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4.1 INTRODUCTION 

A pichue is worth a thousand words. A curve which is the visual image of a functional 
relation gives us a whole l d  of infonnation about the relation. Of course, we can also obtain 
this infonnation by analysing the equation which defines the functional relation. But studying 
the associated curve is otten easier and quicker. In addition to this, a curve which represents a 
relation between two quantities also helps us to easily find the value of one quantity 
corresponding to a specific value of the other. In this unit we shall try to understand what is 
meant by the pichue or the graph of a relation like f(x, y) = 0, and how to draw it. We shall be 
using many results from the earlier units here. With this unit we come to the end of Block 2, in 
which we have studied various geometrical features of functional relations with the help of 
differential calculus. 

Objectives I 
After studying this unit, you should be able to 

I 
list the properties which can be used for tracing a c w e  

trace some simple curves whose equations are given in Cartesian, parametric or polar 
forms. 

4.2 GRAPHING A FUNCTION AND CURVE TRACING 

Recall that by the graph of a function f : D 4 R we mean the set of points {(x, f(x)) : x E D) . 
Similarly, the set of points {(x, y) : f(x, y) = 0) is known as the graph of the functional relation 
qx, y) = 0. Graphing a function or a functional relation means showing the points of the 
corresponding set in a plane. Thus, essentially curve tracing means plotting the points which 
satisfy a given relation. However, there are some difficulties involved in this. Let's see what 
these are and how to overcome them. 

It is often not possible to plot all the points on a curve. The standard technique is to plot 
some suitable points and to get a general idea of the shape of the curve by considering 
tangents, asymptotes, singular points,extreme points, inflection points, concavity, 
monotonicity, periodicity etc. Then we draw a free hand curve as nearly satisfying the 
various properties as is possible. 

The curves or graphs that we draw have a limitation. If the range of values of either (or 
both) variable is not fmite, then it is not possible to draw the complete graph. In such 
cases the graph is not only approximate, but is also incomplete. For example, consider the 
simplest curve, a stpight line. Suppose we want to draw the graph off : R 4 R such that 
qx) = c. We know that this is in line parallel to the x-axis. But it is not possible to draw a 



Fig. 1 

In the next section we shall take up the problem of tracing of curves when the equation is 
given in the Cartesian form. 

4.3 TRACING A CURVE : CARTESIAN EQUATION 

Suppose the equation of a curve is f(x, y) = 0. We shall now list some steps which, when taken, 
will simplify our job of tracing this curve. 

1) The first step is to determine the extent of the curve. In other words we try to find a region 
or regions of the plane which cannot any point of the curve. For example, no point on the 
curve y2 = X, lies in the second or the third quadrant, as the x-coordinate of any point on 
the curve has to be non-negative. This means that our curve lies entirely in the first and 
the fourth quadrants. 

A point to note here is that it is easier to determine the extent of a curve if its equation can 
be written explicitly as y = f(x) or x =fly). 

2) The second step is to find out if the curve is symmetrical about any line, or about the 
origin. We have already discussed symmetry of curves in Unit 1. Fig. 2, shows yo6 some 
examples of symmetric curves. 

Curve Tracing 

A curve is symmetrical about a 
line if, when we fold the curve 
on the line, the two portions 
of the curve exactly coincide. 

A curve is symmetrical about 
the origin if we get the same 
curve after rotating it through 
180" 

Here we give you rorne hinta to help you determine the rymmetry of r curve. 

a) If all the powem of x occurring in f(x, y) - 0 are even, then f(x, y) f( - x, Y) md the curve 
ir rymmetrical about the y- ax^. 



Drawing Curves In this case we need to draw the portion of the graph on only one side of the y-axis. 
Then we can take its reflection in the y-axis to get the complete graph. We can similarly 
text the symmetry of a curve about the x-axis. 

b) If f(x, y) = 0 - f(-x, - y) = 0, then the curve is symmetrical about the origin is such cases, 
it is enough to draw the part of the graph above the x-axis and rotate it through 180' to get 
the complete graph. 

c) If the equation of the curve does not change when we interchange x and y, then the curve 
is symmetrical about the line y = x. Table 1 illustrates the applicatioil of these criteria for 
different curves. 

