
DanshowTechnical report

1

Danshow

Software Technical Report

2021. 06. 10.

Capstone Design Project 41

Team 2 (Danshow)

 OpenPose Minha Kim 2015310462

OpenPose Jinsung Kim 2016311902

Backend Hojun Kim 2015310673

Backend Junho Bae 2015311901

Frontend Jeongmin Lee 2016311081

DanshowTechnical report

2

Contents

1. Preface ..5
1.1 Readership ...5
1.2 Scope ...5
1.3 Objective ...5
1.4 Document Structure ..5

2. Introduction ...6
2.1 Background ...6
2.2 Solution ...7

3. The sections ..
3.1 Frontend ..

3.1.1 Design ..
3.1.2 Publishing ..

3.2 Backend ..
3.3 Deep Learning Server ..

4. Reference ...

List of Figures

DanshowTechnical report

3

[Figure 1] Data of Closed Business due to Covid-19 ..
[Figure 2] Data of Growing K-POP Market ..
[Figure 3] Danshow Service Architecture ...
[Figure 4] Figma Logo ...
[Figure 5] Logomaster Logo ...
[Figure 6] Danshow Logo ...
[Figure 7] UX/UI Screen ...
[Figure 8] React Native ...
[Figure 9] React-Native Configuration on M1 Mac ..
[Figure 10] M1 Mac Android Emulator ..
[Figure 11] File structure ...
[Figure 12] App.js ..
[Figure 13] Android folder ..
[Figure 14] Component folder ...
[Figure 15] main.js ..
[Figure 16] test_page.js ..
[Figure 17] Process of Video Record and Send File ...

.
[Figure 18] ERD of Danshow ..
[Figure 19] Structure of Backend Server ...
[Figure 20] Spring Swagger ...
[Figure 21] Endpoints related to user information ...
[Figure 22] Endpoints related to crew information ...
[Figure 23] Process of uploading videos ...
[Figure 24] Process of requesting music url ..
[Figure 25] Process of requesting member test video ..
[Figure 26] Deep-Learning Development Tool ...
[Figure 27] Communicating Structure of Deep-Learning Server
[Figure 28] Flask server ...
[Figure 29] Extracted keypoints and the corresponding input image
[Figure 30] Keypoint extraction code ..
[Figure 31] Before & after scale and crop ...
[Figure 32] Scaling and Cropping code ...
[Figure 33] After affine transformation ...
[Figure 34] Affine transformation code ...
[Figure 35] Cosine similarity and Euclidean distance ...
[Figure 36] Similarity calculation code ...

DanshowTechnical report

4

[Figure 37] Overview of the video analysis ...
[Figure 38] Samples of output videos ..
[Figure 39] Effect of parallel processing ...

1. Preface

This chapter contains information about the readership, scope, objective, and structure for the technical report th

DanshowTechnical report

5

at would be used for this project.

1.1 Readership

This document is composed of 4 sections, each with its subsections. The structure for this document is found in s
ection 1.4. Team 2 is the main reader for this document, but students, professors, and TAs of the Capstone Desig
n course can also be one.

1.2 Scope

This document is used to provide descriptions of the Danshow detailed technique that would be used to impleme
nt the choreography platform.

1.3 Objective

The main objective of this technical report is to describe the detailed technical specification for the Danshow. Th
is document describes the background of the project and detailed descriptions for each part.

1.3 Document Structure

1. Preface: The chapter being read right now; provides information about the readership, scope, objective, and st
ructure for this document
2. Introduction: Describe background of the project; also provides the solution and service architecture designed
by our team to address the challenges and how the system is organized.
3. Sections: Provides detailed informations about each part: Frontend, Backend, Deep Learning
4. Conclusions: Provides remaining information and something to refer to in understanding this document.

2. Introduction

2.1. Background

DanshowTechnical report

6

2.1.1. Closed Business due to Covid-19

[Figure 1] Data of Closed Business due to Covid-19

 According to the report of status of damages in performing arts due to covid-19, 45.8% of business experiences
 closed business. The specific amount of damage to the companies varies from 10 million won to more than 500
million won. This is because dance academies were generating profits from offline courses before the Corona pe
riod, but they were unable to gather due to Corona, resulting in fewer students and the absence of online busines
s models.

2.1.2. Growing K-POP Market

[Figure 2] Data of Growing K-POP Market

 When dance academies are experiencing increasing difficulties, K-POP is, on the contrary, achieving tremendo
us growth. The emergence of K-POP stars such as BTS and BLACKPINK, who are popular around the world, c
an be a new opportunity for dance academies to generate profits. In fact, K-POP accounts for the highest proport
ion of the Korean content market at 18.5%, and ranks seventh in the global content market. As the number of K-
POP fans has increased, there have been many foreigners who want to learn singing and dancing, and providing
dance correction and courses through online platforms can be a new breakthrough for dance academies.

2.2. Solution

DanshowTechnical report

7

[Figure 3] Danshow Service Architecture

 In "Danshow", users can watch videos of lectures made by instructors or watch cover videos for reference, and
users can join the crew if they have a dance instructor who wants to enter. Now that we're talking about service f
lows centered on core technologies, users upload their dances from Danshow to the backend server through Reac
t Native. The video received from the backend server is then sent to three deep learning servers. And each deep l
earning server analyzes the video and sends it back to the backend, where it combines three from the backend an
d sends the video collected on the React Native.

 In this way, users can see what was wrong and what was right when they danced by looking at the results of AI
's comparison and analysis of user videos and lecture videos. Thus, the user will be able to learn more about the
parts that need to be corrected when practicing dance, allowing them to practice more sophisticatedly.

3. The sections

DanshowTechnical report

8

3.1. Frontend

In frontend, it is explained in two main parts. The first is the design part, which explains how
the screen was designed and the results of the design. The second explains how the app was p
ublished as a result of the design, with detailed code, and the final result.

3.1.1 Design

[Figure 4] Figma Logo

To design the screen first, use Figma. Figma is a vector graphics editor and prototyping tool which is primarily
web-based, with additional offline features enabled by desktop applications for macOS and Windows.

[Figure 5] Logomaster Logo

Before designing pages, our team had to create a logo, so used logomastser.ai to automatically create the logo us
ing AI.

[Figure 6] Danshow Logo

After making a logo using logomaster.ai, design Splash screen to the last page.

DanshowTechnical report

9

[Figure 7] UX/UI Screen

3.1.2 Publishing

[Figure 8] React Native

After completing all page designs, our team published the application for Android using React Native. To start r
eact-native in m1 mac, the initial configuration was set as follows.

