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Contents1 Introduction And Summary 22 QR Iterations 32.1 Properties Of QR Algorithms : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 32.2 Representation Of Hessenberg Matrices : : : : : : : : : : : : : : : : : : : : : : : : : 43 Francis' QR Iteration 43.1 A Schur-Hamiltonian Orthogonal Similarity Class : : : : : : : : : : : : : : : : : : : : 53.2 QRF Invariant Matrices : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 73.3 QRF Dynamics : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 93.4 Analysis Of The QRF Invariant Set In R4�4 : : : : : : : : : : : : : : : : : : : : : : : 113.4.1 Q And R Along The QRF Invariant Set : : : : : : : : : : : : : : : : : : : : : 123.4.2 Sensitivity Of QR : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 123.4.3 Eigen-Decomposition Of The QRF Jacobian Over R4�4 : : : : : : : : : : : : 134 Exceptional QR Shifts 164.1 The Original Exceptional Shift Strategy : : : : : : : : : : : : : : : : : : : : : : : : : 164.2 The EISPACK Exceptional Shift : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 175 How To Fix QR 186 Multishift QR Fails 211 Introduction And SummaryQR iteration is the method of choice for computing the eigenvalues of Hessenberg (i.e. H = (hi;j)such that hi;j = 0 for i > j + 1) matrices [9, 13, 7, 2]. There is no convergence proof. Until recentlyexamples of failure were known in exact arithmetic only [3]. These results only apply to certainshift strategy (to be discussed). Our results are �rst to show that QR iteration with any previouslypublished shift strategy may converge unacceptably slowly, if at all, when implemented in �niteprecision arithmetic, and second to propose a new shift strategy for which convergence is rapid inall cases known to the author.Finite precision computation in this work refers to double precision arithmetic with machineepsilon � � 2:2e� 16.The EISPACK subroutine HQR (see [13]) is an implementation of the algorithm described in [9],though an improved Exceptional shift is employed. The current implementations of HQR limit thenumber of iterations for an n�by�n without a decoupling to 30n. In double precision arithmeticthese versions of HQR fail for H(�) = 0BB@ 0 1 0 01 0 � 00 �� 0 10 0 1 0 1CCA (1)such that 10�6 � � � 2 � 10�14. This was observed by J. Demmel, and is the �rst example offailure of HQR in �nite precision arithmetic known to us. If no restriction is placed on the numberof iterations, then in �nite precision arithmetic HQR is slowly (i.e. in 104 iterations) convergent forall H(�). In this case the accuracy of the computed eigenvalues is unacceptably poor. In this articlewe assume that there is no restriction on the number of iterations.For HQR with the EISPACK exceptional shift strategy a matrix is given for which HQR still hasnot converged after 108 iterations. 2



For HQR with the original shift strategy, the exceptional shifts su�ce to map the iterates outof the basin of non-convergence, but for � su�ciently small, the convergence is slow (i.e. over 105iterations for � = 10�7). In such cases the accuracy of any computed eigenvalues is unacceptablypoor.In x3 a family of orthogonal similarity classes is identi�ed on which certain QR algorithms failto converge on an open subset of a given orthogonal similarity class.In x5 a modi�cation is recommended with which the maximum number of QR iterations todecouple any matrix known to us is 36. This algorithm has only strongly repelling �xed points overR4�4 in the family of orthogonal similarity classes considered in this work.In x6 a family of matrices related to H(�) (see equation (1)) but of arbitrary order n for whichmulti-shift QR does not converge in 30n steps for n = 70, 80, and 90 in �nite precision arithmetic.2 QR IterationsQR iteration determines a sequence fH(i)gi�0 of orthogonally similar Hessenberg matrices whichhopefully converge to a block upper triangular matrix. A general QR iteration passes from H(i) toH(i+1) by � p(H(i)) = QiRiH(i+1) = QTi H(i)Qi (2)QiRi is a factorization of p(H(i)) as orthogonal times upper triangular. If H(i) is Hessenberg thenH(i+1) is Hessenberg [7]. Algorithms di�er only in the de�nition of the monic polynomial p(:), calledthe shift polynomial. The term shift applies because a �rst degree monic polynomial is a translationor shift.HQR is the composite algorithm� QRF Iteration 62 f11; 21gEX Iteration 2 f11; 21g (3)QRF selects the characteristic polynomial of the 2�by�2 South East (SE) submatrix of H as theshift polynomial at each step.QRF is not globally convergent [11, 9]. This is relieved in HQR by adding the Exceptional shift[9], denoted EX above.Throughout this paper we shall use the notational conventions of [7].2.1 Properties Of QR AlgorithmsIn this section we summarize the properties of Hessenberg QR algorithms used in later sections.H is unreduced if no (k+1; k) entry vanishes. If H is reduced, the eigenvalue problem decouples.The QR iteration, (2), is applied to unreduced submatrices of H. The purpose of a shift strategy isto compute iterates that de
ate in as few iterations as possible.Certain properties of unreduced Hessenberg matrices are listed below.1. If p(H(i)) is singular then H(i) is reduced [7].2. Diagonal entries of R are uniquely determined only up their sign [7].3. H(i) is determined to within a diagonal similarity by a real diagonal matrix D with �1's alongthe diagonal [7].4. H(i+1) = DH(i)D�1 for a D as above i� p(H(i)) = scalar � orthogonal [11].5. A sequence of QR steps with shift polynomials (pk(:)) is equivalent to a single iteration withpolynomial Yk pk(:):3