Table 1 

3) The next step is to detennine the points where the curve intersects the axes. If we put 
y = 0 in f(x, y) = 0, and solve the resulting equation for x, we get the points of inersection 
with the x-axis. Similarly, putting x = 0 and solving the resulting equation for y, we can find 
the points of intersection with the y-axis. 

Equation 

x 3 + y + ) r = o  

X4+f'+y=O 

X4 + x2g + f = 0 

x 2 + f = 1 0  

4) Try to locate the points where the function is discontinuous. 

SY 

About the x-axis (even powers of y) 

About the y-axis (even powers of x) 

About the origin 
( 6 ( - % - ~ ) = 0 - 6 ( & ~ ) = 0 )  
About both axes 
(4% Y) = 4- % Y), 4% Y) = 4%- Y)) 
Abouttheliney=x 
(4% Y) = 4~9 4 )  
About both axes, (even powers of x and y) but not about y = x 
4% Y) + 4~3 x) 

5) Calculate dyldx. This will help you in locating the portions where the curve is rising 
(dyldx > 0) or falling (dyldx < 0) or the points where it has a comer (dyldx does not 
exitst). 

6) Calculate d2y/dx2. This will help you in locating maxima (dyldx = 0, d2y/dx2 <0) and 
minima (dyldx = 0, d2y/dx2 > 0). You will also be able to determine the points of inflection 
(d2y/dx2 = 0). These will give you a good idea about the shape of the curve. 

7) The next step is to find the asymptotes, if there are any. They indicate the trend of the 
branches of the curve extending to infmity. 

8) Another important step is to detennine the singular points. The shape of the curve at 
these points is, generally, more complex, as more than one branch of the curve passes 
through them. 

9) Finally, plot as many points as you can, around the points already plotted. Also try to 
draw tangents to the curve at some of these plotted points. For this you will have to 
calculate the derivative as these points. Now join the plotted points by a smooth curve 
(except at pointa of diecontinuity). The migents will guide you in this, re they give you 
the direction of the curve. 

We shall now illustrate this procedure through a number of exiunples. You wlll notice, that It 
may not be necessary to take all the nine steps mentioned above, in each case. We begin by 
tracing some functions which were introduced in Unit 1. 

Example 1 Consider the h c t i o n  y = I x 1. Here y can take only poeitive values. Thus, the 
graph lies above the x-axis. Furthet, the fundtion y = I x 1 is symmetric about the y-axis. On the 
tight of the y-axis, x > 0 and ao ( x 1 = x, Thus the graph reduces to that of y = x and you know 
that thitl is a straight line equally inclined to the axes (Fig. 3(a) below). 



The curve meets the y-axis only at the origin. Taking its reflection in the y-axis, we get the 
complete graph as shown in Fig. 3@). We have drawn arrows at the end of the line segment to 
indicate that the graph extends indefinitely. 

Fig. 3 : (a) Graph to the right o f  the y-axis. (B) Complete graph. 

Example 2 The greatest integer function y = [x] is discontiwous at every integer point. Hence 
there is a break in the graph at every integer point n. In every interval [n, n + 1 [ its value is 
constant, namely n. Hence the graph is as shown in Fig. 4. Note that a hollow circle around a 
point indicates that the point is not included in the graph. 

Fig. 4 : Graph of (I) = 1x1. 

Example 3 Consider the curve y = x3. Now (x, y) lies on the curve 
a y = x3 w - y = ( - x ) ~  e (- X, - y) is on the curve. This means that the curve is symmetric 
about the origin. Thus, it is sufficient is draw the graph above the x-axis and join to it the 
portion obtained by rotating is through 1 80°. 

Above the x-axis, y is positive. Hence x = 3fi must be positive. Thus, there is no portion of 
the graph in the second quadrant. The curve meets the axes of coordinates only at the origin 
and the tangent there, is the x-axis. 

dy - = 3x2 which is always non-negative. This means that as x increases, so does y. Thus the 
dx 
graph keeps on rising. 

This implies that there ate no extreme paints, and that (0,O) is a polfit of inflectiorl. The gtaph 

Y 
has no asymptotes paballel to the axes. Furthst lim - = lim x' and 

x i s ,  x %+a 

Curve Tracing 



Drawing Curves obviously, this does not exist. This means that the curve does not have any oblique 
asymptotes.You can also verify that it has no singular points. The graph is shown in 
Fig. 5. 

