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Abstract

In certain cases the shifted QR algorithm for real matrices converges slowly, if at all, when
implemented in finite precision arithmetic. These obstacles are traced to a family of orthgonal
similarity classes for which certain QR algorithms fail to converge on an open subset of a given
orthogonal similarity class. A modification to the QR algorithm is recommended with which the
resulting algorithm has only strongly repelling fixed points over R*** in the family of orthogonal
similarity classes considered in this work. It is also shown that the multi-shift QR algorithm
fails.
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1 Introduction And Summary

QR iteration is the method of choice for computing the eigenvalues of Hessenberg (i.e. H = (h; ;)
such that h; ; = 0 for ¢ > j 4 1) matrices [9, 13, 7, 2]. There is no convergence proof. Until recently
examples of failure were known in exact arithmetic only [3]. These results only apply to certain
shift strategy (to be discussed). Our results are first to show that QR iteration with any previously
published shift strategy may converge unacceptably slowly, if at all, when implemented in finite
precision arithmetic, and second to propose a new shift strategy for which convergence is rapid in
all cases known to the author.

Finite precision computation in this work refers to double precision arithmetic with machine
epsilon ¢ &2 2.2e — 16.

The EISPACK subroutine HQR (see [13]) is an implementation of the algorithm described in [9],
though an improved Exceptional shift is employed. The current implementations of HQR limit the
number of iterations for an n—by—n without a decoupling to 30n. In double precision arithmetic
these versions of HQR fail for

0 1 0 0
1 0 0

am=| 4 2, ¢ 1 (1)
0 0 1 0

such that 107 > 5 > 2 x 10~!*. This was observed by J. Demmel, and is the first example of
failure of HQR in finite precision arithmetic known to us. If no restriction is placed on the number
of iterations, then in finite precision arithmetic HQR is slowly (i.e. in 10* iterations) convergent for
all H(n). In this case the accuracy of the computed eigenvalues is unacceptably poor. In this article
we assume that there i1s no restriction on the number of iterations.

For HQR with the EISPACK exceptional shift strategy a matrix is given for which HQR still has
not converged after 10% iterations.



For HQR with the original shift strategy, the exceptional shifts suffice to map the iterates out
of the basin of non-convergence, but for 7 sufficiently small, the convergence is slow (i.e. over 10°
iterations for = 1077). In such cases the accuracy of any computed eigenvalues is unacceptably
poor.

In §3 a family of orthogonal similarity classes is identified on which certain QR algorithms fail
to converge on an open subset of a given orthogonal similarity class.

In §5 a modification 1s recommended with which the maximum number of QR iterations to
decouple any matrix known to us is 36. This algorithm has only strongly repelling fixed points over
R**% in the family of orthogonal similarity classes considered in this work.

In §6 a family of matrices related to H(n) (see equation (1)) but of arbitrary order n for which
multi-shift QR does not converge in 30n steps for n = 70, 80, and 90 in finite precision arithmetic.

2 QR Iterations

QR 1iteration determines a sequence {H(i)}izo of orthogonally similar Hessenberg matrices which
hopefully converge to a block upper triangular matrix. A general QR iteration passes from H() to
HG+D by
p(H®) = Qi R 9
HO+D = QT g, (2)

Qi R; 18 a factorization of p(H(i)) as orthogonal times upper triangular. If H() is Hessenberg then
HU+1) is Hessenberg [7]. Algorithms differ only in the definition of the monic polynomial p(.), called
the shift polynomeal. The term shift applies because a first degree monic polynomial is a translation
or shift.

HQR. is the composite algorithm

QRF Tteration ¢ {11,21} (3)
EX  Tteration € {11,21}

QRF selects the characteristic polynomial of the 2—by—2 South East (SE) submatrix of H as the
shift polynomial at each step.

QRF is not globally convergent [11, 9]. This is relieved in HQR by adding the Ezceptional shift
[9], denoted EX above.

Throughout this paper we shall use the notational conventions of [7].

2.1 Properties Of QR Algorithms

In this section we summarize the properties of Hessenberg QR algorithms used in later sections.

H is unreduced if no (k+1, k) entry vanishes. If I is reduced, the eigenvalue problem decouples.
The QR iteration, (2), is applied to unreduced submatrices of H. The purpose of a shift strategy is
to compute iterates that deflate in as few iterations as possible.

Certain properties of unreduced Hessenberg matrices are listed below.

1. If p(H®) is singular then H® is reduced [7].

2. Diagonal entries of R are uniquely determined only up their sign [7].

3. H® is determined to within a diagonal similarity by a real diagonal matrix D with +1’s along
the diagonal [7].

4. HUYD = DHO D=1 for a D as above iff p(H")) = scalar x orthogonal [11].

5. A sequence of QR steps with shift polynomials (pg(.)) is equivalent to a single iteration with

polynomial
I1#:0)
k



Property (1) shows that an ideal shift is a polynomial that annihilates an eigenvalue of H.
Towards this end, p(.) is usually the characteristic polynomial of a South East (SE) submatrix of
H at each step. This is called a generalized Rayleigh quotient shift [1]. The Rayleigh quotient
shift, translation by the SE element of H, is never a complex number and thus a poor shift for
nonsymmetric matrices. QRF (see equation 3) uses the next most simple shift, the generalized
Rayleigh quotient shift for the 2—by—2 SE submatrix.

The exceptional shift polynomial was originally defined to be p(¢) = ¢* — %6{’ + (3% where
B =|hpn-1| + |hn_1n-2] in [9]. Here H = (h; ;). The EISPACK implementation of HQR uses an
improved exceptional shift polynomial p(¢ — Ay, ») [13]. The results of this paper hold for either p(¢)
or p(¢ — hn n) [13].