Property (1) shows that an ideal shift is a polynomial that annihilates an eigenvalue of H.Towards this end, p(:) is usually the characteristic polynomial of a South East (SE) submatrix ofH at each step. This is called a generalized Rayleigh quotient shift [1]. The Rayleigh quotientshift, translation by the SE element of H, is never a complex number and thus a poor shift fornonsymmetric matrices. QRF (see equation 3) uses the next most simple shift, the generalizedRayleigh quotient shift for the 2�by�2 SE submatrix.The exceptional shift polynomial was originally de�ned to be p(�) = �2 � 32�� + �2 where� = jhn;n�1j + jhn�1;n�2j in [9]. Here H = (hi;j). The EISPACK implementation of HQR uses animproved exceptional shift polynomial p(��hn;n) [13]. The results of this paper hold for either p(�)or p(� � hn;n) [13].Property (2) is given to motivate the 3rd property, and the 3rd is given to explain the presenceof D in the 4th. Property 4 describes the most simple failure mode for QR. The known examples ofthe failure of QRF involve H and p(:) such that p(H)=kp(H)k is orthogonal [11, 9, 3].Practical implementations of QR are e�cient because p(H) and R are not computed, but thismakes orthogonal p(H)=kp(H)k undetectable.By property (5) if several consecutive QR iterations do not decouple the QR iterates, a shiftpolynomial of large degree is implicitly employed. As the degree of the shift polynomial increases itmay become possible for p(H)=kp(H)k to be orthogonal. For example a cycle of period 2 in QRFindicates that pi(H(i))pi+1(H(i)) is a multiple of an orthogonal matrix.2.2 Representation Of Hessenberg MatricesAny real n�by�n matrix H has a Schur decomposition H = QTSQ such that QTQ = I. The realSchur form S is real block upper triangular with 1�by�1 diagonal blocks for real eigenvalues, and2�by�2 diagonal blocks for complex conjugate pairs of eigenvalues. Given a unit n-vector q, we canform the matrix whose columns are the orbit of q under S and compute its QR decomposition,[q; Sq; � � � ; Sn�1q] = QR; (4)and form the Hessenberg matrix H = QTSQ. This construction de�nes a map(S; q) �! Hfrom the set of unit vectors to the set of Hessenberg matrices orthogonally similar to S [7]. Thisresult is known as the Implicit Q theorem. (S; q) �! H is onto, but not one to one. The inconvenientlack of injectivity is surmounted by working with the equivalence class, fqg, of all unit n�vectors qthat correspond to the same Hessenberg matrix, H.A QR iteration is equivalent to the power method in the sense that the following diagramcommutes: H QR�! Ĥ# "fqg p(S)q�! fq̂gSee [12, 3]. Here p(:) is the shift polynomial that corresponds to H under an arbitrary shift strategy,and q̂ = p(S)qkp(S)qk :3 Francis' QR IterationIn this section we explain why Francis' QR iteration fails. Our technique is to apply the equivalenceof QRF to the power method (see x2.1). In x3.1 we determine the orthogonal similarity class to4



analyze. The shift polynomial, p(:), is determined as a function of the power method startingvector, q, in x3.2. In x3.2 we give a simple geometric characterization of the set of Hessenbergmatrices in a certain family of orthogonal similarity classes that are invariant under the QRF. Inx3.3 it is shown that along a portion of the invariant set, the �xed points are attracting within theorthogonal similar class. This implies that QRF fails on an open set within the orthogonal similarityclass. In x3.4 we show that certain �xed points are not strongly repelling in R4�4; this implies thatat best QRF converges extremely slowly on an open set in R4�4.Notation: A� B = � A 00 B � :Let Q = [q1; q2; : : :] denote the columns of the matrix Q.3.1 A Schur-Hamiltonian Orthogonal Similarity ClassProperty (4) of x2 applied to the matrix H(�) de�ned in equation (1) states that H(�) is a �xedpoint for QR if and only if p(H(�))=kp(H(�))kis orthogonal. We shall now see that H(�) is not a �xed point. For � such that � = 2 sin(�), H(�)has a real Schur form ~S(�) = � R(�) X(�)�0 �RT (�) �for R(�) = � cos(�) sin(�)� sin(�) cos(�) � ; � = � 1 00 �1 � :Since H(�) and ~S(�) are orthogonally similar, the matrix p(H(�))=kp(H(�))k is orthogonal i�p( ~S(�))=kp( ~S(�))k is orthogonal, which is the case i� R(�) commutes with X(�). This is not so, butX(�) is near the commutator of R(�), namely the set of matrices of the form �R(!). That is, theright family of orthogonal similarity classes to analyze isS(�; !; �) = � R(�) �R(!)�0 �RT (�) � : (5)This work concerns shift strategies for QR iteration in the family of orthogonal similarity classesS(�; !; �). The squared matrix,S2(�; !; �) = I cos(2�) + (R(�2 ) �R(��2 )) sin(2�); (6)has a single complex conjugate pair of eigenvalues and is orthogonal. This implies that S2(�; !; �)+�Iis a scalar multiple of an orthogonal matrix for each �. If H is orthogonally similar to S(�; !; �) andp(�) = �2 � �� + � is the shift polynomial, then H is invariant under QR if and only if � = 0 sincep(S(�; !; �)) must be block diagonal. The locus of � = 0 will determined using the Theorem belowin x3.2.The following notation will be used though out this work. De�ne �� � �; � < � and 0 � 
 � �=2by q = � R(��)e1 cos(
)R(��)e1 sin(
) � = 2664 cos(
) cos(�)cos(
) sin(�)sin(
) cos(�)sin(
) sin(�) 3775 : (7)5