DanshowTechnical report

10

[Figure 9] React-Native Configuration on M1 Mac

Also, to test on a local screen, an Android emulator is needed.

[Figure 10] M1 Mac Android Emulator

In our react native app, the file structure is like this.

DanshowTechnical report

11

[Figure 11] File structure

The main parts are App.js, android folder, component folder. App.js shows the components to display when the
app is first accessed.

[Figure 12] App.js

As you can see in the picture above, the first screen moves in the stack structure in order of Login, Signup, and
Main.

DanshowTechnical report

12

[Figure 13] Android folder

In the Android folder, there are settings files related to the Android app.

[Figure 14] Component folder

In the component folder, there are pages to display to the client. Important pages in some of our apps are as follo
ws: main.js, test_page.

DanshowTechnical report

13

[Figure 15] main.js

In main.js, there are various navigation and controls for routing pages. When you sign in after signing up for the
first time, you will be transferred to the main, which is where the main is, and you will be manipulating which sc
reen to go to.

[Figure 16] test_page.js

DanshowTechnical report

14

In test_page.js, it records the user’s test video, combines the json information needed for the video with the test
video in formData format and sends it to the server via the rest API. The details are as below.

[Figure 17] Process of Video Record and Send File

 The detailed process of recording, sending, and communicating videos to and from the backend server is as foll
ows.

1. Import User's Token information into React-Native-Async-Storage
2. Receive extracted sound from backend server and run as React-Native-Sound
3. Take video from React-Native-Video and complete video from Cache Directory
4. Import test.json video through React-Native-fs
5. Inserts video file and test.json file into FormData
6. Sends FormData to backend server using fetch function
7. Receives video file that has been analyzed and appears on Main Screen

3.2. Backend

3.2.1 Common things

3.2.1.1 ERD(Entity-Relationship Diagram)

We have three main parts. That is ‘user’, ‘video’ and ‘crew’.
This ERD will often be referred to in the following descriptions.

DanshowTechnical report

15

[Figure 18] ERD of Danshow

3.2.1.2 Server Structure

DanshowTechnical report

16

[Figure 19] Structure of Backend Server

The server is implemented by Spring Framework, including Spring Data Jpa, Spring Security, Spring WebFlux,
and other extra dependencies. In Particular, we used FFmpeg library to process media files, and used spring con
nector of FFmpeg so that we can implement functions in Java.

Our server is hosted by AWS, EC2 free tier. The database is constructed with Amazon RDS, MySql. Also, multi
media files will be saved in Amazon S3.

3.2.1.3 API Documentation

Because we needed communication with frontend about these controllers, we wrote API documents through Spr
ing Swagger.

It represents the parameters required for various endpoints and also shows an example response.
Front-end developers can easily identify their requirements by referring to documents in this API.

[Figure 20] Spring Swagger

DanshowTechnical report

17

3.2.2 User
3.2.2.1 Type of user

As shown in ERD, there are two subtypes of users. It is a ‘dancer’ and a ‘member’. They have very different per
sonalities. A dancer is a 'producer' who makes money by making content. A Member is a ‘consumer’ who enjoy
s content by paying money. So they must have different functionality.

3.2.2.2 Registration and login

-Sign up
The complicated process of registration has been omitted. We only receive email addresses and passwords from
the sign up form. When we receive that information, we encrypt the user's password with SHA-256 and random
salt. This is a safe way to store user information and is also safe against rainbow table attacks.

/**
 * SHA-256 encrypt
 */
public class SHA256Util {
 public static String getEncrypt(String source, String salt) {
 return getEncrypt(source, salt.getBytes());
 }

 public static String getEncrypt(String source, byte[] salt) {
 /* Encrypt source with salt */
 }

 public static String generateSalt() {
 /* Generate random salt */
 }
}

-Log in
If we receive email addresses and passwords from clients, we check the validation of that information. Because t
he passwords are encrypted by SHA-256 as we explained above, we compare the passwords by encrypting it wit
h saved salt. If it is fit with encrypted passwords, the login is successfully done.

private boolean checkAccount(String email, String password) {
 User user = userRepository.findByEmail(email);
 if(user==null)
 return false;
 String encryptedPassword = user.getPassword();
 String salt = user.getSalt();
 return SHA256Util.getEncrypt(password,salt).equals(encryptedPassword);
 }

-Connection management
Basic management strategy of Spring boot is session & cookie. However this method is not used very often thes
e days because it can increase the load on the server. We used the JWT , which is the solution to this problem.
When logging in is successfully done, the backend server would make a new JWT and send it to the client.
The client must include JWT in all requests except membership and login.
At each request, JWT is validated and the information contained in JWT can be used to immediately identify the
 logged-in user. Validation of JWT takes place through the filter of Spring Security.

public class JwtAuthenticationFilter extends GenericFilterBean {

DanshowTechnical report

18

 private final TokenProvider tokenProvider;
 @Override
 public void doFilter(ServletRequest request, ServletResponse response, FilterChain chain) throws IOException, ServletException {
 // Get JWT from request header.
 String token = tokenProvider.resolveToken((HttpServletRequest) request);
 // Check validation.
 if (token != null && tokenProvider.validateToken(token)) {
 // If it is valid, get user info from token.
 Authentication authentication = tokenProvider.getAuthentication(token);
 SecurityContextHolder.getContext().setAuthentication(authentication);
 }
 chain.doFilter(request, response);
 }
}

Related file
java/com/danshow/danshowserver/config/auth/TokenProvider.java
java/com/danshow/danshowserver/config/auth/custom/JwtAuthenticationFilter.java

3.2.2.3 User Information

We provide endpoints that can be changed to users' information or change user type to dancers. We also provide
 endpoints that can look up user’s information. These endpoints are used to configure the screen at the front end.

[Figure 21] Endpoints related to user information

3.2.3 Crew

Crew is a planned function, but it is a less important part because it is not directly related to the video. So we im
plemented only basic functions such as creating, viewing, and joining the crew.

-Endpoints

[Figure 22] Endpoints related to crew information

From the top up, it is used for get detail page, main page, registration, and modification.

DanshowTechnical report

19

-Link to S3

The image of crew is saved in S3. So we created a S3 uploader and saved the image file in S3. S3 uploader is als
o used in video functions. When we get files from client, we upload the file to S3 and save the file address to D
B. So when client need image of crew, we provide the file address so that they can receive the image.