4 

Fig. 5: Graph of y = x3 

1 
Example 4 Consider y = 3. The y-coordinates of any point on the curve cannot be negative. 

X .- 
So the curve must be above the x-axis. The curve is also symqetric about the y-axis. Hence we 
shall draw the graph of the right of the y-axis first. 

The curve does not intersect the axes of coordinates at all. 

dy 2 -=--  dy and = 4 .Since - < 0 for all x > 0, the function is 
dx x3 dx2 X dx 

non-increasing in 10,- [, that is, the graph keeps on falling as x increases. Further, since 

dy - is non-zero for all x, there are no extreme points. 
dx 

d2y Similarly, since 7 is non-zero, there are no points of inflection. Writing the equation of the 
dx 

curve as x2y = 1, we see that both the axes are asymptotes of the curve. 

There are no singular points. Therefore, the curve does not fold upon itself. The curve is 
shown in Fig. 6. 

Example S Let us try to trace the curve given by the equation xy = 1. 

Here we can nee that either x and y both will be positive or both will be negative. This means 
that the curve lies in the fmt and the third quadrants. 

Fwther, it is symmetric about the origin and hence, it is sufficient to trace it in the first 
quadrant md rotate this through 1 80° to get the portion of the curve in the third quadrant. 



(1, 1) is a point on the curve and x = lly means that as x increases in the first quadrant, y 
decreases. 

1 
Now the distance of any points (x, y) on the curve from the x-axis = i y I - y = - + 0 as 

X 
x + m . This means that the x-axis is an asymptote. Arguing on the same lines we see that 
the y-axis is also an asymptote. 

dy -1 -=- # 0 for any x. That is, there are no extrema. 
dx x2  

dy At the ~ o i n t  (1 , l )  we have, - = - 1, which implies that the tangent at (1.1) makes an angle 
dx 

of 135" with the x-axis. Considering all these points we can trace the curve in the first quadrant 
(see Fig. 7 (a)). Fig. 7 (b) gives the complete curve. 

(a) (b) 

Fig. 7 (a) Graph of xy - 1 in tbe first Quadrant (b) complete graph. 

The curve traced in Example 5 is a hyperbola. Ifwe cut a double cone by a plane as in Fig. 8(a), 
we get a hyperbola. It is a section of a cone. For this reason, it is also called a conic section. 
Figs. 8(b), (c) (d) and (e) show some other conic sections. You are already familiar with the 
circle in Fig. 8(d) and the pair of intersecting lines in Fig. 8 (e). The curve in Fig. 8(b) is called a 
parabola and that in Fig. 8(c) is called an ellipse. 

(b) (c) 
Fig. 8 

The earliest mention of these curves is found in the works of a Greek mathematician 
Menaechmas (fourth century R.C.). Later Apol!onlus (third century B.C.) studied them 
extensively and gave them their current names. 

In the seventeenth century Rene' Descartes discovered that the conic sections can be 
characterised as curves which are governed by a second degree equation in two variables. 
Blaise Pascal (: 623-1662) presented them as projections of a circle. (Why don't you try this? 
Throw the light of a torch on a wall at different angles and watch the different conic sections 
on the wall). Galileo (1 564-1642) showed that the path of a projectile thrown obliquely 

Curve Tracing 



Drawing Curves (Fig. 9) is a parabola. Paraboloid curves are also used in arches and suspe~ision bridges 
(Fig. 10). Paraboloids surfaces are used in telescopes, search lights, solar heaters and radar 
receivers. 

Fig. 9 

Fig. 10 

In the seventeenth century Johannes Kepler discovered that planets move in elliptical orbits 
around the sun. Halley's comet is also known to move along a very elongated ellipse. 

A comet or meteorite coming into the solar system from a great distance moves in a hyperbolic 
path. Hyperbolas are also used in sound ranging and navigation systems. 

Let's look at the next example now. 

Example 6 Consider the curve y = x3 + x2. 

There is no symmetry and the curve meets the axes at (0,O) and (- 1,O). 

dy -- dy 
dx 

- 3x2 + 2x. The x-axis is the tangent at the origin as - = 0, at x = 0. Since 
dx 

dy 
- = 1 when x = - 1, tangent at (-1,O) makes an angle of 45" with the x-axis (Fig. 1 l(a)). 
dx I 

d2y dy d2y Further 7 = 6x + 2. This means (0,O) is a minimum point as - = 0 and > 0 at 
dx dx dx 

dy d2y 
x = 0. The point (-213,4127) is a maximum point as - = 0 and 7 < 0 at x = -213. Thus in 

dx dx 
Fig. 1 1 (b), 0 is a valley and P is a peak. 