As we shall now see, without loss of generality one may select a representative q from the equivalenceclass fqg for which � = 0. Because S(�; !; �) commutes with�� def= R(�)� R(��)for each �, the equivalence class of all unit vectors that q correspond to a given Hessenberg H (seex2.1) is the set such that 
 and �+ � are constant.Theorem. Unreduced Hessenberg matrices orthogonally similar to S(�; !; �) de�ned in equation (5)are J-symmetric for J = 2664 0 0 0 �10 0 1 00 �1 0 01 0 0 0 3775 :Remark. In [10] the term \Schur-Hamiltonian" form is proposed for Schur forms such as S(�; !; �).Proof. In the following �, ! and � are constant and we simply write S for S(�; !; �). S is J-symmetric, that is JS = � 0 R(�2 � �)RT (�2 � �) ��R(�2 + !)� �is symmetric.An unreduced Hessenberg matrix orthogonally similar to S is of the form H = QTSQ for anorthogonal matrix Q de�ned by [q; Sq; S2q; S3q] = QR:Here q is a unit vector and R is upper triangular. For any Hessenberg H with Schur form S thereis at least one q such that H = QTSQ (see x2.1).We will show how to select a representative q corresponding to a given H such that Q is J-orthogonal (i.e. QTJQ = J ).�� has two more relevant properties, namelyJ�� = ���Jand, like J , J�� is skew-symmetric, (J��)T = �T� JT= ����J= �J��:Thus, for each q and �, qTJ�2�q = 0 and(��2 q)T J�2�q = qT���2 J�2�q= qTJ��2+2�q = 0:To appreciate the signi�cance of all this, bear in mind that equation (6) implies that S2q may bereplaced by ��2 q in the de�nition of Q. Thus J�2�q = �q4 for � such that (Sq)T J�2�q = 0.We now show that such an � does exist. The identity �R(��) = R(�)� is helpful in the algebraicmanipulations required to derive that for each �,(Sq)T J�2�q = � sin(
)(2 cos(
) sin(� + � � �+ 2�) + � sin(
) sin(2� + ! + 2�)):If � + � � � � 2� + ! mod �, then choose � such that sin(2� + ! + 2�) = 0. Otherwise choose �such that sin(� + � � �+ 2�)sin(2� + ! + 2�) = �2 tan(
): (8)6



By a similar argument one can show that J�2�q2 = �q3. Of course we are free to scale q3 andq4 by �1 to obtain the desired sign. Given q determine � so that equation (8) holds. The the initialvector ��q corresponds to the orthogonal and J-orthogonal matrix ��Q. ThereforeHJ = (��Q)TS(��Q)J = (��Q)TSJ(��Q)is symmetric 2Corollary Unreduced Hessenberg matrices, H, orthogonally similar to S(�) are of the formH = 2664 h1;1 h1;2 h1;3 h1;4h2;1 h2;2 h2;3 �h1;30 h3;2 �h2;2 h1;20 0 h2;1 �h1;1 3775 : (9)3.2 QRF Invariant MatricesIn this section we determine a closed form expression for the QRF shift polynomial, p(�), as afunction of S(�; !; �) and q. Using the Corollary p(�) may be determined from H(1 : 2; 1 : 2). TheQRF-invariant set is then determined in terms of either q or H.For clarity we introduce intermediate quantities �, �, �, and � de�ned in the table below.Item Description� � = qTS(�; !; �)q = h1;1� � � 0; �2 = kS(�; !; �)qk2 � �2� � = kS(�; !; �)qk2 = �2 + �2� � = qT��2 S(�; !; �)qThe quantities � and � relate q2 and q byq2� = S(�; !; �)q � q�: (10)S(�; !; �) has multiple eigenvalues if and only if � is an integer multiple of �=2, and in this caseany Hessenberg matrix orthogonally similar to S(�; !; �) is reduced. We will not discuss this casefurther. In the remainder of this work we assume that � is not an integer multiple of �=2. The factthat S(�; !; �) has no real eigenvalues (since sin(�) 6= 0) implies that � > 0.Equation (10) expressed in matrix form is [q; S(�; !; �)q] = [q1; q2]R2 for R2 de�ned byR2 = � 1 �0 � � :The submatrix H(1 : 2; 1 : 2) is determined fromH(1 : 2; 1 : 2) = [q1; q2]TS(�; !; �)[q1; q2]= R�T2 [q; S(�; !; �)q]TS(�; !; �)[q; S(�; !; �)q]R�12 :For clarity we write S for S(�; !; �). Substitute equation (6) and then equation (10) to obtainqTSTS2q = qTST (I cos(2�) + ��2 sin(2�))q= � cos(2�) � � sin(2�);and � qTSq qTS2qqTSTSq qTSTS2q � = � � cos(2�)� � cos(2�) � � sin(2�) � :7



Thus H(1 : 2; 1 : 2) = � 1 0��=� 1=� �� � cos(2�)� � cos(2�) � � sin(2�) � � 1 ��=�0 1=� �= � � cos(2�)� ��� sin(2�) � � 1 ��=�0 1=� �= " � cos(2�)��2�� �� � sin(2�) ��2 # : (11)Now apply the Corollary to �nd that p(�) = �2 � �� + � for� = sin(2�) ��2 ; � = � cos(2�) � ��: (12)The following identities can be veri�ed by direct calculation.� = cos(�) cos(2
) + cos(�+ � + !) sin(2
)�=2 (13)� = 1 + � sin(2
) cos(�+ � + ! � �) + �2 sin2(
)� = � sin(�) cos(2
) � sin(� + � + !) sin(2
)�=2 (14)Note that �, �, ! such that � + � + ! is constant; we are free to assume � = ! = 0. The QRF-invariant set is the locus of � = 0 and sin(�) 6= 0. For each �; �; �; !; � there exists 
 such that� = 0. For example if � = �2 sin(�), then the QRF invariant set is the locus of cot(2
) = sin(�+!).We select the representative q from the equivalence class, �+ � constant, for which � = 0. Thatis, q = 2664 cos(�) cos(
)sin(�) cos(
)sin(
)0 3775 :The class of Hessenberg matrices orthogonally similar to S(�; !; �) is 2-dimensional and may beparameterized by the angles (�; 
).A closed form expression for the QRF invariant matrices in the orthogonal similarity class of Swill be required in x3.4. We derive this expression here. Because the orbit matrix may be expressed[q; Sq; S2q; S3q] = [ [q; Sq]; S2[q; Sq] ];H = QTSQ for Q2 = [q1; q2] and Q de�ned in the QR decomposition [Q2; S2Q2] = QR. Equation (6)and the hypothesis � = 0 implyQT2 S2Q2 = I cos(2�) + QT2��2Q2 = I cos(2�):Using equation (6) again we have[q3; q4] = (S2Q2 � Q2 cos(2�)) � scalar = ��2Q2:Since S and the skew matrix ��2 commuteH = � QT2 SQ2 QT2 S��2Q2QT2�T�2 SQ2 QT2�T�2 S��2Q2 � = " QT2 SQ2 �QT2 �T�2 SQ2QT2 �T�2 SQ2 QT2 SQ2 # : (15)8



