. Behaves identically to the Array constructor.

julia> BitArray(2, 2)

2×2 BitArray{2}:

false false

false true

julia> BitArray((3, 1))

3×1 BitArray{2}:

false

true

false

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L414-L453
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/bitarray.jl#L31-L50

596 CHAPTER 50. ARRAYS

BitArray(itr)

Construct a BitArray generated by the given iterable object. The shape is inferred from the itr object.

julia> BitArray([1 0; 0 1])

2×2 BitArray{2}:

true false

false true

julia> BitArray(x+y == 3 for x = 1:2, y = 1:3)

2×3 BitArray{2}:

false true false

true false false

julia> BitArray(x+y == 3 for x = 1:2 for y = 1:3)

6-element BitArray{1}:

false

true

false

true

false

false

source

Base.trues – Function.

trues(dims)

Create a BitArraywith all values set to true.

julia> trues(2,3)

2×3 BitArray{2}:

true true true

true true true

source

trues(A)

Create a BitArraywith all values set to true of the same shape as A.

julia> A = [1 2; 3 4]

2×2 Array{Int64,2}:

1 2

3 4

julia> trues(A)

2×2 BitArray{2}:

true true

true true

source

Base.falses – Function.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/bitarray.jl#L548-L574
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/bitarray.jl#L393-L404
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/bitarray.jl#L407-L423

50.1. CONSTRUCTORS AND TYPES 597

falses(dims)

Create a BitArraywith all values set to false.

julia> falses(2,3)

2×3 BitArray{2}:

false false false

false false false

source

falses(A)

Create a BitArraywith all values set to false of the same shape as A.

julia> A = [1 2; 3 4]

2×2 Array{Int64,2}:

1 2

3 4

julia> falses(A)

2×2 BitArray{2}:

false false

false false

source

Base.fill – Function.

fill(x, dims)

Create an array filled with the value x. For example, fill(1.0, (5,5)) returns a 5×5 array of floats, with each

element initialized to 1.0.

julia> fill(1.0, (5,5))

5×5 Array{Float64,2}:

1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0

If x is an object reference, all elements will refer to the same object. fill(Foo(), dims) will return an array

filled with the result of evaluating Foo() once.

source

Base.fill! – Function.

fill!(A, x)

Fill array A with the value x. If x is an object reference, all elements will refer to the same object. fill!(A,

Foo())will return A filled with the result of evaluating Foo() once.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/bitarray.jl#L360-L371
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/bitarray.jl#L374-L390
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/array.jl#L234-L252

598 CHAPTER 50. ARRAYS

julia> A = zeros(2,3)

2×3 Array{Float64,2}:

0.0 0.0 0.0

0.0 0.0 0.0

julia> fill!(A, 2.)

2×3 Array{Float64,2}:

2.0 2.0 2.0

2.0 2.0 2.0

julia> a = [1, 1, 1]; A = fill!(Vector{Vector{Int}}(3), a); a[1] = 2; A

3-element Array{Array{Int64,1},1}:

[2, 1, 1]

[2, 1, 1]

[2, 1, 1]

julia> x = 0; f() = (global x += 1; x); fill!(Vector{Int}(3), f())

3-element Array{Int64,1}:

1

1

1

source

Base.similar – Method.

similar(array, [element_type=eltype(array)], [dims=size(array)])

Create an uninitializedmutable arraywith the given element type and size, based upon the given source array. The

second and third arguments are both optional, defaulting to the given array’s eltype and size. The dimensions

may be specified either as a single tuple argument or as a series of integer arguments.

Custom AbstractArray subtypes may choose which specific array type is best-suited to return for the given ele-

ment type and dimensionality. If theydo not specialize thismethod, the default is anArray{element_type}(dims...).

For example, similar(1:10, 1, 4) returns an uninitialized Array{Int,2} since ranges are neither mutable

nor support 2 dimensions:

julia> similar(1:10, 1, 4)

1×4 Array{Int64,2}:

4419743872 4374413872 4419743888 0

Conversely, similar(trues(10,10), 2) returns an uninitialized BitVectorwith two elements since BitAr-

rays are both mutable and can support 1-dimensional arrays:

julia> similar(trues(10,10), 2)

2-element BitArray{1}:

false

false

Since BitArrays can only store elements of type Bool, however, if you request a different element type it will

create a regular Array instead:

julia> similar(falses(10), Float64, 2, 4)

2×4 Array{Float64,2}:

2.18425e-314 2.18425e-314 2.18425e-314 2.18425e-314

2.18425e-314 2.18425e-314 2.18425e-314 2.18425e-314

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L5-L35

50.1. CONSTRUCTORS AND TYPES 599

source

Base.similar – Method.

similar(storagetype, indices)

Create an uninitialized mutable array analogous to that specified by storagetype, but with indices specified

by the last argument. storagetype might be a type or a function.

Examples:

similar(Array{Int}, indices(A))

creates an array that ”acts like” an Array{Int} (and might indeed be backed by one), but which is indexed iden-

tically to A. If A has conventional indexing, this will be identical to Array{Int}(size(A)), but if A has uncon-

ventional indexing then the indices of the result will match A.

similar(BitArray, (indices(A, 2),))

would create a 1-dimensional logical array whose indices match those of the columns of A.

similar(dims->zeros(Int, dims), indices(A))

would create an array of Int, initialized to zero, matching the indices of A.

source

Base.eye – Function.

eye([T::Type=Float64,] m::Integer, n::Integer)

m-by-n identity matrix. The default element type is Float64.

source

eye(m, n)

m-by-n identity matrix.

source

eye([T::Type=Float64,] n::Integer)

n-by-n identity matrix. The default element type is Float64.

source

eye(A)

Constructs an identity matrix of the same dimensions and type as A.

julia> A = [1 2 3; 4 5 6; 7 8 9]

3×3 Array{Int64,2}:

1 2 3

4 5 6

7 8 9

julia> eye(A)

3×3 Array{Int64,2}:

1 0 0

0 1 0

0 0 1

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/abstractarray.jl#L477-L518
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/abstractarray.jl#L537-L563
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/array.jl#L270-L275
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/array.jl#L284-L288
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/array.jl#L291-L296

600 CHAPTER 50. ARRAYS

Note the difference from ones.

source

Base.linspace – Function.

linspace(start, stop, n=50)

Construct a range of n linearly spaced elements from start to stop.

julia> linspace(1.3,2.9,9)

1.3:0.2:2.9

source

Base.logspace – Function.

logspace(start::Real, stop::Real, n::Integer=50)

Construct a vector of n logarithmically spaced numbers from 10^start to 10^stop.

julia> logspace(1.,10.,5)

5-element Array{Float64,1}:

10.0

1778.28

3.16228e5

5.62341e7

1.0e10

source

Base.Random.randsubseq – Function.

randsubseq(A, p) -> Vector

Return a vector consisting of a random subsequence of the given array A, where each element of A is included (in

order) with independent probability p. (Complexity is linear in p*length(A), so this function is efficient even if

p is small and A is large.) Technically, this process is known as ”Bernoulli sampling” of A.

source

Base.Random.randsubseq! – Function.

randsubseq!(S, A, p)

Like randsubseq, but the results are stored in S (which is resized as needed).

source

50.2 Basic functions

Base.ndims – Function.

ndims(A::AbstractArray) -> Integer

Returns the number of dimensions of A.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/array.jl#L299-L319
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/range.jl#L230-L239
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/range.jl#L316-L330
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/random.jl#L1450-L1457
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L456-L461

50.2. BASIC FUNCTIONS 601

julia> A = ones(3,4,5);

julia> ndims(A)

3

source

Base.size – Function.

size(A::AbstractArray, [dim...])

Returns a tuple containing the dimensions of A. Optionally you can specify the dimension(s) you want the length

of, and get the length of that dimension, or a tuple of the lengths of dimensions you asked for.

julia> A = ones(2,3,4);

julia> size(A, 2)

3

julia> size(A,3,2)

(4, 3)

source

Base.indices – Method.

indices(A)

Returns the tuple of valid indices for array A.

julia> A = ones(5,6,7);

julia> indices(A)

(Base.OneTo(5), Base.OneTo(6), Base.OneTo(7))

source

Base.indices – Method.

indices(A, d)

Returns the valid range of indices for array A along dimension d.

julia> A = ones(5,6,7);

julia> indices(A,2)

Base.OneTo(6)

source

Base.length – Method.

length(A::AbstractArray) -> Integer

Returns the number of elements in A.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/abstractarray.jl#L103-L114
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/abstractarray.jl#L12-L28
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/abstractarray.jl#L50-L61
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/abstractarray.jl#L33-L44

602 CHAPTER 50. ARRAYS

julia> A = ones(3,4,5);

julia> length(A)

60

source

Base.eachindex – Function.

eachindex(A...)

Creates an iterable object for visiting each index of an AbstractArray A in an efficient manner. For array types that

have opted into fast linear indexing (like Array), this is simply the range 1:length(A). For other array types, this

returns a specialized Cartesian range to efficiently index into the arraywith indices specified for every dimension.

For other iterables, including strings and dictionaries, this returns an iterator object supporting arbitrary index

types (e.g. unevenly spaced or non-integer indices).

Example for a sparse 2-d array:

julia> A = sparse([1, 1, 2], [1, 3, 1], [1, 2, -5])

2×3 SparseMatrixCSC{Int64,Int64} with 3 stored entries:

[1, 1] = 1

[2, 1] = -5

[1, 3] = 2

julia> for iter in eachindex(A)

@show iter.I[1], iter.I[2]

@show A[iter]

end

(iter.I[1], iter.I[2]) = (1, 1)

A[iter] = 1

(iter.I[1], iter.I[2]) = (2, 1)

A[iter] = -5

(iter.I[1], iter.I[2]) = (1, 2)

A[iter] = 0

(iter.I[1], iter.I[2]) = (2, 2)

A[iter] = 0

(iter.I[1], iter.I[2]) = (1, 3)

A[iter] = 2

(iter.I[1], iter.I[2]) = (2, 3)

A[iter] = 0

If you supply more than one AbstractArray argument, eachindexwill create an iterable object that is fast for

all arguments (a UnitRange if all inputs have fast linear indexing, a CartesianRange otherwise). If the arrays

have different sizes and/or dimensionalities, eachindex returns an iterable that spans the largest range along

each dimension.

source

Base.linearindices – Function.

linearindices(A)

Returns a UnitRange specifying the valid range of indices for A[i] where i is an Int. For arrays with con-

ventional indexing (indices start at 1), or any multidimensional array, this is 1:length(A); however, for one-

dimensional arrays with unconventional indices, this is indices(A, 1).

Calling this function is the ”safe” way to write algorithms that exploit linear indexing.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/abstractarray.jl#L119-L130
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/abstractarray.jl#L765-L808

50.2. BASIC FUNCTIONS 603

julia> A = ones(5,6,7);

julia> b = linearindices(A);

julia> extrema(b)

(1, 210)

source

Base.IndexStyle – Type.

IndexStyle(A)

IndexStyle(typeof(A))

IndexStyle specifies the ”native indexing style” for array A. When you define a new AbstractArray type, you

can choose to implement either linear indexing or cartesian indexing. If you decide to implement linear indexing,

then you must set this trait for your array type:

Base.IndexStyle(::Type{<:MyArray}) = IndexLinear()

The default is IndexCartesian().

Julia’s internal indexing machinery will automatically (and invisibly) convert all indexing operations into the pre-

ferred style using sub2ind or ind2sub. This allows users to access elements of your array using any indexing

style, even when explicit methods have not been provided.

If you define both styles of indexing for yourAbstractArray, this trait can be used to select themost performant

indexing style. Some methods check this trait on their inputs, and dispatch to different algorithms depending on

the most efficient access pattern. In particular, eachindex creates an iteratorwhose type depends on the setting

of this trait.

source

Base.countnz – Function.

countnz(A) -> Integer

Counts the number of nonzero values in array A (dense or sparse). Note that this is not a constant-time operation.

For sparse matrices, one should usually use nnz, which returns the number of stored values.

julia> A = [1 2 4; 0 0 1; 1 1 0]

3×3 Array{Int64,2}:

1 2 4

0 0 1

1 1 0

julia> countnz(A)

6

source

Base.conj! – Function.

conj!(A)

Transform an array to its complex conjugate in-place.

See also conj.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/abstractarray.jl#L77-L97
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/abstractarray.jl#L260-L286
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reduce.jl#L705-L721

604 CHAPTER 50. ARRAYS

julia> A = [1+im 2-im; 2+2im 3+im]

2×2 Array{Complex{Int64},2}:

1+1im 2-1im

2+2im 3+1im

julia> conj!(A);

julia> A

2×2 Array{Complex{Int64},2}:

1-1im 2+1im

2-2im 3-1im

source

Base.stride – Function.

stride(A, k::Integer)

Returns the distance in memory (in number of elements) between adjacent elements in dimension k.

julia> A = ones(3,4,5);

julia> stride(A,2)

3

julia> stride(A,3)

12

source

Base.strides – Function.

strides(A)

Returns a tuple of the memory strides in each dimension.

julia> A = ones(3,4,5);

julia> strides(A)

(1, 3, 12)

source

Base.ind2sub – Function.

ind2sub(a, index) -> subscripts

Returns a tuple of subscripts into array a corresponding to the linear index index.

julia> A = ones(5,6,7);

julia> ind2sub(A,35)

(5, 1, 2)

julia> ind2sub(A,70)

(5, 2, 3)

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/arraymath.jl#L5-L25
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/abstractarray.jl#L174-L188
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/abstractarray.jl#L200-L211

50.2. BASIC FUNCTIONS 605

source

ind2sub(dims, index) -> subscripts

Returns a tuple of subscripts into an array with dimensions dims, corresponding to the linear index index.

Example:

i, j, ... = ind2sub(size(A), indmax(A))

provides the indices of the maximum element.

julia> ind2sub((3,4),2)

(2, 1)

julia> ind2sub((3,4),3)

(3, 1)

julia> ind2sub((3,4),4)

(1, 2)

source

Base.sub2ind – Function.

sub2ind(dims, i, j, k...) -> index

The inverse of ind2sub, returns the linear index corresponding to the provided subscripts.

julia> sub2ind((5,6,7),1,2,3)

66

julia> sub2ind((5,6,7),1,6,3)

86

source

Base.LinAlg.checksquare – Function.

LinAlg.checksquare(A)

Check that a matrix is square, then return its common dimension. For multiple arguments, return a vector.

Example

julia> A = ones(4,4); B = zeros(5,5);

julia> LinAlg.checksquare(A, B)

2-element Array{Int64,1}:

4

5

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/abstractarray.jl#L1541-L1555
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/abstractarray.jl#L1608-L1632
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/abstractarray.jl#L1568-L1580
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/linalg.jl#L198-L214

606 CHAPTER 50. ARRAYS

50.3 Broadcast and vectorization

See also the dot syntax forvectorizing functions; for example, f.(args...) implicitly callsbroadcast(f, args...).

Rather than relying on ”vectorized” methods of functions like sin to operate on arrays, you should use sin.(a) to

vectorize via broadcast.

Base.broadcast – Function.

broadcast(f, As...)

Broadcasts the arrays, tuples, Refs, nullables, and/or scalars As to a container of the appropriate type and di-

mensions. In this context, anything that is not a subtype of AbstractArray, Ref (except for Ptrs), Tuple, or

Nullable is considered a scalar. The resulting container is established by the following rules:

• If all the arguments are scalars, it returns a scalar.

• If the arguments are tuples and zero or more scalars, it returns a tuple.

• If the arguments contain at least one array or Ref, it returns an array (expanding singleton dimensions), and

treats Refs as 0-dimensional arrays, and tuples as 1-dimensional arrays.

The following additional rule applies to Nullable arguments: If there is at least one Nullable, and all the

arguments are scalars or Nullable, it returns a Nullable treating Nullables as ”containers”.

A special syntax exists for broadcasting: f.(args...) is equivalent to broadcast(f, args...), and nested

f.(g.(args...)) calls are fused into a single broadcast loop.

julia> A = [1, 2, 3, 4, 5]

5-element Array{Int64,1}:

1

2

3

4

5

julia> B = [1 2; 3 4; 5 6; 7 8; 9 10]

5×2 Array{Int64,2}:

1 2

3 4

5 6

7 8

9 10

julia> broadcast(+, A, B)

5×2 Array{Int64,2}:

2 3

5 6

8 9

11 12

14 15

julia> parse.(Int, ["1", "2"])

2-element Array{Int64,1}:

1

2

julia> abs.((1, -2))

50.3. BROADCAST AND VECTORIZATION 607

(1, 2)

julia> broadcast(+, 1.0, (0, -2.0))

(1.0, -1.0)

julia> broadcast(+, 1.0, (0, -2.0), Ref(1))

2-element Array{Float64,1}:

2.0

0.0

julia> (+).([[0,2], [1,3]], Ref{Vector{Int}}([1,-1]))

2-element Array{Array{Int64,1},1}:

[1, 1]

[2, 2]

julia> string.(("one","two","three","four"), ": ", 1:4)

4-element Array{String,1}:

"one: 1"

"two: 2"

"three: 3"

"four: 4"

julia> Nullable("X") .* "Y"

Nullable{String}("XY")

julia> broadcast(/, 1.0, Nullable(2.0))

Nullable{Float64}(0.5)

julia> (1 + im) ./ Nullable{Int}()

Nullable{Complex{Float64}}()

source

Base.broadcast! – Function.

broadcast!(f, dest, As...)

Like broadcast, but store the result of broadcast(f, As...) in the dest array. Note that dest is only used

to store the result, and does not supply arguments to f unless it is also listed in the As, as in broadcast!(f, A,

A, B) to perform A[:] = broadcast(f, A, B).

source

Base.Broadcast.@__dot__ – Macro.

@. expr

Convert every function call or operator in expr into a ”dot call” (e.g. convert f(x) to f.(x)), and convert every

assignment in expr to a ”dot assignment” (e.g. convert += to .+=).

If you want to avoid adding dots for selected function calls in expr, splice those function calls in with $. For

example, @. sqrt(abs($sort(x))) is equivalent to sqrt.(abs.(sort(x))) (no dot for sort).

(@. is equivalent to a call to @__dot__.)

source

Base.Broadcast.broadcast_getindex – Function.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/broadcast.jl#L348-L433
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/broadcast.jl#L195-L203
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/broadcast.jl#L582-L595

608 CHAPTER 50. ARRAYS

broadcast_getindex(A, inds...)

Broadcasts the inds arrays to a common size like broadcast and returns an array of the results A[ks...],

where ks goes over the positions in the broadcast result A.

julia> A = [1, 2, 3, 4, 5]

5-element Array{Int64,1}:

1

2

3

4

5

julia> B = [1 2; 3 4; 5 6; 7 8; 9 10]

5×2 Array{Int64,2}:

1 2

3 4

5 6

7 8

9 10

julia> C = broadcast(+,A,B)

5×2 Array{Int64,2}:

2 3

5 6

8 9

11 12

14 15

julia> broadcast_getindex(C,[1,2,10])

3-element Array{Int64,1}:

2

5

15

source

Base.Broadcast.broadcast_setindex! – Function.

broadcast_setindex!(A, X, inds...)

Broadcasts the X and inds arrays to a common size and stores the value from each position in X at the indices in

A given by the same positions in inds.

source

50.4 Indexing and assignment

Base.getindex – Method.

getindex(A, inds...)

Returns a subset of array A as specified by inds, where each ind may be an Int, a Range, or a Vector. See the

manual section on array indexing for details.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/broadcast.jl#L436-L474
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/broadcast.jl#L492-L497

50.4. INDEXING AND ASSIGNMENT 609

julia> A = [1 2; 3 4]

2×2 Array{Int64,2}:

1 2

3 4

julia> getindex(A, 1)

1

julia> getindex(A, [2, 1])

2-element Array{Int64,1}:

3

1

julia> getindex(A, 2:4)

3-element Array{Int64,1}:

3

2

4

source

Base.setindex! – Method.

setindex!(A, X, inds...)

Store values from array Xwithin some subset of A as specified by inds.

source

Base.copy! – Method.

copy!(dest, Rdest::CartesianRange, src, Rsrc::CartesianRange) -> dest

Copy the block of src in the range of Rsrc to the block of dest in the range of Rdest. The sizes of the two

regions must match.

source

Base.isassigned – Function.

isassigned(array, i) -> Bool

Tests whether the given array has a value associated with index i. Returns false if the index is out of bounds,

or has an undefined reference.

julia> isassigned(rand(3, 3), 5)

true

julia> isassigned(rand(3, 3), 3 * 3 + 1)

false

julia> mutable struct Foo end

julia> v = similar(rand(3), Foo)

3-element Array{Foo,1}:

#undef

#undef

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L116-L143
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L2037-L2041
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/multidimensional.jl#L834-L839

610 CHAPTER 50. ARRAYS

#undef

julia> isassigned(v, 1)

false

source

Base.Colon – Type.

Colon()

Colons (:) are used to signify indexing entire objects or dimensions at once.

Very few operations are defined on Colons directly; instead they are converted by to_indices to an internal

vector type (Base.Slice) to represent the collection of indices they span before being used.

source

Base.IteratorsMD.CartesianIndex – Type.

CartesianIndex(i, j, k...) -> I

CartesianIndex((i, j, k...)) -> I

Create a multidimensional index I, which can be used for indexing a multidimensional array A. In particular, A[I]

is equivalent to A[i,j,k...]. One can freely mix integer and CartesianIndex indices; for example, A[Ipre,

i, Ipost] (where Ipre and Ipost are CartesianIndex indices and i is an Int) can be a useful expression

when writing algorithms that work along a single dimension of an array of arbitrary dimensionality.

A CartesianIndex is sometimes produced by eachindex, and always when iterating with an explicit Carte-

sianRange.

source

Base.IteratorsMD.CartesianRange – Type.

CartesianRange(Istart::CartesianIndex, Istop::CartesianIndex) -> R

CartesianRange(sz::Dims) -> R

CartesianRange(istart:istop, jstart:jstop, ...) -> R

Define a region R spanning a multidimensional rectangular range of integer indices. These are most commonly

encountered in the context of iteration, where for I in R ... end will return CartesianIndex indices I

equivalent to the nested loops

for j = jstart:jstop

for i = istart:istop

...

end

end

Consequently these can be useful for writing algorithms that work in arbitrary dimensions.

source

Base.to_indices – Function.

to_indices(A, I::Tuple)

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/essentials.jl#L278-L302
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/essentials.jl#L311-L319
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/multidimensional.jl#L15-L30
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/multidimensional.jl#L96-L114

50.4. INDEXING AND ASSIGNMENT 611

Convert the tuple I to a tuple of indices for use in indexing into array A.

The returned tuple must only contain either Ints or AbstractArrays of scalar indices that are supported by

array A. It will error upon encountering a novel index type that it does not know how to process.

For simple index types, it defers to the unexported Base.to_index(A, i) to process each index i. While this

internal function is not intended to be called directly, Base.to_indexmay be extended by custom array or index

types to provide custom indexing behaviors.

More complicated index types may require more context about the dimension into which they index. To sup-

port those cases, to_indices(A, I) calls to_indices(A, indices(A), I), which then recursively walks

through both the given tuple of indices and the dimensional indices of A in tandem. As such, not all index types

are guaranteed to propagate to Base.to_index.

source

Base.checkbounds – Function.

checkbounds(Bool, A, I...)

Return true if the specified indices I are in bounds for the given array A. Subtypes of AbstractArray should

specialize this method if they need to provide custom bounds checking behaviors; however, in many cases one

can rely on A’s indices and checkindex.

See also checkindex.

julia> A = rand(3, 3);

julia> checkbounds(Bool, A, 2)

true

julia> checkbounds(Bool, A, 3, 4)

false

julia> checkbounds(Bool, A, 1:3)

true

julia> checkbounds(Bool, A, 1:3, 2:4)

false

source

checkbounds(A, I...)

Throw an error if the specified indices I are not in bounds for the given array A.

source

Base.checkindex – Function.

checkindex(Bool, inds::AbstractUnitRange, index)

Return true if the given index is within the bounds of inds. Custom types that would like to behave as indices

for all arrays can extend this method in order to provide a specialized bounds checking implementation.

julia> checkindex(Bool,1:20,8)

true

julia> checkindex(Bool,1:20,21)

false

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/indices.jl#L193-L212
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/abstractarray.jl#L314-L339
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/abstractarray.jl#L355-L359

612 CHAPTER 50. ARRAYS

source

50.5 Views (SubArrays and other view types)

Base.view – Function.

view(A, inds...)

Like getindex, but returns a view into the parent array Awith the given indices instead of making a copy. Calling

getindex or setindex! on the returned SubArray computes the indices to the parent array on the flywithout

checking bounds.

julia> A = [1 2; 3 4]

2×2 Array{Int64,2}:

1 2

3 4

julia> b = view(A, :, 1)

2-element SubArray{Int64,1,Array{Int64,2},Tuple{Base.Slice{Base.OneTo{Int64}},Int64},true}:

1

3

julia> fill!(b, 0)

2-element SubArray{Int64,1,Array{Int64,2},Tuple{Base.Slice{Base.OneTo{Int64}},Int64},true}:

0

0

julia> A # Note A has changed even though we modified b

2×2 Array{Int64,2}:

0 2

0 4

source

Base.@view – Macro.

@view A[inds...]

Creates a SubArray from an indexing expression. This can only be applied directly to a reference expression (e.g.

@view A[1,2:end]), and should not be used as the target of an assignment (e.g. @view(A[1,2:end]) = ...).

See also @views to switch an entire block of code to use views for slicing.

julia> A = [1 2; 3 4]

2×2 Array{Int64,2}:

1 2

3 4

julia> b = @view A[:, 1]

2-element SubArray{Int64,1,Array{Int64,2},Tuple{Base.Slice{Base.OneTo{Int64}},Int64},true}:

1

3

julia> fill!(b, 0)

2-element SubArray{Int64,1,Array{Int64,2},Tuple{Base.Slice{Base.OneTo{Int64}},Int64},true}:

0

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/abstractarray.jl#L436-L451
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/subarray.jl#L80-L109

50.5. VIEWS (SUBARRAYS AND OTHER VIEWTYPES) 613

0

julia> A

2×2 Array{Int64,2}:

0 2

0 4

source

Base.@views – Macro.

@views expression

Convert every array-slicing operation in the given expression (which may be a begin/end block, loop, function,

etc.) to return a view. Scalar indices, non-array types, and explicit getindex calls (as opposed to array[...])

are unaffected.

Note that the @views macro only affects array[...] expressions that appear explicitly in the given expres-

sion, not array slicing that occurs in functions called by that code.

source

Base.parent – Function.

parent(A)

Returns the ”parent array” of an array view type (e.g., SubArray), or the array itself if it is not a view.

source

Base.parentindexes – Function.

parentindexes(A)

From an array view A, returns the corresponding indexes in the parent.

source

Base.slicedim – Function.

slicedim(A, d::Integer, i)

Return all the data of Awhere the index for dimension d equals i. Equivalent to A[:,:,...,i,:,:,...] where

i is in position d.

julia> A = [1 2 3 4; 5 6 7 8]

2×4 Array{Int64,2}:

1 2 3 4

5 6 7 8

julia> slicedim(A,2,3)

2-element Array{Int64,1}:

3

7

source

Base.reinterpret – Function.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/subarray.jl#L415-L444
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/subarray.jl#L524-L536
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1550-L1555
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/subarray.jl#L64-L68
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/abstractarraymath.jl#L98-L115

614 CHAPTER 50. ARRAYS

reinterpret(type, A)

Change the type-interpretation of a block ofmemory. For arrays, this constructs an arraywith the same binarydata

as the given array, but with the specified element type. For example, reinterpret(Float32, UInt32(7))

interprets the 4 bytes corresponding to UInt32(7) as a Float32.

julia> reinterpret(Float32, UInt32(7))

1.0f-44

julia> reinterpret(Float32, UInt32[1 2 3 4 5])

1×5 Array{Float32,2}:

1.4013f-45 2.8026f-45 4.2039f-45 5.60519f-45 7.00649f-45

source

Base.reshape – Function.

reshape(A, dims...) -> R

reshape(A, dims) -> R

Return an array R with the same data as A, but with different dimension sizes or number of dimensions. The two

arrays share the same underlying data, so that setting elements of R alters the values of A and vice versa.

The newdimensions may be specified either as a list of arguments or as a shape tuple. At most one dimensionmay

be specified with a :, in which case its length is computed such that its product with all the specified dimensions

is equal to the length of the original array A. The total number of elements must not change.

julia> A = collect(1:16)

16-element Array{Int64,1}:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

julia> reshape(A, (4, 4))

4×4 Array{Int64,2}:

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

julia> reshape(A, 2, :)

2×8 Array{Int64,2}:

1 3 5 7 9 11 13 15

2 4 6 8 10 12 14 16

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1056-L1074

50.6. CONCATENATION AND PERMUTATION 615

source

Base.squeeze – Function.

squeeze(A, dims)

Remove the dimensions specified by dims from array A. Elements of dims must be unique and within the range

1:ndims(A). size(A,i) must equal 1 for all i in dims.

julia> a = reshape(collect(1:4),(2,2,1,1))

2×2×1×1 Array{Int64,4}:

[:, :, 1, 1] =

1 3

2 4

julia> squeeze(a,3)

2×2×1 Array{Int64,3}:

[:, :, 1] =

1 3

2 4

source

Base.vec – Function.

vec(a::AbstractArray) -> Vector

Reshape the array a as a one-dimensional column vector. The resulting array shares the same underlying data as

a, so modifying one will also modify the other.

julia> a = [1 2 3; 4 5 6]

2×3 Array{Int64,2}:

1 2 3

4 5 6

julia> vec(a)

6-element Array{Int64,1}:

1

4

2

5

3

6

See also reshape.

source

50.6 Concatenation and permutation

Base.cat – Function.

cat(dims, A...)

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reshapedarray.jl#L39-L87
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/abstractarraymath.jl#L44-L64
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/abstractarraymath.jl#L12-L36

616 CHAPTER 50. ARRAYS

Concatenate the input arrays along the specified dimensions in the iterable dims. For dimensions not in dims, all

input arrays should have the same size, which will also be the size of the output array along that dimension. For

dimensions in dims, the size of the output array is the sum of the sizes of the input arrays along that dimension.

If dims is a single number, the different arrays are tightly stacked along that dimension. If dims is an iterable

containing several dimensions, this allows one to construct block diagonal matrices and their higher-dimensional

analogues by simultaneously increasing several dimensions for every new input array and putting zero blocks

elsewhere. For example, cat([1,2], matrices...) builds a block diagonal matrix, i.e. a block matrix with

matrices[1], matrices[2], ... as diagonal blocks and matching zero blocks away from the diagonal.

source

Base.vcat – Function.

vcat(A...)

Concatenate along dimension 1.

julia> a = [1 2 3 4 5]

1×5 Array{Int64,2}:

1 2 3 4 5

julia> b = [6 7 8 9 10; 11 12 13 14 15]

2×5 Array{Int64,2}:

6 7 8 9 10

11 12 13 14 15

julia> vcat(a,b)

3×5 Array{Int64,2}:

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

julia> c = ([1 2 3], [4 5 6])

([1 2 3], [4 5 6])

julia> vcat(c...)

2×3 Array{Int64,2}:

1 2 3

4 5 6

source

Base.hcat – Function.

hcat(A...)

Concatenate along dimension 2.

julia> a = [1; 2; 3; 4; 5]

5-element Array{Int64,1}:

1

2

3

4

5

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1588-L1602
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/abstractarray.jl#L1229-L1258

50.6. CONCATENATION AND PERMUTATION 617

julia> b = [6 7; 8 9; 10 11; 12 13; 14 15]

5×2 Array{Int64,2}:

6 7

8 9

10 11

12 13

14 15

julia> hcat(a,b)

5×3 Array{Int64,2}:

1 6 7

2 8 9

3 10 11

4 12 13

5 14 15

julia> c = ([1; 2; 3], [4; 5; 6])

([1, 2, 3], [4, 5, 6])

julia> hcat(c...)

3×2 Array{Int64,2}:

1 4

2 5

3 6

source

Base.hvcat – Function.

hvcat(rows::Tuple{Vararg{Int}}, values...)

Horizontal and vertical concatenation in one call. This function is called for blockmatrix syntax. The first argument

specifies the number of arguments to concatenate in each block row.

julia> a, b, c, d, e, f = 1, 2, 3, 4, 5, 6

(1, 2, 3, 4, 5, 6)

julia> [a b c; d e f]

2×3 Array{Int64,2}:

1 2 3

4 5 6

julia> hvcat((3,3), a,b,c,d,e,f)

2×3 Array{Int64,2}:

1 2 3

4 5 6

julia> [a b;c d; e f]

3×2 Array{Int64,2}:

1 2

3 4

5 6

julia> hvcat((2,2,2), a,b,c,d,e,f)

3×2 Array{Int64,2}:

1 2

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/abstractarray.jl#L1260-L1299

618 CHAPTER 50. ARRAYS

3 4

5 6

If the first argument is a single integer n, then all block rows are assumed to have n block columns.

source

Base.flipdim – Function.

flipdim(A, d::Integer)

Reverse A in dimension d.

julia> b = [1 2; 3 4]

2×2 Array{Int64,2}:

1 2

3 4

julia> flipdim(b,2)

2×2 Array{Int64,2}:

2 1

4 3

source

Base.circshift – Function.

circshift(A, shifts)

Circularly shift the data in an array. The second argument is a vector giving the amount to shift in each dimension.

julia> b = reshape(collect(1:16), (4,4))

4×4 Array{Int64,2}:

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

julia> circshift(b, (0,2))

4×4 Array{Int64,2}:

9 13 1 5

10 14 2 6

11 15 3 7

12 16 4 8

julia> circshift(b, (-1,0))

4×4 Array{Int64,2}:

2 6 10 14

3 7 11 15

4 8 12 16

1 5 9 13

See also circshift!.

source

Base.circshift! – Function.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/abstractarray.jl#L1334-L1370
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/abstractarraymath.jl#L123-L139
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/abstractarraymath.jl#L174-L204

50.6. CONCATENATION AND PERMUTATION 619

circshift!(dest, src, shifts)

Circularly shift the data in src, storing the result in dest. shifts specifies the amount to shift in each dimension.

The dest array must be distinct from the src array (they cannot alias each other).

See also circshift.

source

Base.circcopy! – Function.

circcopy!(dest, src)

Copy src to dest, indexing each dimension modulo its length. src and dest must have the same size, but can

be offset in their indices; any offset results in a (circular) wraparound. If the arrays have overlapping indices, then

on the domain of the overlap dest agrees with src.

julia> src = reshape(collect(1:16), (4,4))

4×4 Array{Int64,2}:

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

julia> dest = OffsetArray{Int}((0:3,2:5))

julia> circcopy!(dest, src)

OffsetArrays.OffsetArray{Int64,2,Array{Int64,2}} with indices 0:3×2:5:

8 12 16 4

5 9 13 1

6 10 14 2

7 11 15 3

julia> dest[1:3,2:4] == src[1:3,2:4]

true

source

Base.contains – Method.

contains(fun, itr, x) -> Bool

Returns true if there is at least one element y in itr such that fun(y,x) is true.

julia> vec = [10, 100, 200]

3-element Array{Int64,1}:

10

100

200

julia> contains(==, vec, 200)

true

julia> contains(==, vec, 300)

false

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/multidimensional.jl#L844-L854
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/multidimensional.jl#L897-L926

620 CHAPTER 50. ARRAYS

julia> contains(>, vec, 100)

true

julia> contains(>, vec, 200)

false

source

Base.find – Method.

find(A)

Return a vector of the linear indexes of the non-zeros in A (determined by A[i]!=0). A common use of this is to

convert a boolean array to an array of indexes of the true elements. If there are no non-zero elements of A, find

returns an empty array.

julia> A = [true false; false true]

2×2 Array{Bool,2}:

true false

false true

julia> find(A)

2-element Array{Int64,1}:

1

4

source

Base.find – Method.

find(f::Function, A)

Return a vector I of the linear indexes of Awhere f(A[I]) returns true. If there are no such elements of A, find

returns an empty array.

julia> A = [1 2; 3 4]

2×2 Array{Int64,2}:

1 2

3 4

julia> find(isodd,A)

2-element Array{Int64,1}:

1

2

source

Base.findn – Function.

findn(A)

Return a vector of indexes for each dimension giving the locations of the non-zeros in A (determined by A[i]!=0).

If there are no non-zero elements of A, findn returns a 2-tuple of empty arrays.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reduce.jl#L638-L662
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/array.jl#L1470-L1488
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/array.jl#L1435-L1452

50.6. CONCATENATION AND PERMUTATION 621

julia> A = [1 2 0; 0 0 3; 0 4 0]

3×3 Array{Int64,2}:

1 2 0

0 0 3

0 4 0

julia> findn(A)

([1, 1, 3, 2], [1, 2, 2, 3])

julia> A = zeros(2,2)

2×2 Array{Float64,2}:

0.0 0.0

0.0 0.0

julia> findn(A)

(Int64[], Int64[])

source

Base.findnz – Function.

findnz(A)

Return a tuple (I, J, V)where I and J are the row and column indexes of the non-zero values in matrix A, and

V is a vector of the non-zero values.

julia> A = [1 2 0; 0 0 3; 0 4 0]

3×3 Array{Int64,2}:

1 2 0

0 0 3

0 4 0

julia> findnz(A)

([1, 1, 3, 2], [1, 2, 2, 3], [1, 2, 4, 3])

source

Base.findfirst – Method.

findfirst(A)

Return the linear index of the first non-zero value in A (determined by A[i]!=0). Returns 0 if no such value is

found.

julia> A = [0 0; 1 0]

2×2 Array{Int64,2}:

0 0

1 0

julia> findfirst(A)

2

source

Base.findfirst – Method.

findfirst(A, v)

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/array.jl#L1508-L1533
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/array.jl#L1549-L1565
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/array.jl#L1175-L1190

622 CHAPTER 50. ARRAYS

Return the linear index of the first element equal to v in A. Returns 0 if v is not found.

julia> A = [4 6; 2 2]

2×2 Array{Int64,2}:

4 6

2 2

julia> findfirst(A,2)

2

julia> findfirst(A,3)

0

source

Base.findfirst – Method.

findfirst(predicate::Function, A)

Return the linear index of the first element of A for which predicate returns true. Returns 0 if there is no such

element.

julia> A = [1 4; 2 2]

2×2 Array{Int64,2}:

1 4

2 2

julia> findfirst(iseven, A)

2

julia> findfirst(x -> x>10, A)

0

source

Base.findlast – Method.

findlast(A)

Return the linear index of the last non-zero value in A (determined by A[i]!=0). Returns 0 if there is no non-zero

value in A.

julia> A = [1 0; 1 0]

2×2 Array{Int64,2}:

1 0

1 0

julia> findlast(A)

2

julia> A = zeros(2,2)

2×2 Array{Float64,2}:

0.0 0.0

0.0 0.0

julia> findlast(A)

0

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/array.jl#L1219-L1237
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/array.jl#L1267-L1285

50.6. CONCATENATION AND PERMUTATION 623

source

Base.findlast – Method.

findlast(A, v)

Return the linear index of the last element equal to v in A. Returns 0 if there is no element of A equal to v.

julia> A = [1 2; 2 1]

2×2 Array{Int64,2}:

1 2

2 1

julia> findlast(A,1)

4

julia> findlast(A,2)

3

julia> findlast(A,3)

0

source

Base.findlast – Method.

findlast(predicate::Function, A)

Return the linear index of the last element of A for which predicate returns true. Returns 0 if there is no such

element.

julia> A = [1 2; 3 4]

2×2 Array{Int64,2}:

1 2

3 4

julia> findlast(isodd, A)

2

julia> findlast(x -> x > 5, A)

0

source

Base.findnext – Method.

findnext(A, i::Integer)

Find the next linear index >= i of a non-zero element of A, or 0 if not found.

julia> A = [0 0; 1 0]

2×2 Array{Int64,2}:

0 0

1 0

julia> findnext(A,1)

2

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/array.jl#L1313-L1336
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/array.jl#L1364-L1385
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/array.jl#L1414-L1432

624 CHAPTER 50. ARRAYS

julia> findnext(A,3)

0

source

Base.findnext – Method.

findnext(predicate::Function, A, i::Integer)

Find the next linear index >= i of an element of A for which predicate returns true, or 0 if not found.

julia> A = [1 4; 2 2]

2×2 Array{Int64,2}:

1 4

2 2

julia> findnext(isodd, A, 1)

1

julia> findnext(isodd, A, 2)

0

source

Base.findnext – Method.

findnext(A, v, i::Integer)

Find the next linear index >= i of an element of A equal to v (using ==), or 0 if not found.

julia> A = [1 4; 2 2]

2×2 Array{Int64,2}:

1 4

2 2

julia> findnext(A,4,4)

0

julia> findnext(A,4,3)

3

source

Base.findprev – Method.

findprev(A, i::Integer)

Find the previous linear index <= i of a non-zero element of A, or 0 if not found.

julia> A = [0 0; 1 2]

2×2 Array{Int64,2}:

0 0

1 2

julia> findprev(A,2)

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/array.jl#L1148-L1165
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/array.jl#L1240-L1257
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/array.jl#L1193-L1210

50.6. CONCATENATION AND PERMUTATION 625

2

julia> findprev(A,1)

0

source

Base.findprev – Method.

findprev(predicate::Function, A, i::Integer)

Find the previous linear index <= i of an element of A for which predicate returns true, or 0 if not found.

julia> A = [4 6; 1 2]

2×2 Array{Int64,2}:

4 6

1 2

julia> findprev(isodd, A, 1)

0

julia> findprev(isodd, A, 3)

2

source

Base.findprev – Method.

findprev(A, v, i::Integer)

Find the previous linear index <= i of an element of A equal to v (using ==), or 0 if not found.

julia> A = [0 0; 1 2]

2×2 Array{Int64,2}:

0 0

1 2

julia> findprev(A, 1, 4)

2

julia> findprev(A, 1, 1)

0

source

Base.permutedims – Function.

permutedims(A, perm)

Permute the dimensions of array A. perm is a vector specifying a permutation of length ndims(A). This is a

generalization of transpose for multi-dimensional arrays. Transpose is equivalent to permutedims(A, [2,1]).

See also: PermutedDimsArray.

julia> A = reshape(collect(1:8), (2,2,2))

2×2×2 Array{Int64,3}:

[:, :, 1] =

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/array.jl#L1288-L1305
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/array.jl#L1388-L1406
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/array.jl#L1339-L1356

626 CHAPTER 50. ARRAYS

1 3

2 4

[:, :, 2] =

5 7

6 8

julia> permutedims(A, [3, 2, 1])

2×2×2 Array{Int64,3}:

[:, :, 1] =

1 3

5 7

[:, :, 2] =

2 4

6 8

source

Base.permutedims! – Function.

permutedims!(dest, src, perm)

Permute the dimensions of array src and store the result in the array dest. perm is a vector specifying a permu-

tation of length ndims(src). The preallocated array dest should have size(dest) == size(src)[perm]

and is completely overwritten. No in-place permutation is supported and unexpected results will happen if src

and dest have overlapping memory regions.

source

Base.PermutedDimsArrays.PermutedDimsArray – Type.

PermutedDimsArray(A, perm) -> B

Given an AbstractArray A, create a view B such that the dimensions appear to be permuted. Similar to permute-

dims, except that no copying occurs (B shares storage with A).

See also: permutedims.

Example

julia> A = rand(3,5,4);

julia> B = PermutedDimsArray(A, (3,1,2));

julia> size(B)

(4, 3, 5)

julia> B[3,1,2] == A[1,2,3]

true

source

Base.promote_shape – Function.

promote_shape(s1, s2)

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/permuteddimsarray.jl#L83-L113
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/permuteddimsarray.jl#L119-L127
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/permuteddimsarray.jl#L19-L41

50.7. ARRAY FUNCTIONS 627

Check two array shapes for compatibility, allowing trailing singleton dimensions, and return whichever shape has

more dimensions.

julia> a = ones(3,4,1,1,1);

julia> b = ones(3,4);

julia> promote_shape(a,b)

(Base.OneTo(3), Base.OneTo(4), Base.OneTo(1), Base.OneTo(1), Base.OneTo(1))

julia> promote_shape((2,3,1,4), (2, 3, 1, 4, 1))

(2, 3, 1, 4, 1)

source

50.7 Array functions

Base.accumulate – Method.

accumulate(op, A, dim=1)

Cumulative operation op along a dimension dim (defaults to 1). See also accumulate! to use a preallocated

output array, both for performance and to control the precision of the output (e.g. to avoid overflow). For common

operations there are specialized variants of accumulate, see: cumsum, cumprod

julia> accumulate(+, [1,2,3])

3-element Array{Int64,1}:

1

3

6

julia> accumulate(*, [1,2,3])

3-element Array{Int64,1}:

1

2

6

source

accumulate(op, v0, A)

Like accumulate, but using a starting element v0. The first entry of the result will be op(v0, first(A)). For

example:

julia> accumulate(+, 100, [1,2,3])

3-element Array{Int64,1}:

101

103

106

julia> accumulate(min, 0, [1,2,-1])

3-element Array{Int64,1}:

0

0

-1

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/indices.jl#L34-L51
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/multidimensional.jl#L657-L679

628 CHAPTER 50. ARRAYS

source

Base.accumulate! – Function.

accumulate!(op, B, A, dim=1)

Cumulative operation op on A along a dimension, storing the result in B. The dimension defaults to 1. See also

accumulate.

source

Base.cumprod – Function.

cumprod(A, dim=1)

Cumulative product along a dimension dim (defaults to 1). See also cumprod! to use a preallocated output array,

both for performance and to control the precision of the output (e.g. to avoid overflow).

julia> a = [1 2 3; 4 5 6]

2×3 Array{Int64,2}:

1 2 3

4 5 6

julia> cumprod(a,1)

2×3 Array{Int64,2}:

1 2 3

4 10 18

julia> cumprod(a,2)

2×3 Array{Int64,2}:

1 2 6

4 20 120

source

Base.cumprod! – Function.

cumprod!(B, A, dim::Integer=1)

Cumulative product of A along a dimension, storing the result in B. The dimension defaults to 1. See also cumprod.

source

Base.cumsum – Function.

cumsum(A, dim=1)

Cumulative sum along a dimension dim (defaults to 1). See also cumsum! to use a preallocated output array, both

for performance and to control the precision of the output (e.g. to avoid overflow).

julia> a = [1 2 3; 4 5 6]

2×3 Array{Int64,2}:

1 2 3

4 5 6

julia> cumsum(a,1)

2×3 Array{Int64,2}:

1 2 3

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/multidimensional.jl#L686-L705
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/multidimensional.jl#L740-L745
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/multidimensional.jl#L623-L646
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/multidimensional.jl#L649-L654

50.7. ARRAY FUNCTIONS 629

5 7 9

julia> cumsum(a,2)

2×3 Array{Int64,2}:

1 3 6

4 9 15

source

Base.cumsum! – Function.

cumsum!(B, A, dim::Integer=1)

Cumulative sum of A along a dimension, storing the result in B. The dimension defaults to 1. See also cumsum.

source

Base.cumsum_kbn – Function.

cumsum_kbn(A, [dim::Integer=1])

Cumulative sum along a dimension, using the Kahan-Babuska-Neumaier compensated summation algorithm for

additional accuracy. The dimension defaults to 1.

source

Base.LinAlg.diff – Function.

diff(A, [dim::Integer=1])

Finite difference operator of matrix or vector A. If A is a matrix, compute the finite difference over a dimension

dim (default 1).

Example

julia> a = [2 4; 6 16]

2×2 Array{Int64,2}:

2 4

6 16

julia> diff(a,2)

2×1 Array{Int64,2}:

2

10

source

Base.LinAlg.gradient – Function.

gradient(F::AbstractVector, [h::Real])

Compute differences along vector F, using h as the spacing between points. The default spacing is one.

Example

julia> a = [2,4,6,8];

julia> gradient(a)

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/multidimensional.jl#L586-L609
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/multidimensional.jl#L615-L620
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/abstractarraymath.jl#L235-L240
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/generic.jl#L251-L270

630 CHAPTER 50. ARRAYS

4-element Array{Float64,1}:

2.0

2.0

2.0

2.0

source

Base.rot180 – Function.

rot180(A)

Rotate matrix A 180 degrees.

julia> a = [1 2; 3 4]

2×2 Array{Int64,2}:

1 2

3 4

julia> rot180(a)

2×2 Array{Int64,2}:

4 3

2 1

source

rot180(A, k)

Rotate matrix A 180 degrees an integer k number of times. If k is even, this is equivalent to a copy.

julia> a = [1 2; 3 4]

2×2 Array{Int64,2}:

1 2

3 4

julia> rot180(a,1)

2×2 Array{Int64,2}:

4 3

2 1

julia> rot180(a,2)

2×2 Array{Int64,2}:

1 2

3 4

source

Base.rotl90 – Function.

rotl90(A)

Rotate matrix A left 90 degrees.

julia> a = [1 2; 3 4]

2×2 Array{Int64,2}:

1 2

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/generic.jl#L284-L302
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/arraymath.jl#L167-L183
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/arraymath.jl#L266-L288

50.7. ARRAY FUNCTIONS 631

3 4

julia> rotl90(a)

2×2 Array{Int64,2}:

2 4

1 3

source

rotl90(A, k)

Rotate matrix A left 90 degrees an integer k number of times. If k is zero or a multiple of four, this is equivalent

to a copy.

julia> a = [1 2; 3 4]

2×2 Array{Int64,2}:

1 2

3 4

julia> rotl90(a,1)

2×2 Array{Int64,2}:

2 4

1 3

julia> rotl90(a,2)

2×2 Array{Int64,2}:

4 3

2 1

julia> rotl90(a,3)

2×2 Array{Int64,2}:

3 1

4 2

julia> rotl90(a,4)

2×2 Array{Int64,2}:

1 2

3 4

source

Base.rotr90 – Function.

rotr90(A)

Rotate matrix A right 90 degrees.

julia> a = [1 2; 3 4]

2×2 Array{Int64,2}:

1 2

3 4

julia> rotr90(a)

2×2 Array{Int64,2}:

3 1

4 2

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/arraymath.jl#L114-L130
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/arraymath.jl#L193-L225

632 CHAPTER 50. ARRAYS

source

rotr90(A, k)

Rotate matrix A right 90 degrees an integer k number of times. If k is zero or a multiple of four, this is equivalent

to a copy.

julia> a = [1 2; 3 4]

2×2 Array{Int64,2}:

1 2

3 4

julia> rotr90(a,1)

2×2 Array{Int64,2}:

3 1

4 2

julia> rotr90(a,2)

2×2 Array{Int64,2}:

4 3

2 1

julia> rotr90(a,3)

2×2 Array{Int64,2}:

2 4

1 3

julia> rotr90(a,4)

2×2 Array{Int64,2}:

1 2

3 4

source

Base.reducedim – Function.

reducedim(f, A, region[, v0])

Reduce 2-argument function f along dimensions of A. region is a vector specifying the dimensions to reduce,

and v0 is the initial value to use in the reductions. For +, *, max and min the v0 argument is optional.

The associativity of the reduction is implementation-dependent; if you need a particular associativity, e.g. left-

to-right, you should write your own loop. See documentation for reduce.

julia> a = reshape(collect(1:16), (4,4))

4×4 Array{Int64,2}:

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

julia> reducedim(max, a, 2)

4×1 Array{Int64,2}:

13

14

15

16

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/arraymath.jl#L141-L157
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/arraymath.jl#L232-L264

50.7. ARRAY FUNCTIONS 633

julia> reducedim(max, a, 1)

1×4 Array{Int64,2}:

4 8 12 16

source

Base.mapreducedim – Function.

mapreducedim(f, op, A, region[, v0])

Evaluates to the same as reducedim(op, map(f, A), region, f(v0)), but is generally faster because the

intermediate array is avoided.

julia> a = reshape(collect(1:16), (4,4))

4×4 Array{Int64,2}:

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

julia> mapreducedim(isodd, *, a, 1)

1×4 Array{Bool,2}:

false false false false

julia> mapreducedim(isodd, |, a, 1, true)

1×4 Array{Bool,2}:

true true true true

source

Base.mapslices – Function.

mapslices(f, A, dims)

Transform the given dimensions of arrayA using functionf. f is called on each slice ofA of the formA[...,:,...,:,...].

dims is an integer vector specifying where the colons go in this expression. The results are concatenated along

the remaining dimensions. For example, if dims is [1,2] and A is 4-dimensional, f is called on A[:,:,i,j] for

all i and j.

julia> a = reshape(collect(1:16),(2,2,2,2))

2×2×2×2 Array{Int64,4}:

[:, :, 1, 1] =

1 3

2 4

[:, :, 2, 1] =

5 7

6 8

[:, :, 1, 2] =

9 11

10 12

[:, :, 2, 2] =

13 15

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reducedim.jl#L244-L274
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reducedim.jl#L216-L238

634 CHAPTER 50. ARRAYS

14 16

julia> mapslices(sum, a, [1,2])

1×1×2×2 Array{Int64,4}:

[:, :, 1, 1] =

10

[:, :, 2, 1] =

26

[:, :, 1, 2] =

42

[:, :, 2, 2] =

58

source

Base.sum_kbn – Function.

sum_kbn(A)

Returns the sum of all elements of A, using the Kahan-Babuska-Neumaier compensated summation algorithm for

additional accuracy.

source

50.8 Combinatorics

Base.Random.randperm – Function.

randperm([rng=GLOBAL_RNG,] n::Integer)

Construct a random permutation of length n. The optional rng argument specifies a random number generator

(see Random Numbers). To randomly permute a arbitrary vector, see shuffle or shuffle!.

source

Base.invperm – Function.

invperm(v)

Return the inverse permutation of v. If B = A[v], then A == B[invperm(v)].

julia> v = [2; 4; 3; 1];

julia> invperm(v)

4-element Array{Int64,1}:

4

1

3

2

julia> A = ['a','b','c','d'];

julia> B = A[v]

4-element Array{Char,1}:

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/abstractarray.jl#L1739-L1781
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/reduce.jl#L366-L371
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/random.jl#L1501-L1508

50.8. COMBINATORICS 635

'b'

'd'

'c'

'a'

julia> B[invperm(v)]

4-element Array{Char,1}:

'a'

'b'

'c'

'd'

source

Base.isperm – Function.

isperm(v) -> Bool

Returns true if v is a valid permutation.

julia> isperm([1; 2])

true

julia> isperm([1; 3])

false

source

Base.permute! – Method.

permute!(v, p)

Permute vector v in-place, according to permutation p. No checking is done to verify that p is a permutation.

To return a new permutation, use v[p]. Note that this is generally faster than permute!(v,p) for large vectors.

See also ipermute!

julia> A = [1, 1, 3, 4];

julia> perm = [2, 4, 3, 1];

julia> permute!(A, perm);

julia> A

4-element Array{Int64,1}:

1

4

3

1

source

Base.ipermute! – Function.

ipermute!(v, p)

Like permute!, but the inverse of the given permutation is applied.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/combinatorics.jl#L179-L211
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/combinatorics.jl#L59-L71
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/combinatorics.jl#L106-L131

636 CHAPTER 50. ARRAYS

julia> A = [1, 1, 3, 4];

julia> perm = [2, 4, 3, 1];

julia> ipermute!(A, perm);

julia> A

4-element Array{Int64,1}:

4

1

3

1

source

Base.Random.randcycle – Function.

randcycle([rng=GLOBAL_RNG,] n::Integer)

Construct a random cyclic permutation of length n. The optional rng argument specifies a random number gen-

erator, see Random Numbers.

source

Base.Random.shuffle – Function.

shuffle([rng=GLOBAL_RNG,] v)

Return a randomly permuted copy of v. The optional rng argument specifies a random number generator (see

Random Numbers). To permute v in-place, see shuffle!. To obtain randomly permuted indices, see randperm.

source

Base.Random.shuffle! – Function.

shuffle!([rng=GLOBAL_RNG,] v)

In-place version of shuffle: randomly permute the array v in-place, optionally supplying the random-number

generator rng.

source

Base.reverse – Function.

reverse(v [, start=1 [, stop=length(v)]])

Return a copy of v reversed from start to stop.

source

Base.reverseind – Function.

reverseind(v, i)

Given an index i in reverse(v), return the corresponding index in v so that v[reverseind(v,i)] == re-

verse(v)[i]. (This can be nontrivial in the case where v is a Unicode string.)

source

Base.reverse! – Function.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/combinatorics.jl#L157-L176
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/random.jl#L1529-L1534
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/random.jl#L1490-L1497
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/random.jl#L1470-L1475
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L663-L667
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L2168-L2174

50.9. BITARRAYS 637

reverse!(v [, start=1 [, stop=length(v)]]) -> v

In-place version of reverse.

source

50.9 BitArrays

BitArrays are space-efficient ”packed” boolean arrays, which store one bit per boolean value. They can be used

similarly to Array{Bool} arrays (which store one byte per boolean value), and can be converted to/from the latter

via Array(bitarray) and BitArray(array), respectively.

Base.flipbits! – Function.

flipbits!(B::BitArray{N}) -> BitArray{N}

Performs a bitwise not operation on B. See ~.

julia> A = trues(2,2)

2×2 BitArray{2}:

true true

true true

julia> flipbits!(A)

2×2 BitArray{2}:

false false

false false

source

Base.rol! – Function.

rol!(dest::BitVector, src::BitVector, i::Integer) -> BitVector

Performs a left rotation operation on src and puts the result into dest. i controls how far to rotate the bits.

source

rol!(B::BitVector, i::Integer) -> BitVector

Performs a left rotation operation in-place on B. i controls how far to rotate the bits.

source

Base.rol – Function.

rol(B::BitVector, i::Integer) -> BitVector

Performs a left rotation operation, returning a new BitVector. i controls how far to rotate the bits. See also

rol!.

julia> A = BitArray([true, true, false, false, true])

5-element BitArray{1}:

true

true

false

false

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L670-L674
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/bitarray.jl#L1143-L1159
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/bitarray.jl#L1467-L1472
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/bitarray.jl#L1485-L1490

638 CHAPTER 50. ARRAYS

true

julia> rol(A,1)

5-element BitArray{1}:

true

false

false

true

true

julia> rol(A,2)

5-element BitArray{1}:

false

false

true

true

true

julia> rol(A,5)

5-element BitArray{1}:

true

true

false

false

true

source

Base.ror! – Function.

ror!(dest::BitVector, src::BitVector, i::Integer) -> BitVector

Performs a right rotation operation on src and puts the result into dest. i controls how far to rotate the bits.

source

ror!(B::BitVector, i::Integer) -> BitVector

Performs a right rotation operation in-place on B. i controls how far to rotate the bits.

source

Base.ror – Function.

ror(B::BitVector, i::Integer) -> BitVector

Performs a right rotation operation on B, returning a new BitVector. i controls how far to rotate the bits. See

also ror!.

julia> A = BitArray([true, true, false, false, true])

5-element BitArray{1}:

true

true

false

false

true

julia> ror(A,1)

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/bitarray.jl#L1493-L1533
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/bitarray.jl#L1536-L1541
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/bitarray.jl#L1554-L1559

50.10. SPARSE VECTORS AND MATRICES 639

5-element BitArray{1}:

true

true

true

false

false

julia> ror(A,2)

5-element BitArray{1}:

false

true

true

true

false

julia> ror(A,5)

5-element BitArray{1}:

true

true

false

false

true

source

50.10 Sparse Vectors and Matrices

Sparse vectors and matrices largely support the same set of operations as their dense counterparts. The following

functions are specific to sparse arrays.

Base.SparseArrays.sparse – Function.

sparse(A)

Convert an AbstractMatrix A into a sparse matrix.

julia> A = eye(3)

3×3 Array{Float64,2}:

1.0 0.0 0.0

0.0 1.0 0.0

0.0 0.0 1.0

julia> sparse(A)

3×3 SparseMatrixCSC{Float64,Int64} with 3 stored entries:

[1, 1] = 1.0

[2, 2] = 1.0

[3, 3] = 1.0

source

sparse(I, J, V,[m, n, combine])

Create a sparsematrix S of dimensions m x n such that S[I[k], J[k]] = V[k]. The combine function is used

to combine duplicates. If m and n are not specified, they are set to maximum(I) and maximum(J) respectively.

If the combine function is not supplied, combine defaults to + unless the elements of V are Booleans in which

case combine defaults to |. All elements of I must satisfy 1 <= I[k] <= m, and all elements of J must satisfy

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/bitarray.jl#L1562-L1602
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/sparse/sparsematrix.jl#L376-L394

640 CHAPTER 50. ARRAYS

1 <= J[k] <= n. Numerical zeros in (I, J, V) are retained as structural nonzeros; to drop numerical zeros, use

dropzeros!.

For additional documentation and an expert driver, see Base.SparseArrays.sparse!.

julia> Is = [1; 2; 3];

julia> Js = [1; 2; 3];

julia> Vs = [1; 2; 3];

julia> sparse(Is, Js, Vs)

3×3 SparseMatrixCSC{Int64,Int64} with 3 stored entries:

[1, 1] = 1

[2, 2] = 2

[3, 3] = 3

source

Base.SparseArrays.sparsevec – Function.

sparsevec(I, V, [m, combine])

Create a sparse vector S of length m such that S[I[k]] = V[k]. Duplicates are combined using the combine

function, which defaults to + if no combine argument is provided, unless the elements of V are Booleans in which

case combine defaults to |.

julia> II = [1, 3, 3, 5]; V = [0.1, 0.2, 0.3, 0.2];

julia> sparsevec(II, V)

5-element SparseVector{Float64,Int64} with 3 stored entries:

[1] = 0.1

[3] = 0.5

[5] = 0.2

julia> sparsevec(II, V, 8, -)

8-element SparseVector{Float64,Int64} with 3 stored entries:

[1] = 0.1

[3] = -0.1

[5] = 0.2

julia> sparsevec([1, 3, 1, 2, 2], [true, true, false, false, false])

3-element SparseVector{Bool,Int64} with 3 stored entries:

[1] = true

[2] = false

[3] = true

source

sparsevec(d::Dict, [m])

Create a sparse vector of length mwhere the nonzero indices are keys from the dictionary, and the nonzero values

are the values from the dictionary.

julia> sparsevec(Dict(1 => 3, 2 => 2))

2-element SparseVector{Int64,Int64} with 2 stored entries:

[1] = 3

[2] = 2

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/sparse/sparsematrix.jl#L448-L474
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/sparse/sparsevector.jl#L98-L127

50.10. SPARSE VECTORS AND MATRICES 641

source

sparsevec(A)

Convert a vector A into a sparse vector of length m.

julia> sparsevec([1.0, 2.0, 0.0, 0.0, 3.0, 0.0])

6-element SparseVector{Float64,Int64} with 3 stored entries:

[1] = 1.0

[2] = 2.0

[5] = 3.0

source

Base.SparseArrays.issparse – Function.

issparse(S)

Returns true if S is sparse, and false otherwise.

source

Base.full – Function.

full(S)

Convert a sparse matrix or vector S into a dense matrix or vector.

julia> A = speye(3)

3×3 SparseMatrixCSC{Float64,Int64} with 3 stored entries:

[1, 1] = 1.0

[2, 2] = 1.0

[3, 3] = 1.0

julia> full(A)

3×3 Array{Float64,2}:

1.0 0.0 0.0

0.0 1.0 0.0

0.0 0.0 1.0

source

Base.SparseArrays.nnz – Function.

nnz(A)

Returns the number of stored (filled) elements in a sparse array.

julia> A = speye(3)

3×3 SparseMatrixCSC{Float64,Int64} with 3 stored entries:

[1, 1] = 1.0

[2, 2] = 1.0

[3, 3] = 1.0

julia> nnz(A)

3

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/sparse/sparsevector.jl#L173-L185
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/sparse/sparsevector.jl#L303-L315
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/sparse/abstractsparse.jl#L8-L12
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/sparse/sparsematrix.jl#L346-L364
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/sparse/sparsematrix.jl#L30-L45

642 CHAPTER 50. ARRAYS

Base.SparseArrays.spzeros – Function.

spzeros([type,]m[,n])

Create a sparse vector of length m or sparse matrix of size m x n. This sparse array will not contain any nonzero

values. No storage will be allocated for nonzero values during construction. The type defaults to Float64 if not

specified.

julia> spzeros(3, 3)

3×3 SparseMatrixCSC{Float64,Int64} with 0 stored entries

julia> spzeros(Float32, 4)

4-element SparseVector{Float32,Int64} with 0 stored entries

source

Base.SparseArrays.spones – Function.

spones(S)

Create a sparse array with the same structure as that of S, but with every nonzero element having the value 1.0.

julia> A = sparse([1,2,3,4],[2,4,3,1],[5.,4.,3.,2.])

4×4 SparseMatrixCSC{Float64,Int64} with 4 stored entries:

[4, 1] = 2.0

[1, 2] = 5.0

[3, 3] = 3.0

[2, 4] = 4.0

julia> spones(A)

4×4 SparseMatrixCSC{Float64,Int64} with 4 stored entries:

[4, 1] = 1.0

[1, 2] = 1.0

[3, 3] = 1.0

[2, 4] = 1.0

Note the difference from speye.

source

Base.SparseArrays.speye – Method.

speye([type,]m[,n])

Create a sparse identity matrix of size m x m. When n is supplied, create a sparse identity matrix of size m x n.

The type defaults to Float64 if not specified.

sparse(I, m, n) is equivalent to speye(Int, m, n), and sparse(α*I, m, n) can be used to efficiently

create a sparse multiple α of the identity matrix.

source

Base.SparseArrays.speye – Method.

speye(S)

Create a sparse identity matrix with the same size as S.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/sparse/sparsematrix.jl#L1358-L1373
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/sparse/sparsematrix.jl#L1331-L1354
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/sparse/sparsematrix.jl#L1415-L1425

50.10. SPARSE VECTORS AND MATRICES 643

julia> A = sparse([1,2,3,4],[2,4,3,1],[5.,4.,3.,2.])

4×4 SparseMatrixCSC{Float64,Int64} with 4 stored entries:

[4, 1] = 2.0

[1, 2] = 5.0

[3, 3] = 3.0

[2, 4] = 4.0

julia> speye(A)

4×4 SparseMatrixCSC{Float64,Int64} with 4 stored entries:

[1, 1] = 1.0

[2, 2] = 1.0

[3, 3] = 1.0

[4, 4] = 1.0

Note the difference from spones.

source

speye([type,]m[,n])

Create a sparse identity matrix of size m x m. When n is supplied, create a sparse identity matrix of size m x n.

The type defaults to Float64 if not specified.

sparse(I, m, n) is equivalent to speye(Int, m, n), and sparse(α*I, m, n) can be used to efficiently

create a sparse multiple α of the identity matrix.

source

Base.SparseArrays.spdiagm – Function.

spdiagm(B, d[, m, n])

Construct a sparse diagonal matrix. B is a tuple of vectors containing the diagonals and d is a tuple containing the

positions of the diagonals. In the case the input contains only one diagonal, B can be a vector (instead of a tuple)

and d can be the diagonal position (instead of a tuple), defaulting to 0 (diagonal). Optionally, m and n specify the

size of the resulting sparse matrix.

julia> spdiagm(([1,2,3,4],[4,3,2,1]),(-1,1))

5×5 SparseMatrixCSC{Int64,Int64} with 8 stored entries:

[2, 1] = 1

[1, 2] = 4

[3, 2] = 2

[2, 3] = 3

[4, 3] = 3

[3, 4] = 2

[5, 4] = 4

[4, 5] = 1

source

Base.SparseArrays.sprand – Function.

sprand([rng],[type],m,[n],p::AbstractFloat,[rfn])

Create a random length m sparse vector or m by n sparse matrix, in which the probability of any element being

nonzero is independently given by p (and hence themean density of nonzeros is also exactly p). Nonzero values are

sampled from the distribution specified by rfn and have the type type. The uniform distribution is used in case

rfn is not specified. The optional rng argument specifies a random number generator, see Random Numbers.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/sparse/sparsematrix.jl#L1389-L1411
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/sparse/sparsematrix.jl#L1415-L1425
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/sparse/sparsematrix.jl#L3193-L3214

644 CHAPTER 50. ARRAYS

julia> rng = MersenneTwister(1234);

julia> sprand(rng, Bool, 2, 2, 0.5)

2×2 SparseMatrixCSC{Bool,Int64} with 2 stored entries:

[1, 1] = true

[2, 1] = true

julia> sprand(rng, Float64, 3, 0.75)

3-element SparseVector{Float64,Int64} with 1 stored entry:

[3] = 0.298614

source

Base.SparseArrays.sprandn – Function.

sprandn([rng], m[,n],p::AbstractFloat)

Create a random sparse vector of length m or sparse matrix of size m by nwith the specified (independent) proba-

bility p of any entry being nonzero, where nonzero values are sampled from the normal distribution. The optional

rng argument specifies a random number generator, see Random Numbers.

julia> rng = MersenneTwister(1234);

julia> sprandn(rng, 2, 2, 0.75)

2×2 SparseMatrixCSC{Float64,Int64} with 3 stored entries:

[1, 1] = 0.532813

[2, 1] = -0.271735

[2, 2] = 0.502334

source

Base.SparseArrays.nonzeros – Function.

nonzeros(A)

Return a vector of the structural nonzero values in sparse array A. This includes zeros that are explicitly stored in

the sparse array. The returned vector points directly to the internal nonzero storage of A, and any modifications

to the returned vector will mutate A as well. See rowvals and nzrange.

julia> A = speye(3)

3×3 SparseMatrixCSC{Float64,Int64} with 3 stored entries:

[1, 1] = 1.0

[2, 2] = 1.0

[3, 3] = 1.0

julia> nonzeros(A)

3-element Array{Float64,1}:

1.0

1.0

1.0

source

Base.SparseArrays.rowvals – Function.

rowvals(A::SparseMatrixCSC)

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/sparse/sparsematrix.jl#L1256-L1278
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/sparse/sparsematrix.jl#L1309-L1326
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/sparse/sparsematrix.jl#L50-L72

50.10. SPARSE VECTORS AND MATRICES 645

Return a vector of the row indices of A. Any modifications to the returned vector will mutate A as well. Providing

access to how the row indices are stored internally can be useful in conjunction with iterating over structural

nonzero values. See also nonzeros and nzrange.

julia> A = speye(3)

3×3 SparseMatrixCSC{Float64,Int64} with 3 stored entries:

[1, 1] = 1.0

[2, 2] = 1.0

[3, 3] = 1.0

julia> rowvals(A)

3-element Array{Int64,1}:

1

2

3

source

Base.SparseArrays.nzrange – Function.

nzrange(A::SparseMatrixCSC, col::Integer)

Return the range of indices to the structural nonzero values of a sparsematrix column. In conjunctionwith nonze-

ros and rowvals, this allows for convenient iterating over a sparse matrix :

A = sparse(I,J,V)

rows = rowvals(A)

vals = nonzeros(A)

m, n = size(A)

for i = 1:n

for j in nzrange(A, i)

row = rows[j]

val = vals[j]

perform sparse wizardry...

end

end

source

Base.SparseArrays.dropzeros! – Method.

dropzeros!(A::SparseMatrixCSC, trim::Bool = true)

Removes stored numerical zeros from A, optionally trimming resulting excess space from A.rowval and A.nzval

when trim is true.

For an out-of-place version, see dropzeros. For algorithmic information, see fkeep!.

source

Base.SparseArrays.dropzeros – Method.

dropzeros(A::SparseMatrixCSC, trim::Bool = true)

Generates a copy of A and removes stored numerical zeros from that copy, optionally trimming excess space from

the result’s rowval and nzval arrays when trim is true.

For an in-place version and algorithmic information, see dropzeros!.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/sparse/sparsematrix.jl#L75-L96
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/sparse/sparsematrix.jl#L99-L117
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/sparse/sparsematrix.jl#L1139-L1147
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/sparse/sparsematrix.jl#L1149-L1156

646 CHAPTER 50. ARRAYS

Base.SparseArrays.dropzeros! – Method.

dropzeros!(x::SparseVector, trim::Bool = true)

Removes stored numerical zeros from x, optionally trimming resulting excess space from x.nzind and x.nzval

when trim is true.

For an out-of-place version, see dropzeros. For algorithmic information, see fkeep!.

source

Base.SparseArrays.dropzeros – Method.

dropzeros(x::SparseVector, trim::Bool = true)

Generates a copy of x and removes numerical zeros from that copy, optionally trimming excess space from the

result’s nzind and nzval arrays when trim is true.

For an in-place version and algorithmic information, see dropzeros!.

source

Base.SparseArrays.permute – Function.

permute{Tv,Ti}(A::SparseMatrixCSC{Tv,Ti}, p::AbstractVector{<:Integer},

q::AbstractVector{<:Integer})

Bilaterally permute A, returning PAQ (A[p,q]). Column-permutation q’s length must match A’s column count

(length(q) == A.n). Row-permutation p’s length must match A’s row count (length(p) == A.m).

For expert drivers and additional information, see permute!.

source

Base.permute! – Method.

permute!{Tv,Ti}(X::SparseMatrixCSC{Tv,Ti}, A::SparseMatrixCSC{Tv,Ti},

p::AbstractVector{<:Integer}, q::AbstractVector{<:Integer}[, C::SparseMatrixCSC{Tv,Ti}])

Bilaterally permute A, storing result PAQ (A[p,q]) in X. Stores intermediate result (AQ)^T (transpose(A[:,q]))

in optional argument C if present. Requires that none of X, A, and, if present, C alias each other; to store result

PAQ back into A, use the following method lacking X:

permute!{Tv,Ti}(A::SparseMatrixCSC{Tv,Ti}, p::AbstractVector{<:Integer},

q::AbstractVector{<:Integer}[, C::SparseMatrixCSC{Tv,Ti}[, workcolptr::Vector{Ti}]])

X’s dimensions must match those of A (X.m == A.m and X.n == A.n), and X must have enough storage to

accommodate all allocated entries in A (length(X.rowval) >= nnz(A) and length(X.nzval) >= nnz(A)).

Column-permutation q’s lengthmust match A’s column count (length(q) == A.n). Row-permutation p’s length

must match A’s row count (length(p) == A.m).

C’s dimensions must match those of transpose(A) (C.m == A.n and C.n == A.m), and C must have enough

storage to accommodate all allocated entries in A (length(C.rowval) >= nnz(A) and length(C.nzval) >=

nnz(A)).

For additional (algorithmic) information, and for versions of these methods that forgo argument checking, see

(unexported) parent methods unchecked_noalias_permute! and unchecked_aliasing_permute!.

See also: permute

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/sparse/sparsevector.jl#L1914-L1922
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/sparse/sparsevector.jl#L1924-L1931
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/sparse/sparsematrix.jl#L1048-L1057
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/sparse/sparsematrix.jl#L978-L1005

Chapter 51

Tasks and Parallel Computing

51.1 Tasks

Core.Task – Type.

Task(func)

Create a Task (i.e. coroutine) to execute the given function (which must be callable with no arguments). The task

exits when this function returns.

julia> a() = det(rand(1000, 1000));

julia> b = Task(a);

In this example, b is a runnable Task that hasn’t started yet.

source

Base.current_task – Function.

current_task()

Get the currently running Task.

source

Base.istaskdone – Function.

istaskdone(t::Task) -> Bool

Determine whether a task has exited.

julia> a2() = det(rand(1000, 1000));

julia> b = Task(a2);

julia> istaskdone(b)

false

julia> schedule(b);

julia> yield();

647

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1393-L1406
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/task.jl#L83-L87

648 CHAPTER 51. TASKS AND PARALLEL COMPUTING

julia> istaskdone(b)

true

source

Base.istaskstarted – Function.

istaskstarted(t::Task) -> Bool

Determine whether a task has started executing.

julia> a3() = det(rand(1000, 1000));

julia> b = Task(a3);

julia> istaskstarted(b)

false

source

Base.yield – Function.

yield()

Switch to the scheduler to allow another scheduled task to run. A task that calls this function is still runnable, and

will be restarted immediately if there are no other runnable tasks.

source

yield(t::Task, arg = nothing)

A fast, unfair-scheduling version of schedule(t, arg); yield()which immediately yields to t before calling

the scheduler.

source

Base.yieldto – Function.

yieldto(t::Task, arg = nothing)

Switch to the given task. The first time a task is switched to, the task’s function is called with no arguments.

On subsequent switches, arg is returned from the task’s last call to yieldto. This is a low-level call that only

switches tasks, not considering states or scheduling in any way. Its use is discouraged.

source

Base.task_local_storage – Method.

task_local_storage(key)

Look up the value of a key in the current task’s task-local storage.

source

Base.task_local_storage – Method.

task_local_storage(key, value)

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/task.jl#L90-L110
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/task.jl#L113-L126
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/event.jl#L143-L149
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/event.jl#L152-L157
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/event.jl#L165-L172
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/task.jl#L141-L145

51.1. TASKS 649

Assign a value to a key in the current task’s task-local storage.

source

Base.task_local_storage – Method.

task_local_storage(body, key, value)

Call the function body with a modified task-local storage, in which value is assigned to key; the previous value

of key, or lack thereof, is restored afterwards. Useful for emulating dynamic scoping.

source

Base.Condition – Type.

Condition()

Create an edge-triggered event source that tasks canwait for. Tasks that call wait on a Condition are suspended

and queued. Tasks are woken upwhen notify is later called on the Condition. Edge triggering means that only

tasks waiting at the time notify is called can be woken up. For level-triggered notifications, you must keep extra

state to keep track of whether a notification has happened. The Channel type does this, and so can be used for

level-triggered events.

source

Base.notify – Function.

notify(condition, val=nothing; all=true, error=false)

Wake up tasks waiting for a condition, passing them val. If all is true (the default), all waiting tasks are woken,

otherwise only one is. If error is true, the passed value is raised as an exception in the woken tasks.

Returns the count of tasks woken up. Returns 0 if no tasks are waiting on condition.

source

Base.schedule – Function.

schedule(t::Task, [val]; error=false)

Add a Task to the scheduler’s queue. This causes the task to run constantly when the system is otherwise idle,

unless the task performs a blocking operation such as wait.

If a second argument val is provided, it will be passed to the task (via the return value of yieldto) when it runs

again. If error is true, the value is raised as an exception in the woken task.

julia> a5() = det(rand(1000, 1000));

julia> b = Task(a5);

julia> istaskstarted(b)

false

julia> schedule(b);

julia> yield();

julia> istaskstarted(b)

true

julia> istaskdone(b)

true

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/task.jl#L148-L152
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/task.jl#L155-L161
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/event.jl#L5-L14
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/event.jl#L34-L42

650 CHAPTER 51. TASKS AND PARALLEL COMPUTING

source

Base.@schedule – Macro.

@schedule

Wrap an expression in a Task and add it to the local machine’s scheduler queue. Similar to @async except that

an enclosing @sync does NOTwait for tasks started with an @schedule.

source

Base.@task – Macro.

@task

Wrap an expression in a Task without executing it, and return the Task. This only creates a task, and does not

run it.

julia> a1() = det(rand(1000, 1000));

julia> b = @task a1();

julia> istaskstarted(b)

false

julia> schedule(b);

julia> yield();

julia> istaskdone(b)

true

source

Base.sleep – Function.

sleep(seconds)

Block the current task for a specified number of seconds. The minimum sleep time is 1 millisecond or input of

0.001.

source

Base.Channel – Type.

Channel{T}(sz::Int)

Constructs a Channel with an internal buffer that can hold a maximum of sz objects of type T. put! calls on a

full channel block until an object is removed with take!.

Channel(0) constructs an unbuffered channel. put! blocks until a matching take! is called. And vice-versa.

Other constructors:

• Channel(Inf): equivalent to Channel{Any}(typemax(Int))

• Channel(sz): equivalent to Channel{Any}(sz)

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/event.jl#L91-L119
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/event.jl#L65-L71
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/task.jl#L57-L78
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/event.jl#L403-L408
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/channels.jl#L5-L19

51.1. TASKS 651

Base.put! – Method.

put!(c::Channel, v)

Appends an item v to the channel c. Blocks if the channel is full.

For unbuffered channels, blocks until a take! is performed by a different task.

source

Base.take! – Method.

take!(c::Channel)

Removes and returns a value from a Channel. Blocks until data is available.

For unbuffered channels, blocks until a put! is performed by a different task.

source

Base.isready – Method.

isready(c::Channel)

Determine whether a Channel has a value stored to it. Returns immediately, does not block.

For unbuffered channels returns true if there are tasks waiting on a put!.

source

Base.fetch – Method.

fetch(c::Channel)

Waits for and gets the first available item from the channel. Does not remove the item. fetch is unsupported on

an unbuffered (0-size) channel.

source

Base.close – Method.

close(c::Channel)

Closes a channel. An exception is thrown by:

• put! on a closed channel.

• take! and fetch on an empty, closed channel.

source

Base.bind – Method.

bind(chnl::Channel, task::Task)

Associates the lifetime of chnlwith a task. Channel chnl is automatically closed when the task terminates. Any

uncaught exception in the task is propagated to all waiters on chnl.