 @Transactional
 public void save(MultipartFile image, CrewSaveRequestDto crewSaveRequestDto, String email) throws IOException {

 String image_url = s3Uploader.upload(image,"image");
 crewRepository.save(Crew.builder()
 .description(crewSaveRequestDto.getDescription())
 .crew_profile_image(image_url)
 .dancer(dancerRepository.findByEmail(email)).build());
 }

 @Transactional
 public void update(MultipartFile image, CrewSaveRequestDto crewSaveRequestDto, String email) throws IOException {

 String image_url = s3Uploader.upload(image,"image");
 Crew crew = crewRepository.findByDancer(dancerRepository.findByEmail(email));
 crew.setCrew_profile_image(image_url);
 crew.setDescription(crewSaveRequestDto.getDescription());
 }

3.2.4 Video
Video part is one of the most important parts in our server architecture. Before the specific explanation, We nee
d to take a look at how we process multimedia files. At first, we tried to process files with pure Java, But there
were some issues that splitted files were not playable, and so on. So we used FFmpeg library. Originally, FFmpe
g was a command line based program, and we needed an additional spring connector so that we can use FFmpeg
 library with Java. The environmental variables are set to “usr/local/bin/ffmpeg”.

//build.gradle
dependencies{
implementation 'net.bramp.ffmpeg:ffmpeg:0.6.2'
}

@Slf4j
@Component
public class VideoFileUtils {

 @Value("${local.ffmpeg}")
 private String ffmpegPath;
 @Value("${local.ffprobe}")
 private String ffprobePath;

 private FFmpeg fFmpeg;

 private FFprobe fFprobe;

@PostConstruct
 public void init() {
 try {
 fFmpeg = new FFmpeg(ffmpegPath);
 Assert.isTrue(fFmpeg.isFFmpeg());

 fFprobe = new FFprobe(ffprobePath);
 Assert.isTrue(fFprobe.isFFprobe());

DanshowTechnical report

20

 log.debug("VideoFIleUtils init complete");

 }catch (Exception e) {
 log.error("VideoFileUtils init fail", e);
 }
 }
 ...
}

Above codes are from VideoFileUtils.java in our project, which is responsible for processing media files. With those initializ
ed FFmpeg, a lot of methods in VideoFileUtils.java will process the multimedia files.

From now on, we will take a look at each process of processing video files in detail with codes.

3.2.4.1 Uploading cover videos of dancers.

[Figure 23] Process of uploading videos

Dancers of our service can upload their own cover videos and some information json file including genre, some
descriptions, genre, difficulty and so on. If dancer uploads the video, the audio file of the requested video will be
 extracted and saved in a different directory of s3. The database will store the public s3 url of the audio file. Also
, the thumbnail image of the video will be extracted and will be uploaded in the s3 database either. Then, the cov
er video will be uploaded. The stored audio file will be used in the last part of the test video upload process, and
thumbnail will be used with the json file while creating ‘Video Post’, which will be displayed in the client.

1- @ApiOperation(value = "Upload Video Post",notes = "Request with Video file, Video post request object, User, Thu
mbnail image to create post")

2- @PostMapping("/api/v1/file")
3- public ResponseEntity<String> fileUpload(@ApiParam(value = "Video File",required = true) @RequestPart("video

") MultipartFile video, @ApiParam(value = "Video Post Request json",required = true) @RequestPart("post") Vi
deoPostSaveDto videoPostSaveDto,

4- @ApiParam(value = "JWT Token", required = true) @RequestHeader(value="X-AUTH-TOKEN") String Jwt) {
5- String email = tokenProvider.getUserPk(Jwt);
6- try {
7- Long videoPostId = videoService.save(video,videoPostSaveDto,email);
8- return new ResponseEntity<>(videoPostId.toString(), HttpStatus.OK);
9- } catch (Exception e) {
10- e.printStackTrace();

DanshowTechnical report

21

11- }
12- return new ResponseEntity<>("fail", HttpStatus.OK);
13- }

Above codes are implementation of end point. In the method, videoService.save() method is called, and it will e
xtract the audio files and thumbnail image, create a video post, then save it into our database and s3.

1- public String extractAudio(String inputPath,String originalFileName, String outputPath) throws IOException {
2- String originalFileNameWithoutExtension = originalFileName.substring(0,originalFileName.indexOf("."));
3- outputPath = outputPath + "/" +originalFileNameWithoutExtension + "_audio.mp3";
4-
5- FFmpegBuilder builder = new FFmpegBuilder()
6- .overrideOutputFiles(true)
7- .setInput(inputPath)
8- .addOutput(outputPath)
9- .addExtraArgs("-ab","128k")
10- .addExtraArgs("-vn") //do not extract video files.
11- .addExtraArgs("-ar","44.1k") //sampling rate
12- .addExtraArgs("-ac","2") //select channel 2 of audio
13- .addExtraArgs("-f","mp3")
14- .done();
15-
16- FFmpegExecutor executor = new FFmpegExecutor(fFmpeg, fFprobe);
17- executor.createJob(builder).run();
18- return outputPath;
19- }

Above codes are extractAudio() method in VideoFileUtils.java file. As you can see, final extracted audio will be
 uploaded as “video_file_name_audio.mp3” format. The entire codes are available at github, please refer to the t
otal saving logic in entire codes.

3.2.4.2 Request Music Url.

[Figure 24] Process of requesting music url

DanshowTechnical report

22

If a member wants to test his or her dance, the member will click the “test” button in the dancer video post, then
will receive the audio file(especially s3 public url of the extracted audio file), so that the recorded video can be s
ynchronized to the original video.

3.2.4.3 Request Member Test Video

[Figure 25] Process of requesting member test video

Now, this is the most complicated part in our implementation.
First, after recording his or her own test video, the recorded video will be sent to the server with the id value of
chosen dancer video. The server will look for the original dancer video and fetch it from the s3, then integrate re
quested member test video and original dancer video side-by-side as in the picture above.

 @ApiOperation(value = "유저 테스트 비디오 업로드",notes = "유저가 음원과 함께 녹화한 비디오를 업로드합니다

.")
 @PostMapping("/api/v1/member-test/{id}")
 public ResponseEntity<Void> uploadUserTestVideo(@ApiParam(value = "video id",required = true) @PathVariable Lo
ng id, @ApiParam(value = "test video of member") @RequestPart MultipartFile userTestVideo,
 @ApiParam(value = "jwt token", required = true) @RequestHeader(value="X-AUTH-TOKEN") String Jwt) throws IOExc
eption {
 analyzeService.getAnalyzedVideo(userTestVideo,id,Jwt);
 return new ResponseEntity<>(HttpStatus.OK);
 }

Above codes are implementation of endpoint. In the code, getAnalyzedVideo() method is called.

