
1 Heat Capacity – Energy Fluctuations

Given a system at temperature T0, what is the probability, p(E) of seeing energy E?
The energy will have a maximum at E∗, so expand ln(E) about E∗:
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We know the form of p(E) is g(E)e−βE

Q where g(E) is the multiplicity of the energy E, β is the inverse
temperature, and Q is the partition function. So,
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The first derivative evaluated at T (E) = T0 gives 0. Taking the second derivative,
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Evaluating the second derivative at T (E) = T0 and plugging both results into the original Taylor series
yields:
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)
where p(E∗) is a normalization constant. This is a normal distribution whose variance is 2kBT

2
0 cV . Therefore,
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(2)

2 IFC2 from System Energy (Pair Potential)

The total potential energy of an atomic system governed by a pair potential is given by:

U =
∑
i

∑
j>i

ϕ(rij)

Therefore, the second order force constants are:
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The sum indices are changed from the conventional notation to avoid confusion with the i and j which denote
which atoms the derivatives are with respect to. This derivative will only be non-zero in the case where
(n,m) = (i,j) so:
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This is only the case when i ̸= j, to find the force constants when i = j

3 Pair Potential Derivative (2nd Order)

Given a pair potential ϕ(rij) where rij is the distance between particles ri and rj the second derivative w.r.t
atomic displacements is:
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where uα
i is the displacement of atom i in the α direction and rαi is the α coordinate of atom i.

Therefore,
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rij is simply the distance between two particles:
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where δαβ is the Kronecker delta to handle the case when α = β. Plugging this back into the original
equation we get,
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4 Force Constant → Modal Coupling Constant

The third order term in the Taylor Effective Potential is given as
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To convert to normal mode coordinates we can substitute:
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5 Dynamical Matrix

6 Equipartition Theorem

7 SHAKE

This derivation follows the steps in this paper (without skipping algebra).

Given a set of Nc holonomic constraints for a molecule:

σk(ri) = r2k1k2
− d2k1k2

= 0, k = 1, ...Nc

where ri is the position vector for atom i, rk1k2
is the distance between atoms k1 and k2 in constraint k and

dk1k2 is the constraint distance. The equations of motion become:

mi
∂2ri(t)

∂t2
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λk(t)σk(ri)
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where λk(t) is the time dependent Lagrange multiplier for constraint k. Define, fuc
i as the unconstrained

force acting on atom i and f c
i as the force on atom i due to the constraints.

fuc
i = −∂V (r(i))
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f c
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The new coordinates which satisfy the constraints will be given by: Is this step
update
scheme
agnos-
tic, or can
the dt2/m
change w/
scheme??

rci (t∆ + t) = ruci (t+∆t) +
∆t2

mi
f c
i (t)
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These new coordinates must satisfy the original set of constraints σk(ri). Therefore, plugging the previous
line into the constraint equation we get:([
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This equation must be satisfied for all Nc constraints. As a notational note, the equation above represents
the kth constraint between atoms k1 and k2. To use this equation to solve for the Lagrange multipliers λk

we must plug in the equation for the constraint forces acting on atom i, f c
i , which is derived above.
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The k′ notation was introduced in the sum to avoid confusion with the non-prime k indices which correspond
to constraint k and not an index of the sum. Again there are one of these equations for every constraint k
between atoms k1 and k2 which leads to a system of Nc equations that can be solved for λk. These equations
are solved approximately by ignoring terms quadratic in λ. To see the quadratic part we will multiply out
the previous equation:
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Ignoring the last term which is quadratic in λ we find that:(
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Recall that this equation corresponds to constraint k between atoms k1 and k2. Now that our system is

linear we can pose it as a matrix-vector product: [A]
−→
λ = −→c . Each row of the matrix A is defined by the

RHS of the above equation. Likewise c is defined by the LHS.
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This formulation of SHAKE differs slightly from the original paper which assumed that all constraints
were independent yielding a decoupled A matrix. Now the A matrix is dense and the resulting forces between
constraints are accounted for. The solution to this equation can be solved by simple matrix inversion,
Cramer’s rule, LU factorization and LDL factorization. The paper linked above goes into detail about
the computational benefits and drawbacks of each approach. Since the constraints might not be satisfied
immediately, the positions and Lagrange multipliers are calculated in an iterative process until the constraints
are satisfied. Still don’t

get why iter-
ating on the
linearized
solutions is
guranteed to
converge to
0???

8 RATTLE

In schemes which also integrate the velocities (e.g. Velocity Verlet) the velocities must also satisfy the
contraints:

dσk(ri(t))

dt
=

∂σk(ri(t))

∂ri(t)

∂ri(t)

∂t
= rk1k2(t) · vk1k2(t) = 0

In the Velocity Verlet scheme the constrained velocity update is given by:

vci (t+∆t) = vci (t) +
∆t

mi
(fuc

i (t) + f c
i (t) + fuc

i (t+∆t) + f c
i (t+∆t))

Let,

v0i (t) = vci (t) +
∆t
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i (t) + f c
i (t))
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The only unknown in the equation for the constrainted velocities is f c
i (t+∆t) as f c

i (t) can be calculated
from the Lagrange multiplers found by SHAKE. These constrained velocities must satisfy the constraints.
Plugging vci (t+∆t) into the constraint equation allows us to solve for f c

i (t+∆t).
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ηk is introduced as a second set of Lagrange multipliers for the velocity constraints. Again the prime indices
correspond to sum index and the non-prime indices refer to the specific constraint this equation is for.
Re-arranging this equation we find:

1
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Recognize this as the same matrix form from SHAKE but at time t+∆t (this is for different constraints, can-
not use η as λ for next SHAKE iteration). This equation is linear and can be solved for ηk and subsequently
vci (t+∆t).
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