The chnl object can be explicitly closed independent of task termination. Terminating tasks have no effect on

already closed Channel objects.

When a channel is bound to multiple tasks, the first task to terminate will close the channel. When multiple

channels are bound to the same task, termination of the task will close all of the bound channels.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/channels.jl#L252-L259
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/channels.jl#L309-L316
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/channels.jl#L348-L356
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/channels.jl#L295-L300
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/channels.jl#L135-L142

652 CHAPTER 51. TASKS AND PARALLEL COMPUTING

julia> c = Channel(0);

julia> task = @schedule foreach(i->put!(c, i), 1:4);

julia> bind(c,task);

julia> for i in c

@show i

end;

i = 1

i = 2

i = 3

i = 4

julia> isopen(c)

false

julia> c = Channel(0);

julia> task = @schedule (put!(c,1);error("foo"));

julia> bind(c,task);

julia> take!(c)

1

julia> put!(c,1);

ERROR: foo

Stacktrace:

[1] check_channel_state(::Channel{Any}) at ./channels.jl:131

[2] put!(::Channel{Any}, ::Int64) at ./channels.jl:261

source

Base.asyncmap – Function.

asyncmap(f, c...; ntasks=0, batch_size=nothing)

Uses multiple concurrent tasks to map f over a collection (or multiple equal length collections). For multiple

collection arguments, f is applied elementwise.

ntasks specifies the number of tasks to run concurrently. Depending on the length of the collections, if ntasks

is unspecified, up to 100 tasks will be used for concurrent mapping.

ntasks can also be specified as a zero-arg function. In this case, the number of tasks to run in parallel is checked

before processing every element and a new task started if the value of ntasks_func() is less than the current

number of tasks.

If batch_size is specified, the collection is processed in batch mode. f must then be a function that must

accept a Vector of argument tuples and must return a vector of results. The input vector will have a length of

batch_size or less.

The following examples highlight execution in different tasks by returning the object_id of the tasks in which

the mapping function is executed.

First, with ntasks undefined, each element is processed in a different task.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/channels.jl#L151-L200

51.1. TASKS 653

julia> tskoid() = object_id(current_task());

julia> asyncmap(x->tskoid(), 1:5)

5-element Array{UInt64,1}:

0x6e15e66c75c75853

0x440f8819a1baa682

0x9fb3eeadd0c83985

0xebd3e35fe90d4050

0x29efc93edce2b961

julia> length(unique(asyncmap(x->tskoid(), 1:5)))

5

With ntasks=2 all elements are processed in 2 tasks.

julia> asyncmap(x->tskoid(), 1:5; ntasks=2)

5-element Array{UInt64,1}:

0x027ab1680df7ae94

0xa23d2f80cd7cf157

0x027ab1680df7ae94

0xa23d2f80cd7cf157

0x027ab1680df7ae94

julia> length(unique(asyncmap(x->tskoid(), 1:5; ntasks=2)))

2

With batch_size defined, the mapping function needs to be changed to accept an array of argument tuples and

return an array of results. map is used in the modified mapping function to achieve this.

julia> batch_func(input) = map(x->string("args_tuple: ", x, ", element_val: ", x[1], ", task:

", tskoid()), input)

batch_func (generic function with 1 method)

julia> asyncmap(batch_func, 1:5; ntasks=2, batch_size=2)

5-element Array{String,1}:

"args_tuple: (1,), element_val: 1, task: 9118321258196414413"

"args_tuple: (2,), element_val: 2, task: 4904288162898683522"

"args_tuple: (3,), element_val: 3, task: 9118321258196414413"

"args_tuple: (4,), element_val: 4, task: 4904288162898683522"

"args_tuple: (5,), element_val: 5, task: 9118321258196414413"

Note

Currently, all tasks in Julia are executed in a single OS thread co-operatively. Consequently, ayncmap

is beneficial only when the mapping function involves any I/O - disk, network, remote worker invoca-

tion, etc.

source

Base.asyncmap! – Function.

asyncmap!(f, results, c...; ntasks=0, batch_size=nothing)

Like asyncmap(), but stores output in results rather than returning a collection.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/asyncmap.jl#L5-L79
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/asyncmap.jl#L415-L420

654 CHAPTER 51. TASKS AND PARALLEL COMPUTING

51.2 General Parallel Computing Support

Base.Distributed.addprocs – Function.

addprocs(manager::ClusterManager; kwargs...) -> List of process identifiers

Launches worker processes via the specified cluster manager.

For example, Beowulf clusters are supported via a custom cluster manager implemented in the package Clus-

terManagers.jl.

The number of seconds a newly launched worker waits for connection establishment from the master can be

specified via variable JULIA_WORKER_TIMEOUT in the worker process’s environment. Relevant only when using

TCP/IP as transport.

source

addprocs(machines; tunnel=false, sshflags=``, max_parallel=10, kwargs...) -> List of process

identifiers

Add processes on remote machines via SSH. Requires julia to be installed in the same location on each node,

or to be available via a shared file system.

machines is a vector of machine specifications. Workers are started for each specification.

A machine specification is either a string machine_spec or a tuple - (machine_spec, count).

machine_spec is a string of the form [user@]host[:port] [bind_addr[:port]]. user defaults to current

user, port to the standard ssh port. If [bind_addr[:port]] is specified, other workers will connect to this

worker at the specified bind_addr and port.

count is the number of workers to be launched on the specified host. If specified as :auto it will launch as many

workers as the number of cores on the specific host.

Keyword arguments:

• tunnel: if true then SSH tunnelingwill be used to connect to theworker from the master process. Default

is false.

• sshflags: specifies additional ssh options, e.g. sshflags=`-i /home/foo/bar.pem‘

• max_parallel: specifies the maximum number of workers connected to in parallel at a host. Defaults to

10.

• dir: specifies the working directory on the workers. Defaults to the host’s current directory (as found by

pwd())

• enable_threaded_blas: if true then BLAS will run on multiple threads in added processes. Default is

false.

• exename: name of the julia executable. Defaults to "$JULIA_HOME/julia" or "$JULIA_HOME/julia-

debug" as the case may be.

• exeflags: additional flags passed to the worker processes.

• topology: Specifies how the workers connect to each other. Sending a message between unconnected

workers results in an error.

– topology=:all_to_all: All processes are connected to each other. The default.

– topology=:master_slave: Only the driver process, i.e. pid 1 connects to theworkers. Theworkers

do not connect to each other.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/distributed/cluster.jl#L302-L313

51.2. GENERAL PARALLEL COMPUTING SUPPORT 655

– topology=:custom: The launch method of the cluster manager specifies the connection topology

via fields ident and connect_idents in WorkerConfig. A worker with a cluster manager identity

identwill connect to all workers specified in connect_idents.

Environment variables :

If the master process fails to establish a connection with a newly launched worker within 60.0 seconds, the

worker treats it as a fatal situation and terminates. This timeout can be controlled via environment variable JU-

LIA_WORKER_TIMEOUT. The value of JULIA_WORKER_TIMEOUT on the master process specifies the number of

seconds a newly launched worker waits for connection establishment.

source

addprocs(; kwargs...) -> List of process identifiers

Equivalent to addprocs(Sys.CPU_CORES; kwargs...)

Note that workers do not run a .juliarc.jl startup script, nor do they synchronize their global state (such as

global variables, new method definitions, and loaded modules) with any of the other running processes.

source

addprocs(np::Integer; restrict=true, kwargs...) -> List of process identifiers

Launches workers using the in-built LocalManager which only launches workers on the local host. This can

be used to take advantage of multiple cores. addprocs(4) will add 4 processes on the local machine. If re-

strict is true, binding is restricted to 127.0.0.1. Keyword args dir, exename, exeflags, topology, and

enable_threaded_blas have the same effect as documented for addprocs(machines).

source

Base.Distributed.nprocs – Function.

nprocs()

Get the number of available processes.

source

Base.Distributed.nworkers – Function.

nworkers()

Get the number of available worker processes. This is one less than nprocs(). Equal to nprocs() if nprocs()

== 1.

source

Base.Distributed.procs – Method.

procs()

Returns a list of all process identifiers.

source

Base.Distributed.procs – Method.

procs(pid::Integer)

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/distributed/managers.jl#L51-L111
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/distributed/managers.jl#L289-L297
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/distributed/managers.jl#L300-L308
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/distributed/cluster.jl#L649-L653
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/distributed/cluster.jl#L669-L674
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/distributed/cluster.jl#L680-L684

656 CHAPTER 51. TASKS AND PARALLEL COMPUTING

Returns a list of all process identifiers on the same physical node. Specifically all workers bound to the same

ip-address as pid are returned.

source

Base.Distributed.workers – Function.

workers()

Returns a list of all worker process identifiers.

source

Base.Distributed.rmprocs – Function.

rmprocs(pids...; waitfor=typemax(Int))

Removes the specified workers. Note that only process 1 can add or remove workers.

Argument waitfor specifies how long to wait for the workers to shut down: - If unspecified, rmprocs will wait

until all requested pids are removed. - An ErrorException is raised if all workers cannot be terminated before

the requested waitfor seconds. - With a waitfor value of 0, the call returns immediately with the workers

scheduled for removal in a different task. The scheduled Task object is returned. The user should call wait on

the task before invoking any other parallel calls.

source

Base.Distributed.interrupt – Function.

interrupt(pids::Integer...)

Interrupt the current executing task on the specified workers. This is equivalent to pressing Ctrl-C on the local

machine. If no arguments are given, all workers are interrupted.

source

interrupt(pids::AbstractVector=workers())

Interrupt the current executing task on the specified workers. This is equivalent to pressing Ctrl-C on the local

machine. If no arguments are given, all workers are interrupted.

source

Base.Distributed.myid – Function.

myid()

Get the id of the current process.

source

Base.Distributed.pmap – Function.

pmap([::AbstractWorkerPool], f, c...; distributed=true, batch_size=1, on_error=nothing,

retry_delays=[]), retry_check=nothing) -> collection

Transform collection c by applying f to each element using available workers and tasks.

For multiple collection arguments, apply f elementwise.

Note that fmust bemade available to all worker processes; see CodeAvailability and Loading Packages for details.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/distributed/cluster.jl#L711-L716
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/distributed/cluster.jl#L731-L735
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/distributed/cluster.jl#L751-L765
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/distributed/cluster.jl#L936-L941
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/distributed/cluster.jl#L944-L949
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/distributed/cluster.jl#L642-L646

51.2. GENERAL PARALLEL COMPUTING SUPPORT 657

If a worker pool is not specified, all available workers, i.e., the default worker pool is used.

By default, pmap distributes the computation over all specified workers. To use only the local process and dis-

tribute over tasks, specify distributed=false. This is equivalent to using asyncmap. For example, pmap(f,

c; distributed=false) is equivalent to asyncmap(f,c; ntasks=()->nworkers())

pmap can also use a mix of processes and tasks via the batch_size argument. For batch sizes greater than 1, the

collection is processed in multiple batches, each of length batch_size or less. A batch is sent as a single request

to a free worker, where a local asyncmap processes elements from the batch using multiple concurrent tasks.

Any error stops pmap from processing the remainder of the collection. To override this behavior you can specify an

error handling function via argument on_errorwhich takes in a single argument, i.e., the exception. The function

can stop the processing by rethrowing the error, or, to continue, return any value which is then returned inline

with the results to the caller.

Consider the following two examples. The first one returns the exception object inline, the second a 0 in place of

any exception:

julia> pmap(x->iseven(x) ? error("foo") : x, 1:4; on_error=identity)

4-element Array{Any,1}:

1

ErrorException("foo")

3

ErrorException("foo")

julia> pmap(x->iseven(x) ? error("foo") : x, 1:4; on_error=ex->0)

4-element Array{Int64,1}:

1

0

3

0

Errors can also be handled by retrying failed computations. Keyword argumentsretry_delays andretry_check

are passed through to retry as keyword arguments delays and check respectively. If batching is specified, and

an entire batch fails, all items in the batch are retried.

Note that if both on_error and retry_delays are specified, the on_error hook is called before retrying. If

on_error does not throw (or rethrow) an exception, the element will not be retried.

Example: On errors, retry f on an element a maximum of 3 times without any delay between retries.

pmap(f, c; retry_delays = zeros(3))

Example: Retry f only if the exception is not of type InexactError, with exponentially increasing delays up to

3 times. Return a NaN in place for all InexactError occurrences.

pmap(f, c; on_error = e->(isa(e, InexactError) ? NaN : rethrow(e)), retry_delays =

ExponentialBackOff(n = 3))↪→

source

Base.Distributed.RemoteException – Type.

RemoteException(captured)

Exceptions on remote computations are captured and rethrown locally. A RemoteException wraps the pid of

the worker and a captured exception. A CapturedException captures the remote exception and a serializable

form of the call stack when the exception was raised.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/distributed/pmap.jl#L32-L98
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/distributed/process_messages.jl#L24-L30

658 CHAPTER 51. TASKS AND PARALLEL COMPUTING

Base.Distributed.Future – Type.

Future(pid::Integer=myid())

Create a Future on process pid. The default pid is the current process.

source

Base.Distributed.RemoteChannel – Method.

RemoteChannel(pid::Integer=myid())

Make a reference to a Channel{Any}(1) on process pid. The default pid is the current process.

source

Base.Distributed.RemoteChannel – Method.

RemoteChannel(f::Function, pid::Integer=myid())

Create references to remote channels of a specific size and type. f() is a function that when executed on pid

must return an implementation of an AbstractChannel.

For example, RemoteChannel(()->Channel{Int}(10), pid), will return a reference to a channel of type

Int and size 10 on pid.

The default pid is the current process.

source

Base.wait – Function.

wait([x])

Block the current task until some event occurs, depending on the type of the argument:

• RemoteChannel : Wait for a value to become available on the specified remote channel.

• Future : Wait for a value to become available for the specified future.

• Channel: Wait for a value to be appended to the channel.

• Condition: Wait for notify on a condition.

• Process: Wait for a process or process chain to exit. The exitcode field of a process can be used to

determine success or failure.

• Task: Wait for a Task to finish, returning its result value. If the task fails with an exception, the exception

is propagated (re-thrown in the task that called wait).

• RawFD: Wait for changes on a file descriptor (see poll_fd for keyword arguments and return code)

If no argument is passed, the task blocks for an undefined period. A task can only be restarted by an explicit call

to schedule or yieldto.

Often wait is called within a while loop to ensure a waited-for condition is met before proceeding.

source

Base.fetch – Method.

fetch(x)

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/distributed/remotecall.jl#L72-L77
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/distributed/remotecall.jl#L80-L85
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/distributed/remotecall.jl#L88-L98
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1298-L1320

51.2. GENERAL PARALLEL COMPUTING SUPPORT 659

Waits and fetches a value from x depending on the type of x:

• Future: Wait for and get the value of a Future. The fetched value is cached locally. Further calls to fetch

on the same reference return the cached value. If the remote value is an exception, throws a RemoteEx-

ceptionwhich captures the remote exception and backtrace.

• RemoteChannel: Wait for and get the value of a remote reference. Exceptions raised are same as for a

Future .

Does not remove the item fetched.

source

Base.Distributed.remotecall – Method.

remotecall(f, id::Integer, args...; kwargs...) -> Future

Call a function f asynchronously on the given arguments on the specified process. Returns a Future. Keyword

arguments, if any, are passed through to f.

source

Base.Distributed.remotecall_wait – Method.

remotecall_wait(f, id::Integer, args...; kwargs...)

Perform a faster wait(remotecall(...)) in one message on the Worker specified by worker id id. Keyword

arguments, if any, are passed through to f.

See also wait and remotecall.

source

Base.Distributed.remotecall_fetch – Method.

remotecall_fetch(f, id::Integer, args...; kwargs...)

Perform fetch(remotecall(...)) in one message. Keyword arguments, if any, are passed through to f. Any

remote exceptions are captured in a RemoteException and thrown.

See also fetch and remotecall.

source

Base.Distributed.remote_do – Method.

remote_do(f, id::Integer, args...; kwargs...) -> nothing

Executes f on worker id asynchronously. Unlike remotecall, it does not store the result of computation, nor is

there a way to wait for its completion.

A successful invocation indicates that the request has been accepted for execution on the remote node.

While consecutive remotecalls to the same worker are serialized in the order they are invoked, the order of

executions on the remote worker is undetermined. For example, remote_do(f1, 2); remotecall(f2, 2);

remote_do(f3, 2)will serialize the call to f1, followed by f2 and f3 in that order. However, it is not guaranteed

that f1 is executed before f3 on worker 2.

Any exceptions thrown by f are printed to STDERR on the remote worker.

Keyword arguments, if any, are passed through to f.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/distributed/remotecall.jl#L474-L486
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/distributed/remotecall.jl#L329-L335
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/distributed/remotecall.jl#L386-L393
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/distributed/remotecall.jl#L357-L366
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/distributed/remotecall.jl#L412-L431

660 CHAPTER 51. TASKS AND PARALLEL COMPUTING

Base.put! – Method.

put!(rr::RemoteChannel, args...)

Store a set of values to the RemoteChannel. If the channel is full, blocks until space is available. Returns its first

argument.

source

Base.put! – Method.

put!(rr::Future, v)

Store a value to a Future rr. Futures are write-once remote references. A put! on an already set Future

throws an Exception. All asynchronous remote calls return Futures and set the value to the return value of the

call upon completion.

source

Base.take! – Method.

take!(rr::RemoteChannel, args...)

Fetch value(s) from a RemoteChannel rr, removing the value(s) in the processs.

source

Base.isready – Method.

isready(rr::RemoteChannel, args...)

Determine whether a RemoteChannel has a value stored to it. Note that this function can cause race conditions,

since by the time you receive its result it may no longer be true. However, it can be safely used on a Future since

they are assigned only once.

source

Base.isready – Method.

isready(rr::Future)

Determine whether a Future has a value stored to it.

If the argument Future is owned by a different node, this call will block towait for the answer. It is recommended

to wait for rr in a separate task instead or to use a local Channel as a proxy:

c = Channel(1)

@async put!(c, remotecall_fetch(long_computation, p))

isready(c) # will not block

source

Base.Distributed.WorkerPool – Type.

WorkerPool(workers::Vector{Int})

Create a WorkerPool from a vector of worker ids.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/distributed/remotecall.jl#L519-L525
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/distributed/remotecall.jl#L491-L499
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/distributed/remotecall.jl#L537-L542
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/distributed/remotecall.jl#L187-L194
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/distributed/remotecall.jl#L163-L175
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/distributed/workerpool.jl#L32-L36

51.2. GENERAL PARALLEL COMPUTING SUPPORT 661

Base.Distributed.CachingPool – Type.

CachingPool(workers::Vector{Int})

An implementation of an AbstractWorkerPool. remote, remotecall_fetch, pmap (and other remote calls

which execute functions remotely) benefit from caching the serialized/deserialized functions on theworker nodes,

especially closures (which may capture large amounts of data).

The remote cache is maintained for the lifetime of the returned CachingPool object. To clear the cache earlier,

use clear!(pool).

For global variables, only the bindings are captured in a closure, not the data. let blocks can be used to capture

global data.

For example:

const foo=rand(10^8);

wp=CachingPool(workers())

let foo=foo

pmap(wp, i->sum(foo)+i, 1:100);

end

The above would transfer foo only once to each worker.

source

Base.Distributed.default_worker_pool – Function.

default_worker_pool()

WorkerPool containing idle workers() - used by remote(f) and pmap (by default).

source

Base.Distributed.clear! – Method.

clear!(pool::CachingPool) -> pool

Removes all cached functions from all participating workers.

source

Base.Distributed.remote – Function.

remote([::AbstractWorkerPool], f) -> Function

Returns an anonymous function that executes function f on an available worker using remotecall_fetch.

source

Base.Distributed.remotecall – Method.

remotecall(f, pool::AbstractWorkerPool, args...; kwargs...) -> Future

WorkerPool variant of remotecall(f, pid,). Waits for and takes a free worker from pool and per-

forms a remotecall on it.

source

Base.Distributed.remotecall_wait – Method.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/distributed/workerpool.jl#L233-L259
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/distributed/workerpool.jl#L190-L194
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/distributed/workerpool.jl#L268-L272
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/distributed/workerpool.jl#L208-L213
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/distributed/workerpool.jl#L155-L159

662 CHAPTER 51. TASKS AND PARALLEL COMPUTING

remotecall_wait(f, pool::AbstractWorkerPool, args...; kwargs...) -> Future

WorkerPool variant of remotecall_wait(f, pid,). Waits for and takes a free worker from pool and

performs a remotecall_wait on it.

source

Base.Distributed.remotecall_fetch – Method.

remotecall_fetch(f, pool::AbstractWorkerPool, args...; kwargs...) -> result

WorkerPool variant of remotecall_fetch(f, pid,). Waits for and takes a freeworker from pool and

performs a remotecall_fetch on it.

source

Base.Distributed.remote_do – Method.

remote_do(f, pool::AbstractWorkerPool, args...; kwargs...) -> nothing

WorkerPool variant of remote_do(f, pid,). Waits for and takes a freeworker from pool and performs

a remote_do on it.

source

Base.timedwait – Function.

timedwait(testcb::Function, secs::Float64; pollint::Float64=0.1)

Waits until testcb returns true or for secs seconds, whichever is earlier. testcb is polled every pollint

seconds.

source

Base.Distributed.@spawn – Macro.

@spawn

Creates a closure around an expression and runs it on an automatically-chosen process, returning a Future to

the result.

source

Base.Distributed.@spawnat – Macro.

@spawnat

Accepts two arguments, p and an expression. A closure is created around the expression and run asynchronously

on process p. Returns a Future to the result.

source

Base.Distributed.@fetch – Macro.

@fetch

Equivalent to fetch(@spawn expr). See fetch and @spawn.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/distributed/workerpool.jl#L163-L168
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/distributed/workerpool.jl#L172-L177
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/distributed/workerpool.jl#L180-L185
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/task.jl#L340-L345
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1831-L1836
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L531-L536
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/distributed/macros.jl#L29-L34

51.2. GENERAL PARALLEL COMPUTING SUPPORT 663

Base.Distributed.@fetchfrom – Macro.

@fetchfrom

Equivalent to fetch(@spawnat p expr). See fetch and @spawnat.

source

Base.@async – Macro.

@async

Like @schedule, @async wraps an expression in a Task and adds it to the local machine’s scheduler queue.

Additionally it adds the task to the set of items that the nearest enclosing @syncwaits for.

source

Base.@sync – Macro.

@sync

Wait until all dynamically-enclosed uses of @async, @spawn, @spawnat and @parallel are complete. All excep-

tions thrown by enclosed async operations are collected and thrown as a CompositeException.

source

Base.Distributed.@parallel – Macro.

@parallel

A parallel for loop of the form :

@parallel [reducer] for var = range

body

end

The specified range is partitioned and locally executed across all workers. In case an optional reducer function is

specified, @parallel performs local reductions on each worker with a final reduction on the calling process.

Note that without a reducer function, @parallel executes asynchronously, i.e. it spawns independent tasks on

all available workers and returns immediately without waiting for completion. To wait for completion, prefix the

call with @sync, like :

@sync @parallel for var = range

body

end

source

Base.Distributed.@everywhere – Macro.

@everywhere expr

Execute an expression under Main everywhere. Equivalent to calling eval(Main, expr) on all processes. Errors

on any of the processes are collected into a CompositeException and thrown. For example :

@everywhere bar=1

will define Main.bar on all processes.

Unlike @spawn and @spawnat, @everywhere does not capture any local variables. Prefixing @everywherewith

@eval allows us to broadcast local variables using interpolation :

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/distributed/macros.jl#L40-L45
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/task.jl#L327-L333
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/task.jl#L292-L298
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/distributed/macros.jl#L180-L200

664 CHAPTER 51. TASKS AND PARALLEL COMPUTING

foo = 1

@eval @everywhere bar=$foo

The expression is evaluated under Main irrespective of where @everywhere is called from. For example :

module FooBar

foo() = @everywhere bar()=myid()

end

FooBar.foo()

will result in Main.bar being defined on all processes and not FooBar.bar.

source

Base.Distributed.clear! – Method.

clear!(syms, pids=workers(); mod=Main)

Clears global bindings in modules by initializing them to nothing. syms should be of type Symbol or a collection

of Symbols . pids and mod identify the processes and the module in which global variables are to be reinitialized.

Only those names found to be defined under mod are cleared.

An exception is raised if a global constant is requested to be cleared.

source

Base.Distributed.remoteref_id – Function.

Base.remoteref_id(r::AbstractRemoteRef) -> RRID

Futures and RemoteChannels are identified by fields:

• where - refers to the node where the underlying object/storage referred to by the reference actually exists.

• whence - refers to the node the remote reference was created from. Note that this is different from the

nodewhere the underlying object referred to actually exists. For example calling RemoteChannel(2) from

the master process would result in a where value of 2 and a whence value of 1.

• id is unique across all references created from the worker specified by whence.

Taken together, whence and id uniquely identify a reference across all workers.

Base.remoteref_id is a low-level API which returns a Base.RRID object that wraps whence and id values of

a remote reference.

source

Base.Distributed.channel_from_id – Function.

Base.channel_from_id(id) -> c

A low-level API which returns the backing AbstractChannel for an id returned by remoteref_id. The call is

valid only on the node where the backing channel exists.

source

Base.Distributed.worker_id_from_socket – Function.

Base.worker_id_from_socket(s) -> pid

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/distributed/macros.jl#L67-L95
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/distributed/clusterserialize.jl#L227-L236
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/distributed/remotecall.jl#L109-L129
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/distributed/remotecall.jl#L132-L138

51.3. SHARED ARRAYS 665

A low-level API which given a IO connection or a Worker, returns the pid of the worker it is connected to. This

is useful when writing custom serialize methods for a type, which optimizes the data written out depending

on the receiving process id.

source

Base.Distributed.cluster_cookie – Method.

Base.cluster_cookie() -> cookie

Returns the cluster cookie.

source

Base.Distributed.cluster_cookie – Method.

Base.cluster_cookie(cookie) -> cookie

Sets the passed cookie as the cluster cookie, then returns it.

source

51.3 Shared Arrays

Base.SharedArray – Type.

SharedArray{T}(dims::NTuple; init=false, pids=Int[])

SharedArray{T,N}(...)

Construct a SharedArray of a bits type T and size dims across the processes specified by pids - all of which

have to be on the same host. If N is specified by calling SharedArray{T,N}(dims), then N must match the

length of dims.

If pids is left unspecified, the shared array will be mapped across all processes on the current host, including the

master. But, localindexes and indexpidswill only refer toworker processes. This facilitateswork distribution

code to use workers for actual computation with the master process acting as a driver.

If an init function of the type initfn(S::SharedArray) is specified, it is called on all the participating work-

ers.

The shared array is valid as long as a reference to the SharedArray object exists on the node which created the

mapping.

SharedArray{T}(filename::AbstractString, dims::NTuple, [offset=0]; mode=nothing, init=false,

pids=Int[])

SharedArray{T,N}(...)

Construct a SharedArray backed by the file filename, with element type T (must be a bits type) and size dims,

across the processes specified by pids - all of which have to be on the same host. This file is mmapped into the

host memory, with the following consequences:

• The array data must be represented in binary format (e.g., an ASCII format like CSV cannot be supported)

• Any changes you make to the array values (e.g., A[3] = 0) will also change the values on disk

If pids is left unspecified, the shared array will be mapped across all processes on the current host, including the

master. But, localindexes and indexpidswill only refer toworker processes. This facilitateswork distribution

code to use workers for actual computation with the master process acting as a driver.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/distributed/cluster.jl#L842-L849
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/distributed/cluster.jl#L569-L573
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/distributed/cluster.jl#L576-L580

666 CHAPTER 51. TASKS AND PARALLEL COMPUTING

mode must be one of "r", "r+", "w+", or "a+", and defaults to "r+" if the file specified by filename already

exists, or "w+" if not. If an init function of the type initfn(S::SharedArray) is specified, it is called on all

the participating workers. You cannot specify an init function if the file is not writable.

offset allows you to skip the specified number of bytes at the beginning of the file.

source

Base.Distributed.procs – Method.

procs(S::SharedArray)

Get the vector of processes mapping the shared array.

source

Base.sdata – Function.

sdata(S::SharedArray)

Returns the actual Array object backing S.

source

Base.indexpids – Function.

indexpids(S::SharedArray)

Returns the current worker’s index in the list of workers mapping the SharedArray (i.e. in the same list returned

by procs(S)), or 0 if the SharedArray is not mapped locally.

source

Base.localindexes – Function.

localindexes(S::SharedArray)

Returns a range describing the ”default” indexes to be handled by the current process. This range should be

interpreted in the sense of linear indexing, i.e., as a sub-range of 1:length(S). In multi-process contexts, returns

an empty range in the parent process (or any process for which indexpids returns 0).

It’s worth emphasizing that localindexes exists purely as a convenience, and you can partition work on the

array among workers any way you wish. For a SharedArray, all indexes should be equally fast for each worker

process.

source

51.4 Multi-Threading

This experimental interface supports Julia’s multi-threading capabilities. Types and functions described here might

(and likely will) change in the future.

Base.Threads.threadid – Function.

Threads.threadid()

Get the ID number of the current thread of execution. The master thread has ID 1.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/sharedarray.jl#L37-L86
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/sharedarray.jl#L288-L292
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/sharedarray.jl#L304-L308
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/sharedarray.jl#L295-L301
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/sharedarray.jl#L312-L325
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/threadingconstructs.jl#L5-L9

51.4. MULTI-THREADING 667

Base.Threads.nthreads – Function.

Threads.nthreads()

Get the number of threads available to the Julia process. This is the inclusive upper bound on threadid().

source

Base.Threads.@threads – Macro.

Threads.@threads

Amacro to parallelize a for-loop to run with multiple threads. This spawns nthreads() number of threads, splits

the iteration space amongst them, and iterates in parallel. A barrier is placed at the end of the loop which waits

for all the threads to finish execution, and the loop returns.

source

Base.Threads.Atomic – Type.

Threads.Atomic{T}

Holds a reference to an object of type T, ensuring that it is only accessed atomically, i.e. in a thread-safe manner.

Only certain ”simple” types can be used atomically, namely the primitive integer and float-point types. These are

Int8...Int128, UInt8...UInt128, and Float16...Float64.

New atomic objects can be created from a non-atomic values; if none is specified, the atomic object is initialized

with zero.

Atomic objects can be accessed using the [] notation:

julia> x = Threads.Atomic{Int}(3)

Base.Threads.Atomic{Int64}(3)

julia> x[] = 1

1

julia> x[]

1

Atomic operations use an atomic_ prefix, such as atomic_add!, atomic_xchg!, etc.

source

Base.Threads.atomic_cas! – Function.

Threads.atomic_cas!{T}(x::Atomic{T}, cmp::T, newval::T)

Atomically compare-and-set x

Atomically compares the value in xwith cmp. If equal, write newval to x. Otherwise, leaves x unmodified. Returns

the old value in x. By comparing the returned value to cmp (via ===) one knows whether xwas modified and now

holds the new value newval.

For further details, see LLVM’s cmpxchg instruction.

This function can be used to implement transactional semantics. Before the transaction, one records the value in

x. After the transaction, the new value is stored only if x has not been modified in the mean time.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/threadingconstructs.jl#L13-L18
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/threadingconstructs.jl#L79-L86
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/atomics.jl#L35-L63

668 CHAPTER 51. TASKS AND PARALLEL COMPUTING

julia> x = Threads.Atomic{Int}(3)

Base.Threads.Atomic{Int64}(3)

julia> Threads.atomic_cas!(x, 4, 2);

julia> x

Base.Threads.Atomic{Int64}(3)

julia> Threads.atomic_cas!(x, 3, 2);

julia> x

Base.Threads.Atomic{Int64}(2)

source

Base.Threads.atomic_xchg! – Function.

Threads.atomic_xchg!{T}(x::Atomic{T}, newval::T)

Atomically exchange the value in x

Atomically exchanges the value in xwith newval. Returns the old value.

For further details, see LLVM’s atomicrmw xchg instruction.

julia> x = Threads.Atomic{Int}(3)

Base.Threads.Atomic{Int64}(3)

julia> Threads.atomic_xchg!(x, 2)

3

julia> x[]

2

source

Base.Threads.atomic_add! – Function.

Threads.atomic_add!{T}(x::Atomic{T}, val::T)

Atomically add val to x

Performs x[] += val atomically. Returns the old value.

For further details, see LLVM’s atomicrmw add instruction.

julia> x = Threads.Atomic{Int}(3)

Base.Threads.Atomic{Int64}(3)

julia> Threads.atomic_add!(x, 2)

3

julia> x[]

5

source

Base.Threads.atomic_sub! – Function.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/atomics.jl#L72-L103
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/atomics.jl#L106-L126
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/atomics.jl#L129-L148

51.4. MULTI-THREADING 669

Threads.atomic_sub!{T}(x::Atomic{T}, val::T)

Atomically subtract val from x

Performs x[] -= val atomically. Returns the old value.

For further details, see LLVM’s atomicrmw sub instruction.

julia> x = Threads.Atomic{Int}(3)

Base.Threads.Atomic{Int64}(3)

julia> Threads.atomic_sub!(x, 2)

3

julia> x[]

1

source

Base.Threads.atomic_and! – Function.

Threads.atomic_and!{T}(x::Atomic{T}, val::T)

Atomically bitwise-and xwith val

Performs x[] &= val atomically. Returns the old value.

For further details, see LLVM’s atomicrmw and instruction.

julia> x = Threads.Atomic{Int}(3)

Base.Threads.Atomic{Int64}(3)

julia> Threads.atomic_and!(x, 2)

3

julia> x[]

2

source

Base.Threads.atomic_nand! – Function.

Threads.atomic_nand!{T}(x::Atomic{T}, val::T)

Atomically bitwise-nand (not-and) xwith val

Performs x[] = ~(x[] & val) atomically. Returns the old value.

For further details, see LLVM’s atomicrmw nand instruction.

julia> x = Threads.Atomic{Int}(3)

Base.Threads.Atomic{Int64}(3)

julia> Threads.atomic_nand!(x, 2)

3

julia> x[]

-3

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/atomics.jl#L151-L170
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/atomics.jl#L173-L192

670 CHAPTER 51. TASKS AND PARALLEL COMPUTING

source

Base.Threads.atomic_or! – Function.

Threads.atomic_or!{T}(x::Atomic{T}, val::T)

Atomically bitwise-or xwith val

Performs x[] |= val atomically. Returns the old value.

For further details, see LLVM’s atomicrmw or instruction.

julia> x = Threads.Atomic{Int}(5)

Base.Threads.Atomic{Int64}(5)

julia> Threads.atomic_or!(x, 7)

5

julia> x[]

7

source

Base.Threads.atomic_xor! – Function.

Threads.atomic_xor!{T}(x::Atomic{T}, val::T)

Atomically bitwise-xor (exclusive-or) xwith val

Performs x[] $= val atomically. Returns the old value.

For further details, see LLVM’s atomicrmw xor instruction.

julia> x = Threads.Atomic{Int}(5)

Base.Threads.Atomic{Int64}(5)

julia> Threads.atomic_xor!(x, 7)

5

julia> x[]

2

source

Base.Threads.atomic_max! – Function.

Threads.atomic_max!{T}(x::Atomic{T}, val::T)

Atomically store the maximum of x and val in x

Performs x[] = max(x[], val) atomically. Returns the old value.

For further details, see LLVM’s atomicrmw max instruction.

julia> x = Threads.Atomic{Int}(5)

Base.Threads.Atomic{Int64}(5)

julia> Threads.atomic_max!(x, 7)

5

julia> x[]

7

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/atomics.jl#L195-L214
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/atomics.jl#L217-L236
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/atomics.jl#L239-L258

51.5. CCALL USING ATHREADPOOL (EXPERIMENTAL) 671

source

Base.Threads.atomic_min! – Function.

Threads.atomic_min!{T}(x::Atomic{T}, val::T)

Atomically store the minimum of x and val in x

Performs x[] = min(x[], val) atomically. Returns the old value.

For further details, see LLVM’s atomicrmw min instruction.

julia> x = Threads.Atomic{Int}(7)

Base.Threads.Atomic{Int64}(7)

julia> Threads.atomic_min!(x, 5)

7

julia> x[]

5

source

Base.Threads.atomic_fence – Function.

Threads.atomic_fence()

Insert a sequential-consistency memory fence

Inserts a memory fence with sequentially-consistent ordering semantics. There are algorithms where this is

needed, i.e. where an acquire/release ordering is insufficient.

This is likely a very expensive operation. Given that all other atomic operations in Julia already have acquire/re-

lease semantics, explicit fences should not be necessary in most cases.

For further details, see LLVM’s fence instruction.

source

51.5 ccall using a threadpool (Experimental)

Base.@threadcall – Macro.

@threadcall((cfunc, clib), rettype, (argtypes...), argvals...)

The @threadcall macro is called in the same way as ccall but does the work in a different thread. This is

useful when you want to call a blocking C function without causing the main julia thread to become blocked.

Concurrency is limited by size of the libuv thread pool, which defaults to 4 threads but can be increased by setting

the UV_THREADPOOL_SIZE environment variable and restarting the julia process.

Note that the called function should never call back into Julia.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/atomics.jl#L261-L280
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/atomics.jl#L283-L302
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/atomics.jl#L464-L478
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/threadcall.jl#L17-L28

672 CHAPTER 51. TASKS AND PARALLEL COMPUTING

51.6 Synchronization Primitives

Base.Threads.AbstractLock – Type.

AbstractLock

Abstract supertype describing types that implement the thread-safe synchronization primitives: lock, trylock,

unlock, and islocked

source

Base.lock – Function.

lock(the_lock)

Acquires the lock when it becomes available. If the lock is already locked by a different task/thread, it waits for it

to become available.

Each lock must be matched by an unlock.

source

Base.unlock – Function.

unlock(the_lock)

Releases ownership of the lock.

If this is a recursive lock which has been acquired before, it just decrements an internal counter and returns

immediately.

source

Base.trylock – Function.

trylock(the_lock) -> Success (Boolean)

Acquires the lock if it is available, returningtrue if successful. If the lock is already locked bya different task/thread,

returns false.

Each successful trylock must be matched by an unlock.

source

Base.islocked – Function.

islocked(the_lock) -> Status (Boolean)

Check whether the lock is held by any task/thread. This should not be used for synchronization (see instead

trylock).

source

Base.ReentrantLock – Type.

ReentrantLock()

Creates a reentrant lock for synchronizing Tasks. The same task can acquire the lock as many times as required.

Each lock must be matched with an unlock.

This lock is NOT threadsafe. See Threads.Mutex for a threadsafe lock.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/locks.jl#L13-L19
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/lock.jl#L54-L62
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/lock.jl#L78-L85
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/lock.jl#L31-L40
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/lock.jl#L21-L26
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/lock.jl#L4-L12

51.6. SYNCHRONIZATION PRIMITIVES 673

Base.Threads.Mutex – Type.

Mutex()

These are standard system mutexes for locking critical sections of logic.

On Windows, this is a critical section object, on pthreads, this is a pthread_mutex_t.

See also SpinLock for a lighter-weight lock.

source

Base.Threads.SpinLock – Type.

SpinLock()

Creates a non-reentrant lock. Recursive usewill result in a deadlock. Each lockmust bematchedwith an unlock.

Test-and-test-and-set spin locks are quickest up to about 30ish contending threads. If you have more contention

than that, perhaps a lock is the wrong way to synchronize.

See also RecursiveSpinLock for a version that permits recursion.

See also Mutex for a more efficient version on one core or if the lock may be held for a considerable length of

time.

source

Base.Threads.RecursiveSpinLock – Type.

RecursiveSpinLock()

Creates a reentrant lock. The same thread can acquire the lock as many times as required. Each lock must be

matched with an unlock.

See also SpinLock for a slightly faster version.

See also Mutex for a more efficient version on one core or if the lock may be held for a considerable length of

time.

source

Base.Semaphore – Type.

Semaphore(sem_size)

Creates a counting semaphore that allows at most sem_size acquires to be in use at any time. Each acquire must

be mached with a release.

This construct is NOT threadsafe.

source

Base.acquire – Function.

acquire(s::Semaphore)

Wait for one of the sem_size permits to be available, blocking until one can be acquired.

source

Base.release – Function.

release(s::Semaphore)

Return one permit to the pool, possibly allowing another task to acquire it and resume execution.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/locks.jl#L172-L181
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/locks.jl#L35-L49
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/locks.jl#L95-L105
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/lock.jl#L118-L126
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/lock.jl#L134-L139
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/lock.jl#L151-L157

674 CHAPTER 51. TASKS AND PARALLEL COMPUTING

51.7 Cluster Manager Interface

This interface provides a mechanism to launch and manage Julia workers on different cluster environments. There

are two types of managers present in Base: LocalManager, for launching additional workers on the same host, and

SSHManager, for launching on remote hosts via ssh. TCP/IP sockets are used to connect and transport messages

between processes. It is possible for Cluster Managers to provide a different transport.

Base.Distributed.launch – Function.

launch(manager::ClusterManager, params::Dict, launched::Array, launch_ntfy::Condition)

Implemented by cluster managers. For every Julia worker launched by this function, it should append a Worker-

Config entry to launched and notify launch_ntfy. The function MUST exit once all workers, requested by

manager have been launched. params is a dictionary of all keyword arguments addprocswas called with.

source

Base.Distributed.manage – Function.

manage(manager::ClusterManager, id::Integer, config::WorkerConfig. op::Symbol)

Implemented by cluster managers. It is called on the master process, during a worker’s lifetime, with appropriate

op values:

• with :register/:deregisterwhen a worker is added / removed from the Julia worker pool.

• with :interrupt when interrupt(workers) is called. The ClusterManager should signal the appro-

priate worker with an interrupt signal.

• with :finalize for cleanup purposes.

source

Base.kill – Method.

kill(manager::ClusterManager, pid::Int, config::WorkerConfig)

Implemented by cluster managers. It is called on the master process, by rmprocs. It should cause the remote

worker specified by pid to exit. Base.kill(manager::ClusterManager.....) executes a remote exit()

on pid.

source

Base.Distributed.init_worker – Function.

init_worker(cookie::AbstractString, manager::ClusterManager=DefaultClusterManager())

Called by cluster managers implementing custom transports. It initializes a newly launched process as a worker.

Command line argument --worker has the effect of initializing a process as a worker using TCP/IP sockets for

transport. cookie is a cluster_cookie.

source

Base.connect – Method.

connect(manager::ClusterManager, pid::Int, config::WorkerConfig) -> (instrm::IO, outstrm::IO)

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/distributed/managers.jl#L342-L349
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/distributed/managers.jl#L352-L362
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/distributed/managers.jl#L509-L517
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/distributed/cluster.jl#L265-L272

51.7. CLUSTER MANAGER INTERFACE 675

Implemented by cluster managers using custom transports. It should establish a logical connection toworkerwith

id pid, specified by config and return a pair of IO objects. Messages from pid to current process will be read off

instrm, while messages to be sent to pidwill bewritten to outstrm. The custom transport implementationmust

ensure that messages are delivered and received completely and in order. Base.connect(manager::Cluster-

Manager.....) sets up TCP/IP socket connections in-between workers.

source

Base.Distributed.process_messages – Function.

Base.process_messages(r_stream::IO, w_stream::IO, incoming::Bool=true)

Called by cluster managers using custom transports. It should be called when the custom transport implementa-

tion receives the first message from a remote worker. The custom transport must manage a logical connection

to the remote worker and provide two IO objects, one for incoming messages and the other for messages ad-

dressed to the remote worker. If incoming is true, the remote peer initiated the connection. Whichever of the

pair initiates the connection sends the cluster cookie and its Julia version number to perform the authentication

handshake.

See also cluster_cookie.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/distributed/managers.jl#L372-L382
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/distributed/process_messages.jl#L121-L134

Chapter 52

Linear Algebra

52.1 Standard Functions

Linear algebra functions in Julia are largely implemented by calling functions from LAPACK. Sparse factorizations call

functions from SuiteSparse.

Base.:* – Method.

*(x, y...)

Multiplication operator. x*y*z*... calls this function with all arguments, i.e. *(x, y, z, ...).

source

Base.:\ – Method.

\(x, y)

Left division operator: multiplication of y by the inverse of x on the left. Gives floating-point results for integer

arguments.

julia> 3 \ 6

2.0

julia> inv(3) * 6

2.0

julia> A = [1 2; 3 4]; x = [5, 6];

julia> A \ x

2-element Array{Float64,1}:

-4.0

4.5

julia> inv(A) * x

2-element Array{Float64,1}:

-4.0

4.5

source

Base.LinAlg.dot – Function.

677

http://www.netlib.org/lapack/
http://faculty.cse.tamu.edu/davis/suitesparse.html
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1668-L1674
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/operators.jl#L431-L456

678 CHAPTER 52. LINEAR ALGEBRA

dot(n, X, incx, Y, incy)

Dot product of two vectors consisting of n elements of array X with stride incx and n elements of array Y with

stride incy.

Example:

julia> dot(10, ones(10), 1, ones(20), 2)

10.0

source

Base.LinAlg.vecdot – Function.

vecdot(x, y)

For any iterable containers x and y (including arrays of any dimension) of numbers (or any element type for which

dot is defined), compute the Euclidean dot product (the sum of dot(x[i],y[i])) as if they were vectors.

Examples

julia> vecdot(1:5, 2:6)

70

julia> x = fill(2., (5,5));

julia> y = fill(3., (5,5));

julia> vecdot(x, y)

150.0

source

Base.LinAlg.cross – Function.

cross(x, y)

×(x,y)

Compute the cross product of two 3-vectors.

Example

julia> a = [0;1;0]

3-element Array{Int64,1}:

0

1

0

julia> b = [0;0;1]

3-element Array{Int64,1}:

0

0

1

julia> cross(a,b)

3-element Array{Int64,1}:

1

0

0

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/blas.jl#L213-L224
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/generic.jl#L624-L643

52.1. STANDARD FUNCTIONS 679

source

Base.LinAlg.factorize – Function.

factorize(A)

Compute a convenient factorization of A, based upon the type of the input matrix. factorize checks A to see

if it is symmetric/triangular/etc. if A is passed as a generic matrix. factorize checks every element of A to

verify/rule out each property. It will short-circuit as soon as it can rule out symmetry/triangular structure. The

return value can be reused for efficient solving of multiple systems. For example: A=factorize(A); x=A\b;

y=A\C.

Properties of A type of factorization

Positive-definite Cholesky (see cholfact)

Dense Symmetric/Hermitian Bunch-Kaufman (see bkfact)

Sparse Symmetric/Hermitian LDLt (see ldltfact)

Triangular Triangular

Diagonal Diagonal

Bidiagonal Bidiagonal

Tridiagonal LU (see lufact)

Symmetric real tridiagonal LDLt (see ldltfact)

General square LU (see lufact)

General non-square QR (see qrfact)

Iffactorize is called on aHermitian positive-definitematrix, for instance, thenfactorizewill return aCholesky

factorization.

Example

julia> A = Array(Bidiagonal(ones(5, 5), true))

5×5 Array{Float64,2}:

1.0 1.0 0.0 0.0 0.0

0.0 1.0 1.0 0.0 0.0

0.0 0.0 1.0 1.0 0.0

0.0 0.0 0.0 1.0 1.0

0.0 0.0 0.0 0.0 1.0

julia> factorize(A) # factorize will check to see that A is already factorized

5×5 Bidiagonal{Float64}:

1.0 1.0

1.0 1.0

1.0 1.0

1.0 1.0

1.0

This returns a 5×5 Bidiagonal{Float64}, which can now be passed to other linear algebra functions (e.g.

eigensolvers) which will use specialized methods for Bidiagonal types.

source

Base.LinAlg.Diagonal – Type.

Diagonal(A::AbstractMatrix)

Constructs a matrix from the diagonal of A.

Example

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/generic.jl#L88-L115
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/dense.jl#L664-L711

680 CHAPTER 52. LINEAR ALGEBRA

julia> A = [1 2 3; 4 5 6; 7 8 9]

3×3 Array{Int64,2}:

1 2 3

4 5 6

7 8 9

julia> Diagonal(A)

3×3 Diagonal{Int64}:

1

5

9

source

Diagonal(V::AbstractVector)

Constructs a matrix with V as its diagonal.

Example

julia> V = [1; 2]

2-element Array{Int64,1}:

1

2

julia> Diagonal(V)

2×2 Diagonal{Int64}:

1

2

source

Base.LinAlg.Bidiagonal – Type.

Bidiagonal(dv, ev, isupper::Bool)

Constructs an upper (isupper=true) or lower (isupper=false) bidiagonal matrix using the given diagonal (dv)

and off-diagonal (ev) vectors. The result is of type Bidiagonal and provides efficient specialized linear solvers,

but may be converted into a regular matrix with convert(Array, _) (or Array(_) for short). ev’s length must

be one less than the length of dv.

Example

julia> dv = [1; 2; 3; 4]

4-element Array{Int64,1}:

1

2

3

4

julia> ev = [7; 8; 9]

3-element Array{Int64,1}:

7

8

9

julia> Bu = Bidiagonal(dv, ev, true) # ev is on the first superdiagonal

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/diagonal.jl#L8-L28
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/diagonal.jl#L30-L48

52.1. STANDARD FUNCTIONS 681

4×4 Bidiagonal{Int64}:

1 7

2 8

3 9

4

julia> Bl = Bidiagonal(dv, ev, false) # ev is on the first subdiagonal

4×4 Bidiagonal{Int64}:

1

7 2

8 3

9 4

source

Bidiagonal(dv, ev, uplo::Char)

Constructs an upper (uplo='U') or lower (uplo='L') bidiagonal matrix using the given diagonal (dv) and off-

diagonal (ev) vectors. The result is of type Bidiagonal and provides efficient specialized linear solvers, but may

be converted into a regular matrix with convert(Array, _) (or Array(_) for short). ev’s length must be one

less than the length of dv.

Example

julia> dv = [1; 2; 3; 4]

4-element Array{Int64,1}:

1

2

3

4

julia> ev = [7; 8; 9]

3-element Array{Int64,1}:

7

8

9

julia> Bu = Bidiagonal(dv, ev, 'U') #e is on the first superdiagonal

4×4 Bidiagonal{Int64}:

1 7

2 8

3 9

4

julia> Bl = Bidiagonal(dv, ev, 'L') #e is on the first subdiagonal

4×4 Bidiagonal{Int64}:

1

7 2

8 3

9 4

source

Bidiagonal(A, isupper::Bool)

Construct a Bidiagonalmatrix from themain diagonal of A and its first super- (if isupper=true) or sub-diagonal

(if isupper=false).

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/bidiag.jl#L15-L54
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/bidiag.jl#L58-L97

682 CHAPTER 52. LINEAR ALGEBRA

Example

julia> A = [1 1 1 1; 2 2 2 2; 3 3 3 3; 4 4 4 4]

4×4 Array{Int64,2}:

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

julia> Bidiagonal(A, true) #contains the main diagonal and first superdiagonal of A

4×4 Bidiagonal{Int64}:

1 1

2 2

3 3

4

julia> Bidiagonal(A, false) #contains the main diagonal and first subdiagonal of A

4×4 Bidiagonal{Int64}:

1

2 2

3 3

4 4

source

Base.LinAlg.SymTridiagonal – Type.

SymTridiagonal(dv, ev)

Construct a symmetric tridiagonal matrix from the diagonal and first sub/super-diagonal, respectively. The result

is of type SymTridiagonal and provides efficient specialized eigensolvers, but may be converted into a regular

matrix with convert(Array, _) (or Array(_) for short).

Example

julia> dv = [1; 2; 3; 4]

4-element Array{Int64,1}:

1

2

3

4

julia> ev = [7; 8; 9]

3-element Array{Int64,1}:

7

8

9

julia> SymTridiagonal(dv, ev)

4×4 SymTridiagonal{Int64}:

1 7

7 2 8

8 3 9

9 4

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/bidiag.jl#L114-L144
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/tridiag.jl#L17-L48

52.1. STANDARD FUNCTIONS 683

Base.LinAlg.Tridiagonal – Type.

Tridiagonal(dl, d, du)

Construct a tridiagonal matrix from the first subdiagonal, diagonal, and first superdiagonal, respectively. The result

is of type Tridiagonal and provides efficient specialized linear solvers, but may be converted into a regular

matrix with convert(Array, _) (or Array(_) for short). The lengths of dl and du must be one less than the

length of d.

Example

julia> dl = [1; 2; 3]

3-element Array{Int64,1}:

1

2

3

julia> du = [4; 5; 6]

3-element Array{Int64,1}:

4

5

6

julia> d = [7; 8; 9; 0]

4-element Array{Int64,1}:

7

8

9

0

julia> Tridiagonal(dl, d, du)

4×4 Tridiagonal{Int64}:

7 4

1 8 5

2 9 6

3 0

source

Tridiagonal(A)

returns a Tridiagonal array based on (abstract) matrix A, using its first lower diagonal, main diagonal, and first

upper diagonal.

Example

julia> A = [1 2 3 4; 1 2 3 4; 1 2 3 4; 1 2 3 4]

4×4 Array{Int64,2}:

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

julia> Tridiagonal(A)

4×4 Tridiagonal{Int64}:

1 2

1 2 3

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/tridiag.jl#L395-L433

684 CHAPTER 52. LINEAR ALGEBRA

2 3 4

3 4

source

Base.LinAlg.Symmetric – Type.

Symmetric(A, uplo=:U)

Construct a Symmetric matrix from the upper (if uplo = :U) or lower (if uplo = :L) triangle of A.

Example

julia> A = [1 0 2 0 3; 0 4 0 5 0; 6 0 7 0 8; 0 9 0 1 0; 2 0 3 0 4]

5×5 Array{Int64,2}:

1 0 2 0 3

0 4 0 5 0

6 0 7 0 8

0 9 0 1 0

2 0 3 0 4

julia> Supper = Symmetric(A)

5×5 Symmetric{Int64,Array{Int64,2}}:

1 0 2 0 3

0 4 0 5 0

2 0 7 0 8

0 5 0 1 0

3 0 8 0 4

julia> Slower = Symmetric(A, :L)

5×5 Symmetric{Int64,Array{Int64,2}}:

1 0 6 0 2

0 4 0 9 0

6 0 7 0 3

0 9 0 1 0

2 0 3 0 4

Note that Supperwill not be equal to Slower unless A is itself symmetric (e.g. if A == A.').

source

Base.LinAlg.Hermitian – Type.

Hermitian(A, uplo=:U)

Construct a Hermitian matrix from the upper (if uplo = :U) or lower (if uplo = :L) triangle of A.

Example

julia> A = [1 0 2+2im 0 3-3im; 0 4 0 5 0; 6-6im 0 7 0 8+8im; 0 9 0 1 0; 2+2im 0 3-3im 0 4];

julia> Hupper = Hermitian(A)

5×5 Hermitian{Complex{Int64},Array{Complex{Int64},2}}:

1+0im 0+0im 2+2im 0+0im 3-3im

0+0im 4+0im 0+0im 5+0im 0+0im

2-2im 0+0im 7+0im 0+0im 8+8im

0+0im 5+0im 0+0im 1+0im 0+0im

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/tridiag.jl#L449-L472
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/symmetric.jl#L8-L42

52.1. STANDARD FUNCTIONS 685

3+3im 0+0im 8-8im 0+0im 4+0im

julia> Hlower = Hermitian(A, :L)

5×5 Hermitian{Complex{Int64},Array{Complex{Int64},2}}:

1+0im 0+0im 6+6im 0+0im 2-2im

0+0im 4+0im 0+0im 9+0im 0+0im

6-6im 0+0im 7+0im 0+0im 3+3im

0+0im 9+0im 0+0im 1+0im 0+0im

2+2im 0+0im 3-3im 0+0im 4+0im

Note that Hupperwill not be equal to Hlower unless A is itself Hermitian (e.g. if A == A').

source

Base.LinAlg.lu – Function.

lu(A, pivot=Val{true}) -> L, U, p

Compute the LU factorization of A, such that A[p,:] = L*U. By default, pivoting is used. This can be overridden

by passing Val{false} for the second argument.

See also lufact.

Example

julia> A = [4. 3.; 6. 3.]

2×2 Array{Float64,2}:

4.0 3.0

6.0 3.0

julia> L, U, p = lu(A)

([1.0 0.0; 0.666667 1.0], [6.0 3.0; 0.0 1.0], [2, 1])

julia> A[p, :] == L * U

true

source

Base.LinAlg.lufact – Function.

lufact(A::SparseMatrixCSC) -> F::UmfpackLU

Compute the LU factorization of a sparse matrix A.

For sparse Awith real or complex element type, the return type of F is UmfpackLU{Tv, Ti}, with Tv = Float64

or Complex128 respectively and Ti is an integer type (Int32 or Int64).

The individual components of the factorization F can be accessed by indexing:

Component Description

F[:L] L (lower triangular) part of LU

F[:U] U (upper triangular) part of LU

F[:p] right permutation Vector

F[:q] left permutation Vector

F[:Rs] Vector of scaling factors

F[:(:)] (L,U,p,q,Rs) components

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/symmetric.jl#L57-L85
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lu.jl#L165-L188

686 CHAPTER 52. LINEAR ALGEBRA

The relation between F and A is

F[:L]*F[:U] == (F[:Rs] .* A)[F[:p], F[:q]]

F further supports the following functions:

• \

• cond

• det

Note

lufact(A::SparseMatrixCSC) uses the UMFPACK library that is part of SuiteSparse. As this li-

brary only supports sparse matrices with Float64 or Complex128 elements, lufact converts A into

a copy that is of type SparseMatrixCSC{Float64} or SparseMatrixCSC{Complex128} as ap-

propriate.

source

lufact(A [,pivot=Val{true}]) -> F::LU

Compute the LU factorization of A.

In most cases, if A is a subtype S of AbstractMatrix{T} with an element type T supporting +, -, * and /, the

return type is LU{T,S{T}}. If pivoting is chosen (default) the element type should also support abs and <.

The individual components of the factorization F can be accessed by indexing:

Component Description

F[:L] L (lower triangular) part of LU

F[:U] U (upper triangular) part of LU

F[:p] (right) permutation Vector

F[:P] (right) permutation Matrix

The relationship between F and A is

F[:L]*F[:U] == A[F[:p], :]

F further supports the following functions:

Supported function LU LU{T,Tridiagonal{T}}

/

\

cond

inv

det

logdet

logabsdet

size

Example

julia> A = [4 3; 6 3]

2×2 Array{Int64,2}:

4 3

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/sparse/umfpack.jl#L104-L139

52.1. STANDARD FUNCTIONS 687

6 3

julia> F = lufact(A)

Base.LinAlg.LU{Float64,Array{Float64,2}} with factors L and U:

[1.0 0.0; 1.5 1.0]

[4.0 3.0; 0.0 -1.5]

julia> F[:L] * F[:U] == A[F[:p], :]

true

source

Base.LinAlg.lufact! – Function.

lufact!(A, pivot=Val{true}) -> LU

lufact! is the same as lufact, but saves space by overwriting the input A, instead of creating a copy. An

InexactError exception is thrown if the factorization produces a number not representable by the element

type of A, e.g. for integer types.

source

Base.LinAlg.chol – Function.

chol(A) -> U

Compute the Cholesky factorization of a positive definite matrix A and return the UpperTriangular matrix U such

that A = U'U.

Example

julia> A = [1. 2.; 2. 50.]

2×2 Array{Float64,2}:

1.0 2.0

2.0 50.0

julia> U = chol(A)

2×2 UpperTriangular{Float64,Array{Float64,2}}:

1.0 2.0

6.78233

julia> U'U

2×2 Array{Float64,2}:

1.0 2.0

2.0 50.0

source

chol(x::Number) -> y

Compute the square root of a non-negative number x.

Example

julia> chol(16)

4.0

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lu.jl#L86-L138
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lu.jl#L23-L30
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/cholesky.jl#L159-L183
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/cholesky.jl#L190-L201

688 CHAPTER 52. LINEAR ALGEBRA

Base.LinAlg.cholfact – Function.

cholfact(A; shift = 0.0, perm = Int[]) -> CHOLMOD.Factor

Compute the Cholesky factorization of a sparse positive definite matrix A. Amust be a SparseMatrixCSC, Sym-

metric{SparseMatrixCSC}, or Hermitian{SparseMatrixCSC}. Note that even if A doesn’t have the type

tag, it must still be symmetric or Hermitian. A fill-reducing permutation is used. F = cholfact(A) is most fre-

quently used to solve systems of equations with F\b, but also the methods diag, det, and logdet are defined

for F. You can also extract individual factors from F, using F[:L]. However, since pivoting is on by default, the

factorization is internally represented as A == P'*L*L'*Pwith a permutation matrix P; using just Lwithout ac-

counting for Pwill give incorrect answers. To include the effects of permutation, it’s typically preferable to extract

”combined” factors like PtL = F[:PtL] (the equivalent of P'*L) and LtP = F[:UP] (the equivalent of L'*P).

Setting the optional shift keyword argument computes the factorization of A+shift*I instead of A. If the

perm argument is nonempty, it should be a permutation of 1:size(A,1) giving the ordering to use (instead of

CHOLMOD’s default AMD ordering).

Note

This method uses the CHOLMOD library from SuiteSparse, which only supports doubles or complex

doubles. Inputmatrices not of those element typeswill be converted toSparseMatrixCSC{Float64}

or SparseMatrixCSC{Complex128} as appropriate.

Many other functions from CHOLMOD are wrapped but not exported from the Base.SparseAr-

rays.CHOLMOD module.

source

cholfact(A, [uplo::Symbol,] Val{false}) -> Cholesky

Compute the Cholesky factorization of a dense symmetric positive definite matrix A and return a Cholesky

factorization. The matrix A can either be a Symmetric or Hermitian StridedMatrix or a perfectly symmetric

or Hermitian StridedMatrix. In the latter case, the optional argument uplomay be :L for using the lower part

or :U for the upper part of A. The default is to use :U. The triangular Cholesky factor can be obtained from the

factorization Fwith: F[:L] and F[:U]. The following functions are available for Cholesky objects: size, \, inv,

and det. A PosDefException exception is thrown in case the matrix is not positive definite.

Example

julia> A = [4. 12. -16.; 12. 37. -43.; -16. -43. 98.]

3×3 Array{Float64,2}:

4.0 12.0 -16.0

12.0 37.0 -43.0

-16.0 -43.0 98.0

julia> C = cholfact(A)

Base.LinAlg.Cholesky{Float64,Array{Float64,2}} with factor:

[2.0 6.0 -8.0; 0.0 1.0 5.0; 0.0 0.0 3.0]

julia> C[:U]

3×3 UpperTriangular{Float64,Array{Float64,2}}:

2.0 6.0 -8.0

1.0 5.0

3.0

julia> C[:L]

3×3 LowerTriangular{Float64,Array{Float64,2}}:

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/sparse/cholmod.jl#L1405-L1437

52.1. STANDARD FUNCTIONS 689

2.0

6.0 1.0

-8.0 5.0 3.0

julia> C[:L] * C[:U] == A

true

source

cholfact(A, [uplo::Symbol,] Val{true}; tol = 0.0) -> CholeskyPivoted

Compute the pivoted Cholesky factorization of a dense symmetric positive semi-definite matrix A and return a

CholeskyPivoted factorization. The matrix A can either be a Symmetric or Hermitian StridedMatrix or a

perfectly symmetric or Hermitian StridedMatrix. In the latter case, the optional argument uplo may be :L for

using the lower part or :U for the upper part of A. The default is to use :U. The triangular Cholesky factor can be

obtained from the factorization F with: F[:L] and F[:U]. The following functions are available for PivotedC-

holesky objects: size, \, inv, det, and rank. The argument tol determines the tolerance for determining the

rank. For negative values, the tolerance is the machine precision.

source

Base.LinAlg.cholfact! – Function.

cholfact!(F::Factor, A; shift = 0.0) -> CHOLMOD.Factor

Compute the Cholesky (LL′) factorization of A, reusing the symbolic factorization F. A must be a SparseMa-

trixCSC, Symmetric{SparseMatrixCSC}, or Hermitian{SparseMatrixCSC}. Note that even if A doesn’t

have the type tag, it must still be symmetric or Hermitian.

See also cholfact.

Note

This method uses the CHOLMOD library from SuiteSparse, which only supports doubles or complex

doubles. Inputmatrices not of those element typeswill be converted toSparseMatrixCSC{Float64}

or SparseMatrixCSC{Complex128} as appropriate.

source

cholfact!(A, [uplo::Symbol,] Val{false}) -> Cholesky

The same as cholfact, but saves space by overwriting the input A, instead of creating a copy. An InexactError

exception is thrown if the factorization produces a number not representable by the element type of A, e.g. for

integer types.

Example

julia> A = [1 2; 2 50]

2×2 Array{Int64,2}:

1 2

2 50

julia> cholfact!(A)

ERROR: InexactError()

source

cholfact!(A, [uplo::Symbol,] Val{true}; tol = 0.0) -> CholeskyPivoted

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/cholesky.jl#L297-L338
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/cholesky.jl#L363-L376
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/sparse/cholmod.jl#L1364-L1379
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/cholesky.jl#L225-L244

690 CHAPTER 52. LINEAR ALGEBRA

The same as cholfact, but saves space by overwriting the input A, instead of creating a copy. An InexactError

exception is thrown if the factorization produces a number not representable by the element type of A, e.g. for

integer types.

source

Base.LinAlg.lowrankupdate – Function.

lowrankupdate(C::Cholesky, v::StridedVector) -> CC::Cholesky

Update a Cholesky factorization Cwith the vector v. If A = C[:U]'C[:U] then CC = cholfact(C[:U]'C[:U]

+ v*v') but the computation of CC only uses O(n^2) operations.

source

Base.LinAlg.lowrankdowndate – Function.

lowrankdowndate(C::Cholesky, v::StridedVector) -> CC::Cholesky

Downdate aCholesky factorizationCwith thevectorv. IfA = C[:U]'C[:U] thenCC = cholfact(C[:U]'C[:U]

- v*v') but the computation of CC only uses O(n^2) operations.

source

Base.LinAlg.lowrankupdate! – Function.

lowrankupdate!(C::Cholesky, v::StridedVector) -> CC::Cholesky

Update a Cholesky factorization Cwith the vector v. If A = C[:U]'C[:U] then CC = cholfact(C[:U]'C[:U]

+ v*v') but the computation of CC only uses O(n^2) operations. The input factorization C is updated in place

such that on exit C == CC. The vector v is destroyed during the computation.

source

Base.LinAlg.lowrankdowndate! – Function.

lowrankdowndate!(C::Cholesky, v::StridedVector) -> CC::Cholesky

Downdate aCholesky factorizationCwith thevectorv. IfA = C[:U]'C[:U] thenCC = cholfact(C[:U]'C[:U]

- v*v') but the computation of CC only uses O(n^2) operations. The input factorization C is updated in place

such that on exit C == CC. The vector v is destroyed during the computation.

source

Base.LinAlg.ldltfact – Function.

ldltfact(A; shift = 0.0, perm=Int[]) -> CHOLMOD.Factor

Compute the LDL′ factorization of a sparse matrix A. A must be a SparseMatrixCSC, Symmetric{Sparse-

MatrixCSC}, or Hermitian{SparseMatrixCSC}. Note that even if A doesn’t have the type tag, it must still

be symmetric or Hermitian. A fill-reducing permutation is used. F = ldltfact(A) is most frequently used to

solve systems of equations A*x = b with F\b. The returned factorization object F also supports the methods

diag, det, logdet, and inv. You can extract individual factors from F using F[:L]. However, since pivoting is on

by default, the factorization is internally represented as A == P'*L*D*L'*P with a permutation matrix P; using

just L without accounting for P will give incorrect answers. To include the effects of permutation, it is typically

preferable to extract ”combined” factors like PtL = F[:PtL] (the equivalent of P'*L) and LtP = F[:UP] (the

equivalent of L'*P). The complete list of supported factors is :L, :PtL, :D, :UP, :U, :LD, :DU, :PtLD,

:DUP.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/cholesky.jl#L275-L282
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/cholesky.jl#L653-L659
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/cholesky.jl#L662-L668
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/cholesky.jl#L554-L561
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/cholesky.jl#L600-L607

52.1. STANDARD FUNCTIONS 691

Setting the optional shift keyword argument computes the factorization of A+shift*I instead of A. If the

perm argument is nonempty, it should be a permutation of 1:size(A,1) giving the ordering to use (instead of

CHOLMOD’s default AMD ordering).

Note

This method uses the CHOLMOD library from SuiteSparse, which only supports doubles or complex

doubles. Inputmatrices not of those element typeswill be converted toSparseMatrixCSC{Float64}

or SparseMatrixCSC{Complex128} as appropriate.

Many other functions from CHOLMOD are wrapped but not exported from the Base.SparseAr-

rays.CHOLMOD module.

source

ldltfact(S::SymTridiagonal) -> LDLt

Compute an LDLt factorization of a real symmetric tridiagonal matrix such that A = L*Diagonal(d)*L'where

L is a unit lower triangular matrix and d is a vector. The main use of an LDLt factorization F = ldltfact(A) is

to solve the linear system of equations Ax = b with F\b.

source

Base.LinAlg.ldltfact! – Function.

ldltfact!(F::Factor, A; shift = 0.0) -> CHOLMOD.Factor

Compute the LDL′ factorization of A, reusing the symbolic factorization F. A must be a SparseMatrixCSC,

Symmetric{SparseMatrixCSC}, or Hermitian{SparseMatrixCSC}. Note that even if A doesn’t have the

type tag, it must still be symmetric or Hermitian.

See also ldltfact.

Note

This method uses the CHOLMOD library from SuiteSparse, which only supports doubles or complex

doubles. Inputmatrices not of those element typeswill be converted toSparseMatrixCSC{Float64}

or SparseMatrixCSC{Complex128} as appropriate.

source

ldltfact!(S::SymTridiagonal) -> LDLt

Same as ldltfact, but saves space by overwriting the input A, instead of creating a copy.

source

Base.LinAlg.qr – Function.

qr(A, pivot=Val{false}; thin::Bool=true) -> Q, R, [p]

Compute the (pivoted) QR factorization of A such that either A = Q*R or A[:,p] = Q*R. Also see qrfact. The

default is to compute a thin factorization. Note that R is not extended with zeros when the full Q is requested.

source

qr(v::AbstractVector) -> w, r

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/sparse/cholmod.jl#L1504-L1537
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/ldlt.jl#L35-L41
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/sparse/cholmod.jl#L1456-L1471
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/ldlt.jl#L19-L23
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/qr.jl#L285-L292

692 CHAPTER 52. LINEAR ALGEBRA

Computes the polar decomposition of a vector. Returns w, a unit vector in the direction of v, and r, the norm of

v.

See also normalize, normalize!, and LinAlg.qr!.

Example

julia> v = [1; 2]

2-element Array{Int64,1}:

1

2

julia> w, r = qr(v)

([0.447214, 0.894427], 2.23606797749979)

julia> w*r == v

true

source

Base.LinAlg.qr! – Function.

LinAlg.qr!(v::AbstractVector) -> w, r

Computes the polar decomposition of a vector. Instead of returning a new vector as qr(v::AbstractVector),

this function mutates the input vector v in place. Returns w, a unit vector in the direction of v (this is a mutation

of v), and r, the norm of v.

See also normalize, normalize!, and qr.

source

Base.LinAlg.qrfact – Function.

qrfact(A) -> SPQR.Factorization

Compute the QR factorization of a sparse matrix A. A fill-reducing permutation is used. The main application of

this type is to solve least squares problems with \. The function calls the C library SPQR and a few additional

functions from the library are wrapped but not exported.

source

qrfact(A, pivot=Val{false}) -> F

Compute the QR factorization of the matrix A: an orthogonal (or unitary if A is complex-valued) matrix Q, and an

upper triangular matrix R such that

A = QR

The returned object F stores the factorization in a packed format:

• if pivot == Val{true} then F is a QRPivoted object,

• otherwise if the element type of A is a BLAS type (Float32, Float64, Complex64 or Complex128), then

F is a QRCompactWY object,

• otherwise F is a QR object.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/qr.jl#L304-L328
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/qr.jl#L340-L350
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/sparse/spqr.jl#L142-L149

52.1. STANDARD FUNCTIONS 693

The individual components of the factorization F can be accessed by indexing with a symbol:

• F[:Q]: the orthogonal/unitary matrix Q

• F[:R]: the upper triangular matrix R

• F[:p]: the permutation vector of the pivot (QRPivoted only)

• F[:P]: the permutation matrix of the pivot (QRPivoted only)

The following functions are available for the QR objects: inv, size, and \. When A is rectangular, \ will return a

least squares solution and if the solution is not unique, the one with smallest norm is returned.

Multiplication with respect to either thin or full Q is allowed, i.e. both F[:Q]*F[:R] and F[:Q]*A are supported.

A Q matrix can be converted into a regular matrix with fullwhich has a named argument thin.

Example

julia> A = [3.0 -6.0; 4.0 -8.0; 0.0 1.0]

3×2 Array{Float64,2}:

3.0 -6.0

4.0 -8.0

0.0 1.0

julia> F = qrfact(A)

Base.LinAlg.QRCompactWY{Float64,Array{Float64,2}} with factors Q and R:

[-0.6 0.0 0.8; -0.8 0.0 -0.6; 0.0 -1.0 0.0]

[-5.0 10.0; 0.0 -1.0]

julia> F[:Q] * F[:R] == A

true

Note

qrfact returns multiple types because LAPACK uses several representations that minimize themem-

ory storage requirements of products of Householder elementary reflectors, so that the Q and R ma-

trices can be stored compactly rather as two separate dense matrices.

source

Base.LinAlg.qrfact! – Function.

qrfact!(A, pivot=Val{false})

qrfact! is the same as qrfact when A is a subtype of StridedMatrix, but saves space by overwriting the

input A, instead of creating a copy. An InexactError exception is thrown if the factorization produces a number

not representable by the element type of A, e.g. for integer types.

source

Base.LinAlg.QR – Type.

QR <: Factorization

AQR matrix factorization stored in a packed format, typically obtained from qrfact. IfA is an m×n matrix, then

A = QR

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/qr.jl#L215-L272
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/qr.jl#L203-L210

694 CHAPTER 52. LINEAR ALGEBRA

where Q is an orthogonal/unitary matrix and R is upper triangular. The matrix Q is stored as a sequence of

Householder reflectors vi and coefficients τi where:

Q =

min(m,n)∏
i=1

(I − τiviv
T
i).

The object has two fields:

• factors is an m×n matrix.

– The upper triangular part contains the elements ofR, that is R = triu(F.factors) for a QR object

F.

– The subdiagonal part contains the reflectors vi stored in a packed format where vi is the ith column
of the matrix V = eye(m,n) + tril(F.factors,-1).

• τ is a vector of length min(m,n) containing the coefficients aui.

source

Base.LinAlg.QRCompactWY – Type.

QRCompactWY <: Factorization

A QR matrix factorization stored in a compact blocked format, typically obtained from qrfact. If A is an m×n

matrix, then

A = QR

whereQ is an orthogonal/unitary matrix and R is upper triangular. It is similar to the QR format except that the

orthogonal/unitary matrix Q is stored in Compact WY format 1, as a lower trapezoidal matrix V and an upper

triangular matrix T where

Q =

min(m,n)∏
i=1

(I − τiviv
T
i) = I − V TV T

such that vi is the ith column of V , and aui is the ith diagonal element of T .

The object has two fields:

• factors, as in the QR type, is an m×n matrix.

– The upper triangular part contains the elements ofR, that is R = triu(F.factors) for a QR object

F.

– The subdiagonal part contains the reflectors vi stored in a packed format such that V = eye(m,n) +

tril(F.factors,-1).

• T is a square matrix with min(m,n) columns, whose upper triangular part gives the matrix T above (the

subdiagonal elements are ignored).

Note

This format should not to be confused with the olderWY representation 2.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/qr.jl#L4-L34

52.1. STANDARD FUNCTIONS 695

source

Base.LinAlg.QRPivoted – Type.

QRPivoted <: Factorization

A QR matrix factorization with column pivoting in a packed format, typically obtained from qrfact. If A is an

m×n matrix, then

AP = QR

where P is a permutation matrix, Q is an orthogonal/unitary matrix and R is upper triangular. The matrix Q is

stored as a sequence of Householder reflectors:

Q =

min(m,n)∏
i=1

(I − τiviv
T
i).

The object has three fields:

• factors is an m×n matrix.

– The upper triangular part contains the elements ofR, that is R = triu(F.factors) for a QR object

F.

– The subdiagonal part contains the reflectors vi stored in a packed format where vi is the ith column
of the matrix V = eye(m,n) + tril(F.factors,-1).

• τ is a vector of length min(m,n) containing the coefficients aui.

• jpvt is an integer vector of length n corresponding to the permutation P .

source

Base.LinAlg.lqfact! – Function.

lqfact!(A) -> LQ

Compute the LQ factorization of A, using the input matrix as a workspace. See also lq.

source

Base.LinAlg.lqfact – Function.

lqfact(A) -> LQ

Compute the LQ factorization of A. See also lq.

source

Base.LinAlg.lq – Function.

2C Bischof and C Van Loan, ”The WY representation for products of Householder matrices”, SIAM J Sci Stat Comput 8 (1987), s2-s13.

doi:10.1137/0908009

1R Schreiber and C Van Loan, ”A storage-efficient WY representation for products of Householder transformations”, SIAM J Sci Stat Comput

10 (1989), 53-57. doi:10.1137/0910005

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/qr.jl#L43-L87
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/qr.jl#L95-L125
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lq.jl#L20-L25
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lq.jl#L27-L31
http://dx.doi.org/10.1137/0908009
http://dx.doi.org/10.1137/0910005

696 CHAPTER 52. LINEAR ALGEBRA

lq(A; [thin=true]) -> L, Q

Perform an LQ factorization of A such that A = L*Q. The default is to compute a thin factorization. The LQ

factorization is the QR factorization of A.'. L is not extended with zeros if the full Q is requested.

source

Base.LinAlg.bkfact – Function.

bkfact(A, uplo::Symbol=:U, symmetric::Bool=issymmetric(A), rook::Bool=false) -> BunchKaufman

Compute the Bunch-Kaufman 3 factorization of a symmetric or Hermitian matrix A and return a BunchKaufman

object. uplo indicates which triangle of matrix A to reference. If symmetric is true, A is assumed to be sym-

metric. If symmetric is false, A is assumed to be Hermitian. If rook is true, rook pivoting is used. If rook is

false, rook pivoting is not used. The following functions are available for BunchKaufman objects: size, \, inv,

issymmetric, ishermitian.

source

Base.LinAlg.bkfact! – Function.

bkfact!(A, uplo::Symbol=:U, symmetric::Bool=issymmetric(A), rook::Bool=false) -> BunchKaufman

bkfact! is the same as bkfact, but saves space by overwriting the input A, instead of creating a copy.

source

Base.LinAlg.eig – Function.

eig(A::Union{SymTridiagonal, Hermitian, Symmetric}, irange::UnitRange) -> D, V

eig(A::Union{SymTridiagonal, Hermitian, Symmetric}, vl::Real, vu::Real) -> D, V

eig(A, permute::Bool=true, scale::Bool=true) -> D, V

Computes eigenvalues (D) and eigenvectors (V) of A. See eigfact for details on the irange, vl, and vu arguments

(for SymTridiagonal, Hermitian, and Symmetricmatrices) and the permute and scale keyword arguments.

The eigenvectors are returned columnwise.

Example

julia> eig([1.0 0.0 0.0; 0.0 3.0 0.0; 0.0 0.0 18.0])

([1.0, 3.0, 18.0], [1.0 0.0 0.0; 0.0 1.0 0.0; 0.0 0.0 1.0])

eig is a wrapper around eigfact, extracting all parts of the factorization to a tuple; where possible, using

eigfact is recommended.

source

eig(A, B) -> D, V

Computes generalized eigenvalues (D) and vectors (V) of Awith respect to B.

eig is a wrapper around eigfact, extracting all parts of the factorization to a tuple; where possible, using

eigfact is recommended.

Example

3J R Bunch and L Kaufman, Some stable methods for calculating inertia and solving symmetric linear systems, Mathematics of Computation

31:137 (1977), 163-179. url.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lq.jl#L35-L42
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/bunchkaufman.jl#L57-L71
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/bunchkaufman.jl#L19-L24
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/eigen.jl#L112-L134
http://www.ams.org/journals/mcom/1977-31-137/S0025-5718-1977-0428694-0/

52.1. STANDARD FUNCTIONS 697

julia> A = [1 0; 0 -1]

2×2 Array{Int64,2}:

1 0

0 -1

julia> B = [0 1; 1 0]

2×2 Array{Int64,2}:

0 1

1 0

julia> eig(A, B)

(Complex{Float64}[0.0+1.0im, 0.0-1.0im], Complex{Float64}[0.0-1.0im 0.0+1.0im; -1.0-0.0im

-1.0+0.0im])↪→

source

Base.LinAlg.eigvals – Function.

eigvals(A; permute::Bool=true, scale::Bool=true) -> values

Returns the eigenvalues of A.