Substitute equation (10), the hypothesis � = 0 and equation (6) to �ndqT�T�2 Sq2 = 1� qT�T�2 S(Sq � q�)= 1� qT�T�2 S2q= sin(2�)� qT�T�2 ��2 q = sin(2�)� :Substitute this equation and equation (11) into equation (15) to obtainH = 26664 � cos(2�)��2� 0 � sin(2�)�� �� 0 00 sin(2�)� � cos(2�)��2�0 0 � �� 37775 : (16)Popular implementations of HQR fail or converge extremely slowly for certain matrices of this typediscussed in x4.3.3 QRF DynamicsIn this section we show that QRF fails to converge on an open set within certain orthogonal similarityclasses S = S(�; !; �). QRF iteration in an orthogonal similarity class of S = S(�; !; �) is shown tobe equivalent to a 2D vector �eld.The following comments imply that a su�cient condition for an invariant curve within a smoothvector �eld to be attracting is that the Jacobian have spectrum f1; �g for j�j < 1.In the following we change from numerical linear algebra notation to mathematical analysisnotation. Our hypotheses are that F : D � R2 ! R2 is a smooth vector �eld with unique smoothinvariant curve g : D � R ! R; for each x 2 I, F (x; g(x)) = (x; g(x)). Moreover DF (x; g(x))has eigenvalues 1 and �(x) and there exists x0 2 I such that j�(x0)j < 1. We claim that for (x; y)su�ciently near to (x0; g(x0)), the iterates F (k)(x; y) k!1�! (x̂; g(x̂)) for some x̂ 2 I.The sketch of the proof follows. Without loss of generality x0 = 0 and for each x 2 I, g(x) = 0.The smoothness of F = (f1; f2) implies that�(x; y) = � f2(x; y)=y if y 6= 0�(x) if y = 0is also smooth, but we only use the fact that �(x; y) = �(x) + O(jxj + jyj). For this implies theexistence of c < 1 such that for jxj+ jyj su�ciently small,jf2(x; y)j � c jyj:From this we see that feT2 F k(x; y)gk�1 converges to zero geometricly while feT1 F k(x; y)gk�1 remainsbounded. The desired stability result now follows from the boundk(x; y) � F (x; y)k = k(x; y) � (x; 0) + F (x; 0)� F (x; y)k � jyj �1 + k@F@y k� :In the remainder of this section we show determined the eigenvalues of the QRF Jacobian at a�xed point. An example of parameter values for which 0 < � < 1 is given in x 4.2.9



Each point in the domainD = f(�; 
) : �� � � < �; 0 � 
 < �=2g corresponds to a distinguishedrepresentative of an equivalence class of initial vectorsq = 2664 cos(�) cos(
)sin(�) cos(
)sin(
)0 3775 :To each 4-vector v = (w; x; y; z)T there corresponds ag(v) = (tan�1(x=w) + tan�1(z=y); tan�1p(w2 + x2)=(y2 + z2) ) 2 D:The QRF vector iteration q 7! p(S)q=kp(S)qk induces a vector �eld f on D which could be de�nedas f(�; 
) = g(p(S)q), but we derive a simpler characterization below. At a �xed point, � = 0, 1 isan eigenvalue of Df and we seek the other eigenvalue, �, which reveals the dynamics of QRF nearthe invariant manifold.Before taking any derivatives though we simplify p(S)q. The QRF shift polynomial is p(�) =�2 � �� + � for � and � determined in equation (12). Substitute equation (6) below to �ndp(S) = S2 � S� + I�= �S� + ��2 sin(2�) + I(� + cos(2�))= ��2 sin(2�) � (S + �I)�= �T�2 (I + ��2 (S + �I) ��2 ) sin(2�):We de�ne f(�; 
) = g(v) for v = q +��2 (S + �I)q ��2 : (17)Now for the derivative Daf = Dvg Dav for Da = [D�; D
 ]. In general,Dvg = " �xw2+x2 ww2+x2 �zy2+z2 yy2+z2�wvTvq y2+z2w2+x2 �xvTvq y2+z2w2+x2 yvTvqw2+x2y2+z2 zvTvqw2+x2y2+z2 # ;but evaluated at � = 0 substitute v = q and there appearsDvg = � sec(
)eT1 R(�+ �2 ) csc(
)eT1 R(�2 )� sin(
)eT1 R(�) cos(
)eT1 � ; (18)One may verify that Dvg Daq = I. Next di�erentiate equation (17) and substitute � = 0 to obtainDav = Daq +Da ���2 (S + �I)q 1�2�� +���2 (S + �I)q 1�2�r�= Daq +��2 (S + �I)q(Da�)��2:Surprisingly Dvg��2 q = 0. Multiplying equation (18) on the right by ��2 and substituting equa-tion (5) we have Dvg��2 Sq =� � sec(
)eT1 R(�) csc(
)eT1� sin(
)eT1 R(�+ �2 ) � cos(
)eT1 R(�2 ) � � R(� � �)e1 cos(
) + �R(!)e1 sin(
)�R(��)e1 sin(
) � =� �� cos(�+ !) tan(
) � 2 cos(�)� sin(�+ !) sin2(
) � :10



