

Generative Adversarial
Networks Cookbook

Over 100 recipes to build generative models using Python,
TensorFlow, and Keras

Josh Kalin

BIRMINGHAM - MUMBAI

Generative Adversarial Networks Cookbook

Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Sunith Shetty
Acquisition Editor: Devika Battike

Content Development Editor: Unnati Guha
Technical Editor: Sayli Nikalje

Copy Editor: Safis Editing

Project Coordinator: Manthan Patel
Proofreader: Safis Editing

Indexer: Tejal Daruwale Soni

Graphics: Jisha Chirayil

Production Coordinator: Shraddha Falebhai

First published: December 2018
Production reference: 1311218
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78913-990-7

www.packtpub.com

http://www.packtpub.com

A Mapt

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?

e Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

e Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt .com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt .com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

To my wife Lara who is 90% inspiration and 90% patience. No, it doesn’t add up to 180%.
She’s just a great multitasker.

Contributors

About the author

Josh Kalin is a Physicist and Technologist focused on the intersection of robotics and
machine learning. Josh works on advanced sensors, industrial robotics, machine learning,
and automated vehicle research projects. Josh holds degrees in Physics, Mechanical
Engineering, and Computer Science. In his free time, he enjoys working on cars (has owned
36 vehicles and counting), building computers, and learning new techniques in robotics and
machine learning (like writing this book).

I thank my mother, father, step-mom, in-laws, grandparents, and friends who supported
me in this crazy idea; also, my kids for understanding when dad’s pulling his hair out over
GANSs. Hope one day they understand what the book is about. Special thanks to Jeremiah
for listening to me drone on about this book. Finally, I'd thank my amazing wife—uwithout
her, nothing could be possible. I can’t thank her enough for pushing me to finish this book.

About the reviewer

Mayur Ravindra Narkhede has a good blend of experience in data science and industrial
domain. He is a researcher with a B.Tech in computer science and an M.Tech in CSE with a
specialization in Artificial Intelligence.

A data scientist whose core experience lies in building automated end-to-end solutions, he
is proficient at applying technology, Al, ML, data mining, and design thinking to better
understand and predict improvements in business functions and desirable requirements
with growth profitability.

He has worked on multiple advanced solutions, such as ML and predictive model
development for the oil and gas industry, financial services, road traffic and transport, life
sciences, and the big data platform for asset-intensive industries.

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents

Preface

N

Chapter 1: What Is a Generative Adversarial Network? 7
Introduction 7
Generative and discriminative models 8

How to do it... 8
How it works... 9

A neural network love story 10
How to do it... 11
How it works... 11
Deep neural networks 12
How to do it... 12
How it works... 13
Architecture structure basics 14
How to do it... 14
How it works... 15
Basic building block — generator 16
How to do it... 16
How it works... 17
Basic building block — discriminator 17
How to do it... 18
How it works... 18
Basic building block — loss functions 19
How to do it... 20
How it works... 20
Training 21
How to do it... 21
How it works... 22
GAN pieces come together in different ways 22
How to do it... 22
How it works... 23
What does a GAN output? 24
How to do it... 24
How it works... 24
Working with limited data — style transfer 25
Dreaming new scenes — DCGAN 25
Enhancing simulated data — simGAN 26
Understanding the benefits of a GAN structure 27
How to do it... 27

How it works... 27

Table of Contents

Exercise

Chapter 2: Data First, Easy Environment, and Data Prep
Introduction
Is data that important?
Getting ready
How to do it...
How it works...
There's more...
But first, set up your development environment
Getting ready
How to do it...
Installing the NVIDIA driver for your GPU
Installing Nvidia-Docker
Purging all older versions of Docker
Adding package repositories
Installing NVIDIA-Docker2 and reloading the daemon
Testing nvidia-smi through the Docker container
Building a container for development
There's more...
Data types
Getting ready
How to do it...
How it works...
Running this code in the Docker container
There's more...
Data preprocessing
Getting ready
How to do it...
How it works...
There's more...
Anomalous data
Getting ready
How to do it...
Univariate method
There's more...
Balancing data
Getting ready
How to do it...
Sampling techniques
Random undersampling
Random oversampling
Synthetic minority oversampling technique
Ensemble techniques
Bagging
Boosting
AdaBoost

There's more...

[ii]

Table of Contents

Data augmentation
Getting ready
How to do it...
How it works...
There's more...

Exercise

Chapter 3: My First GAN in Under 100 Lines
Introduction
From theory to code — a simple example
Getting ready
How to do it...
Discriminator base class
Generator base class
GAN base class
See also
Building a neural network in Keras and TensorFlow
Getting ready
How to do it...
Building the Docker containers
The Docker container
The run file
See also
Explaining your first GAN component — discriminator
Getting ready
How to do it...
Imports
Initialization variables (init in the Discriminator class)
Model definition for the discriminator
Helper methods in the Discriminator class
Explaining your second GAN component — generator
Getting ready
How to do it...
Imports
Generator initialization
Model definition of the generator
Helper methods of the generator
Putting all the GAN pieces together
Getting ready
How it works...
Step 1 — GAN class initialization
Step 2 — model definition
Step 3 — helper functions
Training your first GAN
Getting ready
How to do it...
Training class definition

[iii]

Table of Contents

Imports
init method in class
Load data method
Training method
Helper functions
Run script definition
Training the model and understanding the GAN output
Getting ready
How to do it...
How it works...

Exercise

Chapter 4: Dreaming of New Outdoor Structures Using DCGAN
Introduction
What is DCGAN? A simple pseudocode example
Getting ready
How to do it...
Generator
Discriminator
See also
Tools — do | need any unique tools?
Getting ready
How to do it...
The development environment for DCGAN
Downloading and unpacking LSUN data
There's more...
See also
Parsing the data — is our data unique?
Getting ready
How to do it...
Code implementation — generator
Getting ready
How to do it...
Initializing generator — the DCGAN update
Building the DCGAN structure
See also
Code implementation — discriminator
Getting ready
How to do it...
Initializing the Discriminator class
Building the model structure
See also
Training
Getting ready
How to do it...
Changes to class initialization
Understanding the changes in pseudocode

88
89
90
90
92
94
94
94
95
97

98

99

99
100
100
100
102
103
104
104
105
105
106
107
109
109
109
110
110
112
113
113
113
115
117
118
118
118
119
120
121
122
122
122
122
124

[iv]

Table of Contents

The new and improved training script
Python run script
Shell run script
Evaluation — how do we know it worked?
Getting ready
How it works...
Adjusting parameters for better performance
How to do it...
Training parameters
Discriminator and generator architecture parameters
Exercise

Chapter 5: Pix2Pix Image-to-Image Translation
Introduction
Introducing Pix2Pix with pseudocode
Getting ready
How to do it...
Discriminator
Generator
Parsing our dataset
Getting ready
How to do it...
Building the Docker container with a new Dockerfile
Building the auxiliary scripts
Code implementation — generator
Getting ready
How to do it...
Code - the GAN network
Getting ready
How to do it...
Code implementation — discriminator
Getting ready
How it works...
Training
Getting ready
How to do it...
Setting up the class
Training method
Plotting the results
Helper functions
Running the Training Script
Exercise

Chapter 6: Style Transfering Your Image Using CycleGAN
Introduction
Pseudocode — how does it work?
Getting ready

125
128
129
130
131
132
132
133
133
134

135

136
136
136
137
137
137
138
140
140
140
140
141
142
142
143
146
146
146
147
148
148
150
150
150
150
152
155
156
158
159

160
160
160
161

[v]

Table of Contents

How to do it...
What is so powerful about CycleGAN?
Parsing the CycleGAN dataset
Getting ready
How to do it...
Docker implementation
The data download script
What does the data actually look like?
Code implementation — generator
Getting ready
How to do it....
Code implementation — discriminator
Getting ready
How to do it...
Code implementation — GAN
Getting ready
How to do it...
On to training
Getting ready
How to do it...
Initialization
Training method
Helper method
Exercise

Chapter 7: Using Simulated Images To Create Photo-Realistic Eyeballs

with SImGAN
Introduction
How SimGAN architecture works
Getting ready
How to do it...
Pseudocode — how does it work?
Getting ready
How to do it...
How to work with training data
Getting ready
How to do it...
Kaggle and its API
Building the Docker image
Running the Docker image
Code implementation — loss functions
Getting ready
How to do it...
Code implementation — generator
Getting ready
How to do it...

161
161
164
164
165
165
166
166
167
167
168
170
171
171
173
174
174
176
176
177
177
180
182
184

185
185
186
186
186
187
187
188
189
189
189
189
191
192
193
193
193
194
194
195

[vil

Table of Contents

Boilerplate items
Model development
Helper functions
Code implementation — discriminator
Getting ready
How to do it...
Boilerplate
Model architecture
Helper functions
Code implementation — GAN
Getting ready
How to do it...
Training the simGAN network
Getting ready
How to do it...
Initialization
Training function
Helper functions
Python run script
Shell run script
Exercise

Chapter 8: From Image to 3D Models Using GANs

Introduction

Introduction to using GANSs in order to produce 3D models

Getting ready
How to do it...
For a 2D image — learning an encoding space for an image
Training a model using 3D convolutions
Environment preparation
Getting ready
How to do it...
Creating the Docker container
Building the Docker container
Encoding 2D data and matching to 3D objects
Getting ready
How to do it...
Code to run a simple encoder
The shell script to run the encoder with our Docker container
Code implementation — generator
Getting ready
How to do it...
Generator class preparation
Building the generator model
Code implementation — discriminator
Getting ready
How to do it...

195
196
197
198
198
199
199
200
201
201
202
202
204
204
204
204
206
208
209
209

210

211
211
212
212
212
212
213
215
215
216
216
217
218
218
218
219
221
221
221
222
222
223
224
224
225

[vii]

Table of Contents

Discriminator class preparation 225

Building the discriminator model 226

Code implementation — GAN 228
Getting ready 228

How to do it... 228
Training this model 230
Getting ready 230

How to do it... 230
Training class preparation 230

Helper functions 232

The training method 234

Plotting the output of the network 237

Running the training script 238

Exercise 239
Other Books You May Enjoy 240
Index 243

[viii]

Preface

Developing Generative Adversarial Networks (GANSs) is a complex task, and it is often
hard to find code that is easy to understand. This book leads you through eight different
examples of modern GAN implementation, including CycleGAN, SimGAN, DCGAN, and
imitation learning with GANs. Each chapter builds on a common architecture in Python
and Keras to explore increasingly difficult GAN architectures in an easy-to-read format.

The Generative Adversarial Networks Cookbook starts by covering the different types of GAN
architecture to help you understand how the model works. You will learn how to perform
key tasks and operations, such as creating false and high-resolution images, text-to-image
synthesis, and generating videos with this recipe-based guide. You will also work with use
cases such as DCGAN and deepGAN. To become well versed in the working of complex
applications, you will take different real-world datasets and put them to use.

By the end of this book, you will be equipped to deal with the challenges and issues that
you may face while working with GAN models thanks to easy-to-follow code solutions that
you can implement right away.

Who this book is for

This book is for data scientists, machine learning (ML) developers, and deep learning
practitioners looking for a quick reference to tackle challenges and tasks in the GAN
domain. Familiarity with machine learning concepts and a working knowledge of the
Python programming language will help you get the most out of the book.

What this book covers

Chapter 1, What is a Generative Adversarial Network?, introduces you to GAN architectures
and looks at the implementation of each of them.

Chapter 2, Data First — Easy Environment and Data Preparation, lays down the groundwork
for manipulating data, augmenting your data, and balancing imbalanced datasets or data
with massive outliers.

Chapter 3, My First GAN in Under 100 Lines, covers how to take the theory we'll have
discussed and produce a simple GAN model using Keras, TensorFlow, and Docker.

Preface

Chapter 4, Dreaming of New Outdoor Structures Using DCGAN, covers the building blocks
required to build your first deep convolutional generative adversarial network (DCGAN)
implementation.

Chapter 5, Pix2Pix Image-to-Image Translation, covers Pix2Pix, how it works, and how it is
implemented.

Chapter 6, Style Transfering Your Image Using CycleGAN, explains what CycleGAN is, and
how to parse the CycleGAN datasets and implementations.

Chapter 7, Using Simulated Images To Create Photo-Realistic Eyeballs with SimGAN,
demonstrates how SIimGAN works, and how it is implemented.

Chapter 8, From Images to 3D Models Using GANSs, talks about 3D models and techniques to
implement these 3D models using images.

To get the most out of this book

A basic knowledge of Python is a prerequisite, while a familiarity with machine learning
concepts will be helpful.

Download the example code files

You can download the example code files for this book from your account at
www.packt . com. If you purchased this book elsewhere, you can visit
www.packt . com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt . com.
Select the SUPPORT tab.
Click on Code Downloads & Errata.

Enter the name of the book in the Search box and follow the onscreen
instructions.

L e

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

[2]

http://www.packt.com
http://www.packt.com/support
http://www.packt.com

Preface

The code bundle for the book is also hosted on GitHub
at https://github.com/PacktPublishing/Generative-Adversarial-Networks—

Cookbook. In case there's an update to the code, it will be updated on the existing GitHub
repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https://www.packtpub.com/sites/default/files/
downloads/9781789139907_ColorImages.pdf.