For general non-symmetric matrices it is possible to specify how the matrix is balanced before the eigenvalue cal-

culation. The option permute=true permutes the matrix to become closer to upper triangular, and scale=true

scales the matrix by its diagonal elements to make rows and columns more equal in norm. The default is true for

both options.

source

eigvals(A, B) -> values

Computes the generalized eigenvalues of A and B.

Example

julia> A = [1 0; 0 -1]

2×2 Array{Int64,2}:

1 0

0 -1

julia> B = [0 1; 1 0]

2×2 Array{Int64,2}:

0 1

1 0

julia> eigvals(A,B)

2-element Array{Complex{Float64},1}:

0.0+1.0im

0.0-1.0im

source

eigvals(A::Union{SymTridiagonal, Hermitian, Symmetric}, irange::UnitRange) -> values

Returns the eigenvalues of A. It is possible to calculate only a subset of the eigenvalues by specifying a UnitRange

irange covering indices of the sorted eigenvalues, e.g. the 2nd to 8th eigenvalues.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/eigen.jl#L333-L357
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/eigen.jl#L181-L191
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/eigen.jl#L383-L406

698 CHAPTER 52. LINEAR ALGEBRA

julia> A = SymTridiagonal([1.; 2.; 1.], [2.; 3.])

3×3 SymTridiagonal{Float64}:

1.0 2.0

2.0 2.0 3.0

3.0 1.0

julia> eigvals(A, 2:2)

1-element Array{Float64,1}:

1.0

julia> eigvals(A)

3-element Array{Float64,1}:

-2.14005

1.0

5.14005

source

eigvals(A::Union{SymTridiagonal, Hermitian, Symmetric}, vl::Real, vu::Real) -> values

Returns the eigenvalues of A. It is possible to calculate only a subset of the eigenvalues by specifying a pair vl

and vu for the lower and upper boundaries of the eigenvalues.

julia> A = SymTridiagonal([1.; 2.; 1.], [2.; 3.])

3×3 SymTridiagonal{Float64}:

1.0 2.0

2.0 2.0 3.0

3.0 1.0

julia> eigvals(A, -1, 2)

1-element Array{Float64,1}:

1.0

julia> eigvals(A)

3-element Array{Float64,1}:

-2.14005

1.0

5.14005

source

Base.LinAlg.eigvals! – Function.

eigvals!(A; permute::Bool=true, scale::Bool=true) -> values

Same as eigvals, but saves space by overwriting the input A, instead of creating a copy. The option per-

mute=true permutes the matrix to become closer to upper triangular, and scale=true scales the matrix by its

diagonal elements to make rows and columns more equal in norm.

source

eigvals!(A, B) -> values

Same as eigvals, but saves space by overwriting the input A (and B), instead of creating copies.

source

eigvals!(A::Union{SymTridiagonal, Hermitian, Symmetric}, irange::UnitRange) -> values

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/symmetric.jl#L364-L388
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/symmetric.jl#L404-L427
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/eigen.jl#L163-L170
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/eigen.jl#L367-L371

52.1. STANDARD FUNCTIONS 699

Same as eigvals, but saves space by overwriting the input A, instead of creating a copy. irange is a range of

eigenvalue indices to search for - for instance, the 2nd to 8th eigenvalues.

source

eigvals!(A::Union{SymTridiagonal, Hermitian, Symmetric}, vl::Real, vu::Real) -> values

Same as eigvals, but saves space by overwriting the input A, instead of creating a copy. vl is the lower bound

of the interval to search for eigenvalues, and vu is the upper bound.

source

Base.LinAlg.eigmax – Function.

eigmax(A; permute::Bool=true, scale::Bool=true)

Returns the largest eigenvalue of A. The option permute=true permutes the matrix to become closer to upper

triangular, and scale=true scales the matrix by its diagonal elements to make rows and columns more equal

in norm. Note that if the eigenvalues of A are complex, this method will fail, since complex numbers cannot be

sorted.

Example

julia> A = [0 im; -im 0]

2×2 Array{Complex{Int64},2}:

0+0im 0+1im

0-1im 0+0im

julia> eigmax(A)

1.0

julia> A = [0 im; -1 0]

2×2 Array{Complex{Int64},2}:

0+0im 0+1im

-1+0im 0+0im

julia> eigmax(A)

ERROR: DomainError:

Stacktrace:

[1] #eigmax#46(::Bool, ::Bool, ::Function, ::Array{Complex{Int64},2}) at

./linalg/eigen.jl:238↪→

[2] eigmax(::Array{Complex{Int64},2}) at ./linalg/eigen.jl:236

source

Base.LinAlg.eigmin – Function.

eigmin(A; permute::Bool=true, scale::Bool=true)

Returns the smallest eigenvalue of A. The option permute=true permutes the matrix to become closer to upper

triangular, and scale=true scales the matrix by its diagonal elements to make rows and columns more equal

in norm. Note that if the eigenvalues of A are complex, this method will fail, since complex numbers cannot be

sorted.

Example

julia> A = [0 im; -im 0]

2×2 Array{Complex{Int64},2}:

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/symmetric.jl#L355-L360
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/symmetric.jl#L395-L400
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/eigen.jl#L201-L234

700 CHAPTER 52. LINEAR ALGEBRA

0+0im 0+1im

0-1im 0+0im

julia> eigmin(A)

-1.0

julia> A = [0 im; -1 0]

2×2 Array{Complex{Int64},2}:

0+0im 0+1im

-1+0im 0+0im

julia> eigmin(A)

ERROR: DomainError:

Stacktrace:

[1] #eigmin#47(::Bool, ::Bool, ::Function, ::Array{Complex{Int64},2}) at

./linalg/eigen.jl:280↪→

[2] eigmin(::Array{Complex{Int64},2}) at ./linalg/eigen.jl:278

source

Base.LinAlg.eigvecs – Function.

eigvecs(A::SymTridiagonal[, eigvals]) -> Matrix

Returns a matrix Mwhose columns are the eigenvectors of A. (The kth eigenvector can be obtained from the slice

M[:, k].)

If the optional vector of eigenvalues eigvals is specified, eigvecs returns the specific corresponding eigenvec-

tors.

Example

julia> A = SymTridiagonal([1.; 2.; 1.], [2.; 3.])

3×3 SymTridiagonal{Float64}:

1.0 2.0

2.0 2.0 3.0

3.0 1.0

julia> eigvals(A)

3-element Array{Float64,1}:

-2.14005

1.0

5.14005

julia> eigvecs(A)

3×3 Array{Float64,2}:

0.418304 -0.83205 0.364299

-0.656749 -7.39009e-16 0.754109

0.627457 0.5547 0.546448

julia> eigvecs(A, [1.])

3×1 Array{Float64,2}:

0.83205

4.26351e-17

-0.5547

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/eigen.jl#L243-L276
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/tridiag.jl#L212-L248

52.1. STANDARD FUNCTIONS 701

eigvecs(A; permute::Bool=true, scale::Bool=true) -> Matrix

Returns a matrix Mwhose columns are the eigenvectors of A. (The kth eigenvector can be obtained from the slice

M[:, k].) The permute and scale keywords are the same as for eigfact.

Example

julia> eigvecs([1.0 0.0 0.0; 0.0 3.0 0.0; 0.0 0.0 18.0])

3×3 Array{Float64,2}:

1.0 0.0 0.0

0.0 1.0 0.0

0.0 0.0 1.0

source

eigvecs(A, B) -> Matrix

Returns a matrix M whose columns are the generalized eigenvectors of A and B. (The kth eigenvector can be

obtained from the slice M[:, k].)

Example

julia> A = [1 0; 0 -1]

2×2 Array{Int64,2}:

1 0

0 -1

julia> B = [0 1; 1 0]

2×2 Array{Int64,2}:

0 1

1 0

julia> eigvecs(A, B)

2×2 Array{Complex{Float64},2}:

0.0-1.0im 0.0+1.0im

-1.0-0.0im -1.0+0.0im

source

Base.LinAlg.eigfact – Function.

eigfact(A; permute::Bool=true, scale::Bool=true) -> Eigen

Computes the eigenvalue decomposition of A, returning an Eigen factorization object Fwhich contains the eigen-

values in F[:values] and the eigenvectors in the columns of the matrix F[:vectors]. (The kth eigenvector

can be obtained from the slice F[:vectors][:, k].)

The following functions are available for Eigen objects: inv, det, and isposdef.

For general nonsymmetric matrices it is possible to specify how the matrix is balanced before the eigenvector cal-

culation. The option permute=true permutes the matrix to become closer to upper triangular, and scale=true

scales the matrix by its diagonal elements to make rows and columns more equal in norm. The default is true for

both options.

Example

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/eigen.jl#L140-L156
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/eigen.jl#L412-L436

702 CHAPTER 52. LINEAR ALGEBRA

julia> F = eigfact([1.0 0.0 0.0; 0.0 3.0 0.0; 0.0 0.0 18.0])

Base.LinAlg.Eigen{Float64,Float64,Array{Float64,2},Array{Float64,1}}([1.0, 3.0, 18.0], [1.0

0.0 0.0; 0.0 1.0 0.0; 0.0 0.0 1.0])↪→

julia> F[:values]

3-element Array{Float64,1}:

1.0

3.0

18.0

julia> F[:vectors]

3×3 Array{Float64,2}:

1.0 0.0 0.0

0.0 1.0 0.0

0.0 0.0 1.0

source

eigfact(A, B) -> GeneralizedEigen

Computes the generalized eigenvalue decomposition of A and B, returning a GeneralizedEigen factorization

object F which contains the generalized eigenvalues in F[:values] and the generalized eigenvectors in the

columns of the matrix F[:vectors]. (The kth generalized eigenvector can be obtained from the slice F[:vec-

tors][:, k].)

source

eigfact(A::Union{SymTridiagonal, Hermitian, Symmetric}, irange::UnitRange) -> Eigen

Computes the eigenvalue decomposition of A, returning an Eigen factorization object Fwhich contains the eigen-

values in F[:values] and the eigenvectors in the columns of the matrix F[:vectors]. (The kth eigenvector

can be obtained from the slice F[:vectors][:, k].)

The following functions are available for Eigen objects: inv, det, and isposdef.

The UnitRange irange specifies indices of the sorted eigenvalues to search for.

Note

If irange is not 1:n, where n is the dimension of A, then the returned factorizationwill be a truncated

factorization.

source

eigfact(A::Union{SymTridiagonal, Hermitian, Symmetric}, vl::Real, vu::Real) -> Eigen

Computes the eigenvalue decomposition of A, returning an Eigen factorization object Fwhich contains the eigen-

values in F[:values] and the eigenvectors in the columns of the matrix F[:vectors]. (The kth eigenvector

can be obtained from the slice F[:vectors][:, k].)

The following functions are available for Eigen objects: inv, det, and isposdef.

vl is the lower bound of the window of eigenvalues to search for, and vu is the upper bound.

Note

If [vl, vu] does not contain all eigenvalues of A, then the returned factorization will be a truncated

factorization.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/eigen.jl#L68-L100
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/eigen.jl#L318-L325
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/symmetric.jl#L301-L315

52.1. STANDARD FUNCTIONS 703

source

Base.LinAlg.eigfact! – Function.

eigfact!(A, [B])

Same as eigfact, but saves space by overwriting the input A (and B), instead of creating a copy.

source

Base.LinAlg.hessfact – Function.

hessfact(A) -> Hessenberg

Compute the Hessenberg decomposition of A and return a Hessenberg object. If F is the factorization object,

the unitary matrix can be accessed with F[:Q] and the Hessenberg matrix with F[:H]. When Q is extracted, the

resulting type is the HessenbergQ object, and may be converted to a regular matrix with convert(Array, _)

(or Array(_) for short).

Example

julia> A = [4. 9. 7.; 4. 4. 1.; 4. 3. 2.]

3×3 Array{Float64,2}:

4.0 9.0 7.0

4.0 4.0 1.0

4.0 3.0 2.0

julia> F = hessfact(A);

julia> F[:Q] * F[:H] * F[:Q]'

3×3 Array{Float64,2}:

4.0 9.0 7.0

4.0 4.0 1.0

4.0 3.0 2.0

source

Base.LinAlg.hessfact! – Function.

hessfact!(A) -> Hessenberg

hessfact! is the same as hessfact, but saves space by overwriting the input A, instead of creating a copy.

source

Base.LinAlg.schurfact – Function.

schurfact(A::StridedMatrix) -> F::Schur

Computes the Schur factorization of the matrix A. The (quasi) triangular Schur factor can be obtained from the

Schur object Fwith either F[:Schur] or F[:T] and the orthogonal/unitary Schur vectors can be obtained with

F[:vectors] or F[:Z] such that A = F[:vectors]*F[:Schur]*F[:vectors]'. The eigenvalues of A can

be obtained with F[:values].

Example

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/symmetric.jl#L325-L339
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/eigen.jl#L32-L37
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/hessenberg.jl#L24-L50
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/hessenberg.jl#L14-L19

704 CHAPTER 52. LINEAR ALGEBRA

julia> A = [-2. 1. 3.; 2. 1. -1.; -7. 2. 7.]

3×3 Array{Float64,2}:

-2.0 1.0 3.0

2.0 1.0 -1.0

-7.0 2.0 7.0

julia> F = schurfact(A)

Base.LinAlg.Schur{Float64,Array{Float64,2}} with factors T and Z:

[2.0 0.801792 6.63509; -8.55988e-11 2.0 8.08286; 0.0 0.0 1.99999]

[0.577351 0.154299 -0.801784; 0.577346 -0.77152 0.267262; 0.577354 0.617211 0.534522]

and values:

Complex{Float64}[2.0+8.28447e-6im, 2.0-8.28447e-6im, 1.99999+0.0im]

julia> F[:vectors] * F[:Schur] * F[:vectors]'

3×3 Array{Float64,2}:

-2.0 1.0 3.0

2.0 1.0 -1.0

-7.0 2.0 7.0

source

schurfact(A::StridedMatrix, B::StridedMatrix) -> F::GeneralizedSchur

Computes the Generalized Schur (or QZ) factorization of the matrices A and B. The (quasi) triangular Schur fac-

tors can be obtained from the Schur object F with F[:S] and F[:T], the left unitary/orthogonal Schur vectors

can be obtained with F[:left] or F[:Q] and the right unitary/orthogonal Schur vectors can be obtained with

F[:right] or F[:Z] such that A=F[:left]*F[:S]*F[:right]' and B=F[:left]*F[:T]*F[:right]'. The

generalized eigenvalues of A and B can be obtained with F[:alpha]./F[:beta].

source

Base.LinAlg.schurfact! – Function.

schurfact!(A::StridedMatrix) -> F::Schur

Same as schurfact but uses the input argument as workspace.

source

schurfact!(A::StridedMatrix, B::StridedMatrix) -> F::GeneralizedSchur

Same as schurfact but uses the input matrices A and B as workspace.

source

Base.LinAlg.schur – Function.

schur(A::StridedMatrix) -> T::Matrix, Z::Matrix, λ::Vector

Computes the Schur factorization of the matrix A. The methods return the (quasi) triangular Schur factor T and

the orthogonal/unitary Schur vectors Z such that A = Z*T*Z'. The eigenvalues of A are returned in the vector λ.

See schurfact.

Example

julia> A = [-2. 1. 3.; 2. 1. -1.; -7. 2. 7.]

3×3 Array{Float64,2}:

-2.0 1.0 3.0

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/schur.jl#L19-L49
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/schur.jl#L187-L196
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/schur.jl#L12-L16
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/schur.jl#L179-L183

52.1. STANDARD FUNCTIONS 705

2.0 1.0 -1.0

-7.0 2.0 7.0

julia> T, Z, lambda = schur(A)

([2.0 0.801792 6.63509; -8.55988e-11 2.0 8.08286; 0.0 0.0 1.99999], [0.577351 0.154299

-0.801784; 0.577346 -0.77152 0.267262; 0.577354 0.617211 0.534522],

Complex{Float64}[2.0+8.28447e-6im, 2.0-8.28447e-6im, 1.99999+0.0im])

↪→

↪→

julia> Z * T * Z'

3×3 Array{Float64,2}:

-2.0 1.0 3.0

2.0 1.0 -1.0

-7.0 2.0 7.0

source

schur(A::StridedMatrix, B::StridedMatrix) -> S::StridedMatrix, T::StridedMatrix, Q::

StridedMatrix, Z::StridedMatrix, α::Vector, β::Vector

See schurfact.

source

Base.LinAlg.ordschur – Function.

ordschur(F::Schur, select::Union{Vector{Bool},BitVector}) -> F::Schur

Reorders the Schur factorization F of a matrix A = Z*T*Z' according to the logical array select returning the

reordered factorization F object. The selected eigenvalues appear in the leading diagonal of F[:Schur] and

the corresponding leading columns of F[:vectors] form an orthogonal/unitary basis of the corresponding right

invariant subspace. In the real case, a complex conjugate pair of eigenvalues must be either both included or both

excluded via select.

source

ordschur(T::StridedMatrix, Z::StridedMatrix, select::Union{Vector{Bool},BitVector}) -> T::

StridedMatrix, Z::StridedMatrix, λ::Vector

Reorders the Schur factorization of a real matrix A = Z*T*Z' according to the logical array select returning the

reordered matrices T and Z as well as the vector of eigenvalues λ. The selected eigenvalues appear in the leading

diagonal of T and the corresponding leading columns of Z form an orthogonal/unitary basis of the corresponding

right invariant subspace. In the real case, a complex conjugate pair of eigenvalues must be either both included

or both excluded via select.

source

ordschur(F::GeneralizedSchur, select::Union{Vector{Bool},BitVector}) -> F::GeneralizedSchur

Reorders the Generalized Schur factorization F of a matrix pair (A, B) = (Q*S*Z', Q*T*Z') according to the

logical array select and returns a GeneralizedSchur object F. The selected eigenvalues appear in the leading

diagonal of both F[:S] and F[:T], and the left and right orthogonal/unitary Schur vectors are also reordered

such that (A, B) = F[:Q]*(F[:S], F[:T])*F[:Z]' still holds and the generalized eigenvalues of A and B

can still be obtained with F[:alpha]./F[:beta].

source

ordschur(S::StridedMatrix, T::StridedMatrix, Q::StridedMatrix, Z::StridedMatrix, select) -> S

::StridedMatrix, T::StridedMatrix, Q::StridedMatrix, Z::StridedMatrix, α::Vector, β::

Vector

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/schur.jl#L78-L105
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/schur.jl#L271-L275
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/schur.jl#L128-L137
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/schur.jl#L149-L158
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/schur.jl#L215-L224

706 CHAPTER 52. LINEAR ALGEBRA

Reorders the Generalized Schur factorization of a matrix pair (A, B) = (Q*S*Z', Q*T*Z') according to the

logical array select and returns the matrices S, T, Q, Z and vectors α and β. The selected eigenvalues appear in

the leading diagonal of both S and T, and the left and right unitary/orthogonal Schur vectors are also reordered

such that (A, B) = Q*(S, T)*Z' still holds and the generalized eigenvalues of A and B can still be obtained

with α./β.

source

Base.LinAlg.ordschur! – Function.

ordschur!(F::Schur, select::Union{Vector{Bool},BitVector}) -> F::Schur

Same as ordschur but overwrites the factorization F.

source

ordschur!(T::StridedMatrix, Z::StridedMatrix, select::Union{Vector{Bool},BitVector}) -> T::

StridedMatrix, Z::StridedMatrix, λ::Vector

Same as ordschur but overwrites the input arguments.

source

ordschur!(F::GeneralizedSchur, select::Union{Vector{Bool},BitVector}) -> F::GeneralizedSchur

Same as ordschur but overwrites the factorization F.

source

ordschur!(S::StridedMatrix, T::StridedMatrix, Q::StridedMatrix, Z::StridedMatrix, select) ->

S::StridedMatrix, T::StridedMatrix, Q::StridedMatrix, Z::StridedMatrix, α::Vector, β::

Vector

Same as ordschur but overwrites the factorization the input arguments.

source

Base.LinAlg.svdfact – Function.

svdfact(A, thin::Bool=true) -> SVD

Compute the singular value decomposition (SVD) of A and return an SVD object.

U, S, V and Vt can be obtained from the factorization F with F[:U], F[:S], F[:V] and F[:Vt], such that A =

U*diagm(S)*Vt. The algorithm produces Vt and hence Vt is more efficient to extract than V. The singular values

in S are sorted in descending order.

If thin=true (default), a thin SVD is returned. For aM ×N matrix A, U isM ×M for a full SVD (thin=false)

andM × min(M,N) for a thin SVD.

Example

julia> A = [1. 0. 0. 0. 2.; 0. 0. 3. 0. 0.; 0. 0. 0. 0. 0.; 0. 2. 0. 0. 0.]

4×5 Array{Float64,2}:

1.0 0.0 0.0 0.0 2.0

0.0 0.0 3.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0

0.0 2.0 0.0 0.0 0.0

julia> F = svdfact(A)

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/schur.jl#L237-L246
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/schur.jl#L117-L121
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/schur.jl#L141-L145
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/schur.jl#L203-L207
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/schur.jl#L228-L232

52.1. STANDARD FUNCTIONS 707

Base.LinAlg.SVD{Float64,Float64,Array{Float64,2}}([0.0 1.0 0.0 0.0; 1.0 0.0 0.0 0.0; 0.0 0.0

0.0 -1.0; 0.0 0.0 1.0 0.0], [3.0, 2.23607, 2.0, 0.0], [-0.0 0.0 … -0.0 0.0; 0.447214 0.0

… 0.0 0.894427; -0.0 1.0 … -0.0 0.0; 0.0 0.0 … 1.0 0.0])

↪→

↪→

julia> F[:U] * diagm(F[:S]) * F[:Vt]

4×5 Array{Float64,2}:

1.0 0.0 0.0 0.0 2.0

0.0 0.0 3.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0

0.0 2.0 0.0 0.0 0.0

source

svdfact(A, B) -> GeneralizedSVD

Compute the generalized SVD of A and B, returning a GeneralizedSVD factorization object F, such that A =

F[:U]*F[:D1]*F[:R0]*F[:Q]' and B = F[:V]*F[:D2]*F[:R0]*F[:Q]'.

For an M-by-N matrix A and P-by-N matrix B,

• F[:U] is a M-by-M orthogonal matrix,

• F[:V] is a P-by-P orthogonal matrix,

• F[:Q] is a N-by-N orthogonal matrix,

• F[:R0] is a (K+L)-by-N matrix whose rightmost (K+L)-by-(K+L) block is nonsingular upper block triangular,

• F[:D1] is a M-by-(K+L) diagonal matrix with 1s in the first K entries,

• F[:D2] is a P-by-(K+L) matrix whose top right L-by-L block is diagonal,

K+L is the effective numerical rank of the matrix [A; B].

The entries of F[:D1] and F[:D2] are related, as explained in the LAPACK documentation for the generalized

SVD and the xGGSVD3 routine which is called underneath (in LAPACK 3.6.0 and newer).

source

Base.LinAlg.svdfact! – Function.

svdfact!(A, thin::Bool=true) -> SVD

svdfact! is the same as svdfact, but saves space by overwriting the input A, instead of creating a copy.

source

svdfact!(A, B) -> GeneralizedSVD

svdfact! is the same as svdfact, but modifies the arguments A and B in-place, instead of making copies.

source

Base.LinAlg.svd – Function.

svd(A, thin::Bool=true) -> U, S, V

Computes the SVD of A, returning U, vector S, and V such that A == U*diagm(S)*V'. The singular values in S

are sorted in descending order.

If thin=true (default), a thin SVD is returned. For aM ×N matrix A, U isM ×M for a full SVD (thin=false)

andM × min(M,N) for a thin SVD.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/svd.jl#L29-L62
http://www.netlib.org/lapack/lug/node36.html
http://www.netlib.org/lapack/lug/node36.html
http://www.netlib.org/lapack/explore-html/d6/db3/dggsvd3_8f.html
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/svd.jl#L206-L229
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/svd.jl#L13-L18
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/svd.jl#L189-L194

708 CHAPTER 52. LINEAR ALGEBRA

svd is a wrapper around svdfact, extracting all parts of the SVD factorization to a tuple. Direct use of svdfact

is therefore more efficient.

Example

julia> A = [1. 0. 0. 0. 2.; 0. 0. 3. 0. 0.; 0. 0. 0. 0. 0.; 0. 2. 0. 0. 0.]

4×5 Array{Float64,2}:

1.0 0.0 0.0 0.0 2.0

0.0 0.0 3.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0

0.0 2.0 0.0 0.0 0.0

julia> U, S, V = svd(A)

([0.0 1.0 0.0 0.0; 1.0 0.0 0.0 0.0; 0.0 0.0 0.0 -1.0; 0.0 0.0 1.0 0.0], [3.0, 2.23607, 2.0,

0.0], [-0.0 0.447214 -0.0 0.0; 0.0 0.0 1.0 0.0; … ; -0.0 0.0 -0.0 1.0; 0.0 0.894427 0.0

0.0])

↪→

↪→

julia> U*diagm(S)*V'

4×5 Array{Float64,2}:

1.0 0.0 0.0 0.0 2.0

0.0 0.0 3.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0

0.0 2.0 0.0 0.0 0.0

source

svd(A, B) -> U, V, Q, D1, D2, R0

Wrapper around svdfact extracting all parts of the factorization to a tuple. Direct use of svdfact is therefore

generally more efficient. The function returns the generalized SVD of A and B, returning U, V, Q, D1, D2, and R0

such that A = U*D1*R0*Q' and B = V*D2*R0*Q'.

source

Base.LinAlg.svdvals – Function.

svdvals(A)

Returns the singular values of A in descending order.

Example

julia> A = [1. 0. 0. 0. 2.; 0. 0. 3. 0. 0.; 0. 0. 0. 0. 0.; 0. 2. 0. 0. 0.]

4×5 Array{Float64,2}:

1.0 0.0 0.0 0.0 2.0

0.0 0.0 3.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0

0.0 2.0 0.0 0.0 0.0

julia> svdvals(A)

4-element Array{Float64,1}:

3.0

2.23607

2.0

0.0

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/svd.jl#L70-L104
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/svd.jl#L235-L243
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/svd.jl#L133-L155

52.1. STANDARD FUNCTIONS 709

svdvals(A, B)

Return the generalized singular values from the generalized singular value decomposition of A and B. See also

svdfact.

source

Base.LinAlg.Givens – Type.

LinAlg.Givens(i1,i2,c,s) -> G

A Givens rotation linear operator. The fields c and s represent the cosine and sine of the rotation angle, respec-

tively. The Givens type supports left multiplication G*A and conjugated transpose right multiplication A*G'. The

type doesn’t have asize and can therefore bemultipliedwithmatrices of arbitrary size as long asi2<=size(A,2)

for G*A or i2<=size(A,1) for A*G'.

See also: givens

source

Base.LinAlg.givens – Function.

givens{T}(f::T, g::T, i1::Integer, i2::Integer) -> (G::Givens, r::T)

Computes the Givens rotation G and scalar r such that for any vector xwhere

x[i1] = f

x[i2] = g

the result of the multiplication

y = G*x

has the property that

y[i1] = r

y[i2] = 0

See also: LinAlg.Givens

source

givens(A::AbstractArray, i1::Integer, i2::Integer, j::Integer) -> (G::Givens, r)

Computes the Givens rotation G and scalar r such that the result of the multiplication

B = G*A

has the property that

B[i1,j] = r

B[i2,j] = 0

See also: LinAlg.Givens

source

givens(x::AbstractVector, i1::Integer, i2::Integer) -> (G::Givens, r)

Computes the Givens rotation G and scalar r such that the result of the multiplication

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/svd.jl#L298-L303
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/givens.jl#L16-L26
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/givens.jl#L234-L254
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/givens.jl#L266-L280

710 CHAPTER 52. LINEAR ALGEBRA

B = G*x

has the property that

B[i1] = r

B[i2] = 0

See also: LinAlg.Givens

source

Base.LinAlg.triu – Function.

triu(M)

Upper triangle of a matrix.

Example

julia> a = ones(4,4)

4×4 Array{Float64,2}:

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

julia> triu(a)

4×4 Array{Float64,2}:

1.0 1.0 1.0 1.0

0.0 1.0 1.0 1.0

0.0 0.0 1.0 1.0

0.0 0.0 0.0 1.0

source

triu(M, k::Integer)

Returns the upper triangle of M starting from the kth superdiagonal.

Example

julia> a = ones(4,4)

4×4 Array{Float64,2}:

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

julia> triu(a,3)

4×4 Array{Float64,2}:

0.0 0.0 0.0 1.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

julia> triu(a,-3)

4×4 Array{Float64,2}:

1.0 1.0 1.0 1.0

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/givens.jl#L285-L299
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/generic.jl#L119-L141

52.1. STANDARD FUNCTIONS 711

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

source

Base.LinAlg.triu! – Function.

triu!(M)

Upper triangle of a matrix, overwriting M in the process. See also triu.

source

triu!(M, k::Integer)

Returns the upper triangle of M starting from the kth superdiagonal, overwriting M in the process.

Example

julia> M = [1 2 3 4 5; 1 2 3 4 5; 1 2 3 4 5; 1 2 3 4 5; 1 2 3 4 5]

5×5 Array{Int64,2}:

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

julia> triu!(M, 1)

5×5 Array{Int64,2}:

0 2 3 4 5

0 0 3 4 5

0 0 0 4 5

0 0 0 0 5

0 0 0 0 0

source

Base.LinAlg.tril – Function.

tril(M)

Lower triangle of a matrix.

Example

julia> a = ones(4,4)

4×4 Array{Float64,2}:

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

julia> tril(a)

4×4 Array{Float64,2}:

1.0 0.0 0.0 0.0

1.0 1.0 0.0 0.0

1.0 1.0 1.0 0.0

1.0 1.0 1.0 1.0

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/generic.jl#L169-L198
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/generic.jl#L233-L238
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/dense.jl#L99-L123

712 CHAPTER 52. LINEAR ALGEBRA

source

tril(M, k::Integer)

Returns the lower triangle of M starting from the kth superdiagonal.

Example

julia> a = ones(4,4)

4×4 Array{Float64,2}:

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

julia> tril(a,3)

4×4 Array{Float64,2}:

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

julia> tril(a,-3)

4×4 Array{Float64,2}:

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

1.0 0.0 0.0 0.0

source

Base.LinAlg.tril! – Function.

tril!(M)

Lower triangle of a matrix, overwriting M in the process. See also tril.

source

tril!(M, k::Integer)

Returns the lower triangle of M starting from the kth superdiagonal, overwriting M in the process.

Example

julia> M = [1 2 3 4 5; 1 2 3 4 5; 1 2 3 4 5; 1 2 3 4 5; 1 2 3 4 5]

5×5 Array{Int64,2}:

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

julia> tril!(M, 2)

5×5 Array{Int64,2}:

1 2 3 0 0

1 2 3 4 0

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/generic.jl#L144-L166
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/generic.jl#L201-L230
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/generic.jl#L241-L246

52.1. STANDARD FUNCTIONS 713

source

Base.LinAlg.diagind – Function.

diagind(M, k::Integer=0)

A Range giving the indices of the kth diagonal of the matrix M.

Example

julia> A = [1 2 3; 4 5 6; 7 8 9]

3×3 Array{Int64,2}:

1 2 3

4 5 6

7 8 9

julia> diagind(A,-1)

2:4:6

source

Base.LinAlg.diag – Function.

diag(M, k::Integer=0)

The kth diagonal of a matrix, as a vector. Use diagm to construct a diagonal matrix.

Example

julia> A = [1 2 3; 4 5 6; 7 8 9]

3×3 Array{Int64,2}:

1 2 3

4 5 6

7 8 9

julia> diag(A,1)

2-element Array{Int64,1}:

2

6

source

Base.LinAlg.diagm – Function.

diagm(v, k::Integer=0)

Construct a matrix by placing v on the kth diagonal.

Example

julia> diagm([1,2,3],1)

4×4 Array{Int64,2}:

0 1 0 0

0 0 2 0

0 0 0 3

0 0 0 0

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/dense.jl#L142-L167
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/dense.jl#L209-L226
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/dense.jl#L229-L249
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/dense.jl#L252-L267

714 CHAPTER 52. LINEAR ALGEBRA

Base.LinAlg.scale! – Function.

scale!(A, b)

scale!(b, A)

Scale an array A by a scalar b overwriting A in-place.

If A is amatrix and b is a vector, then scale!(A,b) scales each column i of A by b[i] (similar to A*Diagonal(b)),

while scale!(b,A) scales each row i of A by b[i] (similar to Diagonal(b)*A), again operating in-place on A.

An InexactError exception is thrown if the scaling produces a number not representable by the element type

of A, e.g. for integer types.

Example

julia> a = [1 2; 3 4]

2×2 Array{Int64,2}:

1 2

3 4

julia> b = [1; 2]

2-element Array{Int64,1}:

1

2

julia> scale!(a,b)

2×2 Array{Int64,2}:

1 4

3 8

julia> a = [1 2; 3 4];

julia> b = [1; 2];

julia> scale!(b,a)

2×2 Array{Int64,2}:

1 2

6 8

source

Base.LinAlg.rank – Function.

rank(M[, tol::Real])

Compute the rank of a matrix by counting how many singular values of M have magnitude greater than tol. By

default, the value of tol is the largest dimension of M multiplied by the eps of the eltype of M.

source

Base.LinAlg.norm – Function.

norm(A::AbstractArray, p::Real=2)

Compute the p-norm of a vector or the operator norm of a matrix A, defaulting to the 2-norm.

norm(A::AbstractVector, p::Real=2)

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/generic.jl#L45-L84
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/generic.jl#L697-L705

52.1. STANDARD FUNCTIONS 715

For vectors, this is equivalent to vecnorm and equal to:

‖A‖p =

(
n∑

i=1

|ai|p
)1/p

with ai the entries ofA and n its length.

p can assume any numeric value (even though not all values produce a mathematically valid vector norm). In

particular, norm(A, Inf) returns the largest value in abs(A), whereas norm(A, -Inf) returns the smallest.

Example

julia> v = [3, -2, 6]

3-element Array{Int64,1}:

3

-2

6

julia> norm(v)

7.0

julia> norm(v, Inf)

6.0

source

norm(A::AbstractMatrix, p::Real=2)

Formatrices, the matrix norm induced by the vector p-norm is used, where valid values of p are 1, 2, or Inf. (Note

that for sparse matrices, p=2 is currently not implemented.) Use vecnorm to compute the Frobenius norm.

When p=1, the matrix norm is the maximum absolute column sum of A:

‖A‖1 = max
1jn

m∑
i=1

|aij |

with aij the entries ofA, andm and n its dimensions.

When p=2, the matrix norm is the spectral norm, equal to the largest singular value of A.

When p=Inf, the matrix norm is the maximum absolute row sum of A:

‖A‖∞ = max
1im

n∑
j=1

|aij |

Example

julia> A = [1 -2 -3; 2 3 -1]

2×3 Array{Int64,2}:

1 -2 -3

2 3 -1

julia> norm(A, Inf)

6.0

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/generic.jl#L506-L539

716 CHAPTER 52. LINEAR ALGEBRA

source

norm(x::Number, p::Real=2)

For numbers, return (|x|p)1/p. This is equivalent to vecnorm.

source

norm(A::RowVector, q::Real=2)

For rowvectors, return the q-normofA, which is equivalent to the p-normwithvaluep = q/(q-1). Theycoincide

at p = q = 2.

The difference in norm between a vector space and its dual arises to preserve the relationship between duality

and the inner product, and the result is consistent with the p-norm of 1 × n matrix.

source

Base.LinAlg.vecnorm – Function.

vecnorm(A, p::Real=2)

For any iterable container A (including arrays of any dimension) of numbers (or any element type for which norm

is defined), compute the p-norm (defaulting to p=2) as if Awere a vector of the corresponding length.

The p-norm is defined as:

‖A‖p =

(
n∑

i=1

|ai|p
)1/p

with ai the entries ofA and n its length.

p can assume any numeric value (even though not all values produce a mathematically valid vector norm). In

particular, vecnorm(A, Inf) returns the largest value in abs(A), whereas vecnorm(A, -Inf) returns the

smallest. If A is a matrix and p=2, then this is equivalent to the Frobenius norm.

Example

julia> vecnorm([1 2 3; 4 5 6; 7 8 9])

16.881943016134134

julia> vecnorm([1 2 3 4 5 6 7 8 9])

16.881943016134134

source

vecnorm(x::Number, p::Real=2)

For numbers, return (|x|p)1/p.

source

Base.LinAlg.normalize! – Function.

normalize!(v::AbstractVector, p::Real=2)

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/generic.jl#L542-L574
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/generic.jl#L587-L592
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/generic.jl#L597-L606
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/generic.jl#L414-L441
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/generic.jl#L460-L464

52.1. STANDARD FUNCTIONS 717

Normalize the vector v in-place so that its p-norm equals unity, i.e. norm(v, p) == 1. See also normalize and

vecnorm.

source

Base.LinAlg.normalize – Function.

normalize(v::AbstractVector, p::Real=2)

Normalize the vector v so that its p-norm equals unity, i.e. norm(v, p) == vecnorm(v, p) == 1. See also

normalize! and vecnorm.

Example

julia> a = [1,2,4];

julia> b = normalize(a)

3-element Array{Float64,1}:

0.218218

0.436436

0.872872

julia> norm(b)

1.0

julia> c = normalize(a, 1)

3-element Array{Float64,1}:

0.142857

0.285714

0.571429

julia> norm(c, 1)

1.0

source

Base.LinAlg.cond – Function.

cond(M, p::Real=2)

Condition number of the matrix M, computed using the operator p-norm. Valid values for p are 1, 2 (default), or

Inf.

source

Base.LinAlg.condskeel – Function.

condskeel(M, [x, p::Real=Inf])

κS(M,p) =
∥∥|M |

∣∣M−1
∣∣∥∥

p

κS(M,x, p) =
∥∥|M |

∣∣M−1
∣∣ |x|∥∥

p

Skeel condition numberκS of thematrix M, optionallywith respect to the vector x, as computed using the operator

p-norm. p is Inf by default, if not provided. Valid values for p are 1, 2, or Inf.

This quantity is also known in the literature as the Bauer condition number, relative condition number, or compo-

nentwise relative condition number.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/generic.jl#L1289-L1295
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/generic.jl#L1318-L1348
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/dense.jl#L904-L909
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/generic.jl#L833-L847

718 CHAPTER 52. LINEAR ALGEBRA

Base.LinAlg.trace – Function.

trace(M)

Matrix trace. Sums the diagonal elements of M.

Example

julia> A = [1 2; 3 4]

2×2 Array{Int64,2}:

1 2

3 4

julia> trace(A)

5

source

Base.LinAlg.det – Function.

det(M)

Matrix determinant.

Example

julia> M = [1 0; 2 2]

2×2 Array{Int64,2}:

1 0

2 2

julia> det(M)

2.0

source

Base.LinAlg.logdet – Function.

logdet(M)

Log of matrix determinant. Equivalent to log(det(M)), but may provide increased accuracy and/or speed.

Example

julia> M = [1 0; 2 2]

2×2 Array{Int64,2}:

1 0

2 2

julia> logdet(M)

0.6931471805599453

julia> logdet(eye(3))

0.0

source

Base.LinAlg.logabsdet – Function.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/generic.jl#L715-L731
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/generic.jl#L1187-L1203
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/generic.jl#L1221-L1241

52.1. STANDARD FUNCTIONS 719

logabsdet(M)

Log of absolute value of matrix determinant. Equivalent to (log(abs(det(M))), sign(det(M))), but may

provide increased accuracy and/or speed.

source

Base.inv – Function.

inv(M)

Matrix inverse. Computes matrix N such that M * N = I, where I is the identity matrix. Computed by solving

the left-division N = M \ I.

Example

julia> M = [2 5; 1 3]

2×2 Array{Int64,2}:

2 5

1 3

julia> N = inv(M)

2×2 Array{Float64,2}:

3.0 -5.0

-1.0 2.0

julia> M*N == N*M == eye(2)

true

source

Base.LinAlg.pinv – Function.

pinv(M[, tol::Real])

Computes the Moore-Penrose pseudoinverse.

For matrices M with floating point elements, it is convenient to compute the pseudoinverse by inverting only

singular values above a given threshold, tol.

The optimal choice of tol varies both with the value of M and the intended application of the pseudoinverse. The

default value of tol is eps(real(float(one(eltype(M)))))*maximum(size(A)), which is essentially ma-

chine epsilon for the real part of a matrix element multiplied by the larger matrix dimension. For inverting dense

ill-conditionedmatrices in a least-squares sense, tol = sqrt(eps(real(float(one(eltype(M)))))) is rec-

ommended.

For more information, see 4, 5, 6, 7.

Example

julia> M = [1.5 1.3; 1.2 1.9]

2×2 Array{Float64,2}:

1.5 1.3

1.2 1.9

julia> N = pinv(M)

2×2 Array{Float64,2}:

1.47287 -1.00775

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/generic.jl#L1213-L1218
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/generic.jl#L743-L767

720 CHAPTER 52. LINEAR ALGEBRA

-0.930233 1.16279

julia> M * N

2×2 Array{Float64,2}:

1.0 -2.22045e-16

4.44089e-16 1.0

source

Base.LinAlg.nullspace – Function.

nullspace(M)

Basis for nullspace of M.

Example

julia> M = [1 0 0; 0 1 0; 0 0 0]

3×3 Array{Int64,2}:

1 0 0

0 1 0

0 0 0

julia> nullspace(M)

3×1 Array{Float64,2}:

0.0

0.0

1.0

source

Base.repmat – Function.

repmat(A, m::Integer, n::Integer=1)

Construct a matrix by repeating the given matrix (or vector) m times in dimension 1 and n times in dimension 2.

julia> repmat([1, 2, 3], 2)

6-element Array{Int64,1}:

1

2

3

1

2

3

julia> repmat([1, 2, 3], 2, 3)

4Issue 8859, ”Fix least squares”, https://github.com/JuliaLang/julia/pull/8859

5Åke Björck, ”Numerical Methods for Least Squares Problems”, SIAM Press, Philadelphia, 1996, ”Other Titles in Applied Mathematics”, Vol. 51.

doi:10.1137/1.9781611971484

6G. W. Stewart, ”Rank Degeneracy”, SIAM Journal on Scientific and Statistical Computing, 5(2), 1984, 403-413. doi:10.1137/0905030

7Konstantinos Konstantinides and Kung Yao, ”Statistical analysis of effective singular values in matrix rank determination”, IEEE Transactions

on Acoustics, Speech and Signal Processing, 36(5), 1988, 757-763. doi:10.1109/29.1585

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/dense.jl#L788-L832
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/dense.jl#L874-L894
http://epubs.siam.org/doi/book/10.1137/1.9781611971484
http://epubs.siam.org/doi/abs/10.1137/0905030
http://dx.doi.org/10.1109/29.1585

52.1. STANDARD FUNCTIONS 721

6×3 Array{Int64,2}:

1 1 1

2 2 2

3 3 3

1 1 1

2 2 2

3 3 3

source

Base.repeat – Function.

repeat(A::AbstractArray; inner=ntuple(x->1, ndims(A)), outer=ntuple(x->1, ndims(A)))

Construct an array by repeating the entries of A. The i-th element of inner specifies the number of times that

the individual entries of the i-th dimension of A should be repeated. The i-th element of outer specifies the

number of times that a slice along the i-th dimension of A should be repeated. If inner or outer are omitted, no

repetition is performed.

julia> repeat(1:2, inner=2)

4-element Array{Int64,1}:

1

1

2

2

julia> repeat(1:2, outer=2)

4-element Array{Int64,1}:

1

2

1

2

julia> repeat([1 2; 3 4], inner=(2, 1), outer=(1, 3))

4×6 Array{Int64,2}:

1 2 1 2 1 2

1 2 1 2 1 2

3 4 3 4 3 4

3 4 3 4 3 4

source

Base.kron – Function.

kron(A, B)

Kronecker tensor product of two vectors or two matrices.

Example

julia> A = [1 2; 3 4]

2×2 Array{Int64,2}:

1 2

3 4

julia> B = [im 1; 1 -im]

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/abstractarraymath.jl#L278-L303
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/abstractarraymath.jl#L331-L362

722 CHAPTER 52. LINEAR ALGEBRA

2×2 Array{Complex{Int64},2}:

0+1im 1+0im

1+0im 0-1im

julia> kron(A, B)

4×4 Array{Complex{Int64},2}:

0+1im 1+0im 0+2im 2+0im

1+0im 0-1im 2+0im 0-2im

0+3im 3+0im 0+4im 4+0im

3+0im 0-3im 4+0im 0-4im

source

Base.SparseArrays.blkdiag – Function.

blkdiag(A...)

Concatenate matrices block-diagonally. Currently only implemented for sparse matrices.

Example

julia> blkdiag(speye(3), 2*speye(2))

5×5 SparseMatrixCSC{Float64,Int64} with 5 stored entries:

[1, 1] = 1.0

[2, 2] = 1.0

[3, 3] = 1.0

[4, 4] = 2.0

[5, 5] = 2.0

source

Base.LinAlg.linreg – Function.

linreg(x, y)

Perform simple linear regression using Ordinary Least Squares. Returns a and b such that a + b*x is the closest

straight line to the given points (x, y), i.e., such that the squared error between y and a + b*x is minimized.

Examples:

using PyPlot

x = 1.0:12.0

y = [5.5, 6.3, 7.6, 8.8, 10.9, 11.79, 13.48, 15.02, 17.77, 20.81, 22.0, 22.99]

a, b = linreg(x, y) # Linear regression

plot(x, y, "o") # Plot (x, y) points

plot(x, a + b*x) # Plot line determined by linear regression

See also:

\, cov, std, mean.

source

Base.LinAlg.expm – Function.

expm(A)

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/dense.jl#L286-L311
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/sparse/sparsematrix.jl#L2988-L3003
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/generic.jl#L1031-L1051

52.1. STANDARD FUNCTIONS 723

Compute the matrix exponential of A, defined by

eA =

∞∑
n=0

An

n!
.

For symmetric or Hermitian A, an eigendecomposition (eigfact) is used, otherwise the scaling and squaring

algorithm (see 8) is chosen.

Example

julia> A = eye(2, 2)

2×2 Array{Float64,2}:

1.0 0.0

0.0 1.0

julia> expm(A)

2×2 Array{Float64,2}:

2.71828 0.0

0.0 2.71828

source

Base.LinAlg.logm – Function.

logm(A{T}::StridedMatrix{T})

If A has no negative real eigenvalue, compute the principal matrix logarithm of A, i.e. the unique matrixX such

that eX = A and −π < Im(λ) < π for all the eigenvalues λ of X . If A has nonpositive eigenvalues, a
nonprincipal matrix function is returned whenever possible.

If A is symmetric or Hermitian, its eigendecomposition (eigfact) is used, if A is triangular an improved version of

the inverse scaling and squaring method is employed (see 9 and 10). For general matrices, the complex Schur form

(schur) is computed and the triangular algorithm is used on the triangular factor.

Example

julia> A = 2.7182818 * eye(2)

2×2 Array{Float64,2}:

2.71828 0.0

0.0 2.71828

julia> logm(A)

2×2 Symmetric{Float64,Array{Float64,2}}:

1.0 0.0

0.0 1.0

source

8Nicholas J. Higham, ”The squaring and scaling method for the matrix exponential revisited”, SIAM Journal onMatrix Analysis andApplications,

26(4), 2005, 1179-1193. doi:10.1137/090768539

9Awad H. Al-Mohy and Nicholas J. Higham, ”Improved inverse scaling and squaring algorithms for the matrix logarithm”, SIAM Journal on

Scientific Computing, 34(4), 2012, C153-C169. doi:10.1137/110852553

10Awad H. Al-Mohy, Nicholas J. Higham and Samuel D. Relton, ”Computing the Fréchet derivative of the matrix logarithm and estimating the

condition number”, SIAM Journal on Scientific Computing, 35(4), 2013, C394-C410. doi:10.1137/120885991

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/dense.jl#L395-L422
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/dense.jl#L522-L553
http://dx.doi.org/10.1137/090768539
http://dx.doi.org/10.1137/110852553
http://dx.doi.org/10.1137/120885991

724 CHAPTER 52. LINEAR ALGEBRA

Base.LinAlg.sqrtm – Function.

sqrtm(A)

If A has no negative real eigenvalues, compute the principal matrix square root of A, that is the unique matrixX
with eigenvalues having positive real part such thatX2 = A. Otherwise, a nonprincipal square root is returned.

If A is symmetric or Hermitian, its eigendecomposition (eigfact) is used to compute the square root. Otherwise,

the square root is determined bymeans of the Björck-Hammarling method 11, which computes the complex Schur

form (schur) and then the complex square root of the triangular factor.

Example

julia> A = [4 0; 0 4]

2×2 Array{Int64,2}:

4 0

0 4

julia> sqrtm(A)

2×2 Array{Float64,2}:

2.0 0.0

0.0 2.0

source

Base.LinAlg.lyap – Function.

lyap(A, C)

Computes the solution X to the continuous Lyapunov equation AX + XA' + C = 0, where no eigenvalue of A

has a zero real part and no two eigenvalues are negative complex conjugates of each other.

source

Base.LinAlg.sylvester – Function.

sylvester(A, B, C)

Computes the solution X to the Sylvester equation AX + XB + C = 0, where A, B and C have compatible dimen-

sions and A and -B have no eigenvalues with equal real part.

source

Base.LinAlg.issymmetric – Function.

issymmetric(A) -> Bool

Test whether a matrix is symmetric.

Example

julia> a = [1 2; 2 -1]

2×2 Array{Int64,2}:

1 2

2 -1

11Åke Björck and Sven Hammarling, ”A Schurmethod for the square root of a matrix”, LinearAlgebra and its Applications, 52-53, 1983, 127-140.

doi:10.1016/0024-3795(83)80010-X

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/dense.jl#L589-L620
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/dense.jl#L946-L952
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/dense.jl#L926-L931
http://dx.doi.org/10.1016/0024-3795(83)80010-X

52.1. STANDARD FUNCTIONS 725

julia> issymmetric(a)

true

julia> b = [1 im; -im 1]

2×2 Array{Complex{Int64},2}:

1+0im 0+1im

0-1im 1+0im

julia> issymmetric(b)

false

source

Base.LinAlg.isposdef – Function.

isposdef(A) -> Bool

Test whether a matrix is positive definite.

Example

julia> A = [1 2; 2 50]

2×2 Array{Int64,2}:

1 2

2 50

julia> isposdef(A)

true

source

Base.LinAlg.isposdef! – Function.

isposdef!(A) -> Bool

Test whether a matrix is positive definite, overwriting A in the process.

Example

julia> A = [1. 2.; 2. 50.];

julia> isposdef!(A)

true

julia> A

2×2 Array{Float64,2}:

1.0 2.0

2.0 6.78233

source

Base.LinAlg.istril – Function.

istril(A) -> Bool

Test whether a matrix is lower triangular.

Example

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/generic.jl#L850-L874
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/dense.jl#L60-L76
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/dense.jl#L35-L53

726 CHAPTER 52. LINEAR ALGEBRA

julia> a = [1 2; 2 -1]

2×2 Array{Int64,2}:

1 2

2 -1

julia> istril(a)

false

julia> b = [1 0; -im -1]

2×2 Array{Complex{Int64},2}:

1+0im 0+0im

0-1im -1+0im

julia> istril(b)

true

source

Base.LinAlg.istriu – Function.

istriu(A) -> Bool

Test whether a matrix is upper triangular.

Example

julia> a = [1 2; 2 -1]

2×2 Array{Int64,2}:

1 2

2 -1

julia> istriu(a)

false

julia> b = [1 im; 0 -1]

2×2 Array{Complex{Int64},2}:

1+0im 0+1im

0+0im -1+0im

julia> istriu(b)

true

source

Base.LinAlg.isdiag – Function.

isdiag(A) -> Bool

Test whether a matrix is diagonal.

Example

julia> a = [1 2; 2 -1]

2×2 Array{Int64,2}:

1 2

2 -1

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/generic.jl#L965-L989
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/generic.jl#L930-L954

52.1. STANDARD FUNCTIONS 727

julia> isdiag(a)

false

julia> b = [im 0; 0 -im]

2×2 Array{Complex{Int64},2}:

0+1im 0+0im

0+0im 0-1im

julia> isdiag(b)

true

source

Base.LinAlg.ishermitian – Function.

ishermitian(A) -> Bool

Test whether a matrix is Hermitian.

Example

julia> a = [1 2; 2 -1]

2×2 Array{Int64,2}:

1 2

2 -1

julia> ishermitian(a)

true

julia> b = [1 im; -im 1]

2×2 Array{Complex{Int64},2}:

1+0im 0+1im

0-1im 1+0im

julia> ishermitian(b)

true

source

Base.LinAlg.RowVector – Type.

RowVector(vector)

A lazy-view wrapper of an AbstractVector, which turns a length-n vector into a 1×n shaped row vector and

represents the transpose of a vector (the elements are also transposed recursively). This type is usually constructed

(and unwrapped) via the transpose function or .' operator (or related ctranspose or ' operator).

By convention, a vector can be multiplied by a matrix on its left (A * v) whereas a rowvector can be multiplied by

a matrix on its right (such that v.' * A = (A.' * v).'). It differs from a 1×n-sized matrix by the facts that its

transpose returns a vector and the inner product v1.' * v2 returns a scalar, but will otherwise behave similarly.

source

Base.LinAlg.ConjArray – Type.

ConjArray(array)

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/generic.jl#L1000-L1024
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/generic.jl#L890-L914
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/rowvector.jl#L3-L15

728 CHAPTER 52. LINEAR ALGEBRA

A lazy-view wrapper of an AbstractArray, taking the elementwise complex conjugate. This type is usually

constructed (and unwrapped) via the conj function (or related ctranspose), but currently this is the default

behavior for RowVector only. For other arrays, the ConjArray constructor can be used directly.

Examples

julia> [1+im, 1-im]'

1×2 RowVector{Complex{Int64},ConjArray{Complex{Int64},1,Array{Complex{Int64},1}}}:

1-1im 1+1im

julia> ConjArray([1+im 0; 0 1-im])

2×2 ConjArray{Complex{Int64},2,Array{Complex{Int64},2}}:

1-1im 0+0im

0+0im 1+1im

source

Base.transpose – Function.

transpose(A::AbstractMatrix)

The transposition operator (.').

Example

julia> A = [1 2 3; 4 5 6; 7 8 9]

3×3 Array{Int64,2}:

1 2 3

4 5 6

7 8 9

julia> transpose(A)

3×3 Array{Int64,2}:

1 4 7

2 5 8

3 6 9

source

transpose(v::AbstractVector)

The transposition operator (.').

Example

julia> v = [1,2,3]

3-element Array{Int64,1}:

1

2

3

julia> transpose(v)

1×3 RowVector{Int64,Array{Int64,1}}:

1 2 3

source

Base.LinAlg.transpose! – Function.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/conjarray.jl#L3-L23
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/transpose.jl#L97-L117
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/rowvector.jl#L59-L77

52.1. STANDARD FUNCTIONS 729

transpose!(dest,src)

Transpose array src and store the result in the preallocated array dest, which should have a size corresponding

to (size(src,2),size(src,1)). No in-place transposition is supported and unexpected results will happen

if src and dest have overlapping memory regions.

source

Base.ctranspose – Function.

ctranspose(A)

The conjugate transposition operator (').

Example

julia> A = [3+2im 9+2im; 8+7im 4+6im]

2×2 Array{Complex{Int64},2}:

3+2im 9+2im

8+7im 4+6im

julia> ctranspose(A)

2×2 Array{Complex{Int64},2}:

3-2im 8-7im

9-2im 4-6im

source

Base.LinAlg.ctranspose! – Function.

ctranspose!(dest,src)

Conjugate transpose array src and store the result in the preallocated array dest, which should have a size cor-

responding to (size(src,2),size(src,1)). No in-place transposition is supported and unexpected results

will happen if src and dest have overlapping memory regions.

source

Base.LinAlg.eigs – Method.

eigs(A; nev=6, ncv=max(20,2*nev+1), which=:LM, tol=0.0, maxiter=300, sigma=nothing, ritzvec=

true, v0=zeros((0,))) -> (d,[v,],nconv,niter,nmult,resid)

Computes eigenvalues d of A using implicitly restarted Lanczos or Arnoldi iterations for real symmetric or general

nonsymmetric matrices respectively.

The following keyword arguments are supported:

• nev: Number of eigenvalues

• ncv: Number of Krylov vectors used in the computation; should satisfy nev+1 <= ncv <= n for real sym-

metric problems and nev+2 <= ncv <= n for other problems, where n is the size of the input matrix A.

The default is ncv = max(20,2*nev+1). Note that these restrictions limit the input matrix A to be of

dimension at least 2.

• which: type of eigenvalues to compute. See the note below.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/transpose.jl#L8-L15
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/operators.jl#L689-L707
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/transpose.jl#L18-L25

730 CHAPTER 52. LINEAR ALGEBRA

which type of eigenvalues

:LM eigenvalues of largest magnitude (default)

:SM eigenvalues of smallest magnitude

:LR eigenvalues of largest real part

:SR eigenvalues of smallest real part

:LI eigenvalues of largest imaginary part (nonsymmetric or complex A only)

:SI eigenvalues of smallest imaginary part (nonsymmetric or complex A only)

:BE compute half of the eigenvalues from each end of the spectrum, biased in favor of the high end. (real

symmetric A only)

• tol: parameter defining the relative tolerance for convergence of Ritz values (eigenvalue estimates). A

Ritz value is considered converged when its associated residual is less than or equal to the product of

tol andmax(2/3, ||), where = eps(real(eltype(A)))/2 is LAPACK’s machine epsilon. The residual

associated with and its corresponding Ritz vector v is defined as the norm ||Av − v||. The specified value
of tol should be positive; otherwise, it is ignored and is used instead. Default: .

• maxiter: Maximum number of iterations (default = 300)

• sigma: Specifies the level shift used in inverse iteration. If nothing (default), defaults to ordinary (forward)

iterations. Otherwise, find eigenvalues close to sigma using shift and invert iterations.

• ritzvec: Returns the Ritz vectors v (eigenvectors) if true

• v0: starting vector from which to start the iterations

eigs returns the nev requested eigenvalues in d, the corresponding Ritz vectors v (only if ritzvec=true), the

number of converged eigenvalues nconv, the number of iterations niter and the number of matrix vector mul-

tiplications nmult, as well as the final residual vector resid.

Example

julia> A = spdiagm(1:4);

julia> λ, = eigs(A, nev = 2);

julia> λ

2-element Array{Float64,1}:

4.0

3.0

Note

The sigma and which keywords interact: the description of eigenvalues searched for by which do not

necessarily refer to the eigenvalues of A, but rather the linear operator constructed by the specification

of the iteration mode implied by sigma.

sigma iteration mode which refers to eigenvalues of

nothing ordinary (forward) A
real or complex inverse with level shift sigma (A− σI)−1

Note

Although tol has a default value, the best choice depends strongly on the matrix A. We recommend

that users _always_ specify a value for tolwhich suits their specific needs.

For details of how the errors in the computed eigenvalues are estimated, see:

52.1. STANDARD FUNCTIONS 731

• B. N. Parlett, ”The Symmetric Eigenvalue Problem”, SIAM: Philadelphia, 2/e (1998), Ch. 13.2,

”Accessing Accuracy in Lanczos Problems”, pp. 290-292 ff.

• R. B. Lehoucq and D. C. Sorensen, ”Deflation Techniques for an Implicitly RestartedArnoldi Itera-

tion”, SIAMJournal onMatrixAnalysis andApplications (1996), 17(4), 789–821. doi:10.1137/S0895479895281484

source

Base.LinAlg.eigs – Method.

eigs(A, B; nev=6, ncv=max(20,2*nev+1), which=:LM, tol=0.0, maxiter=300, sigma=nothing,

ritzvec=true, v0=zeros((0,))) -> (d,[v,],nconv,niter,nmult,resid)

Computes generalized eigenvalues d of A and B using implicitly restarted Lanczos or Arnoldi iterations for real

symmetric or general nonsymmetric matrices respectively.

The following keyword arguments are supported:

• nev: Number of eigenvalues

• ncv: Number of Krylov vectors used in the computation; should satisfy nev+1 <= ncv <= n for real sym-

metric problems and nev+2 <= ncv <= n for other problems, where n is the size of the input matrices A

and B. The default is ncv = max(20,2*nev+1). Note that these restrictions limit the input matrix A to be

of dimension at least 2.

• which: type of eigenvalues to compute. See the note below.

which type of eigenvalues

:LM eigenvalues of largest magnitude (default)

:SM eigenvalues of smallest magnitude

:LR eigenvalues of largest real part

:SR eigenvalues of smallest real part

:LI eigenvalues of largest imaginary part (nonsymmetric or complex A only)

:SI eigenvalues of smallest imaginary part (nonsymmetric or complex A only)

:BE compute half of the eigenvalues from each end of the spectrum, biased in favor of the high end. (real

symmetric A only)

• tol: relative tolerance used in the convergence criterion for eigenvalues, similar to tol in the eigs(A)

method for the ordinary eigenvalue problem, but effectively for the eigenvalues of B−1A instead of A.
See the documentation for the ordinary eigenvalue problem in eigs(A) and the accompanying note about

tol.

• maxiter: Maximum number of iterations (default = 300)

• sigma: Specifies the level shift used in inverse iteration. If nothing (default), defaults to ordinary (forward)

iterations. Otherwise, find eigenvalues close to sigma using shift and invert iterations.

• ritzvec: Returns the Ritz vectors v (eigenvectors) if true

• v0: starting vector from which to start the iterations

eigs returns the nev requested eigenvalues in d, the corresponding Ritz vectors v (only if ritzvec=true), the

number of converged eigenvalues nconv, the number of iterations niter and the number of matrix vector mul-

tiplications nmult, as well as the final residual vector resid.

Example

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/arnoldi.jl#L6-L89

732 CHAPTER 52. LINEAR ALGEBRA

julia> A = speye(4, 4); B = spdiagm(1:4);

julia> λ, = eigs(A, B, nev = 2);

julia> λ

2-element Array{Float64,1}:

1.0

0.5

Note

The sigma and which keywords interact: the description of eigenvalues searched for by which do not

necessarily refer to the eigenvalue problem Av = Bvλ, but rather the linear operator constructed
by the specification of the iteration mode implied by sigma.

sigma iteration mode which refers to the problem

nothing ordinary (forward) Av = Bvλ
real or complex inverse with level shift sigma (A− σB)−1B = vν

source

Base.LinAlg.svds – Function.

svds(A; nsv=6, ritzvec=true, tol=0.0, maxiter=1000, ncv=2*nsv, u0=zeros((0,)), v0=zeros((0,))

) -> (SVD([left_sv,] s, [right_sv,]), nconv, niter, nmult, resid)

Computes the largest singular values s of A using implicitly restarted Lanczos iterations derived from eigs.

Inputs

• A: Linear operatorwhose singularvalues are desired. Amaybe represented as a subtype of AbstractArray,

e.g., a sparse matrix, or any other type supporting the four methods size(A), eltype(A), A * vector,

and A' * vector.

• nsv: Number of singular values. Default: 6.

• ritzvec: If true, return the left and right singular vectors left_sv and right_sv. If false, omit the

singular vectors. Default: true.

• tol: tolerance, see eigs.

• maxiter: Maximum number of iterations, see eigs. Default: 1000.

• ncv: Maximum size of the Krylov subspace, see eigs (there called nev). Default: 2*nsv.

• u0: Initial guess for the first left Krylov vector. It may have length m (the first dimension of A), or 0.

• v0: Initial guess for the first right Krylov vector. It may have length n (the second dimension of A), or 0.

Outputs

• svd: An SVD object containing the left singular vectors, the requested values, and the right singular vectors.

If ritzvec = false, the left and right singular vectors will be empty.

• nconv: Number of converged singular values.

• niter: Number of iterations.

• nmult: Number of matrix–vector products used.

• resid: Final residual vector.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/arnoldi.jl#L105-L169

52.2. LOW-LEVELMATRIX OPERATIONS 733

Example

julia> A = spdiagm(1:4);

julia> s = svds(A, nsv = 2)[1];

julia> s[:S]

2-element Array{Float64,1}:

4.0

3.0

Implementation

svds(A) is formally equivalent to calling eigs to perform implicitly restarted Lanczos tridiagonaliza-

tion on the Hermitian matrix

(
0 A′

A 0

)
, whose eigenvalues are plus and minus the singular values

ofA.

source

Base.LinAlg.peakflops – Function.

peakflops(n::Integer=2000; parallel::Bool=false)

peakflops computes the peak flop rate of the computer by using double precision gemm!. By default, if no argu-

ments are specified, it multiplies a matrix of size n x n, where n = 2000. If the underlying BLAS is using multiple

threads, higher flop rates are realized. The number of BLAS threads can be setwith BLAS.set_num_threads(n).

If the keyword argument parallel is set to true, peakflops is run in parallel on all the worker processors. The

flop rate of the entire parallel computer is returned. When running in parallel, only 1 BLAS thread is used. The

argument n still refers to the size of the problem that is solved on each processor.

source

52.2 Low-level matrix operations

Matrix operations involving transpositions operations like A' \ B are converted by the Julia parser into calls to spe-

cially named functions like Ac_ldiv_B. If you want to overload these operations for your own types, then it is useful

to know the names of these functions.

Also, in many cases there are in-place versions of matrix operations that allow you to supply a pre-allocated output

vector or matrix. This is useful when optimizing critical code in order to avoid the overhead of repeated allocations.

These in-place operations are suffixed with ! below (e.g. A_mul_B!) according to the usual Julia convention.

Base.LinAlg.A_ldiv_B! – Function.

A_ldiv_B!([Y,] A, B) -> Y

Compute A \ B in-place and store the result in Y, returning the result. If only two arguments are passed, then

A_ldiv_B!(A, B) overwrites Bwith the result.

The argument A should not be a matrix. Rather, instead of matrices it should be a factorization object (e.g. pro-

duced by factorize or cholfact). The reason for this is that factorization itself is both expensive and typically

allocates memory (although it can also be done in-place via, e.g., lufact!), and performance-critical situations

requiring A_ldiv_B! usually also require fine-grained control over the factorization of A.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/arnoldi.jl#L333-L381
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/generic.jl#L1086-L1099
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/factorization.jl#L63-L76

734 CHAPTER 52. LINEAR ALGEBRA

Base.A_ldiv_Bc – Function.

A_ldiv_Bc(A, B)

For matrices or vectorsA andB, calculatesA \B.

source

Base.A_ldiv_Bt – Function.

A_ldiv_Bt(A, B)

For matrices or vectorsA andB, calculatesA \B.

source

Base.LinAlg.A_mul_B! – Function.

A_mul_B!(Y, A, B) -> Y

Calculates the matrix-matrix or matrix-vector product AB and stores the result in Y, overwriting the existing

value of Y. Note that Y must not be aliased with either A or B.

Example

julia> A=[1.0 2.0; 3.0 4.0]; B=[1.0 1.0; 1.0 1.0]; Y = similar(B); A_mul_B!(Y, A, B);

julia> Y

2×2 Array{Float64,2}:

3.0 3.0

7.0 7.0

source

Base.A_mul_Bc – Function.

A_mul_Bc(A, B)

For matrices or vectorsA andB, calculatesAB.

source

Base.A_mul_Bt – Function.

A_mul_Bt(A, B)

For matrices or vectorsA andB, calculatesAB.

source

Base.A_rdiv_Bc – Function.

A_rdiv_Bc(A, B)

For matrices or vectorsA andB, calculatesA/B.

source

Base.A_rdiv_Bt – Function.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/operators.jl#L806-L810
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/operators.jl#L827-L831
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/matmul.jl#L160-L177
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/operators.jl#L720-L724
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/operators.jl#L741-L745
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/operators.jl#L764-L768

52.2. LOW-LEVELMATRIX OPERATIONS 735

A_rdiv_Bt(A, B)

For matrices or vectorsA andB, calculatesA/B.

source

Base.Ac_ldiv_B – Function.

Ac_ldiv_B(A, B)

For matrices or vectorsA andB, calculatesA \B.

source

Base.LinAlg.Ac_ldiv_B! – Function.

Ac_ldiv_B!([Y,] A, B) -> Y

Similar to A_ldiv_B!, but returnA \B, computing the result in-place in Y (or overwriting B if Y is not supplied).

source

Base.Ac_ldiv_Bc – Function.

Ac_ldiv_Bc(A, B)

For matrices or vectorsA andB, calculatesA \B.

source

Base.Ac_mul_B – Function.

Ac_mul_B(A, B)

For matrices or vectorsA andB, calculatesAB.

source

Base.Ac_mul_Bc – Function.

Ac_mul_Bc(A, B)

For matrices or vectorsA andB, calculatesAB.

source

Base.Ac_rdiv_B – Function.

Ac_rdiv_B(A, B)

For matrices or vectorsA andB, calculatesA/B.

source

Base.Ac_rdiv_Bc – Function.

Ac_rdiv_Bc(A, B)

For matrices or vectorsA andB, calculatesA/B.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/operators.jl#L785-L789
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/operators.jl#L799-L803
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/factorization.jl#L79-L84
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/operators.jl#L813-L817
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/operators.jl#L713-L717
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/operators.jl#L727-L731
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/operators.jl#L757-L761
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/operators.jl#L771-L775

736 CHAPTER 52. LINEAR ALGEBRA

Base.At_ldiv_B – Function.

At_ldiv_B(A, B)

For matrices or vectorsA andB, calculatesA \B.

source

Base.LinAlg.At_ldiv_B! – Function.

At_ldiv_B!([Y,] A, B) -> Y

Similar to A_ldiv_B!, but returnA \B, computing the result in-place in Y (or overwriting B if Y is not supplied).

source

Base.At_ldiv_Bt – Function.

At_ldiv_Bt(A, B)

For matrices or vectorsA andB, calculatesA \B.

source

Base.At_mul_B – Function.

At_mul_B(A, B)

For matrices or vectorsA andB, calculatesAB.

source

Base.At_mul_Bt – Function.

At_mul_Bt(A, B)

For matrices or vectorsA andB, calculatesAB.

source

Base.At_rdiv_B – Function.

At_rdiv_B(A, B)

For matrices or vectorsA andB, calculatesA/B.

source

Base.At_rdiv_Bt – Function.

At_rdiv_Bt(A, B)

For matrices or vectorsA andB, calculatesA/B.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/operators.jl#L820-L824
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/factorization.jl#L87-L92
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/operators.jl#L834-L838
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/operators.jl#L734-L738
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/operators.jl#L748-L752
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/operators.jl#L778-L782
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/operators.jl#L792-L796

52.3. BLAS FUNCTIONS 737

52.3 BLAS Functions

In Julia (as in much of scientific computation), dense linear-algebra operations are based on the LAPACK library, which

in turn is built on top of basic linear-algebra building-blocks known as the BLAS. There are highly optimized implemen-

tations of BLAS available for every computer architecture, and sometimes in high-performance linear algebra routines

it is useful to call the BLAS functions directly.

Base.LinAlg.BLAS provides wrappers for some of the BLAS functions. Those BLAS functions that overwrite one of

the input arrays have names ending in '!'. Usually, a BLAS function has fourmethods defined, for Float64, Float32,

Complex128, and Complex64 arrays.

BLAS Character Arguments

Many BLAS functions accept arguments that determine whether to transpose an argument (trans), which triangle of

a matrix to reference (uplo or ul), whether the diagonal of a triangular matrix can be assumed to be all ones (dA) or

which side of a matrix multiplication the input argument belongs on (side). The possiblities are:

Multplication Order

side Meaning

'L' The argument goes on the left side of a matrix-matrix operation.

'R' The argument goes on the right side of a matrix-matrix operation.

Triangle Referencing

uplo/ul Meaning

'U' Only the upper triangle of the matrix will be used.

'L' Only the lower triangle of the matrix will be used.

Transposition Operation

trans/tX Meaning

'N' The input matrix X is not transposed or conjugated.

'T' The input matrix Xwill be transposed.

'C' The input matrix Xwill be conjugated and transposed.

Unit Diagonal

diag/dX Meaning

'N' The diagonal values of the matrix Xwill be read.

'U' The diagonal of the matrix X is assumed to be all ones.

Base.LinAlg.BLAS.dotu – Function.

dotu(n, X, incx, Y, incy)

Dot function for two complex vectors consisting of n elements of array Xwith stride incx and n elements of array

Ywith stride incy.

Example:

http://www.netlib.org/lapack/
http://www.netlib.org/blas/

738 CHAPTER 52. LINEAR ALGEBRA

julia> Base.BLAS.dotu(10, im*ones(10), 1, complex.(ones(20), ones(20)), 2)

-10.0 + 10.0im

source

Base.LinAlg.BLAS.dotc – Function.

dotc(n, X, incx, U, incy)

Dot function for two complex vectors, consisting of n elements of array X with stride incx and n elements of

array Uwith stride incy, conjugating the first vector.

Example:

julia> Base.BLAS.dotc(10, im*ones(10), 1, complex.(ones(20), ones(20)), 2)

10.0 - 10.0im

source

Base.LinAlg.BLAS.blascopy! – Function.

blascopy!(n, X, incx, Y, incy)

Copy n elements of array Xwith stride incx to array Ywith stride incy. Returns Y.

source

Base.LinAlg.BLAS.nrm2 – Function.

nrm2(n, X, incx)

2-norm of a vector consisting of n elements of array Xwith stride incx.

Example:

julia> Base.BLAS.nrm2(4, ones(8), 2)

2.0

julia> Base.BLAS.nrm2(1, ones(8), 2)

1.0

source

Base.LinAlg.BLAS.asum – Function.

asum(n, X, incx)

Sum of the absolute values of the first n elements of array Xwith stride incx.

Example:

julia> Base.BLAS.asum(5, im*ones(10), 2)

5.0

julia> Base.BLAS.asum(2, im*ones(10), 5)

2.0

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/blas.jl#L242-L253
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/blas.jl#L227-L239
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/blas.jl#L157-L161
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/blas.jl#L335-L348
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/blas.jl#L368-L381

52.3. BLAS FUNCTIONS 739

Base.LinAlg.axpy! – Function.

axpy!(a, X, Y)

Overwrite Ywith a*X + Y, where a is a scalar. Returns Y.

Example:

julia> x = [1; 2; 3];

julia> y = [4; 5; 6];

julia> Base.BLAS.axpy!(2, x, y)

3-element Array{Int64,1}:

6

9

12

source

Base.LinAlg.BLAS.scal! – Function.

scal!(n, a, X, incx)

Overwrite Xwith a*X for the first n elements of array Xwith stride incx. Returns X.

source

Base.LinAlg.BLAS.scal – Function.

scal(n, a, X, incx)

Returns X scaled by a for the first n elements of array Xwith stride incx.

source

Base.LinAlg.BLAS.ger! – Function.

ger!(alpha, x, y, A)

Rank-1 update of the matrix Awith vectors x and y as alpha*x*y' + A.

source

Base.LinAlg.BLAS.syr! – Function.

syr!(uplo, alpha, x, A)

Rank-1 update of the symmetric matrix Awith vector x as alpha*x*x.' + A. uplo controls which triangle of A

is updated. Returns A.

source

Base.LinAlg.BLAS.syrk! – Function.

syrk!(uplo, trans, alpha, A, beta, C)

Rank-k update of the symmetric matrix C as alpha*A*A.' + beta*C or alpha*A.'*A + beta*C according

to trans. Only the uplo triangle of C is used. Returns C.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/blas.jl#L401-L418
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/blas.jl#L181-L185
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/blas.jl#L188-L192
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/blas.jl#L904-L908
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/blas.jl#L935-L940
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/blas.jl#L1169-L1175

740 CHAPTER 52. LINEAR ALGEBRA

Base.LinAlg.BLAS.syrk – Function.

syrk(uplo, trans, alpha, A)

Returns either the upper triangle or the lower triangle of A, according to uplo, of alpha*A*A.' or alpha*A.'*A,

according to trans.

source

Base.LinAlg.BLAS.her! – Function.

her!(uplo, alpha, x, A)

Methods for complex arrays only. Rank-1 update of the Hermitian matrix A with vector x as alpha*x*x' + A.

uplo controls which triangle of A is updated. Returns A.

source

Base.LinAlg.BLAS.herk! – Function.

herk!(uplo, trans, alpha, A, beta, C)

Methods for complex arrays only. Rank-k update of the Hermitian matrix C as alpha*A*A' + beta*C or al-

pha*A'*A + beta*C according to trans. Only the uplo triangle of C is updated. Returns C.

source

Base.LinAlg.BLAS.herk – Function.

herk(uplo, trans, alpha, A)

Methods for complex arrays only. Returns the uplo triangle of alpha*A*A' or alpha*A'*A, according to trans.

source

Base.LinAlg.BLAS.gbmv! – Function.

gbmv!(trans, m, kl, ku, alpha, A, x, beta, y)

Update vector y as alpha*A*x + beta*y or alpha*A'*x + beta*y according to trans. The matrix A is a

general band matrix of dimension m by size(A,2) with kl sub-diagonals and ku super-diagonals. alpha and

beta are scalars. Returns the updated y.

source

Base.LinAlg.BLAS.gbmv – Function.

gbmv(trans, m, kl, ku, alpha, A, x)

Returns alpha*A*x or alpha*A'*x according to trans. The matrix A is a general band matrix of dimension m

by size(A,2)with kl sub-diagonals and ku super-diagonals, and alpha is a scalar.

source

Base.LinAlg.BLAS.sbmv! – Function.

sbmv!(uplo, k, alpha, A, x, beta, y)

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/blas.jl#L1178-L1185
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/blas.jl#L965-L971
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/blas.jl#L1225-L1232
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/blas.jl#L1235-L1241
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/blas.jl#L547-L553
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/blas.jl#L556-L562

52.3. BLAS FUNCTIONS 741

Update vector y as alpha*A*x + beta*y where A is a a symmetric band matrix of order size(A,2) with k

super-diagonals stored in the argument A. The storage layout for A is described the reference BLAS module, level-

2 BLAS at http://www.netlib.org/lapack/explore-html/. Only the uplo triangle of A is used.

Returns the updated y.

source

Base.LinAlg.BLAS.sbmv – Method.

sbmv(uplo, k, alpha, A, x)

Returns alpha*A*x where A is a symmetric band matrix of order size(A,2) with k super-diagonals stored in

the argument A. Only the uplo triangle of A is used.

source

Base.LinAlg.BLAS.sbmv – Method.

sbmv(uplo, k, A, x)

Returns A*x where A is a symmetric band matrix of order size(A,2) with k super-diagonals stored in the argu-

ment A. Only the uplo triangle of A is used.

source

Base.LinAlg.BLAS.gemm! – Function.

gemm!(tA, tB, alpha, A, B, beta, C)

Update C as alpha*A*B + beta*C or the other three variants according to tA and tB. Returns the updated C.

source

Base.LinAlg.BLAS.gemm – Method.

gemm(tA, tB, alpha, A, B)

Returns alpha*A*B or the other three variants according to tA and tB.

source

Base.LinAlg.BLAS.gemm – Method.

gemm(tA, tB, A, B)

Returns A*B or the other three variants according to tA and tB.

source

Base.LinAlg.BLAS.gemv! – Function.

gemv!(tA, alpha, A, x, beta, y)

Update the vector y as alpha*A*x + beta*y or alpha*A'x + beta*y according to tA. alpha and beta are

scalars. Returns the updated y.

source

Base.LinAlg.BLAS.gemv – Method.

http://www.netlib.org/lapack/explore-html/
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/blas.jl#L754-L764
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/blas.jl#L736-L742
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/blas.jl#L745-L751
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/blas.jl#L995-L1000
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/blas.jl#L1047-L1051
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/blas.jl#L1054-L1058
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/blas.jl#L521-L527

742 CHAPTER 52. LINEAR ALGEBRA

gemv(tA, alpha, A, x)

Returns alpha*A*x or alpha*A'x according to tA. alpha is a scalar.

source

Base.LinAlg.BLAS.gemv – Method.

gemv(tA, A, x)

Returns A*x or A'x according to tA.

source

Base.LinAlg.BLAS.symm! – Function.

symm!(side, ul, alpha, A, B, beta, C)

Update C as alpha*A*B + beta*C or alpha*B*A + beta*C according to side. A is assumed to be symmetric.