Fig. 11 



d2y 1 
Curve Tracing 

- = 0 at x = - - and changes sign from negative to positive as x passes through - 113. 
dx 3 

Hence (-113,2127) is a point of inflection. 

2 dy 
If - - < x < 0, then - < 0. Thus the graph rises in ] - -, - 213 [ and 10, -[, but 

3 dx 

falls in ] - 2/3,0[. 

As x tends to infinity, so does y. As x -, - -, so does y. There are no asymptotes. 

Hence the graph is as shown in Fig. 1 l(c). 
I' 

So far, all our curves were graphs of functions. We shall now trace some curves which are not 
the graphs of functions, but have more than one branch. I -  i. 
Example 7 To trace the semi cubical parabola y2 = x3, we note that x3 is always non-negative 
for points on the curve. This means x is always non-negative and no portion of the curve lies 
on the left on the y-axis. 

There is symmetry about the x-axis (even powers of y). g 2 3  

The curve meets the axes only at the origin. -2t \h 
The tangents at the origin are given by y2 = 0 so that the origin is a cusp. (see Sec. 4 in 

-4 I \ ', 
Unit 8). \ 

t 
In the first quadrant y increases with x, and y + - as x -, -. 

There are no asymptotes, extreme points and points of inflection. 

Taking reflection in the x-axis we get the complete graph as shown in Fig. 12. 

Example 8 Suppose we want to trace the curve. 

y2=(x-2)(x-3)(x-4). , 

If x < 2, we get a negative value for y2 which is impossible. So, no portion of the curve lies to 
the left of the line x = 2. For the same reason, no portion of the curve lies between the lines 
x=3andx=4. 

Since y occurs with even powers alone, the curve is syrnrnekical about the x-axis. We may thus 
trace it for points above the x-axis and then get a reflection in the x-axis to complete the graph. 

The curve meets the axes in points A(2.0). B(3,O) and C(4,O). At each of these points, the 
curve has a vertical tangent (see Sec. 2 of Unit 8). Combining these facts, the shape of the 
curve near A, B, C must be as shown in Fig. 13 (a). 

Fig. I 2  : Seml cubical 
parabola, y2 = xz 



Drawing Curves I ' Let us take y > 0 (i.e., consider points of the curve above the x-axis). Ihen 

and p = 3 - 11 J? then a lies between 3 and 4, and can therefore be ignored. Also, 

3 x 2 ' - 1 8 ~ + 2 6 = 3 ( x - P ) ( x - a ) a n d 2 < P < 3 < a . ~ o r x ~  ]2,3[,x-aremains 

dy negative. Hence for 2 < x < $, - < 0 since (x - a )  and (x - p) are both negative. 
dx 

dy 
Similarly, for P <x  < 3, - < 0. Hence the graph rise in.j2, P[and falls in ]P, 3[. Thus 

dx 
the shape of the curve is oval above the x-axis, and by symmetry about the x-axis: we can 
complete the graph between x = 2 and x = 3 as in Fig. 13(b). 

Now let us consider the portion of the graph to the right of x = 4. Shifting the origin to (4, O), 
the equation of the curve becomes 
y2=x(x+ l)(x+2)=x3+3x2+2x. 

As x increases, so does y. As x + m , so does y (considering points above the x-axis). 
When x is very small, x3 and 3x2 are negligible as compared to 2x, so that near the (new) 
origin, the curve is approximately of the shape of y2 = 2x. For large values of x, 3x2 and 2x are 
negligible as compared to x3, so that the curve shapes like y2 = x3 for large x. Thus, at some 
point the curve changes its convexity. 

This conclusion could also be drawn by showing the existence of a point of inflection. 

There are no asymptotes or multiple points. 

Considering the reflection in the x-axis, we have the complete graph as shown in Fig. 13 (c). 

Example 9 Let us trace the curve (x' - 1) ( 9  - 4) = 4. 

There is symmetry about both axes. We can therefore sketch the graph in the first quadrant 
only and then takes its nflection in the y-axis to get the graph above the x-axis. The reflection 
of this graph in the x-axis will give the complete graph. 