 @TimeCheck
 public String getAnalyzedVideo(MultipartFile memberTestVideo, Long id,String token) throws IOException {

 //1. merge the requested member video file and cover video of dancer side-by-side and upload to s3
 File savedIntegratedFile = videoServiceInterface.uploadMemberTestVideo(memberTestVideo, id);
 …
}

In the getAnalyzedVideo uploadMemberTestVideo() method is called and it will implement the functions descri
bed above.

 @TimeCheck

DanshowTechnical report

23

 public File uploadMemberTestVideo(MultipartFile memberVideo, Long id) throws IOException {
 final String localPath = System.getProperty("user.dir") + "/tmp";

 String memberVideoPath = localPath+"/"+memberVideo.getOriginalFilename();

 log.info("uploadMemberTestVideo: member-test video originalFileName : " + memberVideo.getOriginalFilename());
 log.info("uploadMemberTestVideo : member-test video created at : "+memberVideoPath);

 String originalFileNameWithoutExtension = memberVideo.getOriginalFilename().substring(0,memberVideo.getOrigin
alFilename().indexOf("."));

 //1. Save Member-Test video in local area.
 memberVideo.transferTo(new File(memberVideoPath));
 String s = videoFileUtils.resizeFile(localPath + "/", originalFileNameWithoutExtension);

 memberVideoPath = s;

 //2. Fetch Dancer Cover video from s3 and save in local area
 AttachFile dancerVideo = fileRepository.findById(id).orElseThrow(() -> new NoSuchElementException("no video"));
 byte[] bytes = s3Uploader.getObject(dancerVideo);
 String temporalFilePath = System.getProperty("user.dir") + "/tmp/"+dancerVideo.getOriginalFileName();
 videoFileUtils.writeToFile(temporalFilePath, bytes);

 //3. Integrate Member-Test video and Original Cover Video
 String integratedPath =
 videoFileUtils.integrateFileSideBySide(memberVideoPath, temporalFilePath,
 localPath + "/integrated_" + memberVideo.getOriginalFilename());

 log.info("uploadMemberTestVideo : user and member video integrated");

 //4. Uploads integrated video.
 String uploadedPath =
 s3Uploader.upload(integratedPath, dancerVideo.getOriginalFileName(), "video");

 AttachFile savedMemberTestVideo = AttachFile.builder()
 .filePath(uploadedPath)
 .originalFileName(memberVideo.getOriginalFilename())
 .filename("integrated_"+memberVideo.getOriginalFilename())
 .build();

 fileRepository.save(savedMemberTestVideo);

 //Delete Local Files.
 File memberFile = new File(memberVideoPath);
 memberFile.delete();

 File dancerFile = new File(temporalFilePath);
 dancerFile.delete();

 File integratedFile = new File(integratedPath);

 log.info("upload member finished. saved location : " + integratedFile.getAbsolutePath());

 return integratedFile;
 }

In the comment 3, integrateFileSideBySide() function is called, which integrates member-test video and original
 cover video in one file, side-by-side. Below is the actual code.

 public String integrateFileSideBySide(String firstVideoPath, String secondVideoPath, String outputPath) {

DanshowTechnical report

24

 FFmpegBuilder builder = new FFmpegBuilder()
 .overrideOutputFiles(true)
 .addInput(firstVideoPath)
 .addInput(secondVideoPath)
 .addOutput(outputPath)
 .addExtraArgs("-preset", "ultrafast")
 .addExtraArgs("-filter_complex", "[0:v]setpts=PTS-STARTPTS, pad=iw*2+5:ih[bg]; [1:v]setpts=PTS-STARTPT
S[fg]; [bg][fg]overlay=w+10")
 .done();

 FFmpegExecutor executor = new FFmpegExecutor(fFmpeg, fFprobe);
 executor.createJob(builder).run();

 return outputPath;
 }

In the code, there is an option configuring “filter complex”. In this option, we set padding and overlay of file, de
stination of given files so that the method produces proper file.

Second, the server will split the ‘integrated file’(in side-by-side option) into three videos

 @TimeCheck
 public String getAnalyzedVideo(MultipartFile memberTestVideo, Long id,String token) throws IOException {

 //1. merge the requested member video file and cover video of dancer side-by-side and upload to s3
 File savedIntegratedFile = videoServiceInterface.uploadMemberTestVideo(memberTestVideo, id);

 //2. split the integrated videos into 3 files.
 String localSavePath = System.getProperty("user.dir")+"/tmp";
 List<String> fileList =
 videoFileUtils.splitFile(savedIntegratedFile.getAbsolutePath(),
 savedIntegratedFile.getName(),
 localSavePath,
 3);

Below is the actual code of splitFile(), which splits the video file properly. We confirm that each splitted video i
s played well.

 @TimeCheck
 public List<String> splitFile(String inputPath, String originalFileName, String outputPath , Integer chunkNumber) throw
s IOException {

 //1. Get duration of the video.
 FFmpegProbeResult probeResult = fFprobe.probe(inputPath);
 Double totalDuration = probeResult.getFormat().duration;

 //2. Set the size of each spllited file.
 Double streamSize = totalDuration / chunkNumber;

 String originalFileNameWithoutExtension = originalFileName.substring(0,originalFileName.indexOf("."));
 String originalFileNameWithoutExtensionWithUUID = UUID.randomUUID().toString() + "-" + originalFileNameWith
outExtension;

 List<String> splitFileList = new ArrayList<String>(); //List to store the splited videos.

 //3. Set the start point in Double data type.
 Double startPoint = 0.0;

 //4. if output path directory does not exist, create.

DanshowTechnical report

25

 createDirectory(outputPath);

 //4. split the file into given chunks.
 for(int i = 1; i<=chunkNumber; i++) {

 String totalPath = outputPath + "/"+originalFileNameWithoutExtensionWithUUID+"_"+i+".mp4";

 FFmpegBuilder builder = new FFmpegBuilder()
 .overrideOutputFiles(true)
 .addInput(inputPath)
 .addExtraArgs("-ss", String.valueOf(startPoint))
 .addExtraArgs("-t", String.valueOf(streamSize))
 .addOutput(totalPath)
 .done();

 FFmpegExecutor executor = new FFmpegExecutor(fFmpeg, fFprobe);
 executor.createJob(builder, p -> {
 if(p.isEnd()) {
 log.info("split completed processed");
 }
 }).run();

 log.info("split done");

 //createTxt(totalPath, outputPath, originalFileNameWithoutExtensionWithUUID);

 splitFileList.add(totalPath);
 startPoint += streamSize;
 }
 return ;
 }

● FFMpegProbeResult contains metadata of the video file. We can get the duration of the video from ‘FF
MpegProbeReuslt’.