Only the ul triangle of A is used. Returns the updated C.

source

Base.LinAlg.BLAS.symm – Method.

symm(side, ul, alpha, A, B)

Returns alpha*A*B or alpha*B*A according to side. A is assumed to be symmetric. Only the ul triangle of A

is used.

source

Base.LinAlg.BLAS.symm – Method.

symm(side, ul, A, B)

Returns A*B or B*A according to side. A is assumed to be symmetric. Only the ul triangle of A is used.

source

Base.LinAlg.BLAS.symv! – Function.

symv!(ul, alpha, A, x, beta, y)

Update the vector y as alpha*A*x + beta*y. A is assumed to be symmetric. Only the ul triangle of A is used.

alpha and beta are scalars. Returns the updated y.

source

Base.LinAlg.BLAS.symv – Method.

symv(ul, alpha, A, x)

Returns alpha*A*x. A is assumed to be symmetric. Only the ul triangle of A is used. alpha is a scalar.

source

Base.LinAlg.BLAS.symv – Method.

symv(ul, A, x)

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/blas.jl#L530-L535
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/blas.jl#L538-L542
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/blas.jl#L1120-L1126
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/blas.jl#L1102-L1108
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/blas.jl#L1111-L1117
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/blas.jl#L601-L607
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/blas.jl#L652-L658

52.3. BLAS FUNCTIONS 743

Returns A*x. A is assumed to be symmetric. Only the ul triangle of A is used.

source

Base.LinAlg.BLAS.trmm! – Function.

trmm!(side, ul, tA, dA, alpha, A, B)

Update B as alpha*A*B or one of the other three variants determined by side and tA. Only the ul triangle of A

is used. dA determines if the diagonal values are read or are assumed to be all ones. Returns the updated B.

source

Base.LinAlg.BLAS.trmm – Function.

trmm(side, ul, tA, dA, alpha, A, B)

Returns alpha*A*B or one of the other three variants determined by side and tA. Only the ul triangle of A is

used. dA determines if the diagonal values are read or are assumed to be all ones.

source

Base.LinAlg.BLAS.trsm! – Function.

trsm!(side, ul, tA, dA, alpha, A, B)

Overwrite Bwith the solution to A*X = alpha*B or one of the other three variants determined by side and tA.

Only the ul triangle of A is used. dA determines if the diagonal values are read or are assumed to be all ones.

Returns the updated B.

source

Base.LinAlg.BLAS.trsm – Function.

trsm(side, ul, tA, dA, alpha, A, B)

Returns the solution to A*X = alpha*B or one of the other three variants determined by determined by side

and tA. Only the ul triangle of A is used. dA determines if the diagonal values are read or are assumed to be all

ones.

source

Base.LinAlg.BLAS.trmv! – Function.

trmv!(ul, tA, dA, A, b)

Returns op(A)*b, where op is determined by tA. Only the ul triangle of A is used. dA determines if the diagonal

values are read or are assumed to be all ones. The multiplication occurs in-place on b.

source

Base.LinAlg.BLAS.trmv – Function.

trmv(ul, tA, dA, A, b)

Returns op(A)*b, where op is determined by tA. Only the ul triangle of A is used. dA determines if the diagonal

values are read or are assumed to be all ones.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/blas.jl#L661-L666
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/blas.jl#L1358-L1367
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/blas.jl#L1370-L1378
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/blas.jl#L1381-L1390
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/blas.jl#L1393-L1401
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/blas.jl#L810-L818
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/blas.jl#L800-L807

744 CHAPTER 52. LINEAR ALGEBRA

Base.LinAlg.BLAS.trsv! – Function.

trsv!(ul, tA, dA, A, b)

Overwrite b with the solution to A*x = b or one of the other two variants determined by tA and ul. dA deter-

mines if the diagonal values are read or are assumed to be all ones. Returns the updated b.

source

Base.LinAlg.BLAS.trsv – Function.

trsv(ul, tA, dA, A, b)

Returns the solution to A*x = b or one of the other two variants determined by tA and ul. dA determines if the

diagonal values are read or are assumed to be all ones.

source

Base.LinAlg.BLAS.set_num_threads – Function.

set_num_threads(n)

Set the number of threads the BLAS library should use.

source

Base.LinAlg.I – Constant.

I

An object of type UniformScaling, representing an identity matrix of any size.

Example

julia> ones(5, 6) * I == ones(5, 6)

true

julia> [1 2im 3; 1im 2 3] * I

2×3 Array{Complex{Int64},2}:

1+0im 0+2im 3+0im

0+1im 2+0im 3+0im

source

52.4 LAPACK Functions

Base.LinAlg.LAPACK provides wrappers for some of the LAPACK functions for linear algebra. Those functions that

overwrite one of the input arrays have names ending in '!'.

Usually a function has 4 methods defined, one each for Float64, Float32, Complex128 and Complex64 arrays.

Note that the LAPACK API provided by Julia can and will change in the future. Since this API is not user-facing, there

is no commitment to support/deprecate this specific set of functions in future releases.

Base.LinAlg.LAPACK.gbtrf! – Function.

gbtrf!(kl, ku, m, AB) -> (AB, ipiv)

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/blas.jl#L852-L860
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/blas.jl#L863-L870
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/blas.jl#L89-L93
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/uniformscaling.jl#L11-L27

52.4. LAPACK FUNCTIONS 745

Compute the LU factorization of a banded matrix AB. kl is the first subdiagonal containing a nonzero band, ku is

the last superdiagonal containing one, and m is the first dimension of the matrix AB. Returns the LU factorization

in-place and ipiv, the vector of pivots used.

source

Base.LinAlg.LAPACK.gbtrs! – Function.

gbtrs!(trans, kl, ku, m, AB, ipiv, B)

Solve the equation AB * X = B. trans determines the orientation of AB. It maybe N (no transpose), T (transpose),

or C (conjugate transpose). kl is the first subdiagonal containing a nonzero band, ku is the last superdiagonal

containing one, and m is the first dimension of the matrix AB. ipiv is the vector of pivots returned from gbtrf!.

Returns the vector or matrix X, overwriting B in-place.

source

Base.LinAlg.LAPACK.gebal! – Function.

gebal!(job, A) -> (ilo, ihi, scale)

Balance the matrix A before computing its eigensystem or Schur factorization. job can be one of N (A will not

be permuted or scaled), P (A will only be permuted), S (A will only be scaled), or B (A will be both permuted and

scaled). Modifies A in-place and returns ilo, ihi, and scale. If permuting was turned on, A[i,j] = 0 if j >

i and 1 < j < ilo or j > ihi. scale contains information about the scaling/permutations performed.

source

Base.LinAlg.LAPACK.gebak! – Function.

gebak!(job, side, ilo, ihi, scale, V)

Transform the eigenvectors V of a matrix balanced using gebal! to the unscaled/unpermuted eigenvectors of

the original matrix. Modifies V in-place. side can be L (left eigenvectors are transformed) or R (right eigenvectors

are transformed).

source

Base.LinAlg.LAPACK.gebrd! – Function.

gebrd!(A) -> (A, d, e, tauq, taup)

Reduce A in-place to bidiagonal form A = QBP'. Returns A, containing the bidiagonal matrix B; d, containing the

diagonal elements of B; e, containing the off-diagonal elements of B; tauq, containing the elementary reflectors

representing Q; and taup, containing the elementary reflectors representing P.

source

Base.LinAlg.LAPACK.gelqf! – Function.

gelqf!(A, tau)

Compute the LQ factorization of A, A = LQ. tau contains scalars which parameterize the elementary reflectors

of the factorization. tau must have length greater than or equal to the smallest dimension of A.

Returns A and tau modified in-place.

source

gelqf!(A) -> (A, tau)

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L161-L168
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L171-L179
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L235-L244
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L247-L254
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L544-L552
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L555-L564

746 CHAPTER 52. LINEAR ALGEBRA

Compute the LQ factorization of A, A = LQ.

Returns A, modified in-place, and tau, which contains scalars which parameterize the elementary reflectors of the

factorization.

source

Base.LinAlg.LAPACK.geqlf! – Function.

geqlf!(A, tau)

Compute the QL factorization of A, A = QL. tau contains scalars which parameterize the elementary reflectors

of the factorization. tau must have length greater than or equal to the smallest dimension of A.

Returns A and tau modified in-place.

source

geqlf!(A) -> (A, tau)

Compute the QL factorization of A, A = QL.

Returns A, modified in-place, and tau, which contains scalars which parameterize the elementary reflectors of the

factorization.

source

Base.LinAlg.LAPACK.geqrf! – Function.

geqrf!(A, tau)

Compute the QR factorization of A, A = QR. tau contains scalars which parameterize the elementary reflectors

of the factorization. tau must have length greater than or equal to the smallest dimension of A.

Returns A and tau modified in-place.

source

geqrf!(A) -> (A, tau)

Compute the QR factorization of A, A = QR.

Returns A, modified in-place, and tau, which contains scalars which parameterize the elementary reflectors of the

factorization.

source

Base.LinAlg.LAPACK.geqp3! – Function.

geqp3!(A, jpvt, tau)

Compute the pivoted QR factorization of A, AP = QR using BLAS level 3. P is a pivoting matrix, represented by

jpvt. tau stores the elementary reflectors. jpvtmust have length length greater than or equal to n if A is an (m

x n) matrix. tau must have length greater than or equal to the smallest dimension of A.

A, jpvt, and tau are modified in-place.

source

geqp3!(A, jpvt) -> (A, jpvt, tau)

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L650-L657
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L567-L575
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L660-L667
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L617-L625
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L692-L699
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L578-L588

52.4. LAPACK FUNCTIONS 747

Compute the pivoted QR factorization of A, AP = QR using BLAS level 3. P is a pivoting matrix, represented by

jpvt. jpvt must have length greater than or equal to n if A is an (m x n) matrix.

Returns A and jpvt, modified in-place, and tau, which stores the elementary reflectors.

source

geqp3!(A) -> (A, jpvt, tau)

Compute the pivoted QR factorization of A, AP = QR using BLAS level 3.

Returns A, modified in-place, jpvt, which represents the pivoting matrix P, and tau, which stores the elementary

reflectors.

source

Base.LinAlg.LAPACK.gerqf! – Function.

gerqf!(A, tau)

Compute the RQ factorization of A, A = RQ. tau contains scalars which parameterize the elementary reflectors

of the factorization. tau must have length greater than or equal to the smallest dimension of A.

Returns A and tau modified in-place.

source

gerqf!(A) -> (A, tau)

Compute the RQ factorization of A, A = RQ.

Returns A, modified in-place, and tau, which contains scalars which parameterize the elementary reflectors of the

factorization.

source

Base.LinAlg.LAPACK.geqrt! – Function.

geqrt!(A, T)

Compute the blocked QR factorization of A, A = QR. T contains upper triangular block reflectors which parame-

terize the elementary reflectors of the factorization. The first dimension of T sets the block size and it must be

between 1 and n. The second dimension of T must equal the smallest dimension of A.

Returns A and T modified in-place.

source

geqrt!(A, nb) -> (A, T)

Compute the blocked QR factorization of A, A = QR. nb sets the block size and it must be between 1 and n, the

second dimension of A.

Returns A, modified in-place, and T, which contains upper triangular block reflectors which parameterize the ele-

mentary reflectors of the factorization.

source

Base.LinAlg.LAPACK.geqrt3! – Function.

geqrt3!(A, T)

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L712-L721
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L727-L734
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L628-L636
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L702-L709
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L591-L601
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L670-L679

748 CHAPTER 52. LINEAR ALGEBRA

Recursively computes the blocked QR factorization of A, A = QR. T contains upper triangular block reflectors

which parameterize the elementary reflectors of the factorization. The first dimension of T sets the block size and

it must be between 1 and n. The second dimension of T must equal the smallest dimension of A.

Returns A and T modified in-place.

source

geqrt3!(A) -> (A, T)

Recursively computes the blocked QR factorization of A, A = QR.

Returns A, modified in-place, and T, which contains upper triangular block reflectors which parameterize the ele-

mentary reflectors of the factorization.

source

Base.LinAlg.LAPACK.getrf! – Function.

getrf!(A) -> (A, ipiv, info)

Compute the pivoted LU factorization of A, A = LU.

Returns A, modified in-place, ipiv, the pivoting information, and an info code which indicates success (info =

0), a singular value in U (info = i, in which case U[i,i] is singular), or an error code (info < 0).

source

Base.LinAlg.LAPACK.tzrzf! – Function.

tzrzf!(A) -> (A, tau)

Transforms the upper trapezoidal matrix A to upper triangular form in-place. Returns A and tau, the scalar param-

eters for the elementary reflectors of the transformation.

source

Base.LinAlg.LAPACK.ormrz! – Function.

ormrz!(side, trans, A, tau, C)

Multiplies the matrix C by Q from the transformation supplied by tzrzf!. Depending on side or trans the mul-

tiplication can be left-sided (side = L, Q*C) or right-sided (side = R, C*Q) and Q can be unmodified (trans

= N), transposed (trans = T), or conjugate transposed (trans = C). Returns matrix Cwhich is modified in-place

with the result of the multiplication.

source

Base.LinAlg.LAPACK.gels! – Function.

gels!(trans, A, B) -> (F, B, ssr)

Solves the linear equation A * X = B, A.' * X =B, or A' * X = B using a QR or LQ factorization. Modifies

the matrix/vector B in place with the solution. A is overwritten with its QR or LQ factorization. trans may be

one of N (no modification), T (transpose), or C (conjugate transpose). gels! searches for the minimum norm/least

squares solution. A may be under or over determined. The solution is returned in B.

source

Base.LinAlg.LAPACK.gesv! – Function.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L604-L614
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L682-L689
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L639-L647
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L834-L840
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L822-L831
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L970-L979

52.4. LAPACK FUNCTIONS 749

gesv!(A, B) -> (B, A, ipiv)

Solves the linear equation A * X = Bwhere A is a square matrix using the LU factorization of A. A is overwritten

with its LU factorization and B is overwritten with the solution X. ipiv contains the pivoting information for the

LU factorization of A.

source

Base.LinAlg.LAPACK.getrs! – Function.

getrs!(trans, A, ipiv, B)

Solves the linear equation A * X = B, A.' * X =B, or A' * X = B for square A. Modifies the matrix/vector B

in place with the solution. A is the LU factorization from getrf!, with ipiv the pivoting information. transmay

be one of N (no modification), T (transpose), or C (conjugate transpose).

source

Base.LinAlg.LAPACK.getri! – Function.

getri!(A, ipiv)

Computes the inverse of A, using its LU factorization found by getrf!. ipiv is the pivot information output and

A contains the LU factorization of getrf!. A is overwritten with its inverse.

source

Base.LinAlg.LAPACK.gesvx! – Function.

gesvx!(fact, trans, A, AF, ipiv, equed, R, C, B) -> (X, equed, R, C, B, rcond, ferr, berr,

work)

Solves the linear equation A * X = B (trans = N), A.' * X =B (trans = T), or A' * X = B (trans = C)

using the LU factorization of A. fact may be E, in which case A will be equilibrated and copied to AF; F, in which

case AF and ipiv from a previous LU factorization are inputs; or N, in which case Awill be copied to AF and then

factored. If fact = F, equed may be N, meaning A has not been equilibrated; R, meaning A was multiplied by

diagm(R) from the left; C, meaning Awas multiplied by diagm(C) from the right; or B, meaning Awas multiplied

by diagm(R) from the left and diagm(C) from the right. If fact = F and equed = R or B the elements of R

must all be positive. If fact = F and equed = C or B the elements of C must all be positive.

Returns the solution X; equed, which is an output if fact is not N, and describes the equilibration that was

performed; R, the row equilibration diagonal; C, the column equilibration diagonal; B, which may be overwritten

with its equilibrated form diagm(R)*B (if trans = N and equed = R,B) or diagm(C)*B (if trans = T,C and

equed = C,B); rcond, the reciprocal condition number of A after equilbrating; ferr, the forward error bound

for each solution vector in X; berr, the forward error bound for each solution vector in X; and work, the reciprocal

pivot growth factor.

source

gesvx!(A, B)

The no-equilibration, no-transpose simplification of gesvx!.

source

Base.LinAlg.LAPACK.gelsd! – Function.

gelsd!(A, B, rcond) -> (B, rnk)

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L982-L989
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L992-L1000
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L1003-L1010
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L1153-L1176
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L1180-L1184

750 CHAPTER 52. LINEAR ALGEBRA

Computes the least norm solution ofA * X = B byfinding theSVD factorization ofA, then dividing-and-conquering

the problem. B is overwritten with the solution X. Singular values below rcond will be treated as zero. Returns

the solution in B and the effective rank of A in rnk.

source

Base.LinAlg.LAPACK.gelsy! – Function.

gelsy!(A, B, rcond) -> (B, rnk)

Computes the least norm solution of A * X = B by finding the full QR factorization of A, then dividing-and-

conquering the problem. B is overwrittenwith the solution X. Singular values below rcondwill be treated as zero.

Returns the solution in B and the effective rank of A in rnk.

source

Base.LinAlg.LAPACK.gglse! – Function.

gglse!(A, c, B, d) -> (X,res)

Solves the equation A * x = cwhere x is subject to the equality constraint B * x = d. Uses the formula ||c

- A*x||^2 = 0 to solve. Returns X and the residual sum-of-squares.

source

Base.LinAlg.LAPACK.geev! – Function.

geev!(jobvl, jobvr, A) -> (W, VL, VR)

Finds the eigensystem of A. If jobvl = N, the left eigenvectors of A aren’t computed. If jobvr = N, the right

eigenvectors of A aren’t computed. If jobvl = V or jobvr = V, the corresponding eigenvectors are computed.

Returns the eigenvalues in W, the right eigenvectors in VR, and the left eigenvectors in VL.

source

Base.LinAlg.LAPACK.gesdd! – Function.

gesdd!(job, A) -> (U, S, VT)

Finds the singular value decomposition of A, A = U * S * V', using a divide and conquer approach. If job =

A, all the columns of U and the rows of V' are computed. If job = N, no columns of U or rows of V' are computed.

If job = O, A is overwritten with the columns of (thin) U and the rows of (thin) V'. If job = S, the columns of

(thin) U and the rows of (thin) V' are computed and returned separately.

source

Base.LinAlg.LAPACK.gesvd! – Function.

gesvd!(jobu, jobvt, A) -> (U, S, VT)

Finds the singular value decomposition of A, A = U * S * V'. If jobu = A, all the columns of U are computed.

If jobvt = A all the rows of V' are computed. If jobu = N, no columns of U are computed. If jobvt = N no

rows of V' are computed. If jobu = O, A is overwritten with the columns of (thin) U. If jobvt = O, A is overwrit-

ten with the rows of (thin) V'. If jobu = S, the columns of (thin) U are computed and returned separately. If

jobvt = S the rows of (thin) V' are computed and returned separately. jobu and jobvt can’t both be O.

Returns U, S, and Vt, where S are the singular values of A.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L1375-L1383
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L1386-L1394
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L1447-L1453
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L1742-L1750
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L1753-L1762
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L1765-L1778

52.4. LAPACK FUNCTIONS 751

Base.LinAlg.LAPACK.ggsvd! – Function.

ggsvd!(jobu, jobv, jobq, A, B) -> (U, V, Q, alpha, beta, k, l, R)

Finds the generalized singular value decomposition of A and B, U'*A*Q = D1*R and V'*B*Q = D2*R. D1 has

alpha on its diagonal and D2 has beta on its diagonal. If jobu = U, the orthogonal/unitary matrix U is com-

puted. If jobv = V the orthogonal/unitary matrix V is computed. If jobq = Q, the orthogonal/unitary matrix Q

is computed. If jobu, jobv or jobq is N, that matrix is not computed. This function is only available in LAPACK

versions prior to 3.6.0.

source

Base.LinAlg.LAPACK.ggsvd3! – Function.

ggsvd3!(jobu, jobv, jobq, A, B) -> (U, V, Q, alpha, beta, k, l, R)

Finds the generalized singular value decomposition of A and B, U'*A*Q = D1*R and V'*B*Q = D2*R. D1 has

alpha on its diagonal and D2 has beta on its diagonal. If jobu = U, the orthogonal/unitary matrix U is com-

puted. If jobv = V the orthogonal/unitary matrix V is computed. If jobq = Q, the orthogonal/unitary matrix Q

is computed. If jobu, jobv, or jobq is N, that matrix is not computed. This function requires LAPACK 3.6.0.

source

Base.LinAlg.LAPACK.geevx! – Function.

geevx!(balanc, jobvl, jobvr, sense, A) -> (A, w, VL, VR, ilo, ihi, scale, abnrm, rconde,

rcondv)

Finds the eigensystem of A with matrix balancing. If jobvl = N, the left eigenvectors of A aren’t computed.

If jobvr = N, the right eigenvectors of A aren’t computed. If jobvl = V or jobvr = V, the corresponding

eigenvectors are computed. If balanc = N, no balancing is performed. If balanc = P, A is permuted but not

scaled. If balanc = S, A is scaled but not permuted. If balanc = B, A is permuted and scaled. If sense = N,

no reciprocal condition numbers are computed. If sense = E, reciprocal condition numbers are computed for

the eigenvalues only. If sense = V, reciprocal condition numbers are computed for the right eigenvectors only.

If sense = B, reciprocal condition numbers are computed for the right eigenvectors and the eigenvectors. If

sense = E,B, the right and left eigenvectors must be computed.

source

Base.LinAlg.LAPACK.ggev! – Function.

ggev!(jobvl, jobvr, A, B) -> (alpha, beta, vl, vr)

Finds the generalized eigendecomposition of A and B. If jobvl = N, the left eigenvectors aren’t computed. If

jobvr = N, the right eigenvectors aren’t computed. If jobvl = V or jobvr = V, the corresponding eigenvec-

tors are computed.

source

Base.LinAlg.LAPACK.gtsv! – Function.

gtsv!(dl, d, du, B)

Solves the equation A * X = B where A is a tridiagonal matrix with dl on the subdiagonal, d on the diagonal,

and du on the superdiagonal.

Overwrites Bwith the solution X and returns it.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L1781-L1791
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L1910-L1919
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L2220-L2236
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L2239-L2246
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L2413-L2421

752 CHAPTER 52. LINEAR ALGEBRA

Base.LinAlg.LAPACK.gttrf! – Function.

gttrf!(dl, d, du) -> (dl, d, du, du2, ipiv)

Finds the LU factorization of a tridiagonal matrix with dl on the subdiagonal, d on the diagonal, and du on the

superdiagonal.

Modifies dl, d, and du in-place and returns them and the second superdiagonal du2 and the pivoting vector ipiv.

source

Base.LinAlg.LAPACK.gttrs! – Function.

gttrs!(trans, dl, d, du, du2, ipiv, B)

Solves the equation A * X = B (trans = N), A.' * X = B (trans = T), or A' * X = B (trans = C) using

the LU factorization computed by gttrf!. B is overwritten with the solution X.

source

Base.LinAlg.LAPACK.orglq! – Function.

orglq!(A, tau, k = length(tau))

Explicitly finds the matrix Q of a LQ factorization after calling gelqf! on A. Uses the output of gelqf!. A is

overwritten by Q.

source

Base.LinAlg.LAPACK.orgqr! – Function.

orgqr!(A, tau, k = length(tau))

Explicitly finds the matrix Q of a QR factorization after calling geqrf! on A. Uses the output of geqrf!. A is

overwritten by Q.

source

Base.LinAlg.LAPACK.orgql! – Function.

orgql!(A, tau, k = length(tau))

Explicitly finds the matrix Q of a QL factorization after calling geqlf! on A. Uses the output of geqlf!. A is

overwritten by Q.

source

Base.LinAlg.LAPACK.orgrq! – Function.

orgrq!(A, tau, k = length(tau))

Explicitly finds the matrix Q of a RQ factorization after calling gerqf! on A. Uses the output of gerqf!. A is

overwritten by Q.

source

Base.LinAlg.LAPACK.ormlq! – Function.

ormlq!(side, trans, A, tau, C)

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L2424-L2432
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L2435-L2441
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L2835-L2840
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L2843-L2848
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L2851-L2856
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L2859-L2864

52.4. LAPACK FUNCTIONS 753

Computes Q * C (trans = N), Q.' * C (trans = T), Q' * C (trans = C) for side = L or the equivalent

right-sided multiplication for side = R using Q from a LQ factorization of A computed using gelqf!. C is over-

written.

source

Base.LinAlg.LAPACK.ormqr! – Function.

ormqr!(side, trans, A, tau, C)

Computes Q * C (trans = N), Q.' * C (trans = T), Q' * C (trans = C) for side = L or the equivalent

right-sided multiplication for side = R using Q from a QR factorization of A computed using geqrf!. C is over-

written.

source

Base.LinAlg.LAPACK.ormql! – Function.

ormql!(side, trans, A, tau, C)

Computes Q * C (trans = N), Q.' * C (trans = T), Q' * C (trans = C) for side = L or the equivalent

right-sided multiplication for side = R using Q from a QL factorization of A computed using geqlf!. C is over-

written.

source

Base.LinAlg.LAPACK.ormrq! – Function.

ormrq!(side, trans, A, tau, C)

Computes Q * C (trans = N), Q.' * C (trans = T), Q' * C (trans = C) for side = L or the equivalent

right-sided multiplication for side = R using Q from a RQ factorization of A computed using gerqf!. C is over-

written.

source

Base.LinAlg.LAPACK.gemqrt! – Function.

gemqrt!(side, trans, V, T, C)

Computes Q * C (trans = N), Q.' * C (trans = T), Q' * C (trans = C) for side = L or the equivalent

right-sided multiplication for side = R using Q from a QR factorization of A computed using geqrt!. C is over-

written.

source

Base.LinAlg.LAPACK.posv! – Function.

posv!(uplo, A, B) -> (A, B)

Finds the solution to A * X = B where A is a symmetric or Hermitian positive definite matrix. If uplo = U

the upper Cholesky decomposition of A is computed. If uplo = L the lower Cholesky decomposition of A is

computed. A is overwritten by its Cholesky decomposition. B is overwritten with the solution X.

source

Base.LinAlg.LAPACK.potrf! – Function.

potrf!(uplo, A)

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L2867-L2874
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L2877-L2884
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L2887-L2894
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L2897-L2904
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L2907-L2914
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L3045-L3053

754 CHAPTER 52. LINEAR ALGEBRA

Computes the Cholesky (upper if uplo = U, lower if uplo = L) decomposition of positive-definite matrix A. A is

overwritten and returned with an info code.

source

Base.LinAlg.LAPACK.potri! – Function.

potri!(uplo, A)

Computes the inverse of positive-definite matrix A after calling potrf! to find its (upper if uplo = U, lower if

uplo = L) Cholesky decomposition.

A is overwritten by its inverse and returned.

source

Base.LinAlg.LAPACK.potrs! – Function.

potrs!(uplo, A, B)

Finds the solution to A * X = B where A is a symmetric or Hermitian positive definite matrix whose Cholesky

decomposition was computed by potrf!. If uplo = U the upper Cholesky decomposition of A was computed.

If uplo = L the lower Cholesky decomposition of Awas computed. B is overwritten with the solution X.

source

Base.LinAlg.LAPACK.pstrf! – Function.

pstrf!(uplo, A, tol) -> (A, piv, rank, info)

Computes the (upper ifuplo = U, lower ifuplo = L) pivotedCholeskydecomposition ofpositive-definitematrix

Awith a user-set tolerance tol. A is overwritten by its Cholesky decomposition.

Returns A, the pivots piv, the rank of A, and an info code. If info = 0, the factorization succeeded. If info =

i > 0, then A is indefinite or rank-deficient.

source

Base.LinAlg.LAPACK.ptsv! – Function.

ptsv!(D, E, B)

Solves A * X = B for positive-definite tridiagonal A. D is the diagonal of A and E is the off-diagonal. B is overwrit-

ten with the solution X and returned.

source

Base.LinAlg.LAPACK.pttrf! – Function.

pttrf!(D, E)

Computes the LDLt factorization of a positive-definite tridiagonal matrix with D as diagonal and E as off-diagonal.

D and E are overwritten and returned.

source

Base.LinAlg.LAPACK.pttrs! – Function.

pttrs!(D, E, B)

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L3056-L3062
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L3065-L3073
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L3076-L3084
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L3087-L3097
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L3152-L3158
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L3161-L3167

52.4. LAPACK FUNCTIONS 755

Solves A * X = B for positive-definite tridiagonal Awith diagonal D and off-diagonal E after computing A’s LDLt

factorization using pttrf!. B is overwritten with the solution X.

source

Base.LinAlg.LAPACK.trtri! – Function.

trtri!(uplo, diag, A)

Finds the inverse of (upper if uplo = U, lower if uplo = L) triangular matrix A. If diag = N, A has non-unit

diagonal elements. If diag = U, all diagonal elements of A are one. A is overwritten with its inverse.

source

Base.LinAlg.LAPACK.trtrs! – Function.

trtrs!(uplo, trans, diag, A, B)

Solves A * X = B (trans = N), A.' * X = B (trans = T), or A' * X = B (trans = C) for (upper if uplo

= U, lower if uplo = L) triangular matrix A. If diag = N, A has non-unit diagonal elements. If diag = U, all

diagonal elements of A are one. B is overwritten with the solution X.

source

Base.LinAlg.LAPACK.trcon! – Function.

trcon!(norm, uplo, diag, A)

Finds the reciprocal condition number of (upper if uplo = U, lower if uplo = L) triangular matrix A. If diag =

N, A has non-unit diagonal elements. If diag = U, all diagonal elements of A are one. If norm = I, the condition

number is found in the infinity norm. If norm = O or 1, the condition number is found in the one norm.

source

Base.LinAlg.LAPACK.trevc! – Function.

trevc!(side, howmny, select, T, VL = similar(T), VR = similar(T))

Finds the eigensystem of an upper triangular matrix T. If side = R, the right eigenvectors are computed. If side

= L, the left eigenvectors are computed. If side = B, both sets are computed. If howmny = A, all eigenvectors

are found. If howmny = B, all eigenvectors are found and backtransformed using VL and VR. If howmny = S, only

the eigenvectors corresponding to the values in select are computed.

source

Base.LinAlg.LAPACK.trrfs! – Function.

trrfs!(uplo, trans, diag, A, B, X, Ferr, Berr) -> (Ferr, Berr)

Estimates the error in the solution toA * X = B (trans = N),A.' * X = B (trans = T),A' * X = B (trans

= C) for side = L, or the equivalent equations a right-handed side = R X * A after computing X using trtrs!.

If uplo = U, A is upper triangular. If uplo = L, A is lower triangular. If diag = N, A has non-unit diagonal

elements. If diag = U, all diagonal elements of A are one. Ferr and Berr are optional inputs. Ferr is the

forward error and Berr is the backward error, each component-wise.

source

Base.LinAlg.LAPACK.stev! – Function.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L3232-L3238
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L3297-L3304
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L3307-L3315
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L3576-L3584
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L3587-L3597
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L3601-L3612

756 CHAPTER 52. LINEAR ALGEBRA

stev!(job, dv, ev) -> (dv, Zmat)

Computes the eigensystem for a symmetric tridiagonal matrix with dv as diagonal and ev as off-diagonal. If job

= N only the eigenvalues are found and returned in dv. If job = V then the eigenvectors are also found and

returned in Zmat.

source

Base.LinAlg.LAPACK.stebz! – Function.

stebz!(range, order, vl, vu, il, iu, abstol, dv, ev) -> (dv, iblock, isplit)

Computes the eigenvalues for a symmetric tridiagonal matrix with dv as diagonal and ev as off-diagonal. If range

= A, all the eigenvalues are found. If range = V, the eigenvalues in the half-open interval (vl, vu] are found.

If range = I, the eigenvalues with indices between il and iu are found. If order = B, eigvalues are ordered

within a block. If order = E, they are ordered across all the blocks. abstol can be set as a tolerance for

convergence.

source

Base.LinAlg.LAPACK.stegr! – Function.

stegr!(jobz, range, dv, ev, vl, vu, il, iu) -> (w, Z)

Computes the eigenvalues (jobz = N) or eigenvalues and eigenvectors (jobz = V) for a symmetric tridiagonal

matrix with dv as diagonal and ev as off-diagonal. If range = A, all the eigenvalues are found. If range = V, the

eigenvalues in the half-open interval (vl, vu] are found. If range = I, the eigenvalues with indices between

il and iu are found. The eigenvalues are returned in w and the eigenvectors in Z.

source

Base.LinAlg.LAPACK.stein! – Function.

stein!(dv, ev_in, w_in, iblock_in, isplit_in)

Computes the eigenvectors for a symmetric tridiagonal matrix with dv as diagonal and ev_in as off-diagonal.

w_in specifies the input eigenvalues for which to find corresponding eigenvectors. iblock_in specifies the

submatrices corresponding to the eigenvalues in w_in. isplit_in specifies the splitting points between the

submatrix blocks.

source

Base.LinAlg.LAPACK.syconv! – Function.

syconv!(uplo, A, ipiv) -> (A, work)

Converts a symmetric matrix A (which has been factorized into a triangular matrix) into two matrices L and D. If

uplo = U, A is upper triangular. If uplo = L, it is lower triangular. ipiv is the pivot vector from the triangular

factorization. A is overwritten by L and D.

source

Base.LinAlg.LAPACK.sysv! – Function.

sysv!(uplo, A, B) -> (B, A, ipiv)

Finds the solution to A * X = B for symmetric matrix A. If uplo = U, the upper half of A is stored. If uplo = L,

the lower half is stored. B is overwritten by the solution X. A is overwritten by its Bunch-Kaufman factorization.

ipiv contains pivoting information about the factorization.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L3773-L3780
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L3783-L3793
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L3796-L3806
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L3809-L3817
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L4673-L4681
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L4684-L4692

52.4. LAPACK FUNCTIONS 757

Base.LinAlg.LAPACK.sytrf! – Function.

sytrf!(uplo, A) -> (A, ipiv, info)

Computes the Bunch-Kaufman factorization of a symmetric matrix A. If uplo = U, the upper half of A is stored.

If uplo = L, the lower half is stored.

Returns A, overwritten by the factorization, a pivot vector ipiv, and the error code infowhich is a non-negative

integer. If info is positive thematrix is singular and the diagonal part of the factorization is exactly zero at position

info.

source

Base.LinAlg.LAPACK.sytri! – Function.

sytri!(uplo, A, ipiv)

Computes the inverse of a symmetric matrix A using the results of sytrf!. If uplo = U, the upper half of A is

stored. If uplo = L, the lower half is stored. A is overwritten by its inverse.

source

Base.LinAlg.LAPACK.sytrs! – Function.

sytrs!(uplo, A, ipiv, B)

Solves the equation A * X = B for a symmetric matrix A using the results of sytrf!. If uplo = U, the upper

half of A is stored. If uplo = L, the lower half is stored. B is overwritten by the solution X.

source

Base.LinAlg.LAPACK.hesv! – Function.

hesv!(uplo, A, B) -> (B, A, ipiv)

Finds the solution to A * X = B for Hermitian matrix A. If uplo = U, the upper half of A is stored. If uplo = L,

the lower half is stored. B is overwritten by the solution X. A is overwritten by its Bunch-Kaufman factorization.

ipiv contains pivoting information about the factorization.

source

Base.LinAlg.LAPACK.hetrf! – Function.

hetrf!(uplo, A) -> (A, ipiv, info)

Computes the Bunch-Kaufman factorization of a Hermitian matrix A. If uplo = U, the upper half of A is stored.

If uplo = L, the lower half is stored.

Returns A, overwritten by the factorization, a pivot vector ipiv, and the error code infowhich is a non-negative

integer. If info is positive thematrix is singular and the diagonal part of the factorization is exactly zero at position

info.

source

Base.LinAlg.LAPACK.hetri! – Function.

hetri!(uplo, A, ipiv)

Computes the inverse of a Hermitian matrix A using the results of sytrf!. If uplo = U, the upper half of A is

stored. If uplo = L, the lower half is stored. A is overwritten by its inverse.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L4695-L4706
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L4709-L4715
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L4718-L4725
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L4729-L4737
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L4740-L4751
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L4754-L4760

758 CHAPTER 52. LINEAR ALGEBRA

Base.LinAlg.LAPACK.hetrs! – Function.

hetrs!(uplo, A, ipiv, B)

Solves the equation A * X = B for a Hermitian matrix A using the results of sytrf!. If uplo = U, the upper

half of A is stored. If uplo = L, the lower half is stored. B is overwritten by the solution X.

source

Base.LinAlg.LAPACK.syev! – Function.

syev!(jobz, uplo, A)

Finds the eigenvalues (jobz = N) or eigenvalues and eigenvectors (jobz = V) of a symmetric matrix A. If uplo

= U, the upper triangle of A is used. If uplo = L, the lower triangle of A is used.

source

Base.LinAlg.LAPACK.syevr! – Function.

syevr!(jobz, range, uplo, A, vl, vu, il, iu, abstol) -> (W, Z)

Finds the eigenvalues (jobz = N) or eigenvalues and eigenvectors (jobz = V) of a symmetric matrix A. If uplo =

U, the upper triangle of A is used. If uplo = L, the lower triangle of A is used. If range = A, all the eigenvalues

are found. If range = V, the eigenvalues in the half-open interval (vl, vu] are found. If range = I, the

eigenvalues with indices between il and iu are found. abstol can be set as a tolerance for convergence.

The eigenvalues are returned in W and the eigenvectors in Z.

source

Base.LinAlg.LAPACK.sygvd! – Function.

sygvd!(itype, jobz, uplo, A, B) -> (w, A, B)

Finds the generalized eigenvalues (jobz = N) or eigenvalues and eigenvectors (jobz = V) of a symmetric matrix

A and symmetric positive-definite matrix B. If uplo = U, the upper triangles of A and B are used. If uplo = L,

the lower triangles of A and B are used. If itype = 1, the problem to solve is A * x = lambda * B * x. If

itype = 2, the problem to solve is A * B * x = lambda * x. If itype = 3, the problem to solve is B * A

* x = lambda * x.

source

Base.LinAlg.LAPACK.bdsqr! – Function.

bdsqr!(uplo, d, e_, Vt, U, C) -> (d, Vt, U, C)

Computes the singular value decomposition of a bidiagonal matrix with d on the diagonal and e_ on the off-

diagonal. If uplo = U, e_ is the superdiagonal. If uplo = L, e_ is the subdiagonal. Can optionally also compute

the product Q' * C.

Returns the singular values in d, and the matrix C overwritten with Q' * C.

source

Base.LinAlg.LAPACK.bdsdc! – Function.

bdsdc!(uplo, compq, d, e_) -> (d, e, u, vt, q, iq)

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L4763-L4770
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L5072-L5078
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L5081-L5093
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L5097-L5108
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L5160-L5169

52.4. LAPACK FUNCTIONS 759

Computes the singular value decomposition of a bidiagonal matrix with d on the diagonal and e_ on the off-

diagonal using a divide and conqueq method. If uplo = U, e_ is the superdiagonal. If uplo = L, e_ is the

subdiagonal. If compq = N, only the singular values are found. If compq = I, the singular values and vectors are

found. If compq = P, the singular values and vectors are found in compact form. Only works for real types.

Returns the singular values in d, and if compq = P, the compact singular vectors in iq.

source

Base.LinAlg.LAPACK.gecon! – Function.

gecon!(normtype, A, anorm)

Finds the reciprocal condition number of matrix A. If normtype = I, the condition number is found in the infinity

norm. If normtype = O or 1, the condition number is found in the one norm. A must be the result of getrf!

and anorm is the norm of A in the relevant norm.

source

Base.LinAlg.LAPACK.gehrd! – Function.

gehrd!(ilo, ihi, A) -> (A, tau)

Converts a matrix A to Hessenberg form. If A is balanced with gebal! then ilo and ihi are the outputs of

gebal!. Otherwise they should be ilo = 1 and ihi = size(A,2). tau contains the elementary reflectors of

the factorization.

source

Base.LinAlg.LAPACK.orghr! – Function.

orghr!(ilo, ihi, A, tau)

Explicitly finds Q, the orthogonal/unitary matrix from gehrd!. ilo, ihi, A, and tau must correspond to the

input/output to gehrd!.

source

Base.LinAlg.LAPACK.gees! – Function.

gees!(jobvs, A) -> (A, vs, w)

Computes the eigenvalues (jobvs = N) or the eigenvalues and Schur vectors (jobvs = V) of matrix A. A is over-

written by its Schur form.

Returns A, vs containing the Schur vectors, and w, containing the eigenvalues.

source

Base.LinAlg.LAPACK.gges! – Function.

gges!(jobvsl, jobvsr, A, B) -> (A, B, alpha, beta, vsl, vsr)

Computes the generalized eigenvalues, generalized Schur form, left Schur vectors (jobsvl = V), or right Schur

vectors (jobvsr = V) of A and B.

The generalized eigenvalues are returned in alpha and beta. The left Schur vectors are returned in vsl and the

right Schur vectors are returned in vsr.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L5228-L5240
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L5311-L5318
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L5361-L5368
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L5410-L5415
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L5656-L5664
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L5668-L5677

760 CHAPTER 52. LINEAR ALGEBRA

Base.LinAlg.LAPACK.trexc! – Function.

trexc!(compq, ifst, ilst, T, Q) -> (T, Q)

Reorder the Schur factorization of a matrix. If compq = V, the Schur vectors Q are reordered. If compq = N they

are not modified. ifst and ilst specify the reordering of the vectors.

source

Base.LinAlg.LAPACK.trsen! – Function.

trsen!(compq, job, select, T, Q) -> (T, Q, w)

Reorder the Schur factorization of a matrix and optionally finds reciprocal condition numbers. If job = N, no

condition numbers are found. If job = E, only the condition number for this cluster of eigenvalues is found. If

job = V, only the condition number for the invariant subspace is found. If job = B then the condition numbers

for the cluster and subspace are found. If compq = V the Schur vectors Q are updated. If compq = N the Schur

vectors are not modified. select determines which eigenvalues are in the cluster.

Returns T, Q, and reordered eigenvalues in w.

source

Base.LinAlg.LAPACK.tgsen! – Function.

tgsen!(select, S, T, Q, Z) -> (S, T, alpha, beta, Q, Z)

Reorders the vectors of a generalized Schur decomposition. select specifices the eigenvalues in each cluster.

source

Base.LinAlg.LAPACK.trsyl! – Function.

trsyl!(transa, transb, A, B, C, isgn=1) -> (C, scale)

Solves the Sylvester matrix equation A * X +/- X * B = scale*C where A and B are both quasi-upper tri-

angular. If transa = N, A is not modified. If transa = T, A is transposed. If transa = C, A is conjugate

transposed. Similarly for transb and B. If isgn = 1, the equation A * X + X * B = scale * C is solved. If

isgn = -1, the equation A * X - X * B = scale * C is solved.

Returns X (overwriting C) and scale.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L5972-L5978
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L5981-L5994
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L5997-L6002
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/linalg/lapack.jl#L6036-L6047

Chapter 53

Constants

Core.nothing – Constant.

nothing

The singleton instance of type Void, used by conventionwhen there is no value to return (as in a C void function).

Can be converted to an empty Nullable value.

source

Base.PROGRAM_FILE – Constant.

PROGRAM_FILE

A string containing the script name passed to Julia from the command line. Note that the script name remains

unchanged from within included files. Alternatively see @__FILE__.

source

Base.ARGS – Constant.

ARGS

An array of the command line arguments passed to Julia, as strings.

source

Base.C_NULL – Constant.

C_NULL

The C null pointer constant, sometimes used when calling external code.

source

Base.VERSION – Constant.

VERSION

A VersionNumber object describing which version of Julia is in use. For details see Version Number Literals.

source

Base.LOAD_PATH – Constant.

761

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/basedocs.jl#L691-L696
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/initdefs.jl#L5-L11
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/initdefs.jl#L14-L18
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/pointer.jl#L13-L17
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/version.jl#L220-L225

762 CHAPTER 53. CONSTANTS

LOAD_PATH

An array of paths as strings or custom loader objects for the require function and using and import statements

to considerwhen loading code. To create a custom loader type, define the type and then add appropriate methods

to the Base.load_hook function with the following signature:

Base.load_hook(loader::Loader, name::String, found::Any)

The loader argument is the current value in LOAD_PATH, name is the name of the module to load, and found

is the path of any previously found code to provide name. If no provider has been found earlier in LOAD_PATH

then the value of found will be nothing. Custom loader functionality is experimental and may break or change

in Julia 1.0.

source

Base.JULIA_HOME – Constant.

JULIA_HOME

A string containing the full path to the directory containing the julia executable.

source

Core.ANY – Constant.

ANY

Equivalent to Any for dispatch purposes, but signals the compiler to skip code generation specialization for that

field.

source

Base.Sys.CPU_CORES – Constant.

Sys.CPU_CORES

The number of logical CPU cores available in the system.

See the Hwloc.jl package for extended information, including number of physical cores.

source

Base.Sys.WORD_SIZE – Constant.

Sys.WORD_SIZE

Standard word size on the current machine, in bits.

source

Base.Sys.KERNEL – Constant.

Sys.KERNEL

A symbol representing the name of the operating system, as returned by uname of the build configuration.

source

Base.Sys.ARCH – Constant.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/initdefs.jl#L30-L46
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/initdefs.jl#L71-L75
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/basedocs.jl#L699-L704
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/sysinfo.jl#L22-L28
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/sysinfo.jl#L53-L57
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/sysinfo.jl#L39-L43

763

Sys.ARCH

A symbol representing the architecture of the build configuration.

source

Base.Sys.MACHINE – Constant.

Sys.MACHINE

A string containing the build triple.

source

See also:

• STDIN

• STDOUT

• STDERR

• ENV

• ENDIAN_BOM

• Libc.MS_ASYNC

• Libc.MS_INVALIDATE

• Libc.MS_SYNC

• Libdl.DL_LOAD_PATH

• Libdl.RTLD_DEEPBIND

• Libdl.RTLD_LOCAL

• Libdl.RTLD_NOLOAD

• Libdl.RTLD_LAZY

• Libdl.RTLD_NOW

• Libdl.RTLD_GLOBAL

• Libdl.RTLD_NODELETE

• Libdl.RTLD_FIRST

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/sysinfo.jl#L31-L35
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/sysinfo.jl#L46-L50

Chapter 54

Filesystem

Base.Filesystem.pwd – Function.

pwd() -> AbstractString

Get the current working directory.

source

Base.Filesystem.cd – Method.

cd(dir::AbstractString=homedir())

Set the current working directory.

source

Base.Filesystem.cd – Method.

cd(f::Function, dir::AbstractString=homedir())

Temporarily changes the current working directory and applies function f before returning.

source

Base.Filesystem.readdir – Function.

readdir(dir::AbstractString=".") -> Vector{String}

Returns the files and directories in the directory dir (or the current working directory if not given).

source

Base.Filesystem.walkdir – Function.

walkdir(dir; topdown=true, follow_symlinks=false, onerror=throw)

The walkdir method returns an iterator that walks the directory tree of a directory. The iterator returns a tu-

ple containing (rootpath, dirs, files). The directory tree can be traversed top-down or bottom-up. If

walkdir encounters a SystemError it will rethrow the error by default. A custom error handling function can

be provided through onerror keyword argument. onerror is called with a SystemError as argument.

765

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/file.jl#L32-L36
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/file.jl#L44-L48
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/file.jl#L77-L81
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/file.jl#L403-L407

766 CHAPTER 54. FILESYSTEM

for (root, dirs, files) in walkdir(".")

println("Directories in $root")

for dir in dirs

println(joinpath(root, dir)) # path to directories

end

println("Files in $root")

for file in files

println(joinpath(root, file)) # path to files

end

end

source

Base.Filesystem.mkdir – Function.

mkdir(path::AbstractString, mode::Unsigned=0o777)

Make a new directory with name path and permissions mode. mode defaults to 0o777, modified by the current

file creation mask. This function never creates more than one directory. If the directory already exists, or some

intermediate directories do not exist, this function throws an error. See mkpath for a function which creates all

required intermediate directories.

source

Base.Filesystem.mkpath – Function.

mkpath(path::AbstractString, mode::Unsigned=0o777)

Create all directories in the given path, with permissions mode. mode defaults to 0o777, modified by the current

file creation mask.

source

Base.Filesystem.symlink – Function.

symlink(target::AbstractString, link::AbstractString)

Creates a symbolic link to targetwith the name link.

Note

This function raises an error under operating systems that do not support soft symbolic links, such as

Windows XP.

source

Base.Filesystem.readlink – Function.

readlink(path::AbstractString) -> AbstractString

Returns the target location a symbolic link path points to.

source

Base.Filesystem.chmod – Function.

chmod(path::AbstractString, mode::Integer; recursive::Bool=false)

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/file.jl#L433-L455
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/file.jl#L84-L92
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/file.jl#L102-L107
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/file.jl#L543-L551
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/file.jl#L574-L578

767

Change the permissions mode of path to mode. Only integer modes (e.g. 0o777) are currently supported. If

recursive=true and the path is a directory all permissions in that directory will be recursively changed.

source

Base.Filesystem.chown – Function.

chown(path::AbstractString, owner::Integer, group::Integer=-1)

Change the owner and/or group of path to owner and/or group. If the value entered for owner or group is -1

the corresponding ID will not change. Only integer owners and groups are currently supported.

source

Base.stat – Function.

stat(file)

Returns a structure whose fields contain information about the file. The fields of the structure are:

Name Description

size The size (in bytes) of the file

device ID of the device that contains the file

inode The inode number of the file

mode The protection mode of the file

nlink The number of hard links to the file

uid The user id of the owner of the file

gid The group id of the file owner

rdev If this file refers to a device, the ID of the device it refers to

blksize The file-system preferred block size for the file

blocks The number of such blocks allocated

mtime Unix timestamp of when the file was last modified

ctime Unix timestamp of when the file was created

source

Base.Filesystem.lstat – Function.

lstat(file)

Like stat, but for symbolic links gets the info for the link itself rather than the file it refers to. This function must

be called on a file path rather than a file object or a file descriptor.

source

Base.Filesystem.ctime – Function.

ctime(file)

Equivalent to stat(file).ctime

source

Base.Filesystem.mtime – Function.

mtime(file)

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/file.jl#L598-L604
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/file.jl#L618-L623
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/stat.jl#L83-L104
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/stat.jl#L107-L114
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/stat.jl#L140-L144

768 CHAPTER 54. FILESYSTEM

Equivalent to stat(file).mtime.

source

Base.Filesystem.filemode – Function.

filemode(file)

Equivalent to stat(file).mode

source

Base.Filesystem.filesize – Function.

filesize(path...)

Equivalent to stat(file).size.

source

Base.Filesystem.uperm – Function.

uperm(file)

Gets the permissions of the owner of the file as a bitfield of

Value Description

01 Execute Permission

02 Write Permission

04 Read Permission

For allowed arguments, see stat.

source

Base.Filesystem.gperm – Function.

gperm(file)

Like uperm but gets the permissions of the group owning the file.

source

Base.Filesystem.operm – Function.

operm(file)

Like uperm but gets the permissions for people who neither own the file nor are a member of the group owning

the file

source

Base.Filesystem.cp – Function.

cp(src::AbstractString, dst::AbstractString; remove_destination::Bool=false, follow_symlinks

::Bool=false)

Copy the file, link, or directory from src to dest. remove_destination=truewill first remove an existing dst.

If follow_symlinks=false, and src is a symbolic link, dstwill be created as a symbolic link. If follow_sym-

links=true and src is a symbolic link, dstwill be a copy of the file or directory src refers to.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/stat.jl#L133-L137
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/stat.jl#L119-L123
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/stat.jl#L126-L130
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/stat.jl#L228-L240
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/stat.jl#L243-L247
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/stat.jl#L250-L255
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/file.jl#L209-L218

769

Base.download – Function.

download(url::AbstractString, [localfile::AbstractString])

Download a file from the given url, optionally renaming it to the given local file name. Note that this function

relies on the availability of external tools such as curl, wget or fetch to download the file and is provided

for convenience. For production use or situations in which more options are needed, please use a package that

provides the desired functionality instead.

source

Base.Filesystem.mv – Function.

mv(src::AbstractString, dst::AbstractString; remove_destination::Bool=false)

Move the file, link, or directory from src to dst. remove_destination=truewill first remove an existing dst.

source

Base.Filesystem.rm – Function.

rm(path::AbstractString; force::Bool=false, recursive::Bool=false)

Delete the file, link, or empty directory at the given path. If force=true is passed, a non-existing path is not

treated as error. If recursive=true is passed and the path is a directory, then all contents are removed recur-

sively.

source

Base.Filesystem.touch – Function.

touch(path::AbstractString)

Update the last-modified timestamp on a file to the current time.

source

Base.Filesystem.tempname – Function.

tempname()

Generate a unique temporary file path.

source

Base.Filesystem.tempdir – Function.

tempdir()

Obtain the path of a temporary directory (possibly shared with other processes).

source

Base.Filesystem.mktemp – Method.

mktemp(parent=tempdir())

Returns (path, io), where path is the path of a new temporary file in parent and io is an open file object for

this path.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/interactiveutil.jl#L614-L622
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/file.jl#L231-L236
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/file.jl#L129-L135
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/file.jl#L242-L246
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/file.jl#L343-L347
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/file.jl#L336-L340
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/file.jl#L350-L355

770 CHAPTER 54. FILESYSTEM

Base.Filesystem.mktemp – Method.

mktemp(f::Function, parent=tempdir())

Apply the function f to the result of mktemp(parent) and remove the temporary file upon completion.

source

Base.Filesystem.mktempdir – Method.

mktempdir(parent=tempdir())

Create a temporary directory in the parent directory and return its path. If parent does not exist, throw an

error.

source

Base.Filesystem.mktempdir – Method.

mktempdir(f::Function, parent=tempdir())

Apply the function f to the result of mktempdir(parent) and remove the temporary directory upon completion.

source

Base.Filesystem.isblockdev – Function.

isblockdev(path) -> Bool

Returns true if path is a block device, false otherwise.

source

Base.Filesystem.ischardev – Function.

ischardev(path) -> Bool

Returns true if path is a character device, false otherwise.

source

Base.Filesystem.isdir – Function.

isdir(path) -> Bool

Returns true if path is a directory, false otherwise.

source

Base.Filesystem.isfifo – Function.

isfifo(path) -> Bool

Returns true if path is a FIFO, false otherwise.

source

Base.Filesystem.isfile – Function.

isfile(path) -> Bool

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/file.jl#L367-L372
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/file.jl#L358-L363
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/file.jl#L383-L388
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/stat.jl#L177-L181
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/stat.jl#L163-L167
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/stat.jl#L170-L174
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/stat.jl#L156-L160

771

Returns true if path is a regular file, false otherwise.

source

Base.Filesystem.islink – Function.

islink(path) -> Bool

Returns true if path is a symbolic link, false otherwise.

source

Base.Filesystem.ismount – Function.

ismount(path) -> Bool

Returns true if path is a mount point, false otherwise.

source

Base.Filesystem.ispath – Function.

ispath(path) -> Bool

Returns true if path is a valid filesystem path, false otherwise.

source

Base.Filesystem.issetgid – Function.

issetgid(path) -> Bool

Returns true if path has the setgid flag set, false otherwise.

source

Base.Filesystem.issetuid – Function.

issetuid(path) -> Bool

Returns true if path has the setuid flag set, false otherwise.

source

Base.Filesystem.issocket – Function.

issocket(path) -> Bool

Returns true if path is a socket, false otherwise.

source

Base.Filesystem.issticky – Function.

issticky(path) -> Bool

Returns true if path has the sticky bit set, false otherwise.

source

Base.Filesystem.homedir – Function.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/stat.jl#L184-L188
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/stat.jl#L191-L195
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/stat.jl#L296-L300
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/stat.jl#L149-L153
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/stat.jl#L214-L218
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/stat.jl#L207-L211
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/stat.jl#L198-L202
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/stat.jl#L221-L225

772 CHAPTER 54. FILESYSTEM

homedir() -> AbstractString

Return the current user’s home directory.

Note

homedir determines the home directory via libuv’s uv_os_homedir. For details (for example on

how to specify the home directory via environment variables), see the uv_os_homedir documenta-

tion.

source

Base.Filesystem.dirname – Function.

dirname(path::AbstractString) -> AbstractString

Get the directory part of a path.

julia> dirname("/home/myuser")

"/home"

See also: basename

source

Base.Filesystem.basename – Function.

basename(path::AbstractString) -> AbstractString

Get the file name part of a path.

julia> basename("/home/myuser/example.jl")

"example.jl"

See also: dirname

source

Base.@__FILE__ – Macro.

@__FILE__ -> AbstractString

@__FILE__ expands to a string with the absolute file path of the file containing the macro. Returns nothing if

run from a REPL or an empty string if evaluated by julia -e <expr>. Alternatively see PROGRAM_FILE.

source

Base.@__DIR__ – Macro.

@__DIR__ -> AbstractString

@__DIR__ expands to a stringwith the directory part of the absolute path of the file containing themacro. Returns

nothing if run from a REPL or an empty string if evaluated by julia -e <expr>.

source

@__LINE__ – Macro.

http://docs.libuv.org/en/v1.x/misc.html#c.uv_os_homedir
http://docs.libuv.org/en/v1.x/misc.html#c.uv_os_homedir
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/path.jl#L52-L61
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/path.jl#L134-L145
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/path.jl#L148-L159
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/loading.jl#L541-L547
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/loading.jl#L550-L556

773

@__LINE__ -> Int

@__LINE__ expands to the line number of the call-site.

source

Base.Filesystem.isabspath – Function.

isabspath(path::AbstractString) -> Bool

Determines whether a path is absolute (begins at the root directory).

julia> isabspath("/home")

true

julia> isabspath("home")

false

source

Base.Filesystem.isdirpath – Function.

isdirpath(path::AbstractString) -> Bool

Determines whether a path refers to a directory (for example, ends with a path separator).

julia> isdirpath("/home")

false

julia> isdirpath("/home/")

true

source

Base.Filesystem.joinpath – Function.

joinpath(parts...) -> AbstractString

Join path components into a full path. If some argument is an absolute path, then prior components are dropped.

julia> joinpath("/home/myuser","example.jl")

"/home/myuser/example.jl"

source

Base.Filesystem.abspath – Function.

abspath(path::AbstractString) -> AbstractString

Convert a path to an absolute path by adding the current directory if necessary.

source

abspath(path::AbstractString, paths::AbstractString...) -> AbstractString

Convert a set of paths to an absolute path by joining them together and adding the current directory if necessary.

Equivalent to abspath(joinpath(path, paths...)).

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/basedocs.jl#L647-L651
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/path.jl#L86-L98
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/path.jl#L101-L113
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/path.jl#L194-L204
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/path.jl#L264-L268
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/path.jl#L271-L276

774 CHAPTER 54. FILESYSTEM

Base.Filesystem.normpath – Function.

normpath(path::AbstractString) -> AbstractString

Normalize a path, removing ”.” and ”..” entries.

julia> normpath("/home/myuser/../example.jl")

"/home/example.jl"

source

Base.Filesystem.realpath – Function.

realpath(path::AbstractString) -> AbstractString

Canonicalize a path by expanding symbolic links and removing ”.” and ”..” entries.

source

Base.Filesystem.relpath – Function.

relpath(path::AbstractString, startpath::AbstractString = ".") -> AbstractString

Return a relative filepath to path either from the current directory or from an optional start directory. This is a

path computation: the filesystem is not accessed to confirm the existence or nature of path or startpath.

source

Base.Filesystem.expanduser – Function.

expanduser(path::AbstractString) -> AbstractString

On Unix systems, replace a tilde character at the start of a path with the current user’s home directory.

source

Base.Filesystem.splitdir – Function.

splitdir(path::AbstractString) -> (AbstractString, AbstractString)

Split a path into a tuple of the directory name and file name.

julia> splitdir("/home/myuser")

("/home", "myuser")

source

Base.Filesystem.splitdrive – Function.

splitdrive(path::AbstractString) -> (AbstractString, AbstractString)

On Windows, split a path into the drive letter part and the path part. On Unix systems, the first component is

always the empty string.

source

Base.Filesystem.splitext – Function.

splitext(path::AbstractString) -> (AbstractString, AbstractString)

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/path.jl#L219-L228
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/path.jl#L319-L323
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/path.jl#L350-L356
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/path.jl#L342-L346
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/path.jl#L116-L125
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/path.jl#L44-L49

775

If the last component of a path contains a dot, split the path into everything before the dot and everything including

and after the dot. Otherwise, return a tuple of the argument unmodified and the empty string.

julia> splitext("/home/myuser/example.jl")

("/home/myuser/example", ".jl")

julia> splitext("/home/myuser/example")

("/home/myuser/example", "")

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/path.jl#L162-L176

Chapter 55

I/O and Network

55.1 General I/O

Base.STDOUT – Constant.

STDOUT

Global variable referring to the standard out stream.

source

Base.STDERR – Constant.

STDERR

Global variable referring to the standard error stream.

source

Base.STDIN – Constant.

STDIN

Global variable referring to the standard input stream.

source

Base.open – Function.

open(filename::AbstractString, [read::Bool, write::Bool, create::Bool, truncate::Bool, append

::Bool]) -> IOStream

Open a file in a mode specified by five boolean arguments. The default is to open files for reading only. Returns

a stream for accessing the file.

source

open(filename::AbstractString, [mode::AbstractString]) -> IOStream

Alternate syntax for open, where a string-based mode specifier is used instead of the five booleans. The values

of mode correspond to those from fopen(3) or Perl open, and are equivalent to setting the following boolean

groups:

source

777

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libuv.jl#L114-L118
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libuv.jl#L121-L125
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libuv.jl#L107-L111
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/iostream.jl#L96-L101
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/iostream.jl#L115-L130

778 CHAPTER 55. I/O AND NETWORK

Mode Description

r read

r+ read, write

w write, create, truncate

w+ read, write, create, truncate

a write, create, append

a+ read, write, create, append

open(f::Function, args...)

Apply the function f to the result of open(args...) and close the resulting file descriptor upon completion.

Example: open(readstring, "file.txt")

source

open(command, mode::AbstractString="r", stdio=DevNull)

Start running command asynchronously, and return a tuple (stream,process). If mode is "r", then stream

reads from the process’s standard output and stdio optionally specifies the process’s standard input stream. If

mode is "w", then stream writes to the process’s standard input and stdio optionally specifies the process’s

standard output stream.

source

open(f::Function, command, mode::AbstractString="r", stdio=DevNull)

Similar to open(command, mode, stdio), but calls f(stream) on the resulting read or write stream, then

closes the stream and waits for the process to complete. Returns the value returned by f.

source

Base.IOBuffer – Type.

IOBuffer([data,],[readable::Bool=true, writable::Bool=true, [maxsize::Int=typemax(Int)]])

Create an IOBuffer, which may optionally operate on a pre-existing array. If the readable/writable arguments

are given, they restrict whether or not the buffermay be read from orwritten to respectively. By default the buffer

is readable but not writable. The last argument optionally specifies a size beyond which the buffer may not be

grown.

source

IOBuffer() -> IOBuffer

Create an in-memory I/O stream.

source

IOBuffer(size::Int)

Create a fixed size IOBuffer. The buffer will not grow dynamically.

source

IOBuffer(string::String)

Create a read-only IOBuffer on the data underlying the given string.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/iostream.jl#L141-L148
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/process.jl#L565-L573
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/process.jl#L591-L597
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/iobuffer.jl#L34-L41
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/iobuffer.jl#L51-L55
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/iobuffer.jl#L58-L62

55.1. GENERAL I/O 779

julia> io = IOBuffer("Haho");

julia> String(take!(io))

"Haho"

julia> String(take!(io))

"Haho"

source

Base.take! – Method.

take!(b::IOBuffer)

Obtain the contents of an IOBuffer as an array, without copying. Afterwards, the IOBuffer is reset to its initial

state.

source

Base.fdio – Function.

fdio([name::AbstractString,]fd::Integer[, own::Bool=false]) -> IOStream

Create an IOStream object from an integer file descriptor. If own is true, closing this object will close the un-

derlying descriptor. By default, an IOStream is closed when it is garbage collected. name allows you to associate

the descriptor with a named file.

source

Base.flush – Function.

flush(stream)

Commit all currently buffered writes to the given stream.

source

Base.close – Function.

close(stream)

Close an I/O stream. Performs a flush first.

source

Base.write – Function.

write(stream::IO, x)

write(filename::AbstractString, x)

Write the canonical binary representation of a value to the given I/O stream or file. Returns the number of bytes

written into the stream.

You can write multiple values with the same write call. i.e. the following are equivalent:

write(stream, x, y...)

write(stream, x) + write(stream, y...)

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/strings/io.jl#L152-L166
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/iobuffer.jl#L266-L271
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/iostream.jl#L80-L86
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/io.jl#L641-L645
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/io.jl#L22-L26
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/io.jl#L52-L63

780 CHAPTER 55. I/O AND NETWORK

Base.read – Function.

read(filename::AbstractString, args...)

Open a file and read its contents. args is passed to read: this is equivalent to open(io->read(io, args...),

filename).

source

read(stream::IO, T, dims)

Read a series of values of type T from stream, in canonical binary representation. dims is either a tuple or a

series of integer arguments specifying the size of the Array{T} to return.

source

read(s::IO, nb=typemax(Int))

Read at most nb bytes from s, returning a Vector{UInt8} of the bytes read.

source

read(s::IOStream, nb::Integer; all=true)

Read at most nb bytes from s, returning a Vector{UInt8} of the bytes read.

If all is true (the default), this function will block repeatedly trying to read all requested bytes, until an error

or end-of-file occurs. If all is false, at most one read call is performed, and the amount of data returned is

device-dependent. Note that not all stream types support the all option.

source

read(stream::IO, T)

Read a single value of type T from stream, in canonical binary representation.

source

Base.read! – Function.

read!(stream::IO, array::Union{Array, BitArray})

read!(filename::AbstractString, array::Union{Array, BitArray})

Read binary data from an I/O stream or file, filling in array.

source

Base.readbytes! – Function.

readbytes!(stream::IO, b::AbstractVector{UInt8}, nb=length(b))

Read at most nb bytes from stream into b, returning the number of bytes read. The size of b will be increased if

needed (i.e. if nb is greater than length(b) and enough bytes could be read), but it will never be decreased.

source

readbytes!(stream::IOStream, b::AbstractVector{UInt8}, nb=length(b); all::Bool=true)

Read at most nb bytes from stream into b, returning the number of bytes read. The size of b will be increased if

needed (i.e. if nb is greater than length(b) and enough bytes could be read), but it will never be decreased.

See read for a description of the all option.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/io.jl#L154-L159
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/io.jl#L377-L383
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/io.jl#L520-L524
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/iostream.jl#L295-L304
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1237-L1241
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L38-L43
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/io.jl#L495-L501
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/iostream.jl#L268-L276

55.1. GENERAL I/O 781

Base.unsafe_read – Function.

unsafe_read(io::IO, ref, nbytes::UInt)

Copy nbytes from the IO stream object into ref (converted to a pointer).

It is recommended that subtypes T<:IO override the following method signature to provide more efficient imple-

mentations: unsafe_read(s::T, p::Ptr{UInt8}, n::UInt)

source

Base.unsafe_write – Function.

unsafe_write(io::IO, ref, nbytes::UInt)

Copy nbytes from ref (converted to a pointer) into the IO object.

It is recommended that subtypes T<:IO override the following method signature to provide more efficient imple-

mentations: unsafe_write(s::T, p::Ptr{UInt8}, n::UInt)

source

Base.position – Function.

position(s)

Get the current position of a stream.

source

Base.seek – Function.

seek(s, pos)

Seek a stream to the given position.

source

Base.seekstart – Function.

seekstart(s)

Seek a stream to its beginning.

source

Base.seekend – Function.

seekend(s)

Seek a stream to its end.

source

Base.skip – Function.

skip(s, offset)

Seek a stream relative to the current position.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/io.jl#L86-L94
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/io.jl#L69-L77
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1035-L1039
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L908-L912
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1443-L1447
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L2377-L2381
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L714-L718

782 CHAPTER 55. I/O AND NETWORK

Base.mark – Function.

mark(s)

Add a mark at the current position of stream s. Returns the marked position.

See also unmark, reset, ismarked.

source

Base.unmark – Function.

unmark(s)

Remove a mark from stream s. Returns true if the stream was marked, false otherwise.

See also mark, reset, ismarked.

source

Base.reset – Function.

reset(s)

Reset a stream s to a previously marked position, and remove the mark. Returns the previously marked position.

Throws an error if the stream is not marked.

See also mark, unmark, ismarked.

source

Base.ismarked – Function.

ismarked(s)

Returns true if stream s is marked.

See also mark, unmark, reset.

source

Base.eof – Function.

eof(stream) -> Bool

Tests whether an I/O stream is at end-of-file. If the stream is not yet exhausted, this functionwill block to wait for

more data if necessary, and then return false. Therefore it is always safe to read one byte after seeing eof return

false. eof will return false as long as buffered data is still available, even if the remote end of a connection is

closed.

source

Base.isreadonly – Function.

isreadonly(stream) -> Bool

Determine whether a stream is read-only.

source

Base.iswritable – Function.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/io.jl#L589-L595
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/io.jl#L600-L606
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/io.jl#L613-L620
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/io.jl#L629-L635
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/io.jl#L137-L145
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/io.jl#L275-L279

55.1. GENERAL I/O 783

iswritable(io) -> Bool

Returns true if the specified IO object is writable (if that can be determined).

source

Base.isreadable – Function.

isreadable(io) -> Bool

Returns true if the specified IO object is readable (if that can be determined).

source

Base.isopen – Function.

isopen(object) -> Bool

Determine whether an object - such as a stream, timer, or mmap – is not yet closed. Once an object is closed,

it will never produce a new event. However, a closed stream may still have data to read in its buffer, use eof to

check for the ability to read data. Use poll_fd to be notified when a stream might be writable or readable.

source

Base.Serializer.serialize – Function.

serialize(stream, value)

Write an arbitrary value to a stream in an opaque format, such that it can be read back by deserialize. The

read-back value will be as identical as possible to the original. In general, this process will not work if the reading

andwriting are done by different versions of Julia, or an instance of Julia with a different system image. Ptr values

are serialized as all-zero bit patterns (NULL).

source

Base.Serializer.deserialize – Function.

deserialize(stream)

Read a value written by serialize. deserialize assumes the binary data read from stream is correct and

has been serialized by a compatible implementation of serialize. It has been designed with simplicity and

performance as a goal and does not validate the data read. Malformed data can result in process termination. The

caller has to ensure the integrity and correctness of data read from stream.

source

Base.Grisu.print_shortest – Function.

print_shortest(io, x)

Print the shortest possible representation, with the minimum number of consecutive non-zero digits, of number

x, ensuring that it would parse to the exact same number.

source

Base.fd – Function.

fd(stream)

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/io.jl#L43-L47
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/io.jl#L36-L40
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/io.jl#L12-L19
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L842-L850
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1746-L1754
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L539-L544

784 CHAPTER 55. I/O AND NETWORK

Returns the file descriptor backing the stream or file. Note that this function only applies to synchronous File’s

and IOStream’s not to any of the asynchronous streams.

source

Base.redirect_stdout – Function.

redirect_stdout([stream]) -> (rd, wr)

Create a pipe towhich all C and Julia level STDOUT outputwill be redirected. Returns a tuple (rd, wr) represent-

ing the pipe ends. Data written to STDOUTmay now be read from the rd end of the pipe. The wr end is given for

convenience in case the old STDOUT object was cached by the user and needs to be replaced elsewhere.

Note

stream must be a TTY, a Pipe, or a TCPSocket.

source

Base.redirect_stdout – Method.

redirect_stdout(f::Function, stream)

Run the function fwhile redirecting STDOUT to stream. Upon completion, STDOUT is restored to its prior setting.

Note

stream must be a TTY, a Pipe, or a TCPSocket.

source

Base.redirect_stderr – Function.

redirect_stderr([stream]) -> (rd, wr)

Like redirect_stdout, but for STDERR.

Note

stream must be a TTY, a Pipe, or a TCPSocket.

source

Base.redirect_stderr – Method.

redirect_stderr(f::Function, stream)

Run the function fwhile redirecting STDERR to stream. Upon completion, STDERR is restored to its prior setting.

Note

stream must be a TTY, a Pipe, or a TCPSocket.

source

Base.redirect_stdin – Function.

redirect_stdin([stream]) -> (rd, wr)

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L405-L410
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/stream.jl#L1042-L1055
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/stream.jl#L1094-L1102
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/stream.jl#L1058-L1065
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/stream.jl#L1105-L1113

55.1. GENERAL I/O 785

Like redirect_stdout, but for STDIN. Note that the order of the return tuple is still (rd, wr), i.e. data to be

read from STDIN may be written to wr.

Note

stream must be a TTY, a Pipe, or a TCPSocket.

source

Base.redirect_stdin – Method.

redirect_stdin(f::Function, stream)

Run the function fwhile redirecting STDIN to stream. Upon completion, STDIN is restored to its prior setting.

Note

stream must be a TTY, a Pipe, or a TCPSocket.

source

Base.readchomp – Function.

readchomp(x)

Read the entirety of x as a string and remove a single trailing newline. Equivalent to chomp!(readstring(x)).

source

Base.truncate – Function.

truncate(file,n)

Resize the file or buffer given by the first argument to exactly n bytes, filling previously unallocated space with

’\0’ if the file or buffer is grown.

source

Base.skipchars – Function.

skipchars(stream, predicate; linecomment::Char)

Advance the streamuntil before the first character forwhichpredicate returnsfalse. For exampleskipchars(stream,

isspace)will skip all whitespace. If keyword argument linecomment is specified, characters from that character

through the end of a line will also be skipped.

source

Base.DataFmt.countlines – Function.

countlines(io::IO, eol::Char='\n')

Read io until the end of the stream/file and count the number of lines. To specify a file pass the filename as the

first argument. EOL markers other than '\n' are supported by passing them as the second argument.

source

Base.PipeBuffer – Function.

PipeBuffer(data::Vector{UInt8}=UInt8[],[maxsize::Int=typemax(Int)])

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/stream.jl#L1068-L1077
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/stream.jl#L1116-L1124
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/io.jl#L485-L490
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L580-L585
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L2221-L2228
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/datafmt.jl#L20-L26

786 CHAPTER 55. I/O AND NETWORK

An IOBuffer that allows reading and performs writes by appending. Seeking and truncating are not supported.

See IOBuffer for the available constructors. If data is given, creates a PipeBuffer to operate on a data vector,

optionally specifying a size beyond which the underlying Array may not be grown.

source

Base.readavailable – Function.

readavailable(stream)

Read all available data on the stream, blocking the task only if no data is available. The result is aVector{UInt8,1}.

source

Base.IOContext – Type.

IOContext

IOContext provides a mechanism for passing output configuration settings among show methods.

In short, it is an immutable dictionary that is a subclass of IO. It supports standard dictionary operations such as

getindex, and can also be used as an I/O stream.

source

Base.IOContext – Method.

IOContext(io::IO, KV::Pair)

Create an IOContext that wraps a given stream, adding the specified key=>value pair to the properties of that

stream (note that io can itself be an IOContext).

• use (key => value) in dict to see if this particular combination is in the properties set

• use get(dict, key, default) to retrieve the most recent value for a particular key

The following properties are in common use:

• :compact: Boolean specifying that small values should be printed more compactly, e.g. that numbers

should be printed with fewer digits. This is set when printing array elements.

• :limit: Boolean specifying that containers should be truncated, e.g. showing … in place of most elements.

• :displaysize: A Tuple{Int,Int} giving the size in rows and columns to use for text output. This can be

used to override the display size for called functions, but to get the size of the screen use the displaysize

function.

julia> function f(io::IO)

if get(io, :short, false)

print(io, "short")

else

print(io, "loooooong")

end

end

f (generic function with 1 method)

julia> f(STDOUT)

loooooong

julia> f(IOContext(STDOUT, :short => true))

short

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/iobuffer.jl#L67-L75
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1890-L1895
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/show.jl#L5-L12

55.2. TEXT I/O 787

source

Base.IOContext – Method.

IOContext(io::IO, context::IOContext)

Create an IOContext that wraps an alternate IO but inherits the properties of context.

source

55.2 Text I/O

Base.show – Method.

show(x)

Write an informative text representation of a value to the current output stream. New types should overload

show(io, x) where the first argument is a stream. The representation used by show generally includes Julia-

specific formatting and type information.

source

Base.showcompact – Function.

showcompact(x)

Show a compact representation of a value.

This is used for printing array elements without repeating type information (which would be redundant with that

printed once for the whole array), and without line breaks inside the representation of an element.

To offer a compact representation different from its standard one, a custom type should test get(io, :com-

pact, false) in its normal show method.

source

Base.showall – Function.

showall(x)

Similar to show, except shows all elements of arrays.

source

Base.summary – Function.

summary(x)

Return a string giving a brief description of a value. By default returns string(typeof(x)), e.g. Int64.

For arrays, returns a string of size and type info, e.g. 10-element Array{Int64,1}.

julia> summary(1)

"Int64"

julia> summary(zeros(2))

"2-element Array{Float64,1}"

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/show.jl#L54-L89
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/show.jl#L47-L51
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1605-L1611
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L750-L761
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1848-L1852
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/show.jl#L1549-L1565

788 CHAPTER 55. I/O AND NETWORK

Base.print – Function.

print(io::IO, x)

Write to io (or to the default output stream STDOUT if io is not given) a canonical (un-decorated) text representa-

tion of a value if there is one, otherwise call show. The representation used by print includes minimal formatting

and tries to avoid Julia-specific details.

julia> print("Hello World!")

Hello World!

julia> io = IOBuffer();

julia> print(io, "Hello World!")

julia> String(take!(io))

"Hello World!"

source

Base.println – Function.

println(io::IO, xs...)

Print (using print) xs followed by a newline. If io is not supplied, prints to STDOUT.

source

Base.print_with_color – Function.

print_with_color(color::Union{Symbol, Int}, [io], xs...; bold::Bool = false)

Print xs in a color specified as a symbol.

colormay take any of the values :normal, :default, :bold, :black, :blue, :cyan, :green, :light_black,

:light_blue, :light_cyan, :light_green, :light_magenta, :light_red, :light_yellow, :magenta,

:nothing, :red, :white, or :yellow or an integer between 0 and 255 inclusive. Note that not all terminals

support 256 colors. If the keyword bold is given as true, the result will be printed in bold.

source

Base.info – Function.

info([io,] msg..., [prefix="INFO: "])

Display an informational message. Argument msg is a string describing the information to be displayed. The

prefix keyword argument can be used to override the default prepending of msg.

julia> info("hello world")

INFO: hello world

julia> info("hello world"; prefix="MY INFO: ")

MY INFO: hello world

See also logging.

source

Base.warn – Function.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/strings/io.jl#L6-L25
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/strings/io.jl#L48-L53
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/util.jl#L408-L416
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/util.jl#L508-L525

55.2. TEXT I/O 789

warn([io,] msg..., [prefix="WARNING: ", once=false, key=nothing, bt=nothing, filename=

nothing, lineno::Int=0])

Display a warning. Argument msg is a string describing the warning to be displayed. Set once to true and specify

a key to only display msg the first time warn is called. If bt is not nothing a backtrace is displayed. If filename

is not nothing both it and lineno are displayed.

See also logging.

source

warn(msg)

Display a warning. Argument msg is a string describing the warning to be displayed.

julia> warn("Beep Beep")

WARNING: Beep Beep

source

Base.logging – Function.

logging(io [, m [, f]][; kind=:all])

logging([; kind=:all])

Stream output of informational, warning, and/or error messages to io, overriding what was otherwise specified.

Optionally, divert stream only for module m, or specifically function f within m. kind can be :all (the default),

:info, :warn, or :error. See Base.log_{info,warn,error}_to for the current set of redirections. Call

loggingwith no arguments (or just the kind) to reset everything.

source

Base.Printf.@printf – Macro.

@printf([io::IOStream], "%Fmt", args...)

Print args using C printf() style format specification string, with some caveats: Inf and NaN are printed

consistently as Inf and NaN for flags %a, %A, %e, %E, %f, %F, %g, and %G. Furthermore, if a floating point number

is equally close to the numeric values of two possible output strings, the output string further away from zero is

chosen.

Optionally, an IOStream may be passed as the first argument to redirect output.

Examples

julia> @printf("%f %F %f %F\n", Inf, Inf, NaN, NaN)

Inf Inf NaN NaN

julia> @printf "%.0f %.1f %f\n" 0.5 0.025 -0.0078125

1 0.0 -0.007813

source

Base.Printf.@sprintf – Macro.

@sprintf("%Fmt", args...)

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/util.jl#L541-L550
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/util.jl#L575-L584
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/util.jl#L482-L492
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/printf.jl#L1196-L1218

790 CHAPTER 55. I/O AND NETWORK

Return @printf formatted output as string.

Examples

julia> s = @sprintf "this is a %s %15.1f" "test" 34.567;

julia> println(s)

this is a test 34.6

source

Base.sprint – Function.

sprint(f::Function, args...)

Call the given functionwith an I/O stream and the supplied extra arguments. Everythingwritten to this I/O stream

is returned as a string.

julia> sprint(showcompact, 66.66666)

"66.6667"

source

Base.showerror – Function.

showerror(io, e)

Show a descriptive representation of an exception object.

source

Base.dump – Function.

dump(x)

Show every part of the representation of a value.

source

Base.readstring – Function.

readstring(stream::IO)

readstring(filename::AbstractString)

Read the entire contents of an I/O stream or a file as a string. The text is assumed to be encoded in UTF-8.

source

Base.readline – Function.

readline(stream::IO=STDIN; chomp::Bool=true)

readline(filename::AbstractString; chomp::Bool=true)

Read a single line of text from the given I/O stream or file (defaults to STDIN). When reading from a file, the text

is assumed to be encoded in UTF-8. Lines in the input end with '\n' or "\r\n" or the end of an input stream.