Property (2) is given to motivate the 3rd property, and the 3rd is given to explain the presence
of D in the 4th. Property 4 describes the most simple failure mode for QR. The known examples of
the failure of QRF involve H and p(.) such that p(H)/||p(H)|| is orthogonal [11, 9, 3].

Practical implementations of QR are efficient because p(H) and R are not computed, but this
makes orthogonal p(H)/||p(H)|| undetectable.

By property (5) if several consecutive QR iterations do not decouple the QR iterates, a shift
polynomial of large degree 1s implicitly employed. As the degree of the shift polynomial increases it
may become possible for p(H)/||p(H)|| to be orthogonal. For example a cycle of period 2 in QRF
indicates that p;(H)p;1(H) is a multiple of an orthogonal matrix.

2.2 Representation Of Hessenberg Matrices

Any real n—by—n matrix H has a Schur decomposition H = Q7 SQ such that Q7@ = I. The real
Schur form S is real block upper triangular with 1—by—1 diagonal blocks for real eigenvalues, and
2—by—2 diagonal blocks for complex conjugate pairs of eigenvalues. Given a unit n-vector ¢, we can
form the matrix whose columns are the orbit of ¢ under S and compute its QR decomposition,

[QaSQa"'aSn_1Q]:QRa (4)

and form the Hessenberg matrix H = Q7 SQ. This construction defines a map
(S,q) — H

from the set of unit vectors to the set of Hessenberg matrices orthogonally similar to S [7]. This
result is known as the Tmplicit Q theorem. (S, q) — H is onto, but not one to one. The inconvenient
lack of injectivity is surmounted by working with the equivalence class, {¢}, of all unit n—vectors ¢
that correspond to the same Hessenberg matrix, H.

A QR iteration is equivalent to the power method in the sense that the following diagram
commutes:

H o H
| I
W "W
See [12, 3]. Here p(.) is the shift polynomial that corresponds to H under an arbitrary shift strategy,
and
i= pS)g
()l

3 Francis’ QR Iteration

In this section we explain why Francis’ QR iteration fails. Our technique is to apply the equivalence
of QRF to the power method (see §2.1). In §3.1 we determine the orthogonal similarity class to



analyze. The shift polynomial, p(.), is determined as a function of the power method starting
vector, ¢, in §3.2. In §3.2 we give a simple geometric characterization of the set of Hessenberg
matrices in a certain family of orthogonal similarity classes that are invariant under the QRF. In
§3.3 1t is shown that along a portion of the invariant set, the fixed points are attracting within the
orthogonal similar class. This implies that QRF fails on an open set within the orthogonal similarity
class. In §3.4 we show that certain fixed points are not strongly repelling in R***; this implies that
at best QRF converges extremely slowly on an open set in R**%,

Notation: A$ B =
A 0
0 B |’

Let @ = [q1, g2, . . ] denote the columns of the matrix Q.

3.1 A Schur-Hamiltonian Orthogonal Similarity Class

Property (4) of §2 applied to the matrix H(n) defined in equation (1) states that H(n) is a fixed
point for QR if and only if
p(H (n))/[|p(H ()]l

is orthogonal. We shall now see that H(7n) is not a fixed point. For @ such that n = 2sin(8), H(n)
has a real Schur form

2o | R(O) X(O)A
so=[ " 2 |

wo=[ 20 ma ] a=[h Y]

for

Since H(n) and S(#) are orthogonally similar, the matrix p(H(n))/||[p(H(n))|| is orthogonal iff
p(g(ﬁ))/Hp(g(H))H is orthogonal, which is the case iff R(#) commutes with X (#). This is not so, but
X(0) is near the commutator of R(f), namely the set of matrices of the form xR(w). That is, the
right family of orthogonal similarity classes to analyze is

()

(0,0, 1) = [ R(#) kR(w)A ] .

0 —RT(h)

This work concerns shift strategies for QR iteration in the family of orthogonal similarity classes
S(f,w, k). The squared matrix,

S2(0,w, k) = I cos(20) + (R(g) ® R(—g)) sin(20), (6)
has a single complex conjugate pair of eigenvalues and is orthogonal. This implies that S?(0,w, k)+61
is a scalar multiple of an orthogonal matrix for each é. If H is orthogonally similar to S(f,w, x) and
p(¢) = ¢* — ¢ + & is the shift polynomial, then H is invariant under QR if and only if 7 = 0 since
p(S(0,w, k) must be block diagonal. The locus of 7 = 0 will determined using the Theorem below
in §3.2.

The following notation will be used though out this work. Define —7 < o, 3 < 7 and 0 < v < 7/2
by

Ri-mpacont) | | oo

_ —a)ey cos(y _ cos(7) sin(«

TS Rt | T | sin)eos() | @
sin(y) sin(/)



As we shall now see; without loss of generality one may select a representative ¢ from the equivalence
class {q} for which 3 = 0. Because S(#,w, k) commutes with

def
¥y = R(n) & R(-n)
for each 7, the equivalence class of all unit vectors that ¢ correspond to a given Hessenberg H (see
§2.1) is the set such that v and « + 3 are constant.
Theorem. Unreduced Hessenberg matrices orthogonally similar to S(f,w, k) defined in equation (5)
are J-symmetric for

0 0 0 -1
0 0 1 0
7= 0 -1 0 0
10 0 0

Remark. In [10] the term “Schur-Hamiltonian” form is proposed for Schur forms such as S(6,w, x).
Proof. In the following #, w and x are constant and we simply write S for S(f,w,&). S is J-
symmetric, that is

R(

B 0 —0
TLRG -0 s

75 +w)A

IELE

1s symmetric.