● We set the size of each splitted file by dividing duration into the chunk parameter (in our case, 3). At fi
rst, we set the ‘streamSize’ variable as integer. The method also worked well. However, when re-integr
ating the split files into one file, there were some ‘choppy parts’, exactly in the joining point of the vide
os. For example, if the video file is 10 seconds, then the split file will be 3 second. Then, there are som
e choppy parts in the joining parts (3,6 seconds).

● So, we set the “streamSize” into a double type, and the problem was solved.

Third, the server will send each split file to the three deep learning servers. At the beginning of AnalyzeService.
java, three deep learning server urls are initialized, and WebClient is also initialized for asynchronous communi
cation.

@Service
@RequiredArgsConstructor
@Slf4j
public class AnalyzeService {

 private static final String DL_SERVER_URL1 = "http://99e9fdcb607e.ngrok.io/one";

 private static final String DL_SERVER_URL2 = "http://9f18bc579290.ngrok.io/one";

 private static final String DL_SERVER_URL3 = "http://4f016f9688b5.ngrok.io/one";

 ExchangeStrategies exchangeStrategies =
 ExchangeStrategies.builder()
 .codecs(configurer -> configurer.defaultCodecs().maxInMemorySize(-1))

DanshowTechnical report

26

 .build();// to unlimited memory size .build();

 WebClient webClient = WebClient.builder()
 .exchangeStrategies(exchangeStrategies)
 .build();
 …
}

● Each deep learning server url changes every time when the server is started.
● We set the strategy of WebClient as above, so that there would be no memory limit to communicate vid

eo files properly.

 @TimeCheck
 public String getAnalyzedVideo(MultipartFile memberTestVideo, Long id,String token) throws IOException {

 ….

 //3-1. get three splited files.
 File firstFils = new File(fileList.get(0));
 File secondFile = new File(fileList.get(1));
 File thirdFile = new File(fileList.get(2));

 String firstFilePath = localSavePath+"/01_"+memberTestVideo.getOriginalFilename();
 String secondFilePath = localSavePath+"/02_"+memberTestVideo.getOriginalFilename();
 String thirdFilePath = localSavePath +"/03_" + memberTestVideo.getOriginalFilename();

 String originalFileNameWithoutExtension =
 memberTestVideo.getOriginalFilename().substring(0,memberTestVideo.getOriginalFilename().indexOf("."));

 //3-2. send each splited files to the deep learning server 1,2,3 in asynchronous way and get response.
 Tuple3<byte[], byte[], byte[]> fetchVideos = fetchVideos(Files.readAllBytes(firstFils.toPath()),
 Files.readAllBytes(secondFile.toPath()), Files.readAllBytes(thirdFile.toPath()), token);

 //3-3. write byte array to files
 videoFileUtils.writeToFile(firstFilePath, fetchVideos.getT1());
 videoFileUtils.writeToFile(secondFilePath, fetchVideos.getT2());
 videoFileUtils.writeToFile(thirdFilePath, fetchVideos.getT3());

 //4. create the txt file which contains the absolute path of responsed files, so that ffmpeg can integrate those files.
 videoFileUtils.createTxt(firstFilePath,localSavePath,originalFileNameWithoutExtension);
 videoFileUtils.createTxt(secondFilePath,localSavePath,originalFileNameWithoutExtension);
 videoFileUtils.createTxt(thirdFilePath,localSavePath,originalFileNameWithoutExtension);

 firstFils.delete();
 secondFile.delete();
 thirdFile.delete();

...

}

● Above code is the total process of communication between three deep learning servers.
● In the comment 3-2, fetchVideos() method is called and receives value as Tuple<byte[], byte[]. byte[]>.

 Each byte array stands for the video file from the deep learning server.
● The following codes are the detailed implementation of fetchVideos() method.
● In the comment 4, the server creates the txt file including absolute paths of each analyzed video from th

e deep learning server, so that FFmpeg can integrate files in the next step.

DanshowTechnical report

27

 public Mono<byte[]> getFirstFile(byte[] bytes, String token) throws IOException {

 return webClient
 .post()
 .uri(DL_SERVER_URL1)
 .header("X-AUTH-TOKEN",token)
 .contentType(MediaType.APPLICATION_OCTET_STREAM)
 .bodyValue(bytes)
 .accept(MediaType.APPLICATION_OCTET_STREAM)
 .retrieve()
 .bodyToMono(byte[].class)
 .subscribeOn(Schedulers.parallel())
 .map(x -> {
 log.info("async method call : getThird method called");
 return x;
 });
 }

 public Tuple3<byte[], byte[], byte[]> fetchVideos(byte[] firstFile, byte[] secondFile, byte[] thirdFile, String token) throw
s IOException {
 return Mono.zip(getFirstFile(firstFile,token), getSecondFile(secondFile,token),getThirdFile(thirdFile,token))
 .block();
 }

As you can see, the fetchVideos() method returns the Mono.zip() function, which enables calling multiple async
hronous methods. In our case, three methods are called. In the last line, the block() function is called, so that afte
r calling three asynchronous functions and getting all the results, the process would be synchronized with the ne
xt code.

In the getFirstFile() method, the server can create http communication to a deep learning server in the post meth
od, with byte arrays, which stands for the split files from above process. The subscribeOn() option is set to Sche
dulers.parallel(), so that process can be done in parallel threads.

Fourth, integrate three received video files into one file.

 @TimeCheck
 public String getAnalyzedVideo(MultipartFile memberTestVideo, Long id,String token) throws IOException {
 …
 //5. integrate three files into one file.
 File analyzedFile = new File(videoFileUtils.integrateFiles(localSavePath,originalFileNameWithoutExtension));
 …

In the above code, the integrateFiles() method is called with the given parameter localSavePath. The localSaveP
ath is the local path where video is saved. In the comment 4, you can see that text file including absolute paths o
f three analyzed videos received from deep learning servers. The integrateFiles() method will find the text file in
 a given local save path, and start the integrating function.