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLSs, user input, and Twitter handles. Here is an
example: "You can run the nvidia-smi command to know which version of driver is
installed on your system."

A block of code is set as follows:

docker volume 1ls -g -f driver=nvidia-docker | xargs -r -I{} —-nl docker ps -
g —a —f volume={} | xargs -r docker rm -f

Any command-line input or output is written as follows:

sudo ./build.sh

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Now, click Save and let's check to make sure that we have the appropriate directory
structure with our files."

[3]

https://github.com/PacktPublishing/Generative-Adversarial-Networks-Cookbook
https://github.com/PacktPublishing/Generative-Adversarial-Networks-Cookbook
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/9781789139907_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789139907_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789139907_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789139907_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789139907_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789139907_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789139907_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789139907_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789139907_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789139907_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789139907_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789139907_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789139907_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789139907_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789139907_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789139907_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789139907_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789139907_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789139907_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789139907_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789139907_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789139907_ColorImages.pdf

Preface

0 Warnings or important notes appear like this.
9 Tips and tricks appear like this.

Sections

In this book, you will find several headings that appear frequently (Getting ready, How to do
it..., How it works..., There’s more..., and See also).

To give clear instructions on how to complete a recipe, use these sections as follows:

Getting ready

This section tells you what to expect in the recipe and describes how to set up any software
or any preliminary settings required for the recipe.

How to do it...

This section contains the steps required to follow the recipe.

How it works...

This section usually consists of a detailed explanation of what happened in the previous
section.

There's more...

This section consists of additional information about the recipe in order to increase your
knowledge of it.

See also

This section provides helpful links to other useful information for the recipe.

[4]

Preface

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt .com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt .com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise, in
and you are interested in either writing or contributing to a book, please visit

authors.packtpub.com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt .com.

[5]

http://www.packt.com/submit-errata
http://authors.packtpub.com/
http://www.packt.com/

Everything not saved will be lost

-Nintendo "Quit Screen” message

What Is a Generative
Adversarial Network?

In this chapter, we'll cover the following recipes:

¢ Generative and discriminative models

¢ A neural network love story

¢ Deep neural networks

e Architecture structure basics

e Basic building block- generator

e Basic building block — loss functions

e Training

¢ GAN pieces come together in different ways

e What does a GAN output?

¢ Understanding the benefits of a GAN structure

Introduction

I'm sure you've heard of a neural network dreaming? Maybe you've heard that Al is
coming for you? Well, I'm here to tell you that there's no need to worry just yet. A Neural
Network dreaming isn't too far away from the truth though. Generative Adversarial
Networks (GANSs), represent a shift in architecture design for deep neural networks. This
new architecture pits two or more neural networks against each other in adversarial
training to produce generative models. Throughout this book, we'll focus on covering the
basic implementation of this architecture and then focus on modern representations of this
new architecture in the form of recipes.

What Is a Generative Adversarial Network? Chapter 1

GAN:Ss are a hot topic of research today in the field of deep learning. Popularity has soared
with this architecture style, with it's ability to produce generative models that are typically
hard to learn. There are a number of advantages to using this architecture: it generalizes
with limited data, conceives new scenes from small datasets, and makes simulated data
look more realistic. These are important topics in deep learning because many techniques
today require large amounts of data. Using this new architecture, it's possible to drastically
reduce the amount of data needed to complete these tasks. In extreme examples, these
types of architectures can use 10% of the data needed for other types of deep learning
problems.

By the end of this chapter, you'll have learned about the following concepts:

¢ Do all GANs have the same architecture?
¢ Are there any new concepts within the GAN architecture?
e The basic construction of the GAN architecture in practice

Ready, set, go!

Generative and discriminative models

Machine learning (ML) and deep learning can be described by two terms: generative and
discriminative modeling. When discussing the machine learning techniques that most
people are familiar with, the thinking of a discriminative modeling technique, such as
classification.

How to do it...

The difference between these two types of can be described by the following analogy:

¢ Discriminative modeling: Observe paintings and determine the style of
painting based on observations.

Here are a few steps that describe how we would do this in machine learning;:

1. First, we create a machine learning model that use convolutional layers or other
learned features to understand the divisions in the data

2. Next, we collect a dataset that has both a training set (60-90% of your data) and a
validation dataset (10-40% of your data)

3. Train the machine learning model using your data

[8]

What Is a Generative Adversarial Network? Chapter 1

4. Use this model to predict which datapoint belongs to a particular class - in our
example, which painting belongs to which author

¢ Generative modeling: Learn and reproduce paintings in various painters' styles
and determine the painting style from the styles you learned.

Here are a few steps to describe a possible way to accomplish this type of modeling:

1. Create a machine learning model that learns how to reproduce different painting
styles
2. Collect a training and validation dataset

w

Train the machine learning model using the data

4. Use this model to predict (inference) to produce examples of the paint author -
use similarity metrics to verify the ability of the model to reproduce the painting

style.

How it works...

Discriminative models will learn the boundary conditions between classes for a
distribution:

¢ Discriminative models get their power from more data

e These models are not designed to work in an unsupervised manner or with
unlabeled data

This can be described in a more graphical way, as follows:

Discriminative Modeling

¢ Generative models will model the distribution of the classes for a given input
distribution:
e This creates a probabilistic model of each class in order to estimate
the distribution

[9]

What Is a Generative Adversarial Network? Chapter 1

e A generative model has the ability to use unlabeled data since it
learns labels during the training process

This can be described in a more graphical way, as follows:

Generative Modeling

N\

OO

So, generative models are incredibly difficult to produce as they have to accurately model
and reproduce the input distribution. The discriminative models are learning decision
boundaries, which is why neural networks have been incredibly successful in recent years.
The GAN architecture represents a radical departure from older techniques in the
generative modeling area. We'll cover how neural networks are developed and then dive
right in the GAN architecture development.

A neural network love story

Since you've come here to learn more about a specific neural network architecture, we're
going to assume you have a baseline understanding of current machine and deep learning
techniques that revolve around neural networks. Neural networks have exploded in
popularity since the advent of the deep neural network-style architectures. By utilizing
many hidden layers and large sums of data, modern deep learning techniques are able to
exceed human-level performance in a dizzying number of applications. How is this
possible? Neural networks are now able to learn baseline features and relationships in
similar ways to our brains. Along those same lines, researchers have been exploring new
styles of mixing neural networks to replicate the thought process that our brains take
automatically.

[10]

What Is a Generative Adversarial Network? Chapter 1

How to do it...

The story is a classic: researcher goes drinking with a few friends and has an epiphany-
what if you were able to pit two neural networks against each other to solve a problem? Ian
Goodfellow, affectionately called the GANfather, helped popularize this adversarial
architecture with his hallmark paper in 2014, called Generative Adversarial Networks.
Researchers all over the world began developing variations on this technique: can you pit
three or more networks against each other? What happens when you provide more than
one loss function? These are actually the types of questions you should be able to answer by
the end of this book, because we'll focus on implementing modern renditions of this
architecture to solve these types of problems.

How it works...

It's important to understand the difference and difficulties that surround generative and
discriminative modeling. In recent years, discriminative modeling has seen some great
successes. Typically requiring Markov decision processes in order for the generative
modeling process to work, these techniques suffered from a lack of flexibility without
heavy design tuning. That is, until the advent of the GANs architecture that we're
discussing today. Goodfellow adequately summed up the issues surrounding
discriminative and generative models in his paper in 2014:

Deep directed
graphical models

Deep undirected
graphical models

Generative
autoencoders

Adversarial models

Inference needed

Inference needed
during training.
MCMC needed to

Enforced tradeoff
between mixing

Synchronizing the
discriminator with

Training - S and power of
during training. approximate - the generator.
- - ; reconstruction i
partition function . Helvetica.
. generation
gradient.
Learned - Learned
) . Variational MCMC-based -
Inference approximate L - approximate
. inference inference o
inference inference
. . Requires Markov Requires Markov .
Sampling No difficulties 4 9 No difficulties
chain chain

Evaluating p(x)

Intractable, may be
approximated with
AlS

Intractable, may be
approximated with
AIS

Not explicitly
represented, may be
approximated with
Parzen density
estimaton

Not explicitly
represented, may be
approximated with
Parzen density
estimation

Model design

Nearly all models
incur extreme
difficulty

Careful design
needed to ensure
multiple properties

Any differentiable
functi
theoretically
permitted

I

Any differentiable
function is
theoretically
permitted

Goodfellow and his coauthors presented a graphic on the challenges associated with generative modeling in the literature up until 2014

[11]

What Is a Generative Adversarial Network? Chapter 1

What are Goodfellow and his fellow authors getting at in this screenshot? Essentially, prior
generative models were painful to train/build. GANs can have their challenges in terms of
training and design, but represent a fundamental shift in flexibility in output given the ease
of setup. In the chapter 3, My First GAN in Under 100 Lines, we'll build a GAN network in
under 100 lines of code.

Deep neural networks

But first, let's review the concept of a deep neural network. A neural network, in ML,
represents a technique to mimic the same neurological processes that occur in our brain.
Neurons, like those in our brains, represent the basic building blocks of the neural network
architecture that we use to learn and retain a baseline set of information around our
knowledge.

How to do it...

Our neurological process uses previous experience as examples, learning a structure to
understand the data and form a conclusion or output:

Information Flow

Output

Classification

Raw Input
Image

Output

Active Layer

Hidden

Active Layer
Input ' : '

Static Layer

Neurons making connections to go from input to hidden layer to single output

This basic architecture will form the foundation of our deep neural network, which we'll
present in the next section.

[12]

What Is a Generative Adversarial Network? Chapter 1

Here are the basic steps of how the model is built:

1. Aninput (an image or other input data) is sent into an input (static) layer
2. The single or series of hidden layer then operates on this data
3. The output layer aggregates all of this information into an output format

How it works...

Originally conceived in the early 1940s as a mathematical construct, the artificial neural
network was popularized in the 1980s through a method called backpropagation.
Backprop, for short, allows an artificial neural network to adjust the weights of each layer at
every epoch of training. In the 1980s, the limits of computational power only allowed for a
certain level of training. As the computing power expanded and the research grew, there
was a renaissance with ML.

With the advent of cheap computing power, a new technique was born: deep neural
networks. Utilizing the ability of GPUs to compute tensors very quickly, a few libraries
have been developed to build these deep neural networks. To become a deep neural
network, the basic premise is this: add four or more hidden layers between the input and
output. Typically, there are thousands of neurons in the graph and the neural network has
a much larger capacity to learn. This construct is illustrated in the following diagram:

< &

Output

Classification

Raw Input

Image

Output

Active Layer

Weights Weights

Input n Hidden

Static Layer Active Layers

A deep neural network is a relatively simple expansion of the basic architecture of the neural network

[13]

What Is a Generative Adversarial Network? Chapter 1

This represents the basic architecture for how a deep neural network is structured. There
are plenty of modifications and basic restructuring of this architecture, but this basic graph
provides the right pieces to implement a Deep Neural Network. How does all of this fit into
GANSs? Deep neural networks are a critical piece of the GAN architecture, as you'll see in
the next section.

Practice building neural network architectures in frameworks such as
scikit-learn or Keras to understand fundamental concepts. It's beneficial to
understand the differences in various types of dropout and activation
functions. These tools will serve you well as you work through the
examples in this book.

Architecture structure basics

Now, this is the part you've been waiting for: how do I build a GAN? There are a few
principal components to the construction of this network architecture. First, we need to
have a method to produce neural networks easily, such as Keras or PyTorch (using the
TensorFlow backend). This critical piece will be covered extensively in chapter 2, Data
First Easy Environment, and Data Prep and chapter 3, My First GAN in Under 100 Lines.
Second, we need to produce the two neural-network-based components, named the
generator and discriminator.

How to do it...

The classic analogy is the counterfeiter (generator) and FBI agent (discriminator). The
counterfeiter is constantly looking for new ways to produce fake documents that can pass
the FBI agent's tests. Let's break it down into a set of goals:

1. Counterfeiter (generator) goal: Produce products so that the cop cannot
distinguish between the real and fake ones

2. Cop (discriminator) goal: Detect anomalous products by using prior experience
to classify real and fake products

[14]

What Is a Generative Adversarial Network? Chapter 1

How it works...

Now, enough with the analogies, right? Let's restructure this into a game-theory-style
problem-the minimax problem from the first GAN implementation. The following steps
illustrate how we can create this type of problem:

¢ Generator goal: Maximize the likelihood that the discriminator misclassifies its
output as real

¢ Discriminator goal: Optimize toward a goal of 0.5, where the discriminator can't
distinguish between real and generated images

The Minimax Problem (sometimes called MinMax) is a theory that focuses
on maximizing a function at the greatest loss (or vice versa). In the case of
GANss, this is represented by the two models training in an adversarial
way. The training step will focus on minimizing the error on the training
loss for the generator while getting as close to 0.5 as possible on the
discriminator (where the discriminator can't tell the difference between
real and fake).