Recall that 
 becomes a dependent variable to to ensure � = 0. Equation (14) evaluated at � = 0states that � = � sin(�) cos(2
) � sin(�+ !) sin(2
)�=2;and thus r� = ���2 cos(�+ !) sin(2
);�� sin(�+ !) cos(2
) + 2 sin(�) sin(2
)� :We have shown that Daf = I + (Dvg)��2 Sq(r�)��2:A matrix of this form has eigenvalues 1 and� = 1 +  �2 (19)for  = (r�) Dvg ��2 Sq. Substitute r� and Dvg ��2 Sq to �nd = �22 cos2(�+ !) tan(
) sin(2
) + � cos(�+ !) sin(2
) cos(�)� �2 sin2(�+ !) sin2(
) cos(2
) + 2� sin(�+ !) sin(2
) sin2(
) sin(�):Collect terms with like powers of � and expand sin(2
) to eliminate tan(
) and there appears = �2 sin2(
) (cos2(�+ !) � sin2(�+ !) cos(2
) )+� sin(2
) (cos(�+ !) cos(�) + sin(�+ !)2 sin2(
) sin(�) ): (20)3.4 Analysis Of The QRF Invariant Set In R4�4In exact arithmetic the eigenvalue � de�ned in equation 19 governs the dynamics of QRF iteration:j�j < 1 ) Locally attracting invariant setj�j > 1 ) Locally repelling invariant set:QR iterates computed in �nite precision arithmetic are approximately orthogonally similar (back-ward stability). But a QR iterate computed in �nite precision arithmetic may di�er substantiallyfrom the corresponding exact QR iterates. See [8] for a detailed discussion of this topic. Even ifj�j < 1, a QRF �xed point may ultimately be repelling in �nite precision arithmetic. To understandthis, one must consider QR iteration both as a map within an orthogonal similarity class and asa map over the space of n-by-n matrices, Rn�n. This work is the only analysis of QR to considerdynamics over Rn�n known to the author.QR iteration maps H = [hi;j] to QTHQ where p(H) = QR. In this section J = DHQTHQ isanalyzed. Each column of J corresponds to a@@hi;jQTHQ:In x3.5.2 we determine that at a point on the QRF-invariant set the eigenvalues of J are f16;�16; �̂gwhere subscripts indicate multiplicities and�̂ = 1 + � � cos(2�)�2 : (21)The 2-by-2 Jacobian of the QRF map restricted to S(�; !; �) also has one non-constant eigenvalue�, but � 6= �̂. 11



This spectral information implies that for matrices near a QRF-invariant matrix with � < 1 and�̂ < 1, the QRF iterates change slowly. In the parlance of the dynamics community, the invariant setis either weakly repelling or weakly attracting. An example of parameter values for which 0 < �̂ < 1is given in x 4.2.In x3.4.1 we determine B, Q, and R such that p(H) = B = QR. Next in x3.4.2 we show given _B,that _Q = QS for a certain skew matrix S (not to be confused with the symplectic family S(�; !; �)).3.4.1 Q And R Along The QRF Invariant SetFor H orthogonally similar to S(�; !; �) and along the QRF invariant curve � = � = 0, there is asurprisingly simple expression for Q. For the following values of A and E, equation (16) may bere-written H = � A �EE A � ; A = " � cos(2�)��2�� � # ; E = sin(2�)� � 0 10 0 � :In this special case,H2 = � C �DD C � ; C = A2 �E2 = cos(2�)I; D = AE � EA = sin(2�)I:Remarkably, cos(2�) + � = 0 on the QRF invariant set (see equation (12)). Thus p(H) = Q sin(2�)and Q = � 0 �II 0 � :3.4.2 Sensitivity Of QRLet B be invertible; B = QR for Q� = Q�1 and R upper triangular with positive diagonal entries.Suppose that B is a smooth function of a real parameter, t, with derivative _B = DtB(t).Q�Q = I ) Q� _Q+ _Q�Q = 0) Q� _Q is skew Hermitian: (22)B = QR ) _B = Q _R+ _QR) F def= Q� _BR�1 = _RR�1 + Q� _Q: (23)Split F as F = L +D + U where L is strictly lower triangular and U is strictly upper triangular.De�ne ~R def= _RR�1 = upper triangular with real diagonal:Equation (23) implies thatF + F � = (L+ U�) + (D + �D) + (U + L�) = ~R+ ~R�;where the last equality is a consequence of equation (22). Thus~R = 12(D + �D) + (U + L�):By equation (23), Q� _Q = F � ~R = 12(D � �D) + L � L�) _Q = Q[L+p�1=mD � L�]) _R = [<eD + U + L�]R12