 @TimeCheck
 public String integrateFiles(String inputPath,String originalFileName) throws IOException {

 String fileList = inputPath + "/" + originalFileName+".txt";

 String outputPath = inputPath + "/" + originalFileName + "_final_ver.mp4";

 FFmpegBuilder builder = new FFmpegBuilder()
 .overrideOutputFiles(true)
 .addInput(fileList)
 .addExtraArgs("-f","concat")
 .addExtraArgs("-safe", "0")

DanshowTechnical report

28

 .addOutput(outputPath)
 .done();

 FFmpegExecutor executor = new FFmpegExecutor(fFmpeg, fFprobe);
 executor.createJob(builder).run();

 log.info("final integrate phase complete, output path : " + outputPath);
 return outputPath;

 }

● The FFmpeg needs a text file including the absolute paths of target videos.
● Therefore, we created a writing text file function above.

Fifth, merge videos with audio file and create video post, save it in s3 and database

The received file from the deep learning server has no audio although the requested video has audio file. Theref
ore, integrated video also does not have audio. Thus, we have to merge integrated videos with original audio file
s.

 @TimeCheck
 public String getAnalyzedVideo(MultipartFile memberTestVideo, Long id,String token) throws IOException {
 ...
 //6. merge integrated files with original audio file.
 byte[] obj = s3Uploader.getObject(videoPost.getMusicPath());

 videoFileUtils.writeToFile(System.getProperty("user.dir")+"/tmp/audio.mp3", obj);
 videoFileUtils.integrateAudio(analyzedFile.getAbsolutePath(),audioPath, outputPath);
 //7. uploads to the s3
 File finalFile = new File(System.getProperty("user.dir")+"/tmp/output.mp4");
 String videoPath = s3Uploader.upload(finalFile.getAbsolutePath()
 ,analyzedFile.getName(),"video");

 //8. save in database as file and create video post.
 AttachFile savedVideo = AttachFile.builder()
 .filename(originalFileNameWithoutExtension+"_"+new Date())
 .filePath(videoPath)
 .originalFileName(originalFileNameWithoutExtension)
 .build();

 VideoPostSaveDto videoPostSaveDto = VideoPostSaveDto.of(videoPost,ownerMember);

 MemberTestVideoPost memberTestVideoPost = new MemberTestVideoPost(videoPostSaveDto,
 ownerMember,savedVideo,videoPost.getImage(),null);
 videoPostRepository.save(memberTestVideoPost);

 log.info("video path : " + videoPath);
 return videoPath;
}

● The server fetches the audio file from s3, and writes it to the file.
● Then, call integrateAudio() function to merge video and audio.
● Finally, create the VideoPost entity and save final video to the s3.
● Below is the actual code of integrateAudio() function.

 public String integrateAudio(String videoPath, String audioPath, String outputPath) throws IOException{

DanshowTechnical report

29

 FFmpegBuilder builder = new FFmpegBuilder()
 .overrideOutputFiles(true)
 .addInput(videoPath)
 .addInput(audioPath)
 .addOutput(outputPath)
 .addExtraArgs("-map","0:v")
 .addExtraArgs("-map","1:a")
 .addExtraArgs("-c:v","copy")
 .done();

 FFmpegExecutor executor = new FFmpegExecutor(fFmpeg, fFprobe);
 executor.createJob(builder).run();

 log.info("integrated audio completed : " + outputPath);

 return outputPath;
 }

● There are add options above. 0 means video, 1 means audio, and last option means coping audio to the
video files.

3.3. Deep Learning Server

3.3.1 Development Details
Development tools used to configure deep learning servers are as follows.

[Figure 26] Deep-Learning Development Tool

3.3.1.1 Google Colab

Openpose, a deep learning model for extracting keypoints from the input image or video, requires GPU for an a
cceptable inference speed. Google Pro provides us with T4 or P100 GPU for 24 hours of runtime, along with big
ger RAM of 25.51GB. Colab provides a python environment with various pre-installed python packages, makin
g it easier to build the deployment servers. So, we decided to deploy our deep learning servers in google colab.

3.3.1.2 Openpose

The step of keypoint extraction was conducted by a pretrained openpose model provided in https://github.com/C
MU-Perceptual-Computing-Lab/openpose. The pose estimation model could be trained from scratch to create a l
ighter, and more optimized model. However, given the limitation of GPU, we concluded that training the openpo
se model with the COCO dataset(250,000 people with keypoint annotations) would be extremely difficult. Instea
d, we thought about generating our own dataset by capturing a bunch of choreography videos provided in youtub
e, and annotating the keypoints by ourselves. However, the crawling and annotation steps would take a consider
able amount of time, and the insufficiency of the training dataset could result in overfitting and low generalizatio
n performance on real data. Thus, we decided to use the pretrained model for keypoint extraction.

DanshowTechnical report

30

3.3.1.3 Flask Server
To communicate between deep learning servers and back-end servers in a Colab environment, we used Flask, a
python-based micro web framework. We used Flask to implement a simple API server to communicate with the
back-end Spring server. Here, we used Flask-ngrok which is a tunneling program that connects the outer networ
k with the local server. For the free service of ngrok, the sub domain name was randomly generated each time th
e ngrok was re-executed.

3.3.2 Communication with Backend Server

[Figure 27] Communicating Structure of Deep-Learning Server

[Figure 28] Flask server

Using Colab Pro, we created three deep learning servers each containing a openpose model for pose estimation a
nd similarity calculation. The figure on the left shows our implemented Flask server which communicates with t
he back-end server. The user and the dancer videos are first merged side by side then splitted into short videos.
Here, each short input video in byte format is received from the back-end server, and is stored in the Colab local
directory(/content/sample.mp4). When the server finishes the video analysis using the final_function, the output
video(/content/openpose/videos/output.mp4) is returned to the back-end server in byte format.

3.3.3 Keypoint Extraction

DanshowTechnical report

31

[Figure 29] Extracted keypoints and the corresponding input image

The main tasks of our deep learning model can be separated into keypoint extraction and pose similarity calculat
ion. First, our openpose model extracts keypoints from the input image. The keypoint is extracted as a list and it
consists of elements with the same number of the people present in the video. Each list contains 25 different bod
y part coordinates of each person including nose, neck, etc.