When chomp is true (as it is by default), these trailing newline characters are removed from the line before it is

returned. When chomp is false, they are returned as part of the line.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/printf.jl#L1229-L1242
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/strings/io.jl#L71-L81
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1506-L1510
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L497-L501
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/io.jl#L533-L539
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/io.jl#L172-L182

55.2. TEXT I/O 791

Base.readuntil – Function.

readuntil(stream::IO, delim)

readuntil(filename::AbstractString, delim)

Read a string from an I/O stream or a file, up to and including the given delimiter byte. The text is assumed to be

encoded in UTF-8.

source

Base.readlines – Function.

readlines(stream::IO=STDIN; chomp::Bool=true)

readlines(filename::AbstractString; chomp::Bool=true)

Read all lines of an I/O stream or a file as a vector of strings. Behavior is equivalent to saving the result of reading

readline repeatedly with the same arguments and saving the resulting lines as a vector of strings.

source

Base.eachline – Function.

eachline(stream::IO=STDIN; chomp::Bool=true)

eachline(filename::AbstractString; chomp::Bool=true)

Create an iterable EachLine object that will yield each line from an I/O stream or a file. Iteration calls readline

on the stream argument repeatedly with chomp passed through, determining whether trailing end-of-line charac-

ters are removed. When called with a file name, the file is opened once at the beginning of iteration and closed

at the end. If iteration is interrupted, the file will be closed when the EachLine object is garbage collected.

source

Base.DataFmt.readdlm – Method.

readdlm(source, delim::Char, T::Type, eol::Char; header=false, skipstart=0, skipblanks=true,

use_mmap, quotes=true, dims, comments=true, comment_char='#')

Read a matrix from the source where each line (separated by eol) gives one row, with elements separated by the

given delimiter. The source can be a text file, stream or byte array. Memory mapped files can be used by passing

the byte array representation of the mapped segment as source.

If T is a numeric type, the result is an array of that type, with any non-numeric elements as NaN for floating-point

types, or zero. Other useful values of T include String, AbstractString, and Any.

If header is true, the first row of data will be read as header and the tuple (data_cells, header_cells) is

returned instead of only data_cells.

Specifying skipstartwill ignore the corresponding number of initial lines from the input.

If skipblanks is true, blank lines in the input will be ignored.

If use_mmap is true, the file specified by source is memory mapped for potential speedups. Default is true

except onWindows. OnWindows, you maywant to specify true if the file is large, and is only read once and not

written to.

If quotes is true, columns enclosed within double-quote (”) characters are allowed to contain new lines and

column delimiters. Double-quote characters within a quoted field must be escaped with another double-quote.

Specifying dims as a tuple of the expected rows and columns (including header, if any) may speed up reading of

large files. If comments is true, lines beginning with comment_char and text following comment_char in any

line are ignored.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/io.jl#L163-L169
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/io.jl#L201-L208
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/io.jl#L554-L564
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/datafmt.jl#L84-L113

792 CHAPTER 55. I/O AND NETWORK

Base.DataFmt.readdlm – Method.

readdlm(source, delim::Char, eol::Char; options...)

If all data is numeric, the result will be a numeric array. If some elements cannot be parsed as numbers, a hetero-

geneous array of numbers and strings is returned.

source

Base.DataFmt.readdlm – Method.

readdlm(source, delim::Char, T::Type; options...)

The end of line delimiter is taken as \n.

source

Base.DataFmt.readdlm – Method.

readdlm(source, delim::Char; options...)

The end of line delimiter is taken as \n. If all data is numeric, the result will be a numeric array. If some elements

cannot be parsed as numbers, a heterogeneous array of numbers and strings is returned.

source

Base.DataFmt.readdlm – Method.

readdlm(source, T::Type; options...)

The columns are assumed to be separated by one or more whitespaces. The end of line delimiter is taken as \n.

source

Base.DataFmt.readdlm – Method.

readdlm(source; options...)

The columns are assumed to be separated by one or more whitespaces. The end of line delimiter is taken as

\n. If all data is numeric, the result will be a numeric array. If some elements cannot be parsed as numbers, a

heterogeneous array of numbers and strings is returned.

source

Base.DataFmt.writedlm – Function.

writedlm(f, A, delim='\t'; opts)

Write A (a vector, matrix, or an iterable collection of iterable rows) as text to f (either a filename string or an IO

stream) using the given delimiter delim (which defaults to tab, but can be any printable Julia object, typically a

Char or AbstractString).

For example, two vectors x and y of the same length can be written as two columns of tab-delimited text to f by

either writedlm(f, [x y]) or by writedlm(f, zip(x, y)).

source

Base.DataFmt.readcsv – Function.

readcsv(source, [T::Type]; options...)

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/datafmt.jl#L75-L80
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/datafmt.jl#L49-L53
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/datafmt.jl#L66-L72
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/datafmt.jl#L41-L46
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/datafmt.jl#L56-L63
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/datafmt.jl#L687-L697

55.2. TEXT I/O 793

Equivalent to readdlmwith delim set to comma, and type optionally defined by T.

source

Base.DataFmt.writecsv – Function.

writecsv(filename, A; opts)

Equivalent to writedlmwith delim set to comma.

source

Base.Base64.Base64EncodePipe – Type.

Base64EncodePipe(ostream)

Returns a new write-only I/O stream, which converts any bytes written to it into base64-encoded ASCII bytes

written to ostream. Calling close on the Base64EncodePipe stream is necessary to complete the encoding

(but does not close ostream).

julia> io = IOBuffer();

julia> iob64_encode = Base64EncodePipe(io);

julia> write(iob64_encode, "Hello!")

6

julia> close(iob64_encode);

julia> str = String(take!(io))

"SGVsbG8h"

julia> String(base64decode(str))

"Hello!"

source

Base.Base64.Base64DecodePipe – Type.

Base64DecodePipe(istream)

Returns a new read-only I/O stream, which decodes base64-encoded data read from istream.

julia> io = IOBuffer();

julia> iob64_decode = Base64DecodePipe(io);

julia> write(io, "SGVsbG8h")

8

julia> seekstart(io);

julia> String(read(iob64_decode))

"Hello!"

source

Base.Base64.base64encode – Function.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1520-L1524
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/datafmt.jl#L700-L704
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/base64.jl#L17-L41
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/base64.jl#L205-L223

794 CHAPTER 55. I/O AND NETWORK

base64encode(writefunc, args...)

base64encode(args...)

Given a write-like function writefunc, which takes an I/O stream as its first argument, base64encode(write-

func, args...) calls writefunc to write args... to a base64-encoded string, and returns the string.

base64encode(args...) is equivalent to base64encode(write, args...): it converts its arguments into

bytes using the standard write functions and returns the base64-encoded string.

See also base64decode.

source

Base.Base64.base64decode – Function.

base64decode(string)

Decodes the base64-encoded string and returns a Vector{UInt8} of the decoded bytes.

See also base64encode

julia> b = base64decode("SGVsbG8h")

6-element Array{UInt8,1}:

0x48

0x65

0x6c

0x6c

0x6f

0x21

julia> String(b)

"Hello!"

source

Base.displaysize – Function.

displaysize(io) -> (lines, columns)

Return the nominal size of the screen that may be used for rendering output to this io object

source

55.3 Multimedia I/O

Just as text output is performed by print and user-defined types can indicate their textual representation by over-

loading show, Julia provides a standardized mechanism for rich multimedia output (such as images, formatted text, or

even audio and video), consisting of three parts:

• A function display(x) to request the richest available multimedia display of a Julia object x (with a plain-text

fallback).

• Overloading show allows one to indicate arbitrary multimedia representations (keyed by standard MIME types)

of user-defined types.

• Multimedia-capable display backends may be registered by subclassing a generic Display type and pushing

them onto a stack of display backends via pushdisplay.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/base64.jl#L182-L193
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/base64.jl#L257-L277
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/stream.jl#L351-L353

55.3. MULTIMEDIA I/O 795

The base Julia runtime provides only plain-text display, but richer displays may be enabled by loading external modules

or by using graphical Julia environments (such as the IPython-based IJulia notebook).

Base.Multimedia.display – Function.

display(x)

display(d::Display, x)

display(mime, x)

display(d::Display, mime, x)

Display x using the topmost applicable display in the display stack, typically using the richest supportedmultimedia

output for x, with plain-text STDOUT output as a fallback. The display(d, x) variant attempts to display x on

the given display d only, throwing a MethodError if d cannot display objects of this type.

There are also two variants with a mime argument (a MIME type string, such as "image/png"), which attempt to

display x using the requestedMIME type only, throwing a MethodError if this type is not supported by either the

display(s) or by x. With these variants, one can also supply the ”raw” data in the requested MIME type by passing

x::AbstractString (for MIME types with text-based storage, such as text/html or application/postscript) or

x::Vector{UInt8} (for binary MIME types).

source

Base.Multimedia.redisplay – Function.

redisplay(x)

redisplay(d::Display, x)

redisplay(mime, x)

redisplay(d::Display, mime, x)

By default, the redisplay functions simply call display. However, some display backends may override re-

display to modify an existing display of x (if any). Using redisplay is also a hint to the backend that x may be

redisplayed several times, and the backendmay choose to defer the display until (for example) the next interactive

prompt.

source

Base.Multimedia.displayable – Function.

displayable(mime) -> Bool

displayable(d::Display, mime) -> Bool

Returns a boolean value indicating whether the given mime type (string) is displayable by any of the displays in

the current display stack, or specifically by the display d in the second variant.

source

Base.show – Method.

show(stream, mime, x)

The display functions ultimately call show in order to write an object x as a given mime type to a given I/O

stream (usually a memory buffer), if possible. In order to provide a rich multimedia representation of a user-

defined type T, it is only necessary to define a new show method for T, via: show(stream, ::MIME"mime",

x::T) = ..., where mime is a MIME-type string and the function body calls write (or similar) to write that

representation of x to stream. (Note that the MIME"" notation only supports literal strings; to construct MIME

types in a more flexible manner use MIME{Symbol("")}.)

For example, if you define a MyImage type and know how to write it to a PNG file, you could define a function

show(stream, ::MIME"image/png", x::MyImage) = ... to allow your images to be displayed on any

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L511-L528
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L464-L476
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/multimedia.jl#L128-L135

796 CHAPTER 55. I/O AND NETWORK

PNG-capable Display (such as IJulia). As usual, be sure to import Base.show in order to add newmethods to

the built-in Julia function show.

The default MIME type is MIME"text/plain". There is a fallback definition for text/plain output that calls

show with 2 arguments. Therefore, this case should be handled by defining a 2-argument show(stream::IO,

x::MyType) method.

Technically, the MIME"mime"macro defines a singleton type for the given mime string, which allows us to exploit

Julia’s dispatch mechanisms in determining how to display objects of any given type.

The first argument to show can be an IOContext specifying output format properties. See IOContext for details.

source

Base.Multimedia.mimewritable – Function.

mimewritable(mime, x)

Returns a boolean value indicating whether or not the object x can bewritten as the given mime type. (By default,

this is determined automatically by the existence of the corresponding show method for typeof(x).)

source

Base.Multimedia.reprmime – Function.

reprmime(mime, x)

Returns an AbstractString or Vector{UInt8} containing the representation of x in the requested mime type,

as written by show (throwing a MethodError if no appropriate show is available). An AbstractString is re-

turned for MIME types with textual representations (such as "text/html" or "application/postscript"),

whereas binary data is returned as Vector{UInt8}. (The function istextmime(mime) returns whether or not

Julia treats a given mime type as text.)

As a special case, if x is an AbstractString (for textual MIME types) or a Vector{UInt8} (for binary MIME

types), the reprmime function assumes that x is already in the requested mime format and simply returns x. This

special case does not apply to the "text/plain" MIME type. This is useful so that raw data can be passed to

display(m::MIME, x).

source

Base.Multimedia.stringmime – Function.

stringmime(mime, x)

Returns an AbstractString containing the representation of x in the requested mime type. This is similar to

reprmime except that binary data is base64-encoded as an ASCII string.

source

As mentioned above, one can also define new display backends. For example, a module that can display PNG images

in a window can register this capability with Julia, so that calling display(x) on types with PNG representations will

automatically display the image using the module’s window.

In order to define a new display backend, one should first create a subtype D of the abstract class Display. Then, for

eachMIME type (mime string) that can be displayed onD, one should define a functiondisplay(d::D, ::MIME"mime",

x) = ... that displays x as that MIME type, usually by calling reprmime(mime, x). A MethodError should be

thrown if x cannot be displayed as that MIME type; this is automatic if one calls reprmime. Finally, one should define

a function display(d::D, x) that queries mimewritable(mime, x) for the mime types supported by D and dis-

plays the ”best” one; a MethodError should be thrown if no supported MIME types are found for x. Similarly, some

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1457-L1485
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/multimedia.jl#L28-L34
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/multimedia.jl#L44-L60
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/multimedia.jl#L76-L82

55.4. MEMORY-MAPPED I/O 797

subtypes may wish to override redisplay(d::D, ...). (Again, one should import Base.display to add new

methods to display.) The return values of these functions are up to the implementation (since in some cases it may

be useful to return a display ”handle” of some type). The display functions for D can then be called directly, but they

can also be invoked automatically from display(x) simply by pushing a new display onto the display-backend stack

with:

Base.Multimedia.pushdisplay – Function.

pushdisplay(d::Display)

Pushes a new display d on top of the global display-backend stack. Calling display(x) or display(mime, x)

will display x on the topmost compatible backend in the stack (i.e., the topmost backend that does not throw a

MethodError).

source

Base.Multimedia.popdisplay – Function.

popdisplay()

popdisplay(d::Display)

Pop the topmost backend off of the display-backend stack, or the topmost copy of d in the second variant.

source

Base.Multimedia.TextDisplay – Type.

TextDisplay(io::IO)

Returns a TextDisplay <: Display, which displays anyobject as the text/plainMIME type (bydefault), writing

the text representation to the given I/O stream. (This is how objects are printed in the Julia REPL.)

source

Base.Multimedia.istextmime – Function.

istextmime(m::MIME)

Determine whether a MIME type is text data. MIME types are assumed to be binary data except for a set of types

known to be text data (possibly Unicode).

source

55.4 Memory-mapped I/O

Base.Mmap.Anonymous – Type.

Mmap.Anonymous(name, readonly, create)

Create an IO-like object for creating zeroed-out mmapped-memory that is not tied to a file for use in Mmap.mmap.

Used by SharedArray for creating shared memory arrays.

source

Base.Mmap.mmap – Method.

Mmap.mmap(io::Union{IOStream,AbstractString,Mmap.AnonymousMmap}[, type::Type{Array{T,N}},

dims, offset]; grow::Bool=true, shared::Bool=true)

Mmap.mmap(type::Type{Array{T,N}}, dims)

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1409-L1415
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L915-L921
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/multimedia.jl#L141-L147
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/multimedia.jl#L88-L93
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L635-L640

798 CHAPTER 55. I/O AND NETWORK

Create an Array whose values are linked to a file, using memory-mapping. This provides a convenient way of

working with data too large to fit in the computer’s memory.

The type is an Array{T,N}with a bits-type element of T and dimension N that determines how the bytes of the

array are interpreted. Note that the file must be stored in binary format, and no format conversions are possible

(this is a limitation of operating systems, not Julia).

dims is a tuple or single Integer specifying the size or length of the array.

The file is passed via the stream argument, either as an open IOStream or filename string. When you initialize

the stream, use "r" for a ”read-only” array, and "w+" to create a new array used to write values to disk.

If no type argument is specified, the default is Vector{UInt8}.

Optionally, you can specify an offset (in bytes) if, for example, you want to skip over a header in the file. The

default value for the offset is the current stream position for an IOStream.

The grow keyword argument specifies whether the disk file should be grown to accommodate the requested size

of array (if the total file size is < requested array size). Write privileges are required to grow the file.

The shared keyword argument specifies whether the resulting Array and changes made to it will be visible to

other processes mapping the same file.

For example, the following code

Create a file for mmapping

(you could alternatively use mmap to do this step, too)

A = rand(1:20, 5, 30)

s = open("/tmp/mmap.bin", "w+")

We'll write the dimensions of the array as the first two Ints in the file

write(s, size(A,1))

write(s, size(A,2))

Now write the data

write(s, A)

close(s)

Test by reading it back in

s = open("/tmp/mmap.bin") # default is read-only

m = read(s, Int)

n = read(s, Int)

A2 = Mmap.mmap(s, Matrix{Int}, (m,n))

creates a m-by-n Matrix{Int}, linked to the file associated with stream s.

A more portable file would need to encode the word size – 32 bit or 64 bit – and endianness information in the

header. In practice, consider encoding binary data using standard formats like HDF5 (which can be used with

memory-mapping).

source

Base.Mmap.mmap – Method.

Mmap.mmap(io, BitArray, [dims, offset])

Create a BitArray whose values are linked to a file, using memory-mapping; it has the same purpose, works in

the same way, and has the same arguments, as mmap, but the byte representation is different.

Example: B = Mmap.mmap(s, BitArray, (25,30000))

This would create a 25-by-30000 BitArray, linked to the file associated with stream s.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L234-L291
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L294-L304

55.5. NETWORK I/O 799

Base.Mmap.sync! – Function.

Mmap.sync!(array)

Forces synchronization between the in-memory version of a memory-mapped Array or BitArray and the on-

disk version.

source

55.5 Network I/O

Base.connect – Method.

connect([host], port::Integer) -> TCPSocket

Connect to the host host on port port.

source

Base.connect – Method.

connect(path::AbstractString) -> PipeEndpoint

Connect to the named pipe / UNIX domain socket at path.

source

Base.listen – Method.

listen([addr,]port::Integer; backlog::Integer=BACKLOG_DEFAULT) -> TCPServer

Listen on port on the address specified by addr. By default this listens on localhost only. To listen on all

interfaces pass IPv4(0) or IPv6(0) as appropriate. backlog determines howmany connections can be pending

(not having called accept) before the server will begin to reject them. The default value of backlog is 511.

source

Base.listen – Method.

listen(path::AbstractString) -> PipeServer

Create and listen on a named pipe / UNIX domain socket.

source

Base.getaddrinfo – Function.

getaddrinfo(host::AbstractString) -> IPAddr

Gets the IP address of the host (may have to do a DNS lookup)

source

Base.getsockname – Function.

getsockname(sock::Union{TCPServer, TCPSocket}) -> (IPAddr, UInt16)

Get the IP address and the port that the given TCPSocket is connected to (or bound to, in the case of TCPServer).

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1209-L1214
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/socket.jl#L728-L732
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/stream.jl#L990-L994
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/socket.jl#L756-L765
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/stream.jl#L961-L965
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/socket.jl#L630-L634
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/socket.jl#L837-L842

800 CHAPTER 55. I/O AND NETWORK

Base.IPv4 – Type.

IPv4(host::Integer) -> IPv4

Returns an IPv4 object from ip address host formatted as an Integer.

julia> IPv4(3223256218)

ip"192.30.252.154"

source

Base.IPv6 – Type.

IPv6(host::Integer) -> IPv6

Returns an IPv6 object from ip address host formatted as an Integer.

julia> IPv6(3223256218)

ip"::c01e:fc9a"

source

Base.nb_available – Function.

nb_available(stream)

Returns the number of bytes available for reading before a read from this stream or buffer will block.

source

Base.accept – Function.

accept(server[,client])

Accepts a connection on the given server and returns a connection to the client. An uninitialized client stream

may be provided, in which case it will be used instead of creating a new stream.

source

Base.listenany – Function.

listenany([host::IPAddr,] port_hint) -> (UInt16, TCPServer)

Create a TCPServer on any port, using hint as a starting point. Returns a tuple of the actual port that the server

was created on and the server itself.

source

Base.Filesystem.poll_fd – Function.

poll_fd(fd, timeout_s::Real=-1; readable=false, writable=false)

Monitor a file descriptor fd for changes in the read or write availability, and with a timeout given by timeout_s

seconds.

The keyword arguments determine which of read and/or write status should be monitored; at least one of them

must be set to true.

The returned value is an object with boolean fields readable, writable, and timedout, giving the result of the

polling.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/socket.jl#L24-L33
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/socket.jl#L76-L85
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/io.jl#L130-L134
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L626-L632
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/socket.jl#L814-L819
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/poll.jl#L434-L445

55.5. NETWORK I/O 801

Base.Filesystem.poll_file – Function.

poll_file(path::AbstractString, interval_s::Real=5.007, timeout_s::Real=-1) -> (previous::

StatStruct, current::StatStruct)

Monitor a file for changes by polling every interval_s seconds until a change occurs or timeout_s seconds

have elapsed. The interval_s should be a long period; the default is 5.007 seconds.

Returns a pair of StatStruct objects (previous, current)when a change is detected.

To determine when a file was modified, compare mtime(prev) != mtime(current) to detect notification

of changes. However, using watch_file for this operation is preferred, since it is more reliable and efficient,

although in some situations it may not be available.

source

Base.Filesystem.watch_file – Function.

watch_file(path::AbstractString, timeout_s::Real=-1)

Watch file or directory path for changes until a change occurs or timeout_s seconds have elapsed.

The returned value is an object with boolean fields changed, renamed, and timedout, giving the result ofwatch-

ing the file.

This behavior of this function varies slightly across platforms. See https://nodejs.org/api/fs.html#fs_caveats for

more detailed information.

source

Base.bind – Function.

bind(socket::Union{UDPSocket, TCPSocket}, host::IPAddr, port::Integer; ipv6only=false,

reuseaddr=false, kws...)

Bind socket to the given host:port. Note that 0.0.0.0will listen on all devices.

• The ipv6only parameter disables dual stack mode. If ipv6only=true, only an IPv6 stack is created.

• If reuseaddr=true, multiple threads or processes can bind to the same address without error if they all

set reuseaddr=true, but only the last to bind will receive any traffic.

source

bind(chnl::Channel, task::Task)

Associates the lifetime of chnlwith a task. Channel chnl is automatically closed when the task terminates. Any

uncaught exception in the task is propagated to all waiters on chnl.

The chnl object can be explicitly closed independent of task termination. Terminating tasks have no effect on

already closed Channel objects.

When a channel is bound to multiple tasks, the first task to terminate will close the channel. When multiple

channels are bound to the same task, termination of the task will close all of the bound channels.

julia> c = Channel(0);

julia> task = @schedule foreach(i->put!(c, i), 1:4);

julia> bind(c,task);

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/poll.jl#L514-L526
https://nodejs.org/api/fs.html#fs_caveats
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/poll.jl#L474-L485
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/socket.jl#L411-L419

802 CHAPTER 55. I/O AND NETWORK

julia> for i in c

@show i

end;

i = 1

i = 2

i = 3

i = 4

julia> isopen(c)

false

julia> c = Channel(0);

julia> task = @schedule (put!(c,1);error("foo"));

julia> bind(c,task);

julia> take!(c)

1

julia> put!(c,1);

ERROR: foo

Stacktrace:

[1] check_channel_state(::Channel{Any}) at ./channels.jl:131

[2] put!(::Channel{Any}, ::Int64) at ./channels.jl:261

source

Base.send – Function.

send(socket::UDPSocket, host, port::Integer, msg)

Send msg over socket to host:port.

source

Base.recv – Function.

recv(socket::UDPSocket)

Read a UDP packet from the specified socket, and return the bytes received. This call blocks.

source

Base.recvfrom – Function.

recvfrom(socket::UDPSocket) -> (address, data)

Read a UDP packet from the specified socket, returning a tuple of (address, data), where address will be

either IPv4 or IPv6 as appropriate.

source

Base.setopt – Function.

setopt(sock::UDPSocket; multicast_loop = nothing, multicast_ttl=nothing, enable_broadcast=

nothing, ttl=nothing)

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/channels.jl#L151-L200
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/socket.jl#L547-L551
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/socket.jl#L476-L480
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/socket.jl#L486-L491

55.5. NETWORK I/O 803

Set UDP socket options.

• multicast_loop: loopback for multicast packets (default: true).

• multicast_ttl: TTL for multicast packets (default: nothing).

• enable_broadcast: flag must be set to true if socket will be used for broadcast messages, or else the

UDP system will return an access error (default: false).

• ttl: Time-to-live of packets sent on the socket (default: nothing).

source

Base.ntoh – Function.

ntoh(x)

Converts the endianness of a value from Network byte order (big-endian) to that used by the Host.

source

Base.hton – Function.

hton(x)

Converts the endianness of a value from that used by the Host to Network byte order (big-endian).

source

Base.ltoh – Function.

ltoh(x)

Converts the endianness of a value from Little-endian to that used by the Host.

source

Base.htol – Function.

htol(x)

Converts the endianness of a value from that used by the Host to Little-endian.

source

Base.ENDIAN_BOM – Constant.

ENDIAN_BOM

The 32-bit byte-order-mark indicates the native byte order of the host machine. Little-endian machines will

contain the value 0x04030201. Big-endian machines will contain the value 0x01020304.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/socket.jl#L447-L457
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/io.jl#L246-L250
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/io.jl#L253-L257
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/io.jl#L260-L264
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/io.jl#L267-L271
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/io.jl#L237-L243

Chapter 56

Punctuation

Extended documentation for mathematical symbols & functions is here.

805

806 CHAPTER 56. PUNCTUATION

symbol meaning

@m invoke macro m; followed by space-separated expressions

! prefix ”not” operator

a!() at the end of a function name, ! indicates that a function modifies its argument(s)

begin single line comment

#= begin multi-line comment (these are nestable)

=# end multi-line comment

$ string and expression interpolation

% remainder operator

^ exponent operator

& bitwise and

&& short-circuiting boolean and

| bitwise or

|| short-circuiting boolean or

bitwise xor operator

* multiply, or matrix multiply

() the empty tuple

~ bitwise not operator

\ backslash operator

' complex transpose operator Aᴴ

a[] array indexing

[,] vertical concatenation

[;] also vertical concatenation

[] with space-separated expressions, horizontal concatenation

T{ } parametric type instantiation

; statement separator

, separate function arguments or tuple components

? 3-argument conditional operator (conditional ? if_true : if_false)

"" delimit string literals

'' delimit character literals

` ` delimit external process (command) specifications

... splice arguments into a function call or declare a varargs function or type

. access named fields in objects/modules, also prefixes elementwise operator/function calls

a:b range a, a+1, a+2, ..., b

a:s:b range a, a+s, a+2s, ..., b

: index an entire dimension (1:end)

:: type annotation, depending on context

:() quoted expression

:a symbol a

<: subtype operator

>: supertype operator (reverse of subtype operator)

=== egal comparison operator

Chapter 57

Sorting and Related Functions

Julia has an extensive, flexible API for sorting and interacting with already-sorted arrays of values. By default, Julia

picks reasonable algorithms and sorts in standard ascending order:

julia> sort([2,3,1])

3-element Array{Int64,1}:

1

2

3

You can easily sort in reverse order as well:

julia> sort([2,3,1], rev=true)

3-element Array{Int64,1}:

3

2

1

To sort an array in-place, use the ”bang” version of the sort function:

julia> a = [2,3,1];

julia> sort!(a);

julia> a

3-element Array{Int64,1}:

1

2

3

Instead of directly sorting an array, you can compute a permutation of the array’s indices that puts the array into sorted

order:

julia> v = randn(5)

5-element Array{Float64,1}:

0.297288

0.382396

-0.597634

807

808 CHAPTER 57. SORTING AND RELATED FUNCTIONS

-0.0104452

-0.839027

julia> p = sortperm(v)

5-element Array{Int64,1}:

5

3

4

1

2

julia> v[p]

5-element Array{Float64,1}:

-0.839027

-0.597634

-0.0104452

0.297288

0.382396

Arrays can easily be sorted according to an arbitrary transformation of their values:

julia> sort(v, by=abs)

5-element Array{Float64,1}:

-0.0104452

0.297288

0.382396

-0.597634

-0.839027

Or in reverse order by a transformation:

julia> sort(v, by=abs, rev=true)

5-element Array{Float64,1}:

-0.839027

-0.597634

0.382396

0.297288

-0.0104452

If needed, the sorting algorithm can be chosen:

julia> sort(v, alg=InsertionSort)

5-element Array{Float64,1}:

-0.839027

-0.597634

-0.0104452

0.297288

0.382396

All the sorting and order related functions rely on a ”less than” relation defining a total order on the values to be

manipulated. The isless function is invoked by default, but the relation can be specified via the lt keyword.

57.1. SORTING FUNCTIONS 809

57.1 Sorting Functions

Base.sort! – Function.

sort!(v; alg::Algorithm=defalg(v), lt=isless, by=identity, rev::Bool=false, order::Ordering=

Forward)

Sort the vector v in place. QuickSort is used by default for numeric arrays while MergeSort is used for other

arrays. You can specify an algorithm to use via the alg keyword (see Sorting Algorithms for available algorithms).

The by keyword lets you provide a function that will be applied to each element before comparison; the lt

keyword allows providing a custom ”less than” function; use rev=true to reverse the sorting order. These options

are independent and can be used together in all possible combinations: if both by and lt are specified, the lt

function is applied to the result of the by function; rev=true reverses whatever ordering specified via the by

and lt keywords.

julia> v = [3, 1, 2]; sort!(v); v

3-element Array{Int64,1}:

1

2

3

julia> v = [3, 1, 2]; sort!(v, rev = true); v

3-element Array{Int64,1}:

3

2

1

julia> v = [(1, "c"), (3, "a"), (2, "b")]; sort!(v, by = x -> x[1]); v

3-element Array{Tuple{Int64,String},1}:

(1, "c")

(2, "b")

(3, "a")

julia> v = [(1, "c"), (3, "a"), (2, "b")]; sort!(v, by = x -> x[2]); v

3-element Array{Tuple{Int64,String},1}:

(3, "a")

(2, "b")

(1, "c")

source

Base.sort – Function.

sort(v; alg::Algorithm=defalg(v), lt=isless, by=identity, rev::Bool=false, order::Ordering=

Forward)

Variant of sort! that returns a sorted copy of v leaving v itself unmodified.

julia> v = [3, 1, 2];

julia> sort(v)

3-element Array{Int64,1}:

1

2

3

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/sort.jl#L438-L475

810 CHAPTER 57. SORTING AND RELATED FUNCTIONS

julia> v

3-element Array{Int64,1}:

3

1

2

source

sort(A, dim::Integer; alg::Algorithm=DEFAULT_UNSTABLE, lt=isless, by=identity, rev::Bool=

false, order::Ordering=Forward, initialized::Bool=false)

Sort a multidimensional array A along the given dimension. See sort! for a description of possible keyword

arguments.

julia> A = [4 3; 1 2]

2×2 Array{Int64,2}:

4 3

1 2

julia> sort(A, 1)

2×2 Array{Int64,2}:

1 2

4 3

julia> sort(A, 2)

2×2 Array{Int64,2}:

3 4

1 2

source

Base.sortperm – Function.

sortperm(v; alg::Algorithm=DEFAULT_UNSTABLE, lt=isless, by=identity, rev::Bool=false, order::

Ordering=Forward)

Return a permutation vector of indices of v that puts it in sorted order. Specify alg to choose a particular sorting

algorithm (see Sorting Algorithms). MergeSort is used by default, and since it is stable, the resulting permutation

will be the lexicographically first one that puts the input array into sorted order – i.e. indices of equal elements ap-

pear in ascending order. If you choose a non-stable sorting algorithm such as QuickSort, a different permutation

that puts the array into order may be returned. The order is specified using the same keywords as sort!.

See also sortperm!.

julia> v = [3, 1, 2];

julia> p = sortperm(v)

3-element Array{Int64,1}:

2

3

1

julia> v[p]

3-element Array{Int64,1}:

1

2

3

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/sort.jl#L520-L540
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/sort.jl#L687-L710

57.1. SORTING FUNCTIONS 811

source

Base.Sort.sortperm! – Function.

sortperm!(ix, v; alg::Algorithm=DEFAULT_UNSTABLE, lt=isless, by=identity, rev::Bool=false,

order::Ordering=Forward, initialized::Bool=false)

Like sortperm, but accepts a preallocated index vector ix. If initialized is false (the default), ix is initialized

to contain the values 1:length(v).

julia> v = [3, 1, 2]; p = zeros(Int, 3);

julia> sortperm!(p, v); p

3-element Array{Int64,1}:

2

3

1

julia> v[p]

3-element Array{Int64,1}:

1

2

3

source

Base.Sort.sortrows – Function.

sortrows(A; alg::Algorithm=DEFAULT_UNSTABLE, lt=isless, by=identity, rev::Bool=false, order::

Ordering=Forward)

Sort the rows of matrix A lexicographically. See sort! for a description of possible keyword arguments.

Examples

julia> sortrows([7 3 5; -1 6 4; 9 -2 8])

3×3 Array{Int64,2}:

-1 6 4

7 3 5

9 -2 8

julia> sortrows([7 3 5; -1 6 4; 9 -2 8], lt=(x,y)->isless(x[2],y[2]))

3×3 Array{Int64,2}:

9 -2 8

7 3 5

-1 6 4

julia> sortrows([7 3 5; -1 6 4; 9 -2 8], rev=true)

3×3 Array{Int64,2}:

9 -2 8

7 3 5

-1 6 4

source

Base.Sort.sortcols – Function.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/sort.jl#L568-L596
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/sort.jl#L623-L644
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/sort.jl#L742-L770

812 CHAPTER 57. SORTING AND RELATED FUNCTIONS

sortcols(A; alg::Algorithm=DEFAULT_UNSTABLE, lt=isless, by=identity, rev::Bool=false, order::

Ordering=Forward)

Sort the columns of matrix A lexicographically. See sort! for a description of possible keyword arguments.

Examples

julia> sortcols([7 3 5; 6 -1 -4; 9 -2 8])

3×3 Array{Int64,2}:

3 5 7

-1 -4 6

-2 8 9

julia> sortcols([7 3 5; 6 -1 -4; 9 -2 8], alg=InsertionSort, lt=(x,y)->isless(x[2],y[2]))

3×3 Array{Int64,2}:

5 3 7

-4 -1 6

8 -2 9

julia> sortcols([7 3 5; 6 -1 -4; 9 -2 8], rev=true)

3×3 Array{Int64,2}:

7 5 3

6 -4 -1

9 8 -2

source

57.2 Order-Related Functions

Base.issorted – Function.

issorted(v, lt=isless, by=identity, rev:Bool=false, order::Ordering=Forward)

Test whether a vector is in sorted order. The lt, by and rev keywords modify what order is considered to be

sorted just as they do for sort.

julia> issorted([1, 2, 3])

true

julia> issorted([(1, "b"), (2, "a")], by = x -> x[1])

true

julia> issorted([(1, "b"), (2, "a")], by = x -> x[2])

false

julia> issorted([(1, "b"), (2, "a")], by = x -> x[2], rev=true)

true

source

Base.Sort.searchsorted – Function.

searchsorted(a, x, [by=<transform>,] [lt=<comparison>,] [rev=false])

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/sort.jl#L782-L810
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/sort.jl#L60-L79

57.2. ORDER-RELATED FUNCTIONS 813

Returns the range of indices of awhich compare as equal to x (using binary search) according to the order specified

by the by, lt and rev keywords, assuming that a is already sorted in that order. Returns an empty range located

at the insertion point if a does not contain values equal to x.

source

Base.Sort.searchsortedfirst – Function.

searchsortedfirst(a, x, [by=<transform>,] [lt=<comparison>,] [rev=false])

Returns the index of the first value in a greater than or equal to x, according to the specified order. Returns

length(a)+1 if x is greater than all values in a.

source

Base.Sort.searchsortedlast – Function.

searchsortedlast(a, x, [by=<transform>,] [lt=<comparison>,] [rev=false])

Returns the index of the last value in a less than or equal to x, according to the specified order. Returns 0 if x is

less than all values in a.

source

Base.Sort.select! – Function.

select!(v, k, [by=<transform>,] [lt=<comparison>,] [rev=false])

Partially sort the vector v in place, according to the order specified by by, lt and rev so that the value at index

k (or range of adjacent values if k is a range) occurs at the position where it would appear if the array were fully

sorted via a non-stable algorithm. If k is a single index, that value is returned; if k is a range, an array of values at

those indices is returned. Note that select! does not fully sort the input array.

source

Base.Sort.select – Function.

select(v, k, [by=<transform>,] [lt=<comparison>,] [rev=false])

Variant of select! which copies v before partially sorting it, thereby returning the same thing as select! but

leaving v unmodified.

source

Base.Sort.selectperm – Function.

selectperm(v, k, [alg=<algorithm>,] [by=<transform>,] [lt=<comparison>,] [rev=false])

Return a partial permutation of the vector v, according to the order specified by by, lt and rev, so that v[out-

put] returns the first k (or range of adjacent values if k is a range) values of a fully sorted version of v. If k is a single

index (Integer), an array of the first k indices is returned; if k is a range, an array of those indices is returned. Note

that the handling of integer values for k is different from select in that it returns a vector of k elements instead

of just the k th element. Also note that this is equivalent to, but more efficient than, calling sortperm(...)[k]

source

Base.Sort.selectperm! – Function.

selectperm!(ix, v, k, [alg=<algorithm>,] [by=<transform>,] [lt=<comparison>,] [rev=false,] [

initialized=false])

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L479-L486
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1131-L1136
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1774-L1779
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L780-L789
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L618-L623
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1042-L1053

814 CHAPTER 57. SORTING AND RELATED FUNCTIONS

Like selectperm, but accepts a preallocated index vector ix. If initialized is false (the default), ix is initial-

ized to contain the values 1:length(ix).

source

57.3 Sorting Algorithms

There are currently four sorting algorithms available in base Julia:

• InsertionSort

• QuickSort

• PartialQuickSort(k)

• MergeSort

InsertionSort is an O(n^2) stable sorting algorithm. It is efficient for very small n, and is used internally by Quick-

Sort.

QuickSort is an O(n log n) sorting algorithm which is in-place, very fast, but not stable – i.e. elements which are con-

sidered equal will not remain in the same order in which they originally appeared in the array to be sorted. QuickSort

is the default algorithm for numeric values, including integers and floats.

PartialQuickSort(k) is similar to QuickSort, but the output array is only sorted up to index k if k is an integer,

or in the range of k if k is an OrdinalRange. For example:

x = rand(1:500, 100)

k = 50

k2 = 50:100

s = sort(x; alg=QuickSort)

ps = sort(x; alg=PartialQuickSort(k))

qs = sort(x; alg=PartialQuickSort(k2))

map(issorted, (s, ps, qs)) # => (true, false, false)

map(x->issorted(x[1:k]), (s, ps, qs)) # => (true, true, false)

map(x->issorted(x[k2]), (s, ps, qs)) # => (true, false, true)

s[1:k] == ps[1:k] # => true

s[k2] == qs[k2] # => true

MergeSort is an O(n log n) stable sorting algorithm but is not in-place – it requires a temporary array of half the size

of the input array – and is typically not quite as fast as QuickSort. It is the default algorithm for non-numeric data.

The default sorting algorithms are chosen on the basis that they are fast and stable, or appear to be so. For numeric

types indeed, QuickSort is selected as it is faster and indistinguishable in this case from a stable sort (unless the array

records its mutations in some way). The stability property comes at a non-negligible cost, so if you don’t need it, you

may want to explicitly specify your preferred algorithm, e.g. sort!(v, alg=QuickSort).

The mechanism by which Julia picks default sorting algorithms is implemented via the Base.Sort.defalg function.

It allows a particular algorithm to be registered as the default in all sorting functions for specific arrays. For example,

here are the two default methods from sort.jl:

defalg(v::AbstractArray) = MergeSort

defalg{T<:Number}(v::AbstractArray{T}) = QuickSort

As for numeric arrays, choosing a non-stable default algorithm for array types for which the notion of a stable sort is

meaningless (i.e. when two values comparing equal can not be distinguished) may make sense.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1162-L1167
https://github.com/JuliaLang/julia/blob/master/base/sort.jl

Chapter 58

Package Manager Functions

All package manager functions are defined in the Pkg module. None of the Pkg module’s functions are exported; to

use them, you’ll need to prefix each function call with an explicit Pkg., e.g. Pkg.status() or Pkg.dir().

Functions for package development (e.g. tag, publish, etc.) have been moved to the PkgDev package. See PkgDev

README for the documentation of those functions.

Base.Pkg.dir – Function.

dir() -> AbstractString

Returns the absolute path of the package directory. This defaults tojoinpath(homedir(),".julia","v$(VER-

SION.major).$(VERSION.minor)") on all platforms (i.e. ~/.julia/v0.6 in UNIX shell syntax). If the JU-

LIA_PKGDIR environment variable is set, then that path is used in the returned value as joinpath(ENV["JU-

LIA_PKGDIR"],"v$(VERSION.major).$(VERSION.minor)"). If JULIA_PKGDIR is a relative path, it is inter-

preted relative to whatever the current working directory is.

source

dir(names...) -> AbstractString

Equivalent to normpath(Pkg.dir(),names...) – i.e. it appends path components to the package directory

and normalizes the resulting path. In particular, Pkg.dir(pkg) returns the path to the package pkg.

source

Base.Pkg.init – Function.

init(meta::AbstractString=DEFAULT_META, branch::AbstractString=META_BRANCH)

Initialize Pkg.dir() as a package directory. This will be done automatically when the JULIA_PKGDIR is not set

and Pkg.dir() uses its default value. As part of this process, clones a local METADATA git repository from the

site and branch specified by its arguments, which are typically not provided. Explicit (non-default) arguments can

be used to support a custom METADATA setup.

source

Base.Pkg.resolve – Function.

resolve()

Determines an optimal, consistent set of package versions to install or upgrade to. The optimal set of package

versions is based on the contents of Pkg.dir("REQUIRE") and the state of installed packages in Pkg.dir(),

Packages that are no longer required are moved into Pkg.dir(".trash").

source

815

https://github.com/JuliaLang/PkgDev.jl
https://github.com/JuliaLang/PkgDev.jl/blob/master/README.md
https://github.com/JuliaLang/PkgDev.jl/blob/master/README.md
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/pkg/pkg.jl#L55-L64
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/pkg/pkg.jl#L67-L73
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/pkg/pkg.jl#L76-L84
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/pkg/pkg.jl#L230-L237

816 CHAPTER 58. PACKAGE MANAGER FUNCTIONS

Base.Pkg.edit – Function.

edit()

Opens Pkg.dir("REQUIRE") in the editor specified by the VISUAL or EDITOR environment variables; when the

editor command returns, it runs Pkg.resolve() to determine and install a new optimal set of installed package

versions.

source

Base.Pkg.add – Function.

add(pkg, vers...)

Add a requirement entry for pkg to Pkg.dir("REQUIRE") and call Pkg.resolve(). If vers are given, they

must be VersionNumber objects and they specify acceptable version intervals for pkg.

source

Base.Pkg.rm – Function.

rm(pkg)

Remove all requirement entries for pkg from Pkg.dir("REQUIRE") and call Pkg.resolve().

source

Base.Pkg.clone – Function.

clone(pkg)

If pkg has a URL registered in Pkg.dir("METADATA"), clone it from that URLon the default branch. The package

does not need to have any registered versions.

source

clone(url, [pkg])

Clone a package directly from the git URL url. The package does not need to be registered in Pkg.dir("META-

DATA"). The package repo is cloned by the name pkg if provided; if not provided, pkg is determined automatically

from url.

source

Base.Pkg.setprotocol! – Function.

setprotocol!(proto)

Set the protocol used to access GitHub-hosted packages. Defaults to ’https’, with a blank proto delegating the

choice to the package developer.

source

Base.Pkg.available – Function.

available() -> Vector{String}

Returns the names of available packages.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/pkg/pkg.jl#L94-L100
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/pkg/pkg.jl#L110-L116
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/pkg/pkg.jl#L103-L107
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/pkg/pkg.jl#L163-L168
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/pkg/pkg.jl#L171-L177
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/pkg/pkg.jl#L285-L290
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/pkg/pkg.jl#L119-L123

817

available(pkg) -> Vector{VersionNumber}

Returns the version numbers available for package pkg.

source

Base.Pkg.installed – Function.

installed() -> Dict{String,VersionNumber}

Returns a dictionary mapping installed package names to the installed version number of each package.

source

installed(pkg) -> Void | VersionNumber

If pkg is installed, return the installed version number. If pkg is registered, but not installed, return nothing.

source

Base.Pkg.status – Function.

status()

Prints out a summary of what packages are installed and what version and state they’re in.

source

status(pkg)

Prints out a summary of what version and state pkg, specifically, is in.

source

Base.Pkg.update – Function.

update(pkgs...)

Update the metadata repo – kept in Pkg.dir("METADATA") – then update any fixed packages that can safely

be pulled from their origin; then call Pkg.resolve() to determine a new optimal set of packages versions.

Without arguments, updates all installed packages. When one ormore package names are provided as arguments,

only those packages and their dependencies are updated.

source

Base.Pkg.checkout – Function.

checkout(pkg, [branch="master"]; merge=true, pull=true)

Checkout the Pkg.dir(pkg) repo to the branch branch. Defaults to checking out the ”master” branch. To go

back to using the newest compatible released version, use Pkg.free(pkg). Changes are merged (fast-forward

only) if the keyword argument merge == true, and the latest version is pulled from the upstream repo if pull

== true.

source

Base.Pkg.pin – Function.

pin(pkg)

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/pkg/pkg.jl#L126-L130
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/pkg/pkg.jl#L133-L138
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/pkg/pkg.jl#L141-L146
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/pkg/pkg.jl#L149-L153
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/pkg/pkg.jl#L156-L160
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/pkg/pkg.jl#L218-L227
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/pkg/pkg.jl#L180-L187

818 CHAPTER 58. PACKAGE MANAGER FUNCTIONS

Pin pkg at the current version. To go back to using the newest compatible released version, use Pkg.free(pkg)

source

pin(pkg, version)

Pin pkg at registered version version.

source

Base.Pkg.free – Function.

free(pkg)

Free the package pkg to bemanaged by the packagemanager again. It calls Pkg.resolve() to determine optimal

package versions after. This is an inverse for both Pkg.checkout and Pkg.pin.

You can also supply an iterable collection of package names, e.g., Pkg.free(("Pkg1", "Pkg2")) to free mul-

tiple packages at once.

source

Base.Pkg.build – Function.

build()

Run the build scripts for all installed packages in depth-first recursive order.

source

build(pkgs...)

Run the build script in deps/build.jl for each package in pkgs and all of their dependencies in depth-first

recursive order. This is called automatically by Pkg.resolve() on all installed or updated packages.

source

Base.Pkg.test – Function.

test(; coverage=false)

Run the tests for all installed packages ensuring that each package’s test dependencies are installed for the dura-

tion of the test. A package is tested by running its test/runtests.jl file and test dependencies are specified in

test/REQUIRE. Coverage statistics for the packages may be generated by passing coverage=true. The default

behavior is not to run coverage.

source

test(pkgs...; coverage=false)

Run the tests for each package in pkgs ensuring that each package’s test dependencies are installed for the dura-

tion of the test. A package is tested by running its test/runtests.jl file and test dependencies are specified in

test/REQUIRE. Coverage statistics for the packages may be generated by passing coverage=true. The default

behavior is not to run coverage.

source

Base.Pkg.dependents – Function.

dependents(pkg)

List the packages that have pkg as a dependency.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/pkg/pkg.jl#L203-L208
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/pkg/pkg.jl#L211-L215
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/pkg/pkg.jl#L191-L200
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/pkg/pkg.jl#L240-L244
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/pkg/pkg.jl#L247-L253
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/pkg/pkg.jl#L256-L264
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/pkg/pkg.jl#L267-L275
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/pkg/pkg.jl#L278-L282

Chapter 59

Dates and Time

59.1 Dates and Time Types

Base.Dates.Period – Type.

Period

Year

Month

Week

Day

Hour

Minute

Second

Millisecond

Microsecond

Nanosecond

Period types represent discrete, human representations of time.

source

Base.Dates.CompoundPeriod – Type.

CompoundPeriod

A CompoundPeriod is useful for expressing time periods that are not a fixed multiple of smaller periods. For

example, ”a year and a day” is not a fixed number of days, but can be expressed using a CompoundPeriod. In fact,

a CompoundPeriod is automatically generated by addition of different period types, e.g. Year(1) + Day(1)

produces a CompoundPeriod result.

source

Base.Dates.Instant – Type.

Instant

Instant types represent integer-based, machine representations of time as continuous timelines starting from

an epoch.

source

Base.Dates.UTInstant – Type.

819

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/types.jl#L5-L19
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/periods.jl#L152-L160
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/types.jl#L54-L59

820 CHAPTER 59. DATES AND TIME

UTInstant{T}

The UTInstant represents a machine timeline based on UT time (1 day = one revolution of the earth). The T is

a Period parameter that indicates the resolution or precision of the instant.

source

Base.Dates.TimeType – Type.

TimeType

TimeType types wrap Instant machine instances to provide human representations of the machine instant.

Time, DateTime and Date are subtypes of TimeType.

source

Base.Dates.DateTime – Type.

DateTime

DateTimewraps a UTInstant{Millisecond} and interprets it according to the proleptic Gregorian calendar.

source

Base.Dates.Date – Type.

Date

Datewraps a UTInstant{Day} and interprets it according to the proleptic Gregorian calendar.

source

Base.Dates.Time – Type.

Time

Timewraps a Nanosecond and represents a specific moment in a 24-hour day.

source

59.2 Dates Functions

All Dates functions are defined in the Dates module; note that only the Date, DateTime, and now functions are

exported; to use all other Dates functions, you’ll need to prefix each function call with an explicit Dates., e.g.

Dates.dayofweek(dt). Alternatively, you can write using Base.Dates to bring all exported functions into Main

to be used without the Dates. prefix.

Base.Dates.DateTime – Method.

DateTime(y, [m, d, h, mi, s, ms]) -> DateTime

Construct a DateTime type by parts. Arguments must be convertible to Int64.

source

Base.Dates.DateTime – Method.

DateTime(periods::Period...) -> DateTime

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/types.jl#L62-L68
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/types.jl#L89-L94
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/types.jl#L97-L102
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/types.jl#L108-L112
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/types.jl#L118-L122
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/types.jl#L173-L177

59.2. DATES FUNCTIONS 821

Construct a DateTime type by Period type parts. Arguments may be in any order. DateTime parts not provided

will default to the value of Dates.default(period).

source

Base.Dates.DateTime – Method.

DateTime(f::Function, y[, m, d, h, mi, s]; step=Day(1), limit=10000) -> DateTime

Create a DateTime through the adjuster API. The starting point will be constructed from the provided y, m,

d... arguments, andwill be adjusted until f::Function returns true. The step size in adjusting can be provided

manually through the step keyword. limit provides a limit to the max number of iterations the adjustment API

will pursue before throwing an error (in the case that f::Function is never satisfied).

source

Base.Dates.DateTime – Method.

DateTime(dt::Date) -> DateTime

Converts a Date to a DateTime. The hour, minute, second, and millisecond parts of the new DateTime are

assumed to be zero.

source

Base.Dates.DateTime – Method.

DateTime(dt::AbstractString, format::AbstractString; locale="english") -> DateTime

Construct a DateTime by parsing the dt date string following the pattern given in the format string.

This method creates a DateFormat object each time it is called. If you are parsing many date strings of the same

format, consider creating a DateFormat object once and using that as the second argument instead.

source

Base.Dates.format – Function.

format(io::IO, tok::AbstractDateToken, dt::TimeType, locale)

Format the tok token from dt and write it to io. The formatting can be based on locale.

All subtypes of AbstractDateToken must define this method in order to be able to print a Date / DateTime

object according to a DateFormat containing that token.

source

Base.Dates.DateFormat – Type.

DateFormat(format::AbstractString, locale="english") -> DateFormat

Construct a date formatting object that can be used for parsing date strings or formatting a date object as a string.

The following character codes can be used to construct the format string:

Characters not listed above are normally treated as delimiters between date and time slots. For example a dt

string of ”1996-01-15T00:00:00.0” would have a format string like ”y-m-dTH:M:S.s”. If you need to use a code

character as a delimiter you can escape it using backslash. The date ”1995y01m”would have the format ”y\ym\m”.

Creating a DateFormat object is expensive. Whenever possible, create it once and use it many times or try the

dateformat"" string macro. Using this macro creates the DateFormat object once at macro expansion time and

reuses it later. see @dateformat_str.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/types.jl#L253-L258
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/adjusters.jl#L167-L175
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/conversions.jl#L14-L19
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/io.jl#L400-L409
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/io.jl#L28-L37

822 CHAPTER 59. DATES AND TIME

Code Matches Comment

y 1996, 96 Returns year of 1996, 0096

Y 1996, 96 Returns year of 1996, 0096. Equivalent to y

m 1, 01 Matches 1 or 2-digit months

u Jan Matches abbreviated months according to the locale keyword

U January Matches full month names according to the locale keyword

d 1, 01 Matches 1 or 2-digit days

H 00 Matches hours

M 00 Matches minutes

S 00 Matches seconds

s .500 Matches milliseconds

e Mon, Tues Matches abbreviated days of the week

E Monday Matches full name days of the week

yyyymmdd 19960101 Matches fixed-width year, month, and day

See DateTime and format for how to use a DateFormat object to parse and write Date strings respectively.

source

Base.Dates.@dateformat_str – Macro.

dateformat"Y-m-d H:M:S"

Create a DateFormat object. Similar to DateFormat("Y-m-d H:M:S") but creates theDateFormat object once

during macro expansion.

See DateFormat for details about format specifiers.

source

Base.Dates.DateTime – Method.

DateTime(dt::AbstractString, df::DateFormat) -> DateTime

Construct a DateTime byparsing the dt date string following the pattern given in the DateFormat object. Similar

to DateTime(::AbstractString, ::AbstractString) but more efficientwhen repeatedly parsing similarly

formatted date strings with a pre-created DateFormat object.

source

Base.Dates.Date – Method.

Date(y, [m, d]) -> Date

Construct a Date type by parts. Arguments must be convertible to Int64.

source

Base.Dates.Date – Method.

Date(period::Period...) -> Date

Construct a Date type by Period type parts. Arguments may be in any order. Date parts not providedwill default

to the value of Dates.default(period).

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/io.jl#L285-L319
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/io.jl#L376-L383
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/io.jl#L414-L421
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/types.jl#L197-L201
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/types.jl#L274-L279

59.2. DATES FUNCTIONS 823

Base.Dates.Date – Method.

Date(f::Function, y[, m, d]; step=Day(1), limit=10000) -> Date

Create a Date through the adjuster API. The starting point will be constructed from the provided y, m, d argu-

ments, andwill be adjusted until f::Function returns true. The step size in adjusting can be provided manually

through the step keyword. limit provides a limit to the max number of iterations the adjustmentAPIwill pursue

before throwing an error (given that f::Function is never satisfied).

source

Base.Dates.Date – Method.

Date(dt::DateTime) -> Date

Converts a DateTime to a Date. The hour, minute, second, and millisecond parts of the DateTime are truncated,

so only the year, month and day parts are used in construction.

source

Base.Dates.Date – Method.

Date(dt::AbstractString, format::AbstractString; locale="english") -> Date

Construct a Date object by parsing a dt date string following the pattern given in the format string. Follows the

same conventions as DateTime(::AbstractString, ::AbstractString).

source

Base.Dates.Date – Method.

Date(dt::AbstractString, df::DateFormat) -> Date

Parse a date from a date string dt using a DateFormat object df.

source

Base.Dates.Time – Method.

Time(h, [mi, s, ms, us, ns]) -> Time

Construct a Time type by parts. Arguments must be convertible to Int64.

source

Base.Dates.Time – Method.

Time(period::TimePeriod...) -> Time

Construct a Time type by Period type parts. Arguments may be in any order. Time parts not providedwill default

to the value of Dates.default(period).

source

Base.Dates.Time – Method.

Time(f::Function, h, mi=0; step::Period=Second(1), limit::Int=10000)

Time(f::Function, h, mi, s; step::Period=Millisecond(1), limit::Int=10000)

Time(f::Function, h, mi, s, ms; step::Period=Microsecond(1), limit::Int=10000)

Time(f::Function, h, mi, s, ms, us; step::Period=Nanosecond(1), limit::Int=10000)

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/adjusters.jl#L153-L161
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/conversions.jl#L5-L11
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/io.jl#L424-L430
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/io.jl#L435-L439
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/types.jl#L214-L218
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/types.jl#L290-L295

824 CHAPTER 59. DATES AND TIME

Create a Time through the adjusterAPI. The starting pointwill be constructed from the provided h, mi, s, ms,

us arguments, and will be adjusted until f::Function returns true. The step size in adjusting can be provided

manually through the step keyword. limit provides a limit to the max number of iterations the adjustment API

will pursue before throwing an error (in the case that f::Function is never satisfied). Note that the default step

will adjust to allow for greater precision for the given arguments; i.e. if hour, minute, and second arguments are

provided, the default step will be Millisecond(1) instead of Second(1).

source

Base.Dates.Time – Method.

Time(dt::DateTime) -> Time

Converts a DateTime to a Time. The hour, minute, second, and millisecond parts of the DateTime are used to

create the new Time. Microsecond and nanoseconds are zero by default.

source

Base.Dates.now – Method.

now() -> DateTime

Returns a DateTime corresponding to the user’s system time including the system timezone locale.

source

Base.Dates.now – Method.

now(::Type{UTC}) -> DateTime

Returns a DateTime corresponding to the user’s system time as UTC/GMT.

source

Base.eps – Function.

eps(::DateTime) -> Millisecond

eps(::Date) -> Day

eps(::Time) -> Nanosecond

Returns Millisecond(1) for DateTime values, Day(1) for Date values, and Nanosecond(1) for Time values.

source

Accessor Functions

Base.Dates.year – Function.

year(dt::TimeType) -> Int64

The year of a Date or DateTime as an Int64.

source

Base.Dates.month – Function.

month(dt::TimeType) -> Int64

The month of a Date or DateTime as an Int64.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/adjusters.jl#L199-L212
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/conversions.jl#L22-L27
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/conversions.jl#L60-L65
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/conversions.jl#L79-L83
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/types.jl#L320-L326
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/accessors.jl#L74-L78
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/accessors.jl#L74-L78

59.2. DATES FUNCTIONS 825

Base.Dates.week – Function.

week(dt::TimeType) -> Int64

Return the ISO week date of a Date or DateTime as an Int64. Note that the first week of a year is the week

that contains the first Thursday of the year which can result in dates prior to January 4th being in the last week

of the previous year. For example week(Date(2005,1,1)) is the 53rd week of 2004.

source

Base.Dates.day – Function.

day(dt::TimeType) -> Int64

The day of month of a Date or DateTime as an Int64.

source

Base.Dates.hour – Function.

hour(dt::DateTime) -> Int64

The hour of day of a DateTime as an Int64.

source

hour(t::Time) -> Int64

The hour of a Time as an Int64.

source

Base.Dates.minute – Function.

minute(dt::DateTime) -> Int64

The minute of a DateTime as an Int64.

source

minute(t::Time) -> Int64

The minute of a Time as an Int64.

source

Base.Dates.second – Function.

second(dt::DateTime) -> Int64

The second of a DateTime as an Int64.

source

second(t::Time) -> Int64

The second of a Time as an Int64.

source

Base.Dates.millisecond – Function.

https://en.wikipedia.org/wiki/ISO_week_date
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/accessors.jl#L82-L90
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/accessors.jl#L96-L100
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/accessors.jl#L104-L108
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/accessors.jl#L138-L142
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/accessors.jl#L114-L118
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/accessors.jl#L138-L142
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/accessors.jl#L114-L118
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/accessors.jl#L138-L142

826 CHAPTER 59. DATES AND TIME

millisecond(dt::DateTime) -> Int64

The millisecond of a DateTime as an Int64.

source

millisecond(t::Time) -> Int64

The millisecond of a Time as an Int64.

source

Base.Dates.microsecond – Function.

microsecond(t::Time) -> Int64

The microsecond of a Time as an Int64.

source

Base.Dates.nanosecond – Function.

nanosecond(t::Time) -> Int64

The nanosecond of a Time as an Int64.

source

Base.Dates.Year – Method.

Year(v)

Construct a Year object with the given v value. Input must be losslessly convertible to an Int64.

source

Base.Dates.Month – Method.

Month(v)

Construct a Month object with the given v value. Input must be losslessly convertible to an Int64.

source

Base.Dates.Week – Method.

Week(v)

Construct a Week object with the given v value. Input must be losslessly convertible to an Int64.

source

Base.Dates.Day – Method.

Day(v)

Construct a Day object with the given v value. Input must be losslessly convertible to an Int64.

source

Base.Dates.Hour – Method.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/accessors.jl#L114-L118
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/accessors.jl#L138-L142
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/accessors.jl#L138-L142
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/accessors.jl#L138-L142
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/periods.jl#L32-L37
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/periods.jl#L32-L37
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/periods.jl#L32-L37
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/periods.jl#L32-L37

59.2. DATES FUNCTIONS 827

Hour(dt::DateTime) -> Hour

The hour part of a DateTime as a Hour.

source

Base.Dates.Minute – Method.

Minute(dt::DateTime) -> Minute

The minute part of a DateTime as a Minute.

source

Base.Dates.Second – Method.

Second(dt::DateTime) -> Second

The second part of a DateTime as a Second.

source

Base.Dates.Millisecond – Method.

Millisecond(dt::DateTime) -> Millisecond

The millisecond part of a DateTime as a Millisecond.

source

Base.Dates.Microsecond – Method.

Microsecond(dt::Time) -> Microsecond

The microsecond part of a Time as a Microsecond.

source

Base.Dates.Nanosecond – Method.

Nanosecond(dt::Time) -> Nanosecond

The nanosecond part of a Time as a Nanosecond.

source

Base.Dates.yearmonth – Function.

yearmonth(dt::TimeType) -> (Int64, Int64)

Simultaneously return the year and month parts of a Date or DateTime.

source

Base.Dates.monthday – Function.

monthday(dt::TimeType) -> (Int64, Int64)

Simultaneously return the month and day parts of a Date or DateTime.

source

Base.Dates.yearmonthday – Function.

yearmonthday(dt::TimeType) -> (Int64, Int64, Int64)

Simultaneously return the year, month and day parts of a Date or DateTime.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/periods.jl#L24-L28
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/periods.jl#L24-L28
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/periods.jl#L24-L28
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/periods.jl#L24-L28
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/periods.jl#L24-L28
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/periods.jl#L24-L28
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/accessors.jl#L126-L131
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/accessors.jl#L126-L131
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/accessors.jl#L126-L131

828 CHAPTER 59. DATES AND TIME

Query Functions

Base.Dates.dayname – Function.

dayname(dt::TimeType; locale="english") -> AbstractString

Return the full day name corresponding to the day of the week of the Date or DateTime in the given locale.

source

Base.Dates.dayabbr – Function.

dayabbr(dt::TimeType; locale="english") -> AbstractString

Return the abbreviated name corresponding to the day of theweek of the Date or DateTime in the given locale.

source

Base.Dates.dayofweek – Function.

dayofweek(dt::TimeType) -> Int64

Returns the day of the week as an Int64with 1 = Monday, 2 = Tuesday, etc..

source

Base.Dates.dayofmonth – Function.

dayofmonth(dt::TimeType) -> Int64

The day of month of a Date or DateTime as an Int64.

source

Base.Dates.dayofweekofmonth – Function.

dayofweekofmonth(dt::TimeType) -> Int

For the day of week of dt, returns which number it is in dt’s month. So if the day of the week of dt is Monday,

then 1 = First Monday of the month, 2 = Second Monday of the month, etc. In the range 1:5.

source

Base.Dates.daysofweekinmonth – Function.

daysofweekinmonth(dt::TimeType) -> Int

For the day of week of dt, returns the total number of that day of the week in dt’s month. Returns 4 or 5. Useful

in temporal expressions for specifying the last day of a week in a month by including dayofweekofmonth(dt)

== daysofweekinmonth(dt) in the adjuster function.

source

Base.Dates.monthname – Function.

monthname(dt::TimeType; locale="english") -> AbstractString

Return the full name of the month of the Date or DateTime in the given locale.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/query.jl#L116-L121
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/query.jl#L126-L131
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/query.jl#L101-L105
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/accessors.jl#L96-L100
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/query.jl#L146-L152
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/query.jl#L164-L171
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/query.jl#L190-L194

59.2. DATES FUNCTIONS 829

Base.Dates.monthabbr – Function.

monthabbr(dt::TimeType; locale="english") -> AbstractString

Return the abbreviated month name of the Date or DateTime in the given locale.

source

Base.Dates.daysinmonth – Function.

daysinmonth(dt::TimeType) -> Int

Returns the number of days in the month of dt. Value will be 28, 29, 30, or 31.

source

Base.Dates.isleapyear – Function.

isleapyear(dt::TimeType) -> Bool

Returns true if the year of dt is a leap year.

source

Base.Dates.dayofyear – Function.

dayofyear(dt::TimeType) -> Int

Returns the day of the year for dtwith January 1st being day 1.

source

Base.Dates.daysinyear – Function.

daysinyear(dt::TimeType) -> Int

Returns 366 if the year of dt is a leap year, otherwise returns 365.

source

Base.Dates.quarterofyear – Function.

quarterofyear(dt::TimeType) -> Int

Returns the quarter that dt resides in. Range of value is 1:4.

source

Base.Dates.dayofquarter – Function.

dayofquarter(dt::TimeType) -> Int

Returns the day of the current quarter of dt. Range of value is 1:92.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/query.jl#L199-L203
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/query.jl#L208-L212
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/query.jl#L216-L220
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/query.jl#L223-L227
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/query.jl#L89-L93
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/query.jl#L233-L237
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/query.jl#L244-L248

830 CHAPTER 59. DATES AND TIME

Adjuster Functions

Base.trunc – Method.

trunc(dt::TimeType, ::Type{Period}) -> TimeType

Truncates the value of dt according to the provided Period type. E.g. if dt is 1996-01-01T12:30:00, then

trunc(dt,Day) == 1996-01-01T00:00:00.

source

Base.Dates.firstdayofweek – Function.

firstdayofweek(dt::TimeType) -> TimeType

Adjusts dt to the Monday of its week.

source

Base.Dates.lastdayofweek – Function.

lastdayofweek(dt::TimeType) -> TimeType

Adjusts dt to the Sunday of its week.

source

Base.Dates.firstdayofmonth – Function.

firstdayofmonth(dt::TimeType) -> TimeType

Adjusts dt to the first day of its month.

source

Base.Dates.lastdayofmonth – Function.

lastdayofmonth(dt::TimeType) -> TimeType

Adjusts dt to the last day of its month.

source

Base.Dates.firstdayofyear – Function.

firstdayofyear(dt::TimeType) -> TimeType

Adjusts dt to the first day of its year.

source

Base.Dates.lastdayofyear – Function.

lastdayofyear(dt::TimeType) -> TimeType

Adjusts dt to the last day of its year.

source

Base.Dates.firstdayofquarter – Function.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/adjusters.jl#L23-L28
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/adjusters.jl#L32-L36
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/adjusters.jl#L42-L46
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/adjusters.jl#L52-L56
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/adjusters.jl#L62-L66
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/adjusters.jl#L75-L79
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/adjusters.jl#L85-L89

59.2. DATES FUNCTIONS 831

firstdayofquarter(dt::TimeType) -> TimeType

Adjusts dt to the first day of its quarter.

source

Base.Dates.lastdayofquarter – Function.

lastdayofquarter(dt::TimeType) -> TimeType

Adjusts dt to the last day of its quarter.

source

Base.Dates.tonext – Method.

tonext(dt::TimeType, dow::Int; same::Bool=false) -> TimeType

Adjusts dt to the next day of week corresponding to dow with 1 = Monday, 2 = Tuesday, etc. Setting

same=true allows the current dt to be considered as the next dow, allowing for no adjustment to occur.

source

Base.Dates.toprev – Method.

toprev(dt::TimeType, dow::Int; same::Bool=false) -> TimeType

Adjusts dt to the previous day of week corresponding to dowwith 1 = Monday, 2 = Tuesday, etc. Setting

same=true allows the current dt to be considered as the previous dow, allowing for no adjustment to occur.

source

Base.Dates.tofirst – Function.

tofirst(dt::TimeType, dow::Int; of=Month) -> TimeType

Adjusts dt to the first dow of its month. Alternatively, of=Yearwill adjust to the first dow of the year.

source

Base.Dates.tolast – Function.

tolast(dt::TimeType, dow::Int; of=Month) -> TimeType

Adjusts dt to the last dow of its month. Alternatively, of=Yearwill adjust to the last dow of the year.

source

Base.Dates.tonext – Method.

tonext(func::Function, dt::TimeType; step=Day(1), limit=10000, same=false) -> TimeType

Adjusts dt by iterating at most limit iterations by step increments until func returns true. func must take a

single TimeType argument and return a Bool. same allows dt to be considered in satisfying func.

source

Base.Dates.toprev – Method.

toprev(func::Function, dt::TimeType; step=Day(-1), limit=10000, same=false) -> TimeType

Adjusts dt by iterating at most limit iterations by step increments until func returns true. func must take a

single TimeType argument and return a Bool. same allows dt to be considered in satisfying func.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/adjusters.jl#L98-L102
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/adjusters.jl#L112-L116
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/adjusters.jl#L242-L248
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/adjusters.jl#L264-L270
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/adjusters.jl#L286-L291
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/adjusters.jl#L298-L303
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/adjusters.jl#L252-L258
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/adjusters.jl#L273-L279

832 CHAPTER 59. DATES AND TIME

Periods

Base.Dates.Period – Method.

Year(v)

Month(v)

Week(v)

Day(v)

Hour(v)

Minute(v)

Second(v)

Millisecond(v)

Microsecond(v)

Nanosecond(v)

Construct a Period type with the given v value. Input must be losslessly convertible to an Int64.

source

Base.Dates.CompoundPeriod – Method.

CompoundPeriod(periods) -> CompoundPeriod

Construct a CompoundPeriod from a Vector of Periods. All Periods of the same type will be added together.

Examples

julia> Dates.CompoundPeriod(Dates.Hour(12), Dates.Hour(13))

25 hours

julia> Dates.CompoundPeriod(Dates.Hour(-1), Dates.Minute(1))

-1 hour, 1 minute

julia> Dates.CompoundPeriod(Dates.Month(1), Dates.Week(-2))

1 month, -2 weeks

julia> Dates.CompoundPeriod(Dates.Minute(50000))

50000 minutes

source

Base.Dates.default – Function.

default(p::Period) -> Period

Returns a sensible ”default” value for the input Period by returning T(1) for Year, Month, and Day, and T(0) for

Hour, Minute, Second, and Millisecond.

source

Rounding Functions

Date and DateTime values can be rounded to a specified resolution (e.g., 1 month or 15 minutes) with floor, ceil,

or round.

Base.floor – Method.

floor(dt::TimeType, p::Period) -> TimeType

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/types.jl#L37-L51
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/periods.jl#L195-L215
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/periods.jl#L50-L55

59.2. DATES FUNCTIONS 833

Returns the nearest Date or DateTime less than or equal to dt at resolution p.

For convenience, p may be a type instead of a value: floor(dt, Dates.Hour) is a shortcut for floor(dt,

Dates.Hour(1)).

julia> floor(Date(1985, 8, 16), Dates.Month)

1985-08-01

julia> floor(DateTime(2013, 2, 13, 0, 31, 20), Dates.Minute(15))

2013-02-13T00:30:00

julia> floor(DateTime(2016, 8, 6, 12, 0, 0), Dates.Day)

2016-08-06T00:00:00

source

Base.ceil – Method.

ceil(dt::TimeType, p::Period) -> TimeType

Returns the nearest Date or DateTime greater than or equal to dt at resolution p.

For convenience, p may be a type instead of a value: ceil(dt, Dates.Hour) is a shortcut for ceil(dt,

Dates.Hour(1)).

julia> ceil(Date(1985, 8, 16), Dates.Month)

1985-09-01

julia> ceil(DateTime(2013, 2, 13, 0, 31, 20), Dates.Minute(15))

2013-02-13T00:45:00

julia> ceil(DateTime(2016, 8, 6, 12, 0, 0), Dates.Day)

2016-08-07T00:00:00

source

Base.round – Method.

round(dt::TimeType, p::Period, [r::RoundingMode]) -> TimeType

Returns the Date or DateTime nearest to dt at resolution p. By default (RoundNearestTiesUp), ties (e.g.,

rounding 9:30 to the nearest hour) will be rounded up.

For convenience, p may be a type instead of a value: round(dt, Dates.Hour) is a shortcut for round(dt,

Dates.Hour(1)).

julia> round(Date(1985, 8, 16), Dates.Month)

1985-08-01

julia> round(DateTime(2013, 2, 13, 0, 31, 20), Dates.Minute(15))

2013-02-13T00:30:00

julia> round(DateTime(2016, 8, 6, 12, 0, 0), Dates.Day)

2016-08-07T00:00:00

Valid rounding modes for round(::TimeType, ::Period, ::RoundingMode) are RoundNearestTiesUp

(default), RoundDown (floor), and RoundUp (ceil).

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/rounding.jl#L79-L97
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/rounding.jl#L100-L118
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/rounding.jl#L135-L157

834 CHAPTER 59. DATES AND TIME

The following functions are not exported:

Base.Dates.floorceil – Function.

floorceil(dt::TimeType, p::Period) -> (TimeType, TimeType)

Simultaneously return the floor and ceil of a Date or DateTime at resolution p. More efficient than calling

both floor and ceil individually.

source

Base.Dates.epochdays2date – Function.

epochdays2date(days) -> Date

Takes the number of days since the rounding epoch (0000-01-01T00:00:00) and returns the corresponding

Date.

source

Base.Dates.epochms2datetime – Function.

epochms2datetime(milliseconds) -> DateTime

Takes the number of milliseconds since the rounding epoch (0000-01-01T00:00:00) and returns the corre-

sponding DateTime.

source

Base.Dates.date2epochdays – Function.

date2epochdays(dt::Date) -> Int64

Takes the given Date and returns the number of days since the rounding epoch (0000-01-01T00:00:00) as an

Int64.

source

Base.Dates.datetime2epochms – Function.

datetime2epochms(dt::DateTime) -> Int64

Takes the givenDateTime and returns the numberofmilliseconds since the rounding epoch (0000-01-01T00:00:00)

as an Int64.

source

Conversion Functions

Base.Dates.today – Function.

today() -> Date

Returns the date portion of now().

source

Base.Dates.unix2datetime – Function.

unix2datetime(x) -> DateTime

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/rounding.jl#L124-L129
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/rounding.jl#L10-L15
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/rounding.jl#L18-L23
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/rounding.jl#L26-L31
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/rounding.jl#L34-L39
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/conversions.jl#L72-L76

59.2. DATES FUNCTIONS 835

Takes the number of seconds since unix epoch 1970-01-01T00:00:00 and converts to the corresponding Date-

Time.

source

Base.Dates.datetime2unix – Function.

datetime2unix(dt::DateTime) -> Float64

Takes the given DateTime and returns the number of seconds since the unix epoch 1970-01-01T00:00:00 as

a Float64.

source

Base.Dates.julian2datetime – Function.

julian2datetime(julian_days) -> DateTime

Takes the number of Julian calendar days since epoch -4713-11-24T12:00:00 and returns the corresponding

DateTime.

source

Base.Dates.datetime2julian – Function.

datetime2julian(dt::DateTime) -> Float64

Takes the givenDateTime and returns the numberofJulian calendar days since the julian epoch-4713-11-24T12:00:00

as a Float64.

source

Base.Dates.rata2datetime – Function.

rata2datetime(days) -> DateTime

Takes the number of Rata Die days since epoch 0000-12-31T00:00:00 and returns the corresponding Date-

Time.

source

Base.Dates.datetime2rata – Function.

datetime2rata(dt::TimeType) -> Int64

Returns the number of Rata Die days since epoch from the given Date or DateTime.

source

Constants

Days of the Week:

Months of the Year:

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/conversions.jl#L42-L47
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/conversions.jl#L52-L57
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/conversions.jl#L104-L109
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/conversions.jl#L115-L120
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/conversions.jl#L86-L91
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/dates/conversions.jl#L94-L98

836 CHAPTER 59. DATES AND TIME

Variable Abbr. Value (Int)

Monday Mon 1

Tuesday Tue 2

Wednesday Wed 3

Thursday Thu 4

Friday Fri 5

Saturday Sat 6

Sunday Sun 7

Variable Abbr. Value (Int)

January Jan 1

February Feb 2

March Mar 3

April Apr 4

May May 5

June Jun 6

July Jul 7

August Aug 8

September Sep 9

October Oct 10

November Nov 11

December Dec 12

Chapter 60

Iteration utilities

Base.Iterators.zip – Function.

zip(iters...)

For a set of iterable objects, returns an iterable of tuples, where the ith tuple contains the ith component of each

input iterable.

Note that zip is its own inverse: collect(zip(zip(a...)...)) == collect(a).

julia> a = 1:5

1:5

julia> b = ["e","d","b","c","a"]

5-element Array{String,1}:

"e"

"d"

"b"

"c"

"a"

julia> c = zip(a,b)

Base.Iterators.Zip2{UnitRange{Int64},Array{String,1}}(1:5, String["e", "d", "b", "c", "a"])

julia> length(c)

5

julia> first(c)

(1, "e")

source

Base.Iterators.enumerate – Function.

enumerate(iter)

An iterator that yields (i, x)where i is a counter starting at 1, and x is the ith value from the given iterator. It’s

useful when you need not only the values x over which you are iterating, but also the number of iterations so far.

Note that imay not be valid for indexing iter; it’s also possible that x != iter[i], if iter has indices that do

not start at 1. See the enumerate(IndexLinear(), iter) method if you want to ensure that i is an index.

837

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/iterators.jl#L197-L226

838 CHAPTER 60. ITERATION UTILITIES

julia> a = ["a", "b", "c"];

julia> for (index, value) in enumerate(a)

println("$index $value")

end

1 a

2 b

3 c

source

enumerate(IndexLinear(), A)

enumerate(IndexCartesian(), A)

enumerate(IndexStyle(A), A)

An iterator that accesses each element of the array A, returning (i, x), where i is the index for the element and

x = A[i]. This is similar to enumerate(A), except iwill always be a valid index for A.

Specifying IndexLinear() ensures that iwill be an integer; specifying IndexCartesian() ensures that iwill

be a CartesianIndex; specifying IndexStyle(A) chooses whichever has been defined as the native indexing

style for array A.

julia> A = ["a" "d"; "b" "e"; "c" "f"];

julia> for (index, value) in enumerate(IndexStyle(A), A)

println("$index $value")

end

1 a

2 b

3 c

4 d

5 e

6 f

julia> S = view(A, 1:2, :);

julia> for (index, value) in enumerate(IndexStyle(S), S)

println("$index $value")

end

CartesianIndex{2}((1, 1)) a

CartesianIndex{2}((2, 1)) b

CartesianIndex{2}((1, 2)) d

CartesianIndex{2}((2, 2)) e

Note that enumerate(A) returns i as a counter (always starting at 1), whereas enumerate(IndexLinear(),

A) returns i as an index (starting at the first linear index of A, which may or may not be 1).

See also: IndexStyle, indices.

source

Base.Iterators.rest – Function.

rest(iter, state)

An iterator that yields the same elements as iter, but starting at the given state.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/iterators.jl#L35-L56
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/iterators.jl#L78-L123
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/iterators.jl#L306-L310

839

Base.Iterators.countfrom – Function.

countfrom(start=1, step=1)

An iterator that counts forever, starting at start and incrementing by step.

source

Base.Iterators.take – Function.

take(iter, n)

An iterator that generates at most the first n elements of iter.

julia> a = 1:2:11

1:2:11

julia> collect(a)

6-element Array{Int64,1}:

1

3

5

7

9

11

julia> collect(Iterators.take(a,3))

3-element Array{Int64,1}:

1

3

5

source

Base.Iterators.drop – Function.

drop(iter, n)

An iterator that generates all but the first n elements of iter.

julia> a = 1:2:11

1:2:11

julia> collect(a)

6-element Array{Int64,1}:

1

3

5

7

9

11

julia> collect(Iterators.drop(a,4))

2-element Array{Int64,1}:

9

11

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/iterators.jl#L331-L335
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/iterators.jl#L355-L379

840 CHAPTER 60. ITERATION UTILITIES

source

Base.Iterators.cycle – Function.

cycle(iter)

An iterator that cycles through iter forever.

source

Base.Iterators.repeated – Function.

repeated(x[, n::Int])

An iterator that generates the value x forever. If n is specified, generates x that many times (equivalent to

take(repeated(x), n)).

julia> a = Iterators.repeated([1 2], 4);

julia> collect(a)

4-element Array{Array{Int64,2},1}:

[1 2]

[1 2]

[1 2]

[1 2]

source

Base.Iterators.product – Function.

product(iters...)

