Maechler 2012

$$
\log 1 \operatorname{pexp}(x)= \begin{cases}\exp (x) & x \leqslant x_{0}=-37 \\ \log 1 \mathrm{p}(\exp (x)) & -37<x \leqslant x_{1}=18 \\ x+\exp (-x) & x_{1}<x \leqslant x_{2}=33.3 \\ x & x>x_{2}\end{cases}
$$

These bounds are computed for Float64 only. Let's compute generic bounds.
For x_{0}, compute relative error between $\log \left(1+\mathrm{e}^{x}\right)$ and e^{x} :

$$
\Delta_{0}=\frac{\mathrm{e}^{x}-\log \left(1+\mathrm{e}^{x}\right)}{\log \left(1+\mathrm{e}^{x}\right)}<\mathrm{e}^{x}
$$

for $x<0$. Therefore $\Delta_{0}<\varepsilon$ whenever $x<\log (\varepsilon)=x_{0}$.
For x_{1}, compute relative error between $\log \left(1+\mathrm{e}^{x}\right)$ and $x+\mathrm{e}^{-x}$:

$$
\Delta_{1}=\frac{x+\mathrm{e}^{-x}-\log \left(1+\mathrm{e}^{x}\right)}{\log \left(1+\mathrm{e}^{x}\right)}=\frac{\mathrm{e}^{-x}-\log \left(1+\mathrm{e}^{-x}\right)}{\log \left(1+\mathrm{e}^{x}\right)}<\frac{\frac{\mathrm{e}^{-2 x}}{2}}{\log \left(1+\mathrm{e}^{x}\right)}<\frac{\mathrm{e}^{-2 x}}{2}
$$

provided $\log \left(1+\mathrm{e}^{x}\right)>1$, that is $x>\ln (\mathrm{e}-1)$, and where we used the alternating series $\log \left(1+\mathrm{e}^{-x}\right)>$ $\mathrm{e}^{-x}-\frac{\mathrm{e}^{-2 x}}{2}$. Therefore $\Delta_{1}<\varepsilon$ whenever $x>-\frac{1}{2} \ln (2 \varepsilon)=x_{1}$.

For x_{2}, compute relative error between $\log \left(1+\mathrm{e}^{x}\right)$ and x :

$$
\Delta_{2}=\frac{\log \left(1+\mathrm{e}^{x}\right)-x}{\log \left(1+\mathrm{e}^{x}\right)}=\frac{\log \left(1+\mathrm{e}^{-x}\right)}{\log \left(1+\mathrm{e}^{x}\right)}<\log \left(1+\mathrm{e}^{-x}\right)
$$

provided $x>\ln (\mathrm{e}-1)$. Then $\Delta_{2}<\varepsilon$ whenever $x>-\ln \left(\mathrm{e}^{\varepsilon}-1\right)$.
A tighter x_{2} can be found by:

$$
\Delta_{2}=\frac{\log \left(1+\mathrm{e}^{-x}\right)}{\log \left(1+\mathrm{e}^{x}\right)}<\frac{\mathrm{e}^{-x}}{x}
$$

Solving $\frac{\mathrm{e}^{-x}}{x}=\varepsilon$ gives $x_{2}=\mathcal{W}(1 / \varepsilon)$, where $\mathcal{W}(\cdot)$ is Lambert's function. For large argument Lambert's function has the asymptotic form:

$$
x_{2}=-\log (\varepsilon)-\log (-\log (\varepsilon))-\frac{\log (-\log (\varepsilon))}{\log (\varepsilon)}+\cdots
$$

An even tighter x_{2} can be found by solving numerically $\frac{\log \left(1+\mathrm{e}^{-x}\right)}{\log \left(1+\mathrm{e}^{x}\right)}=\varepsilon$.

