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A small note on a certain differential

MersenneTwister([0x0000002a], DSFMT_state([964434469, 1073036706, 1860149520, 1073503458,

Let  be a manifold,  and  be given.

We consider the function 

Hence the differential is a map from  to  since both domain and codomain are their own
tangent spaces.

If we use this within minimisation, we can even specify the minmiser  aince then the
distance is zero.

We decompose  into the functions

And we use the Chain rule on manifolds, i.e. for  the concatenation  then
the chain rule reads  (cf. AMS08 p. 195).

using Manifolds​ , Manopt​ , Plots​ , Random​ 
    ⋅

Random.seed!(42)⋅

⌘ S
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For our case this reads  so that the differential reads

where

hence 

so that we finally have with  that

Let's check this in code

M Sphere(2, ℝ) = 

[-0.140227, 0.832443, -0.536074]

t 0.3 = 

sp_Xstar [-3.54386, 4.19783, -3.86796] = 

sp_f (generic function with 1 method)

0.0

sp_Df (generic function with 1 method)

the following ready checks, that in  the differential is zero

2.9366408416751077e-16

check_diff (generic function with 1 method)

M = Sphere(2)⋅

begin
	 sp_p = random_point(M)
	 sp_q = random_point(M)
end

⋅
⋅
⋅
⋅

t = 0.3⋅

sp_Xstar = 1/t * log(M, sp_p, sp_q)⋅

sp_f(X) = 0.5 * distance(M, sp_q, exp(M, sp_p, t*X)).^2⋅

sp_f(sp_Xstar)⋅

sp_Df(X, Y) = inner(M,
	 exp(M, sp_p, t*X),
	 -log(M, exp(M, sp_p, t*X), sp_q),
	 differential_exp_argument(M, sp_p, t*X, t*Y),
)

⋅
⋅
⋅
⋅
⋅

sp_Df(sp_Xstar, random_tangent(M, sp_p))⋅
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Rotation Manifolds
After demonstrating that the hand-derived differential works well for Spheres, let's check if it also
works for Rotation manifolds

We start of by defining some helper function for the ortho-normal basis decomposition of the Jacobi
operator for Rotation manifolds.

get_basis (generic function with 87 methods)

Next, we create the set of points and tangent vectors that we will use for checking our differential.

3×3 Array{Float64,2}:

  0.0       3.13874   0.786896

 -3.13874   0.0      -6.44784

 -0.786896  6.44784   0.0

And we copy the definitions of the cost functions and the differential (because Pluto doesn't allow the
redefinition of exisiting variables).

rot_f (generic function with 1 method)

check_diff(TangentSpace(M, sp_p), sp_f, sp_Df, 
	        p = sp_Xstar,  v = random_tangent(M, sp_p))

⋅
⋅

begin
	 R = Rotations(3)
	 rot_p = random_point(R)
	 rot_q = random_point(R)
	 rot_Xstar = 1/t * log(R, rot_p, rot_q)
end

⋅
⋅
⋅
⋅
⋅
⋅

rot_f(X) = 0.5 * distance(R, rot_q, exp(R, rot_p, t*X)).^2⋅
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rot_Df (generic function with 1 method)

2.511412647480955e-31

4.341530793867162e-18

So far the checks look excellent. However, we are currently testing at the , the optimum of .

Calling check_diff()  at random points
While the differential sp_Df  works for Spheres...

rot_Df(X, Y) = inner(R,
	 exp(R, rot_p, t*X),
	 -log(R, exp(R, rot_p, t*X), rot_q),
	 differential_exp_argument(R, rot_p, t*X, t*Y),
)

⋅
⋅
⋅
⋅
⋅

rot_f(rot_Xstar)⋅

rot_Df(rot_Xstar, random_tangent(R, sp_p))⋅

check_diff(TangentSpace(R, rot_p), rot_f, rot_Df, 
	        p = rot_Xstar,  v = random_tangent(R, rot_p))

⋅
⋅
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... the same code fails for Rotation manifolds.

Modifying βdifferential_exp_arg
Through more or less random experiments, I found last week that modifying βdifferential_exp_arg
to take the t  argument into account, seems to improve the results.

check_diff(TangentSpace(M, sp_p), sp_f, sp_Df, 
	        p = random_tangent(M, sp_p,  v = random_tangent(M, sp_p))

⋅
⋅

check_diff(TangentSpace(R, rot_p), rot_f, rot_Df, 
	        p = random_tangent(R, rot_p),  v = random_tangent(R, rot_p))

⋅
⋅
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βdifferential_exp_arg_with_time (generic function with 1 method)

rot_Df2 (generic function with 1 method)

function βdifferential_exp_arg_with_time(κ, t, d)
    (d == 0 || t == 0) && return 1
    (κ < 0) && return sinh(sqrt(-κ) * t * d) / (t * d * sqrt(-κ))
    (κ > 0) && return sin(sqrt(κ) * t * d) / (t * d * sqrt(κ))
    return 1 # curvature zero
end

⋅
⋅
⋅
⋅
⋅
⋅

rot_Df2(X, Y) = inner(R,
  exp(R, rot_p, t*X),
  -log(R, exp(R, rot_p, t*X), rot_q),
  jacobi_field(R, rot_p, exp(R, rot_p, X), t, t * Y, βdifferential_exp_arg_with_time)
)

⋅
⋅
⋅
⋅
⋅

check_diff(TangentSpace(R, rot_p), rot_f, rot_Df2, 
	        p = random_tangent(R, rot_p),  v = random_tangent(R, rot_p))

⋅
⋅