In the GAN framework, the generator will start to train alongside the discriminator; the
discriminator needs to train for a few epochs prior to starting the adversarial training as the
discriminator will need to be able to actually classify images. There's one final piece to this
structure, called the loss function. The loss function provides the stopping criteria for the
Generator and Discriminator training processes. Given all of these pieces, how do we
structure these pieces into something we can train? Check out the following diagram:

Back P ion: imize Error

Latent Generator
Generator
Space Image ‘
Real
Discriminator » or
Fake

Dataset Real ‘ Back Propagation: Minimize Error
Image

A high-level description of the flow of the Generative Adversarial Network, showing the basic functions in block format

With this architecture, it's time to break each piece into its component technology:
generator, discriminator, and loss function. There will also be a section on training and
inference to briefly cover how to train the model and get data out once it is trained.

[15]

What Is a Generative Adversarial Network? Chapter 1

Basic building block — generator

It's important to focus on each of these components to understand how they come together.
For each of these sections, I'll be highlighting the architecture pieces to make it more

apparent.

How to do it...

The following diagram represents the important pieces of the generator:
Dataset »
‘ Real
i : Discriminator » or
(] Geniator ArchltEjture (] Bl

The generator components in the architecture diagram: latent space, generator, and image generation by the generator

The focus in the diagram ensures that you see the core piece of code that you'll be
developing in the generator section.

Here are a few steps to describe how we create a generator conceptually:

1. First, the generator samples from a latent space and creates a relationship
between the latent space and the output

2. We then create a neural network that goes from an input (latent space) to output
(image for most examples)

3. We'll train the generator in an adversarial mode where we connect the generator
and discriminator together in a model (every generator and GAN recipe in this
book will show these steps)

4. The generator can then be used for inference after training

[16]

What Is a Generative Adversarial Network? Chapter 1

How it works...

Each of these building blocks is fairly unique, but the generator is arguably the most
important concept to understand. Ultimately, the generator will produce the images or
output that we see after this entire training process is complete. When we talk about
training GANSs, it refers directly to training the generator. As we mentioned in a previous
section, the discriminator will need to train for a few epochs prior to beginning the training
process in most architectures or it would never complete training.

For each of these sections, it is important to understand the structure of the code we'll start
building through the course of this book. In each chapter, we're going to define classes for
each of the components. The generator will need to have three main functions within the
class:

1 class Generator:

def _ init_ (self):

4 self.initvariable = 1
6 def lossFunction(self):

7

8 return

10 def buildModel(self):

11

12 return

13

14 def trainModel(self,inputX,inputy):
15

16 return

Class template for developing the generator — these represent the basic components we need to implement for each of our generator classes

The loss function will define a custom loss function in training the model (if needed for that
particular implementation). The buildModel function will construct the actual model of
the given neural network. Specific training sequences for a model will go inside this class
though we'll likely not use the internal training methods for anything but the
discriminator.

Basic building block — discriminator

The generator generates the data in the GAN architecture, and now we are going to
introduce the Discriminator architecture. The discriminator is used to determine whether
the output of the generator and a real image are real or fake.

[17]

What Is a Generative Adversarial Network? Chapter 1

How to do it...

The discriminator architecture determines whether the image is real or fake. In this case, we
are focused solely on the neural network that we are going to create- this doesn't involve
the training step that we'll cover in the training recipe in this chapter:

Discriminator Architecture

.;C]gg[o]
» - »D@

The basic components of the discriminator architecture

The discriminator is typically a simple Convolution Neural Network (CNN) in
simple architectures. In our first few examples, this is the type of neural network we'll be
using.

Here are a few steps to illustrate how we would build a discriminator:

1. First, we'll create a convolutional neural network to classify real or fake (binary
classification)

2. We'll create a dataset of real data and we'll use our generator to create fake
dataset

3. We train the discriminator model on the real and fake data

4. We'll learn to balance training of the discriminator with the generator training - if
the discriminator is too good, the generator will diverge

How it works...

So, why even use the discriminator in this case? The discriminator is able to take all of the
good things we have with discriminative models and act as an adaptive loss function for
the GAN as a whole. This means that the discriminator is able to adapt to the underlying
distribution of data. This is one of the reasons that current deep learning discriminative
models are so successful today—in the past, techniques relied too heavily on directly
computing some heuristic on the underlying data distribution. Deep neural networks today
are able to adapt and learn based on the distribution of the data, and the GAN technique
takes advantage of that.

[18]

What Is a Generative Adversarial Network? Chapter 1

Ultimately, the discriminator is going to evaluate the output of the real image and the
generated image for authenticity. The real images will score high on the scale initially,
while the generated images will score lower. Eventually, the discriminator will have
trouble distinguishing between the generated and real images. The discriminator will rely
on building a model and potentially an initial loss function. The following class template
will be used throughout this book to represent the discriminator:

1 class Discriminator:

2

3 def _ init_ (self):

4 self.initvariable = 1
6 def lossFunction(self):

7

8 return

9

10 def buildModel(self):

11

12 return

13

14 def trainmodel(self,inputX,inputy):
15

16 return

Class template for developing the discriminator—these represent the basic components we need to implement for each of our discriminator classes

In the end, the discriminator will be trained along with the generator in a sequential
model; we'll only use the t rainModel method in this class for specific architectures. For
the sake of simplicity and uniformity, the method will go unimplemented in most recipes.

Basic building block - loss functions

Each neural network has certain structural components in order to train. The process of
training is tuning the weights to optimize the loss function for the given problem set. The
loss function selected for the neural network therefore is essential to ensure the neural
network produces good results and converges.

[19]

What Is a Generative Adversarial Network? Chapter 1

How to do it...

The generator is a neural network and requires a loss function. So, what kind of loss
function should we employ in this architecture? That's almost as fundamental a question as
what car you should drive. The loss functions need to be selected appropriately for the
Generator to converge with the caveat that the loss function selection will depend on what's
your goal for it.

How it works...

Each of the diverse architectures we'll cover in this book will use different tools to get
different results. Take, for instance, the generator loss function from the initial GAN paper
by Goodfellow and his associates:

Vo, —Zlog (1-D(G(z")))

Loss function used with the Generator in adversarial training

This equation simply states that the discriminator is minimizing the log probability that the
discriminator is correct. It's part of the adversarial mode of training that occurs. Another
thing to consider in this context is that the loss function of the generator does matter.
Gradient Saturation, an issue that occurs when the learning gradients are near zero and
make learning nearly impossible, can occur for poorly-designed loss functions. The
selection of the correct loss function is imperative even for the generator.

Now, let's check out the loss function of the discriminator from the Goodfellow paper:

Vo, L i logD(z?) + log(1 — D(G(2™)))]

=1

Standard cross-entropy implementation applied to GANs

This is a standard cross-entropy implementation. Essentially, one of the unique things
about this equation is how it is trained through multiple mini-batches. We'll talk about that
in a later section in this chapter.

[20]

What Is a Generative Adversarial Network? Chapter 1

As mentioned before, the discriminator acts as a learned loss function for the overall
architecture. When building each of the models though and in paired GAN architectures, it
is necessary to have multiple loss functions. In this case, let's define a template class for the
loss function in order to store these loss methods:

1 class Loss:

~

def __init_ (self):

4 self.initvariable = 1

6 def lossBaseFunctionl(self):
7

8 return

9

10 def lossBaseFunction2(self):
11

12 return

13

14 def lossBaseFunction3(self):
15

16 return

The class template for loss functions that will be optionally implemented depending on the availability of the lost functions used

During the development of these recipes, we are going to come back to these templates
over and over again. A bit of standardization to the code base will go a long way in
ensuring that your code remains readable and maintainable.

Training
Have you got all the pieces? We're ready to go, right? WRONG! We need to understand the
best a strategy for how we can train this type of architecture.

How to do it...

The GAN model relies on so-called adversarial training. You'll notice in the following
diagram that there are two seemingly conflicting error functions being
minimized/maximized.

[21]

What Is a Generative Adversarial Network? Chapter 1

How it works...

We've talked about the MiniMax problem at work here. By sampling two mini-batches at
every epoch, the GAN architecture is able to simultaneously maximize the error to the
generator and minimize the error to the discriminator:

Back Propagation: Maximize Error

Latent Generator
Generator
Space Image
Discriminator
Dataset » [ReE] ‘ l Back Propagation: Minimize Error
Image

Architecture diagram updated to show the backpropagation step in training the GAN model

In each chapter, we'll revisit what it means to train a GAN. Generative models are
notoriously difficult to train to get good results. GANSs are no different in this respect. There
are tips and tricks that you will learn throughout this book in order to get your models to
converge and produce results.

GAN pieces come together in different ways

We have explored a few simple GAN structures; we are going to look at seven different
styles of GANSs in this book. The important thing to realize about the majority of these
papers is that the changes occur on the generator and the loss functions.

How to do it...

The generator is going to be producing the images or output, and the loss function will
drive the training process to optimize different functions. In practice, what types of
variation will there be? Glad you're here. Let's take a brief look at the different

architectures.

[22]

What Is a Generative Adversarial Network? Chapter 1

How it works...

Let's discuss the simplest concept to understand with GANSs: style transfer. This type of
methodology manifests itself in many different variations, but one of the things I find
fascinating is that the architecture of the GAN needs to change based on the specific type of
transfer that needs to occur. For instance, one of the papers coming out of Adobe Research
Labs focuses on makeup application and removal. Can you apply the same style of makeup
as seen in a photo to a photo of another person? The architecture itself is actually rather
advanced to make this happen in a realistic fashion, as seen by the architecture diagram:

F

T

i]

This particular architecture is one of the most advanced to date-there are five separate loss
functions! One of the interesting things about this architecture is that it is able to
simultaneously learn a makeup application and makeup removal function. Once the GAN
understands how to apply the makeup, it already has a source image to remove the
makeup. Along with the five loss functions, the generator is fairly unique in its
construction, as given by the following diagram:

— .. [Convolution [jDropout
s fiRelu ki Tanh
Source _
+Source %)
P —
‘_mf_‘.':,, ."zq‘ e~
o B W)
Makeup 128 6 Delta Output
Reference ||
4

[23]

What Is a Generative Adversarial Network? Chapter 1

So, why does this even matter? One of the recipes we are going to cover is style transfer,
and you'll see during that particular recipe that our GAN model won't be this advanced.
Why is that? In constructing a realistic application of makeup, it takes additional loss
functions to appropriately tune the model into fooling the discriminator. In the case of
transferring a painter's style, it is easier to transfer a uniform style than multiple disparate
makeup styles, like you would see in the preceding data distribution.

What does a GAN output?

So, we've seen the different structures and types of GANs. We know that GANs can be
used for a variety of tasks. But, what does a GAN actually output? Similar to the structure
of a neural network (deep or otherwise), we can expect that the GAN will be able to output
any value that a neural network can produce. This can take the form of a value, an image,
or many other types of variables. Nowadays, we usually use the GAN architecture to
apply and modify images.

How to do it...

Let's take a few examples to explore the power of GANs. One of the great parts about this
section is that you will be able to implement every one of these architectures by the end of
this book. Here are the topics we'll cover in the next section:

e Working with limited data — style transfer
¢ Dreaming new scenes - DCGAN
¢ Enhancing simulated data — SImGAN

How it works...

There are three core sections we want to discuss here that involve typical applications of
GAN:s: style transfer, DCGAN, and enhancing simulated data.

[24]

What Is a Generative Adversarial Network? Chapter 1

Working with limited data - style transfer

Have you ever seen a neural network that was able to easily convert a photo into a famous
painter's style, such as Monet? GAN architecture is often employed for this type of
network, called style transfer, and we'll learn how to do style transfer in one of our recipes
in this book. This represents one of the simplest applications of generative adversarial
network architecture that we can apply quickly. A simple example of the power of this
particular architecture is shown here:

Style
[

Transfer

Input Image Output Image

Image A represents in the input and Image B represents the style transferred image. The <style> has been applied to this input image.

One of the unique things about these agents is that they require fewer examples than the
typical deep learning techniques you may be familiar with. With famous painters, there
aren't that many training examples for each of their styles, which produces a very

limited dataset and it took more advanced techniques in the past to replicate their painting
styles. Today, this technique will allow all of us to find our inner Monet.

Dreaming new scenes — DCGAN

We talked about the network dreaming a new scene. Here's another powerful example of the
GAN architecture. The Deep Convolution Generative Adversarial

Network (DCGAN) architecture allows a neural network to operate in the opposite
direction of a typical classifier. An input phrase goes into the network and produces an
image output. The network that produces output images is attempting to beat a
discriminator based on a classic CNN architecture.

[25]

What Is a Generative Adversarial Network? Chapter 1

Once the generator gets past a certain point, the discriminator stops training (https://www.
slideshare.net/enakai/dcgan—how-does-it-work) and the fOllOWil‘lg image shows how
we go from an input to an output image with the DCGAN architecture:

DCGAN
Input Phrase [/

Output Image

Image A represents in the input and Image B represents the style transferred image; the input image now represents the conversion of the input to the new output space

Ultimately, the DCGAN takes in a set of random numbers (or numbers derived from a
word, for instance) and produces an image. DCGANSs are fun to play with because they
learn relationships between an input and their corresponding label. If we attempted to use
a word the model has never seen, it'll still produce an output image. I wonder what types of
image the model will give us for words it has never seen.