Returns an iterator over the product of several iterators. Each generated element is a tuple whose ith element

comes from the ith argument iterator. The first iterator changes the fastest. Example:

julia> collect(Iterators.product(1:2,3:5))

2×3 Array{Tuple{Int64,Int64},2}:

(1, 3) (1, 4) (1, 5)

(2, 3) (2, 4) (2, 5)

source

Base.Iterators.flatten – Function.

flatten(iter)

Given an iterator that yields iterators, return an iterator that yields the elements of those iterators. Put differently,

the elements of the argument iterator are concatenated. Example:

julia> collect(Iterators.flatten((1:2, 8:9)))

4-element Array{Int64,1}:

1

2

8

9

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/iterators.jl#L410-L433
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/iterators.jl#L467-L471
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/iterators.jl#L502-L518
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/iterators.jl#L590-L603
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/iterators.jl#L667-L682

841

Base.Iterators.partition – Function.

partition(collection, n)

Iterate over a collection n elements at a time.

julia> collect(Iterators.partition([1,2,3,4,5], 2))

3-element Array{Array{Int64,1},1}:

[1, 2]

[3, 4]

[5]

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/iterators.jl#L722-L734

Chapter 61

Unit Testing

61.1 Testing Base Julia

Julia is under rapid development and has an extensive test suite to verify functionality across multiple platforms. If

you build Julia from source, you can run this test suite with make test. In a binary install, you can run the test suite

using Base.runtests().

Base.runtests – Function.

runtests([tests=["all"] [, numcores=ceil(Int, Sys.CPU_CORES / 2)]])

Run the Julia unit tests listed in tests, which can be either a string or an array of strings, using numcores pro-

cessors. (not exported)

source

61.2 Basic Unit Tests

The Base.Testmodule provides simple unit testing functionality. Unit testing is a way to see if your code is correct by

checking that the results arewhat you expect. It can be helpful to ensure your code still works after you make changes,

and can be used when developing as a way of specifying the behaviors your code should have when complete.

Simple unit testing can be performed with the @test() and @test_throws() macros:

Base.Test.@test – Macro.

@test ex

@test f(args...) key=val ...

Tests that the expression ex evaluates to true. Returns a Pass Result if it does, a Fail Result if it is false,

and an Error Result if it could not be evaluated.

The @test f(args...) key=val... form is equivalent towriting @test f(args..., key=val...) which

can be useful when the expression is a call using infix syntax such as approximate comparisons:

@test a ≈ b atolε=

This is equivalent to the uglier test @test ≈(a, b, atol=ε). It is an error to supply more than one expression

unless the first is a call expression and the rest are assignments (k=v).

source

Base.Test.@test_throws – Macro.

843

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/interactiveutil.jl#L652-L657
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/test.jl#L230-L247

844 CHAPTER 61. UNIT TESTING

@test_throws extype ex

Tests that the expression ex throws an exception of type extype. Note that @test_throws does not support a

trailing keyword form.

source

For example, suppose we want to check our new function foo(x)works as expected:

julia> using Base.Test

julia> foo(x) = length(x)^2

foo (generic function with 1 method)

If the condition is true, a Pass is returned:

julia> @test foo("bar") == 9

Test Passed

Expression: foo("bar") == 9

Evaluated: 9 == 9

julia> @test foo("fizz") >= 10

Test Passed

Expression: foo("fizz") >= 10

Evaluated: 16 >= 10

If the condition is false, then a Fail is returned and an exception is thrown:

julia> @test foo("f") == 20

Test Failed

Expression: foo("f") == 20

Evaluated: 1 == 20

ERROR: There was an error during testing

in record at test.jl:268

in do_test at test.jl:191

If the condition could not be evaluated because an exceptionwas thrown, which occurs in this case because length()

is not defined for symbols, an Error object is returned and an exception is thrown:

julia> @test foo(:cat) == 1

Error During Test

Test threw an exception of type MethodError

Expression: foo(:cat) == 1

MethodError: `length` has no method matching length(::Symbol)

in foo at none:1

in anonymous at test.jl:159

in do_test at test.jl:180

ERROR: There was an error during testing

in record at test.jl:268

in do_test at test.jl:191

If we expect that evaluating an expression should throw an exception, then we can use @test_throws() to check

that this occurs:

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/test.jl#L369-L374

61.3. WORKINGWITH TEST SETS 845

julia> @test_throws MethodError foo(:cat)

Test Passed

Expression: foo(:cat)

Evaluated: MethodError

61.3 Working with Test Sets

Typically a large number of tests are used to make sure functions work correctly over a range of inputs. In the event a

test fails, the default behavior is to throw an exception immediately. However, it is normally preferable to run the rest

of the tests first to get a better picture of how many errors there are in the code being tested.

The @testset() macro can be used to group tests into sets. All the tests in a test set will be run, and at the end of

the test set a summary will be printed. If any of the tests failed, or could not be evaluated due to an error, the test set

will then throw a TestSetException.

Base.Test.@testset – Macro.

@testset [CustomTestSet] [option=val ...] ["description"] begin ... end

@testset [CustomTestSet] [option=val ...] ["description $v"] for v in (...) ... end

@testset [CustomTestSet] [option=val ...] ["description $v, $w"] for v in (...), w in (...)

... end

Starts a new test set, or multiple test sets if a for loop is provided.

If no custom testset type is given it defaults to creating a DefaultTestSet. DefaultTestSet records all the

results and, if there are any Fails or Errors, throws an exception at the end of the top-level (non-nested) test

set, along with a summary of the test results.

Any custom testset type (subtype of AbstractTestSet) can be given and it will also be used for any nested

@testset invocations. The given options are only applied to the test set where they are given. The default test

set type does not take any options.

The description string accepts interpolation from the loop indices. If no description is provided, one is constructed

based on the variables.

By default the @testset macro will return the testset object itself, though this behavior can be customized in

other testset types. If a for loop is used then the macro collects and returns a list of the return values of the

finish method, which by default will return a list of the testset objects used in each iteration.

source

We can put our tests for the foo(x) function in a test set:

julia> @testset "Foo Tests" begin

@test foo("a") == 1

@test foo("ab") == 4

@test foo("abc") == 9

end

Test Summary: | Pass Total

Foo Tests | 3 3

Test sets can also be nested:

julia> @testset "Foo Tests" begin

@testset "Animals" begin

@test foo("cat") == 9

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/test.jl#L792-L817

846 CHAPTER 61. UNIT TESTING

@test foo("dog") == foo("cat")

end

@testset "Arrays $i" for i in 1:3

@test foo(zeros(i)) == i^2

@test foo(ones(i)) == i^2

end

end

Test Summary: | Pass Total

Foo Tests | 8 8

In the event that a nested test set has no failures, as happened here, it will be hidden in the summary. If we do have a

test failure, only the details for the failed test sets will be shown:

julia> @testset "Foo Tests" begin

@testset "Animals" begin

@testset "Felines" begin

@test foo("cat") == 9

end

@testset "Canines" begin

@test foo("dog") == 9

end

end

@testset "Arrays" begin

@test foo(zeros(2)) == 4

@test foo(ones(4)) == 15

end

end

Arrays: Test Failed

Expression: foo(ones(4)) == 15

Evaluated: 16 == 15

in record at test.jl:297

in do_test at test.jl:191

Test Summary: | Pass Fail Total

Foo Tests | 3 1 4

Animals | 2 2

Arrays | 1 1 2

ERROR: Some tests did not pass: 3 passed, 1 failed, 0 errored, 0 broken.

in finish at test.jl:362

61.4 Other Test Macros

As calculations on floating-point values can be imprecise, you can perform approximate equality checks using either

@test a ≈ b (where ≈, typed via tab completion of \approx, is the isapprox() function) or use isapprox()

directly.

julia> @test 1 ≈ 0.999999999

julia> @test 1 ≈ 0.999999

ERROR: test failed: 1 isapprox 0.999999

in expression: 1 ≈ 0.999999

in error at error.jl:21

in default_handler at test.jl:30

in do_test at test.jl:53

61.4. OTHER TESTMACROS 847

Base.Test.@inferred – Macro.

@inferred f(x)

Tests that the call expression f(x) returns a value of the same type inferred by the compiler. It is useful to check

for type stability.

f(x) can be any call expression. Returns the result of f(x) if the types match, and an Error Result if it finds

different types.

julia> using Base.Test

julia> f(a,b,c) = b > 1 ? 1 : 1.0

f (generic function with 1 method)

julia> typeof(f(1,2,3))

Int64

julia> @code_warntype f(1,2,3)

Variables:

#self#::#f

a::Int64

b::Int64

c::Int64

Body:

begin

unless (Base.slt_int)(1, b::Int64)::Bool goto 3

return 1

3:

return 1.0

end::UNION{FLOAT64, INT64}

julia> @inferred f(1,2,3)

ERROR: return type Int64 does not match inferred return type Union{Float64, Int64}

Stacktrace:

[1] error(::String) at ./error.jl:21

julia> @inferred max(1,2)

2

source

Base.Test.@test_warn – Macro.

@test_warn msg expr

Test whether evaluating expr results in STDERR output that contains the msg string or matches the msg regular

expression. If msg is a boolean function, tests whether msg(output) returns true. If msg is a tuple or array,

checks that the error output contains/matches each item in msg. Returns the result of evaluating expr.

See also @test_nowarn to check for the absence of error output.

source

Base.Test.@test_nowarn – Macro.

@test_nowarn expr

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/test.jl#L1023-L1065
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/test.jl#L412-L422

848 CHAPTER 61. UNIT TESTING

Testwhether evaluating expr results in empty STDERR output (nowarnings or othermessages). Returns the result

of evaluating expr.

source

61.5 Broken Tests

If a test fails consistently it can be changed to use the @test_broken() macro. This will denote the test as Broken

if the test continues to fail and alerts the user via an Error if the test succeeds.

Base.Test.@test_broken – Macro.

@test_broken ex

@test_broken f(args...) key=val ...

Indicates a test that should pass but currently consistently fails. Tests that the expression ex evaluates to false

or causes an exception. Returns a Broken Result if it does, or an Error Result if the expression evaluates to

true.

The @test_broken f(args...) key=val... form works as for the @test macro.

source

@test_skip() is also available to skip a testwithout evaluation, but counting the skipped test in the test set reporting.

The test will not run but gives a Broken Result.

Base.Test.@test_skip – Macro.

@test_skip ex

@test_skip f(args...) key=val ...

Marks a test that should not be executed but should be included in test summary reporting as Broken. This can

be useful for tests that intermittently fail, or tests of not-yet-implemented functionality.

The @test_skip f(args...) key=val... form works as for the @test macro.

source

61.6 Creating Custom AbstractTestSet Types

Packages can create their own AbstractTestSet subtypes by implementing the record and finishmethods. The

subtype should have a one-argument constructor taking a description string, with any options passed in as keyword

arguments.

Base.Test.record – Function.

record(ts::AbstractTestSet, res::Result)

Record a result to a testset. This function is called by the @testset infrastructure each time a contained @test

macro completes, and is given the test result (which could be an Error). This will also be called with an Error if

an exception is thrown inside the test block but outside of a @test context.

source

Base.Test.finish – Function.

finish(ts::AbstractTestSet)

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/test.jl#L443-L448
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/test.jl#L255-L265
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/test.jl#L274-L283
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/test.jl#L464-L471

61.6. CREATING CUSTOM ABSTRACTTESTSET TYPES 849

Do any final processing necessary for the given testset. This is called by the @testset infrastructure after a

test block executes. One common use for this function is to record the testset to the parent’s results list, using

get_testset.

source

Base.Test takes responsibility for maintaining a stack of nested testsets as they are executed, but any result accu-

mulation is the responsibility of the AbstractTestSet subtype. You can access this stack with the get_testset

and get_testset_depth methods. Note that these functions are not exported.

Base.Test.get_testset – Function.

get_testset()

Retrieve the active test set from the task’s local storage. If no test set is active, use the fallback default test set.

source

Base.Test.get_testset_depth – Function.

get_testset_depth()

Returns the number of active test sets, not including the defaut test set

source

Base.Test also makes sure that nested @testset invocations use the same AbstractTestSet subtype as their

parent unless it is set explicitly. It does not propagate any properties of the testset. Option inheritance behavior can

be implemented by packages using the stack infrastructure that Base.Test provides.

Defining a basic AbstractTestSet subtype might look like:

import Base.Test: record, finish

using Base.Test: AbstractTestSet, Result, Pass, Fail, Error

using Base.Test: get_testset_depth, get_testset

struct CustomTestSet <: Base.Test.AbstractTestSet

description::AbstractString

foo::Int

results::Vector

constructor takes a description string and options keyword arguments

CustomTestSet(desc; foo=1) = new(desc, foo, [])

end

record(ts::CustomTestSet, child::AbstractTestSet) = push!(ts.results, child)

record(ts::CustomTestSet, res::Result) = push!(ts.results, res)

function finish(ts::CustomTestSet)

just record if we're not the top-level parent

if get_testset_depth() > 0

record(get_testset(), ts)

end

ts

end

And using that testset looks like:

@testset CustomTestSet foo=4 "custom testset inner 2" begin

this testset should inherit the type, but not the argument.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/test.jl#L474-L481
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/test.jl#L977-L982
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/test.jl#L1012-L1016

850 CHAPTER 61. UNIT TESTING

@testset "custom testset inner" begin

@test true

end

end

Chapter 62

C Interface

ccall – Keyword.

ccall((symbol, library) or function_pointer, ReturnType, (ArgumentType1, ...), ArgumentValue1

, ...)

Call function in C-exported shared library, specified by (function name, library) tuple, where each com-

ponent is a string or symbol.

Note that the argument type tuple must be a literal tuple, and not a tuple-valued variable or expression. Alterna-

tively, ccall may also be used to call a function pointer, such as one returned by dlsym.

Each ArgumentValue to the ccall will be converted to the corresponding ArgumentType, by automatic in-

sertion of calls to unsafe_convert(ArgumentType, cconvert(ArgumentType, ArgumentValue)). (See

also the documentation for each of these functions for further details.) In most cases, this simply results in a call

to convert(ArgumentType, ArgumentValue).

source

Core.Intrinsics.cglobal – Function.

cglobal((symbol, library) [, type=Void])

Obtain a pointer to a global variable in a C-exported shared library, specified exactly as in ccall. Returns a

Ptr{Type}, defaulting to Ptr{Void} if no Type argument is supplied. The values can be read or written by

unsafe_load or unsafe_store!, respectively.

source

Base.cfunction – Function.

cfunction(function::Function, ReturnType::Type, (ArgumentTypes...))

Generate C-callable function pointer from Julia function. Type annotation of the return value in the callback

function is a must for situations where Julia cannot infer the return type automatically.

For example:

function foo()

body

retval::Float64

end

bar = cfunction(foo, Float64, ())

851

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/basedocs.jl#L557-L572
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L924-L933

852 CHAPTER 62. C INTERFACE

source

Base.unsafe_convert – Function.

unsafe_convert(T,x)

Convert x to a value of type T

In cases where convert would need to take a Julia object and turn it into a Ptr, this function should be used to

define and perform that conversion.

Be careful to ensure that a Julia reference to x exists as long as the result of this functionwill be used. Accordingly,

the argument x to this function should never be an expression, only a variable name or field reference. For

example, x=a.b.c is acceptable, but x=[a,b,c] is not.

The unsafe prefix on this function indicates that using the result of this function after the x argument to this

function is no longer accessible to the program may cause undefined behavior, including program corruption or

segfaults, at any later time.

source

Base.cconvert – Function.

cconvert(T,x)

Convert x to a value of type T, typically by calling convert(T,x)

In cases where x cannot be safely converted to T, unlike convert, cconvert may return an object of a type

different from T, which however is suitable for unsafe_convert to handle.

Neither convert nor cconvert should take a Julia object and turn it into a Ptr.

source

Base.unsafe_load – Function.

unsafe_load(p::Ptr{T}, i::Integer=1)

Load a value of type T from the address of the ith element (1-indexed) starting at p. This is equivalent to the C

expression p[i-1].

The unsafe prefix on this function indicates that no validation is performed on the pointer p to ensure that it is

valid. Incorrect usage may segfault your program or return garbage answers, in the same manner as C.

source

Base.unsafe_store! – Function.

unsafe_store!(p::Ptr{T}, x, i::Integer=1)

Store a value of type T to the address of the ith element (1-indexed) starting at p. This is equivalent to the C

expression p[i-1] = x.

The unsafe prefix on this function indicates that no validation is performed on the pointer p to ensure that it is

valid. Incorrect usage may corrupt or segfault your program, in the same manner as C.

source

Base.unsafe_copy! – Method.

unsafe_copy!(dest::Ptr{T}, src::Ptr{T}, N)

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L1803-L1819
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L888-L905
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L164-L174
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/pointer.jl#L73-L82
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/pointer.jl#L85-L94

853

Copy N elements from a source pointer to a destination, with no checking. The size of an element is determined

by the type of the pointers.

The unsafe prefix on this function indicates that no validation is performed on the pointers dest and src to

ensure that they are valid. Incorrect usage may corrupt or segfault your program, in the same manner as C.

source

Base.unsafe_copy! – Method.

unsafe_copy!(dest::Array, do, src::Array, so, N)

Copy N elements from a source array to a destination, starting at offset so in the source and do in the destination

(1-indexed).

The unsafe prefix on this function indicates that no validation is performed to ensure that N is inbounds on either

array. Incorrect usage may corrupt or segfault your program, in the same manner as C.

source

Base.copy! – Method.

copy!(dest, src) -> dest

Copy all elements from collection src to array dest.

source

Base.copy! – Method.

copy!(dest, do, src, so, N)

Copy N elements from collection src starting at offset so, to array dest starting at offset do. Returns dest.

source

Base.pointer – Function.

pointer(array [, index])

Get the native address of an array or string element. Be careful to ensure that a Julia reference to a exists as long

as this pointer will be used. This function is ”unsafe” like unsafe_convert.

Calling Ref(array[, index]) is generally preferable to this function.

source

Base.unsafe_wrap – Method.

unsafe_wrap(Array, pointer::Ptr{T}, dims, own=false)

Wrap a Julia Array object around the data at the address given by pointer, without making a copy. The pointer

element type T determines the array element type. dims is either an integer (for a 1d array) or a tuple of the array

dimensions. own optionally specifies whether Julia should take ownership of the memory, calling free on the

pointer when the array is no longer referenced.

This function is labelled ”unsafe” because it will crash if pointer is not a valid memory address to data of the

requested length.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L192-L201
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L204-L213
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/multidimensional.jl#L795-L799
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L2022-L2027
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/helpdb/Base.jl#L46-L54
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/pointer.jl#L48-L59

854 CHAPTER 62. C INTERFACE

Base.pointer_from_objref – Function.

pointer_from_objref(x)

Get the memory address of a Julia object as a Ptr. The existence of the resulting Ptr will not protect the object

from garbage collection, so you must ensure that the object remains referenced for the whole time that the Ptr

will be used.

source

Base.unsafe_pointer_to_objref – Function.

unsafe_pointer_to_objref(p::Ptr)

Convert a Ptr to an object reference. Assumes the pointer refers to a valid heap-allocated Julia object. If this is

not the case, undefined behavior results, hence this function is considered ”unsafe” and should be used with care.

source

Base.disable_sigint – Function.

disable_sigint(f::Function)

Disable Ctrl-C handler during execution of a function on the current task, for calling external code that may call

julia code that is not interrupt safe. Intended to be called using do block syntax as follows:

disable_sigint() do

interrupt-unsafe code

...

end

This is not needed on worker threads (Threads.threadid() != 1) since the InterruptExceptionwill only

be delivered to the master thread. External functions that do not call julia code or julia runtime automatically

disable sigint during their execution.

source

Base.reenable_sigint – Function.

reenable_sigint(f::Function)

Re-enable Ctrl-C handler during execution of a function. Temporarily reverses the effect of disable_sigint.

source

Base.systemerror – Function.

systemerror(sysfunc, iftrue)

Raises a SystemError for errnowith the descriptive string sysfunc if iftrue is true

source

Core.Ptr – Type.

Ptr{T}

A memory address referring to data of type T. However, there is no guarantee that the memory is actually valid,

or that it actually represents data of the specified type.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/pointer.jl#L108-L114
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/pointer.jl#L99-L105
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/c.jl#L304-L320
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/c.jl#L329-L334
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/error.jl#L59-L63
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/pointer.jl#L3-L8

855

Core.Ref – Type.

Ref{T}

An object that safely references data of type T. This type is guaranteed to point to valid, Julia-allocated memory

of the correct type. The underlying data is protected from freeing by the garbage collector as long as the Ref

itself is referenced.

When passed as a ccall argument (either as a Ptr or Ref type), a Ref object will be converted to a native pointer

to the data it references.

There is no invalid (NULL) Ref.

source

Base.Cchar – Type.

Cchar

Equivalent to the native char c-type.

source

Base.Cuchar – Type.

Cuchar

Equivalent to the native unsigned char c-type (UInt8).

source

Base.Cshort – Type.

Cshort

Equivalent to the native signed short c-type (Int16).

source

Base.Cushort – Type.

Cushort

Equivalent to the native unsigned short c-type (UInt16).

source

Base.Cint – Type.

Cint

Equivalent to the native signed int c-type (Int32).

source

Base.Cuint – Type.

Cuint

Equivalent to the native unsigned int c-type (UInt32).

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/refpointer.jl#L3-L14
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/c.jl#L14-L18
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/ctypes.jl#L6-L10
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/ctypes.jl#L14-L18
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/ctypes.jl#L22-L26
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/ctypes.jl#L30-L34
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/ctypes.jl#L38-L42

856 CHAPTER 62. C INTERFACE

Base.Clong – Type.

Clong

Equivalent to the native signed long c-type.

source

Base.Culong – Type.

Culong

Equivalent to the native unsigned long c-type.

source

Base.Clonglong – Type.

Clonglong

Equivalent to the native signed long long c-type (Int64).

source

Base.Culonglong – Type.

Culonglong

Equivalent to the native unsigned long long c-type (UInt64).

source

Base.Cintmax_t – Type.

Cintmax_t

Equivalent to the native intmax_t c-type (Int64).

source

Base.Cuintmax_t – Type.

Cuintmax_t

Equivalent to the native uintmax_t c-type (UInt64).

source

Base.Csize_t – Type.

Csize_t

Equivalent to the native size_t c-type (UInt).

source

Base.Cssize_t – Type.

Cssize_t

Equivalent to the native ssize_t c-type.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/c.jl#L31-L35
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/c.jl#L38-L42
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/ctypes.jl#L86-L90
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/ctypes.jl#L94-L98
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/ctypes.jl#L70-L74
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/ctypes.jl#L78-L82
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/ctypes.jl#L54-L58
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/ctypes.jl#L62-L66

857

Base.Cptrdiff_t – Type.

Cptrdiff_t

Equivalent to the native ptrdiff_t c-type (Int).

source

Base.Cwchar_t – Type.

Cwchar_t

Equivalent to the native wchar_t c-type (Int32).

source

Base.Cfloat – Type.

Cfloat

Equivalent to the native float c-type (Float32).

source

Base.Cdouble – Type.

Cdouble

Equivalent to the native double c-type (Float64).

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/ctypes.jl#L46-L50
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/c.jl#L45-L49
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/ctypes.jl#L102-L106
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/ctypes.jl#L110-L114

Chapter 63

LLVM Interface

Core.Intrinsics.llvmcall – Function.

llvmcall(IR::String, ReturnType, (ArgumentType1, ...), ArgumentValue1, ...)

llvmcall((declarations::String, IR::String), ReturnType, (ArgumentType1, ...), ArgumentValue1

, ...)

Call LLVM IR string in the first argument. Similar to an LLVM function define block, arguments are available as

consecutive unnamed SSA variables (%0, %1, etc.).

The optional declarations string contains external functions declarations that are necessary for llvm to compile

the IR string. Multiple declarations can be passed in by separating them with line breaks.

Note that the argument type tuple must be a literal tuple, and not a tuple-valued variable or expression.

Each ArgumentValue to llvmcall will be converted to the corresponding ArgumentType, by automatic in-

sertion of calls to unsafe_convert(ArgumentType, cconvert(ArgumentType, ArgumentValue)). (see

also the documentation for each of these functions for further details). In most cases, this simply results in a call

to convert(ArgumentType, ArgumentValue).

See test/llvmcall.jl for usage examples.

source

859

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/docs/basedocs.jl#L575-L596

Chapter 64

C Standard Library

Base.Libc.malloc – Function.

malloc(size::Integer) -> Ptr{Void}

Call malloc from the C standard library.

source

Base.Libc.calloc – Function.

calloc(num::Integer, size::Integer) -> Ptr{Void}

Call calloc from the C standard library.

source

Base.Libc.realloc – Function.

realloc(addr::Ptr, size::Integer) -> Ptr{Void}

Call realloc from the C standard library.

Seewarning in the documentation for free regarding only using this onmemory originally obtained from malloc.

source

Base.Libc.free – Function.

free(addr::Ptr)

Call free from the C standard library. Only use this on memory obtained from malloc, not on pointers retrieved

from other C libraries. Ptr objects obtained from C libraries should be freed by the free functions defined in that

library, to avoid assertion failures if multiple libc libraries exist on the system.

source

Base.Libc.errno – Function.

errno([code])

Get the value of the C library’s errno. If an argument is specified, it is used to set the value of errno.

The value of errno is only valid immediately after a ccall to a C library routine that sets it. Specifically, you

cannot call errno at the next prompt in a REPL, because lots of code is executed between prompts.

source

861

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libc.jl#L323-L327
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libc.jl#L340-L344
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libc.jl#L330-L337
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libc.jl#L313-L320
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libc.jl#L254-L263

862 CHAPTER 64. C STANDARD LIBRARY

Base.Libc.strerror – Function.

strerror(n=errno())

Convert a system call error code to a descriptive string

source

Base.Libc.GetLastError – Function.

GetLastError()

Call the Win32 GetLastError function [only available on Windows].

source

Base.Libc.FormatMessage – Function.

FormatMessage(n=GetLastError())

Convert a Win32 system call error code to a descriptive string [only available on Windows].

source

Base.Libc.time – Method.

time(t::TmStruct)

Converts a TmStruct struct to a number of seconds since the epoch.

source

Base.Libc.strftime – Function.

strftime([format], time)

Convert time, given as a number of seconds since the epoch or a TmStruct, to a formatted string using the given

format. Supported formats are the same as those in the standard C library.

source

Base.Libc.strptime – Function.

strptime([format], timestr)

Parse a formatted time string into a TmStruct giving the seconds, minute, hour, date, etc. Supported formats

are the same as those in the standard C library. On some platforms, timezones will not be parsed correctly. If the

result of this function will be passed to time to convert it to seconds since the epoch, the isdst field should

be filled in manually. Setting it to -1 will tell the C library to use the current system settings to determine the

timezone.

source

Base.Libc.TmStruct – Type.

TmStruct([seconds])

Convert a number of seconds since the epoch to broken-down format, with fields sec, min, hour, mday, month,

year, wday, yday, and isdst.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libc.jl#L267-L271
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libc.jl#L275-L279
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libc.jl#L282-L286
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libc.jl#L217-L221
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libc.jl#L163-L169
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libc.jl#L182-L191
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libc.jl#L128-L133

863

Base.Libc.flush_cstdio – Function.

flush_cstdio()

Flushes the C stdout and stderr streams (which may have been written to by external C code).

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libc.jl#L95-L99

Chapter 65

Dynamic Linker

The names in Base.Libdl are not exported and need to be called e.g. as Libdl.dlopen().

Base.Libdl.dlopen – Function.

dlopen(libfile::AbstractString [, flags::Integer])

Load a shared library, returning an opaque handle.

The extension given by the constant dlext (.so, .dll, or .dylib) can be omitted from the libfile string,

as it is automatically appended if needed. If libfile is not an absolute path name, then the paths in the array

DL_LOAD_PATH are searched for libfile, followed by the system load path.

The optional flags argument is a bitwise-or of zero ormore ofRTLD_LOCAL,RTLD_GLOBAL,RTLD_LAZY,RTLD_NOW,

RTLD_NODELETE, RTLD_NOLOAD, RTLD_DEEPBIND, and RTLD_FIRST. These are converted to the corresponding

flags of the POSIX (and/or GNU libc and/or MacOS) dlopen command, if possible, or are ignored if the specified

functionality is not available on the current platform. The default flags are platform specific. On MacOS the de-

fault dlopen flags are RTLD_LAZY|RTLD_DEEPBIND|RTLD_GLOBAL while on other platforms the defaults are

RTLD_LAZY|RTLD_DEEPBIND|RTLD_LOCAL. An important usage of these flags is to specify non default behav-

ior for when the dynamic library loader binds library references to exported symbols and if the bound references

are put into process local or global scope. For instance RTLD_LAZY|RTLD_DEEPBIND|RTLD_GLOBAL allows the

library’s symbols to be available for usage in other shared libraries, addressing situations where there are depen-

dencies between shared libraries.

source

Base.Libdl.dlopen_e – Function.

dlopen_e(libfile::AbstractString [, flags::Integer])

Similar to dlopen, except returns a NULL pointer instead of raising errors.

source

Base.Libdl.RTLD_NOW – Constant.

RTLD_DEEPBIND

RTLD_FIRST

RTLD_GLOBAL

RTLD_LAZY

RTLD_LOCAL

RTLD_NODELETE

RTLD_NOLOAD

RTLD_NOW

865

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libdl.jl#L68-L91
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libdl.jl#L100-L104

866 CHAPTER 65. DYNAMIC LINKER

Enum constant for dlopen. See your platform man page for details, if applicable.

source

Base.Libdl.dlsym – Function.

dlsym(handle, sym)

Look up a symbol from a shared library handle, return callable function pointer on success.

source

Base.Libdl.dlsym_e – Function.

dlsym_e(handle, sym)

Look up a symbol from a shared library handle, silently return NULL pointer on lookup failure.

source

Base.Libdl.dlclose – Function.

dlclose(handle)

Close shared library referenced by handle.

source

Base.Libdl.dlext – Constant.

dlext

File extension for dynamic libraries (e.g. dll, dylib, so) on the current platform.

source

Base.Libdl.find_library – Function.

find_library(names, locations)

Searches for the first library in names in the paths in the locations list, DL_LOAD_PATH, or system library paths

(in that order)which can successfully be dlopen’d. On success, the returnvaluewill be one of the names (potentially

prefixed by one of the paths in locations). This string can be assigned to a global const and used as the library

name in future ccall’s. On failure, it returns the empty string.

source

Base.Libdl.DL_LOAD_PATH – Constant.

DL_LOAD_PATH

When calling dlopen, the paths in this list will be searched first, in order, before searching the system locations

for a valid library handle.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libdl.jl#L32-L44
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libdl.jl#L48-L52
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libdl.jl#L58-L62
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libdl.jl#L113-L117
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libdl.jl#L175-L179
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libdl.jl#L122-L130
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libdl.jl#L9-L14

Chapter 66

Profiling

Base.Profile.@profile – Macro.

@profile

@profile <expression> runs your expression while taking periodic backtraces. These are appended to an

internal buffer of backtraces.

source

The methods in Base.Profile are not exported and need to be called e.g. as Profile.print().

Base.Profile.clear – Function.

clear()

Clear any existing backtraces from the internal buffer.

source

Base.Profile.print – Function.

print([io::IO = STDOUT,] [data::Vector]; kwargs...)

Prints profiling results to io (by default, STDOUT). If you do not supply a data vector, the internal buffer of accu-

mulated backtraces will be used.

The keyword arguments can be any combination of:

• format – Determines whether backtraces are printed with (default, :tree) or without (:flat) indentation

indicating tree structure.

• C – If true, backtraces from C and Fortran code are shown (normally they are excluded).

• combine – If true (default), instruction pointers are merged that correspond to the same line of code.

• maxdepth – Limits the depth higher than maxdepth in the :tree format.

• sortedby–Controls the order in:flat format. :filefuncline (default) sorts by the source line,whereas

:count sorts in order of number of collected samples.

• noisefloor – Limits frames that exceed the heuristic noise floor of the sample (only applies to format

:tree). A suggested value to try for this is 2.0 (the default is 0). This parameter hides samples for which n

<= noisefloor * √N, where n is the number of samples on this line, and N is the number of samples for

the callee.

867

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/profile.jl#L10-L15
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/profile.jl#L69-L73

868 CHAPTER 66. PROFILING

• mincount – Limits the printout to only those lines with at least mincount occurrences.

source

print([io::IO = STDOUT,] data::Vector, lidict::LineInfoDict; kwargs...)

Prints profiling results to io. This variant is used to examine results exported by a previous call to retrieve.

Supply the vector data of backtraces and a dictionary lidict of line information.

See Profile.print([io], data) for an explanation of the valid keyword arguments.

source

Base.Profile.init – Function.

init(; n::Integer, delay::Float64)

Configure the delay between backtraces (measured in seconds), and the number n of instruction pointers that

may be stored. Each instruction pointer corresponds to a single line of code; backtraces generally consist of a

long list of instruction pointers. Default settings can be obtained by calling this function with no arguments, and

each can be set independently using keywords or in the order (n, delay).

source

Base.Profile.fetch – Function.

fetch() -> data

Returns a reference to the internal buffer of backtraces. Note that subsequent operations, like clear, can affect

data unless you first make a copy. Note that the values in data have meaning only on this machine in the current

session, because it depends on the exact memory addresses used in JIT-compiling. This function is primarily for

internal use; retrieve may be a better choice for most users.

source

Base.Profile.retrieve – Function.

retrieve() -> data, lidict

”Exports” profiling results in a portable format, returning the set of all backtraces (data) and a dictionary that

maps the (session-specific) instruction pointers in data to LineInfo values that store the file name, function

name, and line number. This function allows you to save profiling results for future analysis.

source

Base.Profile.callers – Function.

callers(funcname, [data, lidict], [filename=<filename>], [linerange=<start:stop>]) -> Vector{

Tuple{count, lineinfo}}

Given a previous profiling run, determine who called a particular function. Supplying the filename (and optionally,

range of line numbers over which the function is defined) allows you to disambiguate an overloaded method. The

returned value is a vector containing a count of the number of calls and line information about the caller. One can

optionally supply backtrace data obtained from retrieve; otherwise, the current internal profile buffer is used.

source

Base.Profile.clear_malloc_data – Function.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/profile.jl#L97-L123
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/profile.jl#L152-L160
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/profile.jl#L34-L42
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/profile.jl#L292-L300
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/profile.jl#L164-L171
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/profile.jl#L226-L235

869

clear_malloc_data()

Clears any stored memory allocation data when running julia with --track-allocation. Execute the com-

mand(s) you want to test (to force JIT-compilation), then call clear_malloc_data. Then execute your com-

mand(s) again, quit Julia, and examine the resulting *.mem files.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/profile.jl#L262-L269

Chapter 67

StackTraces

Base.StackTraces.StackFrame – Type.

StackFrame

Stack information representing execution context, with the following fields:

• func::Symbol

The name of the function containing the execution context.

• linfo::Nullable{Core.MethodInstance}

The MethodInstance containing the execution context (if it could be found).

• file::Symbol

The path to the file containing the execution context.

• line::Int

The line number in the file containing the execution context.

• from_c::Bool

True if the code is from C.

• inlined::Bool

True if the code is from an inlined frame.

• pointer::UInt64

Representation of the pointer to the execution context as returned by backtrace.

source

Base.StackTraces.StackTrace – Type.

StackTrace

An alias forVector{StackFrame} provided for convenience; returned bycalls tostacktrace andcatch_stack-

trace.

source

Base.StackTraces.stacktrace – Function.

stacktrace([trace::Vector{Ptr{Void}},] [c_funcs::Bool=false]) -> StackTrace

871

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/stacktraces.jl#L11-L44
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/stacktraces.jl#L64-L69

872 CHAPTER 67. STACKTRACES

Returns a stack trace in the form of a vector of StackFrames. (By default stacktrace doesn’t return C functions,

but this can be enabled.) When called without specifying a trace, stacktrace first calls backtrace.

source

Base.StackTraces.catch_stacktrace – Function.

catch_stacktrace([c_funcs::Bool=false]) -> StackTrace

Returns the stack trace for the most recent error thrown, rather than the current execution context.

source

The following methods and types in Base.StackTraces are not exported and need to be called e.g. as Stack-

Traces.lookup(ptr).

Base.StackTraces.lookup – Function.

lookup(pointer::Union{Ptr{Void}, UInt}) -> Vector{StackFrame}

Given a pointer to an execution context (usually generated by a call to backtrace), looks up stack frame context

information. Returns an array of frame information for all functions inlined at that point, innermost function first.

source

Base.StackTraces.remove_frames! – Function.

remove_frames!(stack::StackTrace, name::Symbol)

Takes a StackTrace (a vector of StackFrames) and a function name (a Symbol) and removes the StackFrame

specified by the function name from the StackTrace (also removing all frames above the specified function).

Primarily used to remove StackTraces functions from the StackTrace prior to returning it.

source

remove_frames!(stack::StackTrace, m::Module)

Returns the StackTracewith all StackFrames from the provided Module removed.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/stacktraces.jl#L143-L149
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/stacktraces.jl#L171-L176
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/stacktraces.jl#L117-L123
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/stacktraces.jl#L179-L186
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/stacktraces.jl#L197-L201

Chapter 68

SIMD Support

Type VecElement{T} is intended for building libraries of SIMD operations. Practical use of it requires using llvm-

call. The type is defined as:

struct VecElement{T}

value::T

end

It has a special compilation rule: a homogeneous tuple of VecElement{T} maps to an LLVM vector type when T is

a primitive bits type and the tuple length is in the set {2-6,8-10,16}.

At -O3, the compiler might automatically vectorize operations on such tuples. For example, the following program,

when compiled with julia -O3 generates two SIMD addition instructions (addps) on x86 systems:

const m128 = NTuple{4,VecElement{Float32}}

function add(a::m128, b::m128)

(VecElement(a[1].value+b[1].value),

VecElement(a[2].value+b[2].value),

VecElement(a[3].value+b[3].value),

VecElement(a[4].value+b[4].value))

end

triple(c::m128) = add(add(c,c),c)

code_native(triple,(m128,))

However, since the automatic vectorization cannot be relied upon, future use will mostly be via libraries that use

llvmcall.

873

Part V

Developer Documentation

875

Chapter 69

Reflection and introspection

Julia provides a variety of runtime reflection capabilities.

69.1 Module bindings

The exported names for a Module are available using names(m::Module), which will return an array of Symbol

elements representing the exported bindings. names(m::Module, true) returns symbols for all bindings in m, re-

gardless of export status.

69.2 DataType fields

The names of DataType fields may be interrogated using fieldnames(). For example, given the following type,

fieldnames(Point) returns an arrays of Symbol elements representing the field names:

julia> struct Point

x::Int

y

end

julia> fieldnames(Point)

2-element Array{Symbol,1}:

:x

:y

The type of each field in a Point object is stored in the types field of the Point variable itself:

julia> Point.types

svec(Int64, Any)

While x is annotated as an Int, ywas unannotated in the type definition, therefore y defaults to the Any type.

Types are themselves represented as a structure called DataType:

julia> typeof(Point)

DataType

Note that fieldnames(DataType) gives the names for each field of DataType itself, and one of these fields is the

types field observed in the example above.

877

878 CHAPTER 69. REFLECTION AND INTROSPECTION

69.3 Subtypes

The direct subtypes of any DataType may be listed using subtypes(). For example, the abstract DataType Ab-

stractFloat has four (concrete) subtypes:

julia> subtypes(AbstractFloat)

4-element Array{Union{DataType, UnionAll},1}:

BigFloat

Float16

Float32

Float64

Any abstract subtype will also be included in this list, but further subtypes thereof will not; recursive application of

subtypes() may be used to inspect the full type tree.

69.4 DataType layout

The internal representation of a DataType is critically important when interfacing with C code and several functions

are available to inspect these details. isbits(T::DataType) returns true if T is storedwith C-compatible alignment.

fieldoffset(T::DataType, i::Integer) returns the (byte) offset for field i relative to the start of the type.

69.5 Function methods

The methods of any generic function may be listed using methods(). The method dispatch table may be searched for

methods accepting a given type using methodswith().

69.6 Expansion and lowering

As discussed in the Metaprogramming section, the macroexpand() function gives the unquoted and interpolated

expression (Expr) form for a given macro. To use macroexpand, quote the expression block itself (otherwise, the

macro will be evaluated and the result will be passed instead!). For example:

julia> macroexpand(:(@edit println("")))

:((Base.edit)(println, (Base.typesof)("")))

The functions Base.Meta.show_sexpr() and dump() are used to display S-expr style views and depth-nested detail

views for any expression.

Finally, the expand() function gives the lowered formof anyexpression and is of particular interest for understanding

both macros and top-level statements such as function declarations and variable assignments:

julia> expand(:(f() = 1))

:(begin

$(Expr(:method, :f))

$(Expr(:method, :f, :((Core.svec)((Core.svec)((Core.Typeof)(f)), (Core.svec)())),

CodeInfo(:(begin # none, line 1:↪→

return 1

end)), false))

return f

end)

69.7. INTERMEDIATE AND COMPILED REPRESENTATIONS 879

69.7 Intermediate and compiled representations

Inspecting the lowered form for functions requires selection of the specific method to display, because generic func-

tions may havemanymethodswith different type signatures. For this purpose, method-specific code-lowering is avail-

able usingcode_lowered(f::Function, (Argtypes...)), and the type-inferred form is available usingcode_typed(f::Func-

tion, (Argtypes...)). code_warntype(f::Function, (Argtypes...)) adds highlighting to the output of

code_typed() (see @code_warntype).

Closer to themachine, the LLVM intermediate representation of a functionmaybe printed using bycode_llvm(f::Func-

tion, (Argtypes...)), and finally the compiled machine code is available using code_native(f::Function,

(Argtypes...)) (this will trigger JIT compilation/code generation for any function which has not previously been

called).

For convenience, there are macro versions of the above functions which take standard function calls and expand

argument types automatically:

julia> @code_llvm +(1,1)

; Function Attrs: sspreq

define i64 @"julia_+_130862"(i64, i64) #0 {

top:

%2 = add i64 %1, %0, !dbg !8

ret i64 %2, !dbg !8

}

(likewise @code_typed, @code_warntype, @code_lowered, and @code_native)

Chapter 70

Documentation of Julia’s Internals

70.1 Initialization of the Julia runtime

How does the Julia runtime execute julia -e 'println("Hello World!")' ?

main()

Execution starts at main() in ui/repl.c.

main() calls libsupport_init() to set the C library locale and to initialize the ”ios” library (see ios_init_std-

streams() and Legacy ios.c library).

Next parse_opts() is called to process command line options. Note that parse_opts() only deals with options

that affect code generation or early initialization. Other options are handled later by process_options() in base/-

client.jl.

parse_opts() stores command line options in the global jl_options struct.

julia_init()

julia_init() in task.c is called by main() and calls _julia_init() in init.c.

_julia_init() begins by calling libsupport_init() again (it does nothing the second time).

restore_signals() is called to zero the signal handler mask.

jl_resolve_sysimg_location() searches configured paths for the base system image. See Building the Julia

system image.

jl_gc_init() sets up allocation pools and lists for weak refs, preserved values and finalization.

jl_init_frontend() loads and initializes a pre-compiled femtolisp image containing the scanner/parser.

jl_init_types() creates jl_datatype_t type description objects for the built-in types defined in julia.h. e.g.

jl_any_type = jl_new_abstracttype(jl_symbol("Any"), NULL, jl_null);

jl_any_type->super = jl_any_type;

jl_type_type = jl_new_abstracttype(jl_symbol("Type"), jl_any_type, jl_null);

jl_int32_type = jl_new_bitstype(jl_symbol("Int32"),

jl_any_type, jl_null, 32);

jl_init_tasks() creates thejl_datatype_t* jl_task_type object; initializes the globaljl_root_task struct;

and sets jl_current_task to the root task.

881

https://github.com/JuliaLang/julia/blob/master/ui/repl.c
https://github.com/JuliaLang/julia/blob/master/src/support/libsupportinit.c
https://github.com/JuliaLang/julia/blob/master/src/support/ios.c
https://github.com/JuliaLang/julia/blob/master/src/support/ios.c
https://github.com/JuliaLang/julia/blob/master/ui/repl.c
https://github.com/JuliaLang/julia/blob/master/base/client.jl
https://github.com/JuliaLang/julia/blob/master/base/client.jl
https://github.com/JuliaLang/julia/blob/master/src/julia.h
https://github.com/JuliaLang/julia/blob/master/src/task.c
https://github.com/JuliaLang/julia/blob/master/src/init.c
https://github.com/JuliaLang/julia/blob/master/src/signals-unix.c
https://github.com/JuliaLang/julia/blob/master/src/init.c
https://github.com/JuliaLang/julia/blob/master/src/gc.c
https://github.com/JuliaLang/julia/blob/master/src/ast.c
https://github.com/JuliaLang/julia/blob/master/src/jltypes.c
https://github.com/JuliaLang/julia/blob/master/src/julia.h
https://github.com/JuliaLang/julia/blob/master/src/task.c

882 CHAPTER 70. DOCUMENTATION OF JULIA’S INTERNALS

jl_init_codegen() initializes the LLVM library.

jl_init_serializer() initializes 8-bit serialization tags for 256 frequently used jl_value_t values. The serial-

ization mechanism uses these tags as shorthand (in lieu of storing whole objects) to save storage space.

If there is no sysimg file (!jl_options.image_file) then the Core and Main modules are created and boot.jl is

evaluated:

jl_core_module = jl_new_module(jl_symbol("Core")) creates the Julia Core module.

jl_init_intrinsic_functions() creates a new Julia module Intrinsics containing constant jl_intrin-

sic_type symbols. These define an integer code for each intrinsic function. emit_intrinsic() translates these

symbols into LLVM instructions during code generation.

jl_init_primitives() hooks C functions up to Julia function symbols. e.g. the symbol Base.is() is bound to C

function pointer jl_f_is() by calling add_builtin_func("eval", jl_f_top_eval).

jl_new_main_module() creates the global ”Main”module and setsjl_current_task->current_module = jl_main_mod-

ule.

Note: _julia_init() then sets jl_root_task->current_module = jl_core_module. jl_root_task is an

alias of jl_current_task at this point, so the current_module set by jl_new_main_module() above is overwrit-

ten.

jl_load("boot.jl", sizeof("boot.jl")) callsjl_parse_eval_allwhich repeatedly callsjl_toplevel_eval_flex()

to execute boot.jl. <!– TODO – drill down into eval? –>

jl_get_builtin_hooks() initializes global C pointers to Julia globals defined in boot.jl.

jl_init_box_caches() pre-allocates global boxed integer value objects for values up to 1024. This speeds up

allocation of boxed ints later on. e.g.:

jl_value_t *jl_box_uint8(uint32_t x)

{

return boxed_uint8_cache[(uint8_t)x];

}

_julia_init() iterates over the jl_core_module->bindings.table looking for jl_datatype_t values and

sets the type name’s module prefix to jl_core_module.

jl_add_standard_imports(jl_main_module) does ”using Base” in the ”Main” module.

Note: _julia_init() now reverts to jl_root_task->current_module = jl_main_module as it was before

being set to jl_core_module above.

Platform specific signal handlers are initialized for SIGSEGV (OSX, Linux), and SIGFPE (Windows).

Other signals (SIGINFO, SIGBUS, SIGILL, SIGTERM, SIGABRT, SIGQUIT, SIGSYS and SIGPIPE) are hooked

up to sigdie_handler()which prints a backtrace.

jl_init_restored_modules() calls jl_module_run_initializer() for each deserialized module to run the

__init__() function.

Finally sigint_handler() is hooked up to SIGINT and calls jl_throw(jl_interrupt_exception).

_julia_init() then returns back to main() in ui/repl.c and main() calls true_main(argc, (char**)argv).

sysimg

If there is a sysimg file, it contains a pre-cooked image of the Core and Mainmodules (and whatever else

is created by boot.jl). See Building the Julia system image.

https://github.com/JuliaLang/julia/blob/master/src/codegen.cpp
http://llvm.org
https://github.com/JuliaLang/julia/blob/master/src/dump.c
https://github.com/JuliaLang/julia/blob/master/src/intrinsics.cpp
https://github.com/JuliaLang/julia/blob/master/src/intrinsics.cpp
https://github.com/JuliaLang/julia/blob/master/src/intrinsics.cpp
https://github.com/JuliaLang/julia/blob/master/src/builtins.c
https://github.com/JuliaLang/julia/blob/master/src/toplevel.c
https://github.com/JuliaLang/julia/blob/master/src/init.c
https://github.com/JuliaLang/julia/blob/master/src/init.c
https://github.com/JuliaLang/julia/blob/master/src/ast.c
https://github.com/JuliaLang/julia/blob/master/src/toplevel.c
https://github.com/JuliaLang/julia/blob/master/base/boot.jl
https://github.com/JuliaLang/julia/blob/master/src/init.c
https://github.com/JuliaLang/julia/blob/master/src/datatype.c
https://github.com/JuliaLang/julia/blob/master/src/init.c
https://github.com/JuliaLang/julia/blob/master/src/toplevel.c
https://github.com/JuliaLang/julia/blob/master/src/signals-unix.c
https://github.com/JuliaLang/julia/blob/master/src/dump.c
https://github.com/JuliaLang/julia/blob/master/src/module.c
https://github.com/JuliaLang/julia/blob/master/src/signals-unix.c
https://github.com/JuliaLang/julia/blob/master/ui/repl.c

70.2. JULIA ASTS 883

jl_restore_system_image() deserializes the saved sysimg into the current Julia runtime environ-

ment and initialization continues after jl_init_box_caches() below...

Note: jl_restore_system_image() (and dump.c in general) uses the Legacy ios.c library.

true_main()

true_main() loads the contents of argv[] into Base.ARGS.

If a .jl ”program” file was supplied on the command line, then exec_program() calls jl_load(program,len)

which calls jl_parse_eval_allwhich repeatedly calls jl_toplevel_eval_flex() to execute the program.

However, in our example (julia -e 'println("Hello World!")'), jl_get_global(jl_base_module, jl_sym-

bol("_start")) looks up Base._start and jl_apply() executes it.

Base._start

Base._start callsBase.process_optionswhich callsjl_parse_input_line("println("Hello World!")")

to create an expression object and Base.eval() to execute it.

Base.eval

Base.eval()was mapped to jl_f_top_eval by jl_init_primitives().

jl_f_top_eval() callsjl_toplevel_eval_in(jl_main_module, ex), whereex is the parsed expressionprintln("Hello

World!").

jl_toplevel_eval_in() calls jl_toplevel_eval_flex()which calls eval() in interpreter.c.

The stack dump below shows how the interpreter works its way through various methods of Base.println() and

Base.print() before arriving at write(s::IO, a::Array{T}) where Twhich does ccall(jl_uv_write()).

jl_uv_write() calls uv_write() to write ”Hello World!” to JL_STDOUT. See Libuv wrappers for stdio.:

Hello World!

Since our example has just one function call, which has done its job of printing ”Hello World!”, the stack now rapidly

unwinds back to main().

jl_atexit_hook()

main() calls jl_atexit_hook(). This calls _atexit for each module, then calls jl_gc_run_all_finalizers()

and cleans up libuv handles.

julia_save()

Finally, main() calls julia_save(), which if requested on the command line, saves the runtime state to a new system

image. See jl_compile_all() and jl_save_system_image().

70.2 Julia ASTs

Julia has two representations of code. First there is a surface syntax AST returned by the parser (e.g. the parse()

function), and manipulated by macros. It is a structured representation of code as it is written, constructed by julia-

parser.scm from a character stream. Next there is a lowered form, or IR (intermediate representation), which is used

by type inference and code generation. In the lowered form there are fewer types of nodes, all macros are expanded,

and all control flow is converted to explicit branches and sequences of statements. The lowered form is constructed

by julia-syntax.scm.

https://github.com/JuliaLang/julia/blob/master/src/dump.c
https://github.com/JuliaLang/julia/blob/master/src/dump.c
https://github.com/JuliaLang/julia/blob/master/ui/repl.c
https://github.com/JuliaLang/julia/blob/master/ui/repl.c
https://github.com/JuliaLang/julia/blob/master/src/toplevel.c
https://github.com/JuliaLang/julia/blob/master/src/ast.c
https://github.com/JuliaLang/julia/blob/master/src/toplevel.c
https://github.com/JuliaLang/julia/blob/master/src/module.c
https://github.com/JuliaLang/julia/blob/master/src/module.c
https://github.com/JuliaLang/julia/blob/master/base/client.jl
https://github.com/JuliaLang/julia/blob/master/src/julia.h
https://github.com/JuliaLang/julia/blob/master/base/client.jl
https://github.com/JuliaLang/julia/blob/master/base/client.jl
https://github.com/JuliaLang/julia/blob/master/src/ast.c
https://github.com/JuliaLang/julia/blob/master/src/builtins.c
https://github.com/JuliaLang/julia/blob/master/src/builtins.c
https://github.com/JuliaLang/julia/blob/master/src/builtins.c
https://github.com/JuliaLang/julia/blob/master/src/builtins.c
https://github.com/JuliaLang/julia/blob/master/src/toplevel.c
https://github.com/JuliaLang/julia/blob/master/src/interpreter.c
https://github.com/JuliaLang/julia/blob/master/base/stream.jl
https://github.com/JuliaLang/julia/blob/master/src/jl_uv.c
https://github.com/JuliaLang/julia/blob/master/src/init.c
https://github.com/JuliaLang/julia/blob/master/src/gc.c
https://github.com/JuliaLang/julia/blob/master/src/init.c
https://github.com/JuliaLang/julia/blob/master/src/gf.c
https://github.com/JuliaLang/julia/blob/master/src/dump.c

884 CHAPTER 70. DOCUMENTATION OF JULIA’S INTERNALS

Stack frame Source code Notes

jl_uv_write() jl_uv.c called though ccall

julia_write_282942 stream.jl function write!(s::IO, a::Array{T}) where T

julia_print_284639 ascii.jl print(io::IO, s::String) = (write(io, s);

nothing)

jlcall_print_284639

jl_apply() julia.h

jl_trampoline() builtins.c

jl_apply() julia.h

jl_apply_generic() gf.c Base.print(Base.TTY, String)

jl_apply() julia.h

jl_trampoline() builtins.c

jl_apply() julia.h

jl_apply_generic() gf.c Base.print(Base.TTY, String, Char, Char...)

jl_apply() julia.h

jl_f_apply() builtins.c

jl_apply() julia.h

jl_trampoline() builtins.c

jl_apply() julia.h

jl_apply_generic() gf.c Base.println(Base.TTY, String, String...)

jl_apply() julia.h

jl_trampoline() builtins.c

jl_apply() julia.h

jl_apply_generic() gf.c Base.println(String,)

jl_apply() julia.h

do_call() inter-

preter.c

eval() inter-

preter.c

jl_inter-

pret_toplevel_expr()

inter-

preter.c

jl_toplevel_eval_flex() toplevel.c

jl_toplevel_eval() toplevel.c

jl_toplevel_eval_in() builtins.c

jl_f_top_eval() builtins.c

First we will focus on the lowered form, since it is more important to the compiler. It is also less obvious to the human,

since it results from a significant rearrangement of the input syntax.

Lowered form

The following data types exist in lowered form:

• Expr

Has a node type indicated by the head field, and an args field which is a Vector{Any} of subexpressions.

• Slot

Identifies arguments and local variables by consecutive numbering. Slot is an abstract type with subtypes

SlotNumber and TypedSlot. Both types have an integer-valued id field giving the slot index. Most slots have

the same type at all uses, and so are represented with SlotNumber. The types of these slots are found in the

70.2. JULIA ASTS 885

slottypes field of their MethodInstance object. Slots that require per-use type annotations are represented

with TypedSlot, which has a typ field.

• CodeInfo

Wraps the IR of a method.

• LineNumberNode

Contains a single number, specifying the line number the next statement came from.

• LabelNode

Branch target, a consecutively-numbered integer starting at 0.

• GotoNode

Unconditional branch.

• QuoteNode

Wraps an arbitrary value to reference as data. For example, the function f() = :a contains a QuoteNode

whose value field is the symbol a, in order to return the symbol itself instead of evaluating it.

• GlobalRef

Refers to global variable name in module mod.

• SSAValue

Refers to a consecutively-numbered (starting at 0) static single assignment (SSA) variable inserted by the com-

piler.

• NewvarNode

Marks a point where a variable is created. This has the effect of resetting a variable to undefined.

Expr types

These symbols appear in the head field of Exprs in lowered form.

• call

Function call (dynamic dispatch). args[1] is the function to call, args[2:end] are the arguments.

• invoke

Function call (static dispatch). args[1] is the MethodInstance to call, args[2:end] are the arguments (in-

cluding the function that is being called, at args[2]).

• static_parameter

Reference a static parameter by index.

• line

Line number and file name metadata. Unlike a LineNumberNode, can also contain a file name.

• gotoifnot

Conditional branch. If args[1] is false, goes to label identified in args[2].

• =

Assignment.

886 CHAPTER 70. DOCUMENTATION OF JULIA’S INTERNALS

• method

Adds a method to a generic function and assigns the result if necessary.

Has a 1-argument form and a 4-argument form. The 1-argument form arises from the syntax function foo

end. In the 1-argument form, the argument is a symbol. If this symbol already names a function in the current

scope, nothing happens. If the symbol is undefined, a new function is created and assigned to the identifier

specified by the symbol. If the symbol is defined but names a non-function, an error is raised. The definition of

”names a function” is that the binding is constant, and refers to an object of singleton type. The rationale for

this is that an instance of a singleton type uniquely identifies the type to add the method to. When the type

has fields, it wouldn’t be clear whether the method was being added to the instance or its type.

The 4-argument form has the following arguments:

– args[1]

A function name, or false if unknown. If a symbol, then the expression first behaves like the 1-argument

form above. This argument is ignored from then on. When this is false, it means amethod is being added

strictly by type, (::T)(x) = x.

– args[2]

A SimpleVector of argument type data. args[2][1] is a SimpleVector of the argument types, and

args[2][2] is a SimpleVector of type variables corresponding to the method’s static parameters.

– args[3]

A CodeInfo of the method itself. For ”out of scope” method definitions (adding a method to a function

that also has methods defined in different scopes) this is an expression that evaluates to a :lambda

expression.

– args[4]

true or false, identifying whether the method is staged (@generated function).

• const

Declares a (global) variable as constant.

• null

Has no arguments; simply yields the value nothing.

• new

Allocates a new struct-like object. First argument is the type. The new pseudo-function is lowered to this, and

the type is always inserted by the compiler. This is very much an internal-only feature, and does no checking.

Evaluating arbitrary new expressions can easily segfault.

• return

Returns its argument as the value of the enclosing function.

• the_exception

Yields the caught exception inside a catch block. This is the value of the run time system variable jl_excep-

tion_in_transit.

• enter

Enters an exception handler (setjmp). args[1] is the label of the catch block to jump to on error.

• leave

Pop exception handlers. args[1] is the number of handlers to pop.

70.2. JULIA ASTS 887

• inbounds

Controls turning bounds checks on or off. A stack is maintained; if the first argument of this expression is true

or false (truemeans bounds checks are disabled), it is pushed onto the stack. If the first argument is :pop, the

stack is popped.

• boundscheck

Indicates the beginning or end of a section of code that performs a bounds check. Like inbounds, a stack is

maintained, and the second argument can be one of: true, false, or :pop.

• copyast

Part of the implementation of quasi-quote. The argument is a surface syntax AST that is simply copied recur-

sively and returned at run time.

• meta

Metadata. args[1] is typically a symbol specifying the kind of metadata, and the rest of the arguments are

free-form. The following kinds of metadata are commonly used:

– :inline and :noinline: Inlining hints.

– :push_loc: enters a sequence of statements from a specified source location.

* args[2] specifies a filename, as a symbol.

* args[3] optionally specifies the name of an (inlined) function that originally contained the code.

– :pop_loc: returns to the source location before the matching :push_loc.

Method

A unique’d container describing the shared metadata for a single method.

• name, module, file, line, sig

Metadata to uniquely identify the method for the computer and the human.

• ambig

Cache of other methods that may be ambiguous with this one.

• specializations

Cache of all MethodInstance ever created for this Method, used to ensure uniqueness. Uniqueness is required

for efficiency, especially for incremental precompile and tracking of method invalidation.

• source

The original source code (usually compressed).

• roots

Pointers to non-AST things that have been interpolated into the AST, required by compression of the AST,

type-inference, or the generation of native code.

• nargs, isva, called, isstaged, pure

Descriptive bit-fields for the source code of this Method.

• min_world / max_world

The range of world ages for which this method is visible to dispatch.

888 CHAPTER 70. DOCUMENTATION OF JULIA’S INTERNALS

MethodInstance

A unique’d container describing a single callable signature for a Method. See especially Proper maintenance and care

of multi-threading locks for important details on how to modify these fields safely.

• specTypes

The primary key for thisMethodInstance. Uniqueness is guaranteed through a def.specializations lookup.

• def

The Method that this function describes a specialization of. Or #undef, if this is a top-level Lambda that is not

part of a Method.

• sparam_vals

The values of the static parameters in specTypes indexed by def.sparam_syms. For the MethodInstance

at Method.unspecialized, this is the empty SimpleVector. But for a runtime MethodInstance from the

MethodTable cache, this will always be defined and indexable.

• rettype

The inferred return type for the specFunctionObject field, which (in most cases) is also the computed return

type for the function in general.

• inferred

May contain a cache of the inferred source for this function, or other information about the inference result

such as a constant return value may be put here (if jlcall_api == 2), or it could be set to nothing to just

indicate rettype is inferred.

• ftpr

The generic jlcall entry point.

• jlcall_api

The ABI to use when calling fptr. Some significant ones include:

– 0 - Not compiled yet

– 1 - JL_CALLABLEjl_value_t *(*)(jl_function_t *f, jl_value_t *args[nargs], uint32_t

nargs)

– 2 - Constant (value stored in inferred)

– 3 - With Static-parameters forwarded jl_value_t *(*)(jl_svec_t *sparams, jl_function_t

*f, jl_value_t *args[nargs], uint32_t nargs)

– 4 - Run in interpreter jl_value_t *(*)(jl_method_instance_t *meth, jl_function_t *f,

jl_value_t *args[nargs], uint32_t nargs)

• min_world / max_world

The range of world ages for which this method instance is valid to be called.

70.2. JULIA ASTS 889

CodeInfo

A temporary container for holding lowered source code.

• code

An Any array of statements

• slotnames

An array of symbols giving the name of each slot (argument or local variable).

• slottypes

An array of types for the slots.

• slotflags

A UInt8 array of slot properties, represented as bit flags:

– 2 - assigned (only false if there are no assignment statements with this var on the left)

– 8 - const (currently unused for local variables)

– 16 - statically assigned once

– 32 - might be used before assigned. This flag is only valid after type inference.

• ssavaluetypes

Either an array or an Int.

If an Int, it gives the number of compiler-inserted temporary locations in the function. If an array, specifies a

type for each location.

Boolean properties:

• inferred

Whether this has been produced by type inference.

• inlineable

Whether this should be inlined.

• propagate_inbounds

Whether this should should propagate @inbounds when inlined for the purpose of eliding @boundscheck

blocks.

• pure

Whether this is known to be a pure function of its arguments, without respect to the state of the method caches

or other mutable global state.

Surface syntax AST

Front end ASTs consist entirely of Exprs and atoms (e.g. symbols, numbers). There is generally a different expression

head for each visually distinct syntactic form. Examples will be given in s-expression syntax. Each parenthesized list

corresponds to an Expr, where the first element is the head. For example (call f x) corresponds to Expr(:call,

:f, :x) in Julia.

890 CHAPTER 70. DOCUMENTATION OF JULIA’S INTERNALS

Input AST

f(x) (call f x)

f(x, y=1, z=2) (call f x (kw y 1) (kw z 2))

f(x; y=1) (call f (parameters (kw y 1)) x)

f(x...) (call f (... x))

Calls

do syntax:

f(x) do a,b

body

end

parses as (call f (-> (tuple a b) (block body)) x).

Operators

Most uses of operators are just function calls, so they are parsed with the head call. However some operators are

special forms (not necessarily function calls), and in those cases the operator itself is the expression head. In julia-

parser.scm these are referred to as ”syntactic operators”. Some operators (+ and *) use N-ary parsing; chained calls

are parsed as a single N-argument call. Finally, chains of comparisons have their own special expression structure.

Input AST

x+y (call + x y)

a+b+c+d (call + a b c d)

2x (call * 2 x)

a&&b (&& a b)

x += 1 (+= x 1)

a ? 1 : 2 (if a 1 2)

a:b (: a b)

a:b:c (: a b c)

a,b (tuple a b)

a==b (call == a b)

1<i<=n (comparison 1 < i <= n)

a.b (. a (quote b))

a.(b) (. a b)

Bracketed forms

Macros

Strings

Doc string syntax:

"some docs"

f(x) = x

parses as (macrocall (|.| Core '@doc) "some docs" (= (call f x) (block x))).

70.2. JULIA ASTS 891

Input AST

a[i] (ref a i)

t[i;j] (typed_vcat t i j)

t[i j] (typed_hcat t i j)

t[a b; c d] (typed_vcat t (row a b) (row c d))

a{b} (curly a b)

a{b;c} (curly a (parameters c) b)

[x] (vect x)

[x,y] (vect x y)

[x;y] (vcat x y)

[x y] (hcat x y)

[x y; z t] (vcat (row x y) (row z t))

[x for y in z, a in b] (comprehension x (= y z) (= a b))

T[x for y in z] (typed_comprehension T x (= y z))

(a, b, c) (tuple a b c)

(a; b; c) (block a (block b c))

Input AST

@m x y (macrocall @m x y)

Base.@m x y (macrocall (. Base (quote @m)) x y)

@Base.m x y (macrocall (. Base (quote @m)) x y)

Input AST

"a" "a"

x"y" (macrocall @x_str "y")

x"y"z (macrocall @x_str "y" "z")

"x = $x" (string "x = " x)

`a b c` (macrocall @cmd "a b c")

Imports and such

Numbers

Julia supports more number types than many scheme implementations, so not all numbers are represented directly as

scheme numbers in the AST.

Block forms

A block of statements is parsed as (block stmt1 stmt2 ...).

If statement:

if a

b

elseif c

d

else e

f

end

parses as:

892 CHAPTER 70. DOCUMENTATION OF JULIA’S INTERNALS

Input AST

import a (import a)

import a.b.c (import a b c)

import ...a (import . . . a)

import a.b, c.d (toplevel (import a b) (import c d))

import Base: x (import Base x)

import Base: x, y (toplevel (import Base x) (import Base y))

export a, b (export a b)

Input AST

11111111111111111111 (macrocall @int128_str "11111111111111111111")

0xfffffffffffffffff (macrocall @uint128_str "0xfffffffffffffffff")

1111...many digits... (macrocall @big_str "1111....")

(if a (block (line 2) b)

(block (line 3) (if c (block (line 4) d)

(block (line 5) e (line 6) f))))

A while loop parses as (while condition body).

A for loop parses as (for (= var iter) body). If there is more than one iteration specification, they are parsed

as a block: (for (block (= v1 iter1) (= v2 iter2)) body).

break and continue are parsed as 0-argument expressions (break) and (continue).

let is parsed as (let body (= var1 val1) (= var2 val2) ...).

A basic function definition is parsed as (function (call f x) body). A more complex example:

function f{T}(x::T; k = 1)

return x+1

end

parses as:

(function (call (curly f T) (parameters (kw k 1))

(:: x T))

(block (line 2 file.jl) (return (call + x 1))))

Type definition:

mutable struct Foo{T<:S}

x::T

end

parses as:

(type #t (curly Foo (<: T S))

(block (line 2 none) (:: x T)))

The first argument is a boolean telling whether the type is mutable.

try blocks parse as (try try_block var catch_block finally_block). If no variable is present after catch,

var is #f. If there is no finally clause, then the last argument is not present.

70.3. MORE ABOUT TYPES 893

70.3 More about types

If you’ve used Julia for a while, you understand the fundamental role that types play. Here we try to get under the

hood, focusing particularly on Parametric Types.

Types and sets (and Any and Union{}/Bottom)

It’s perhaps easiest to conceive of Julia’s type system in terms of sets. While programs manipulate individual values,

a type refers to a set of values. This is not the same thing as a collection; for example a Set of values is itself a single

Set value. Rather, a type describes a set of possible values, expressing uncertainty about which value we have.

A concrete type T describes the set of values whose direct tag, as returned by the typeof function, is T. An abstract

type describes some possibly-larger set of values.

Any describes the entire universe of possible values. Integer is a subset of Any that includes Int, Int8, and other

concrete types. Internally, Julia also makes heavy use of another type known as Bottom, which can also be written as

Union{}. This corresponds to the empty set.

Julia’s types support the standard operations of set theory: you can ask whether T1 is a ”subset” (subtype) of T2with

T1 <: T2. Likewise, you intersect two types using typeintersect, take their union with Union, and compute a

type that contains their union with typejoin:

julia> typeintersect(Int, Float64)

Union{}

julia> Union{Int, Float64}

Union{Float64, Int64}

julia> typejoin(Int, Float64)

Real

julia> typeintersect(Signed, Union{UInt8, Int8})

Int8

julia> Union{Signed, Union{UInt8, Int8}}

Union{Signed, UInt8}

julia> typejoin(Signed, Union{UInt8, Int8})

Integer

julia> typeintersect(Tuple{Integer,Float64}, Tuple{Int,Real})

Tuple{Int64,Float64}

julia> Union{Tuple{Integer,Float64}, Tuple{Int,Real}}

Union{Tuple{Int64,Real}, Tuple{Integer,Float64}}

julia> typejoin(Tuple{Integer,Float64}, Tuple{Int,Real})

Tuple{Integer,Real}

While these operations may seem abstract, they lie at the heart of Julia. For example, method dispatch is implemented

by stepping through the items in a method list until reaching one forwhich the type of the argument tuple is a subtype

of the method signature. For this algorithm to work, it’s important that methods be sorted by their specificity, and that

the search begins with the most specific methods. Consequently, Julia also implements a partial order on types; this

is achieved by functionality that is similar to <:, but with differences that will be discussed below.

894 CHAPTER 70. DOCUMENTATION OF JULIA’S INTERNALS

UnionAll types

Julia’s type system can also express an iterated union of types: a union of types over all values of some variable. This

is needed to describe parametric types where the values of some parameters are not known.

For example, :obj:Array has two parameters as in Array{Int,2}. If we did not know the element type, we could

write Array{T,2} where T, which is the union of Array{T,2} for all values of T: Union{Array{Int8,2}, Ar-

ray{Int16,2}, ...}.

Such a type is represented by a UnionAll object, which contains a variable (T in this example, of type TypeVar), and

a wrapped type (Array{T,2} in this example).

Consider the following methods:

f1(A::Array) = 1

f2(A::Array{Int}) = 2

f3(A::Array{T}) where {T<:Any} = 3

f4(A::Array{Any}) = 4

The signature of f3 is a UnionAll type wrapping a tuple type. All but f4 can be called with a = [1,2]; all but f2

can be called with b = Any[1,2].

Let’s look at these types a little more closely:

julia> dump(Array)

UnionAll

var: TypeVar

name: Symbol T

lb: Core.TypeofBottom Union{}

ub: Any

body: UnionAll

var: TypeVar

name: Symbol N

lb: Core.TypeofBottom Union{}

ub: Any

body: Array{T,N} <: DenseArray{T,N}

This indicates that Array actually names a UnionAll type. There is one UnionAll type for each parameter, nested.

The syntax Array{Int,2} is equivalent to Array{Int}{2}; internally each UnionAll is instantiated with a par-

ticular variable value, one at a time, outermost-first. This gives a natural meaning to the omission of trailing type

parameters; Array{Int} gives a type equivalent to Array{Int,N} where N.

A TypeVar is not itself a type, but rather should be considered part of the structure of a UnionAll type. Type variables

have lower and upper bounds on their values (in the fields lb and ub). The symbol name is purely cosmetic. Internally,

TypeVars are compared by address, so they are defined as mutable types to ensure that ”different” type variables can

be distinguished. However, by convention they should not be mutated.

One can construct TypeVars manually:

julia> TypeVar(:V, Signed, Real)

Signed<:V<:Real

There are convenience versions that allow you to omit any of these arguments except the name symbol.

The syntax Array{T} where T<:Integer is lowered to

70.3. MORE ABOUT TYPES 895

let T = TypeVar(:T,Integer)

UnionAll(T, Array{T})

end

so it is seldom necessary to construct a TypeVar manually (indeed, this is to be avoided).

Free variables

The concept of a free type variable is extremely important in the type system. We say that a variable V is free in type

T if T does not contain the UnionAll that introduces variable V. For example, the type Array{Array{V} where

V<:Integer} has no free variables, but the Array{V} part inside of it does have a free variable, V.

A type with free variables is, in some sense, not really a type at all. Consider the type Array{Array{T}} where T,

which refers to all homogeneous arrays of arrays. The inner type Array{T}, seen by itself, might seem to refer to any

kind of array. However, every element of the outer array must have the same array type, so Array{T} cannot refer to

just any old array. One could say that Array{T} effectively ”occurs” multiple times, and T must have the same value

each ”time”.

For this reason, the function jl_has_free_typevars in the C API is very important. Types for which it returns true

will not give meaningful answers in subtyping and other type functions.

TypeNames

The following two Array types are functionally equivalent, yet print differently:

julia> TV, NV = TypeVar(:T), TypeVar(:N)

(T, N)

julia> Array

Array

julia> Array{TV,NV}

Array{T,N}

These can be distinguished by examining the name field of the type, which is an object of type TypeName:

julia> dump(Array{Int,1}.name)

TypeName

name: Symbol Array

module: Module Core

names: empty SimpleVector

wrapper: UnionAll

var: TypeVar

name: Symbol T

lb: Core.TypeofBottom Union{}

ub: Any

body: UnionAll

var: TypeVar

name: Symbol N

lb: Core.TypeofBottom Union{}

ub: Any

body: Array{T,N} <: DenseArray{T,N}

cache: SimpleVector

...

896 CHAPTER 70. DOCUMENTATION OF JULIA’S INTERNALS

linearcache: SimpleVector

...

hash: Int64 -7900426068641098781

mt: MethodTable

name: Symbol Array

defs: Void nothing

cache: Void nothing

max_args: Int64 0

kwsorter: #undef

module: Module Core

: Int64 0

: Int64 0

In this case, the relevant field is wrapper, which holds a reference to the top-level type used to make new Array

types.

julia> pointer_from_objref(Array)

Ptr{Void} @0x00007fcc7de64850

julia> pointer_from_objref(Array.body.body.name.wrapper)

Ptr{Void} @0x00007fcc7de64850

julia> pointer_from_objref(Array{TV,NV})

Ptr{Void} @0x00007fcc80c4d930

julia> pointer_from_objref(Array{TV,NV}.name.wrapper)

Ptr{Void} @0x00007fcc7de64850

The wrapper field of Array points to itself, but for Array{TV,NV} it points back to the original definition of the type.

What about the other fields? hash assigns an integer to each type. To examine the cache field, it’s helpful to pick a

type that is less heavily used than Array. Let’s first create our own type:

julia> struct MyType{T,N} end

julia> MyType{Int,2}

MyType{Int64,2}

julia> MyType{Float32, 5}

MyType{Float32,5}

julia> MyType.body.body.name.cache

svec(MyType{Float32,5}, MyType{Int64,2}, #undef, #undef, #undef, #undef, #undef, #undef)

(The cache is pre-allocated to have length 8, but only the first two entries are populated.) Consequently, when you

instantiate a parametric type, each concrete type gets saved in a type cache. However, instances containing free type

variables are not cached.

Tuple types

Tuple types constitute an interesting special case. For dispatch to work on declarations like x::Tuple, the type has

to be able to accommodate any tuple. Let’s check the parameters:

70.3. MORE ABOUT TYPES 897

julia> Tuple

Tuple

julia> Tuple.parameters

svec(Vararg{Any,N} where N)

Unlike other types, tuple types are covariant in their parameters, so this definition permits Tuple to match any type

of tuple:

julia> typeintersect(Tuple, Tuple{Int,Float64})

Tuple{Int64,Float64}

julia> typeintersect(Tuple{Vararg{Any}}, Tuple{Int,Float64})

Tuple{Int64,Float64}

However, if a variadic (Vararg) tuple type has free variables it can describe different kinds of tuples:

julia> typeintersect(Tuple{Vararg{T} where T}, Tuple{Int,Float64})

Tuple{Int64,Float64}

julia> typeintersect(Tuple{Vararg{T}} where T, Tuple{Int,Float64})

Union{}

Notice that when T is free with respect to the Tuple type (i.e. its binding UnionAll type is outside the Tuple type),

only one T value must work over the whole type. Therefore a heterogeneous tuple does not match.

Finally, it’s worth noting that Tuple{} is distinct:

julia> Tuple{}

Tuple{}

julia> Tuple{}.parameters

svec()

julia> typeintersect(Tuple{}, Tuple{Int})

Union{}

What is the ”primary” tuple-type?

julia> pointer_from_objref(Tuple)

Ptr{Void} @0x00007f5998a04370

julia> pointer_from_objref(Tuple{})

Ptr{Void} @0x00007f5998a570d0

julia> pointer_from_objref(Tuple.name.wrapper)

Ptr{Void} @0x00007f5998a04370

julia> pointer_from_objref(Tuple{}.name.wrapper)

Ptr{Void} @0x00007f5998a04370

so Tuple == Tuple{Vararg{Any}} is indeed the primary type.

898 CHAPTER 70. DOCUMENTATION OF JULIA’S INTERNALS

Diagonal types

Consider the type Tuple{T,T} where T. A method with this signature would look like:

f(x::T, y::T) where {T} = ...

According to the usual interpretation of a UnionAll type, this T ranges over all types, including Any, so this type

should be equivalent to Tuple{Any,Any}. However, this interpretation causes some practical problems.

First, a value of T needs to be available inside the method definition. For a call like f(1, 1.0), it’s not clear what T

should be. It could be Union{Int,Float64}, or perhaps Real. Intuitively, we expect the declaration x::T to mean T

=== typeof(x). To make sure that invariant holds, we need typeof(x) === typeof(y) === T in this method.

That implies the method should only be called for arguments of the exact same type.

It turns out that being able to dispatch on whether two values have the same type is very useful (this is used by the

promotion system for example), sowe havemultiple reasons towant a different interpretation of Tuple{T,T} where

T. To make this workwe add the following rule to subtyping: if a variable occurs more than once in covariant position, it

is restricted to ranging over only concrete types. (”Covariant position” means that only Tuple and Union types occur

between an occurrence of a variable and the UnionAll type that introduces it.) Such variables are called ”diagonal

variables” or ”concrete variables”.

So for example, Tuple{T,T} where T can be seen asUnion{Tuple{Int8,Int8}, Tuple{Int16,Int16}, ...},

where T ranges over all concrete types. This gives rise to some interesting subtyping results. For example Tu-

ple{Real,Real} is not a subtype ofTuple{T,T} where T, because it includes some types likeTuple{Int8,Int16}

where the two elements have different types. Tuple{Real,Real} and Tuple{T,T} where T have the non-trivial

intersection Tuple{T,T} where T<:Real. However, Tuple{Real} is a subtype of Tuple{T} where T, because

in that case T occurs only once and so is not diagonal.

Next consider a signature like the following:

f(a::Array{T}, x::T, y::T) where {T} = ...

In this case, T occurs in invariant position insideArray{T}. Thatmeanswhatever type of array is passed unambiguously

determines the value of T –- we say T has an equality constraint on it. Therefore in this case the diagonal rule is not

really necessary, since the array determines T and we can then allow x and y to be of any subtypes of T. So variables

that occur in invariant position are never considered diagonal. This choice of behavior is slightly controversial –- some

feel this definition should be written as

f(a::Array{T}, x::S, y::S) where {T, S<:T} = ...

to clarify whether x and y need to have the same type. In this version of the signature they would, or we could

introduce a third variable for the type of y if x and y can have different types.

The next complication is the interaction of unions and diagonal variables, e.g.

f(x::Union{Void,T}, y::T) where {T} = ...

Consider what this declaration means. y has type T. x then can have either the same type T, or else be of type Void.

So all of the following calls should match:

70.3. MORE ABOUT TYPES 899

f(1, 1)

f("", "")

f(2.0, 2.0)

f(nothing, 1)

f(nothing, "")

f(nothing, 2.0)

These examples are telling us something: when x is nothing::Void, there are no extra constraints on y. It is as if the

method signature had y::Any. This means that whether a variable is diagonal is not a static property based on where

it appears in a type. Rather, it depends on where a variable appears when the subtyping algorithm uses it. When x has

type Void, we don’t need to use the T in Union{Void,T}, so T does not ”occur”. Indeed, we have the following type

equivalence:

(Tuple{Union{Void,T},T} where T) == Union{Tuple{Void,Any}, Tuple{T,T} where T}

Subtyping diagonal variables

The subtyping algorithm for diagonal variables has two components: (1) identifying variable occurrences, and (2) en-

suring that diagonal variables range over concrete types only.

