Inquiry concerning StatsBase.jl weighted quantile calculation.

Sam Albert

April 26, 2021

1 Weigthed sample quantile characterized by an optimality condition

Following the discussion on Wikipedia, a sample quantile may be characterized as a solution to the optimization problem,

$$
\begin{equation*}
\arg \min _{q \in \mathbf{R}} \sum_{i=1}^{N} \rho_{\tau}\left(y_{i}-q\right), \tag{1}
\end{equation*}
$$

where ρ_{τ} is the tilted absolute value function defined by

$$
\rho_{\tau}(y)= \begin{cases}\tau y & \text { if } y \geq 0 \tag{2}\\ (\tau-1) y & \text { otherwise }\end{cases}
$$

I believe the appropriate characterization of a weighted sample quantile would be

$$
\begin{equation*}
\arg \min _{q \in \mathbf{R}} \sum_{i=1}^{N} w_{i} \rho_{\tau}\left(y_{i}-q\right) \tag{3}
\end{equation*}
$$

For example, this characterization results in equivalence between the weighted sample median (corresponding to $\tau=0.5$) and the minimum weighted absolute deviation as one encounters in fitting a weighted Laplace distribution. To characterize the solutions, first note for the forward and backward derivatives,

$$
\begin{align*}
& d_{+} \rho_{\tau}(y)= \begin{cases}\tau & \text { if } y \geq 0 \\
\tau-1 & \text { otherwise }\end{cases} \tag{4}\\
& d_{-} \rho_{\tau}(y)= \begin{cases}-\tau & \text { if } y>0 \\
1-\tau & \text { otherwise }\end{cases} \tag{5}
\end{align*}
$$

Letting

$$
\begin{equation*}
f(q)=\sum_{i=1}^{N} w_{i} \rho_{\tau}\left(y_{i}-q\right) \tag{6}
\end{equation*}
$$

Figure 1: The current weighted median calculation is not optimal for the suggested criterion.
we characterize the minimum using nonnegativity of the directional derivatives (i.e., $\left.d_{+} f\left(q^{*}\right) \geq 0, d_{-} f\left(q^{*}\right) \geq 0\right)$. In our case,

$$
\begin{align*}
& 0 \leq d_{+} f\left(q^{*}\right)=\sum_{y_{i} \geq q^{*}} w_{i} \tau+\sum_{y_{i}<q^{*}} w_{i}(\tau-1) \tag{7}\\
& 0 \leq d_{-} f\left(q^{*}\right)=\sum_{y_{i}>q^{*}} w_{i}(-\tau)+\sum_{y_{i} \leq q^{*}} w_{i}(1-\tau) \tag{8}
\end{align*}
$$

which simplify to

$$
\begin{align*}
\sum_{y_{i}<q^{*}} w_{i} & \leq \tau \sum_{i=1}^{N} w_{i} \tag{9}\\
\sum_{y_{i} \leq q^{*}} w_{i} & \geq \tau \sum_{i=1}^{N} w_{i} \tag{10}
\end{align*}
$$

In Figure 1 we visualize the difference

2 Comparison vs StatsBase with weights $=1$

In the case with all weights $=1$, the solution generated here might not match that generated by StatsBase. Note the solution of the optimization problem is

Optimization based quantile calculation vs current methodology

Figure 2: Calculating the 30% quantile of the numbers 1 through 100 ..
not necessarily unique. For example, given a sample with numbers $1, \ldots, 100$, StatsBase.quantile(x, 0.3) generated 30.7 while my suggested code generated 30.0. Both suggested values satisfy (3). This is visualized in Figure 2 ,

In the case with numbers $1, \ldots, 101$, the solution to the optimization problem is unique and the values match, as illustrated in Figure 3 .

My personal opinion on this is, in the case of nonuniqueness, any optimal value should be satisfactory for most applications. However, I could see adding to the code a selection criterion in the case of nonuniqueness as an optional parameter. Thoughts?

Figure 3: Calculating the 30% quantile of the numbers 1 through 101..