Enhancing simulated data — simGAN

Apple recently released the simGAN paper focused on making simulated images look real-
how? They used a particular GAN architecture, called simGAN, to improve images of
eyeballs. Why is this problem interesting? Imagine realistic hands with no models needed.
It provides a whole new avenue and revenue stream for many companies once these
techniques can be replicated in real life. Using the simGAN architecture, you'll notice that
the actual network architectures aren't that complicated:

simGAN
NE=>

Input: Simulation Image Output: More Realistic Image

A simple example of the simGAN architecture. The architecture and implementation will be discussed at length

[26]

https://www.slideshare.net/enakai/dcgan-how-does-it-work
https://www.slideshare.net/enakai/dcgan-how-does-it-work
https://www.slideshare.net/enakai/dcgan-how-does-it-work
https://www.slideshare.net/enakai/dcgan-how-does-it-work
https://www.slideshare.net/enakai/dcgan-how-does-it-work
https://www.slideshare.net/enakai/dcgan-how-does-it-work
https://www.slideshare.net/enakai/dcgan-how-does-it-work
https://www.slideshare.net/enakai/dcgan-how-does-it-work
https://www.slideshare.net/enakai/dcgan-how-does-it-work
https://www.slideshare.net/enakai/dcgan-how-does-it-work
https://www.slideshare.net/enakai/dcgan-how-does-it-work
https://www.slideshare.net/enakai/dcgan-how-does-it-work
https://www.slideshare.net/enakai/dcgan-how-does-it-work
https://www.slideshare.net/enakai/dcgan-how-does-it-work
https://www.slideshare.net/enakai/dcgan-how-does-it-work
https://www.slideshare.net/enakai/dcgan-how-does-it-work
https://www.slideshare.net/enakai/dcgan-how-does-it-work
https://www.slideshare.net/enakai/dcgan-how-does-it-work
https://www.slideshare.net/enakai/dcgan-how-does-it-work
https://www.slideshare.net/enakai/dcgan-how-does-it-work

What Is a Generative Adversarial Network? Chapter 1

The real secret sauce is in the loss function that the Apple developers used to train the
networks. A loss function is how the GAN is able to know when to stop training the GAN.
Here’s the powerful piece to this architecture: labeled real data can be expensive to produce
or generate. In terms of time and cost, simulated data with perfect labels is easy to produce
and the trade space is controllable.

Understanding the benefits of a GAN
structure

So, what kinds of cool tidbits did you learn in this particular chapter? I'll try to use this final
chapter as a recap of why the GAN structure is cool and what kinds of things make this a
powerful tool for your future research.

How to do it...

As a recap, we start with three key questions:

1. Are GANSs all the same architecture?
2. Are there any new concepts within the GAN architecture?
3. How do we practically construct the GAN Architecture?

We'll also review the key takeaways from this chapter.

How it works...

Let's address these three key questions:

e Are GANS all the same architecture?
¢ GANSs come in all shapes and sizes. There are simple
implementations and complex ones. It just depends what domain
you are approaching and what kind of accuracy you need in the
generated input.

¢ Are there any new concepts within the GAN architecture?
® GANSs rely heavily on advances in the deep learning world around
Deep Neural Networks. The novel part of a GAN lies in the
architecture and the adversarial nature of training two (or more)
neural networks against each other.

[27]

What Is a Generative Adversarial Network? Chapter 1

e How do we practically construct the GAN architecture architecture?:
¢ The generator, discriminator, and associated loss functions are
fundamental building blocks that we'll pull on for each of the
chapters in order to build these models.

What are the key things to remember from this chapter?

¢ The initial GAN paper was only the beginning of a movement within the
machine learning space

¢ The generator and discriminator are neural networks in a unique training
configuration

¢ The loss functions are critical to ensuring that the architecture can converge
during training

Exercise

You really didn't think I'd let you get out of this chapter without some homework, did you?
I've got a few basic problems to get you ready for the following lessons:

1. Produce a CNN based on ImageNet to classify all of the MSCOCO classes.

Hint: There are plenty of available models out there. Simply get one running in
inference mode and see how it works.

2. Draw the basic GAN architecture. Now, draw an improvement to that
architecture based on the topics you learned in this chapter. Think of the
generator and discriminator as building blocks.

[28]

Data First, Easy Environment,
and Data Prep

In this chapter, we'll cover the following recipes:

e Is data that important?

But first, set up your development environment
Data types
Data preprocessing

Anomalous data

Balancing data

Data augmentation

Introduction

Data can make or break your machine learning (ML) algorithm. This chapter will lay the
basic ground work for manipulating data, augmenting data, and balancing imbalanced
datasets or data with massive outliers. Each recipe will provide a guide on how to use open
source libraries to accelerate our Generative Adversarial Network (GAN) training.

Data First, Easy Environment, and Data Prep Chapter 2

Is data that important?

Data is the lifeblood of ML algorithms. Your models will only be as good as the data you
provide to them. After all, you are what you eat. We have to focus on developing a good,
clean dataset for learning. This begins with getting an environment set up and preparing
the data to be ingested into an algorithm. We do have a fundamental advantage within this
process because GANs can take considerably smaller sets of data than other techniques.
This advantage comes with the explicit caveat that we will need to ensure that the data
we're using encompasses the entire trade space of possibilities for our application.

Getting ready

One of the deep dark secrets they don't teach you about this field is that you're going to
spend a large chunk of your time preparing the data (sometimes as much as 75% of a
project). I've had people ask me over the years why data preparation can absorb so much
time and the answer really is simple:

Garbage in -> Garbage out

Data will drive your project to success or failure. It's imperative that we are diligent in
exploring the data we have available and using the right portion of the data for learning.

How to do it...

We have to build a pipeline that includes the following components:

¢ Data preprocessing
¢ Balancing data

e Anomalous data

e Data augmentation

These four concepts make up the cornerstone of this chapter. As we work through
examples in each of these domains, you'll see that each contribution is important to
ensuring your model is learning the right traits and qualities.

Let's start with a simple example of how we could apply all of these basic

technologies. We'll focus on introducing the concepts, then the rest of this chapter will focus
on the practical implementation of these concepts. Basically, this is going to be the template
that we are going to fill in piece-by-piece:

[30]

Data First, Easy Environment, and Data Prep Chapter 2

These are the steps for producing a data processing pipeline:

Read in data as a NumPy array

Check the distribution of the data for anomalous indices
Balance the dataset for the learning step

Throw out the anomalous data

S

Augment our data in an structured and intelligent manner

How it works...

The next few recipes will focus on filling in the code to produce this pipeline for data
parsing. The pipeline recipe will walk you through the steps to make this pipeline into a
class that we can use as a template in future chapters.

There's more...

The topics in this chapter are going to be the beginning of our journey into the different
processing techniques for deep learning data processing. A large part of the job of deep
learning practitioners is the data parsing part of the job. We need to take it seriously in
order to ensure our models are learning from the right data. Throughout this book, you'll
understand that the data parsing is a critical component of getting GAN’s to converge and
to get decent results out of these models. Architecture is far from the only thing that can
affect our learners.

There's an expansive set of examples that you will be exposed to during the course of this
chapter. The key reading in the beginning is to understand the tools you'll need to run the
code with this Docker overview found here: https://docs.docker.com/engine/docker—

overview/.
We also recommend you read up on Python, NumPy, and SciPy:

. Python: https://wiki.python.org/moin/BeginnersGuide/Overview
¢ NumPy: https://docs.scipy.org/doc/numpy/
. SCiPy: https://www.scipy.org/getting-started.html

I will emphasize here that the expectation is that you have a baseline understanding of
these techniques. These links are meant strictly as a reference.

[31]

https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://docs.docker.com/engine/docker-overview/
https://wiki.python.org/moin/BeginnersGuide/Overview
https://wiki.python.org/moin/BeginnersGuide/Overview
https://wiki.python.org/moin/BeginnersGuide/Overview
https://wiki.python.org/moin/BeginnersGuide/Overview
https://wiki.python.org/moin/BeginnersGuide/Overview
https://wiki.python.org/moin/BeginnersGuide/Overview
https://wiki.python.org/moin/BeginnersGuide/Overview
https://wiki.python.org/moin/BeginnersGuide/Overview
https://wiki.python.org/moin/BeginnersGuide/Overview
https://wiki.python.org/moin/BeginnersGuide/Overview
https://wiki.python.org/moin/BeginnersGuide/Overview
https://wiki.python.org/moin/BeginnersGuide/Overview
https://wiki.python.org/moin/BeginnersGuide/Overview
https://wiki.python.org/moin/BeginnersGuide/Overview
https://wiki.python.org/moin/BeginnersGuide/Overview
https://docs.scipy.org/doc/numpy/
https://docs.scipy.org/doc/numpy/
https://docs.scipy.org/doc/numpy/
https://docs.scipy.org/doc/numpy/
https://docs.scipy.org/doc/numpy/
https://docs.scipy.org/doc/numpy/
https://docs.scipy.org/doc/numpy/
https://docs.scipy.org/doc/numpy/
https://docs.scipy.org/doc/numpy/
https://docs.scipy.org/doc/numpy/
https://docs.scipy.org/doc/numpy/
https://docs.scipy.org/doc/numpy/
https://docs.scipy.org/doc/numpy/
https://docs.scipy.org/doc/numpy/
https://www.scipy.org/getting-started.html
https://www.scipy.org/getting-started.html
https://www.scipy.org/getting-started.html
https://www.scipy.org/getting-started.html
https://www.scipy.org/getting-started.html
https://www.scipy.org/getting-started.html
https://www.scipy.org/getting-started.html
https://www.scipy.org/getting-started.html
https://www.scipy.org/getting-started.html
https://www.scipy.org/getting-started.html
https://www.scipy.org/getting-started.html
https://www.scipy.org/getting-started.html
https://www.scipy.org/getting-started.html
https://www.scipy.org/getting-started.html
https://www.scipy.org/getting-started.html

Data First, Easy Environment, and Data Prep Chapter 2

But first, set up your development
environment

What's a development environment? Everyone thinks setting up a development
environment needs to be this incredibly arduous process. The installation process could be
worse. It's actually quite simple and I intend to show you the basics in this recipe.

Getting ready

Let's lay out the requirements for the equipment you'll need to be successful in this book:

e GPU: 10 series CUDA-enabled Nidea GPU
¢ Operating system: Ubuntu Linux 16.04+
e CPU/RAM.: i5 or i7 with at least 8 GB of RAM

First and foremost, the GPU is a requirement for this type of book. Although these
algorithms can technically train on a CPU, it could take days in some cases for a single
model to converge. It can take a GPU a day or more to converge in some instances. GPUs
offer an immense computational power increase over CPUs and hence are a necessity to
ensure that you get the most out of this book. It's easy today to find a laptop with a 1,060 or
better in it for around $900.

Ubuntu is the typical operating system for this type of development. This book will assume
Ubuntu and Bash as the default interaction with the operating system. All examples will
revolve around the assumption that you have Ubuntu installed and the correct hardware
inside your computer. This portion of this book will break down the basic pieces needed to
be successful.

How to do it...

There are a few common steps that will need to be for each new developer—these steps will
be addressed in the following subsections of installing an NVIDIA driver, installing the
NVIDIA-Docker solution, and building a common container for development, in the next
chapters.

[32]

Data First, Easy Environment, and Data Prep Chapter 2

Installing the NVIDIA driver for your GPU

Installing the correct NVIDIA driver is incredibly important. A key component to all of
these implementations is the usage of CUDA in TensorFlow. NVIDIA has this description
for the CUDA library:

"CUDA® is a parallel computing platform and programming model developed by
NVIDIA for general computing on graphical processing units (GPUs). With CUDA,
developers are able to dramatically speed up computing applications by harnessing the
power OfGPUS. " (Source: https://developer.nvidia.com/cuda-zone).

Using CUDA, TensorFlow can achieve drastic speedups in terms of processing power. In
order to make this happen, we need to have a certain type of GPU and driver installed on
the host machine.

So, let's start installing the things that we require.

In this section, a recommended driver will be specified and a few options for installation
will be proposed. It's hard to ensure that the installation will be the same for each developer
because the installation can vary for each machine it's installed on. Instead, we'll show
some methods on how to get it done but will rely on the reader to figure out the nitty-gritty
for their application.

You can run the nvidia-smi command to know which version of driver is installed on
your system.