The first task is accomplished by keeping counters occurs_inv and occurs_cov (in src/subtype.c) for each vari-

able in the environment, tracking the number of invariant and covariant occurrences, respectively. Avariable is diagonal

when occurs_inv == 0 && occurs_cov > 1.

The second task is accomplished by imposing a condition on a variable’s lower bound. As the subtyping algorithm runs,

it narrows the bounds of each variable (raising lower bounds and lowering upper bounds) to keep track of the range

of variable values for which the subtype relation would hold. When we are done evaluating the body of a UnionAll

type whose variable is diagonal, we look at the final values of the bounds. Since the variable must be concrete, a

contradiction occurs if its lower bound could not be a subtype of a concrete type. For example, an abstract type like

AbstractArray cannot be a subtype of a concrete type, but a concrete type like Int can be, and the empty type

Bottom can be as well. If a lower bound fails this test the algorithm stops with the answer false.

For example, in the problem Tuple{Int,String} <: Tuple{T,T} where T, we derive that this would be true if T

were a supertype of Union{Int,String}. However, Union{Int,String} is an abstract type, so the relation does

not hold.

This concreteness test is done by the functionis_leaf_bound. Note that this test is slightlydifferent fromjl_is_leaf_type,

since it also returns true for Bottom. Currently this function is heuristic, and does not catch all possible concrete

types. The difficulty is that whether a lower bound is concrete might depend on the values of other type variable

bounds. For example, Vector{T} is equivalent to the concrete type Vector{Int} only if both the upper and lower

bounds of T equal Int. We have not yet worked out a complete algorithm for this.

Introduction to the internal machinery

Most operations for dealing with types are found in the files jltypes.c and subtype.c. A good way to start is to

watch subtyping in action. Build Julia with make debug and fire up Julia within a debugger. gdb debugging tips has

some tips which may be useful.

Because the subtyping code is used heavily in the REPL itself–and hence breakpoints in this code get triggered often–it

will be easiest if you make the following definition:

julia> function mysubtype(a,b)

ccall(:jl_breakpoint, Void, (Any,), nothing)

issubtype(a, b)

end

900 CHAPTER 70. DOCUMENTATION OF JULIA’S INTERNALS

and then set a breakpoint in jl_breakpoint. Once this breakpoint gets triggered, you can set breakpoints in other

functions.

As a warm-up, try the following:

mysubtype(Tuple{Int,Float64}, Tuple{Integer,Real})

We can make it more interesting by trying a more complex case:

mysubtype(Tuple{Array{Int,2}, Int8}, Tuple{Array{T}, T} where T)

Subtyping and method sorting

The type_morespecific functions are used for imposing a partial order on functions in method tables (from most-

to-least specific). Specificity is strict; if a is more specific than b, then a does not equal b and b is not more specific

than a.

If a is a strict subtype of b, then it is automatically considered more specific. From there, type_morespecific

employs some less formal rules. For example, subtype is sensitive to the number of arguments, but type_more-

specific may not be. In particular, Tuple{Int,AbstractFloat} is more specific than Tuple{Integer}, even

though it is not a subtype. (Of Tuple{Int,AbstractFloat} and Tuple{Integer,Float64}, neither is more spe-

cific than the other.) Likewise, Tuple{Int,Vararg{Int}} is not a subtype of Tuple{Integer}, but it is considered

more specific. However, morespecific does get a bonus for length: in particular, Tuple{Int,Int} is more specific

than Tuple{Int,Vararg{Int}}.

If you’re debugging how methods get sorted, it can be convenient to define the function:

type_morespecific(a, b) = ccall(:jl_type_morespecific, Cint, (Any,Any), a, b)

which allows you to test whether tuple type a is more specific than tuple type b.

70.4 Memory layout of Julia Objects

Object layout (jl_value_t)

The jl_value_t struct is the name for a block of memory owned by the Julia Garbage Collector, representing the

data associated with a Julia object in memory. Absent any type information, it is simply an opaque pointer:

typedef struct jl_value_t* jl_pvalue_t;

Each jl_value_t struct is contained in a jl_typetag_t struct that contains metadata information about the Julia

object, such as its type and garbage collector (gc) reachability:

typedef struct {

opaque metadata;

jl_value_t value;

} jl_typetag_t;

The type of any Julia object is an instance of a leaf jl_datatype_t object. The jl_typeof() function can be used

to query for it:

jl_value_t *jl_typeof(jl_value_t *v);

The layout of the object depends on its type. Reflection methods can be used to inspect that layout. A field can be

accessed by calling one of the get-field methods:

70.4. MEMORY LAYOUT OF JULIA OBJECTS 901

jl_value_t *jl_get_nth_field_checked(jl_value_t *v, size_t i);

jl_value_t *jl_get_field(jl_value_t *o, char *fld);

If the field types are known, a priori, to be all pointers, the values can also be extracted directly as an array access:

jl_value_t *v = value->fieldptr[n];

As an example, a ”boxed” uint16_t is stored as follows:

struct {

opaque metadata;

struct {

uint16_t data; // -- 2 bytes

} jl_value_t;

};

This object is created by jl_box_uint16(). Note that the jl_value_t pointer references the data portion, not the

metadata at the top of the struct.

A value may be stored ”unboxed” in many circumstances (just the data, without the metadata, and possibly not even

stored but just kept in registers), so it is unsafe to assume that the address of a box is a unique identifier. The ”egal” test

(corresponding to the === function in Julia), should instead be used to compare two unknown objects for equivalence:

int jl_egal(jl_value_t *a, jl_value_t *b);

This optimization should be relatively transparent to the API, since the object will be ”boxed” on-demand, whenever a

jl_value_t pointer is needed.

Note that modification of a jl_value_t pointer in memory is permitted only if the object is mutable. Otherwise,

modification of the value may corrupt the program and the result will be undefined. The mutability property of a value

can be queried for with:

int jl_is_mutable(jl_value_t *v);

If the object being stored is a jl_value_t, the Julia garbage collector must be notified also:

void jl_gc_wb(jl_value_t *parent, jl_value_t *ptr);

However, the Embedding Julia section of the manual is also required reading at this point, for covering other details of

boxing and unboxing various types, and understanding the gc interactions.

Mirror structs for some of the built-in types are defined in julia.h. The corresponding global jl_datatype_t

objects are created by jl_init_types in jltypes.c.

Garbage collector mark bits

The garbage collector uses several bits from the metadata portion of the jl_typetag_t to track each object in the

system. Further details about this algorithm can be found in the comments of the garbage collector implementation

in gc.c.

Object allocation

Most new objects are allocated by jl_new_structv():

jl_value_t *jl_new_struct(jl_datatype_t *type, ...);

jl_value_t *jl_new_structv(jl_datatype_t *type, jl_value_t **args, uint32_t na);

Although, isbits objects can be also constructed directly from memory:

https://github.com/JuliaLang/julia/blob/master/src/julia.h
https://github.com/JuliaLang/julia/blob/master/src/jltypes.c
https://github.com/JuliaLang/julia/blob/master/src/gc.c
https://github.com/JuliaLang/julia/blob/master/src/gc.c

902 CHAPTER 70. DOCUMENTATION OF JULIA’S INTERNALS

jl_value_t *jl_new_bits(jl_value_t *bt, void *data)

And some objects have special constructors that must be used instead of the above functions:

Types:

jl_datatype_t *jl_apply_type(jl_datatype_t *tc, jl_tuple_t *params);

jl_datatype_t *jl_apply_array_type(jl_datatype_t *type, size_t dim);

jl_uniontype_t *jl_new_uniontype(jl_tuple_t *types);

While these are the most commonly used options, there are more low-level constructors too, which you can find

declared in julia.h. These are used in jl_init_types() to create the initial types needed to bootstrap the creation

of the Julia system image.

Tuples:

jl_tuple_t *jl_tuple(size_t n, ...);

jl_tuple_t *jl_tuplev(size_t n, jl_value_t **v);

jl_tuple_t *jl_alloc_tuple(size_t n);

The representation of tuples is highly unique in the Julia object representation ecosystem. In some cases, a Base.tu-

ple() object may be an array of pointers to the objects contained by the tuple equivalent to:

typedef struct {

size_t length;

jl_value_t *data[length];

} jl_tuple_t;

However, in other cases, the tuple may be converted to an anonymous isbits type and stored unboxed, or it may

not stored at all (if it is not being used in a generic context as a jl_value_t*).

Symbols:

jl_sym_t *jl_symbol(const char *str);

Functions and MethodInstance:

jl_function_t *jl_new_generic_function(jl_sym_t *name);

jl_method_instance_t *jl_new_method_instance(jl_value_t *ast, jl_tuple_t *sparams);

Arrays:

jl_array_t *jl_new_array(jl_value_t *atype, jl_tuple_t *dims);

jl_array_t *jl_new_arrayv(jl_value_t *atype, ...);

jl_array_t *jl_alloc_array_1d(jl_value_t *atype, size_t nr);

jl_array_t *jl_alloc_array_2d(jl_value_t *atype, size_t nr, size_t nc);

jl_array_t *jl_alloc_array_3d(jl_value_t *atype, size_t nr, size_t nc, size_t z);

jl_array_t *jl_alloc_vec_any(size_t n);

Note that many of these have alternative allocation functions for various special-purposes. The list here reflects the

more common usages, but a more complete list can be found by reading the julia.h header file.

Internal to Julia, storage is typically allocated by newstruct() (or newobj() for the special types):

jl_value_t *newstruct(jl_value_t *type);

jl_value_t *newobj(jl_value_t *type, size_t nfields);

And at the lowest level, memory is getting allocated by a call to the garbage collector (in gc.c), then tagged with its

type:

https://github.com/JuliaLang/julia/blob/master/src/julia.h
https://github.com/JuliaLang/julia/blob/master/src/julia.h

70.5. EVAL OF JULIA CODE 903

jl_value_t *jl_gc_allocobj(size_t nbytes);

void jl_set_typeof(jl_value_t *v, jl_datatype_t *type);

Note that all objects are allocated in multiples of 4 bytes and aligned to the platform pointer size. Memory is allocated

from a pool for smaller objects, or directly with malloc() for large objects.

Singleton Types

Singleton types have only one instance and no data fields. Singleton instances have a size of 0 bytes, and

consist only of their metadata. e.g. nothing::Void.

See Singleton Types and Nothingness and missing values

70.5 Eval of Julia code

One of the hardest parts about learning how the Julia Language runs code is learning how all of the pieces work

together to execute a block of code.

Each chunk of code typicallymakes a trip throughmany stepswith potentially unfamiliar names, such as (in no particular

order): flisp, AST, C++, LLVM, eval, typeinf, macroexpand, sysimg (or system image), bootstrapping, compile, parse,

execute, JIT, interpret, box, unbox, intrinsic function, and primitive function, before turning into the desired result

(hopefully).

Definitions

• REPL

REPL stands for Read-Eval-Print Loop. It’s just what we call the command line environment for

short.

• AST

Abstract Syntax Tree The AST is the digital representation of the code structure. In this form the

code has been tokenized for meaning so that it is more suitable for manipulation and execution.

Julia Execution

The 10,000 foot view of the whole process is as follows:

1. The user starts julia.

2. The C function main() from ui/repl.c gets called. This function processes the command line arguments,

filling in the jl_options struct and setting the variable ARGS. It then initializes Julia (by calling julia_init

in task.c, which may load a previously compiled sysimg). Finally, it passes off control to Julia by calling

Base._start().

3. When _start() takes over control, the subsequent sequence of commands depends on the command line

arguments given. For example, if a filename was supplied, it will proceed to execute that file. Otherwise, it will

start an interactive REPL.

4. Skipping the details about how the REPL interacts with the user, let’s just say the program ends up with a block

of code that it wants to run.

5. If the block of code to run is in a file, jl_load(char *filename) gets invoked to load the file and parse it.

Each fragment of code is then passed to eval to execute.

6. Each fragment of code (or AST), is handed off to eval() to turn into results.

https://github.com/JuliaLang/julia/blob/master/src/task.c
https://github.com/JuliaLang/julia/blob/master/src/task.c
https://github.com/JuliaLang/julia/blob/master/base/client.jl
https://github.com/JuliaLang/julia/blob/master/src/toplevel.c

904 CHAPTER 70. DOCUMENTATION OF JULIA’S INTERNALS

7. eval() takes each code fragment and tries to run it in jl_toplevel_eval_flex().

8. jl_toplevel_eval_flex() decideswhether the code is a ”toplevel” action (such as using or module), which

would be invalid inside a function. If so, it passes off the code to the toplevel interpreter.

9. jl_toplevel_eval_flex() then expands the code to eliminate any macros and to ”lower” the AST to make

it simpler to execute.

10. jl_toplevel_eval_flex() then uses some simple heuristics to decide whether to JIT compiler the AST or

to interpret it directly.

11. The bulk of the work to interpret code is handled by eval in interpreter.c.

12. If instead, the code is compiled, the bulk of the work is handled by codegen.cpp. Whenever a Julia function

is called for the first time with a given set of argument types, type inference will be run on that function. This

information is used by the codegen step to generate faster code.

13. Eventually, the user quits the REPL, or the end of the program is reached, and the _start() method returns.

14. Just before exiting, main() calls jl_atexit_hook(exit_code). This calls Base._atexit() (which calls

any functions registered to atexit() inside Julia). Then it calls jl_gc_run_all_finalizers(). Finally, it

gracefully cleans up all libuv handles and waits for them to flush and close.

Parsing

The Julia parser is a small lisp program written in femtolisp, the source-code for which is distributed inside Julia in

src/flisp.

The interface functions for this are primarily defined in jlfrontend.scm. The code in ast.c handles this handoff on

the Julia side.

The other relevant files at this stage are julia-parser.scm, which handles tokenizing Julia code and turning it into

an AST, and julia-syntax.scm, which handles transforming complex AST representations into simpler, ”lowered”

AST representations which are more suitable for analysis and execution.

Macro Expansion

When eval() encounters a macro, it expands that AST node before attempting to evaluate the expression. Macro

expansion involves a handoff from eval() (in Julia), to the parser function jl_macroexpand() (written in flisp) to

the Julia macro itself (written in - what else - Julia) via fl_invoke_julia_macro(), and back.

Typically, macro expansion is invoked as a first step during a call to expand()/jl_expand(), although it can also be

invoked directly by a call to macroexpand()/jl_macroexpand().

Type Inference

Type inference is implemented in Julia by typeinf() in inference.jl. Type inference is the process of examining

a Julia function and determining bounds for the types of each of its variables, as well as bounds on the type of the

return value from the function. This enables many future optimizations, such as unboxing of known immutable values,

and compile-time hoisting of various run-time operations such as computing field offsets and function pointers. Type

inference may also include other steps such as constant propagation and inlining.

More Definitions

• JIT

Just-In-Time Compilation The process of generating native-machine code into memory right when

it is needed.

https://github.com/JuliaLang/julia/blob/master/src/toplevel.c
https://github.com/JuliaLang/julia/blob/master/src/interpreter.c
https://github.com/JuliaLang/julia/blob/master/src/init.c
https://github.com/JuliaLang/julia/blob/master/src/gc.c
https://github.com/JuliaLang/julia/tree/master/src/flisp
https://github.com/JuliaLang/julia/blob/master/src/jlfrontend.scm
https://github.com/JuliaLang/julia/blob/master/src/ast.c
https://github.com/JuliaLang/julia/blob/master/src/julia-parser.scm
https://github.com/JuliaLang/julia/blob/master/src/julia-syntax.scm
https://github.com/JuliaLang/julia/blob/master/base/inference.jl

70.5. EVAL OF JULIA CODE 905

• LLVM

Low-Level Virtual Machine (a compiler) The Julia JIT compiler is a program/library called libLLVM.

Codegen in Julia refers both to the process of taking a Julia AST and turning it into LLVM instruc-

tions, and the process of LLVM optimizing that and turning it into native assembly instructions.

• C++

The programming language that LLVM is implemented in, which means that codegen is also imple-

mented in this language. The rest of Julia’s library is implemented in C, in part because its smaller

feature set makes it more usable as a cross-language interface layer.

• box

This term is used to describe the process of taking a value and allocating a wrapper around the

data that is tracked by the garbage collector (gc) and is tagged with the object’s type.

• unbox

The reverse of boxing a value. This operation enables more efficient manipulation of data when

the type of that data is fully known at compile-time (through type inference).

• generic function

A Julia function composed of multiple ”methods” that are selected for dynamic dispatch based on

the argument type-signature

• anonymous function or ”method”

A Julia function without a name and without type-dispatch capabilities

• primitive function

A function implemented in C but exposed in Julia as a named function ”method” (albeit without

generic function dispatch capabilities, similar to a anonymous function)

• intrinsic function

A low-level operation exposed as a function in Julia. These pseudo-functions implement operations

on raw bits such as add and sign extend that cannot be expressed directly in any other way. Since

they operate on bits directly, they must be compiled into a function and surrounded by a call to

Core.Intrinsics.box(T, ...) to reassign type information to the value.

JIT Code Generation

Codegen is the process of turning a Julia AST into native machine code.

The JIT environment is initialized by an early call to jl_init_codegen in codegen.cpp.

On demand, a Julia method is converted into a native function by the function emit_function(jl_method_in-

stance_t*). (note, when using the MCJIT (in LLVM v3.4+), each function must be JIT into a new module.) This

function recursively calls emit_expr() until the entire function has been emitted.

Much of the remaining bulk of this file is devoted to various manual optimizations of specific code patterns. For

example, emit_known_call() knows how to inline many of the primitive functions (defined in builtins.c) for

various combinations of argument types.

Other parts of codegen are handled by various helper files:

• debuginfo.cpp

Handles backtraces for JIT functions

• ccall.cpp

Handles the ccall and llvmcall FFI, along with various abi_*.cpp files

https://github.com/JuliaLang/julia/blob/master/src/codegen.cpp
https://github.com/JuliaLang/julia/blob/master/src/builtins.c
https://github.com/JuliaLang/julia/blob/master/src/debuginfo.cpp
https://github.com/JuliaLang/julia/blob/master/src/ccall.cpp

906 CHAPTER 70. DOCUMENTATION OF JULIA’S INTERNALS

• intrinsics.cpp

Handles the emission of various low-level intrinsic functions

Bootstrapping

The process of creating a new system image is called ”bootstrapping”.

The etymology of this word comes from the phrase ”pulling oneself up by the bootstraps”, and refers

to the idea of starting from a very limited set of available functions and definitions and ending with the

creation of a full-featured environment.

System Image

The system image is a precompiled archive of a set of Julia files. The sys.ji file distributed with Julia is one such

system image, generated by executing the file sysimg.jl, and serializing the resulting environment (including Types,

Functions, Modules, and all other defined values) into a file. Therefore, it contains a frozen version of the Main, Core,

and Basemodules (and whatever else was in the environment at the end of bootstrapping). This serializer/deserializer

is implemented by jl_save_system_image/jl_restore_system_image in dump.c.

If there is no sysimg file (jl_options.image_file == NULL), this also implies that --build was given on the

command line, so the final result should be a new sysimg file. During Julia initialization, minimal Core and Main

modules are created. Then a file named boot.jl is evaluated from the current directory. Julia then evaluates any file

given as a command line argument until it reaches the end. Finally, it saves the resulting environment to a ”sysimg”

file for use as a starting point for a future Julia run.

70.6 Calling Conventions

Julia uses three calling conventions for four distinct purposes:

Name Prefix Purpose

Native julia_ Speed via specialized signatures

JL Call jlcall_ Wrapper for generic calls

JL Call jl_ Builtins

C ABI jlcapi_ Wrapper callable from C

Julia Native Calling Convention

The native calling convention is designed for fast non-generic calls. It usually uses a specialized signature.

• LLVM ghosts (zero-length types) are omitted.

• LLVM scalars and vectors are passed by value.

• LLVM aggregates (arrays and structs) are passed by reference.

A small return values is returned as LLVM return values. A large return values is returned via the ”structure return”

(sret) convention, where the caller provides a pointer to a return slot.

An argument or return values thta is a homogeneous tuple is sometimes represented as an LLVM vector instead of an

LLVM array.

https://github.com/JuliaLang/julia/blob/master/src/intrinsics.cpp
https://github.com/JuliaLang/julia/blob/master/base/sysimg.jl
https://github.com/JuliaLang/julia/blob/master/src/dump.c

70.7. HIGH-LEVEL OVERVIEWOF THE NATIVE-CODE GENERATION PROCESS 907

JL Call Convention

The JL Call convention is for builtins and generic dispatch. Hand-written functions using this convention are declared

via the macro JL_CALLABLE. The convention uses exactly 3 parameters:

• F - Julia representation of function that is being applied

• args - pointer to array of pointers to boxes

• nargs - length of the array

The return value is a pointer to a box.

C ABI

C ABI wrappers enable calling Julia from C. The wrapper calls a function using the native calling convention.

Tuples are always represented as C arrays.

70.7 High-level Overview of the Native-Code Generation Process

Representation of Pointers

When emitting code to an object file, pointers will be emitted as relocations. The deserialization code will ensure any

object that pointed to one of these constants gets recreated and contains the right runtime pointer.

Otherwise, they will be emitted as literal constants.

To emit one of these objects, call literal_pointer_val. It’ll handle tracking the Julia value and the LLVM global,

ensuring they are valid both for the current runtime and after deserialization.

When emitted into the object file, these globals are stored as references in a large gvals table. This allows the

deserializer to reference them by index, and implement a custom manual mechanism similar to a Global Offset Table

(GOT) to restore them.

Function pointers are handled similarly. They are stored as values in a large fvals table. Like globals, this allows the

deserializer to reference them by index.

Note that extern functions are handled separately, with names, via the usual symbol resolution mechanism in the

linker.

Note too that ccall functions are also handled separately, via a manual GOT and Procedure Linkage Table (PLT).

Representation of Intermediate Values

Values are passed around in a jl_cgval_t struct. This represents an R-value, and includes enough information to

determine how to assign or pass it somewhere.

They are created via one of the helper constructors, usually: mark_julia_type (for immediate values) and mark_ju-

lia_slot (for pointers to values).

The function convert_julia_type can transform between any two types. It returns an R-valuewith cgval.typ set

to typ. It’ll cast the object to the requested representation, making heap boxes, allocating stack copies, and computing

tagged unions as needed to change the representation.

By contrast update_julia_type will change cgval.typ to typ, only if it can be done at zero-cost (i.e. without

emitting any code).

908 CHAPTER 70. DOCUMENTATION OF JULIA’S INTERNALS

Union representation

Inferred union types may be stack allocated via a tagged type representation.

The primitive routines that need to be able to handle tagged unions are:

• mark-type

• load-local

• store-local

• isa

• is

• emit_typeof

• emit_sizeof

• boxed

• unbox

• specialized cc-ret

Everything else should be possible to handle in inference by using these primitives to implement union-splitting.

The representation of the tagged-union is as a pair of < void* union, byte selector >. The selector is fixed-

size as byte & 0x7f, and will union-tag the first 126 isbits. It records the one-based depth-first count into the

type-union of the isbits objects inside. An index of zero indicates that the union* is actually a tagged heap-allocated

jl_value_t*, and needs to be treated as normal for a boxed object rather than as a tagged union.

The high bit of the selector (byte & 0x80) can be tested to determine if the void* is actually a heap-allocated

(jl_value_t*) box, thus avoiding the cost of re-allocating a box, while maintaining the ability to efficiently handle

union-splitting based on the low bits.

It is guaranteed that byte & 0x7f is an exact test for the type, if the value can be represented by a tag – it will never

be marked byte = 0x80. It is not necessary to also test the type-tag when testing isa.

The union* memory region may be allocated at any size. The only constraint is that it is big enough to contain the

data currently specified by selector. It might not be big enough to contain the union of all types that could be stored

there according to the associated Union type field. Use appropriate care when copying.

Specialized Calling Convention Signature Representation

A jl_returninfo_t object describes the calling convention details of any callable.

If any of the arguments or return type of a method can be represented unboxed, and the method is not varargs, it’ll be

given an optimized calling convention signature based on its specTypes and rettype fields.

The general principles are that:

• Primitive types get passed in int/float registers.

• Tuples of VecElement types get passed in vector registers.

• Structs get passed on the stack.

70.8. JULIA FUNCTIONS 909

• Return values are handle similarly to arguments, with a size-cutoff at which they will instead be returned via a

hidden sret argument.

The total logic for this is implemented by get_specsig_function and deserves_sret.

Additionally, if the return type is a union, it may be returned as a pair of values (a pointer and a tag). If the union values

can be stack-allocated, then sufficient space to store them will also be passed as a hidden first argument. It is up to

the callee whether the returned pointer will point to this space, a boxed object, or even other constant memory.

70.8 Julia Functions

This document will explain how functions, method definitions, and method tables work.

Method Tables

Every function in Julia is a generic function. A generic function is conceptually a single function, but consists of

many definitions, or methods. The methods of a generic function are stored in a method table. Method tables (type

MethodTable) are associated with TypeNames. A TypeName describes a family of parameterized types. For example

Complex{Float32} and Complex{Float64} share the same Complex type name object.

All objects in Julia are potentially callable, because every object has a type, which in turn has a TypeName.

Function calls

Given the callf(x,y), the following steps are performed: first, themethod table to use is accessed astypeof(f).name.mt.

Second, an argument tuple type is formed, Tuple{typeof(f), typeof(x), typeof(y)}. Note that the type of

the function itself is the first element. This is because the type might have parameters, and so needs to take part in

dispatch. This tuple type is looked up in the method table.

This dispatch process is performed by jl_apply_generic, which takes two arguments: a pointer to an array of the

values f, x, and y, and the number of values (in this case 3).

Throughout the system, there are two kinds of APIs that handle functions and argument lists: those that accept the

function and arguments separately, and those that accept a single argument structure. In the first kind of API, the

”arguments” part does not contain information about the function, since that is passed separately. In the second kind

of API, the function is the first element of the argument structure.

For example, the following function for performing a call accepts just an args pointer, so the first element of the args

array will be the function to call:

jl_value_t *jl_apply(jl_value_t **args, uint32_t nargs)

This entry point for the same functionality accepts the function separately, so the args array does not contain the

function:

jl_value_t *jl_call(jl_function_t *f, jl_value_t **args, int32_t nargs);

Adding methods

Given the above dispatch process, conceptually all that is needed to add a new method is (1) a tuple type, and (2)

code for the body of the method. jl_method_def implements this operation. jl_first_argument_datatype is

called to extract the relevant method table from what would be the type of the first argument. This is much more

complicated than the corresponding procedure during dispatch, since the argument tuple type might be abstract. For

example, we can define:

910 CHAPTER 70. DOCUMENTATION OF JULIA’S INTERNALS

(::Union{Foo{Int},Foo{Int8}})(x) = 0

which works since all possible matching methods would belong to the same method table.

Creating generic functions

Since everyobject is callable, nothing special is needed to create a generic function. Thereforejl_new_generic_func-

tion simply creates a new singleton (0 size) subtype of Function and returns its instance. A function can have a

mnemonic ”display name” which is used in debug info and when printing objects. For example the name of Base.sin

is sin. By convention, the name of the created type is the same as the function name, with a # prepended. So

typeof(sin) is Base.#sin.

Closures

A closure is simply a callable object with field names corresponding to captured variables. For example, the following

code:

function adder(x)

return y->x+y

end

is lowered to (roughly):

struct ##1{T}

x::T

end

(_::##1)(y) = _.x + y

function adder(x)

return ##1(x)

end

Constructors

A constructor call is just a call to a type. The type of most types is DataType, so the method table for DataType

contains most constructor definitions. One wrinkle is the fallback definition that makes all types callable via convert:

(::Type{T}){T}(args...) = convert(T, args...)::T

In this definition the function type is abstract, which is not normally supported. To make this work, all subtypes of

Type (Type, UnionAll, Union, and DataType) currently share a method table via special arrangement.

Builtins

The ”builtin” functions, defined in the Core module, are:

=== typeof sizeof issubtype isa typeassert throw tuple getfield setfield! fieldtype

nfields isdefined arrayref arrayset arraysize applicable invoke apply_type _apply

_expr svec

These are all singleton objects whose types are subtypes of Builtin, which is a subtype of Function. Their purpose

is to expose entry points in the run time that use the ”jlcall” calling convention:

70.8. JULIA FUNCTIONS 911

jl_value_t *(jl_value_t*, jl_value_t**, uint32_t)

Themethod tables of builtins are empty. Instead, theyhave a single catch-all method cache entry (Tuple{Vararg{Any}})

whose jlcall fptr points to the correct function. This is kind of a hack but works reasonably well.

Keyword arguments

Keyword arguments work by associating a special, hidden function object with each method table that has definitions

with keyword arguments. This function is called the ”keyword argument sorter” or ”keyword sorter”, or ”kwsorter”,

and is stored in the kwsorter field of MethodTable objects. Every definition in the kwsorter function has the same

arguments as some definition in the normal method table, except with a single Array argument prepended. This array

contains alternating symbols and values that represent the passed keyword arguments. The kwsorter’s job is to move

keyword arguments into their canonical positions based on name, plus evaluate and substite any needed default value

expressions. The result is a normal positional argument list, which is then passed to yet another function.

The easiest way to understand the process is to look at how a keyword argument method definition is lowered. The

code:

function circle(center, radius; color = black, fill::Bool = true, options...)

draw

end

actually produces three method definitions. The first is a function that accepts all arguments (including keywords) as

positional arguments, and includes the code for the method body. It has an auto-generated name:

function #circle#1(color, fill::Bool, options, circle, center, radius)

draw

end

The second method is an ordinary definition for the original circle function, which handles the case where no key-

word arguments are passed:

function circle(center, radius)

#circle#1(black, true, Any[], circle, center, radius)

end

This simply dispatches to the first method, passing along default values. Finally there is the kwsorter definition:

function (::Core.kwftype(typeof(circle)))(kw::Array, circle, center, radius)

options = Any[]

color = arg associated with :color, or black if not found

fill = arg associated with :fill, or true if not found

push remaining elements of kw into options array

#circle#1(color, fill, options, circle, center, radius)

end

The front end generates code to loop over the kw array and pick out arguments in the right order, evaluating default

expressions when an argument is not found.

The function Core.kwftype(t) fetches (and creates, if necessary) the field t.name.mt.kwsorter.

This design has the feature that call sites that don’t use keyword arguments require no special handling; everything

works as if they were not part of the language at all. Call sites that do use keyword arguments are dispatched directly

to the called function’s kwsorter. For example the call:

912 CHAPTER 70. DOCUMENTATION OF JULIA’S INTERNALS

circle((0,0), 1.0, color = red; other...)

is lowered to:

kwfunc(circle)(Any[:color,red,other...], circle, (0,0), 1.0)

The unpacking procedure represented here as other... actually further unpacks each element of other, expecting

each one to contain two values (a symbol and a value). kwfunc (also in Core) fetches the kwsorter for the called

function. Notice that the original circle function is passed through, to handle closures.

Compiler efficiency issues

Generating a new type for every function has potentially serious consequences for compiler resource use when com-

bined with Julia’s ”specialize on all arguments by default” design. Indeed, the initial implementation of this design

suffered from much longer build and test times, higher memory use, and a system image nearly 2x larger than the

baseline. In a naive implementation, the problem is bad enough to make the system nearly unusable. Several signifi-

cant optimizations were needed to make the design practical.

The first issue is excessive specialization of functions for different values of function-valued arguments. Many func-

tions simply ”pass through” an argument to somewhere else, e.g. to another function or to a storage location. Such

functions do not need to be specialized for every closure that might be passed in. Fortunately this case is easy to

distinguish by simply considering whether a function calls one of its arguments (i.e. the argument appears in ”head

position” somewhere). Performance-critical higher-order functions like map certainly call their argument function and

so will still be specialized as expected. This optimization is implemented by recording which arguments are called dur-

ing the analyze-variables pass in the front end. When cache_method sees an argument in the Function type

hierarchy passed to a slot declared as Any or Function, it pretends the slot was declared as ANY (the ”don’t specialize”

hint). This heuristic seems to be extremely effective in practice.

The next issue concerns the structure of method cache hash tables. Empirical studies show that the vast majority of

dynamically-dispatched calls involve one or two arguments. In turn, manyof these cases can be resolved by considering

only the first argument. (Aside: proponents of single dispatch would not be surprised by this at all. However, this

argument means ”multiple dispatch is easy to optimize in practice”, and that we should therefore use it, not ”we should

use single dispatch”!) So the method cache uses the type of the first argument as its primary key. Note, however, that

this corresponds to the second element of the tuple type for a function call (the first element being the type of the

function itself). Typically, type variation in head position is extremely low – indeed, the majority of functions belong

to singleton types with no parameters. However, this is not the case for constructors, where a single method table

holds constructors for every type. Therefore the Typemethod table is special-cased to use the first tuple type element

instead of the second.

The front end generates type declarations for all closures. Initially, this was implemented by generating normal type

declarations. However, this produced an extremely large number of constructors, all of which were trivial (simply

passing all arguments through to new). Since methods are partially ordered, inserting all of these methods is O(n^2),

plus there are just too many of them to keep around. This was optimized by generating composite_type expressions

directly (bypassing default constructor generation), and using new directly to create closure instances. Not the prettiest

thing ever, but you do what you gotta do.

The next problem was the @test macro, which generated a 0-argument closure for each test case. This is not really

necessary, since each test case is simply run once in place. Therefore I modified @test to expand to a try-catch block

that records the test result (true, false, or exception raised) and calls the test suite handler on it.

However this caused a new problem. Whenmany tests are grouped together in a single function, e.g. a single top level

expression, or some other test grouping function, that function could have a very large number of exception handlers.

This triggered a kind of dataflow analysis worst case, where type inference spun around for minutes enumerating

possible paths through the forest of handlers. This was fixed by simply bailing out of type inferencewhen it encounters

70.9. BASE.CARTESIAN 913

more than some number of handlers (currently 25). Presumably no performance-critical function will have more than

25 exception handlers. If one ever does, I’m willing to raise the limit to 26.

A minor issue occurs during the bootstrap process due to storing all constructors in a single method table. In the sec-

ond bootstrap step, where inference.ji is compiled using inference0.ji, constructors for inference0’s types

remain in the table, so there are still references to the old inference module and inference.ji is 2x the size it should

be. This was fixed in dump.c by filtering definitions from ”replaced modules” out of method tables and caches before

saving a system image. A ”replaced module” is one that satisfies the condition m != jl_get_global(m->parent,

m->name) – in other words, some newer module has taken its name and place.

Another type inference worst case was triggered by the following code from the QuadGK.jl package, formerly part of

Base:

function do_quadgk(f, s, n, ::Type{Tw}, abstol, reltol, maxevals, nrm) where Tw

if eltype(s) <: Real # check for infinite or semi-infinite intervals

s1 = s[1]; s2 = s[end]; inf1 = isinf(s1); inf2 = isinf(s2)

if inf1 || inf2

if inf1 && inf2 # x = t/(1-t^2) coordinate transformation

return do_quadgk(t -> begin t2 = t*t; den = 1 / (1 - t2);

f(t*den) * (1+t2)*den*den; end,

map(x -> isinf(x) ? copysign(one(x), x) : 2x / (1+hypot(1,2x)),

s),↪→

n, Tw, abstol, reltol, maxevals, nrm)

end

s0,si = inf1 ? (s2,s1) : (s1,s2)

if si < 0 # x = s0 - t/(1-t)

return do_quadgk(t -> begin den = 1 / (1 - t);

f(s0 - t*den) * den*den; end,

reverse!(map(x -> 1 / (1 + 1 / (s0 - x)), s)),

n, Tw, abstol, reltol, maxevals, nrm)

else # x = s0 + t/(1-t)

return do_quadgk(t -> begin den = 1 / (1 - t);

f(s0 + t*den) * den*den; end,

map(x -> 1 / (1 + 1 / (x - s0)), s),

n, Tw, abstol, reltol, maxevals, nrm)

end

end

end

This code has a 3-way tail recursion, where each call wraps the current function argument f in a different new closure.

Inference must consider 3^n (where n is the call depth) possible signatures. This blows up way too quickly, so logic

was added to typeinf_uncached to immediatelywiden any argument that is a subtype of Function and that grows

in depth down the stack.

70.9 Base.Cartesian

The (non-exported) Cartesian module provides macros that facilitate writing multidimensional algorithms. It is hoped

that Cartesian will not, in the long term, be necessary; however, at present it is one of the fewways to write compact

and performant multidimensional code.

Principles of usage

A simple example of usage is:

https://github.com/JuliaMath/QuadGK.jl

914 CHAPTER 70. DOCUMENTATION OF JULIA’S INTERNALS

@nloops 3 i A begin

s += @nref 3 A i

end

which generates the following code:

for i_3 = 1:size(A,3)

for i_2 = 1:size(A,2)

for i_1 = 1:size(A,1)

s += A[i_1,i_2,i_3]

end

end

end

In general, Cartesian allows you to write generic code that contains repetitive elements, like the nested loops in this

example. Other applications include repeated expressions (e.g., loop unwinding) or creating function calls with variable

numbers of arguments without using the ”splat” construct (i...).

Basic syntax

The (basic) syntax of @nloops is as follows:

• The first argument must be an integer (not a variable) specifying the number of loops.

• The second argument is the symbol-prefix used for the iterator variable. Here we used i, and variables i_1,

i_2, i_3were generated.

• The third argument specifies the range for each iterator variable. If you use a variable (symbol) here, it’s taken

as 1:size(A,dim). More flexibly, you can use the anonymous-function expression syntax described below.

• The last argument is the body of the loop. Here, that’s what appears between the begin...end.

There are some additional features of @nloops described in the reference section.

@nref follows a similar pattern, generating A[i_1,i_2,i_3] from @nref 3 A i. The general practice is to read

from left to right, which is why @nloops is @nloops 3 i A expr (as in for i_2 = 1:size(A,2), where i_2 is to

the left and the range is to the right) whereas @nref is @nref 3 A i (as in A[i_1,i_2,i_3], where the array comes

first).

If you’re developing codewith Cartesian, you may find that debugging is easierwhen you examine the generated code,

using macroexpand:

julia> macroexpand(:(@nref 2 A i))

:(A[i_1, i_2])

Supplying the number of expressions

The first argument to both of these macros is the number of expressions, which must be an integer. When you’re

writing a function that you intend to work in multiple dimensions, this may not be something you want to hard-code.

If you’re writing code that you need toworkwith older Julia versions, currently you should use the @ngeneratemacro

described in an older version of this documentation.

Starting in Julia 0.4-pre, the recommended approach is to use a @generated function. Here’s an example:

https://docs.julialang.org/en/release-0.3/devdocs/cartesian/#supplying-the-number-of-expressions

70.9. BASE.CARTESIAN 915

@generated function mysum(A::Array{T,N}) where {T,N}

quote

s = zero(T)

@nloops $N i A begin

s += @nref $N A i

end

s

end

end

Naturally, you can also prepare expressions or perform calculations before the quote block.

Anonymous-function expressions as macro arguments

Perhaps the single most powerful feature in Cartesian is the ability to supply anonymous-function expressions that

get evaluated at parsing time. Let’s consider a simple example:

@nexprs 2 j->(i_j = 1)

@nexprs generates n expressions that follow a pattern. This code would generate the following statements:

i_1 = 1

i_2 = 1

In each generated statement, an ”isolated” j (the variable of the anonymous function) gets replaced by values in the

range 1:2. Generally speaking, Cartesian employs a LaTeX-like syntax. This allows you to do math on the index j.

Here’s an example computing the strides of an array:

s_1 = 1

@nexprs 3 j->(s_{j+1} = s_j * size(A, j))

would generate expressions

s_1 = 1

s_2 = s_1 * size(A, 1)

s_3 = s_2 * size(A, 2)

s_4 = s_3 * size(A, 3)

Anonymous-function expressions have many uses in practice.

Macro reference Base.Cartesian.@nloops – Macro.

@nloops N itersym rangeexpr bodyexpr

@nloops N itersym rangeexpr preexpr bodyexpr

@nloops N itersym rangeexpr preexpr postexpr bodyexpr

GenerateN nested loops, usingitersym as the prefix for the iterationvariables. rangeexprmaybe an anonymous-

function expression, or a simple symbol var in which case the range is indices(var, d) for dimension d.

Optionally, you can provide ”pre” and ”post” expressions. These get executed first and last, respectively, in the

body of each loop. For example:

916 CHAPTER 70. DOCUMENTATION OF JULIA’S INTERNALS

@nloops 2 i A d -> j_d = min(i_d, 5) begin

s += @nref 2 A j

end

would generate:

for i_2 = indices(A, 2)

j_2 = min(i_2, 5)

for i_1 = indices(A, 1)

j_1 = min(i_1, 5)

s += A[j_1, j_2]

end

end

If you want just a post-expression, supply nothing for the pre-expression. Using parentheses and semicolons,

you can supply multi-statement expressions.

source

Base.Cartesian.@nref – Macro.

@nref N A indexexpr

Generate expressions like A[i_1, i_2, ...]. indexexpr can either be an iteration-symbol prefix, or an

anonymous-function expression.

julia> @macroexpand Base.Cartesian.@nref 3 A i

:(A[i_1, i_2, i_3])

source

Base.Cartesian.@nextract – Macro.

@nextract N esym isym

Generate N variables esym_1, esym_2, ..., esym_N to extract values from isym. isym can be either a Symbol or

anonymous-function expression.

@nextract 2 x y would generate

x_1 = y[1]

x_2 = y[2]

while @nextract 3 x d->y[2d-1] yields

x_1 = y[1]

x_2 = y[3]

x_3 = y[5]

source

Base.Cartesian.@nexprs – Macro.

@nexprs N expr

Generate N expressions. expr should be an anonymous-function expression.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/cartesian.jl#L9-L37
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/cartesian.jl#L72-L82
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/cartesian.jl#L142-L159

70.9. BASE.CARTESIAN 917

julia> @macroexpand Base.Cartesian.@nexprs 4 i -> y[i] = A[i+j]

quote

y[1] = A[1 + j]

y[2] = A[2 + j]

y[3] = A[3 + j]

y[4] = A[4 + j]

end

source

Base.Cartesian.@ncall – Macro.

@ncall N f sym...

Generate a function call expression. sym represents any number of function arguments, the last of which may be

an anonymous-function expression and is expanded into N arguments.

For example @ncall 3 func a generates

func(a_1, a_2, a_3)

while @ncall 2 func a b i->c[i] yields

func(a, b, c[1], c[2])

source

Base.Cartesian.@ntuple – Macro.

@ntuple N expr

Generates an N-tuple. @ntuple 2 i would generate (i_1, i_2), and @ntuple 2 k->k+1 would generate

(2,3).

source

Base.Cartesian.@nall – Macro.

@nall N expr

Check whether all of the expressions generated by the anonymous-function expression expr evaluate to true.

@nall 3 d->(i_d > 1) would generate the expression (i_1 > 1 && i_2 > 1 && i_3 > 1). This can be

convenient for bounds-checking.

source

Base.Cartesian.@nany – Macro.

@nany N expr

Check whether any of the expressions generated by the anonymous-function expression expr evaluate to true.

@nany 3 d->(i_d > 1) would generate the expression (i_1 > 1 || i_2 > 1 || i_3 > 1).

source

Base.Cartesian.@nif – Macro.

@nif N conditionexpr expr

@nif N conditionexpr expr elseexpr

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/cartesian.jl#L118-L132
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/cartesian.jl#L92-L106
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/cartesian.jl#L215-L220
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/cartesian.jl#L174-L182
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/cartesian.jl#L195-L202

918 CHAPTER 70. DOCUMENTATION OF JULIA’S INTERNALS

Generates a sequence of if ... elseif ... else ... end statements. For example:

@nif 3 d->(i_d >= size(A,d)) d->(error("Dimension ", d, " too big")) d->println("All OK")

would generate:

if i_1 > size(A, 1)

error("Dimension ", 1, " too big")

elseif i_2 > size(A, 2)

error("Dimension ", 2, " too big")

else

println("All OK")

end

source

70.10 Talking to the compiler (the :metamechanism)

In some circumstances, onemightwish to provide hints or instructions that a given block of code has special properties:

you might always want to inline it, or you might want to turn on special compiler optimization passes. Starting with

version 0.4, Julia has a convention that these instructions can be placed inside a :meta expression, which is typically

(but not necessarily) the first expression in the body of a function.

:meta expressions are created with macros. As an example, consider the implementation of the @inline macro:

macro inline(ex)

esc(isa(ex, Expr) ? pushmeta!(ex, :inline) : ex)

end

Here, ex is expected to be an expression defining a function. A statement like this:

@inline function myfunction(x)

x*(x+3)

end

gets turned into an expression like this:

quote

function myfunction(x)

Expr(:meta, :inline)

x*(x+3)

end

end

Base.pushmeta!(ex, :symbol, args...) appends :symbol to the end of the :meta expression, creating a new

:meta expression if necessary. If args is specified, a nested expression containing :symbol and these arguments is

appended instead, which can be used to specify additional information.

To use the metadata, you have to parse these :meta expressions. If your implementation can be performed within

Julia, Base.popmeta! is very handy: Base.popmeta!(body, :symbol) will scan a function body expression (one

without the function signature) for the first :meta expression containing :symbol, extract any arguments, and return

a tuple (found::Bool, args::Array{Any}). If the metadata did not have any arguments, or :symbol was not

found, the args array will be empty.

Not yet provided is a convenient infrastructure for parsing :meta expressions from C++.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/cartesian.jl#L230-L247

70.11. SUBARRAYS 919

70.11 SubArrays

Julia’s SubArray type is a container encoding a ”view” of a parent AbstractArray. This page documents some of

the design principles and implementation of SubArrays.

Indexing: cartesian vs. linear indexing

Broadly speaking, there are two main ways to access data in an array. The first, often called cartesian indexing, uses N

indexes for an N -dimensional AbstractArray. For example, a matrix A (2-dimensional) can be indexed in cartesian

style as A[i,j]. The second indexing method, referred to as linear indexing, uses a single index even for higher-

dimensional objects. For example, if A = reshape(1:12, 3, 4), then the expression A[5] returns the value 5.

Julia allows you to combine these styles of indexing: for example, a 3d array A3 can be indexed as A3[i,j], in which

case i is interpreted as a cartesian index for the first dimension, and j is a linear index over dimensions 2 and 3.

For Arrays, linear indexing appeals to the underlying storage format: an array is laid out as a contiguous block of

memory, and hence the linear index is just the offset (+1) of the corresponding entry relative to the beginning of the

array. However, this is not true for many other AbstractArray types: examples include SparseMatrixCSC, arrays

that require some kind of computation (such as interpolation), and the type under discussion here, SubArray. For

these types, the underlying information is more naturally described in terms of cartesian indexes.

You can manually convert from a cartesian index to a linear index with sub2ind, and vice versa using ind2sub.

getindex and setindex! functions for AbstractArray types may include similar operations.

While converting from a cartesian index to a linear index is fast (it’s just multiplication and addition), converting from

a linear index to a cartesian index is very slow: it relies on the div operation, which is one of the slowest low-level

operations you can perform with a CPU. For this reason, any code that deals with AbstractArray types is best

designed in terms of cartesian, rather than linear, indexing.

Index replacement

Consider making 2d slices of a 3d array:

S1 = view(A, :, 5, 2:6)

S2 = view(A, 5, :, 2:6)

view drops ”singleton” dimensions (ones that are specified by an Int), so both S1 and S2 are two-dimensional Sub-

Arrays. Consequently, the natural way to index these is with S1[i,j]. To extract the value from the parent array A,

the natural approach is to replace S1[i,j]with A[i,5,(2:6)[j]] and S2[i,j]with A[5,i,(2:6)[j]].

The key feature of the design of SubArrays is that this index replacement can be performed without any runtime

overhead.

SubArray design

Type parameters and fields

The strategy adopted is first and foremost expressed in the definition of the type:

struct SubArray{T,N,P,I,L} <: AbstractArray{T,N}

parent::P

indexes::I

offset1::Int # for linear indexing and pointer, only valid when L==true

stride1::Int # used only for linear indexing

...

end

920 CHAPTER 70. DOCUMENTATION OF JULIA’S INTERNALS

SubArray has 5 type parameters. The first two are the standard element type and dimensionality. The next is the type

of the parent AbstractArray. The most heavily-used is the fourth parameter, a Tuple of the types of the indices for

each dimension. The final one, L, is only provided as a convenience for dispatch; it’s a boolean that represents whether

the index types support fast linear indexing. More on that later.

If in our example aboveA is aArray{Float64, 3}, ourS1 case abovewould be aSubArray{Int64,2,Array{Int64,3},Tu-

ple{Colon,Int64,UnitRange{Int64}},false}. Note in particular the tuple parameter, which stores the types

of the indices used to create S1. Likewise,

julia> S1.indexes

(Colon(),5,2:6)

Storing these values allows index replacement, and having the types encoded as parameters allows one to dispatch to

efficient algorithms.

Index translation

Performing index translation requires that you do different things for different concrete SubArray types. For example,

for S1, one needs to apply the i,j indices to the first and third dimensions of the parent array, whereas for S2 one

needs to apply them to the second and third. The simplest approach to indexing would be to do the type-analysis at

runtime:

parentindexes = Array{Any}(0)

for thisindex in S.indexes

...

if isa(thisindex, Int)

Don't consume one of the input indexes

push!(parentindexes, thisindex)

elseif isa(thisindex, AbstractVector)

Consume an input index

push!(parentindexes, thisindex[inputindex[j]])

j += 1

elseif isa(thisindex, AbstractMatrix)

Consume two input indices

push!(parentindexes, thisindex[inputindex[j], inputindex[j+1]])

j += 2

elseif ...

end

S.parent[parentindexes...]

Unfortunately, this would be disastrous in terms of performance: each element access would allocate memory, and

involves the running of a lot of poorly-typed code.

The better approach is to dispatch to specific methods to handle each type of stored index. That’s what reindex

does: it dispatches on the type of the first stored index and consumes the appropriate number of input indices, and

then it recurses on the remaining indices. In the case of S1, this expands to

Base.reindex(S1, S1.indexes, (i, j)) == (i, S1.indexes[2], S1.indexes[3][j])

for any pair of indices (i,j) (except CartesianIndexs and arrays thereof, see below).

This is the core of a SubArray; indexing methods depend upon reindex to do this index translation. Sometimes,

though, we can avoid the indirection and make it even faster.

70.11. SUBARRAYS 921

Linear indexing

Linear indexing can be implemented efficiently when the entire array has a single stride that separates successive

elements, starting from some offset. This means that we can pre-compute these values and represent linear index-

ing simply as an addition and multiplication, avoiding the indirection of reindex and (more importantly) the slow

computation of the cartesian coordinates entirely.

For SubArray types, the availability of efficient linear indexing is based purely on the types of the indices, and does

not depend on values like the size of the parent array. You can ask whether a given set of indices supports fast linear

indexing with the internal Base.viewindexing function:

julia> Base.viewindexing(S1.indexes)

IndexCartesian()

julia> Base.viewindexing(S2.indexes)

IndexLinear()

This is computed during construction of the SubArray and stored in the L type parameter as a boolean that encodes

fast linear indexing support. While not strictly necessary, it means that we can define dispatch directly on SubAr-

ray{T,N,A,I,true}without any intermediaries.

Since this computation doesn’t depend on runtime values, it can miss some cases in which the stride happens to be

uniform:

julia> A = reshape(1:4*2, 4, 2)

4×2 Base.ReshapedArray{Int64,2,UnitRange{Int64},Tuple{}}:

1 5

2 6

3 7

4 8

julia> diff(A[2:2:4,:][:])

3-element Array{Int64,1}:

2

2

2

A view constructed as view(A, 2:2:4, :) happens to have uniform stride, and therefore linear indexing indeed

could be performed efficiently. However, success in this case depends on the size of the array: if the first dimension

instead were odd,

julia> A = reshape(1:5*2, 5, 2)

5×2 Base.ReshapedArray{Int64,2,UnitRange{Int64},Tuple{}}:

1 6

2 7

3 8

4 9

5 10

julia> diff(A[2:2:4,:][:])

3-element Array{Int64,1}:

2

3

2

922 CHAPTER 70. DOCUMENTATION OF JULIA’S INTERNALS

then A[2:2:4,:] does not have uniform stride, so we cannot guarantee efficient linear indexing. Since we have to

base this decision based purely on types encoded in the parameters of the SubArray, S = view(A, 2:2:4, :)

cannot implement efficient linear indexing.

A few details

• Note that the Base.reindex function is agnostic to the types of the input indices; it simply determines how

andwhere the stored indices should be reindexed. It not only supports integer indices, but it supports non-scalar

indexing, too. This means that views of views don’t need two levels of indirection; they can simply re-compute

the indices into the original parent array!

• Hopefully by now it’s fairly clear that supporting slices means that the dimensionality, given by the parameter

N, is not necessarily equal to the dimensionality of the parent array or the length of the indexes tuple. Neither

do user-supplied indices necessarily line up with entries in the indexes tuple (e.g., the second user-supplied

index might correspond to the third dimension of the parent array, and the third element in the indexes tuple).

What might be less obvious is that the dimensionality of the stored parent array must be equal to the number

of effective indices in the indexes tuple. Some examples:

A = reshape(1:35, 5, 7) # A 2d parent Array

S = view(A, 2:7) # A 1d view created by linear indexing

S = view(A, :, :, 1:1) # Appending extra indices is supported

Naively, you’d think you could just set S.parent = A and S.indexes = (:,:,1:1), but supporting this

dramatically complicates the reindexing process, especially for views of views. Not only do you need to dispatch

on the types of the stored indices, but you need to examine whether a given index is the final one and ”merge”

any remaining stored indices together. This is not an easy task, and even worse: it’s slow since it implicitly

depends upon linear indexing.

Fortunately, this is precisely the computation that ReshapedArray performs, and it does so linearly if possible.

Consequently, view ensures that the parent array is the appropriate dimensionality for the given indices by

reshaping it if needed. The inner SubArray constructor ensures that this invariant is satisfied.

• CartesianIndex and arrays thereof throw a nasty wrench into the reindex scheme. Recall that reindex

simply dispatches on the type of the stored indices in order to determine how many passed indices should be

used and where they should go. But with CartesianIndex, there’s no longer a one-to-one correspondence

between the number of passed arguments and the number of dimensions that they index into. Ifwe return to the

above example of Base.reindex(S1, S1.indexes, (i, j)), you can see that the expansion is incorrect

for i, j = CartesianIndex(), CartesianIndex(2,1). It should skip the CartesianIndex() entirely

and return:

(CartesianIndex(2,1)[1], S1.indexes[2], S1.indexes[3][CartesianIndex(2,1)[2]])

Instead, though, we get:

(CartesianIndex(), S1.indexes[2], S1.indexes[3][CartesianIndex(2,1)])

Doing this correctlywould require combined dispatch on both the stored and passed indices across all combina-

tions of dimensionalities in an intractable manner. As such, reindexmust never be called with CartesianIn-

dex indices. Fortunately, the scalar case is easily handled by first flattening the CartesianIndex arguments

to plain integers. Arrays of CartesianIndex, however, cannot be split apart into orthogonal pieces so easily.

Before attempting to use reindex, view must ensure that there are no arrays of CartesianIndex in the ar-

gument list. If there are, it can simply ”punt” by avoiding the reindex calculation entirely, constructing a nested

SubArraywith two levels of indirection instead.

70.12. SYSTEM IMAGE BUILDING 923

70.12 System Image Building

Building the Julia system image

Julia ships with a preparsed system image containing the contents of the Basemodule, named sys.ji. This file is also

precompiled into a shared library called sys.{so,dll,dylib} on as many platforms as possible, so as to give vastly

improved startup times. On systems that do not ship with a precompiled system image file, one can be generated from

the source files shipped in Julia’s DATAROOTDIR/julia/base folder.

This operation is useful for multiple reasons. A user may:

• Build a precompiled shared library system image on a platform that did not ship with one, thereby improving

startup times.

• Modify Base, rebuild the system image and use the new Base next time Julia is started.

• Include a userimg.jl file that includes packages into the system image, thereby creating a system image that

has packages embedded into the startup environment.

Julia nowshipswith a script that automates the tasks of building the system image,wittinglynamedbuild_sysimg.jl

that lives in DATAROOTDIR/julia/. That is, to include it into a current Julia session, type:

include(joinpath(JULIA_HOME, Base.DATAROOTDIR, "julia", "build_sysimg.jl"))

This will include a build_sysimg() function:

BuildSysImg.build_sysimg – Function.

build_sysimg(sysimg_path=default_sysimg_path, cpu_target="native", userimg_path=nothing;

force=false)

Rebuild the system image. Store it in sysimg_path, which defaults to a file named sys.ji that sits in the

same folder as libjulia.{so,dylib}, except on Windows where it defaults to JULIA_HOME/../lib/juli-

a/sys.ji. Use the cpu instruction set given by cpu_target. Valid CPU targets are the same as for the -C option

to julia, or the -march option to gcc. Defaults to native, which means to use all CPU instructions available

on the current processor. Include the user image file given by userimg_path, which should contain directives

such as using MyPackage to include that package in the new system image. New system image will not replace

an older image unless force is set to true.

source

Note that this file can also be run as a script itself, with command line arguments taking the place of arguments passed

to the build_sysimg function. For example, to build a system image in /tmp/sys.{so,dll,dylib}, with the

core2 CPU instruction set, a user image of ~/userimg.jl and force set to true, one would execute:

julia build_sysimg.jl /tmp/sys core2 ~/userimg.jl --force

70.13 Working with LLVM

This is not a replacement for the LLVM documentation, but a collection of tips for working on LLVM for Julia.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/doc/../contrib/build_sysimg.jl#L15-L26

924 CHAPTER 70. DOCUMENTATION OF JULIA’S INTERNALS

File Description

builtins.c Builtin functions

ccall.cpp Lowering ccall

cgutils.cpp Lowering utilities, notably for array and tuple accesses

codegen.cpp Top-level of code generation, pass list, lowering builtins

debuginfo.cpp Tracks debug information for JIT code

disasm.cpp Handles native object file and JIT code diassembly

gf.c Generic functions

intrinsics.cpp Lowering intrinsics

llvm-simdloop.cpp Custom LLVM pass for @simd

sys.c I/O and operating system utility functions

Overview of Julia to LLVM Interface

Julia statically links in LLVM by default. Build with USE_LLVM_SHLIB=1 to link dynamically.

The code for lowering Julia AST to LLVM IR or interpreting it directly is in directory src/.

Some of the .cpp files form a group that compile to a single object.

The difference between an intrinsic and a builtin is that a builtin is a first class function that can be used like any other

Julia function. An intrinsic can operate only on unboxed data, and therefore its arguments must be statically typed.

Alias Analysis

Julia currently uses LLVM’s Type BasedAlias Analysis. To find the comments that document the inclusion relationships,

look for static MDNode* in src/codegen.cpp.

The -O option enables LLVM’s Basic Alias Analysis.

Building Julia with a different version of LLVM

The default version of LLVM is specified in deps/Versions.make. You can override it by creating a file called

Make.user in the top-level directory and adding a line to it such as:

LLVM_VER = 3.5.0

Besides the LLVM release numerals, you can also use LLVM_VER = svn to bulid against the latest development version

of LLVM.

Passing options to LLVM

You can pass options to LLVM using debug builds of Julia. To create a debug build, run make debug. The resulting

executable is usr/bin/julia-debug. You can pass LLVM options to this executable via the environment variable

JULIA_LLVM_ARGS. Here are example settings using bash syntax:

• export JULIA_LLVM_ARGS = -print-after-all dumps IR after each pass.

• export JULIA_LLVM_ARGS = -debug-only=loop-vectorize dumps LLVM DEBUG(...) diagnostics for

loop vectorizer if you built Julia with LLVM_ASSERTIONS=1. Otherwise you will get warnings about ”Unknown

command line argument”. Counter-intuitively, building Julia with LLVM_DEBUG=1 is not enough to dump DEBUG

diagnostics from a pass.

http://llvm.org/docs/LangRef.html#tbaa-metadata
http://llvm.org/docs/AliasAnalysis.html#the-basicaa-pass

70.14. PRINTF() AND STDIO IN THE JULIA RUNTIME 925

Improving LLVM optimizations for Julia

Improving LLVM code generation usually involves either changing Julia lowering to be more friendly to LLVM’s passes,

or improving a pass.

If you are planning to improve a pass, be sure to read the LLVM developer policy. The best strategy is to create a code

example in a form where you can use LLVM’s opt tool to study it and the pass of interest in isolation.

1. Create an example Julia code of interest.

2. Use JULIA_LLVM_ARGS = -print-after-all to dump the IR.

3. Pick out the IR at the point just before the pass of interest runs.

4. Strip the debug metadata and fix up the TBAAmetadata by hand.

The last step is labor intensive. Suggestions on a better way would be appreciated.

70.14 printf() and stdio in the Julia runtime

Libuvwrappers for stdio

julia.h defines libuv wrappers for the stdio.h streams:

uv_stream_t *JL_STDIN;

uv_stream_t *JL_STDOUT;

uv_stream_t *JL_STDERR;

... and corresponding output functions:

int jl_printf(uv_stream_t *s, const char *format, ...);

int jl_vprintf(uv_stream_t *s, const char *format, va_list args);

These printf functions are used by the .c files in the src/ and ui/ directories wherever stdio is needed to ensure

that output buffering is handled in a unified way.

In special cases, like signal handlers, where the full libuv infrastructure is too heavy, jl_safe_printf() can be used

to write(2) directly to STDERR_FILENO:

void jl_safe_printf(const char *str, ...);

Interface between JL_STD* and Julia code

Base.STDIN, Base.STDOUT and Base.STDERR are bound to the JL_STD* libuv streams defined in the runtime.

Julia’s __init__() function (in base/sysimg.jl) calls reinit_stdio() (in base/stream.jl) to create Julia ob-

jects for Base.STDIN, Base.STDOUT and Base.STDERR.

reinit_stdio() uses ccall to retrieve pointers to JL_STD* and calls jl_uv_handle_type() to inspect the type

of each stream. It then creates a Julia Base.IOStream, Base.TTY or Base.PipeEndpoint object to represent each

stream, e.g.:

$ julia -e 'println(typeof((STDIN, STDOUT, STDERR)))'

Tuple{Base.TTY,Base.TTY,Base.TTY}

$ julia -e 'println(typeof((STDIN, STDOUT, STDERR)))' < /dev/null 2>/dev/null

Tuple{IOStream,Base.TTY,IOStream}

$ echo hello | julia -e 'println(typeof((STDIN, STDOUT, STDERR)))' | cat

Tuple{Base.PipeEndpoint,Base.PipeEndpoint,Base.TTY}

http://llvm.org/docs/DeveloperPolicy.html
http://docs.libuv.org

926 CHAPTER 70. DOCUMENTATION OF JULIA’S INTERNALS

The Base.read() and Base.write()methods for these streams use ccall to call libuvwrappers in src/jl_uv.c,

e.g.:

stream.jl: function write(s::IO, p::Ptr, nb::Integer)

-> ccall(:jl_uv_write, ...)

jl_uv.c: -> int jl_uv_write(uv_stream_t *stream, ...)

-> uv_write(uvw, stream, buf, ...)

printf() during initialization

The libuv streams relied upon by jl_printf() etc., are not available until midway through initialization of the runtime

(see init.c, init_stdio()). Error messages or warnings that need to be printed before this are routed to the

standard C library fwrite() function by the following mechanism:

In sys.c, the JL_STD* stream pointers are statically initialized to integer constants: STD*_FILENO (0, 1 and 2).

In jl_uv.c the jl_uv_puts() function checks its uv_stream_t* stream argument and calls fwrite() if stream

is set to STDOUT_FILENO or STDERR_FILENO.

This allows for uniform use of jl_printf() throughout the runtime regardless ofwhether or not any particular piece

of code is reachable before initialization is complete.

Legacy ios.c library

The src/support/ios.c library is inherited from femtolisp. It provides cross-platform buffered file IO and in-

memory temporary buffers.

ios.c is still used by:

• src/flisp/*.c

• src/dump.c – for serialization file IO and for memory buffers.

• base/iostream.jl – for file IO (see base/fs.jl for libuv equivalent).

Use of ios.c in these modules is mostly self-contained and separated from the libuv I/O system. However, there is

one place where femtolisp calls through to jl_printf()with a legacy ios_t stream.

There is a hack in ios.h that makes the ios_t.bm field line up with the uv_stream_t.type and ensures that the

values used for ios_t.bm to not overlap with valid UV_HANDLE_TYPE values. This allows uv_stream_t pointers to

point to ios_t streams.

This is needed becausejl_printf() callerjl_static_show() is passed anios_t streamby femtolisp’sfl_print()

function. Julia’s jl_uv_puts() function has special handling for this:

if (stream->type > UV_HANDLE_TYPE_MAX) {

return ios_write((ios_t*)stream, str, n);

}

70.15 Bounds checking

Like many modern programming languages, Julia uses bounds checking to ensure program safety when accessing

arrays. In tight inner loops or other performance critical situations, you may wish to skip these bounds checks to

improve runtime performance. For instance, in order to emit vectorized (SIMD) instructions, your loop body cannot

contain branches, and thus cannot contain bounds checks. Consequently, Julia includes an @inbounds(...) macro

to tell the compiler to skip such bounds checks within the given block. For the built-in Array type, the magic happens

inside the arrayref and arrayset intrinsics. User-defined array types instead use the @boundscheck(...) macro

to achieve context-sensitive code selection.

https://github.com/JeffBezanson/femtolisp
https://github.com/JuliaLang/julia/blob/master/src/flisp/print.c#L654

70.15. BOUNDS CHECKING 927

Eliding bounds checks

The @boundscheck(...) macro marks blocks of code that perform bounds checking. When such blocks appear

inside of an @inbounds(...) block, the compiler removes these blocks. When the @boundscheck(...) is nested

inside of a calling function containing an @inbounds(...), the compiler will remove the @boundscheck block only

if it is inlined into the calling function. For example, you might write the method sum as:

function sum(A::AbstractArray)

r = zero(eltype(A))

for i = 1:length(A)

@inbounds r += A[i]

end

return r

end

With a custom array-like type MyArray having:

@inline getindex(A::MyArray, i::Real) = (@boundscheck checkbounds(A,i); A.data[to_index(i)])

Then when getindex is inlined into sum, the call to checkbounds(A,i) will be elided. If your function contains

multiple layers of inlining, only @boundscheck blocks at most one level of inlining deeper are eliminated. The rule

prevents unintended changes in program behavior from code further up the stack.

Propagating inbounds

There may be certain scenarios where for code-organization reasons you want more than one layer between the @in-

bounds and@boundscheck declarations. For instance, the defaultgetindexmethods have the chaingetindex(A::Ab-

stractArray, i::Real) calls getindex(IndexStyle(A), A, i) calls _getindex(::IndexLinear, A, i).

To override the ”one layer of inlining” rule, a function may be marked with @propagate_inbounds to propagate an

inbounds context (or out of bounds context) through one additional layer of inlining.

The bounds checking call hierarchy

The overall hierarchy is:

• checkbounds(A, I...) which calls

– checkbounds(Bool, A, I...) which calls

* checkbounds_indices(Bool, indices(A), I) which recursively calls

· checkindex for each dimension

Here A is the array, and I contains the ”requested” indices. indices(A) returns a tuple of ”permitted” indices of A.

checkbounds(A, I...) throws an error if the indices are invalid, whereas checkbounds(Bool, A, I...) re-

turns false in that circumstance. checkbounds_indices discards any information about the array other than its

indices tuple, and performs a pure indices-vs-indices comparison: this allows relatively few compiled methods to

serve a huge variety of array types. Indices are specified as tuples, and are usually compared in a 1-1 fashion with

individual dimensions handled by calling another important function, checkindex: typically,

checkbounds_indices(Bool, (IA1, IA...), (I1, I...)) = checkindex(Bool, IA1, I1) &

checkbounds_indices(Bool, IA, I)

928 CHAPTER 70. DOCUMENTATION OF JULIA’S INTERNALS

so checkindex checks a single dimension. All of these functions, including the unexported checkbounds_indices

have docstrings accessible with ? .

If you have to customize bounds checking for a specific array type, you should specialize checkbounds(Bool, A,

I...). However, in most cases you should be able to rely on checkbounds_indices as long as you supply useful

indices for your array type.

If you have novel index types, first consider specializing checkindex, which handles a single index for a particular

dimension of an array. If you have a custom multidimensional index type (similar to CartesianIndex), then you may

have to consider specializing checkbounds_indices.

Note this hierarchy has been designed to reduce the likelihood of method ambiguities. We try to make checkbounds

the place to specialize on array type, and try to avoid specializations on index types; conversely, checkindex is

intended to be specialized only on index type (especially, the last argument).

70.16 Proper maintenance and care of multi-threading locks

The following strategies are used to ensure that the code is dead-lock free (generally by addressing the 4th Coffman

condition: circular wait).

1. structure code such that only one lock will need to be acquired at a time

2. always acquire shared locks in the same order, as given by the table below

3. avoid constructs that expect to need unrestricted recursion

Locks

Below are all of the locks that exist in the system and the mechanisms for using them that avoid the potential for

deadlocks (no Ostrich algorithm allowed here):

The following are definitely leaf locks (level 1), and must not try to acquire any other lock:

• safepoint

Note that this lock is acquired implicitly by JL_LOCK and JL_UNLOCK. use the _NOGC

variants to avoid that for level 1 locks.

While holding this lock, the code must not do any allocation or hit any safepoints. Note

that there are safepoints when doing allocation, enabling / disabling GC, entering /

restoring exception frames, and taking / releasing locks.

• shared_map

• finalizers

• pagealloc

• gc_perm_lock

• flisp

flisp itself is already threadsafe, this lock only protects the jl_ast_context_list_t

pool

The following is a leaf lock (level 2), and only acquires level 1 locks (safepoint) internally:

• typecache

70.16. PROPER MAINTENANCE AND CARE OFMULTI-THREADING LOCKS 929

The following is a level 3 lock, which can only acquire level 1 or level 2 locks internally:

• Method->writelock

The following is a level 4 lock, which can only recurse to acquire level 1, 2, or 3 locks:

• MethodTable->writelock

No Julia code may be called while holding a lock above this point.

The following is a level 6 lock, which can only recurse to acquire locks at lower levels:

• codegen

The following is an almost root lock (level end-1), meaning only the root look may be held when trying to acquire it:

• typeinf

this one is perhaps one of themost tricky ones, since type-inference can be invoked from

many points

currently the lock is merged with the codegen lock, since they call each other recursively

The following is the root lock, meaning no other lock shall be held when trying to acquire it:

• toplevel

this should be held while attempting a top-level action (such as making a new type or

defining a new method): trying to obtain this lock inside a staged function will cause a

deadlock condition!

additionally, it’s unclear if any code can safely run in parallel with an arbitrary toplevel

expression, so it may require all threads to get to a safepoint first

Broken Locks

The following locks are broken:

• toplevel

doesn’t exist right now

fix: create it

Shared Global Data Structures

These data structures each need locks due to being shared mutable global state. It is the inverse list for the above lock

priority list. This list does not include level 1 leaf resources due to their simplicity.

MethodTable modifications (def, cache, kwsorter type) : MethodTable->writelock

Type declarations : toplevel lock

Type application : typecache lock

Module serializer : toplevel lock

JIT & type-inference : codegen lock

MethodInstance updates : codegen lock

930 CHAPTER 70. DOCUMENTATION OF JULIA’S INTERNALS

• These fields are generally lazy initialized, using the test-and-test-and-set pattern.

• These are set at construction and immutable:

– specTypes

– sparam_vals

– def

• These are set by jl_type_infer (while holding codegen lock):

– rettype

– inferred

– these can also be reset, see jl_set_lambda_rettype for that logic as it needs to keep

functionObjectsDecls in sync

• inInference flag:

– optimization to quickly avoid recurring into jl_type_inferwhile it is already running

– actual state (of setting inferred, then fptr) is protected by codegen lock

• Function pointers (jlcall_api and fptr, unspecialized_ducttape):

– these transition once, from NULL to a value, while the codegen lock is held

• Code-generator cache (the contents of functionObjectsDecls):

– these can transition multiple times, but only while the codegen lock is held

– it is valid to use old version of this, or block for newversions of this, so races are benign, as long

as the code is careful not to reference other data in the method instance (such as rettype)

and assume it is coordinated, unless also holding the codegen lock

• compile_traced flag:

– unknown

LLVMContext : codegen lock

Method : Method->writelock

• roots array (serializer and codegen)

• invoke / specializations / tfunc modifications

70.17 Arrays with custom indices

Julia 0.5 adds experimental support for arrays with arbitrary indices. Conventionally, Julia’s arrays are indexed starting

at 1, whereas some other languages start numbering at 0, and yet others (e.g., Fortran) allow you to specify arbitrary

starting indices. While there is much merit in picking a standard (i.e., 1 for Julia), there are some algorithms which

simplify considerably if you can index outside the range 1:size(A,d) (and not just 0:size(A,d)-1, either). Such

array types are expected to be supplied through packages.

The purpose of this page is to address the question, ”what do I have to do to support such arrays in my own code?”

First, let’s address the simplest case: if you know that your code will never need to handle arrays with unconventional

indexing, hopefully the answer is ”nothing.” Old code, on conventional arrays, should function essentially without

alteration as long as it was using the exported interfaces of Julia.

70.17. ARRAYSWITH CUSTOM INDICES 931

Generalizing existing code

As an overview, the steps are:

• replace many uses of sizewith indices

• replace 1:length(A)with linearindices(A), and length(A)with length(linearindices(A))

• replace explicit allocations like Array{Int}(size(B))with similar(Array{Int}, indices(B))

These are described in more detail below.

Background

Because unconventional indexing breaks deeply-held assumptions throughout the Julia ecosystem, early adopters

running code that has not been updated are likely to experience errors. The most frustrating bugs would be incorrect

results or segfaults (total crashes of Julia). For example, consider the following function:

function mycopy!(dest::AbstractVector, src::AbstractVector)

length(dest) == length(src) || throw(DimensionMismatch("vectors must match"))

OK, now we're safe to use @inbounds, right? (not anymore!)

for i = 1:length(src)

@inbounds dest[i] = src[i]

end

dest

end

This code implicitly assumes that vectors are indexed from 1. Previously that was a safe assumption, so this code was

fine, but (depending on what types the user passes to this function) it may no longer be safe. If this code continued

to work when passed a vector with non-1 indices, it would either produce an incorrect answer or it would segfault. (If

you do get segfaults, to help locate the cause try running julia with the option --check-bounds=yes.)

To ensure that such errors are caught, in Julia 0.5 both length and sizeshould throw an error when passed an array

with non-1 indexing. This is designed to force users of such arrays to check the code, and inspect it for whether it

needs to be generalized.

Using indices for bounds checks and loop iteration

indices(A) (reminiscent of size(A)) returns a tuple of AbstractUnitRange objects, specifying the range of valid

indices along each dimension of A. When A has unconventional indexing, the ranges may not start at 1. If you just want

the range for a particular dimension d, there is indices(A, d).

Base implements a custom range type, OneTo, where OneTo(n) means the same thing as 1:n but in a form that

guarantees (via the type system) that the lower index is 1. For any new AbstractArray type, this is the default

returned by indices, and it indicates that this array type uses ”conventional” 1-based indexing. Note that if you don’t

want to be bothered supporting arrays with non-1 indexing, you can add the following line:

@assert all(x->isa(x, Base.OneTo), indices(A))

at the top of any function.

For bounds checking, note that there are dedicated functions checkbounds and checkindex which can sometimes

simplify such tests.

932 CHAPTER 70. DOCUMENTATION OF JULIA’S INTERNALS

Linear indexing (linearindices)

Some algorithms are most conveniently (or efficiently) written in terms of a single linear index, A[i] even if A is multi-

dimensional. In ”true” linear indexing, the indices always range from 1:length(A). However, this raises an ambiguity

for one-dimensional arrays (a.k.a., AbstractVector): does v[i]mean linear indexing, or Cartesian indexing with the

array’s native indices?

For this reason, if you want to use linear indexing in an algorithm, your best option is to get the index range by

calling linearindices(A). This will return indices(A, 1) if A is an AbstractVector, and the equivalent of

1:length(A) otherwise.

In a sense, one can say that 1-dimensional arrays always use Cartesian indexing. To help enforce this, it’s worth noting

that sub2ind(shape, i...) and ind2sub(shape, ind) will throw an error if shape indicates a 1-dimensional

array with unconventional indexing (i.e., is a Tuple{UnitRange} rather than a tuple of OneTo). For arrays with con-

ventional indexing, these functions continue to work the same as always.

Using indices and linearindices, here is one way you could rewrite mycopy!:

function mycopy!(dest::AbstractVector, src::AbstractVector)

indices(dest) == indices(src) || throw(DimensionMismatch("vectors must match"))

for i in linearindices(src)

@inbounds dest[i] = src[i]

end

dest

end

Allocating storage using generalizations of similar

Storage is often allocated with Array{Int}(dims) or similar(A, args...). When the result needs to match

the indices of some other array, this may not always suffice. The generic replacement for such patterns is to use

similar(storagetype, shape). storagetype indicates the kind of underlying ”conventional” behavior you’d

like, e.g., Array{Int} or BitArray or even dims->zeros(Float32, dims) (which would allocate an all-zeros

array). shape is a tuple of Integer or AbstractUnitRange values, specifying the indices that you want the result

to use.

Let’s walk through a couple of explicit examples. First, if A has conventional indices, then similar(Array{Int},

indices(A))would end up calling Array{Int}(size(A)), and thus return an array. If A is an AbstractArray type

with unconventional indexing, then similar(Array{Int}, indices(A)) should return something that ”behaves

like” an Array{Int} but with a shape (including indices) that matches A. (The most obvious implementation is to

allocate an Array{Int}(size(A)) and then ”wrap” it in a type that shifts the indices.)

Note also that similar(Array{Int}, (indices(A, 2),)) would allocate an AbstractVector{Int} (i.e., 1-

dimensional array) that matches the indices of the columns of A.

Deprecations

In generalizing Julia’s code base, at least one deprecationwas unavoidable: earlierversions ofJulia definedfirst(::Colon)

= 1, meaning that the first index along a dimension indexed by : is 1. This definition can no longer be justified, so it

was deprecated. There is no provided replacement, because the proper replacement depends on what you are doing

and might need to know more about the array. However, it appears that many uses of first(::Colon) are really

about computing an index offset; when that is the case, a candidate replacement is:

indexoffset(r::AbstractVector) = first(r) - 1

indexoffset(::Colon) = 0

In other words, while first(:) does not itself make sense, in general you can say that the offset associated with a

colon-index is zero.

70.17. ARRAYSWITH CUSTOM INDICES 933

Writing custom array types with non-1 indexing

Most of the methods you’ll need to define are standard for any AbstractArray type, see Abstract Arrays. This page

focuses on the steps needed to define unconventional indexing.

Do not implement size or length

Perhaps the majority of pre-existing code that uses sizewill not work properly for arrays with non-1 indices. For that

reason, it is much better to avoid implementing these methods, and use the resulting MethodError to identify code

that needs to be audited and perhaps generalized.

Do not annotate bounds checks

Julia 0.5 includes @boundscheck to annotate code that can be removed for callers that exploit @inbounds. Initially,

it seems far preferable to run with bounds checking always enabled (i.e., omit the @boundscheck annotation so the

check always runs).

Custom AbstractUnitRange types

If you’rewriting a non-1 indexed array type, youwill want to specialize indices so it returns a UnitRange, or (perhaps

better) a custom AbstractUnitRange. The advantage of a custom type is that it ”signals” the allocation type for

functions like similar. If we’re writing an array type for which indexing will start at 0, we likely want to begin by

creating a new AbstractUnitRange, ZeroRange, where ZeroRange(n) is equivalent to 0:n-1.

In general, you should probably not export ZeroRange from your package: there may be other packages that imple-

ment their own ZeroRange, and having multiple distinct ZeroRange types is (perhaps counterintuitively) an advan-

tage: ModuleA.ZeroRange indicates that similar should create a ModuleA.ZeroArray, whereas ModuleB.Ze-

roRange indicates a ModuleB.ZeroArray type. This design allows peaceful coexistence among many different cus-

tom array types.

Note that the Julia package CustomUnitRanges.jl can sometimes be used to avoid the need to write your own ZeroR-

ange type.

Specializing indices

Once you have your AbstractUnitRange type, then specialize indices:

Base.indices(A::ZeroArray) = map(n->ZeroRange(n), A.size)

where here we imagine that ZeroArray has a field called size (there would be other ways to implement this).

In some cases, the fallback definition for indices(A, d):

indices(A::AbstractArray{T,N}, d) where {T,N} = d <= N ? indices(A)[d] : OneTo(1)

may not be what you want: you may need to specialize it to return something other than OneTo(1) when d >

ndims(A). Likewise, in Base there is a dedicated function indices1 which is equivalent to indices(A, 1) but

which avoids checking (at runtime) whether ndims(A) > 0. (This is purely a performance optimization.) It is defined

as:

indices1(A::AbstractArray{T,0}) where {T} = OneTo(1)

indices1(A::AbstractArray) = indices(A)[1]

If the first of these (the zero-dimensional case) is problematic for your custom array type, be sure to specialize it

appropriately.

https://github.com/JuliaArrays/CustomUnitRanges.jl

934 CHAPTER 70. DOCUMENTATION OF JULIA’S INTERNALS

Specializing similar

Given your custom ZeroRange type, then you should also add the following two specializations for similar:

function Base.similar(A::AbstractArray, T::Type, shape::Tuple{ZeroRange,Vararg{ZeroRange}})

body

end

function Base.similar(f::Union{Function,DataType}, shape::Tuple{ZeroRange,Vararg{ZeroRange}})

body

end

Both of these should allocate your custom array type.