3.4.3 Eigen-Decomposition Of The QRF Jacobian Over R4�4To determine J recall from x3.5.2 that for F = QT _B csc(2�) =� 0 I�I 0 � (eieTj H +HeieTj ) csc(2�):L is the strict lower triangular part of F and S = L � LT . By the product rule,@@hi;jQTHQ = _QTHQ+QT _HQ+ QTH _Q= _QTHQ+QTH _Q+ QT _HQ= ST (QTHQ) + (QTHQ)S + QT _HQ= STH +HS + QT _HQ= HS � SH + QT eieTj Q:This matrix corresponds to a certain column of the Jacobian.Similarly the H-derivative of the shift polynomial p(�) = �2 � �� + � is� @@hi;j p(�)� = �T� +�; T = � 02 0202 I2 � ; � = � 02 0202 �AT � :In this notation, @@hi;jB = eieTj H +HeieTj �HeTi Tej + I4eTi �ej (24)To save space we introduce the notation� = cos(2�) � �2� ; � = sin(2�)� :In this notation the QRF-invariant matrices orthogonally similar to S(�) are of the formH = 2664 � � ��� ��� � �� �� 3775 :Expand equation (24) to �nd � @@hi;jB�1�i;j�4 =2666666666666666666666666664
2� � �� � � 2� � �� � � �� � � �� �� � �2� � � � �2�� � � ��2� �� �� � ���� ��2� � �� �� ��� �� �� �� ���� �� �2�� � ��� �� � �2� �

3777777777777777777777777775 :13



For S(i;j) de�ned by @@hi;jQ = QS(i;j);apply the result of x3.5.1 to obtain �� hS(i;j)i =2666666666666666666666666664
2� � �� � ��2� �� �� �� ��� �� ��� �� � �2� ��� �� ��� �� 2� �� ���� �2� �� ��� �� ��2� � �� ��� �� �� ��� �� �� �� 2�� � � �� � �2�

3777777777777777777777777775Due to the preservation of Hessenberg form under QR iteration the (3; 1), (4; 1) and (4; 2) 4-by-4blocks are not shown below. By equation (24),�� � @@hi;jQTHQ�1�i�4; 1�j�2 =2666666666666666666666666664
�� �2�� �2 � �2 2�(�� �)��� 2�(�� �) �2 � �2(� + �)� �2�� ����� �� �2�� �2 � �2 2�(�� �)��� 2�(�� �) �2 � �2�� �2���� ��� 3777777777777777777777777775and �� � @@hi;jQTHQ�1�i�4; 3�j�4 =14



2666666666666666666666666664
��+ ����2 �2�� ����2�� ��2 � �2 � �� 2�� ���2�� �2 + ���2 �� �������� �2 ��2 � �� 2��2�� �2 + ��2�� �2 � �2 2�(� � �) ���� 2�(� � �) �2 � �2��� 2���� ��� 2�� �2 � �2 2�(� � �)�� (� + �)� 2�(� � �) �2 � �2��� 2����

3777777777777777777777777775This matrix is assembled into J using a map from the indices of entries of H to f1; :::; 13g. For themap de�ned schematically by the matrix2664 1 10 5 912 2 7 68 3 1113 4 3775 ;J is block upper triangular with block diagonalJ6 � �1� � 0 11 0 �� � 0 �1�1 0 �� � 0 11 0 �for ��J6 =26666664 �� ��� (� + �)� ��� �2 � �2 �2 � �2�� �� �� �2 � �2 �2 � �2��� ��� �� �2 � �2 �2 � �2��� (� + �)� ��� �� �2 � �2 �2 � �2��2 ��2 � �2 � �� �(� + �) �(� + �) �����2 ��2 � �2 � �� ��(� + �) �(� + �) �� 37777775 :Next for L4 = 2664 1�1 11 11 1 3775 ;there holds diag(L4; I2)J6diag(L�14 ; I2) =266666664 1� 2 �� � �� �+�� �1 �2��2�� �2��2���1 111 1�2�� � 2 �+�� ��� �2+�2+���� �+�� �+�� � ���2 �+�� � �+�� �+�� 1 377777775 :15



Transpose rows and columns 2 and 5, then 3 and 6 to obtain a block upper triangular matrixblock diagonal J3 � � 0 11 0 �� 1where J3 = 264 1� 2 �� �2��2�� �2��2���2 �+�� � 2�� �+�� � ���2 �+�� 1 375 ;Lastly for U2 = � 1 �10 1 � ;diag(1; U2)J3diag(1; U�12 ) is block lower triangular with block diagonal" 1� 2 �� �2��2���2�� �� #� 1:The 2-by-2 matrix has eigenvalues � = 2� �=� and �1.4 Exceptional QR ShiftsMatrices invariant under QRF are known (see [11]) and examples of QRF attracting �xed pointswithin an orthogonal similarity class have been given for 3-by-3 matrices in [3]. HQR remainse�cient in these cases in part because QR iterations 11 and 21 use an exceptional shift instead ofQRF (see x2 or [9]. The EISPACK HQR implementation uses a modi�ed exceptional shift. We areindebted to W. Kahan who recalled that the HQR shift strategy was actually to use EX shifts every10 iterations, but this was not implemented because in 1970 no one thought that more than 30 QRiterations would ever be necessary. We discuss four versions of HQR, with original or EISPACKexceptional shifts and with exceptional shifts at only steps 11 and 21 or at every 10th iteration. Thetable below summarizes the worst case behavior known to the author in �nite (double) precisionarithmetic; Iterations 11,21 Every 10thOriginal > 106 > 104EISPACK > 108 318We de�ne these strategies and demonstrate poor convergence behavior in an orthogonal similarityclass S(�; !; �) for each.One �x to HQR is to use EISPACK exceptional shifts every 10 iterations, and substantiallyincrease the maximum number of allowed QR iterations. See x5 for more e�ective remedies.4.1 The Original Exceptional Shift StrategyThe original exceptional shift polynomial proposed in [9] isp(�) = �2 � 32�� + �2where � = jhn;n�1j+ jhn�1;n�2j: (25)16