Notice that the origin is a point on the graph and the tangents there, are given by 
4x2 + y2 = 0. These being imaginary, the origin is an isolated point on the graph. The curve 
does not meet the axes at any other points. 

For x > 0, y > 0, the equation (x2 - 1) ( 9  - 4) = 4 shows that x should be greater than 1 and y 
should be greater than 2. 

Fig. 14 



Equatmg to zero the coefficients of the highest powers of x and y, we get y = f 2 and x = f 1 
I as asymptotes of the curve. Thus, the pomon of the curve in the first quadrant ~pproaches 
I s the lines x = 1 and y = 2 in the region far away from the origm. 

4 
In the first quadrant, as x increases, so does x' - 1, and since x2 - 1 = 

(y2 -4) ' 
y decreases as x increases. 

There are no extreme points, singular points or points of inflection. 

As x -+ m ,y -+ 2 and as y -+ 00, x -+ I.  Hence the graph is as shown in Fig. 14. 

Example 10 To trace the curve y" (x - 1) (x - 2)' we note that there is symmetry about the 
x-axis. r 
No portion of the curve lies to the left of x = 1. 

Points of intersection with the axes are A(l, 0) and B(2,O) and the tangent at (1,O) is vertical. 
Shifting the origin to B(2, O), the curve transforms into y' = x2(x + 1). The tangents at the new 
origin B, are given by y2 = x2. This means that B is a node, and the tangents at B are equally 
inclined to the axes. Let us try to build up the graph above the x-axis between x = 1 and x = 2. 
Differentiating the equation of the curve with respect to x, we get. 

when 1 < x < 2, (x - 2) < 0. If y is positive, then y' > 0 provided 3x - 4 < 0. Thus 
y' > 0 when x E ] 1,4/3[ and y' < 0 which x E ]413,2[. The tangent is parallel to the 
x-axis when 3x - 4 = 0, that is, when x = 413 (see Fig. 15(a)). Hence, for 1 < x < 2, the 
curve shapes as in Fig. 15(b). 

Now for x > 2, As x -+ = , y -+ 00 in the first quadrant. Note that when B(2,O) is taken as the 
origin, the equation of the curve reduces to 
Y 2 = x 2 ( ~ +  1 ) = ~ 3 + ~ 2  

This shows that when x > 0 and y > 0, the curve lies above the line y = x (on which y2 = x2). 
Hence the final sketch (Fig. 15 (c)) shows the complete graph. 

Curve Tracing 



Drawing Curves If you have gone through Examples 1 - 10 carefully, you should be able to do the following 
exercise. 

E 1) Trace the curves given by 
a) y=x2 b) y 2 = ( ~ - 2 ) 3  
c) y(l+x2)=x d) y 2 = ~ 2 ( 1 - ~ 2 )  

(Graph paper is provided at the end of this unit.) 

4.4 TRACING A CURVE : PARAMETRIC EQUATION 

Sometimes a functional relationship may be defined with the help of a parameter. In such cases 
we are given a pair of equations which relate x and y with the parameter. You have already 
come across such parametric equations in Unit 4. Now we shall see how to trace a curve whose 
equation is in the parametric form. 

We shall illustrate the process through an example. 

Example 11 Let us trace the cycloid x = a(t + sin t), y = a(1- cos t) as t varies 
from - n ton. 

dx d~ 
- = a(l + cos t), - = a  sin t, so that 
dt dt 

dy dx 
- = tan (tl2). Since - > 0 for all t E 1 - n, n[, x increases with t from - a A (at 
dx dt 

dy 
Also - is negative when t E ] -n, 0[ and positive when t E 10, A[. Hence y decreases 

dx 
from 2a to 0 in [ -n, 01 and increases from 0 to 2a in [0, x]. Let us tabulate this data. 

Also, at the terminal points -n, 0 and n of the intervals [ - n, 01 and [O, x], we have the 
following. 

tE [-n,O] 

i )  x increases from - a to 0 

ii) y decreases from 2a to 0 

iii) Hence the curve falls 

t E [O, XI 

i )  x increases from 0 to a 

ii) y increases from 0 to 2a 

iii) Hence the curve rises 

On the basis of the data tabulated above, the graph is dnwn in Fig. 16. 