An unreduced Hessenberg matrix orthogonally similar to S is of the form H = QT SQ for an
orthogonal matrix ) defined by

4,59, 5%¢,5°¢) = QR.

Here ¢ is a unit vector and R is upper triangular. For any Hessenberg H with Schur form S there
is at least one ¢ such that H = Q7 SQ (see §2.1).

We will show how to select a representative ¢ corresponding to a given H such that @ i1s J-
orthogonal (i.e. QTJQ =J ).

3, has two more relevant properties, namely

JYy =3_,J
and, like J, JX, is skew-symmetric,
(J)t = xlJ”
= -X_,J
= —JX,.
Thus, for each ¢ and 7, qTJEznq =0 and
(zq)" JS2pq = ¢"S_zJ%0q

= ¢"JSz4290=0.

To appreciate the significance of all this, bear in mind that equation (6) implies that S?¢q may be
replaced by Xz ¢ in the definition of ). Thus JX4,q = £¢4 for 5 such that (S)t JYoyq = 0.

We now show that such an n does exist. The identity AR(—f5) = R(5)A is helpful in the algebraic
manipulations required to derive that for each 7,

(Sq)T JE0,q = —sin(v)(2 cos(y) sin(f + B — o + 2n) + wsin(y) sin(26 + w + 2n)).

If 0+ 38— a =28+ wmod w, then choose 5 such that sin(28 + w + 25) = 0. Otherwise choose 5
such that n(0 4 5 %)
sm(é + 0 —a+2n K
. = Ztan(y). (8)
sin(28 + w + 27) 2




By a similar argument one can show that JXa,q2 = £¢3. Of course we are free to scale ¢3 and
q4 by —1 to obtain the desired sign. Given ¢ determine 5 so that equation (8) holds. The the initial
vector X, q corresponds to the orthogonal and J-orthogonal matrix X,(). Therefore

HJ = (3,Q)7S(Z,Q)J = (£,Q)" SJ(Z,Q)

1s symmetric O
Corollary Unreduced Hessenberg matrices, H, orthogonally similar to S(#) are of the form

hit his hiz  hig

hat1 has  haz —his )
0 hzz —haz hia |’
0 0 ha1  —hia

H =

3.2 QRF Invariant Matrices

In this section we determine a closed form expression for the QRF shift polynomial, p(¢), as a
function of S(#,w, k) and ¢. Using the Corollary p(¢) may be determined from H(1:2,1:2). The
QRF-invariant set is then determined in terms of either ¢ or H.

For clarity we introduce intermediate quantities v, o, p, and p defined in the table below.

Item Description
v v=q'S(0,w,k)q = h11
p | P20, p*=|IS(0,w, K)ql]” - v?
o o =|S(0,w, k)q|]* = p* + v?
Il p=q"%=500,w,k)q

The quantities p and v relate ¢z and ¢ by
qap = S(0,w,K)q — qu. (10)

S(f,w, k) has multiple eigenvalues if and only if ¢ is an integer multiple of 7/2, and in this case
any Hessenberg matrix orthogonally similar to S(6,w, ) is reduced. We will not discuss this case
further. In the remainder of this work we assume that 6 is not an integer multiple of 7/2. The fact
that S(,w, ) has no real eigenvalues (since sin(f) # 0) implies that p > 0.

Equation (10) expressed in matrix form is [¢, S(0,w, £)q] = [¢1, 2] R2 for Ra defined by

1 v
e[ 0]
The submatrix H(1:2,1:2) is determined from

[qla QZ]TS(ga W, K)[qla QZ]
= RZ_T[q, S0, w, /f)q]TS(H,w, k)¢, S0, w, ﬁ)q]Rz_l.

H(1:2,1:2)

For clarity we write S for S(f,w, k). Substitute equation (6) and then equation (10) to obtain

¢'sTs%q = qTST(I cos(26) + Yz sin(26))q
= wvcos(26) — psin(20),

and

¢ Sq g’ S%q _ v cos(26)
qTSTSq ¢TSTS?%g - o vcos(20) — psin(20) |-



Thus

—vfp 1/p o vcos(20) — psin(26) 0 1/p

b ][0 3]

H(1:2,1:2) = [ Lo H cos(20) Hl —u/p]

[ v cos(26)—v? ] (11)
= 4
—y—g A ’
p —v —sin(26) £
Now apply the Corollary to find that p(¢) = ¢* — 7({ + § for

T =sin(20) =, § = —cos(20) — vr. (12)

b[\,|t

The following identities can be verified by direct calculation.
v = cos(f) cos(27y) + cos(a + 3 + w)sin(2v)x/2 (13)

o =1+ ksin(2y)cos(a + B +w — 0) + k% sin?(y)
= —sin(f) cos(2y) — sin(a + 8 + w) sin(2v)x /2 (14)

Note that «, 3, w such that o + § + w is constant; we are free to assume f = w = 0. The QRF-
invariant set is the locus of ¢ = 0 and sin(#) # 0. For each «, 3, 0,w, x there exists v such that
p# = 0. For example if K = —2sin(f), then the QRF invariant set is the locus of cot(2y) = sin(a+w).
We select the representative ¢ from the equivalence class, a4+ 3 constant, for which 8 = 0. That
is,
cos(a) cos(y)
| sin(«) cos(y)
= sin(
0