The following is an example of the nvidia-smi command:

NVIDIA-SMI 390.59 Driver Version: 390.59
[==mmmmmmm e e T T T R et +
Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC
Temp Perf Pwr:Usage/Cap]| Memory-Usage | GPU-Util Compute M.
|l
GeForce GTX 1060 off | ©eeeeee0:01:00.0 Off |
p2 22W / NJA | 244MiB / 6078MiB | % pefault

GPU Memory

189MiB

The output of nvidia-smi will show your GPU, any processes you have running, and the current driver version installed

[33]

https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-zone

Data First, Easy Environment, and Data Prep Chapter 2

Installing Nvidia-Docker

The following is an Nvidia-Docker hierarchy that we need to understand before installing
it:

CONTAINER 1 CONTAINER N

CUDA Toolkit

Container 0S User Space

Docker Engine

CUDA Driver
Host 05

NVIDIA GPUs
SEIVEE +r e rrnnnrteannnneesinneessanisiannnnes)

NVIDIA-Docker hierarchy that allows the Docker engine to interact with the GPU

What is Docker? According to the Docker website, the keyword for

it's lightweight. Docker containers running on a single machine share that machine's
operating system kernel; they start instantly and use less compute and RAM. Images are
constructed from filesystem layers and share common files (source: https://www.docker.

com/what-container).

Essentially, Docker allows us to create a lightweight Virtual Machine (VM) in a container
where we can house all of our applications and guarantee that the environment is going to
be the same every time we enter this container. NVIDIA-Docker goes one step further and
provides the appropriate linkage for our Docker containers to be able to interact with a
GPU. This is a critical piece for our development environment. Once we have NVIDIA-
Docker set up, the rest of the environment is fairly straightforward to integrate.

The installation is easy. I'd encourage you to visit the website and ensure that the directions
haven't changed since publication: https://github.com/NVIDIA/nvidia-docker. At this
time, NVIDIA-Docker?2 is the latest version of development. When you install the NVIDIA-
Docker2 system with these steps, it should allow you to upgrade periodically with sudo
apt upgrade.

[34]

https://www.docker.com/what-container
https://www.docker.com/what-container
https://www.docker.com/what-container
https://www.docker.com/what-container
https://www.docker.com/what-container
https://www.docker.com/what-container
https://www.docker.com/what-container
https://www.docker.com/what-container
https://www.docker.com/what-container
https://www.docker.com/what-container
https://www.docker.com/what-container
https://www.docker.com/what-container
https://github.com/NVIDIA/nvidia-docker
https://github.com/NVIDIA/nvidia-docker
https://github.com/NVIDIA/nvidia-docker
https://github.com/NVIDIA/nvidia-docker
https://github.com/NVIDIA/nvidia-docker
https://github.com/NVIDIA/nvidia-docker
https://github.com/NVIDIA/nvidia-docker
https://github.com/NVIDIA/nvidia-docker
https://github.com/NVIDIA/nvidia-docker
https://github.com/NVIDIA/nvidia-docker
https://github.com/NVIDIA/nvidia-docker
https://github.com/NVIDIA/nvidia-docker
https://github.com/NVIDIA/nvidia-docker

Data First, Easy Environment, and Data Prep Chapter 2

When going to the website, you should see a set of instructions similar to this one:

Ubuntu 14.04/16.04/18.04, Debian Jessie/Stretch

If you have nvidia-docker 1.0 installed: we need to remove it and all
existing GPU containers

docker volume 1ls —-g -f driver=nvidia-docker | xargs -r -I{} —-nl docker ps -
g —a —-f volume={} | xargs -r docker rm -f

sudo apt-get purge -y nvidia-docker

Add the package repositories
curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | \
sudo apt-key add -
distribution=$(. /etc/os-release;echo $IDSVERSION_ID)
curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-
docker.list | \
sudo tee /etc/apt/sources.list.d/nvidia-docker.list
sudo apt-get update

Install nvidia-docker2 and reload the Docker daemon configuration
sudo apt-get install -y nvidia-docker2
sudo pkill -SIGHUP dockerd

Test nvidia-smi with the latest official CUDA image
docker run —--runtime=nvidia --rm nvidia/cuda nvidia-smi

The instructions source is found at: https://github.com/NVIDIA/nvidia-

docker.

Now, let's go over each of these commands in detail.

Purging all older versions of Docker

First things first—you have to wipe out all old versions of Docker prior to this installation.
The folks maintaining this repository conveniently provided a a few commands. The first
command removes all old versions of Docker:

docker volume ls -g -f driver=nvidia-docker | xargs -r -I{} -nl docker ps -
g —a —-f volume={} | xargs -r docker rm -—-f

After completing this command, the next step is to use the purge method in apt-get to
remove any previous installations of NVIDIA-Docker from your previous work:

sudo apt-get purge -y nvidia-docker

Here, we've completed our step 1 installation!

[35]

https://github.com/NVIDIA/nvidia-docker
https://github.com/NVIDIA/nvidia-docker
https://github.com/NVIDIA/nvidia-docker
https://github.com/NVIDIA/nvidia-docker
https://github.com/NVIDIA/nvidia-docker
https://github.com/NVIDIA/nvidia-docker
https://github.com/NVIDIA/nvidia-docker
https://github.com/NVIDIA/nvidia-docker
https://github.com/NVIDIA/nvidia-docker
https://github.com/NVIDIA/nvidia-docker
https://github.com/NVIDIA/nvidia-docker
https://github.com/NVIDIA/nvidia-docker

Data First, Easy Environment, and Data Prep Chapter 2

Adding package repositories

Now we've removed all of the older versions of NVIDIA-Docker. it's time to add the keys
and repository to the typical apt —get repositories that you can pull from. First, in

the Installing NVIDIA-Docker recipe, we need to add the appropriate key for apt-get to
communicate with the NVIDIA-Docker repository:

curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | \

sudo apt-key add -
distribution=$(. /etc/os-release;echo $IDSVERSION_ID)

After adding the key, we add the repo to the sources that apt ~get can pull from when
installing packages:

curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-

docker.list | \
sudo tee /etc/apt/sources.list.d/nvidia-docker.list

Finally, an apt-get update allows apt-get to update its list of installable packages. Since
we just added a new repository, the update will allow us to install the NVIDIA-Docker
repository in the next step:

sudo apt-get update

Now we move on to the next step.

Installing NVIDIA-Docker2 and reloading the daemon

This is the point you've been waiting for! (Probably not.) Use apt -get to install the
nvidia-docker2 package:

sudo apt-get install -y nvidia-docker2
Next, use pkill to restart the Docker daemon after the installation:

sudo pkill —-SIGHUP dockerd

Now, we're ready for a simple test of the installation.

Testing nvidia-smi through the Docker container

This is the moment of truth—if this command runs correctly, you should see the nvidia-
smi output that you see on your machine outside of the container:

docker run —--runtime=nvidia —--rm nvidia/cuda nvidia-smi

[36]

Data First, Easy Environment, and Data Prep Chapter 2

Your output should look similar to the nvidia-smi command example we showed in the
Installing NVIDIA driver for your GPU section:

NVIDIZA-SMI 384.90 Driver Version: 384.9 1

GEU £ 3i c us Disp.A | Volatile Uncorr. ECC |
Memory-Usage | GPU- 1 Compute M.

python3
python3

Testing nvidia-smi

Now you're ready to move onto actually building a development environment.

Building a container for development

What's a container? A container is Docker's name for a VM with a certain configuration of
operating system and software. In our case, it'll be the piece that allows us to change our
configuration from chapter to chapter without having to worry about installing new
packages to learn a new package. Docker containers allow us the flexibility to have a
different development environment for every chapter with minimal downtime. For each of
these chapters, you will be supplied with a corresponding Dockerfile that represents the
base configuration for completing the recipe.

This section will simply explain a small example Dockerfile to give you an idea of how
powerful these particular tools are. Here's the example we are going to cover:

FROM nvidia/cuda:9.0-cudnn7-devel-ubuntul6.04
ARG KERAS=2.2.0

ARG TENSORFLOW=1.8.0

Update the repositories within the container

RUN apt-get update

Install Python 2 and 3 + our basic dev tools

[371]

Data First, Easy Environment, and Data Prep Chapter 2

RUN apt-get install -y \
python-dev \
python3-dev \
curl \
git \

vim

Install pip

RUN curl -O https://bootstrap.pypa.io/get-pip.py && \
python get-pip.py && \
rm get-pip.py

Install Tensorflow and Keras

RUN pip --no-cache-dir install \
tensorflow_gpu==${TENSORFLOW} \
keras==${KERAS}

This is the basics of how you will build a basic image for the rest of the chapters in this
book. This is called the base_image for this book and will be inherited by almost every
chapter from now on.

There's more...

Here are a few topics to cover in case you are curious about how the RUN commands work
in Dockerfiles: https://docs.docker.com/engine/reference/run/.

Data types

In computer science, data types will represent the way the data is stored in the program.
For this section, we are going to discuss the structure of the MNIST data and demonstrate
how to simply manipulate the data.

[38]

https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/reference/run/

Data First, Easy Environment, and Data Prep Chapter 2

Getting ready

Focusing on data types is where we will begin the data processing journey. Each step in this
process is crucial to understand. Data types refer to the structure in which the data is held
in Python. Think of a dictionary, array of floats, and so on. These are the data types that we
would like to understand and consider. The example that we are going to explore in this set
of recipes is going to be a parsing example for images since the first few recipes in this book
will revolve around the usage of two-dimensional imagery. We're going to start with a
simple and small dataset called the MNIST dataset. This data is used across all kinds of ML
and for good reason. it's a set with 60,000 handwritten images that're labeled and easy to
understand. Also, the data is quite small so downloading and manipulating it's fairly
simple. For some sample methods, this data will allow us to quickly work and it won't take
up a lot of space.

First, we should understand the original intent of the data. Almost every dataset supplied
out there with the intent of being use for deep learning will have a description of the data.
MNIST has a description and we can review it prior to understanding the data type we'll
use for training or manipulation. The basics are located at the following link: http://yann.

lecun.com/exdb/mnist/.

How to do it...

Notice how the authors provide a nice and tidy summation of the things included in the
dataset. They're extremely clear about how the data is separated and made. In our case, we
are going to work with the train-images and train-labels files from here on out. Keep in
mind that, in this case, we are going to use the Linux wget function inside the Dockerfile to
include the data for use any time we use that particular Dockerfile. Here's a sample of how
that's done:

FROM base_image
ADD types.py /

In this Docker file, we inherit our base image and proceed to copy our Python file into the
container.

[39]

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

Data First, Easy Environment, and Data Prep Chapter 2

Finally, let's talk about what is in each of those tar files. We need to understand both the
images (our X or input data) and the labels (our Y or output variable). Although this may
seem obvious, I want to instill in you something that I have had to painfully learn over
years of experience. Reviewing and understanding the basic structure of the data is the
most important thing you can do. Don't take for granted that this data is just an image. There
are methods that require a different order to the channels, different encodings, scaling,
grayscale, and so on. Assumptions have only led to redoing the work for me. I'm hopeful
that, as we progress through this book, you'll understand why I take time to understand
and evaluate the data prior to using it for learning.

The labels are a simple encoding of 0 to 9. After all, this is a handwriting identification task
so we are simply attempting to recognize numbers (discriminative modeling) or create
numbers based on input (generative modeling). This is all nice but how are we going to use
any of this information?

We're going to go through a simple example of checking out this data. We've already
unzipped the data inside the container so the next step is to ensure that we have the right
typing by reading the data. For the sake of speed and simplicity, let's read a few files in and
look at their format. Here's the code we're going to use to analyze the data and learn basic
information:

1. Import to do the work:
#!/usr/bin/env python

import numpy as npimport matplotlib.pyplot as pltfrom
tensorflow.examples.tutorials.mnist import input_data

2. Read from this directory:
mnist = input_data.read_data_sets ("MNIST_data/", one_hot=False)
3. Look at the shape of the images training data:

print ("Shape of the Image Training Data is
"t+str (mnist.train.images.shape))

The output of the preceding code is as follows:
Shape of the Image Training Data is (55000, 784)
4. Look at the shape of the label training data:

print ("Shape of the Label Training Data is
"+str(mnist.train.labels.shape))

[40]

Data First, Easy Environment, and Data Prep Chapter 2

The output of the preceding code is as follows:

One-Hot False : Shape of the Label Training Data is (55000,)
One—-Hot True : Shape of the Label Training Data is (55000,10)

5. Take a random example from the datasets:

index = np.random.choice (mnist.train.images.shape[0], 1)
random_image = mnist.train.images[index]

random_label = mnist.train.labels[index]

random_image = random_image.reshape([28, 28]);

6. Plot the image:

plt.gray()
plt.imshow (random_image)
plt.show ()

How it works...

Let's walk through this code piece by piece to understand everything we to do in order to
work with this data. As always, we start with boilerplate items for coding in Python. The
first line establishes which Python interpreter we should use:

#!/usr/bin/env python

import numpy as np
import matplotlib.pyplot as plt
from tensorflow.examples.tutorials.mnist import input_data

Next, we grab the data from the TensorFlow examples library:

Read from this directory
mnist = input_data.read_data_sets ("MNIST_data/", one_hot=False)

There's an option for one-hot encoding in this import function. For this particular example,
we will simply leave one-hot false.

One-hot encoding: Categorical variables need a simple way to encode the
values into a numerical space. One-hot encoding represents the process of
mapping categorical variables to an integer value and then a binary vector
representation. One-hot encoding is simple in SciPy as there are one line
methods for encoding these variable types with ease.