I I I 
Fig. 16 

t 
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Remark 1 If t is increased by 2x, x is increased by 2xa and y does not change. Thus the 
complete graph can be obtained in intervals ....... [ - 5x, -3x3, [ -3x, - x], [x, 3x1, [3n, 5x1 ..... 
by mere translation through a proper distance. 

The cycloid is known as the Helen of geometry because it was the cause of many disputes 
among mathematicians. It has many interesting properties. We shall describe just one of them 
here. Coilsider this question : What shape should be given to a trough connecting two points 
A and B, so that a ball rolls from A to B in the shortest possible time? 

Curve Tracing 

Now, we know that the shorter distance between A and B would be along the line AB (Fig. 17). 
But since we are interested in the shortest time rather than distance, we must also consider the 
fact that the ball will roll quicker, if the trough is steeper at A. The Swiss mathematicians Jakob 
and Johann Bernoulli proved by exact calculations that the trough should be made in the form 
of an arc of a cycloid. Because of this, a cycloid is also called the curve of the quickest 
descent. 

The cycloid is used in clocks and in teeth for gear wheels. It can be obtained as the locus of a 
fixed point on a circle rolls along a straight line. A 

< -  - 
\(\:?-:-. - 

See if you can do this exercise now. ,,, ,>  ,> =---.:-:-. ,. .__ - _  :: '.>. -._--_ - _  .. 
:\ .---- _ - _ _ _ _ _ - - - -  :-.:- E2) Trace the following curves on the graph paper given at the end of this unit. I,\ - _ _  _ - - - - - - I  ,,- --- - - -  /:- ::---:------- .._ __.---- 

4.5 TRACING A CURVE : POLAR EQUATION 

In this section we shall consider the problem of tracing those curves, whose equations are 
given in the polar form. The following considerations can be useful in this connection. 

Symmetry : If the equation remains unchanged when 8 is replaced by - 8, then the curve is 
symmetric with respect to the initial line. 

If the equation does not change when r is replaced by - r, then the curve is symmetric about 
the pole (or the origin). 

Finally, if the equation does not change when 8 is replaced by x - 8, then the curve is 
symmetric with respect to the line 8 = d 2 .  

Extent : (i) Find the limits within which r must lie for the permissible values of 8. If r < a 
(r >a) for some a > 0, then the curve lies entirely within (outside) the circle r = a. 

(ii) If $ is negative for some values of 8, then the curve has no portion in the corresponding 
region. 

Angle between the line joining a point of the cuwe to the origin and the tangent : At suitable 
points, this angle can be determined easily. It helps in knowing the shape of the curve at these 

de 
points. Recall that angle $ is given by the relation tan $ = r - 

dr' 

We shall illustrate the procedure through some examples. Study them carefully, so that you can 
trace some curves on your own later. 

Example 12 Suppose we want to trace the cardioid r = a (1 + cos 0). We can make the followihg . 
observations. 

Since cos 8 = cos ( - €9, the curve is symmetric with respect to the initial line. 

Since - 1 5 cos 8 5 1, the curve lies inside the circle r = 2a. 
.'!It. , , 

dr dr 
- ~. 

- = - a sin 8. Hence - < O when 0 < 8 < x .  Thus r decreases as 0 increases in the interval 
d0 de 

Fig. 17 



Drawing Curves 10, R[. Similarly, r increases with 8 in]~ /2 ,  R[. Some corresponding values of r and 8 are 
tabulated below. 

d0 a(l + cos 0) - 
r -- - = - cot (0 12) = tan . This shows that the angle between the dr - a  sin 0 

line joining a pont (r, 0) on the curve to the origin and the tangent is 0 or n/2 according to 
6 = x or 0. Hence the line joining a point on the curve to the origin is orthogonal to the tangent 

' 

when 0 = 0 and coincides with it 8 = x. 

Combining the above facts, we can easily draw the graph above the initial line. By reflecting 
this portion in the initial line we can completely draw the curve as shown in Fig. 18. Notice the 
decreasing radii 2a, c, ,  c,, c, etc. 

L/' This curve is called a cardioid'since it resembles a heart. 

Fig. 18 Example 13 Let us trace the equiangular spiral r = aeeCota . We proceed as follows. 

dr - = r cot a, which is positive, assuming cot a > 0. Hence as 8 increases so does r. 
d0 

de 

y 4  r - = tan a. Thus, at every point, the angle between the line joining a point on the curve to 
dr 

1 the origin and the tangent is the same, namely a. Hence the name. 