[Figure 30] Keypoint extraction code

By using the pyopenpose library, we can successfully retrieve the extracted keypoint data from the op::Datum cl
ass using standard python and numpy constructs. When the datum.cv2inputData gets a frame, captured from the
input video, it stores raw keypoint values to datum.poseKeypoints. The raw keypoint is a list containing multipl
e lists each indicating the extracted keypoint of each person in the video. Each list for an individual consists of s
everal lists of size 3, each containing x coordinate, y coordinate, and confidence for each body part. The raw key
point is converted to Keypoints_list by getKeypointsList function below, to be further utilized in similarity calcu
lation. The format of Keypoints_list is as follows:

[[(1226, 232), (1232, 291), …], [(716, 282), (695, 337), …]]
[[person1; (x_neck, y_neck), (x_nose, y_nose), …], [person2; (x_neck,
 y_neck), (x_nose, y_nose), …]]

DanshowTechnical report

32

3.3.4 Pose Similarity Calculation
After extracting both the user and the dancer keypoints, the degree of similarity between them should be calculat
ed to yield a result on whether the pose has matched or not. However, before calculating similarity, processing jo
bs on the keypoint values should be executed first.

3.3.4.1 Processing

(a) Cropping and Scaling

[Figure 31] Before & after scale and crop

The scale of the user and the dancer video can be different, leading to inaccurate calculation results. For
 instance, in the figure above, the user’s keypoint(left) scales larger than the dancer’s(right) and for a fa
ir comparison between every keypoints, scaling and cropping jobs should be conducted first.

[Figure 32] Scaling and Cropping code

Here, after cropping the keypoint values based on their minimum, the scales of the keypoints are match
ed by applying appropriate scale factors for each person. This code results in the rightmost figure, whe
re two person’s keypoints overlap with each other in the same scale. It lets us compute the similarity in
a higher precision.

(b) Affine Transformation

DanshowTechnical report

33

[Figure 33] After affine transformation

Besides scaling and cropping, we also have to consider that a slight distortion of the angle or perspectiv
e of the camera taking the user’s video can result in significant difference in the values of the keypoints
. So, to minimize the corresponding error, affine transformation is applied. Affine transformation is a ki
nd of 2-dimensional transformation that finds the least squared error between two coordinates.

[Figure 34] Affine transformation code

First, we find the affine matrix that minimizes least squared error in the line from the neck(indexed 1) t
o the middle hip(indexed 8) using numpy linear algebra function. Then, setting one person’s keypoint a
s a reference, affine matrix is applied to the other, resulting in the above figure where the line from one
’s neck to mid hip is aligned regardless of how the user video was taken.

3.3.4.2 Similarity Metrics

[Figure 35] Cosine similarity and Euclidean distance

For measuring the degree of similarity, we use two metrics as shown above, the cosine similarity and the Euclid
ean distance. Cosine similarity indicates how much the two vectors are similar to one another based on the angle

DanshowTechnical report

34

 between the vectors. It can be computed by subtracting cosine distance from 1. In contrast, Euclidean distance j
ust calculates the real distance between the two vectors like measuring with a ruler. Through several experiment
s, we set the pose matching threshold as cosine similarity of 0.9 and Euclidean distance as 1.

[Figure 36] Similarity calculation code

After eliminating some body parts with (None, None) values, each keypoint is normalized to a value between 0 a
nd 1. The cosine distance and the euclidean distance is simply computed using functions from scipy.spatial.dista
nce.

3.3.5 Overview of the Video Analysis

[Figure 37] Overview of the video analysis

For analyzing every frame, we first divide the video into multiple images by image capture, then run the image t
hrough the openpose model to retrieve the keypoints from the dancer and the user. The extracted keypoints are u
sed to calculate the degree of similarity to decide whether the poses matched or not.

def final_function(filepath):

 total_time = time.time()

 params = dict()

 params["model_folder"] = os.path.join(OpenposeDir,'models')

 opWrapper = op.WrapperPython()

 opWrapper.configure(params)

 opWrapper.start()

DanshowTechnical report

35

 body_index = op.getPoseBodyPartMapping(op.BODY_25)

 body_pair_list = op.getPosePartPairs(op.BODY_25)

 body_pair = []

 idx = 0

 for i in range(int(len(body_pair_list)/2)):

 temp = (body_pair_list[idx], body_pair_list[idx+1])

 body_pair.append(temp)

 idx += 2

 frame_cnt = 0

 valid_frame = 0

 score = 0

 cap = cv2.VideoCapture(filepath)

 frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))

 frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))

 fps = cap.get(cv2.CAP_PROP_FPS)

 vidwrite_protocol = cv2.VideoWriter_fourcc(*'MP4V')

 out = cv2.VideoWriter(os.path.join(OpenposeDir,'videos','output.mp4'), vidwrite_protocol, fps, (frame_width, frame_heig

ht))

 while cap.isOpened():

 ret, frame = cap.read()

 if ret:

 frame_cnt += 1

 print(frame_cnt)

 datum = op.Datum()

 datum.cvInputData = frame

 opWrapper.emplaceAndPop(op.VectorDatum([datum]))

 raw_keypoints = datum.poseKeypoints

 Keypoints_list = getKeypointsList(raw_keypoints)

 try:

 if len(Keypoints_list) > 1:

 valid_frame += 1

 video_frame = datum.cvOutputData

 pose1, pose2 = Keypoints_list[0],Keypoints_list[1]

 pose1_processed, pose2_processed = scaling_cropping(pose1,pose2)

 try:

 pose2_processed = AffineTransformation(pose1_processed,pose2_processed)

 except:

 print("Affine transformation has failed for the frame")

 cosine_similarity, eucldiean_distance = similarity_calc(pose1_processed, pose2_processed)

 pose_match = 0 # pose_match = 0 --> True/ pose_match = 1 --> False

 if cosine_similarity >= 0.9 and eucldiean_distance <= 1:

 cv2.putText(video_frame,"Pose Matched",(0,int(video_frame.shape[0]*3/3.5)), cv2.FONT_HERSHEY_SIMPLEX

, 3, (0,255,0),3)

 score += 1

 else:

 pose_match = 1

 cv2.putText(video_frame,"Pose Not Matched",(0,int(video_frame.shape[0]*3/3.5)), cv2.FONT_HERSHEY_SIM

PLEX, 3, (0,0,255),3)

 for i in range(len(pose1)):

 if pose1[i] != (None, None) and pose2[i] != (None, None):

 if pose1[i][0] < pose2[i][0]:

 userpose = pose1

 break

 else:

 userpose = pose2

 break

 else:

 continue

 if pose_match == 1:

 distance = []

 sorted_distance = []

 for i in range(len(pose1_processed)):