The class of Hessenberg matrices orthogonally similar to S(6,w, x) is 2-dimensional and may be

parameterized by the angles (e, 7).
A closed form expression for the QRF invariant matrices in the orthogonal similarity class of S
will be required in §3.4. We derive this expression here. Because the orbit matrix may be expressed

[q,5¢,5%¢,5%q) = [q,5q], S°[q,5q] ],

H = QT5Q for Q2 = [q1, 2] and Q defined in the QR decomposition [@Q2, S2Q2] = QR. Equation (6)
and the hypothesis ¢ = 0 imply

Q7 S?Qz = I cos(20) + QT ¥=zQu = I cos(26).
Using equation (6) again we have
[g3, qa] = (S°Q2 — Q2 cos(26)) x scalar = Xz Qs.
Since S and the skew matrix Xz commute

QFsQ:  —QIYLsQs

QTSQ:  QISTsQu 1
H ]‘ QINTSQ.  QISQ. | (15)

T QIYESQ: QIYESY:Q:




Substitute equation (10), the hypothesis g = 0 and equation (6) to find

1
¢"'s5Sg = ;qTETgS(Sq —qv)
= —¢'¥L5%
_ Sln(?g)qTETlEz _ sin(26)
p =2 p

Substitute this equation and equation (11) into equation (15) to obtain

y cos(26)—v? 0 _ sin(26
P P
Y —v 0 0
H = 0 sin(26) v cos(26)—v? : (16)
P P
0 0 p —v

Popular implementations of HQR fail or converge extremely slowly for certain matrices of this type
discussed in §4.

3.3 QRF Dynamics

In this section we show that QRF fails to converge on an open set within certain orthogonal similarity
classes S = S(0,w, ). QRF iteration in an orthogonal similarity class of S = S(#,w, &) is shown to
be equivalent to a 2D vector field.

The following comments imply that a sufficient condition for an invariant curve within a smooth
vector field to be attracting is that the Jacobian have spectrum {1, A} for |A| < 1.

In the following we change from numerical linear algebra notation to mathematical analysis
notation. Qur hypotheses are that F : D C R? — R? is a smooth vector field with unique smooth
invariant curve ¢ : D C R — R; for each # € I, F(z,g(»)) = (x,9(x)). Moreover DF(x, g(z))
has eigenvalues 1 and A(z) and there exists zg € I such that |A(zg)| < 1. We claim that for (z,y)

k—oo

sufficiently near to (zo, g(20)), the iterates F*)(z,y) == (&, g(&)) for some & € I.
The sketch of the proof follows. Without loss of generality zg = 0 and for each » € I, g(x) = 0.
The smoothness of F' = (f1, f2) implies that

e = {5 G

is also smooth, but we only use the fact that §(z,y) = A(x) + O(Jz| + |y|). For this implies the
existence of ¢ < 1 such that for |#|+ |y| sufficiently small,

|f2(z, )] < e |yl

From this we see that {eZ F*(2,y)}x>1 converges to zero geometricly while {e{ F*(z,y)}x>1 remains
bounded. The desired stability result now follows from the bound

@) =Pl = @) - @0+ Pe0-Pewll < bl (1+1501).

In the remainder of this section we show determined the eigenvalues of the QRF Jacobian at a
fixed point. An example of parameter values for which 0 < A < 1 is given in § 4.2.



Fach point in the domain D = {(«,7) : —7 < o < 7,0 < v < 7/2} corresponds to a distinguished
representative of an equivalence class of initial vectors

cos(a) cos(y)
sin(a) cos(y)

= sin(7)
0

To each 4-vector v = (w, z,y, z)T there corresponds a

g(v) = (tan™" (x/w) + tan™"(z/y), tan ™" /(w? + 22) /(4> + 2?) ) € D.

The QRF vector iteration ¢ — p(S)q/||p(S)g|| induces a vector field f on D which could be defined
as f(a,v) = g(p(S)q), but we derive a simpler characterization below. At a fixed point, 4 = 0, 1 is
an eigenvalue of Df and we seek the other eigenvalue, A, which reveals the dynamics of QRF near
the invariant manifold.

Before taking any derivatives though we simplify p(S)g. The QRF shift polynomial is p({) =
¢? —7(+ 6 for 7 and & determined in equation (12). Substitute equation (6) below to find

p(S) = S*—Sr+1s6
—ST+ ¥z sin(260) 4+ 1(6 + cos(26))
= X= sin(20) — (S +vI)T

= YT +3(S+ VI);L—Z) sin(26).

We define f(a,v) = g(v) for
v:q—i—E%(S—I—VI)qpﬂ—z. (17)

Now for the derivative D, f = Dyg Dqv for Dy = [Dy, D,]. In general,

—x w —Z Y
D w2+x2 w2+x2 y2+22 y2+22
v§ = —w y2422 —z y2422 y w242 z w24z2 |
viv\ w2422 vTv\ w2+z? vTv y2422 vTv y2422

but evaluated at g = 0 substitute v = ¢ and there appears

_ [ sec(y)el Rla+ %) ese(y)e] R(5)
Dvg = [ —sin(y)ef R(a) cos(7y)e ] ’ (18)

One may verify that Dyg Dgq = I. Next differentiate equation (17) and substitute g = 0 to obtain

1 1
Dov = Daq+ Da (Eg(S—I—VI)qp—z) p+ (E%(S—I—Vf)qp—z) Vi
= Daq—I—E%(S—i—VI)q(Dau)p_z.