[41]

Data First, Easy Environment, and Data Prep Chapter 2

For every dataset, I recommend checking the shape of the data to ensure that you've got the
data you expect:

Look at the shape of the images training data:
print ("Shape of the Image Training Data is "+str(mnist.train.images.shape))

Look at the shape of the labels training data:
print ("Shape of the Label Training Data is "+str(mnist.train.labels.shape))

This is the output you should see when running this snippet:

Shape of the Image Training Data is (55000, 784)
Shape of the Label Training Data is (55000,) # (1if One-Hot False)
Shape of the Label Training Data is (55000,10) # (if One-Hot True

Next, let's have a look at a sample image from the dataset:

Take a Random Example from the DatasetS:

index = np.random.choice (mnist.train.images.shape[0], 1)
random_image = mnist.train.images[index]

random_label = mnist.train.labels[index]

random_image = random_image.reshape ([28, 28]);

Plot the Image
plt.gray()

plt.imshow (random_image)
plt.show ()

This is fun because we actually get to see the content of the data. You'll notice that we
needed to reshape the array from a single dimension of 784 to a 28 x 28 image. TensorFlow
will keep images in different formats depending on the technique to be used. This is why I
keep saying we should visualize the data to ensure we understand the information we are
working with. We've now got a full setup to run the Python code. Let's use our
development environment to run this file.

In the repository, there will always be a build and run script. The build script, as you
remember, will build the Dockerfile and the run script will run the environment. With the
current setup, you will need to build in order for new changes to take effect. With the
Docker run file, it's possible to map a folder on your computer to the Docker image also.

[42]

Data First, Easy Environment, and Data Prep Chapter 2

Running this code in the Docker container

We're going to inherit our Docker container and add the code that we just built into the
container:

FROM base_image
ADD types.py /

This Dockerfile is inheriting our base container we built in the earlier part of this chapter.
We then add the Python file into the container. This will mean that we need to build the
container every time we would like to run this code. Luckily, we can make this happen
through some shell scripts that we will introduce now.

To test this Python file, we need to open a Terminal, change directory to the data types
directory, and create the following build. sh script:

#/bin/bash
nvidia-docker build -t ch2 .

In this script, we are ensuring the Ubuntu OS knows which environment to use. Then, we
use nvidia-docker to build a new ch2 container. Given that we are just making simple
samples throughout this chapter and I don't want to create a bunch of extraneous
containers, we will just overwrite the container as we go through this chapter. Now, you
have a build script and a Dockerfile—you should be able to issue the following command

to make it build:
sudo ./build.sh
Then, you can issue the next command after it's done building;:

sudo ./run.sh

[43]

Data First, Easy Environment, and Data Prep Chapter 2

If everything has been installed correctly, you will see an image similar to this one:

& ® @ Figure 1

ﬁ|(.|.)‘ ﬂgg x=24.1061 y=26.2727 [0l

Congratulations! You've checked out a common deep learning dataset.

There's more...

This discussion is often referred to as the ontology of the data in the literature. How is the
data actually broken down and used? What are the important classes? Can you describe the
class distribution and types? These are topics that would be explored in a report focused on
the ontology. As you delve deeper into this part of the science, you'll find that there are also
a bunch of topics such as anomaly detection and balancing of the data. In practice, it's hard
to come by a dataset that is balanced from the onset. Typically, you'll need to do
preparation with the data. We'll touch on both topics in this chapter.

Now you understand some of the common types of data types that we will work with this
in this field. I am going to suggest a few links to get more educated on other possible data
types or ways of using the data with the following links:

¢ Data types with Python: https://developer.rhino3d.com/guides/
rhinopython/python-datatypes/

¢ Data types within TensorFlow: https://www.tensorflow.org/versions/rl.2/
programmers_guide/dims_types

[44]

https://developer.rhino3d.com/guides/rhinopython/python-datatypes/
https://developer.rhino3d.com/guides/rhinopython/python-datatypes/
https://developer.rhino3d.com/guides/rhinopython/python-datatypes/
https://developer.rhino3d.com/guides/rhinopython/python-datatypes/
https://developer.rhino3d.com/guides/rhinopython/python-datatypes/
https://developer.rhino3d.com/guides/rhinopython/python-datatypes/
https://developer.rhino3d.com/guides/rhinopython/python-datatypes/
https://developer.rhino3d.com/guides/rhinopython/python-datatypes/
https://developer.rhino3d.com/guides/rhinopython/python-datatypes/
https://developer.rhino3d.com/guides/rhinopython/python-datatypes/
https://developer.rhino3d.com/guides/rhinopython/python-datatypes/
https://developer.rhino3d.com/guides/rhinopython/python-datatypes/
https://developer.rhino3d.com/guides/rhinopython/python-datatypes/
https://developer.rhino3d.com/guides/rhinopython/python-datatypes/
https://developer.rhino3d.com/guides/rhinopython/python-datatypes/
https://developer.rhino3d.com/guides/rhinopython/python-datatypes/
https://developer.rhino3d.com/guides/rhinopython/python-datatypes/
https://www.tensorflow.org/versions/r1.2/programmers_guide/dims_types
https://www.tensorflow.org/versions/r1.2/programmers_guide/dims_types
https://www.tensorflow.org/versions/r1.2/programmers_guide/dims_types
https://www.tensorflow.org/versions/r1.2/programmers_guide/dims_types
https://www.tensorflow.org/versions/r1.2/programmers_guide/dims_types
https://www.tensorflow.org/versions/r1.2/programmers_guide/dims_types
https://www.tensorflow.org/versions/r1.2/programmers_guide/dims_types
https://www.tensorflow.org/versions/r1.2/programmers_guide/dims_types
https://www.tensorflow.org/versions/r1.2/programmers_guide/dims_types
https://www.tensorflow.org/versions/r1.2/programmers_guide/dims_types
https://www.tensorflow.org/versions/r1.2/programmers_guide/dims_types
https://www.tensorflow.org/versions/r1.2/programmers_guide/dims_types
https://www.tensorflow.org/versions/r1.2/programmers_guide/dims_types
https://www.tensorflow.org/versions/r1.2/programmers_guide/dims_types
https://www.tensorflow.org/versions/r1.2/programmers_guide/dims_types
https://www.tensorflow.org/versions/r1.2/programmers_guide/dims_types
https://www.tensorflow.org/versions/r1.2/programmers_guide/dims_types
https://www.tensorflow.org/versions/r1.2/programmers_guide/dims_types
https://www.tensorflow.org/versions/r1.2/programmers_guide/dims_types
https://www.tensorflow.org/versions/r1.2/programmers_guide/dims_types
https://www.tensorflow.org/versions/r1.2/programmers_guide/dims_types
https://www.tensorflow.org/versions/r1.2/programmers_guide/dims_types

Data First, Easy Environment, and Data Prep Chapter 2

Data preprocessing

Data preprocessing is the explicit process of ensuring that your data can be ingested into
your algorithm simply. In this section, you will learn how to work with data for ML in
future sections.

Getting ready

Why even worry about preprocessing? It's easy to overlook the easy steps. As we ingest
data into our algorithms, we'll need to ensure that each of the data points is both useful and
accurate. This means we need to ensure that both the X data and Y labels, in a supervised
learning problem space, are correct prior to going to a learner. So, how do we ensure that
each of the data points is correct? For large datasets, we can look at macro metrics such as a
three sigma outlier. For smaller datasets, visually inspecting a percentage of the training
data from each class or type could be another option. In essence, the point of this recipe is
to introduce you to some of these techniques and then we will apply them throughout the
chapters as we need them.

Remember in the preceding section (Data types: There’s more...) when we requested that you
read up on Python, NumPy, and all of those other fancy pieces of technology? Well, now
you are going to get the opportunity to go and apply these techniques to real-world
practical problems.

How to do it...

Preprocessing of the data typically refers to the stage where you read in the data and do
basic actions to make the data usable in your domain. In our case, this means we'd like the
data in a pandas or NumPy data frame. Their formats are interchangeable with minimal
sets of code and hence are used commonly in the data science field. In the following
example, you'll get experience reading in a dataset and converting categorical variables to
numerical variables. This process can easily be converted to a method later in this chapter.

Here's the recipe:
1. Import the following packages to start the work:
!/usr/bin/env python
import numpy as np

import pandas as pd
import matplotlib.pyplot as plt

[45]

Data First, Easy Environment, and Data Prep Chapter 2

2. Read the UCI Machine Learning Income data (https://archive.ics.uci.edu/
ml/datasets/adult) from this directory. There are three different ways to read

the data. Notice how this incorrectly reads the first line as the header:
df0 = pd.read_csv('/data/adult.data')

3. header=None enumerates the classes without a name:

df2 = pd.read_csv('/data/adult.data', names = ['age', 'workclass',
'fnlwgt', 'education', 'education-num', 'marital-
status', 'occupation', 'relationship', 'race',

'sex', 'capital-gain', 'capital-loss', 'hours-

per—
week', 'native-country', 'Label'])

4. Create an empty dictionary:
mappings = {}

5. Run through all columns in the CSV for col_name in df2.columns:
if (df2[col_name] .dtype == 'object'):

If the type of variables are categorical, they will be an object type.

6. Create a mapping from categorical to numerical variables:

df2[col_name]= df2[col_name].astype ('category')

df2[col_name], mapping_index = pd.Series(df2[col_name]) .factorize()

7. Store the mappings in the dictionary:

mappings[col_name]={}
for i in range (len (mapping_index.categories)):
mappings[col_name] [i]=mapping_index.categories[i]

8. Store a continuous tag for variables that are already numerical else:
mappings[col_name] = 'continuous'

We'll cover the details of the recipes in the next section.

[46]

https://archive.ics.uci.edu/ml/datasets/adult
https://archive.ics.uci.edu/ml/datasets/adult
https://archive.ics.uci.edu/ml/datasets/adult
https://archive.ics.uci.edu/ml/datasets/adult
https://archive.ics.uci.edu/ml/datasets/adult
https://archive.ics.uci.edu/ml/datasets/adult
https://archive.ics.uci.edu/ml/datasets/adult
https://archive.ics.uci.edu/ml/datasets/adult
https://archive.ics.uci.edu/ml/datasets/adult
https://archive.ics.uci.edu/ml/datasets/adult
https://archive.ics.uci.edu/ml/datasets/adult
https://archive.ics.uci.edu/ml/datasets/adult
https://archive.ics.uci.edu/ml/datasets/adult
https://archive.ics.uci.edu/ml/datasets/adult
https://archive.ics.uci.edu/ml/datasets/adult
https://archive.ics.uci.edu/ml/datasets/adult

Data First, Easy Environment, and Data Prep Chapter 2

How it works...

This is where we're going to cover how a works—what components are driving this
particular code snippet to work. As we progress through this recipe, I encourage you to
work through it with me. The first thing we need to do in the script is tell the interpreter
where our Python is and import our core libraries for use in the script:

#!/usr/bin/env python

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

After installing the right libraries, we need to talk about the right way to read in the data. I
provided a few examples of the right way and the correct way to read in the data. It's
important to understand how the data can be read in, what happens, and what you do
when not specifying any argument like this:

Notice this incorrectly reads the first line as the header
df0 = pd.read_csv('/data/adult.data')

After executing this command, you'll notice that the pandas read_csv method will
incorrectly read one of the columns as a header. Next, we will attempt not to specify a
header. Let's look at the result:

The header=None enumerates the classes without a name
dfl = pd.read_csv('/data/adult.data', header = None)

The data is correctly read in except for the fact that we don't have any header names for
each of the columns. Finally, by using the data description, we are able to specify the
header and name the columns appropriately:

Specifying the header, the read_csv method will work correctly

df2 = pd.read_csv('/data/adult.data', names = ['age', 'workclass',
'fnlwgt', 'education', 'education-num', 'marital-
status', 'occupation', 'relationship', 'race',
'sex', 'capital-gain', 'capital-loss', 'hours-per-—
week', 'native-country', 'Label'])

[47]

Data First, Easy Environment, and Data Prep Chapter 2

The data is now correctly read into an array and ready to for use in the next section. After

we have a set of data we can manipulate, we are going to need to ensure that we convert all
of our categorical variables to numerical variables. The following method is going to create
a numerical mapping for every categorical variable automatically. Here's the general method:

Create an empty dictionary
mappings = {}

Run through all columns in the CSV
for col_name in df2.columns:

If the type of variables are categorical, they will be an 'object'
type

if (df2[col_name] .dtype == 'object'):

Create a mapping from categorical to numerical variables

df2[col_namel]= df2[col_name].astype('category"')
df2[col_name], mapping_index =
pd.Series (df2[col_name]) .factorize()

Store the mappings in dictionary

mappings[col_name]={}
for i in range(len (mapping_index.categories)):
mappings[col_name] [i]=mapping_index.categories[i]

Store a continuous tag for variables that are already numerical

else:
mappings[col_name] = 'continuous'

This block of code is fairly simple in that it simply detects whether the column contains
categorical or numerical data. One issue you will notice with this method is that it naively
assumes that all of the data is one type or another (numerical or categorical). Part of your
exercise will be to handle cases where the data contains a mix of data types.