DanshowTechnical report

36

 if pose1_processed[i] != (None, None) and pose2_processed[i] != (None, None):

 distance.append(spatial.distance.euclidean(pose1_processed[i], pose2_processed[i]))

 sorted_distance.append(spatial.distance.euclidean(pose1_processed[i], pose2_processed[i]))

 else:

 distance.append(-1)

 sorted_distance.append(-1)

 sorted_distance.sort(reverse=True)

 for j in range(5):

 pt_idx = distance.index(sorted_distance[j])

 pt = userpose[pt_idx]

 cv2.circle(video_frame, pt, 25, (0,0,255), 7)

 out.write(video_frame)

 else:

 cv2.putText(video_frame,"Two people not detected",(0,int(video_frame.shape[0]*3/3.5)), cv2.FONT_HERSHEY_

SIMPLEX, 3, (0,0,255),3)

 out.write(video_frame)

 except Exception as e:

 print("Error")

 print(e)

 break

 else:

 print("Keypoint extraction and similarity checking have finished successfully!")

 break

 cap.release()

 out.release()

 average_score = score / valid_frame * 100

 print("average score: ", average_score)

 print("total time :", time.time() - total_time)

 return average_score

The above code shows a final_function that conducts the whole video analysis process. When the splitted short i
nput video enters the final_function, the video is splitted into multiple frames by cv2.VideoCapture to conduct a
nalysis for each frame. The method of analyzing frame by frame relieves the burden of storing keypoint values f
or every frame to calculate similarity with. Also, we thought that the users would probably want to get the infor
mation of the wrong moves that they were doing, so to represent the wrong parts, writing to each frame seemed i
nevitable. Each frame image goes through keypoint extraction first, then for frames with more than one person,
similarity between the poses are calculated with the aforementioned methods. To once again keep us from storin
g every pose matching result for each frame, we instead choose to write the result down on the frame using cv2.
putText. Also, we selected five maximum pose deviation points and indicated them on the output frame with a r
ed circle. The written output frames are then merged together to form an output video(/content/openpose/videos/
output.mp4). Since the output video is merely a concatenation of frames, audio track is missing. Therefore, the p
re-extracted audio from the dancer video is later merged with the video to form the final output video to send to
the front-end(This part takes place in the back-end server). Some of the resulting output frames are shown below
.

DanshowTechnical report

37

[Figure 38] Samples of output videos

As seen above, for frames where the user’s and the dancer’s pose do not match, red circles are added to indicate
in what body parts the user is not doing correctly, compared to the dancer. The above figures suggest that our m
odel shows high accuracy in detecting wrong dance moves.

3.3.6 Effect of Parallel Processing

[Figure 39] Effect of parallel processing

The above graph shows the effect of parallel processing, that is, leveraging multiple deep learning servers experi
mented with a 14 second video. Note that the values inside the bracket indicate the actual amount of time spent i
nside the deep learning servers, whereas the values outside the bracket represent the total amount of time of vide
o analysis including video processing such as merging, splitting, etc. Using multiple DL servers to compute each
 chunk of short videos in parallel greatly reduces the time spent during actual inference in the DL server, but in t
erms of whole video processing time the change is minor due to the low performance of our free tier EC2 server
in AWS. It has been experimented that running the code in M1 local machine took way less time than running th
e same code in EC2 server.

4. Reference

DanshowTechnical report

38

[1]GitHub. 2021. 741g/android-emulator-m1-preview. [online] Available at: <https://github.com/
741g/android-emulator-m1-preview>.

[2]Velog.io. 2021. !"#$%&#'()*+,-)+./(#0123. [online] Available at: <https://velog.io/@taes
e0ng/M1-%EB%A7%A5%EC%97%90%EC%84%9C-React-Native-%EC%84%B8%ED%8C%85%E
D%95%98%EA%B8%B0>.

4564'()*+-)+./(6#47896#:(;.<#=>="<#'()*+#-)+./(#!"#?@23<#4ABC.B(6#D/).C)EC(#)+F#GH++IJFKK+)(HAABLM
<+.J+ANO<*A;K""MP<

[4]Medium. 2021. Record and Upload Videos with React Native. [online] Available at: <https://m
edium.com/react-native-training/uploading-videos-from-react-native-c79f520b9ae1> .

[5]GitHub. 2021. itinance/react-native-fs. [online] Available at: <https://github.com/itinance/reac
t-native-fs> .

[6]GitHub. 2021. react-native-camera/react-native-camera. [online] Available at: <https://github.
com/react-native-camera/react-native-camera>.

[7]GitHub. 2021. zmxv/react-native-sound. [online] Available at: <https://github.com/zmxv/react
-native-sound>.

[8]GitHub. 2021. react-native-async-storage/async-storage. [online] Available at: <https://githu
b.com/react-native-async-storage/async-storage> .

4L69!QRST<#=>="<#UVW#XY23. [online] Available at: <https://smujihoon.tistory.com/241> .

[10]victolee. 2021. 49IN.BZ[AA+6#DV9#95#\]#^"_#,#`a#bcd#3e#^D;)fAB95gC.(B+[h.Ci(N_. [onli
ne] Available at: <https://victorydntmd.tistory.com/334> .

[11]GitHub. 2021. CMU-Perceptual-Computing-Lab/openpose. [online] Available at: <https://git
hub.com/CMU-Perceptual-Computing-Lab/openpose>.

[12]Medium. 2021. A guide to deploying Machine/Deep Learning model(s) in Production. [onlin
e] Available at: <https://blog.usejournal.com/a-guide-to-deploying-machine-deep-learning-mod
el-s-in-production-e497fd4b734a>.

[13]GitHub. 2021. chonyy/AI-basketball-analysis. [online] Available at: <https://github.com/cho
nyy/AI-basketball-analysis>.

[14]Tutorials.pytorch.kr. 2021. jC)J:k#lm2n#oO+HAB%&#oOWAN*Hk#'p9W#Do7c#qr23#s#o
OWAN*H#Wh+AN.)CJ#"<t<"#iA*h;(B+)+.AB. [online] Available at: <https://tutorials.pytorch.kr/intermedi
ate/flask_rest_api_tutorial.html>.

[15]Learn OpenCV | OpenCV, PyTorch, Keras, Tensorflow examples and tutorials. 2021. Deep L
earning based Human Pose Estimation using OpenCV. [online] Available at: <https://learnopen
cv.com/deep-learning-based-human-pose-estimation-using-opencv-cpp-python/>.

[16]Cmry.github.io. 2021. Euclidean vs. Cosine Distance. [online] Available at: <https://cmry.git
hub.io/notes/euclidean-v-cosine>.

[17]076923. 2021. gu#8I(Bgv#wx#F#y#="w#,#z{#|}#~#>��L=5. [online] Available at: <https://0
76923.github.io/posts/C-opencv4-21/>.

DanshowTechnical report

39