Surprisingly Dyg¥zq = 0. Multiplying equation (18) on the right by Yz and substituting equa-
tion (5) we have DygXzSq =

—sec(y)e! R(a) ese(y)et ] [ R(0 — a)ey cos(y) + £ R(w)ey sin(y) ]
—sin()el Ra+3) = cos()el R(Z) ~R(=0)ey sin(3)

A

10



Recall that 4 becomes a dependent variable to to ensure g = 0. Equation (14) evaluated at 7 =0
states that

= —sin(f) cos(2y) — sin(a + w) sin(2y)x/2,
and thus .
V= (—5 cos(av + w)sin(2y), —k sin(a + w) cos(2y) + 2sin(F) sin(?'y)) .
We have shown that
Dof =T+ (Dyvg)Ez5¢(Vi)p™>.

A matrix of this form has eigenvalues 1 and

p (19)

for ¢ = (V) Dyg Xz Sq. Substitute Vi and Dyg ¥z Sq to find

Collect terms with like powers of k and expand sin(2y) to eliminate tan(y) and there appears
¢ = wZsin?(y) (cos?(a 4 w) — sin’(a + w) cos(2y) )

+rsin(2y) (cos(a +w)cos() + sin(a + w)2sin?(y) sin(0) ). (20)

3.4 Analysis Of The QRF Invariant Set In R***

In exact arithmetic the eigenvalue A defined in equation 19 governs the dynamics of QRF iteration:

|[A\] <1 = Locally attracting invariant set
|[A\] >1 = Locally repelling invariant set.

QR iterates computed in finite precision arithmetic are approximately orthogonally similar (back-
ward stability). But a QR iterate computed in finite precision arithmetic may differ substantially
from the corresponding exact QR iterates. See [8] for a detailed discussion of this topic. Even if
|A| < 1, a QRF fixed point may ultimately be repelling in finite precision arithmetic. To understand
this, one must consider QR iteration both as a map within an orthogonal similarity class and as
a map over the space of n-by-n matrices, R"*". This work is the only analysis of QR to consider
dynamics over R®*™ known to the author.

QR iteration maps H = [h; ;] to QT HQ where p(H) = QR. In this section J = DgQT HQ is
analyzed. Each column of J corresponds to a

0

T
HQ.
7" Q

In §3.5.2 we determine that at a point on the QRF-invariant set the eigenvalues of J are {15, — 1, ;\}
where subscripts indicate multiplicities and

o— cpo;(?@). (21)

;\:1—1—

The 2-by-2 Jacobian of the QRF map restricted to S(#,w, k) also has one non-constant eigenvalue
A, but A # A

11



This spectral information implies that for matrices near a QRF-invariant matrix with A < 1 and
A< 1, the QRF iterates change slowly. In the parlance of the dynamics community, the invariant set
is either weakly repelling or weakly attracting. An example of parameter values for which 0 < A<l
is given in § 4.2.

In §3.4.1 we determine B, @, and R such that p(H) = B = QR. Next in §3.4.2 we show given B,
that @ = QS for a certain skew matrix S (not to be confused with the symplectic family S(6, w, )).

3.4.1 Q And R Along The QRF Invariant Set

For H orthogonally similar to S(f,w, k) and along the QRF invariant curve 7 = p = 0, there is a
surprisingly simple expression for (). For the following values of A and F, equation (16) may be

re-written
_ cos(2€)—1/2 :
H:[A E],A: 7]’E:sm(29)[01].

P

In this special case,

sz[g _Cl')]’ CIAZ_EzICOS(Qg)L D=AF— EA=sin(20)1.

Remarkably, cos(20) + 6 = 0 on the QRF invariant set (see equation (12)). Thus p(H) = @ sin(26)
and

3.4.2 Sensitivity Of QR

Let B be invertible; B = QR for Q* = Q! and R upper triangular with positive diagonal entries.
Suppose that B is a smooth function of a real parameter, ¢, with derivative B = D, B(t).

Q=1 = QR+QQ=0

= Q*Q 1s skew Hermitian. (22)
B=QR = B=0QR+OQR
= FYQBR'=RR+Q"Q. (23)

Split F'as FF = L 4+ D + U where L is strictly lower triangular and U is strictly upper triangular.

Define R .
R = RR™! = upper triangular with real diagonal.

Equation (23) implies that
FAF =(L+U)+(D+D)+U+L")=R+ R,

where the last equality is a consequence of equation (22). Thus

R:%(D—i—D)—i—(U—i—L*).

By equation (23),
_ 1 B
R = §(D -D)y+L-L"

F—
= Q =Q[L+V—-1SmD — L*]
R= [ReD + U + L*]R
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3.4.3 Eigen-Decomposition Of The QRF Jacobian Over R***
To determine J recall from §3.5.2 that for F = Q7B csc(20) =

0 I
[ I 0 ] (eie]»TH—i—HeiejT)csc(QH).

L is the strict lower triangular part of I' and S = L — L”. By the product rule,
0 - . .
QTHQ = QTHQ+Q"HQ+Q"HQ

Oh; ;
= QTHQ+QTHQ+QTHQ
= STQTHQ)+ (Q"HQ)S+Q"HQ
= STH+HS+QTHQ
= HS—SH+Q"eie] Q.