Specializing reshape

Optionally, define a method

Base.reshape(A::AbstractArray, shape::Tuple{ZeroRange,Vararg{ZeroRange}}) = ...

and you can reshape an array so that the result has custom indices.

Summary

Writing code that doesn’t make assumptions about indexing requires a few extra abstractions, but hopefully the nec-

essary changes are relatively straightforward.

As a reminder, this support is still experimental. While much of Julia’s base code has been updated to support uncon-

ventional indexing, without a doubt there are many omissions that will be discovered only through usage. Moreover,

at the time of this writing, most packages do not support unconventional indexing. As a consequence, early adopters

should be prepared to identify and/or fix bugs. On the other hand, only through practical usage will it become clear

whether this experimental feature should be retained in future versions of Julia; consequently, interested parties are

encouraged to accept some ownership for putting it through its paces.

70.18 Base.LibGit2

The LibGit2 module provides bindings to libgit2, a portable C library that implements core functionality for the Git

version control system. These bindings are currently used to power Julia’s package manager. It is expected that this

module will eventually be moved into a separate package.

Functionality

Some of this documentation assumes some prior knowledge of the libgit2 API. For more information on some of the

objects and methods referenced here, consult the upstream libgit2 API reference.

Base.LibGit2.AbstractCredentials – Type.

Abstract credentials payload

source

Base.LibGit2.Buffer – Type.

LibGit2.Buffer

https://libgit2.github.com/
https://git-scm.com/
https://libgit2.github.com/libgit2/#v0.25.1
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/types.jl#L121

70.18. BASE.LIBGIT2 935

A data buffer for exporting data from libgit2. Matches the git_buf struct.

When fetching data from LibGit2, a typical usage would look like:

buf_ref = Ref(Buffer())

@check ccall(..., (Ptr{Buffer},), buf_ref)

operation on buf_ref

free(buf_ref)

In particular, note that LibGit2.free should be called afterward on the Ref object.

source

Base.LibGit2.CachedCredentials – Type.

Credentials that support caching

source

Base.LibGit2.CheckoutOptions – Type.

LibGit2.CheckoutOptions

Matches the git_checkout_options struct.

source

Base.LibGit2.CloneOptions – Type.

LibGit2.CloneOptions

Matches the git_clone_options struct.

source

Base.LibGit2.DiffDelta – Type.

LibGit2.DiffDelta

Description of changes to one entry. Matches the git_diff_delta struct.

The fields represent:

• status: One of Consts.DELTA_STATUS, indicating whether the file has been added/modified/deleted.

• flags: Flags for the delta and the objects on each side. Determines whether to treat the file(s) as binary/-

text, whether they exist on each side of the diff, and whether the object ids are known to be correct.

• similarity: Used to indicate if a file has been renamed or copied.

• nfiles: The number of files in the delta (for instance, if the delta was run on a submodule commit id, it

may contain more than one file).

• old_file: A DiffFile containing information about the file(s) before the changes.

• new_file: A DiffFile containing information about the file(s) after the changes.

source

Base.LibGit2.DiffFile – Type.

LibGit2.DiffFile

https://libgit2.github.com/libgit2/#HEAD/type/git_buf
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/types.jl#L95-L109
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/types.jl#L719
https://libgit2.github.com/libgit2/#HEAD/type/git_checkout_options
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/types.jl#L802-L806
https://libgit2.github.com/libgit2/#HEAD/type/git_clone_options
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/types.jl#L802-L806
https://libgit2.github.com/libgit2/#HEAD/type/git_diff_delta
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/types.jl#L297-L313

936 CHAPTER 70. DOCUMENTATION OF JULIA’S INTERNALS

Description of one side of a delta. Matches the git_diff_file struct.

source

Base.LibGit2.DiffOptionsStruct – Type.

LibGit2.DiffOptionsStruct

Matches the git_diff_options struct.

source

Base.LibGit2.FetchHead – Type.

LibGit2.FetchHead

Contains the information about HEAD during a fetch, including the name and URL of the branch fetched from,

the oid of the HEAD, and whether the fetched HEAD has been merged locally.

source

Base.LibGit2.FetchOptions – Type.

LibGit2.FetchOptions

Matches the git_fetch_options struct.

source

Base.LibGit2.GitBlob – Type.

GitBlob(repo::GitRepo, hash::AbstractGitHash)

GitBlob(repo::GitRepo, spec::AbstractString)

Return a GitBlob object from repo specified by hash/spec.

• hash is a full (GitHash) or partial (GitShortHash) hash.

• spec is a textual specification: see the git docs for a full list.

source

Base.LibGit2.GitCommit – Type.

GitCommit(repo::GitRepo, hash::AbstractGitHash)

GitCommit(repo::GitRepo, spec::AbstractString)

Return a GitCommit object from repo specified by hash/spec.

• hash is a full (GitHash) or partial (GitShortHash) hash.

• spec is a textual specification: see the git docs for a full list.

source

Base.LibGit2.GitHash – Type.

GitHash

https://libgit2.github.com/libgit2/#HEAD/type/git_diff_file
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/types.jl#L273-L278
https://libgit2.github.com/libgit2/#HEAD/type/git_diff_options
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/types.jl#L802-L806
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/types.jl#L468-L474
https://libgit2.github.com/libgit2/#HEAD/type/git_fetch_options
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/types.jl#L802-L806
https://git-scm.com/docs/git-rev-parse.html#_specifying_revisions
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/repository.jl#L102-L110
https://git-scm.com/docs/git-rev-parse.html#_specifying_revisions
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/repository.jl#L102-L110

70.18. BASE.LIBGIT2 937

A git object identifier, based on the sha-1 hash. It is a 20 byte string (40 hex digits) used to identify a GitObject

in a repository.

source

Base.LibGit2.GitObject – Type.

GitObject(repo::GitRepo, hash::AbstractGitHash)

GitObject(repo::GitRepo, spec::AbstractString)

Return the specified object (GitCommit, GitBlob, GitTree or GitTag) from repo specified by hash/spec.

• hash is a full (GitHash) or partial (GitShortHash) hash.

• spec is a textual specification: see the git docs for a full list.

source

Base.LibGit2.GitRemote – Type.

GitRemote(repo::GitRepo, rmt_name::AbstractString, rmt_url::AbstractString) -> GitRemote

Look up a remote git repository using its name and URL. Uses the default fetch refspec.

Example

repo = LibGit2.init(repo_path)

remote = LibGit2.GitRemote(repo, "upstream", repo_url)

source

GitRemote(repo::GitRepo, rmt_name::AbstractString, rmt_url::AbstractString, fetch_spec::

AbstractString) -> GitRemote

Look up a remote git repository using the repository’s name and URL, as well as specifications for how to fetch

from the remote (e.g. which remote branch to fetch from).

Example

repo = LibGit2.init(repo_path)

refspec = "+refs/heads/mybranch:refs/remotes/origin/mybranch"

remote = LibGit2.GitRemote(repo, "upstream", repo_url, refspec)

source

Base.LibGit2.GitRemoteAnon – Function.

GitRemoteAnon(repo::GitRepo, url::AbstractString) -> GitRemote

Look up a remote git repository using only its URL, not its name.

Example

repo = LibGit2.init(repo_path)

remote = LibGit2.GitRemoteAnon(repo, repo_url)

source

Base.LibGit2.GitRepo – Type.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/types.jl#L12-L17
https://git-scm.com/docs/git-rev-parse.html#_specifying_revisions
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/repository.jl#L91-L100
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/remote.jl#L3-L14
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/remote.jl#L23-L37
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/remote.jl#L46-L57

938 CHAPTER 70. DOCUMENTATION OF JULIA’S INTERNALS

LibGit2.GitRepo(path::AbstractString)

Opens a git repository at path.

source

Base.LibGit2.GitRepoExt – Function.

LibGit2.GitRepoExt(path::AbstractString, flags::Cuint = Cuint(Consts.REPOSITORY_OPEN_DEFAULT)

)

Opens a git repository at path with extended controls (for instance, if the current user must be a member of a

special access group to read path).

source

Base.LibGit2.GitShortHash – Type.

GitShortHash

This is a shortened form of GitHash, which can be used to identify a git object when it is unique.

Internally it is stored as two fields: a full-size GitHash (hash) and a length (len). Only the initial len hex digits

of hash are used.

source

Base.LibGit2.GitSignature – Type.

LibGit2.GitSignature

This is a Julia wrapper around a pointer to a git_signature object.

source

Base.LibGit2.GitStatus – Type.

LibGit2.GitStatus(repo::GitRepo; status_opts=StatusOptions())

Collect information about the status of each file in the git repository repo (e.g. is the file modified, staged, etc.).

status_opts can be used to set various options, for instancewhether or not to look at untracked files orwhether

to include submodules or not.

source

Base.LibGit2.GitTag – Type.

GitTag(repo::GitRepo, hash::AbstractGitHash)

GitTag(repo::GitRepo, spec::AbstractString)

Return a GitTag object from repo specified by hash/spec.

• hash is a full (GitHash) or partial (GitShortHash) hash.

• spec is a textual specification: see the git docs for a full list.

source

Base.LibGit2.GitTree – Type.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/repository.jl#L3-L7
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/repository.jl#L15-L20
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/types.jl#L24-L32
https://libgit2.github.com/libgit2/#HEAD/type/git_signature
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/types.jl#L574-L579
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/status.jl#L3-L11
https://git-scm.com/docs/git-rev-parse.html#_specifying_revisions
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/repository.jl#L102-L110

70.18. BASE.LIBGIT2 939

GitTree(repo::GitRepo, hash::AbstractGitHash)

GitTree(repo::GitRepo, spec::AbstractString)

Return a GitTree object from repo specified by hash/spec.

• hash is a full (GitHash) or partial (GitShortHash) hash.

• spec is a textual specification: see the git docs for a full list.

source

Base.LibGit2.IndexEntry – Type.

LibGit2.IndexEntry

In-memory representation of a file entry in the index. Matches the git_index_entry struct.

source

Base.LibGit2.IndexTime – Type.

LibGit2.IndexTime

Matches the git_index_time struct.

source

Base.LibGit2.MergeOptions – Type.

LibGit2.MergeOptions

Matches the git_merge_options struct.

source

Base.LibGit2.ProxyOptions – Type.

LibGit2.ProxyOptions

Options for connecting through a proxy.

Matches the git_proxy_options struct.

source

Base.LibGit2.PushOptions – Type.

LibGit2.PushOptions

Matches the git_push_options struct.

source

Base.LibGit2.RebaseOperation – Type.

LibGit2.RebaseOperation

Describes a single instruction/operation to be performed during the rebase. Matches the git_rebase_opera-

tion struct.

source

https://git-scm.com/docs/git-rev-parse.html#_specifying_revisions
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/repository.jl#L102-L110
https://libgit2.github.com/libgit2/#HEAD/type/git_index_entry
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/types.jl#L379-L384
https://libgit2.github.com/libgit2/#HEAD/type/git_index_time
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/types.jl#L369-L373
https://libgit2.github.com/libgit2/#HEAD/type/git_merge_options
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/types.jl#L802-L806
https://libgit2.github.com/libgit2/#HEAD/type/git_proxy_options
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/types.jl#L802-L808
https://libgit2.github.com/libgit2/#HEAD/type/git_push_options
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/types.jl#L802-L806
https://libgit2.github.com/libgit2/#HEAD/type/git_rebase_operation_t
https://libgit2.github.com/libgit2/#HEAD/type/git_rebase_operation_t
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/types.jl#L423-L428

940 CHAPTER 70. DOCUMENTATION OF JULIA’S INTERNALS

Base.LibGit2.RebaseOptions – Type.

LibGit2.RebaseOptions

Matches the git_rebase_options struct.

source

Base.LibGit2.RemoteCallbacks – Type.

LibGit2.RemoteCallbacks

Callback settings. Matches the git_remote_callbacks struct.

source

Base.LibGit2.SSHCredentials – Type.

SSH credentials type

source

Base.LibGit2.SignatureStruct – Type.

LibGit2.SignatureStruct

An action signature (e.g. for committers, taggers, etc). Matches the git_signature struct.

source

Base.LibGit2.StatusEntry – Type.

LibGit2.StatusEntry

Providing the differences between the file as it exists in HEAD and the index, and providing the differences be-

tween the index and the working directory. Matches the git_status_entry struct.

source

Base.LibGit2.StatusOptions – Type.

LibGit2.StatusOptions

Options to control how git_status_foreach_ext() will issue callbacks. Matches the git_status_opt_t

struct.

source

Base.LibGit2.StrArrayStruct – Type.

LibGit2.StrArrayStruct

A LibGit2 representation of an array of strings. Matches the git_strarray struct.

When fetching data from LibGit2, a typical usage would look like:

sa_ref = Ref(StrArrayStruct())

@check ccall(..., (Ptr{StrArrayStruct},), sa_ref)

res = convert(Vector{String}, sa_ref[])

free(sa_ref)

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/types.jl#L802-L806
https://libgit2.github.com/libgit2/#HEAD/type/git_remote_callbacks
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/types.jl#L802-L807
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/types.jl#L688
https://libgit2.github.com/libgit2/#HEAD/type/git_signature
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/types.jl#L50-L55
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/types.jl#L455-L461
https://libgit2.github.com/libgit2/#HEAD/type/git_status_opt_t
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/types.jl#L802-L807
https://libgit2.github.com/libgit2/#HEAD/type/git_strarray

70.18. BASE.LIBGIT2 941

In particular, note that LibGit2.free should be called afterward on the Ref object.

Conversely, when passing a vector of strings to LibGit2, it is generally simplest to rely on implicit conversion:

strs = String[...]

@check ccall(..., (Ptr{StrArrayStruct},), strs)

Note that no call to free is required as the data is allocated by Julia.

source

Base.LibGit2.TimeStruct – Type.

LibGit2.TimeStruct

Time in a signature. Matches the git_time struct.

source

Base.LibGit2.UserPasswordCredentials – Type.

Credentials that support only user and password parameters

source

Base.LibGit2.add_fetch! – Function.

add_fetch!(repo::GitRepo, rmt::GitRemote, fetch_spec::String)

Add a fetch refspec for the specified rmt. This refspec will contain information about which branch(es) to fetch

from.

Example

julia> LibGit2.add_fetch!(repo, remote, "upstream");

julia> LibGit2.fetch_refspecs(remote)

String["+refs/heads/*:refs/remotes/upstream/*"]

source

Base.LibGit2.add_push! – Function.

add_push!(repo::GitRepo, rmt::GitRemote, push_spec::String)

Add a push refspec for the specified rmt. This refspec will contain information about which branch(es) to push to.

Example

julia> LibGit2.add_push!(repo, remote, "refs/heads/master");

julia> remote = LibGit2.get(LibGit2.GitRemote, repo, branch);

julia> LibGit2.push_refspecs(remote)

String["refs/heads/master"]

Note

You may need to close and reopen the GitRemote in question after updating its push refspecs in

order for the change to take effect and for calls to push to work.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/types.jl#L62-L84
https://libgit2.github.com/libgit2/#HEAD/type/git_time
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/types.jl#L39-L44
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/types.jl#L663
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/remote.jl#L165-L178

942 CHAPTER 70. DOCUMENTATION OF JULIA’S INTERNALS

source

Base.LibGit2.addblob! – Function.

LibGit2.addblob!(repo::GitRepo, path::AbstractString)

Reads the file at path and adds it to the object database of repo as a loose blob. Returns the GitHash of the

resulting blob.

Example

hash_str = hex(commit_oid)

blob_file = joinpath(repo_path, ".git", "objects", hash_str[1:2], hash_str[3:end])

id = LibGit2.addblob!(repo, blob_file)

source

Base.LibGit2.authors – Function.

authors(repo::GitRepo) -> Vector{Signature}

Returns all authors of commits to the repo repository.

Example

repo = LibGit2.GitRepo(repo_path)

repo_file = open(joinpath(repo_path, test_file), "a")

println(repo_file, commit_msg)

flush(repo_file)

LibGit2.add!(repo, test_file)

sig = LibGit2.Signature("TEST", "TEST@TEST.COM", round(time(), 0), 0)

commit_oid1 = LibGit2.commit(repo, "commit1"; author=sig, committer=sig)

println(repo_file, randstring(10))

flush(repo_file)

LibGit2.add!(repo, test_file)

commit_oid2 = LibGit2.commit(repo, "commit2"; author=sig, committer=sig)

will be a Vector of [sig, sig]

auths = LibGit2.authors(repo)

source

Base.LibGit2.branch – Function.

branch(repo::GitRepo)

Equivalent to git branch. Create a new branch from the current HEAD.

source

Base.LibGit2.branch! – Function.

branch!(repo::GitRepo, branch_name::AbstractString, commit::AbstractString=""; kwargs...)

Checkout a new git branch in the repo repository. commit is the GitHash, in string form, which will be the start

of the new branch. If commit is an empty string, the current HEAD will be used.

The keyword arguments are:

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/remote.jl#L185-L206
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/blob.jl#L36-L49
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/libgit2.jl#L796-L820
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/libgit2.jl#L353-L358

70.18. BASE.LIBGIT2 943

• track::AbstractString="": the name of the remote branch this new branch should track, if any. If

empty (the default), no remote branch will be tracked.

• force::Bool=false: if true, branch creation will be forced.

• set_head::Bool=true: if true, after the branch creation finishes the branch head will be set as the

HEAD of repo.

Equivalent to git checkout [-b|-B] <branch_name> [<commit>] [--track <track>].

Example

repo = LibGit2.GitRepo(repo_path)

LibGit2.branch!(repo, "new_branch", set_head=false)

source

Base.LibGit2.checkout! – Function.

checkout!(repo::GitRepo, commit::AbstractString=""; force::Bool=true)

Equivalent to git checkout [-f] --detach <commit>. Checkout the git commit commit (a GitHash in

string form) in repo. If force is true, force the checkout and discard any current changes. Note that this

detaches the current HEAD.

Example

repo = LibGit2.init(repo_path)

open(joinpath(LibGit2.path(repo), "file1"), "w") do f

write(f, "111

")

end

LibGit2.add!(repo, "file1")

commit_oid = LibGit2.commit(repo, "add file1")

open(joinpath(LibGit2.path(repo), "file1"), "w") do f

write(f, "112

")

end

would fail without the force=true

since there are modifications to the file

LibGit2.checkout!(repo, string(commit_oid), force=true)

source

Base.LibGit2.checkused! – Function.

Checks if credentials were used

source

Checks if credentials were used or failed authentication, see LibGit2.credentials_callback

source

Base.LibGit2.clone – Function.

clone(repo_url::AbstractString, repo_path::AbstractString; kwargs...)

Clone a remote repository located at repo_url to the local filesystem location repo_path.

The keyword arguments are:

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/libgit2.jl#L368-L393
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/libgit2.jl#L460-L486
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/types.jl#L124
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/types.jl#L726

944 CHAPTER 70. DOCUMENTATION OF JULIA’S INTERNALS

• branch::AbstractString="": which branch of the remote to clone, if not the default repository branch

(usually master).

• isbare::Bool=false: if true, clone the remote as a bare repository, which will make repo_path itself

the git directory instead of repo_path/.git. This means that a working tree cannot be checked out. Plays

the role of the git CLI argument --bare.

• remote_cb::Ptr{Void}=C_NULL: a callback which will be used to create the remote before it is cloned.

If C_NULL (the default), no attempt will be made to create the remote - it will be assumed to already exist.

• payload::Nullable{P<:AbstractCredentials}=Nullable{AbstractCredentials}(): provides

credentials if necessary, for instance if the remote is a private repository.

Equivalent to git clone [-b <branch>] [--bare] <repo_url> <repo_path>.

Examples

repo_url = "https://github.com/JuliaLang/Example.jl"

repo1 = LibGit2.clone(repo_url, "test_path")

repo2 = LibGit2.clone(repo_url, "test_path", isbare=true)

julia_url = "https://github.com/JuliaLang/julia"

julia_repo = LibGit2.clone(julia_url, "julia_path", branch="release-0.6")

source

Base.LibGit2.commit – Function.

Wrapper around git_commit_create

source

Commit changes to repository

source

LibGit2.commit(rb::GitRebase, sig::GitSignature)

Commits the current patch to the rebase rb, using sig as the committer. Is silent if the commit has already been

applied.

source

Base.LibGit2.create_branch – Function.

LibGit2.create_branch(repo::GitRepo, bname::AbstractString, commit_obj::GitCommit; force::

Bool=false)

Create a new branch in the repository repo with name bname, which points to commit commit_obj (which has

to be part of repo). If force is true, overwrite an existing branch named bname if it exists. If force is false

and a branch already exists named bname, this function will throw an error.

source

Base.LibGit2.credentials_callback – Function.

Credentials callback function

Function provides different credential acquisition functionality w.r.t. a connection protocol. If a payload is pro-

vided then payload_ptr should contain a LibGit2.AbstractCredentials object.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/libgit2.jl#L516-L546
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/commit.jl#L31
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/commit.jl#L54
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/rebase.jl#L52-L57
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/reference.jl#L196-L204

70.18. BASE.LIBGIT2 945

For LibGit2.Consts.CREDTYPE_USERPASS_PLAINTEXT type, if the payload contains fields: user & pass,

they are used to create authentication credentials. Empty user name and password trigger an authentication

error.

For LibGit2.Consts.CREDTYPE_SSH_KEY type, if the payload contains fields: user, prvkey, pubkey & pass,

they are used to create authentication credentials. Empty user name triggers an authentication error.

Credentials are checked in the following order (if supported):

• ssh key pair (ssh-agent if specified in payload’s usesshagent field)

• plain text

Note: Due to the specifics of the libgit2 authentication procedure, when authentication fails, this function

is called again without any indication whether authentication was successful or not. To avoid an infinite loop

from repeatedly using the same faulty credentials, the checkused! function can be called. This function returns

true if the credentials were used. Using credentials triggers a user prompt for (re)entering required information.

UserPasswordCredentials and CachedCredentials are implemented using a call counting strategy that

prevents repeated usage of faulty credentials.

source

Base.LibGit2.credentials_cb – Function.

C function pointer for credentials_callback

source

Base.LibGit2.default_signature – Function.

Return signature object. Free it after use.

source

Base.LibGit2.delete_branch – Function.

LibGit2.delete_branch(branch::GitReference)

Delete the branch pointed to by branch.

source

Base.LibGit2.diff_files – Function.

diff_files(repo::GitRepo, branch1::AbstractString, branch2::AbstractString; kwarg...) ->

Vector{AbstractString}

Showwhich files have changed in the git repository repo between branches branch1 and branch2.

The keyword argument is:

• filter::Set{Consts.DELTA_STATUS}=Set([Consts.DELTA_ADDED, Consts.DELTA_MODIFIED, Con-

sts.DELTA_DELETED])), and it sets options for the diff. The default is to show files added, modified, or

deleted.

Returns only the names of the files which have changed, not their contents.

Example

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/callbacks.jl#L174-L200
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/callbacks.jl#L262
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/signature.jl#L45
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/reference.jl#L216-L220

946 CHAPTER 70. DOCUMENTATION OF JULIA’S INTERNALS

LibGit2.branch!(repo, "branch/a")

LibGit2.branch!(repo, "branch/b")

add a file to repo

open(joinpath(LibGit2.path(repo),"file"),"w") do f

write(f, "hello repo

")

end

LibGit2.add!(repo, "file")

LibGit2.commit(repo, "add file")

returns ["file"]

filt = Set([LibGit2.Consts.DELTA_ADDED])

files = LibGit2.diff_files(repo, "branch/a", "branch/b", filter=filt)

returns [] because existing files weren't modified

filt = Set([LibGit2.Consts.DELTA_MODIFIED])

files = LibGit2.diff_files(repo, "branch/a", "branch/b", filter=filt)

Equivalent to git diff --name-only --diff-filter=<filter> <branch1> <branch2>.

source

Base.LibGit2.fetch – Function.

fetch(rmt::GitRemote, refspecs; options::FetchOptions=FetchOptions(), msg="")

Fetch from the specified rmt remote git repository, using refspecs to determine which remote branch(es) to

fetch. The keyword arguments are:

• options: determines the options for the fetch, e.g. whether to prune afterwards.

• msg: a message to insert into the reflogs.

source

fetch(repo::GitRepo; kwargs...)

Fetches updates from an upstream of the repository repo.

The keyword arguments are:

• remote::AbstractString="origin": which remote, specified by name, of repo to fetch from. If this

is empty, the URL will be used to construct an anonymous remote.

• remoteurl::AbstractString="": the URL of remote. If not specified, will be assumed based on the

given name of remote.

• refspecs=AbstractString[]: determines properties of the fetch.

• payload=Nullable{AbstractCredentials}(): provides credentials, if necessary, for instance if re-

mote is a private repository.

Equivalent to git fetch [<remoteurl>|<repo>] [<refspecs>].

source

Base.LibGit2.fetch_refspecs – Function.

fetch_refspecs(rmt::GitRemote) -> Vector{String}

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/libgit2.jl#L158-L191
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/remote.jl#L213-L221
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/libgit2.jl#L283-L299

70.18. BASE.LIBGIT2 947

Get the fetch refspecs for the specified rmt. These refspecs contain information about which branch(es) to fetch

from.

source

Base.LibGit2.fetchhead_foreach_cb – Function.

C function pointer for fetchhead_foreach_callback

source

Base.LibGit2.ffmerge! – Function.

Fastforward merge changes into current head

source

Base.LibGit2.fullname – Function.

LibGit2.fullname(ref::GitReference)

Return the name of the reference pointed to by the symbolic reference ref. If ref is not a symbolic reference,

returns an empty string.

source

Base.LibGit2.get_creds! – Function.

Obtain the cached credentials for the given host+protocol (credid), or return and store the default if not found

source

Base.LibGit2.gitdir – Function.

LibGit2.gitdir(repo::GitRepo)

Returns the location of the ”git” files of repo:

• for normal repositories, this is the location of the .git folder.

• for bare repositories, this is the location of the repository itself.

See also workdir, path.

source

Base.LibGit2.head – Function.

LibGit2.head(repo::GitRepo) -> GitReference

Returns a GitReference to the current HEAD of repo.

source

head(pkg::AbstractString) -> String

Return current HEAD GitHash of the pkg repo as a string.

source

Base.LibGit2.head! – Function.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/remote.jl#L135-L140
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/callbacks.jl#L264
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/merge.jl#L48
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/reference.jl#L82-L88
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/types.jl#L735
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/repository.jl#L150-L159
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/reference.jl#L33-L37
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/libgit2.jl#L45-L50

948 CHAPTER 70. DOCUMENTATION OF JULIA’S INTERNALS

LibGit2.head!(repo::GitRepo, ref::GitReference) -> GitReference

Set the HEAD of repo to the object pointed to by ref.

source

Base.LibGit2.head_oid – Function.

LibGit2.head_oid(repo::GitRepo) -> GitHash

Lookup the object id of the current HEAD of git repository repo.

source

Base.LibGit2.headname – Function.

LibGit2.headname(repo::GitRepo)

Lookup the name of the current HEAD of git repository repo. If repo is currently detached, returns the name of

the HEAD it’s detached from.

source

Base.LibGit2.init – Function.

LibGit2.init(path::AbstractString, bare::Bool=false) -> GitRepo

Opens a new git repository at path. If bare is false, the working tree will be created in path/.git. If bare is

true, no working directory will be created.

source

Base.LibGit2.is_ancestor_of – Function.

is_ancestor_of(a::AbstractString, b::AbstractString, repo::GitRepo) -> Bool

Returns true if a, a GitHash in string form, is an ancestor of b, a GitHash in string form.

Example

julia> repo = LibGit2.GitRepo(repo_path);

julia> LibGit2.add!(repo, test_file1);

julia> commit_oid1 = LibGit2.commit(repo, "commit1");

julia> LibGit2.add!(repo, test_file2);

julia> commit_oid2 = LibGit2.commit(repo, "commit2");

julia> LibGit2.is_ancestor_of(string(commit_oid1), string(commit_oid2), repo)

true

source

Base.LibGit2.isbinary – Function.

Use a heuristic to guess if a file is binary: searching for NULL bytes and looking for a reasonable ratio of printable

to non-printable characters among the first 8000 bytes.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/reference.jl#L225-L229
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/repository.jl#L50-L55
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/repository.jl#L65-L72
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/repository.jl#L36-L42
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/libgit2.jl#L215-L237
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/blob.jl#L26-L30

70.18. BASE.LIBGIT2 949

Base.LibGit2.iscommit – Function.

iscommit(id::AbstractString, repo::GitRepo) -> Bool

Checks if commit id (which is a GitHash in string form) is in the repository.

Example

julia> repo = LibGit2.GitRepo(repo_path);

julia> LibGit2.add!(repo, test_file);

julia> commit_oid = LibGit2.commit(repo, "add test_file");

julia> LibGit2.iscommit(string(commit_oid), repo)

true

source

Base.LibGit2.isdiff – Function.

LibGit2.isdiff(repo::GitRepo, treeish::AbstractString, pathspecs::AbstractString=""; cached::

Bool=false)

Checks if there are any differences between the tree specified by treeish and the tracked files in the working

tree (if cached=false) or the index (if cached=true). pathspecs are the specifications for options for the diff.

Example

repo = LibGit2.GitRepo(repo_path)

LibGit2.isdiff(repo, "HEAD") # should be false

open(joinpath(repo_path, new_file), "a") do f

println(f, "here's my cool new file")

end

LibGit2.isdiff(repo, "HEAD") # now true

Equivalent to git diff-index <treeish> [-- <pathspecs>].

source

Base.LibGit2.isdirty – Function.

LibGit2.isdirty(repo::GitRepo, pathspecs::AbstractString=""; cached::Bool=false) -> Bool

Checks if there have been any changes to tracked files in the working tree (if cached=false) or the index (if

cached=true). pathspecs are the specifications for options for the diff.

Example

repo = LibGit2.GitRepo(repo_path)

LibGit2.isdirty(repo) # should be false

open(joinpath(repo_path, new_file), "a") do f

println(f, "here's my cool new file")

end

LibGit2.isdirty(repo) # now true

LibGit2.isdirty(repo, new_file) # now true

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/libgit2.jl#L70-L88
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/libgit2.jl#L127-L145

950 CHAPTER 70. DOCUMENTATION OF JULIA’S INTERNALS

Equivalent to git diff-index HEAD [-- <pathspecs>].

source

Base.LibGit2.isorphan – Function.

LibGit2.isorphan(repo::GitRepo)

Checks if the current branch is an ”orphan” branch, i.e. has no commits. The first commit to this branch will have

no parents.

source

Base.LibGit2.lookup_branch – Function.

lookup_branch(repo::GitRepo, branch_name::AbstractString, remote::Bool=false) -> Nullable{

GitReference}

Determine if the branch specified by branch_name exists in the repository repo. If remote is true, repo is

assumed to be a remote git repository. Otherwise, it is part of the local filesystem.

lookup_branch returns a Nullable, which will be null if the requested branch does not exist yet. If the branch

does exist, the Nullable contains a GitReference to the branch.

source

Base.LibGit2.mirror_callback – Function.

Mirror callback function

Function sets +refs/*:refs/* refspecs and mirror flag for remote reference.

source

Base.LibGit2.mirror_cb – Function.

C function pointer for mirror_callback

source

Base.LibGit2.name – Function.

LibGit2.name(ref::GitReference)

Return the full name of ref.

source

name(rmt::GitRemote)

Get the name of a remote repository, for instance "origin". If the remote is anonymous (see GitRemoteAnon)

the name will be an empty string "".

Example

julia> repo_url = "https://github.com/JuliaLang/Example.jl";

julia> repo = LibGit2.clone(cache_repo, "test_directory");

julia> remote = LibGit2.GitRemote(repo, "origin", repo_url);

julia> name(remote)

"origin"

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/libgit2.jl#L104-L123
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/reference.jl#L21-L26
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/reference.jl#L237-L247
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/callbacks.jl#L3-L7
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/callbacks.jl#L260
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/reference.jl#L97-L101

70.18. BASE.LIBGIT2 951

source

LibGit2.name(tag::GitTag)

The name of tag (e.g. "v0.5").

source

Base.LibGit2.need_update – Function.

need_update(repo::GitRepo)

Equivalent to git update-index. Returns true if repo needs updating.

source

Base.LibGit2.objtype – Function.

objtype(obj_type::Consts.OBJECT)

Returns the type corresponding to the enum value.

source

Base.LibGit2.path – Function.

LibGit2.path(repo::GitRepo)

The base file path of the repository repo.

• for normal repositories, this will typically be the parent directory of the ”.git” directory (note: this may be

different than the working directory, see workdir for more details).

• for bare repositories, this is the location of the ”git” files.

See also gitdir, workdir.

source

Base.LibGit2.peel – Function.

peel([T,] ref::GitReference)

Recursively peel ref until an object of type T is obtained. If no T is provided, then ref will be peeled until an

object other than a GitTag is obtained.

• A GitTagwill be peeled to the object it references.

• A GitCommitwill be peeled to a GitTree.

Note

Only annotated tags can be peeled to GitTag objects. Lightweight tags (the default) are references

under refs/tags/which point directly to GitCommit objects.

source

peel([T,] obj::GitObject)

Recursively peel obj until an object of type T is obtained. If no T is provided, then obj will be peeled until the

type changes.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/remote.jl#L109-L128
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/tag.jl#L54-L58
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/libgit2.jl#L57-L62
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/types.jl#L640-L644
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/repository.jl#L186-L197
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/reference.jl#L161-L173

952 CHAPTER 70. DOCUMENTATION OF JULIA’S INTERNALS

• A GitTagwill be peeled to the object it references.

• A GitCommitwill be peeled to a GitTree.

source

Base.LibGit2.posixpath – Function.

LibGit2.posixpath(path)

Standardise the path string path to use POSIX separators.

source

Base.LibGit2.push – Function.

push(rmt::GitRemote, refspecs; force::Bool=false, options::PushOptions=PushOptions())

Push to the specified rmt remote git repository, using refspecs to determine which remote branch(es) to push

to. The keyword arguments are:

• force: if true, a force-push will occur, disregarding conflicts.

• options: determines the options for the push, e.g. which proxy headers to use.

Note

You can add information about the push refspecs in two other ways: by setting an option in the

repository’s GitConfig (with push.default as the key) or by calling add_push!. Otherwise you

will need to explicitly specify a push refspec in the call to push for it to have any effect, like so:

LibGit2.push(repo, refspecs=["refs/heads/master"]).

source

push(repo::GitRepo; kwargs...)

Pushes updates to an upstream of repo.

The keyword arguments are:

• remote::AbstractString="origin": the name of the upstream remote to push to.

• remoteurl::AbstractString="": the URL of remote.

• refspecs=AbstractString[]: determines properties of the push.

• force::Bool=false: determines if the push will be a force push, overwriting the remote branch.

• payload=Nullable{AbstractCredentials}(): provides credentials, if necessary, for instance if re-

mote is a private repository.

Equivalent to git push [<remoteurl>|<repo>] [<refspecs>].

source

Base.LibGit2.push_refspecs – Function.

push_refspecs(rmt::GitRemote) -> Vector{String}

Get the push refspecs for the specified rmt. These refspecs contain information about which branch(es) to push

to.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/repository.jl#L211-L219
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/utils.jl#L57-L61
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/remote.jl#L231-L246
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/libgit2.jl#L318-L333
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/remote.jl#L150-L155

70.18. BASE.LIBGIT2 953

Base.LibGit2.read_tree! – Function.

LibGit2.read_tree!(idx::GitIndex, tree::GitTree)

LibGit2.read_tree!(idx::GitIndex, treehash::AbstractGitHash)

Read the tree tree (or the tree pointed to by treehash in the repository owned by idx) into the index idx. The

current index contents will be replaced.

source

Base.LibGit2.rebase! – Function.

LibGit2.rebase!(repo::GitRepo, upstream::AbstractString="", newbase::AbstractString="")

Attempt an automatic merge rebase of the current branch, from upstream if provided, or otherwise from the

upstream tracking branch. newbase is the branch to rebase onto. By default this is upstream.

If any conflicts arise which cannot be automatically resolved, the rebase will abort, leaving the repository and

working tree in its original state, and the function will throw a GitError. This is roughly equivalent to the fol-

lowing command line statement:

git rebase --merge [<upstream>]

if [-d ".git/rebase-merge"]; then

git rebase --abort

fi

source

Base.LibGit2.ref_list – Function.

LibGit2.ref_list(repo::GitRepo) -> Vector{String}

Get a list of all reference names in the repo repository.

source

Base.LibGit2.reftype – Function.

LibGit2.reftype(ref::GitReference) -> Cint

Returns a Cint corresponding to the type of ref:

• 0 if the reference is invalid

• 1 if the reference is an object id

• 2 if the reference is symbolic

source

Base.LibGit2.remotes – Function.

LibGit2.remotes(repo::GitRepo)

Returns a vector of the names of the remotes of repo.

source

Base.LibGit2.reset! – Function.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/index.jl#L35-L41
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/libgit2.jl#L730-L746
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/reference.jl#L182-L186
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/reference.jl#L70-L77
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/repository.jl#L291-L295

954 CHAPTER 70. DOCUMENTATION OF JULIA’S INTERNALS

Resets credentials for another use

source

Updates some entries, determined by the pathspecs, in the index from the target commit tree.

source

Sets the current head to the specified commit oid and optionally resets the index and working tree to match.

source

git reset [<committish>] [–] <pathspecs>...

source

reset!(repo::GitRepo, id::GitHash, mode::Cint = Consts.RESET_MIXED)

Reset the repository repo to its state at id, using one of three modes set by mode:

1. Consts.RESET_SOFT - move HEAD to id.

2. Consts.RESET_MIXED - default, move HEAD to id and reset the index to id.

3. Consts.RESET_HARD - move HEAD to id, reset the index to id, and discard all working changes.

Equivalent to git reset [--soft | --mixed | --hard] <id>.

Example

repo = LibGit2.GitRepo(repo_path)

head_oid = LibGit2.head_oid(repo)

open(joinpath(repo_path, "file1"), "w") do f

write(f, "111

")

end

LibGit2.add!(repo, "file1")

mode = LibGit2.Consts.RESET_HARD

will discard the changes to file1

and unstage it

new_head = LibGit2.reset!(repo, head_oid, mode)

source

Base.LibGit2.restore – Function.

restore(s::State, repo::GitRepo)

Return a repository repo to a previous State s, for example the HEAD of a branch before a merge attempt. s

can be generated using the snapshot function.

source

Base.LibGit2.revcount – Function.

LibGit2.revcount(repo::GitRepo, commit1::AbstractString, commit2::AbstractString)

List the number of revisions between commit1 and commit2 (committish OIDs in string form). Since commit1

and commit2 may be on different branches, revcount performs a ”left-right” revision list (and count), returning

a tuple of Ints - the number of left and right commits, respectively. A left (or right) commit refers to which side

of a symmetric difference in a tree the commit is reachable from.

Equivalent to git rev-list --left-right --count <commit1> <commit2>.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/types.jl#L127
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/repository.jl#L253
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/repository.jl#L263
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/libgit2.jl#L565
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/libgit2.jl#L572-L598
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/libgit2.jl#L859-L865
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/libgit2.jl#L601-L611

70.18. BASE.LIBGIT2 955

Base.LibGit2.set_remote_url – Function.

set_remote_url(repo::GitRepo, url::AbstractString; remote::AbstractString="origin")

Set the url for remote for the git repository repo. The default name of the remote is "origin".

Examples

repo_path = joinpath("test_directory", "Example")

repo = LibGit2.init(repo_path)

url1 = "https://github.com/JuliaLang/Example.jl"

LibGit2.set_remote_url(repo, url1, remote="upstream")

url2 = "https://github.com/JuliaLang/Example2.jl"

LibGit2.set_remote_url(repo_path, url2, remote="upstream2")

source

set_remote_url(path::AbstractString, url::AbstractString; remote::AbstractString="origin")

Set the url for remote for the git repository located at path. The default name of the remote is "origin".

source

Base.LibGit2.shortname – Function.

LibGit2.shortname(ref::GitReference)

Returns a shortened version of the name of ref that’s ”human-readable”.

julia> repo = LibGit2.GitRepo(path_to_repo);

julia> branch_ref = LibGit2.head(repo);

julia> LibGit2.name(branch_ref)

"refs/heads/master"

julia> LibGit2.shortname(branch_ref)

"master"

source

Base.LibGit2.snapshot – Function.

snapshot(repo::GitRepo) -> State

Take a snapshot of the current state of the repository repo, storing the current HEAD, index, and any uncommit-

tedwork. The output State can be used later during a call to restore to return the repository to the snapshotted

state.

source

Base.LibGit2.status – Function.

LibGit2.status(repo::GitRepo, path::String)

Lookup the status of the file at path in the git repository repo. For instance, this can be used to check if the file

at path has been modified and needs to be staged and committed.

source

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/libgit2.jl#L243-L259
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/libgit2.jl#L267-L272
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/reference.jl#L45-L62
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/libgit2.jl#L830-L837
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/status.jl#L35-L42

956 CHAPTER 70. DOCUMENTATION OF JULIA’S INTERNALS

Base.LibGit2.tag_create – Function.

LibGit2.tag_create(repo::GitRepo, tag::AbstractString, commit; kwargs...)

Create a new git tag tag (e.g. "v0.5") in the repository repo, at the commit commit.

The keyword arguments are:

• msg::AbstractString="": the message for the tag.

• force::Bool=false: if true, existing references will be overwritten.

• sig::Signature=Signature(repo): the tagger’s signature.

source

Base.LibGit2.tag_delete – Function.

LibGit2.tag_delete(repo::GitRepo, tag::AbstractString)

Remove the git tag tag from the repository repo.

source

Base.LibGit2.tag_list – Function.

LibGit2.tag_list(repo::GitRepo) -> Vector{String}

Get a list of all tags in the git repository repo.

source

Base.LibGit2.target – Function.

LibGit2.target(tag::GitTag)

The GitHash of the target object of tag.

source

Base.LibGit2.treewalk – Function.

Traverse the entries in a tree and its subtrees in post or pre order.

Function parameter should have following signature:

(Cstring, Ptr{Void}, Ptr{Void}) -> Cint

source

Base.LibGit2.upstream – Function.

upstream(ref::GitReference) -> Nullable{GitReference}

Determine if the branch containing ref has a specified upstream branch.

upstream returns a Nullable, whichwill be null if the requested branch does not have an upstream counterpart.

If the upstream branch does exist, the Nullable contains a GitReference to the upstream branch.

source

Base.LibGit2.url – Function.

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/tag.jl#L27-L37
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/tag.jl#L17-L21
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/tag.jl#L3-L7
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/tag.jl#L66-L70
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/tree.jl#L3-L9
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/reference.jl#L268-L276

70.19. MODULE LOADING 957

url(rmt::GitRemote)

Get the fetch URL of a remote git repository.

Example

julia> repo_url = "https://github.com/JuliaLang/Example.jl";

julia> repo = LibGit2.init(mktempdir());

julia> remote = LibGit2.GitRemote(repo, "origin", repo_url);

julia> LibGit2.url(remote)

"https://github.com/JuliaLang/Example.jl"

source

Base.LibGit2.with – Function.

Resource management helper function

source

Base.LibGit2.workdir – Function.

LibGit2.workdir(repo::GitRepo)

The location of the working directory of repo. This will throw an error for bare repositories.

Note

This will typically be the parent directory of gitdir(repo), but can be different in some cases: e.g.

if either the core.worktree configuration variable or the GIT_WORK_TREE environment variable is

set.

See also gitdir, path.

source

70.19 Module loading

Base.require[@ref] is responsible for loading modules and it also manages the precompilation cache. It is the im-

plementation of the import statement.

Experimental features

The features below are experimental and not part of the stable Julia API. Before building upon them inform yourself

about the current thinking and whether they might change soon.

Module loading callbacks

It is possible to listen to the modules loaded by Base.require, by registering a callback.

loaded_packages = Channel{Symbol}()

callback = (mod::Symbol) -> put!(loaded_packages, mod)

push!(Base.package_callbacks, callback)

https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/remote.jl#L74-L91
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/types.jl#L604-L606
https://github.com/JuliaLang/julia/tree/dcf39a1ddaa788feb231f06611f849c18dcece76/base/libgit2/repository.jl#L165-L178

958 CHAPTER 70. DOCUMENTATION OF JULIA’S INTERNALS

Please note that the symbol given to the callback is a non-unique identifier and it is the responsibility of the callback

provider to walk the module chain to determine the fully qualified name of the loaded binding.

The callback below is an example of how to do that:

Get the fully-qualified name of a module.

function module_fqn(name::Symbol)

fqn = Symbol[name]

mod = getfield(Main, name)

parent = Base.module_parent(mod)

while parent !== Main

push!(fqn, Base.module_name(parent))

parent = Base.module_parent(parent)

end

fqn = reverse!(fqn)

return join(fqn, '.')

end

Chapter 71

Developing/debugging Julia’s C code

71.1 Reporting and analyzing crashes (segfaults)

So you managed to break Julia. Congratulations! Collected here are some general procedures you can undergo for

common symptoms encountered when something goes awry. Including the information from these debugging steps

can greatly help the maintainers when tracking down a segfault or trying to figure outwhyyour script is running slower

than expected.

If you’ve been directed to this page, find the symptom that best matches what you’re experiencing and follow the

instructions to generate the debugging information requested. Table of symptoms:

• Segfaults during bootstrap (sysimg.jl)

• Segfaults when running a script

• Errors during Julia startup

Version/Environment info

No matter the error, we will always need to know what version of Julia you are running. When Julia first starts up, a

header is printed out with a version number and date. If your version is 0.2.0 or higher, please include the output of

versioninfo() in any report you create:

julia> versioninfo()

Julia Version 0.6.1-pre.0

Commit dcf39a1dda (2017-06-19 13:06 UTC)

Platform Info:

OS: macOS (x86_64-apple-darwin16.7.0)

CPU: Intel(R) Core(TM) i5-5287U CPU @ 2.90GHz

WORD_SIZE: 64

BLAS: libopenblas (USE64BITINT DYNAMIC_ARCH NO_AFFINITY Haswell)

LAPACK: libopenblas64_

LIBM: libopenlibm

LLVM: libLLVM-3.9.1 (ORCJIT, broadwell)

Segfaults during bootstrap (sysimg.jl)

Segfaults toward the end of the make process of building Julia are a common symptom of something going wrong

while Julia is preparsing the corpus of code in the base/ folder. Many factors can contribute toward this process

959

960 CHAPTER 71. DEVELOPING/DEBUGGING JULIA’S C CODE

dying unexpectedly, however it is as often as not due to an error in the C-code portion of Julia, and as such must

typically be debugged with a debug build inside of gdb. Explicitly:

Create a debug build of Julia:

$ cd <julia_root>

$ make debug

Note that this process will likely fail with the same error as a normal make incantation, however this will create a

debug executable that will offer gdb the debugging symbols needed to get accurate backtraces. Next, manually run

the bootstrap process inside of gdb:

$ cd base/

$ gdb -x ../contrib/debug_bootstrap.gdb

This will start gdb, attempt to run the bootstrap process using the debug build of Julia, and print out a backtrace if

(when) it segfaults. Youmay need to hit <enter> a fewtimes to get the full backtrace. Create a gist with the backtrace,

the version info, and any other pertinent information you can think of and open a new issue on Github with a link to

the gist.

Segfaults when running a script

The procedure is very similar to Segfaults during bootstrap (sysimg.jl). Create a debug build of Julia, and run your

script inside of a debugged Julia process:

$ cd <julia_root>

$ make debug

$ gdb --args usr/bin/julia-debug <path_to_your_script>

Note that gdb will sit there, waiting for instructions. Type r to run the process, and bt to generate a backtrace once

it segfaults:

(gdb) r

Starting program: /home/sabae/src/julia/usr/bin/julia-debug ./test.jl

...

(gdb) bt

Create a gist with the backtrace, the version info, and any other pertinent information you can think of and open a

new issue on Github with a link to the gist.

Errors during Julia startup

Occasionally errors occur during Julia’s startup process (especially when using binary distributions, as opposed to

compiling from source) such as the following:

$ julia

exec: error -5

These errors typically indicate something is not getting loaded properly very early on in the bootup phase, and our

best bet in determining what’s going wrong is to use external tools to audit the disk activity of the julia process:

• On Linux, use strace:

$ strace julia

https://gist.github.com
https://github.com/JuliaLang/julia/issues?q=is%3Aopen
https://gist.github.com
https://github.com/JuliaLang/julia/issues?q=is%3Aopen

71.2. GDB DEBUGGING TIPS 961

• On OSX, use dtruss:

$ dtruss -f julia

Create a gist with the strace/ dtruss ouput, the version info, and any other pertinent information and open a new

issue on Github with a link to the gist.

Glossary

A few terms have been used as shorthand in this guide:

• <julia_root> refers to the root directory of the Julia source tree; e.g. it should contain folders such as base,

deps, src, test, etc.....

71.2 gdb debugging tips

Displaying Julia variables

Within gdb, any jl_value_t* object obj can be displayed using

(gdb) call jl_(obj)

The object will be displayed in the julia session, not in the gdb session. This is a useful way to discover the types

and values of objects being manipulated by Julia’s C code.

Similarly, if you’re debugging some of Julia’s internals (e.g., inference.jl), you can print obj using

ccall(:jl_, Void, (Any,), obj)

This is a good way to circumvent problems that arise from the order in which julia’s output streams are initialized.

Julia’s flisp interpreter uses value_t objects; these can be displayedwith call fl_print(fl_ctx, ios_stdout,

obj).

Useful Julia variables for Inspecting

While the addresses of many variables, like singletons, can be be useful to print for many failures, there are a number

of additional variables (see julia.h for a complete list) that are even more useful.

• (when in jl_apply_generic) mfunc and jl_uncompress_ast(mfunc->def, mfunc->code) :: for figur-

ing out a bit about the call-stack

• jl_lineno and jl_filename :: for figuring out what line in a test to go start debugging from (or figure out

how far into a file has been parsed)

• $1 :: not really a variable, but still a useful shorthand for referring to the result of the last gdb command (such

as print)

• jl_options :: sometimes useful, since it lists all of the command line options that were successfully parsed

• jl_uv_stderr :: because who doesn’t like to be able to interact with stdio

https://gist.github.com
https://github.com/JuliaLang/julia/issues?q=is%3Aopen

962 CHAPTER 71. DEVELOPING/DEBUGGING JULIA’S C CODE

Useful Julia functions for Inspecting those variables

• jl_gdblookup($rip) :: For looking up the current function and line. (use $eip on i686 platforms)

• jlbacktrace() :: For dumping the current Julia backtrace stack to stderr. Only usable after record_back-

trace() has been called.

• jl_dump_llvm_value(Value*) :: For invoking Value->dump() in gdb, where it doesn’t work natively. For

example, f->linfo->functionObject, f->linfo->specFunctionObject, andto_function(f->linfo).

• Type->dump() :: only works in lldb. Note: add something like ;1 to prevent lldb from printing its prompt over

the output

• jl_eval_string("expr") :: for invoking side-effects to modify the current state or to lookup symbols

• jl_typeof(jl_value_t*) :: for extracting the type tag of a Julia value (in gdb, callmacro define jl_typeof

jl_typeof first, or pick something short like ty for the first arg to define a shorthand)

Inserting breakpoints for inspection from gdb

In your gdb session, set a breakpoint in jl_breakpoint like so:

(gdb) break jl_breakpoint

Then within your Julia code, insert a call to jl_breakpoint by adding

ccall(:jl_breakpoint, Void, (Any,), obj)

where obj can be any variable or tuple you want to be accessible in the breakpoint.

It’s particularly helpful to back up to the jl_apply frame, from which you can display the arguments to a function

using, e.g.,

(gdb) call jl_(args[0])

Anotheruseful frame isto_function(jl_method_instance_t *li, bool cstyle). Thejl_method_instance_t*

argument is a struct with a reference to the final AST sent into the compiler. However, the AST at this point will usually

be compressed; to view the AST, call jl_uncompress_ast and then pass the result to jl_:

#2 0x00007ffff7928bf7 in to_function (li=0x2812060, cstyle=false) at codegen.cpp:584

584 abort();

(gdb) p jl_(jl_uncompress_ast(li, li->ast))

Inserting breakpoints upon certain conditions

Loading a particular file

Let’s say the file is sysimg.jl:

(gdb) break jl_load if strcmp(fname, "sysimg.jl")==0

71.2. GDB DEBUGGING TIPS 963

Calling a particular method

(gdb) break jl_apply_generic if strcmp((char*)(jl_symbol_name)(jl_gf_mtable(F)->name), "

method_to_break")==0

Since this function is used for every call, you will make everything 1000x slower if you do this.

Dealing with signals

Julia requires a few signal to function property. The profiler uses SIGUSR2 for sampling and the garbage collector uses

SIGSEGV for threads synchronization. If you are debugging some code that uses the profiler or multiple threads, you

may want to let the debugger ignore these signals since they can be triggered very often during normal operations.

The command to do this in GDB is (replace SIGSEGVwith SIGUSRS or other signals you want to ignore):

(gdb) handle SIGSEGV noprint nostop pass

The corresponding LLDB command is (after the process is started):

(lldb) pro hand -p true -s false -n false SIGSEGV

If you are debugging a segfaultwith threaded code, you can set a breakpoint onjl_critical_error (sigdie_handler

should alsowork on Linux and BSD) in order to only catch the actual segfault rather than theGC synchronization points.

Debugging during Julia’s build process (bootstrap)

Errors that occur during make need special handling. Julia is built in two stages, constructing sys0 and sys.ji. To

see what commands are running at the time of failure, use make VERBOSE=1.

At the time of this writing, you can debug build errors during the sys0 phase from the base directory using:

julia/base$ gdb --args ../usr/bin/julia-debug -C native --build ../usr/lib/julia/sys0 sysimg.jl

You might need to delete all the files in usr/lib/julia/ to get this to work.

You can debug the sys.ji phase using:

julia/base$ gdb --args ../usr/bin/julia-debug -C native --build ../usr/lib/julia/sys -J ../usr/

lib/julia/sys0.ji sysimg.jl

Bydefault, anyerrorswill cause Julia to exit, even under gdb. To catch an error ”in the act”, set a breakpoint in jl_error

(there are several other useful spots, for specific kinds of failures, including: jl_too_few_args, jl_too_many_args,

and jl_throw).

Once an error is caught, a useful technique is to walk up the stack and examine the function by inspecting the related

call to jl_apply. To take a real-world example:

Breakpoint 1, jl_throw (e=0x7ffdf42de400) at task.c:802

802 {

(gdb) p jl_(e)

ErrorException("auto_unbox: unable to determine argument type")

$2 = void

(gdb) bt 10

#0 jl_throw (e=0x7ffdf42de400) at task.c:802

#1 0x00007ffff65412fe in jl_error (str=0x7ffde56be000 <_j_str267> "auto_unbox:

unable to determine argument type")

at builtins.c:39

#2 0x00007ffde56bd01a in julia_convert_16886 ()

#3 0x00007ffff6541154 in jl_apply (f=0x7ffdf367f630, args=0x7fffffffc2b0, nargs=2) at julia.h

:1281

...

964 CHAPTER 71. DEVELOPING/DEBUGGING JULIA’S C CODE

The most recent jl_apply is at frame #3, so we can go back there and look at the AST for the function julia_con-

vert_16886. This is the uniqued name for some method of convert. f in this frame is a jl_function_t*, so we

can look at the type signature, if any, from the specTypes field:

(gdb) f 3

#3 0x00007ffff6541154 in jl_apply (f=0x7ffdf367f630, args=0x7fffffffc2b0, nargs=2) at julia.h

:1281

1281 return f->fptr((jl_value_t*)f, args, nargs);

(gdb) p f->linfo->specTypes

$4 = (jl_tupletype_t *) 0x7ffdf39b1030

(gdb) p jl_(f->linfo->specTypes)

Tuple{Type{Float32}, Float64} # <-- type signature for julia_convert_16886

Then, we can look at the AST for this function:

(gdb) p jl_(jl_uncompress_ast(f->linfo, f->linfo->ast))

Expr(:lambda, Array{Any, 1}[:#s29, :x], Array{Any, 1}[Array{Any, 1}[], Array{Any, 1}[Array{Any,

1}[:#s29, :Any, 0], Array{Any, 1}[:x, :Any, 0]], Array{Any, 1}[], 0], Expr(:body,

Expr(:line, 90, :float.jl)::Any,

Expr(:return, Expr(:call, :box, :Float32, Expr(:call, :fptrunc, :Float32, :x)::Any)::Any)::Any)::

Any)::Any

Finally, and perhaps most usefully, we can force the function to be recompiled in order to step through the codegen

process. To do this, clear the cached functionObject from the jl_lamdbda_info_t*:

(gdb) p f->linfo->functionObject

$8 = (void *) 0x1289d070

(gdb) set f->linfo->functionObject = NULL

Then, set a breakpoint somewhere useful (e.g. emit_function, emit_expr, emit_call, etc.), and run codegen:

(gdb) p jl_compile(f)

... # your breakpoint here

Debugging precompilation errors

Module precompilation spawns a separate Julia process to precompile each module. Setting a breakpoint or catching

failures in a precompileworker requires attaching a debugger to theworker. The easiest approach is to set the debugger

watch for new process launches matching a given name. For example:

(gdb) attach -w -n julia-debug

or:

(lldb) process attach -w -n julia-debug

Then run a script/command to start precompilation. As described earlier, use conditional breakpoints in the parent

process to catch specific file-loading events and narrow the debugging window. (some operating systems may require

alternative approaches, such as following each fork from the parent process)

Mozilla’s Record and Replay Framework (rr)

Julia nowworks out of the boxwith rr, the lightweight recording and deterministic debugging framework fromMozilla.

This allows you to replay the trace of an execution deterministically. The replayed execution’s address spaces, register

contents, syscall data etc are exactly the same in every run.

A recent version of rr (3.1.0 or higher) is required.

http://rr-project.org/

71.3. USING VALGRINDWITH JULIA 965

71.3 Using Valgrind with Julia

Valgrind is a tool for memory debugging, memory leak detection, and profiling. This section describes things to keep

in mind when using Valgrind to debug memory issues with Julia.

General considerations

By default, Valgrind assumes that there is no self modifying code in the programs it runs. This assumption works

fine in most instances but fails miserably for a just-in-time compiler like julia. For this reason it is crucial to pass

--smc-check=all-non-file to valgrind, else code may crash or behave unexpectedly (often in subtle ways).

In some cases, to better detect memory errors usingValgrind it can help to compile juliawithmemory pools disabled.

The compile-time flag MEMDEBUG disables memory pools in Julia, and MEMDEBUG2 disables memory pools in FemtoLisp.

To build juliawith both flags, add the following line to Make.user:

CFLAGS = -DMEMDEBUG -DMEMDEBUG2

Another thing to note: if your program uses multiple workers processes, it is likely that you want all such worker

processes to run under Valgrind, not just the parent process. To do this, pass --trace-children=yes to valgrind.

Suppressions

Valgrindwill typically display spurious warnings as it runs. To reduce the number of suchwarnings, it helps to provide a

suppressions file toValgrind. Asample suppressions file is included in the Julia source distribution atcontrib/valgrind-

julia.supp.

The suppressions file can be used from the julia/ source directory as follows:

$ valgrind --smc-check=all-non-file --suppressions=contrib/valgrind-julia.supp ./julia progname.

jl

Any memory errors that are displayed should either be reported as bugs or contributed as additional suppressions.

Note that some versions of Valgrind are shipped with insufficient default suppressions, so that may be one thing to

consider before submitting any bugs.

Running the Julia test suite under Valgrind

It is possible to run the entire Julia test suite under Valgrind, but it does take quite some time (typically several hours).

To do so, run the following command from the julia/test/ directory:

valgrind --smc-check=all-non-file --trace-children=yes --suppressions=$PWD/../contrib/valgrind-

julia.supp ../julia runtests.jl all

If youwould like to see a report of ”definite”memory leaks, pass the flags--leak-check=full --show-leak-kinds=definite

to valgrind as well.

Caveats

Valgrind currently does not support multiple rounding modes, so code that adjusts the rounding mode will behave

differently when run under Valgrind.

In general, if after setting --smc-check=all-non-file you find that your program behaves differently when run

underValgrind, it may help to pass --tool=none to valgrind as you investigate further. This will enable the minimal

Valgrind machinery but will also run much faster than when the full memory checker is enabled.

http://valgrind.org/
http://valgrind.org/docs/manual/manual-core.html#manual-core.suppress
https://github.com/JuliaLang/julia/issues/8314#issuecomment-55766210
https://bugs.kde.org/show_bug.cgi?id=136779

966 CHAPTER 71. DEVELOPING/DEBUGGING JULIA’S C CODE

71.4 Sanitizer support

General considerations

Using Clang’s sanitizers obviously require you to use Clang (USECLANG=1), but there’s another catch: most sanitizers

require a run-time library, provided by the host compiler, while the instrumented code generated by Julia’s JIT relies

on functionality from that library. This implies that the LLVM version of your host compiler matches that of the LLVM

library used within Julia.

An easy solution is to have an dedicated build folder for providing amatching toolchain, bybuildingwithBUILD_LLVM_CLANG=1

and overriding LLVM_USE_CMAKE=1 (Autotool-based builds are incompatible with ASAN). You can then refer to this

toolchain from another build folder by specifying USECLANG=1while overriding the CC and CXX variables.

Address Sanitizer (ASAN)

Fordetecting ordebuggingmemorybugs, you can useClang’s address sanitizer (ASAN). BycompilingwithSANITIZE=1

you enable ASAN for the Julia compiler and its generated code. In addition, you can specify LLVM_SANITIZE=1 to

sanitize the LLVM library as well. Note that these options incur a high performance and memory cost. For example,

using ASAN for Julia and LLVMmakes testall1 takes 8-10 times as long while using 20 times as much memory (this

can be reduced to respectively a factor of 3 and 4 by using the options described below).

Bydefault, Julia sets the allow_user_segv_handler=1ASANflag,which is required for signal delivery towork prop-

erly. You can define other options using the ASAN_OPTIONS environment flag, in which case you’ll need to repeat the

default option mentioned before. For example, memory usage can be reduced by specifying fast_unwind_on_mal-

loc=0 and malloc_context_size=2, at the cost of backtrace accuracy. For now, Julia also sets detect_leaks=0,

but this should be removed in the future.

Memory Sanitizer (MSAN)

For detecting use of uninitialized memory, you can use Clang’s memory sanitizer (MSAN) by compiling with SANI-

TIZE_MEMORY=1.

http://clang.llvm.org/docs/AddressSanitizer.html
http://clang.llvm.org/docs/MemorySanitizer.html

	Contents
	Home
	Julia Documentation
	Manual
	Standard Library
	Developer Documentation

	Manual
	Introduction
	Getting Started
	Resources

	Variables
	Allowed Variable Names
	Stylistic Conventions

	Integers and Floating-Point Numbers
	Integers
	Overflow behavior
	Division errors

	Floating-Point Numbers
	Floating-point zero
	Special floating-point values
	Machine epsilon
	Rounding modes
	Background and References

	Arbitrary Precision Arithmetic
	Numeric Literal Coefficients
	Syntax Conflicts

	Literal zero and one

	Mathematical Operations and Elementary Functions
	Arithmetic Operators
	Bitwise Operators
	Updating operators
	Vectorized "dot" operators
	Numeric Comparisons
	Chaining comparisons
	Elementary Functions

	Operator Precedence
	Numerical Conversions
	Rounding functions
	Division functions
	Sign and absolute value functions
	Powers, logs and roots
	Trigonometric and hyperbolic functions
	Special functions

	Complex and Rational Numbers
	Complex Numbers
	Rational Numbers

	Strings
	Characters
	String Basics
	Unicode and UTF-8
	Concatenation
	Interpolation
	Triple-Quoted String Literals
	Common Operations
	Non-Standard String Literals
	Regular Expressions
	Byte Array Literals
	Version Number Literals
	Raw String Literals

	Functions
	Argument Passing Behavior
	The return Keyword
	Operators Are Functions
	Operators With Special Names
	Anonymous Functions
	Multiple Return Values
	Varargs Functions
	Optional Arguments
	Keyword Arguments
	Evaluation Scope of Default Values
	Do-Block Syntax for Function Arguments
	Dot Syntax for Vectorizing Functions
	Further Reading

	Control Flow
	Compound Expressions
	Conditional Evaluation
	Short-Circuit Evaluation
	Repeated Evaluation: Loops
	Exception Handling
	Built-in Exceptions
	The throw() function
	Errors
	Warnings and informational messages
	The try/catch statement
	finally Clauses

	Tasks (aka Coroutines)
	Core task operations
	Tasks and events
	Task states

	Scope of Variables
	Global Scope
	Local Scope
	Soft Local Scope
	Hard Local Scope
	Hard vs. Soft Local Scope
	Let Blocks
	For Loops and Comprehensions

	Constants

	Types
	Type Declarations
	Abstract Types
	Primitive Types
	Composite Types
	Mutable Composite Types
	Declared Types
	Type Unions
	Parametric Types
	Parametric Composite Types
	Parametric Abstract Types
	Tuple Types
	Vararg Tuple Types
	Parametric Primitive Types

	UnionAll Types
	Type Aliases
	Operations on Types
	Custom pretty-printing
	"Value types"
	Nullable Types: Representing Missing Values
	Constructing Nullable objects
	Checking if a Nullable object has a value
	Safely accessing the value of a Nullable object
	Performing operations on Nullable objects

	Methods
	Defining Methods
	Method Ambiguities
	Parametric Methods
	Redefining Methods
	Parametrically-constrained Varargs methods
	Note on Optional and keyword Arguments
	Function-like objects
	Empty generic functions
	Method design and the avoidance of ambiguities
	Tuple and NTuple arguments
	Orthogonalize your design
	Dispatch on one argument at a time
	Abstract containers and element types
	Complex method "cascades" with default arguments

	Constructors
	Outer Constructor Methods
	Inner Constructor Methods
	Incomplete Initialization
	Parametric Constructors
	Case Study: Rational
	Constructors and Conversion
	Outer-only constructors

	Conversion and Promotion
	Conversion
	Defining New Conversions
	Case Study: Rational Conversions

	Promotion
	Defining Promotion Rules
	Case Study: Rational Promotions

	Interfaces
	Iteration
	Indexing
	Abstract Arrays

	Modules
	Summary of module usage
	Modules and files
	Standard modules
	Default top-level definitions and bare modules
	Relative and absolute module paths
	Module file paths
	Namespace miscellanea
	Module initialization and precompilation

	Documentation
	Accessing Documentation
	Functions & Methods
	Advanced Usage
	Dynamic documentation

	Syntax Guide
	Functions and Methods
	Macros
	Types
	Modules
	Global Variables
	Multiple Objects
	Macro-generated code

	Markdown syntax
	Inline elements
	Toplevel elements

	Markdown Syntax Extensions

	Metaprogramming
	Program representation
	Symbols

	Expressions and evaluation
	Quoting
	Interpolation
	eval() and effects
	Functions on Expressions

	Macros
	Basics
	Hold up: why macros?
	Macro invocation
	Building an advanced macro
	Hygiene

	Code Generation
	Non-Standard String Literals
	Generated functions
	An advanced example

	Multi-dimensional Arrays
	Arrays
	Basic Functions
	Construction and Initialization
	Concatenation
	Typed array initializers
	Comprehensions
	Generator Expressions
	Indexing
	Assignment
	Supported index types
	Iteration
	Array traits
	Array and Vectorized Operators and Functions
	Broadcasting
	Implementation

	Sparse Matrices
	Compressed Sparse Column (CSC) Storage
	Sparse matrix constructors
	Sparse matrix operations
	Correspondence of dense and sparse methods

	Linear algebra
	Special matrices
	Elementary operations
	Matrix factorizations
	The uniform scaling operator

	Matrix factorizations

	Networking and Streams
	Basic Stream I/O
	Text I/O
	IO Output Contextual Properties
	Working with Files
	A simple TCP example
	Resolving IP Addresses

	Parallel Computing
	Code Availability and Loading Packages
	Data Movement

	Global variables
	Parallel Map and Loops
	Synchronization With Remote References
	Scheduling
	Channels
	Remote References and AbstractChannels
	Channels and RemoteChannels
	Remote References and Distributed Garbage Collection
	Shared Arrays
	Shared Arrays and Distributed Garbage Collection
	ClusterManagers
	Cluster Managers with Custom Transports
	Network Requirements for LocalManager and SSHManager
	Cluster Cookie
	Specifying Network Topology (Experimental)
	Multi-Threading (Experimental)
	Setup
	The @threads Macro

	@threadcall (Experimental)

	Date and DateTime
	Constructors
	Durations/Comparisons
	Accessor Functions
	Query Functions
	TimeType-Period Arithmetic
	Adjuster Functions
	Period Types
	Rounding
	Rounding Epoch

	Interacting With Julia
	The different prompt modes
	The Julian mode
	Help mode
	Shell mode
	Search modes

	Key bindings
	Customizing keybindings

	Tab completion
	Customizing Colors

	Running External Programs
	Interpolation
	Quoting
	Pipelines
	Avoiding Deadlock in Pipelines
	Complex Example

	Calling C and Fortran Code
	Creating C-Compatible Julia Function Pointers
	Mapping C Types to Julia
	Auto-conversion:
	Type Correspondences:
	Bits Types:
	Struct Type correspondences
	Type Parameters
	SIMD Values
	Memory Ownership
	When to use T, Ptr{T} and Ref{T}

	Mapping C Functions to Julia
	ccall/cfunction argument translation guide
	ccall/cfunction return type translation guide
	Passing Pointers for Modifying Inputs
	Special Reference Syntax for ccall (deprecated):

	Some Examples of C Wrappers
	Garbage Collection Safety
	Non-constant Function Specifications
	Indirect Calls
	Calling Convention
	Accessing Global Variables
	Accessing Data through a Pointer
	Thread-safety
	More About Callbacks
	C++

	Handling Operating System Variation
	Environment Variables
	File locations
	JULIA_HOME
	JULIA_LOAD_PATH
	JULIA_PKGDIR
	JULIA_HISTORY
	JULIA_PKGRESOLVE_ACCURACY

	External applications
	JULIA_SHELL
	JULIA_EDITOR

	Parallelization
	JULIA_CPU_CORES
	JULIA_WORKER_TIMEOUT
	JULIA_NUM_THREADS
	JULIA_THREAD_SLEEP_THRESHOLD
	JULIA_EXCLUSIVE

	REPL formatting
	JULIA_ERROR_COLOR
	JULIA_WARN_COLOR
	JULIA_INFO_COLOR
	JULIA_INPUT_COLOR
	JULIA_ANSWER_COLOR
	JULIA_STACKFRAME_LINEINFO_COLOR
	JULIA_STACKFRAME_FUNCTION_COLOR

	Debugging and profiling
	JULIA_GC_ALLOC_POOL, JULIA_GC_ALLOC_OTHER, JULIA_GC_ALLOC_PRINT
	JULIA_GC_NO_GENERATIONAL
	JULIA_GC_WAIT_FOR_DEBUGGER
	ENABLE_JITPROFILING
	JULIA_LLVM_ARGS
	JULIA_DEBUG_LOADING

	Embedding Julia
	High-Level Embedding
	Using julia-config to automatically determine build parameters

	Converting Types
	Calling Julia Functions
	Memory Management
	Manipulating the Garbage Collector

	Working with Arrays
	Accessing Returned Arrays
	Multidimensional Arrays

	Exceptions
	Throwing Julia Exceptions

	Packages
	Package Status
	Adding and Removing Packages
	Offline Installation of Packages
	Installing Unregistered Packages
	Updating Packages
	Checkout, Pin and Free
	Custom METADATA Repository

	Package Development
	Initial Setup
	Making changes to an existing package
	Documentation changes
	Code changes
	Dirty packages
	Making a branch post hoc
	Squashing and rebasing

	Creating a new Package
	REQUIRE speaks for itself
	Guidelines for naming a package
	Generating the package
	Loading Static Non-Julia Files
	Making Your Package Available
	Tagging and Publishing Your Package

	Fixing Package Requirements
	Requirements Specification

	Profiling
	Basic usage
	Accumulation and clearing
	Options for controlling the display of profile results
	Configuration

	Memory allocation analysis
	Stack Traces
	Viewing a stack trace
	Extracting useful information
	Error handling
	Comparison with backtrace()

	Performance Tips
	Avoid global variables
	Measure performance with @time and pay attention to memory allocation
	Tools
	Avoid containers with abstract type parameters
	Type declarations
	Avoid fields with abstract type
	Avoid fields with abstract containers
	Annotate values taken from untyped locations
	Declare types of keyword arguments

	Break functions into multiple definitions
	Write "type-stable" functions
	Avoid changing the type of a variable
	Separate kernel functions (aka, function barriers)
	Types with values-as-parameters
	The dangers of abusing multiple dispatch (aka, more on types with values-as-parameters)
	Access arrays in memory order, along columns
	Pre-allocating outputs
	More dots: Fuse vectorized operations
	Consider using views for slices
	Avoid string interpolation for I/O
	Optimize network I/O during parallel execution
	Fix deprecation warnings
	Tweaks
	Performance Annotations
	Treat Subnormal Numbers as Zeros
	@code_warntype

	Workflow Tips
	REPL-based workflow
	A basic editor/REPL workflow
	Simplify initialization

	Browser-based workflow

	Style Guide
	Write functions, not just scripts
	Avoid writing overly-specific types
	Handle excess argument diversity in the caller
	Append ! to names of functions that modify their arguments
	Avoid strange type Unions
	Avoid type Unions in fields
	Avoid elaborate container types
	Use naming conventions consistent with Julia's base/
	Don't overuse try-catch
	Don't parenthesize conditions
	Don't overuse ...
	Don't use unnecessary static parameters
	Avoid confusion about whether something is an instance or a type
	Don't overuse macros
	Don't expose unsafe operations at the interface level
	Don't overload methods of base container types
	Avoid type piracy
	Be careful with type equality
	Do not write x->f(x)
	Avoid using floats for numeric literals in generic code when possible

	Frequently Asked Questions
	Sessions and the REPL
	How do I delete an object in memory?
	How can I modify the declaration of a type in my session?

	Functions
	I passed an argument x to a function, modified it inside that function, but on the outside,
	Can I use using or import inside a function?
	What does the ... operator do?
	The two uses of the ... operator: slurping and splatting
	... combines many arguments into one argument in function definitions
	... splits one argument into many different arguments in function calls

	Types, type declarations, and constructors
	What does "type-stable" mean?
	Why does Julia give a DomainError for certain seemingly-sensible operations?
	Why does Julia use native machine integer arithmetic?
	What are the possible causes of an UndefVarError during remote execution?

	Packages and Modules
	What is the difference between "using" and "importall"?

	Nothingness and missing values
	How does "null" or "nothingness" work in Julia?

	Memory
	Why does x += y allocate memory when x and y are arrays?

	Asynchronous IO and concurrent synchronous writes
	Why do concurrent writes to the same stream result in inter-mixed output?

	Julia Releases
	Do I want to use a release, beta, or nightly version of Julia?
	When are deprecated functions removed?

	Noteworthy Differences from other Languages
	Noteworthy differences from MATLAB
	Noteworthy differences from R
	Noteworthy differences from Python
	Noteworthy differences from C/C++

	Unicode Input

	Standard Library
	Essentials
	Introduction
	Getting Around
	All Objects
	Types
	Generic Functions
	Syntax
	Nullables
	System
	Errors
	Events
	Reflection
	Internals

	Collections and Data Structures
	Iteration
	General Collections
	Iterable Collections
	Indexable Collections
	Associative Collections
	Set-Like Collections
	Dequeues

	Mathematics
	Mathematical Operators
	Mathematical Functions
	Statistics
	Signal Processing

	Numbers
	Standard Numeric Types
	Abstract number types
	Concrete number types

	Data Formats
	General Number Functions and Constants
	Integers

	BigFloats
	Random Numbers

	Strings
	Arrays
	Constructors and Types
	Basic functions
	Broadcast and vectorization
	Indexing and assignment
	Views (SubArrays and other view types)
	Concatenation and permutation
	Array functions
	Combinatorics
	BitArrays
	Sparse Vectors and Matrices

	Tasks and Parallel Computing
	Tasks
	General Parallel Computing Support
	Shared Arrays
	Multi-Threading
	ccall using a threadpool (Experimental)
	Synchronization Primitives
	Cluster Manager Interface

	Linear Algebra
	Standard Functions
	Low-level matrix operations
	BLAS Functions
	BLAS Character Arguments

	LAPACK Functions

	Constants
	Filesystem
	I/O and Network
	General I/O
	Text I/O
	Multimedia I/O
	Memory-mapped I/O
	Network I/O

	Punctuation
	Sorting and Related Functions
	Sorting Functions
	Order-Related Functions
	Sorting Algorithms

	Package Manager Functions
	Dates and Time
	Dates and Time Types
	Dates Functions
	Accessor Functions
	Query Functions
	Adjuster Functions
	Periods
	Rounding Functions
	Conversion Functions
	Constants

	Iteration utilities
	Unit Testing
	Testing Base Julia
	Basic Unit Tests
	Working with Test Sets
	Other Test Macros
	Broken Tests
	Creating Custom AbstractTestSet Types

	C Interface
	LLVM Interface
	C Standard Library
	Dynamic Linker
	Profiling
	StackTraces
	SIMD Support

	Developer Documentation
	Reflection and introspection
	Module bindings
	DataType fields
	Subtypes
	DataType layout
	Function methods
	Expansion and lowering
	Intermediate and compiled representations

	Documentation of Julia's Internals
	Initialization of the Julia runtime
	main()
	julia_init()
	true_main()
	Base._start
	Base.eval
	jl_atexit_hook()
	julia_save()

	Julia ASTs
	Lowered form
	Surface syntax AST

	More about types
	Types and sets (and Any and Union{}/Bottom)
	UnionAll types
	Free variables
	TypeNames
	Tuple types
	Diagonal types
	Subtyping diagonal variables
	Introduction to the internal machinery
	Subtyping and method sorting

	Memory layout of Julia Objects
	Object layout (jl_value_t)
	Garbage collector mark bits
	Object allocation

	Eval of Julia code
	Julia Execution
	Parsing
	Macro Expansion
	Type Inference
	JIT Code Generation
	System Image

	Calling Conventions
	Julia Native Calling Convention
	JL Call Convention
	C ABI

	High-level Overview of the Native-Code Generation Process
	Representation of Pointers
	Representation of Intermediate Values
	Union representation
	Specialized Calling Convention Signature Representation

	Julia Functions
	Method Tables
	Function calls
	Adding methods
	Creating generic functions
	Closures
	Constructors
	Builtins
	Keyword arguments
	Compiler efficiency issues

	Base.Cartesian
	Principles of usage
	Basic syntax

	Talking to the compiler (the :meta mechanism)
	SubArrays
	Indexing: cartesian vs. linear indexing
	Index replacement
	SubArray design

	System Image Building
	Building the Julia system image

	Working with LLVM
	Overview of Julia to LLVM Interface
	Building Julia with a different version of LLVM
	Passing options to LLVM
	Improving LLVM optimizations for Julia

	printf() and stdio in the Julia runtime
	Libuv wrappers for stdio
	Interface between JL_STD* and Julia code
	printf() during initialization
	Legacy ios.c library

	Bounds checking
	Eliding bounds checks
	Propagating inbounds
	The bounds checking call hierarchy

	Proper maintenance and care of multi-threading locks
	Locks
	Broken Locks
	Shared Global Data Structures

	Arrays with custom indices
	Generalizing existing code
	Writing custom array types with non-1 indexing
	Summary

	Base.LibGit2
	Module loading
	Experimental features

	Developing/debugging Julia's C code
	Reporting and analyzing crashes (segfaults)
	Version/Environment info
	Segfaults during bootstrap (sysimg.jl)
	Segfaults when running a script
	Errors during Julia startup
	Glossary

	gdb debugging tips
	Displaying Julia variables
	Useful Julia variables for Inspecting
	Useful Julia functions for Inspecting those variables
	Inserting breakpoints for inspection from gdb
	Inserting breakpoints upon certain conditions
	Dealing with signals
	Debugging during Julia's build process (bootstrap)
	Debugging precompilation errors
	Mozilla's Record and Replay Framework (rr)

	Using Valgrind with Julia
	General considerations
	Suppressions
	Running the Julia test suite under Valgrind
	Caveats

	Sanitizer support
	General considerations
	Address Sanitizer (ASAN)
	Memory Sanitizer (MSAN)