[48]

Data First, Easy Environment, and Data Prep Chapter 2

Let's cover the basis of how we'll start this function:

Create an empty dictionary
mappings = {}

Run through all columns in the CSV
for col_name in df2.columns:

We've created an empty array and we're going to walk through each column within the
.columns method. Now, for every column, we are going to check whether the data is
categorical and then do an operation:

If the type of variables are categorical, they will be an
'object' type

if(df2[col_name] .dtype == 'object'):
Create a mapping from categorical to numerical variables

df2[col_name]= df2[col_name].astype ('category')
df2[col_name], mapping_index =
pd.Series (df2[col_name]) .factorize ()

Store the mappings in dictionary

mappings[col_name]={}
for i in range (len (mapping_index.categories)) :
mappings[col_name] [i]=mapping_index.categories[i]

The first two lines are going to create a mapping index using the factorize method. This
method will simply assign numerical indices to each of the categorical variables. Once we
have this mapping, we create a dictionary that we can use in the future to convert back to
the categorical variable. After all, an indexed value for count ry is meaningless without the
keys to know what each number means. Next, let's see what we do when the variable isn't a
categorical variable:

Store a continuous tag for variables that are already numerical

else:
mappings[col_name] = 'continuous'

We simply assign the dictionary with the continuous tag. In the future, we can do a
simple check to ensure whether the cont inuous tag is or isn't there.

[49]

Data First, Easy Environment, and Data Prep Chapter 2

Now, let's check out the results for our mapping index—this represents a portion of the
mapping dictionary:

'education-num': 'continuous',
'fnlwgt': 'continuous',
'hours-per-week': 'continuous',
'marital-status': {0: ' Divorced',
1: ' Married-AF-spouse’',

2: ' Married-civ-spouse',

3: ' Married-spouse-absent',

4. ' Never-married',

5: ' Separated’',

6: ' Widowed'},

Now, we've made a method to filter the data and ensure that all of our data is numerical for
learning.

There's more...

You thought I'd let you get out of this chapter without understanding the data itself? Let's
check in at this page in order to find out some extra details about the data we just analyzed:

https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.names

This file basically describes the basic details of the data. As you'll see when you look
through this file, our mapping that we produce with this code actually matches the
representation shown in this file. And that's the point! If we have done our job correctly, we
should be able to create a mapping in code that allows us to freely manipulate the data to
produce models while maintaining the class labels, for instance.

You've learned about a new library, pandas—it's common for usage with deep learning and
data science. More details on the pandas library can be found here:

http://pandas.pydata.org/pandas—docs/stable/.

Along with pandas, we also learned about the need for understanding one-hot encoding
and categorical variables. There are algorithms that can handle categorical variables out of
the box but the majority of algorithms that you will be exposed to will simply need an
encoding applied to the data. Here's a few more details on a different method for doing
one-hot encoding:

http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.
OneHotEncoder.html.

[50]

https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.names
https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.names
https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.names
https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.names
https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.names
https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.names
https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.names
https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.names
https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.names
https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.names
https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.names
https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.names
https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.names
https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.names
https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.names
https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.names
https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.names
https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.names
https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.names
https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.names
https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.names
https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.names
https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.names
https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.names
https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.names
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html

Data First, Easy Environment, and Data Prep Chapter 2

Anomalous data

Anomalous data is the risk that your data is not evenly distributed or easily separable.
Datasets from the real world are going to contain outliers and data that needs to be
adjusted. In this recipe, we will discuss a basic technique used in data analysis to work with
anomalous data and distribute the results while maintaining the data distribution.

Getting ready

Outliers are a huge issue with datasets where you want to have a clean distribution of data.
In terms of the generative model, we are interested in ensuring that the model can find the
right representation of the distribution and model it appropriately. This recipe is going to
focus on the tools you will use in these instances to solve problems with outliers in some of
these datasets.

Here is an easy to understand general technique I would like you to understand in this
recipe - the Univariate method.

How to do it...

Why are these methods important? You need to develop a set of tools in your repertoire to
understand data as you go through this process. These types of techniques encompass the
basis of you will adjust and/or balance data with extreme outliers. Only in the cleanest of
datasets will you not need to employ one of these basic techniques or even a more
advanced technique.

These three methods are the most common methods to work with anomalous data and
we're going to talk about the practical use of these techniques.

Univariate method

This method focuses on removing values that fall far away from the median value for a
single value. Typically, the evaluation metric is called the cleaning parameter. This
parameter will define which values to remove from the distribution. Choosing an
aggressive cleaning parameter could remove diverse data. On the contrary, choosing too
large of a cleaning parameter won't change much about the distribution.

[51]

Data First, Easy Environment, and Data Prep Chapter 2

Here's an example of how to perform a univariate fit on some sample data:

#!/usr/bin/env python

from numpy import linspace,exp

from numpy.random import randn

import matplotlib.pyplot as plt

from scipy.interpolate import UnivariateSpline

#H#####4#4## Univariate Fit
x = linspace (-5, 5, 200)
y = exp(-x**2) + randn(200)/10

s = UnivariateSpline(x, vy, s=1)
xs = linspace (-5, 5, 1000)
ys = s(xs)

plt.plot(x, y, '.-")

plt.plot (xs, ys)

plt.show ()0

Here's the breakdown of the code:
1. Import all of the required packages to attempt this section:

#!/usr/bin/env python
from numpy import linspace, exp
from numpy.random import randn

import matplotlib.pyplot as plt
from scipy.interpolate import UnivariateSpline

2. Define the line:

#H##4#44## Univariate Fit

x = linspace (-5, 5, 200)

y = exp(-x**2) + randn(200)/10
3. Fit a univariate model to the data:

s = UnivariateSpline(x, vy, s=1)

4. Define parameters for the line:

xs = linspace (-5, 5, 1000)
ys s (xs)

5. Plot the parameters:

plt.plot(x, vy, '.—-")
plt.plot (xs, ys)
plt.show ()0

[52]

Data First, Easy Environment, and Data Prep Chapter 2

6. Create a Dockerfile and install it in the imbalanced-learn package:
FROM base_image
ADD demo.py /demo.py

7. Create a run file:

#/bin/bash
nvidia—-docker build -t ch2

xhost +
docker run —-it \
—-runtime=nvidia \
——rm \
—e DISPLAY=S$DISPLAY \
-v /tmp/.X1l-unix:/tmp/.X11l-unix \
ch2 python demo.py

8. Run the code by issuing this command at the Terminal:

sudo ./run.sh

9. Following are the results from running this code:

1.2 A

1.0

0.8

0.6

0.4 1

0.2 4

0.0 1

—-0.2 1

ﬂﬂﬂ ﬂgg x=-5.21169 y=0.364246

[53]

Data First, Easy Environment, and Data Prep Chapter 2

There's more...

There are quite a few libraries out there that are focused solely on the purpose of balancing
data. This is a fairly common problem in the machine learning space. Consider the anomaly
detection side of discriminatory modeling. Typically, you'll see cases where there are
potentially 10% to 20% anomalies in the base data. Sometimes, it's even worse than just
that. There have been some cases in my career where the rate of defect was around 1%. If
we created a classifier in this case that strictly predicted no defect, then we would get 99%
accuracy. In this way, we have to pay very careful attention to the structure and
distribution of our data as we attempt to learn the understanding distribution.

Here's another really simple way to visualize the outliers in a dataset:
https://www.itl.nist.gov/div898/handbook/prc/sectionl/prcl6.htm.

The following link is to an article that focuses on practical graphing techniques for
multivariate problems:

https://machinelearningmastery.com/visualize-machine-learning-data-python-

pandas/.

Balancing data

Balancing data and handling anomalous data are often thought of as the same process. In
our case, data balancing involves understanding the techniques used to spread anomalous
data without disrupting the underlying data distribution. In this recipe, we will discuss the
core concepts in data balancing.

Getting ready

Generative modeling is attempting to build a model that represents the entire data
distribution. In order to learn this underlying distribution, the data must represent that
data in a verbose but compact form—that is, we want to ensure that each of the traits on
features that we are attempting to learn, is represented in similar quantities the way in
which they would be generated.

[54]

https://www.itl.nist.gov/div898/handbook/prc/section1/prc16.htm
https://www.itl.nist.gov/div898/handbook/prc/section1/prc16.htm
https://www.itl.nist.gov/div898/handbook/prc/section1/prc16.htm
https://www.itl.nist.gov/div898/handbook/prc/section1/prc16.htm
https://www.itl.nist.gov/div898/handbook/prc/section1/prc16.htm
https://www.itl.nist.gov/div898/handbook/prc/section1/prc16.htm
https://www.itl.nist.gov/div898/handbook/prc/section1/prc16.htm
https://www.itl.nist.gov/div898/handbook/prc/section1/prc16.htm
https://www.itl.nist.gov/div898/handbook/prc/section1/prc16.htm
https://www.itl.nist.gov/div898/handbook/prc/section1/prc16.htm
https://www.itl.nist.gov/div898/handbook/prc/section1/prc16.htm
https://www.itl.nist.gov/div898/handbook/prc/section1/prc16.htm
https://www.itl.nist.gov/div898/handbook/prc/section1/prc16.htm
https://www.itl.nist.gov/div898/handbook/prc/section1/prc16.htm
https://www.itl.nist.gov/div898/handbook/prc/section1/prc16.htm
https://www.itl.nist.gov/div898/handbook/prc/section1/prc16.htm
https://www.itl.nist.gov/div898/handbook/prc/section1/prc16.htm
https://www.itl.nist.gov/div898/handbook/prc/section1/prc16.htm
https://www.itl.nist.gov/div898/handbook/prc/section1/prc16.htm
https://www.itl.nist.gov/div898/handbook/prc/section1/prc16.htm
https://www.itl.nist.gov/div898/handbook/prc/section1/prc16.htm
https://www.itl.nist.gov/div898/handbook/prc/section1/prc16.htm
https://www.itl.nist.gov/div898/handbook/prc/section1/prc16.htm
https://machinelearningmastery.com/visualize-machine-learning-data-python-pandas/
https://machinelearningmastery.com/visualize-machine-learning-data-python-pandas/
https://machinelearningmastery.com/visualize-machine-learning-data-python-pandas/
https://machinelearningmastery.com/visualize-machine-learning-data-python-pandas/
https://machinelearningmastery.com/visualize-machine-learning-data-python-pandas/
https://machinelearningmastery.com/visualize-machine-learning-data-python-pandas/
https://machinelearningmastery.com/visualize-machine-learning-data-python-pandas/
https://machinelearningmastery.com/visualize-machine-learning-data-python-pandas/
https://machinelearningmastery.com/visualize-machine-learning-data-python-pandas/
https://machinelearningmastery.com/visualize-machine-learning-data-python-pandas/
https://machinelearningmastery.com/visualize-machine-learning-data-python-pandas/
https://machinelearningmastery.com/visualize-machine-learning-data-python-pandas/
https://machinelearningmastery.com/visualize-machine-learning-data-python-pandas/
https://machinelearningmastery.com/visualize-machine-learning-data-python-pandas/
https://machinelearningmastery.com/visualize-machine-learning-data-python-pandas/
https://machinelearningmastery.com/visualize-machine-learning-data-python-pandas/
https://machinelearningmastery.com/visualize-machine-learning-data-python-pandas/
https://machinelearningmastery.com/visualize-machine-learning-data-python-pandas/
https://machinelearningmastery.com/visualize-machine-learning-data-python-pandas/

Data First, Easy Environment, and Data Prep Chapter 2

How to do it...

Two predominant sets of class of techniques to fix imbalance are as follows:

e Sampling techniques
¢ Ensemble techniques

These techniques focus on sampling the data in a constructive or destructive way to achieve
a better balanced distribution or working on the learning side to ensemble multiple learners
together to form a consensus on a problem set.

Sampling techniques

Sampling techniques focus on solving the issues through manipulation of the data—similar
to removing anomalous data, we are going to modify the data distribution to make sure
that the data is balanced.

Random undersampling

In this method, you randomly undersample the majority class in a distribution to make it
match the distribution of other minority classes you would like to predict. Your data can
suffer from a probability of over predicting the under served classes. In the generative
paradigm, undersampling can bias the model to over-represent minority classes.