This matrix corresponds to a certain column of the Jacobian.
Similarly the H-derivative of the shift polynomial p(¢) = ¢* — {7+ § is

0 _ | 02 09 1 02 0
[3]12'7]'])(()]_ Te+a, T_[Oz Iz]’ A_[Oz —AT |-

In this notation,

0
ah—MB = eie]»TH + Heie]»T — HeZ»TTej + I4eZ»TAej
To save space we introduce the notation
_ cos(20) — v? b= sin(26)
p ’ o
In this notation the QRF-invariant matrices orthogonally similar to S(6) are of the form
v ¢ —¢
p -V
H =
¢ v &
p —v
Expand equation (24) to find
[ i B] _
6hi7j 1<i,j<4
W€ -6 g 6 w ¢ P ]
p p p p
3 3 3 3
¢ -6 p - 6 ¢ p 2w
¢ ¢ ¢ ¢
R
—¢ —p
v & —¢ p
p p
—¢ —¢ = —¢ =
=& —p —2v
3 3 —¢
L & —¢ p —v ¢ |
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For S(7) defined by

— 0SI)
Q= Q50
apply the result of §3.5.1 to obtain
po [S(i,j)] =
_ w ) -
3 p ¢
-2 =¢ —p —¢ p
—p —p —p
3 p
3 £ —2 ¢
—£ =& p
= —p 2w -9 —p
—p —2v —p —p
p = —p
v ¢ p
p p
-9 —p = —p
p —¢ —¢ & w
¢ ¢ 3 3
L 3 p =2 |

Due to the preservation of Hessenberg form under QR iteration the (3,1), (4,1) and (4,2) 4-by-4
blocks are not shown below. By equation (24),

9 _r —
pfb[ahin HQ] =

J 1<i<4, 1<5<2

ps —2we € —p* 2w(p-§)
-6 2w(p-¢) p*-¢
(E+p)o —2v¢ po
—p¢
ps —2we € —p* 2w(p-§)
-6 2w(p-¢) p*-¢
§o —2v¢
po
—p¢
and
p¢>[ 0 QTHQ] -
ahi,j 1<i<4, 3<j<4
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£+ po
—¢* —2v¢ =0
—wé —¢*—p®—pl  2pv —p¢
2pv p* + pt
¢° o po
—p9
—£9 ¢* —p*=p&  2pv
2pv p* + p
2o p° =& 2v(§ - p) po
£o 20(€ — p) &—r
=0 2v¢
peo
—po w9 pr=& 2w(E—p)
po E+p)o 2w(E—p) &-p°
=0 2v¢
L peo
This matrix is assembled into J using a map from the indices of entries of H to {1,...,13}. For the

map defined schematically by the matrix

110 5 9

122 7 6
8 3 11 |°

13 4

J is block upper triangular with block diagonal

0 1 0 -1 0 1
J6@_1@[1 o]@[—1 0]@[1 0]

for
poJe =
po —£¢ (E+p)o —po & —p* pP-¢&
po £ £ & —p* pP=¢
—£¢ —£¢ po pr—Er & —p?
—pp (E+p)o —&p po pr—E* & —p?
—¢*  —¢*—p*—pt plE+p) GE+p)  —E¢
—¢? = —pP—pt —p(E+p) pE+p)  pd
Next for
1
-1 1
Ly = 1 1 :
1 1
there holds diag(Ls, I2)Jsdiag(Ly*, I>) =
¢ £ £+ 52_ 2 2_52 -
1= 2; T Tp -1 p¢p ’ re
-1 1
1
1 1
_9% _9ttr _o  &2+074pe  E4p  Etp _£
p [ p PP [ p p
_9tte _&tp e 1
L P P P -




Transpose rows and columns 2 and 5, then 3 and 6 to obtain a block upper triangular matrix

block diagonal

0 1
J3 & [ 10 ] @1
where
Y 52—02 p2—f2
1 2p po L)
[ 4o p p p ’
—2% L
Lastly for
1 -1
UZ — |: 0 1 :| )
diag(1, Us)Jsdiag(1,U; ') is block lower triangular with block diagonal
1-28 €
[ _2gp ﬂg’ @1
2 I3

The 2-by-2 matrix has eigenvalues A =2 — ¢/p and —1.

4 Exceptional QR Shifts

Matrices invariant under QRF are known (see [11]) and examples of QRF attracting fixed points
within an orthogonal similarity class have been given for 3-by-3 matrices in [3]. HQR remains
efficient in these cases in part because QR iterations 11 and 21 use an exceptional shift instead of
QRF (see §2 or [9]. The EISPACK HQR implementation uses a modified exceptional shift. We are
indebted to W. Kahan who recalled that the HQR shift strategy was actually to use EX shifts every
10 1terations, but this was not implemented because in 1970 no one thought that more than 30 QR
iterations would ever be necessary. We discuss four versions of HQR, with original or EISPACK
exceptional shifts and with exceptional shifts at only steps 11 and 21 or at every 10th iteration. The
table below summarizes the worst case behavior known to the author in finite (double) precision
arithmetic;

Iterations | 11,21 | Every 10th
Original | > 10° > 10%
EISPACK | > 108 318

We define these strategies and demonstrate poor convergence behavior in an orthogonal similarity
class S(0,w, k) for each.

One fix to HQR is to use EISPACK exceptional shifts every 10 iterations, and substantially
increase the maximum number of allowed QR iterations. See §5 for more effective remedies.

4.1 The Original Exceptional Shift Strategy

The original exceptional shift polynomial proposed in [9] is

PO = S5+

where

6 = |hn,n—1| + |hn—1,n—2|~ (25)
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In the family of orthogonal similarity classes, S(#,w, k), investigated in this work, no unreduced
Hessenberg matrices are exactly invariant under this exceptional shift strategy. To see this, simply
recall that in an orthogonal similarity class, S(6,w,x), the QR fixed points are the unreduced
Hessenberg matrices for which the coefficient of ¢ in p(¢) vanishes, and observe that 3 > 0 if H is
uncoupled.