In the family of orthogonal similarity classes, S(�; !; �), investigated in this work, no unreducedHessenberg matrices are exactly invariant under this exceptional shift strategy. To see this, simplyrecall that in an orthogonal similarity class, S(�; !; �), the QR �xed points are the unreducedHessenberg matrices for which the coe�cient of � in p(�) vanishes, and observe that � > 0 if H isuncoupled.Nonetheless this version of the HQR algorithm does converge slowly for certain matrices. Seethe table below. Our example of slow convergence assumes � = �2 sin(�). In this case equation (14)reduces to (� = ! = 0) � = sin(�)(� cos(2
) + sin(�) sin(2
)):Solve for � = 0 to �nd that the QRF invariant set is the locus of cot(2
) = sin(�).We choose (�; 
) = (�=2; �=8) in our example for the following reason. The original exceptionalshift polynomial factors as�2 � 32�� + �2 = (� � �ep�1 ) (� � �ep�1 );for ep�1 = (3 +p�7)=4. Thus this shift favors eigenvalues with positive real part. For matricesin an orthogonal similarity class S(�; !; �), this exceptional shift tends to cause convergence to theeigen-pair in the right half plane. The corresponding vector q rotates towards 
 = 0. For this reasonconvergence is delayed for the matrix in the orthogonal similarity class, S(�; 0;�2 sin(2�)), for which
 is maximal, namely (�; 
) = (�=2; �=8).Table 1 below displays the number of QR iterations required to decouple the Hessenberg matrixthat corresponds to (�; 
) = (�=2; �=8) for three implementations of the QR algorithm, each usingthe original exceptional shift. First we apply the entire shift strategy proposed in [9]: QRF at eachstep save 11 and 21, which are Exceptional. In column 3 iteration counts for the case in whichexceptional shifts are taken at steps 10, 20, 30, � � � until convergence are given. Column 4 shows theiteration count when QRF is modi�ed as de�ned in x5; we call the algorithm that results QRW.QR Iteration Count with Original Exceptional Shift� HQR: EX HQR: EX QRWat steps 11,21 every 10 steps1e � 1 17 17 31e � 2 26 26 31e � 3 78 44 21e � 4 5124 98 21e � 5 > 105 242 21e � 6 > 106 611 21e � 7 > 105 1547 21e � 8 > 105 3909 11e � 9 > 106 9858 21e� 10 > 105 > 104 24.2 The EISPACK Exceptional ShiftThe EISPACK implementation of HQR uses the exceptional shift polynomialp(� � hn;n) = �2 � (2hn;n + 32�)� + (hn;n + �)2 � hn;n�=2:17



We claim that for �, �, �, � given in equations (14) and (13), the Hessenberg matrix that correspondsto any given values of �, �, �, 
 is given byH = 2666664 � cos(2�)��2� �� cos(2�)��2+�2p�2��2 �2���sin(2�)p�2��2� �� � sin(2�) ��2 � ��2 � sin(2�)+2��2p�2��2 ��� cos(2�)��2+�2p�2��20 sin(2�)p�2��2�2 � + sin(2�) ��2 cos(2�)��2�0 0 � �� 3777775 : (26)This identity will not be derived here, but is included to allow the reader to determine the Hessenbergthat corresponds to given values of �, �, �, 
.We consider the H that corresponds to� = :111866322512629152� = 1:08867072154101741� = :338146383137297168
 = �:313987810419091240H is (approximately) invariant under both QRF and the EISPACK Exceptional shift. H correspondsto an attracting �xed point within the orthogonal similarity class, � � 7=10, and over R4�4 thereholds �̂ � 8=10. HQR with EISPACK Exceptional shift at iterations 11 and 21 does not convergeafter up to 108 QR iterations. But with EISPACK Exceptional shifts every 10th iteration, thenumber of QR iterations for convergence is 318, which is still much larger than the maximumallowed number of iterations.5 How To Fix QRIn general Francis' double shift is the shift of lowest degree that well approximates complex eigenval-ues without introducing complex arithmetic. To recover convergence in all known cases we selectivelyshift by the eigenvalue, w, of the SE 2�by�2 sub-matrix nearest the SE element. We refer to thisshift strategy as a Wilkinson shift, because this is the shift strategy Wilkinson developed for theHermitian QR algorithm. In contrast to QRF, we denote by QRW the QR algorithm with this shift.The term root refers exclusively to a root of a shift polynomial. There are two viable options asto when to use QRW instead of QRF:Option 1. Use QRW if hn;n�1hn�1;n > 0,Option 2. Use QRW if p(:) has real roots.We will discuss the followingQR iterations in the family of orthogonal similarity classes S(�; !; �).QRF Francis' shiftQRW double Wilkinson shiftQR1 QRF or QRW as in Option 1QR2 QRF or QRW as in Option 2QR1E, QR2E Use EISPACK Exceptional shiftsQR1O, QR2O Use Original Exceptional shiftsWe prove that in the family of orthogonal similarity classes S(�; !; �), QR1E and QR1O possessonly strongly repelling (�̂ � 2) �xed points over R4�4. This explains why QR1E and QR1O areobserved to converge in �nite precision arithmetic for matrices in the family of orthogonal similarityclasses S(�; !; �). Next we outline the argument that QR2O is also convergent in �nite precisionarithmetic and give an example in which QR2E does not appear to converge.18