/ 113 Combining these facts, we get the shape of the curve as shown in Fig. 19. 

The equiangular (or logarithmic) spiral r = aeeCO' a is also known as the curve of pursuit. 
Suppose four dogs start from the four comers of a square, each pursues the dog In front with 
the same uniform velocity (always follow~ng the dog in front in a sbalght line), then each will 
describe an equiangular spiral. Several shells and fossils have forms which are qulte close to 

Fig. 19 equiangular spirals (Fig. 20). Seeds in the sunflower or blades of pine cones are also arranged 
in this form. 

This spiral was first studied by Descartes in 1638. John Bernoulli rectified this curve and was 
so fascinated by it that he willed that an equiangular spiral be carved on his tomb with the 
words 'Though changed, I rise unchanged' inscribed below it. 

, The spiral r = a0 is known as the Archimedean spiral. Its study was, however, initiated by 
I Conan. Archimedes used this spiral to square the circle, that is, to find a square of area equal 

' to that of a given circle. This spiral is w~dely used as a cam to produce uniform linear motlon. It 
,' is also used as casings of centrifugal pumps to allow air which increases uniformly in volume 

with each degree of rotat~on of the k n  blades to be conducted to the outlet without creating 
back-pressure. 

The spiral r0 = a, due to Varignon, is known as the reciprocal or hyperbolic (recall that xy a is 
Fig. 20 a hyperbola) spiral. It is the path of a particle under a central force which varies as the cube of 

4y 
the distance. 

I Now let's consider one last example. 

Examplq 14 To trace the curve r = a sin 38, a > 0, we note that there is symmetry about the line 
8 = n12, since the equation is unchanged if 8 is replaced by n - 8. 

- .. . The curve lies inside thr circle r = a, because sin 38 5 1. The origin lies on the curve and this is 
the only point where the initial line meets the curve. 

j 

r = 0 6 - nnI3. where n is any integer. Hence the origin is a multiple point, the l~nes 
8 = 0, d 3 , 2 ~ . / 3 ,  n, 4n/3,5n/3,2n etc. being tallgents at the pole. 

I (0 - a) dr 
- = 3 cos 38. Hence r increases in the intervals 10, d 6 ,  [ I  n!2,5d6[, and ]7x/6,3x/2[, and 
de 

decreases in the intervals ]n/6, ~ / 2 [ ,  ]566,7n/6[ and]3n/2,5n/3[. Notice that r is negative 
Pig. 21 when 8 €]x/3,27~/3[or 8 E In, 4n/3$r 8 E ]5n/3,2x[. 
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Hence the curve consists of three loops as shown in Fig. 2 1. The function is periodic and the 
curve traces itself as 9 increases from 2n on. 

Now try to trace a few curves on your own. 

E 3) Trace the following curves on the graph paper provided. 
a) r=a( l  -cosO),a>O. b) r=2+4cos0 .  
c) r=acos39,a>O. d) r=asin29,a>O 

(Graph paper is provided at the end of this unit.) 

4.6 SUMMARY 

In this unit we have covered the following points. 

1) Tracing a curve y = f(x) or f(x, y) = 0 means plotting the points which satisfy this 
relation. 

2) Criteria for symmetry and monotonicity, equations of tangents, asymptotes and points 
of inflection are used in curve tracing. 

3) Curve tracing is illustrated by some examples when the equation of the curve is given 
in 
a) Cartesian f o m  
b) Parametric f o m  
c) Polar form 

4.7 SOLUTIONS AND ANSWERS 

Dotted lines represent tangents or asymptotes throughout. 

E l )  a) 

Curve Tracing 

b) Shifting the origin to (2,O) we get y2 = x3 which you know how to draw. 

't 



Drawing Curves c) y = x is the tangent at the origin. Origin is a point of inflection. x-axis is an asymptote. 
Either x, y are both positive or both negative. Function rises in 1- 1,1[ and falls 
elsewhere. Graph is shown alongside. 

d) 5 - 1 - x  s hows that the entire curve lies within the lines x = f 1. Tangents at the 

origin are y = f x. Tangents at x = f 1 are vertical. Maxima at (f 11 JZ ,1/4), symmetry 
about both axes. 



curve Tracing 



Drawing Curves 