Nonetheless this version of the HQR algorithm does converge slowly for certain matrices. See
the table below. Our example of slow convergence assumes k = —2sin(#). In this case equation (14)
reduces to (f =w = 0)

p = sin(0)(— cos(2y) + sin(«) sin(27)).
Solve for ¢ = 0 to find that the QRF invariant set is the locus of cot(2v) = sin(«).

We choose (a,v) = (7/2,%/8) in our example for the following reason. The original exceptional
shift polynomial factors as

3 — —
¢F = SHCH B = (C— g7 (¢ peVTH),

for eV=1¥ = (3 ++/—T)/4. Thus this shift favors eigenvalues with positive real part. For matrices
in an orthogonal similarity class S(6,w, ), this exceptional shift tends to cause convergence to the
eigen-pair in the right half plane. The corresponding vector ¢ rotates towards v = 0. For this reason
convergence is delayed for the matrix in the orthogonal similarity class, S(#,0, —2sin(26)), for which
v is maximal, namely (o, ) = (7/2,7/8).

Table 1 below displays the number of QR iterations required to decouple the Hessenberg matrix
that corresponds to («,7) = (7/2,7/8) for three implementations of the QR algorithm, each using
the original exceptional shift. First we apply the entire shift strategy proposed in [9]: QRF at each
step save 11 and 21, which are Exceptional. In column 3 iteration counts for the case in which
exceptional shifts are taken at steps 10, 20, 30, - - - until convergence are given. Column 4 shows the
iteration count when QRF is modified as defined in §5; we call the algorithm that results QRW.

QR Tteration Count with Original Exceptional Shift

6 HQR: EX HQR: EX QRW
at steps 11,21 | every 10 steps
le—1 17 17 3
le — 2 26 26 3
le—3 78 44 2
le—4 5124 98 2
le—5 > 10° 242 2
le — 6 > 10° 611 2
le =7 > 10° 1547 2
le — 8 > 10° 3909 1
le—9 > 10° 9858 2
le — 10 > 10° > 10% 2

4.2 The EISPACK Exceptional Shift
The EISPACK implementation of HQR uses the exceptional shift polynomial

P(C - hn,n) = CZ - (th,n + gﬁ)c + (hn,n + 6)2 - hn,nﬁ/Q
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We claim that for p, v, p, o given in equations (14) and (13), the Hessenberg matrix that corresponds
to any given values of 8, k, «, v is given by

v cos(26)—v? Hcos(2€)—y2+p2 —2ur—sin(26)
P P \/02—N2 . \/P2—N22 .
— 1y — sin(20 % _% pusin(26)42vp _ pcos(28)—vi4p
H= P 12 Sln( )p P \/02—N2 P \/02—N2 ) (26)
. N/ p2—pu? . o cos(26)—v?
0 sin(20) 2 v+ sin(26) £ —
0 0 p —v

This identity will not be derived here, but is included to allow the reader to determine the Hessenberg
that corresponds to given values of 8, «, a, 7.
We consider the H that corresponds to

0 = .111866322512629152

& =1.08867072154101741
a = .338146383137297168
v = —.313987810419091240

H is (approximately) invariant under both QRF and the EISPACK Exceptional shift. I corresponds
to an attracting fixed point within the orthogonal similarity class, A ~ 7/10, and over R*** there
holds A a2 8/10. HQR with EISPACK Exceptional shift at iterations 11 and 21 does not converge
after up to 108 QR iterations. But with EISPACK Exceptional shifts every 10th iteration, the
number of QR iterations for convergence is 318, which is still much larger than the maximum
allowed number of iterations.

5 How To Fix QR

In general Francis’ double shift is the shift of lowest degree that well approximates complex eigenval-
ues without introducing complex arithmetic. To recover convergence in all known cases we selectively
shift by the eigenvalue, w, of the SE 2—by—2 sub-matrix nearest the SE element. We refer to this
shift strategy as a Wilkinson shift, because this is the shift strategy Wilkinson developed for the
Hermitian QR algorithm. In contrast to QRF, we denote by QRW the QR algorithm with this shift.
The term root refers exclusively to a root of a shift polynomial. There are two viable options as
to when to use QRW instead of QRF:
Option 1. Use QRW if A, ,_1hyp_1 0 > 0,
Option 2. Use QRW if p(.) has real roots.
We will discuss the following QR iterations in the family of orthogonal similarity classes S(0,w, k).

QRF Francis’ shift

QRW double Wilkinson shift

QR1 QRF or QRW as in Option 1

QR2 QRF or QRW as in Option 2
QRI1E, QR2E | Use EISPACK Exceptional shifts
QR10, QR20 | Use Original Exceptional shifts

We prove that in the family of orthogonal similarity classes S(0,w, ), QRIE and QRI1O possess
only strongly repelling (;\ > 2) fixed points over R**%. This explains why QR1E and QR10O are
observed to converge in finite precision arithmetic for matrices in the family of orthogonal similarity
classes S(0,w, k). Next we outline the argument that QR20 is also convergent in finite precision
arithmetic and give an example in which QR2E does not appear to converge.
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We claim that Option 1 is contrived so that QR1 has only strongly repelling fixed points over
R** in the family of orthogonal similarity classes S(0,w, k). Recall that the QRF shift polynomial
is p(¢) = ¢? — 7¢{ + & (see equation (12)). First we discuss the case in which the iteration is QRW.
On the invariant set is a subset of the locus of § = 0;

0=086=—cos(20) —vr = cos(20)=—vr.

The equation § = 0 also implies that the roots of p(.) are 0 and 7. Recall from equation (16) that
haa = —v. Thus
cos(26) >0 = w=r71#0.