We claim that Option 1 is contrived so that QR1 has only strongly repelling �xed points overR4�4 in the family of orthogonal similarity classes S(�; !; �). Recall that the QRF shift polynomialis p(�) = �2 � �� + � (see equation (12)). First we discuss the case in which the iteration is QRW.On the invariant set is a subset of the locus of � = 0;0 = � = � cos(2�) � �� ) cos(2�) = ���:The equation � = 0 also implies that the roots of p(:) are 0 and � . Recall from equation (16) thath4;4 = ��. Thus cos(2�) > 0 ) w = � 6= 0:Observe also from equation (16) that h4;3h3;4 = cos(2�)� �2:Thus h4;3h3;4 > 0 ) cos(2�) > 0;which implies that there are no QRW �xed points. Second we discuss the case in which the iterationis QRF. Only the QRF �xed points at which there holds cos(2�) � �2 � 0 remain �xed pointsunder Option 1, Note that equation (10) implies that � = �2 + �2; Substitute this equation intoequation (21) to �nd, as desired, that�̂ = 1 + � � cos(2�)�2 = 1 + �2 + �2 � cos(2�)�2 � 2:Option 2 is natural, but the convergence properties of this family of algorithms depends on thechoice of Exceptional shift, original or EISPACK. The matrix speci�ed by the parameter values� = 2:187; 
 = :3613369902224367; � = 1:1576; � = �4:356990028259095is (approximately) invariant under QR2E; the Hessenberg appears invariant in �nite precision arith-metic after as many as 40000 HQR iterations with EISPACK Exceptional shifts every 10 iterations.The Hessenberg that corresponds to any set of parameter values is given in equation (16).QR2O appears to yield a convergent algorithm in �nite precision arithmetic over the family oforthogonal similarity classes S(�; !; �). We sketch the proof of convergence. The QRF invariant set,� = 0, and unreal roots arise only if� = � cos(2�) > 0 ) cos(2�) < 0:In this case the QRF �xed points are repelling over R4�4 as above. The analysis of the QRWinvariant set is divided into two cases. In the �rst case, sin(2�) is bounded away from 0; this impliesthat � is \not small" and hence that the original Exceptional shift is e�ective. In the second case,sin(2�) is near 0, the QRW map within an orthogonal similarity classes S(�; !; �) has eigenvalues 1and ~� on the invariant set such that limj�2 j!0 ~� = �1:In words the QRW invariant set for sin(2�) is near 0 is repelling within a given orthogonal similarityclass. Instead of a detailed proof we illustrate the ideas sketched with an example. For this algorithmthe maximum number of QR iterations observed in �nite precision arithmetic is 36 (with either 2or 3 Exceptional shifts) for the Hessenberg matrix that corresponds to the parameter values� = 2:692793703076966; 
 = 3:203401609348687e� 08;� = 1:57079406646549; ! = 0; � = �7:194809726354949e+ 0719
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Figure 1: HQR (*) and QR20 (bar) Iterations for LAPACK Test SuiteIn this case � de�ned in equation (25) is su�ciently large, � � :0037, that the �rst original Ex-ceptional shift perturbs the matrix from the invariant set. On the other hand the invariant set isalready su�ciently repelling that QR2 converges in 32 iterations without Exceptional shifts.In tests on matrices from the LAPACK test suite HQR required a maximum of 36 iterationsto decouple a sub-matrix, compared to a maximum of 20 iterations for QR2O. Overall QR2O isslightly faster than HQR. The performance of QR1E and QR1O is similar. The �gure below showsthe maximumnumber of QR iterations to decouple a submatrix for the 21 matrices in the LAPACKtest suite; matrices of 8 di�erent orders ranging from 4 to 64 were used.QR2O may be implemented in LAPACK by adding �fteen lines to the subroutine SLAHQR.After the lines** Prepare to use Francis' double shift* H44 = H( I , I )H33 = H( I-1, I-1 )H43H34 = H( I , I-1 )*H( I-1, I )S = H( I-1, I-2 )*H( I-1, I-2 )add the lines DISC = (H33 - H44) * HALFDISC = DISC * DISC + H43H34IF( DISC.GT.ZERO )THEN** Real roots: use Wilkinson's shift twice* DISC = sqrt( DISC )AVE = HALF * ( H33 + H44 )IF( ABS(H33) - ABS(H44) .GT. ZERO )THENH33 = H33 * H44 - H43H3420



H44 = H33/( SIGN( DISC, AVE ) + AVE )ELSEH44 = SIGN( DISC, AVE ) + AVEEND IFH33 = H44H43H34 = ZEROEND If6 Multishift QR FailsWe take as the de�nition of multishift QR the subroutine HSEQR from version 2.0 of LAPACK [1, 2].To compute shifts HSEQR uses the LAPACK implementation of QR, LAHQR. In the examples athand LAHQR frequently terminates without computing eigenvalues. For this reason we substitutedour version of LAHQR modi�ed as described in the next section to converge in all known cases.HSEQR terminates without computing the eigenvalues of certain n�by�n unreduced Hessenbergmatrices of the form Hn + �En for H and E de�ned as follows.Hn = diag� 0 11 0 � :En(2k + 1; 2k) = 1 for 1 � k < n=2, En(1; n) = 1, and the other elements of En vanish.The characteristic polynomial of Hn + �En is �k � �k for k = n=2 and �(�) = �2 � 1. From theidentity �(Hn + �En)� �(Hn) = �(HnEn +EnHn) + �2E2nand the observations �(Hn) = 0, E2n = 0, and that HnEn +EnHn is a permutation, we have that1� �(Hn + �En) = HnEn +EnHnis orthogonal. We expect HSEQR to fail in the orthogonal similarity class of Hn + �En because, asQR converges, the computed shift polynomials approximate powers of �. Known values of n and �for which the double precision implementation DHSEQR fails are x-ed in the table below.n � = 10�9 � = 10�10 � = 10�11 � = 10�1270 x80 x x x90 x xIn each x-ed case DHSEQR terminates after 30n iterations without decoupling. This is easy to �x;if multi-shift QR, HSEQR, fails then use double shift QR, LAHQR.AcknowledgementThe author would like to thank Z. Bai, J. Demmel, W. Kahan, B. Parlett, andK. Stanley for their assistance in this work.References[1] Z. Bai and J. Demmel (1989). On a block implementation of the Hessenberg multishift QRiteration, Int. J. High-speed Comp. 1, 97-112.[2] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S.Hammarling, A. McKenney, S. Ostrouchov, D. Sorensen (1994). LAPACK User's Guide, SIAM,Philadelphia. 21
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