Observe also from equation (16) that
h473h374 = COS(?H) — 1/2.

Thus
hashssa >0 = cos(26) >0,

which implies that there are no QRW fixed points. Second we discuss the case in which the iteration
is QRF. Only the QRF fixed points at which there holds cos(26) — v? < 0 remain fixed points
under Option 1, Note that equation (10) implies that o = p? + v?; Substitute this equation into
equation (21) to find, as desired, that

. — 20
A=1g Ty
P

24,2
p° 4+ v — cos(20) 59
p* -

Option 2 is natural, but the convergence properties of this family of algorithms depends on the
choice of Exceptional shift, original or EISPACK. The matrix specified by the parameter values

a=2.187, v =.3613369902224367, 0 = 1.1576, « = —4.356990028259095

is (approximately) invariant under QR2E; the Hessenberg appears invariant in finite precision arith-
metic after as many as 40000 HQR iterations with EISPACK Exceptional shifts every 10 iterations.
The Hessenberg that corresponds to any set of parameter values is given in equation (16).

QR20 appears to yield a convergent algorithm in finite precision arithmetic over the family of
orthogonal similarity classes S(#,w, k). We sketch the proof of convergence. The QRF invariant set,
¢ = 0, and unreal roots arise only if

§=—cos(20) >0 = cos(20) < 0.

In this case the QRF fixed points are repelling over R*** as above. The analysis of the QRW
invariant set is divided into two cases. In the first case, sin(26) is bounded away from 0; this implies
that 3 is “not small” and hence that the original Exceptional shift i1s effective. In the second case,
sin(26) is near 0, the QRW map within an orthogonal similarity classes S(#,w, k) has eigenvalues 1
and A on the invariant set such that

In words the QRW invariant set for sin(20) is near 0 is repelling within a given orthogonal similarity
class. Instead of a detailed proof we illustrate the ideas sketched with an example. For this algorithm
the maximum number of QR iterations observed in finite precision arithmetic is 36 (with either 2
or 3 Exceptional shifts) for the Hessenberg matrix that corresponds to the parameter values

a = 2.692793703076966, v = 3.203401609348687e — 08,

0 = 1.57079406646549, w =0, k= —7.194809726354949¢ + 07

19



*

w
o
T
L

25r b

= N
[$)] o
T T
*
I

Maximum Number Of QR lterations
S
T
K

80 100 120
Test Matrix

Figure 1: HQR (*) and QR20 (bar) Tterations for LAPACK Test Suite

In this case § defined in equation (25) is sufficiently large, 8 & .0037, that the first original Ex-
ceptional shift perturbs the matrix from the invariant set. On the other hand the invariant set is
already sufficiently repelling that QR2 converges in 32 iterations without Exceptional shifts.

In tests on matrices from the LAPACK test suite HQR required a maximum of 36 iterations
to decouple a sub-matrix, compared to a maximum of 20 iterations for QR20. Overall QR20 is
slightly faster than HQR. The performance of QR1E and QR10 is similar. The figure below shows
the maximum number of QR iterations to decouple a submatrix for the 21 matrices in the LAPACK
test suite; matrices of 8 different orders ranging from 4 to 64 were used.

QR20 may be implemented in LAPACK by adding fifteen lines to the subroutine SLAHQR.
After the lines

*

* Prepare to use Francis’ double shift

*

H44 = H( I , I)

H33 = H( I-1, I-1)

H43H34 = H( I , I-1 )*H( I-1, I )

S = H( I-1, I-2 )*H( I-1, I-2 )
add the lines

DISC = (H33 - H44) #* HALF

DISC = DISC * DISC + H43H34

IF( DISC.GT.ZERO )THEN

Real roots: wuse Wilkinson’s shift twice
DISC = sqrt( DISC )
AVE = HALF * ( H33 + H44 )

IF( ABS(H33) - ABS(H44) .GT. ZERO )THEN
H33 = H33 * H44 - H43H34
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H44
ELSE
H44
END IF
H33 = H44
H43H34 = ZERO
END If

H33/( SIGN( DISC, AVE ) + AVE )

SIGN( DISC, AVE ) + AVE

6 Multishift QR Fails

We take as the definition of multishift QR the subroutine HSEQR, from version 2.0 of LAPACK [1, 2].
To compute shifts HSEQR uses the LAPACK implementation of QR, LAHQR. In the examples at
hand LAHQR. frequently terminates without computing eigenvalues. For this reason we substituted
our version of LAHQR modified as described in the next section to converge in all known cases.

HSEQR terminates without computing the eigenvalues of certain n—by—n unreduced Hessenberg
matrices of the form H,, + nFE,, for H and E defined as follows.

. 0 1
Hn_dlag< 1 0).
En(2k+1,2k)=1for 1 <k <n/2, Fo(1,n) =1, and the other elements of F,, vanish.
The characteristic polynomial of H, + nE, is ¢* — n* for k = n/2 and ¢(¢) = ¢? — 1. From the
identity

and the observations ¢(H,) = 0, E2 = 0, and that H, E,, + E,H, is a permutation, we have that
1
n

is orthogonal. We expect HSEQR to fail in the orthogonal similarity class of H,, + nE, because, as
QR converges, the computed shift polynomials approximate powers of ¢. Known values of n and 5
for which the double precision implementation DHSEQR, fails are x-ed in the table below.

n n=10"" | np=10"1" | p=10""" | p=10"12
70 X

80 X X X

90 X X

In each x-ed case DHSEQR terminates after 30n iterations without decoupling. This is easy to fix;
if multi-shift QR, HSEQR, fails then use double shift QR, LAHQR.
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