We have a simple code example that we will go through in this section:

1. Import all of the necessary classes to random undersampling:

import matplotlib.pyplot as plt

import numpy as np

from sklearn.datasets import make_classification

from sklearn.decomposition import PCA

from imblearn.under_sampling import RandomUnderSampler

2. Use scikit-learn to generate a dataset to demonstrate the random undersampling:

Generate the dataset
X, y = make_classification(n_classes=2, class_sep=2, weights=[0.15,
0.95],
n_informative=3, n_redundant=1,
flip_y=0,
n_features=20, n_clusters_per_class=2,
n_samples=1000, random_state=10)

[551]

Data First, Easy Environment, and Data Prep Chapter 2

3. Instantiate a Principal Component Analysis (PCA), and PCA objectand fit a
transform:

pca = PCA (n_components=3)
X_vis = pca.fit_transform(X)

4. Use the RandomUnderSampler class and fit to the same—transformusing

PCA:
Apply the random under-sampling
rus = RandomUnderSampler (return_indices=True)
X_resampled, y_resampled, idx_resampled = rus.fit_sample (X, V)
X_res_vis = pca.transform(X_resampled)

5. Create the basic plot for showing the new balanced data:

fig = plt.figure()
ax = fig.add_subplot (1, 1, 1)

idx_samples_removed = np.setdiffld(np.arange (X_vis.shape[0]),
idx_resampled)

idx_class_0 = y_resampled ==

plt.scatter (X_res_vis[idx_class_0, 0], X_res_vis[idx_class_0, 11,
alpha=.8, label='Class #0'")

plt.scatter (X_res_vis[~idx_class_0, 0], X_res_vis[~idx_class_0, 17,
alpha=.8, label='Class #1'")

plt.scatter (X_vis[idx_samples_removed, 0],

X_vis[idx_samples_removed, 1],
alpha=.8, label='Removed samples')

6. Add some additional parameters to clean up the plot:

make nice plotting

ax.spines['top'].set_visible (False)
ax.spines['right'].set_visible (False)
ax.get_xaxis () .tick_bottom()
ax.get_vyaxis () .tick_left ()
ax.spines['left'].set_position(('outward', 10))
ax.spines['bottom'].set_position(('outward', 10))
ax.set_xlim([-6, 6])

ax.set_ylim([-6, 6])

plt.title('Under-sampling using random under-sampling')
plt.legend()

plt.tight_layout ()

plt.show ()

[561]

Data First, Easy Environment, and Data Prep Chapter 2

7. Create a Dockerfile and install in the imbalanced-learn package:
FROM base_image
RUN pip install -U imbalanced-learn
ADD demo.py /demo.py

8. Create a run file:

#/bin/bash
nvidia—-docker build -t ch2

xhost +
docker run —-it \
—-runtime=nvidia \
——rm \
—e DISPLAY=S$DISPLAY \
-v /tmp/.X1l-unix:/tmp/.X11l-unix \
ch2 python demo.py

9. Run the code by issuing this command at the Terminal:

sudo ./run.sh

10. Following are the results from running this code:

Under-sampling using random under-sampling
6 - -
° ® Class #0
® ° @ Class #1
4 Removed samples
°
24 S |
{
]
o . @, 0,
04 ° o o o,
°
ot 4 %
]
°
24
-4 ° °
°® . e o
6
-6 -4 -2 0 2 4 6
ﬂﬂ > ﬂg = x=-0.29252 y=-5.31121

[571

Data First, Easy Environment, and Data Prep Chapter 2

Random oversampling

In random oversampling, you will increase the number of instances in the minority classes
by either randomly duplicating instances of the minority classes until they match the
distribution of the majority class. The sampling can become biased depending on the
technique and so it's important to understand the underlying strategy of your technique.

Synthetic minority oversampling technique

Synthetic Minority Oversampling Technique (SMOTE) involves creating synthetic
examples of the minority class through this technique. With the preceding techniques,
simply duplicating minority examples, or reducing majority examples isn't enough.
SMOTE is a technique used to bridge these special cases.

Ensemble techniques

There are a few algorithmic techniques I'd like to touch on in this section. This involves
using multiple learners in an ensemble (group) to come to a combined output. Obviously,
this is going to be harder in a generative paradigm but I do believe it's important to at least
be aware of these techniques.

Bagging

Bagging works by sampling a smaller set of data and matching the distribution of the
greater set of data—the algorithms are then trained on these smaller sets and later fused to
form a single decision. Bagging will only help with learners that are capable—learning a
bunch of bad models will lead to bad results.

Boosting

Boosting works by taking weak learners and combining their decisions or output to
produce a strong output. Boosting will weight the outputs of the different learners to
improve the output of the ensemble until some stopping criteria is met.

[581]

Data First, Easy Environment, and Data Prep Chapter 2

AdaBoost

Adaptive Boosting, or AdaBoost, essentially takes boosting and applies rules to the
boosting step. By adding simple rules, you allow the ensemble to adapt to different
anomalies to predict. This technique can be sensitive to the rule set and extreme outliers in
the data.

There's more...

Scikit-learn is a very popular ML library. Recently, a new library was added into the scikit-
learn ecosystem called imbalanced, which allows the user to apply many of these
techniques with ease. If you have experience with scikit, you'll know that the library
requires your data to be formatted a certain way. Once you have your data in this standard
format, it becomes easy to apply these techniques using this library. A link to the
imbalanced-1learn library is included in the follow-up reading section of this recipe.

This website offers a solid explanation of how SMOTE works:

https://www.cs.cmu.edu/afs/cs/project/jair/pub/volumel6/chawlal2a-html/
chawla2002.html.

And there is a simple implementation in the scikit-learn imbalanced library:

http://contrib.scikit-learn.org/imbalanced-learn/stable/generated/imblearn.

over_sampling.SMOTE.html.
Finally, check out the imbalanced library here:

http://contrib.scikit-learn.org/imbalanced-learn/stable/index.html.

Data augmentation

Data augmentation is the idea that one image can be altered or corrupted to encourage
deep learning techniques to generalize for the objective, rather than focusing on single
features. In this section, we'll show a simple script for applying different augmentations.

[591]

https://www.cs.cmu.edu/afs/cs/project/jair/pub/volume16/chawla02a-html/chawla2002.html
https://www.cs.cmu.edu/afs/cs/project/jair/pub/volume16/chawla02a-html/chawla2002.html
https://www.cs.cmu.edu/afs/cs/project/jair/pub/volume16/chawla02a-html/chawla2002.html
https://www.cs.cmu.edu/afs/cs/project/jair/pub/volume16/chawla02a-html/chawla2002.html
https://www.cs.cmu.edu/afs/cs/project/jair/pub/volume16/chawla02a-html/chawla2002.html
https://www.cs.cmu.edu/afs/cs/project/jair/pub/volume16/chawla02a-html/chawla2002.html
https://www.cs.cmu.edu/afs/cs/project/jair/pub/volume16/chawla02a-html/chawla2002.html
https://www.cs.cmu.edu/afs/cs/project/jair/pub/volume16/chawla02a-html/chawla2002.html
https://www.cs.cmu.edu/afs/cs/project/jair/pub/volume16/chawla02a-html/chawla2002.html
https://www.cs.cmu.edu/afs/cs/project/jair/pub/volume16/chawla02a-html/chawla2002.html
https://www.cs.cmu.edu/afs/cs/project/jair/pub/volume16/chawla02a-html/chawla2002.html
https://www.cs.cmu.edu/afs/cs/project/jair/pub/volume16/chawla02a-html/chawla2002.html
https://www.cs.cmu.edu/afs/cs/project/jair/pub/volume16/chawla02a-html/chawla2002.html
https://www.cs.cmu.edu/afs/cs/project/jair/pub/volume16/chawla02a-html/chawla2002.html
https://www.cs.cmu.edu/afs/cs/project/jair/pub/volume16/chawla02a-html/chawla2002.html
https://www.cs.cmu.edu/afs/cs/project/jair/pub/volume16/chawla02a-html/chawla2002.html
https://www.cs.cmu.edu/afs/cs/project/jair/pub/volume16/chawla02a-html/chawla2002.html
https://www.cs.cmu.edu/afs/cs/project/jair/pub/volume16/chawla02a-html/chawla2002.html
https://www.cs.cmu.edu/afs/cs/project/jair/pub/volume16/chawla02a-html/chawla2002.html
https://www.cs.cmu.edu/afs/cs/project/jair/pub/volume16/chawla02a-html/chawla2002.html
https://www.cs.cmu.edu/afs/cs/project/jair/pub/volume16/chawla02a-html/chawla2002.html
https://www.cs.cmu.edu/afs/cs/project/jair/pub/volume16/chawla02a-html/chawla2002.html
https://www.cs.cmu.edu/afs/cs/project/jair/pub/volume16/chawla02a-html/chawla2002.html
https://www.cs.cmu.edu/afs/cs/project/jair/pub/volume16/chawla02a-html/chawla2002.html
https://www.cs.cmu.edu/afs/cs/project/jair/pub/volume16/chawla02a-html/chawla2002.html
https://www.cs.cmu.edu/afs/cs/project/jair/pub/volume16/chawla02a-html/chawla2002.html
https://www.cs.cmu.edu/afs/cs/project/jair/pub/volume16/chawla02a-html/chawla2002.html
https://www.cs.cmu.edu/afs/cs/project/jair/pub/volume16/chawla02a-html/chawla2002.html
https://www.cs.cmu.edu/afs/cs/project/jair/pub/volume16/chawla02a-html/chawla2002.html
https://www.cs.cmu.edu/afs/cs/project/jair/pub/volume16/chawla02a-html/chawla2002.html
http://contrib.scikit-learn.org/imbalanced-learn/stable/generated/imblearn.over_sampling.SMOTE.html
http://contrib.scikit-learn.org/imbalanced-learn/stable/generated/imblearn.over_sampling.SMOTE.html
http://contrib.scikit-learn.org/imbalanced-learn/stable/generated/imblearn.over_sampling.SMOTE.html
http://contrib.scikit-learn.org/imbalanced-learn/stable/generated/imblearn.over_sampling.SMOTE.html
http://contrib.scikit-learn.org/imbalanced-learn/stable/generated/imblearn.over_sampling.SMOTE.html
http://contrib.scikit-learn.org/imbalanced-learn/stable/generated/imblearn.over_sampling.SMOTE.html
http://contrib.scikit-learn.org/imbalanced-learn/stable/generated/imblearn.over_sampling.SMOTE.html
http://contrib.scikit-learn.org/imbalanced-learn/stable/generated/imblearn.over_sampling.SMOTE.html
http://contrib.scikit-learn.org/imbalanced-learn/stable/generated/imblearn.over_sampling.SMOTE.html
http://contrib.scikit-learn.org/imbalanced-learn/stable/generated/imblearn.over_sampling.SMOTE.html
http://contrib.scikit-learn.org/imbalanced-learn/stable/generated/imblearn.over_sampling.SMOTE.html
http://contrib.scikit-learn.org/imbalanced-learn/stable/generated/imblearn.over_sampling.SMOTE.html
http://contrib.scikit-learn.org/imbalanced-learn/stable/generated/imblearn.over_sampling.SMOTE.html
http://contrib.scikit-learn.org/imbalanced-learn/stable/generated/imblearn.over_sampling.SMOTE.html
http://contrib.scikit-learn.org/imbalanced-learn/stable/generated/imblearn.over_sampling.SMOTE.html
http://contrib.scikit-learn.org/imbalanced-learn/stable/generated/imblearn.over_sampling.SMOTE.html
http://contrib.scikit-learn.org/imbalanced-learn/stable/generated/imblearn.over_sampling.SMOTE.html
http://contrib.scikit-learn.org/imbalanced-learn/stable/generated/imblearn.over_sampling.SMOTE.html
http://contrib.scikit-learn.org/imbalanced-learn/stable/generated/imblearn.over_sampling.SMOTE.html
http://contrib.scikit-learn.org/imbalanced-learn/stable/generated/imblearn.over_sampling.SMOTE.html
http://contrib.scikit-learn.org/imbalanced-learn/stable/generated/imblearn.over_sampling.SMOTE.html
http://contrib.scikit-learn.org/imbalanced-learn/stable/generated/imblearn.over_sampling.SMOTE.html
http://contrib.scikit-learn.org/imbalanced-learn/stable/generated/imblearn.over_sampling.SMOTE.html
http://contrib.scikit-learn.org/imbalanced-learn/stable/generated/imblearn.over_sampling.SMOTE.html
http://contrib.scikit-learn.org/imbalanced-learn/stable/generated/imblearn.over_sampling.SMOTE.html
http://contrib.scikit-learn.org/imbalanced-learn/stable/generated/imblearn.over_sampling.SMOTE.html
http://contrib.scikit-learn.org/imbalanced-learn/stable/generated/imblearn.over_sampling.SMOTE.html
http://contrib.scikit-learn.org/imbalanced-learn/stable/generated/imblearn.over_sampling.SMOTE.html
http://contrib.scikit-learn.org/imbalanced-learn/stable/index.html
http://contrib.scikit-learn.org/imbalanced-learn/stable/index.html
http://contrib.scikit-learn.org/imbalanced-learn/stable/index.html
http://contrib.scikit-learn.org/imbalanced-learn/stable/index.html
http://contrib.scikit-learn.org/imbalanced-learn/stable/index.html
http://contrib.scikit-learn.org/imbalanced-learn/stable/index.html
http://contrib.scikit-learn.org/imbalanced-learn/stable/index.html
http://contrib.scikit-learn.org/imbalanced-learn/stable/index.html
http://contrib.scikit-learn.org/imbalanced-learn/stable/index.html
http://contrib.scikit-learn.org/imbalanced-learn/stable/index.html
http://contrib.scikit-learn.org/imbalanced-learn/stable/index.html
http://contrib.scikit-learn.org/imbalanced-learn/stable/index.html
http://contrib.scikit-learn.org/imbalanced-learn/stable/index.html
http://contrib.scikit-learn.org/imbalanced-learn/stable/index.html
http://contrib.scikit-learn.org/imbalanced-learn/stable/index.html
http://contrib.scikit-learn.org/imbalanced-learn/stable/index.html
http://contrib.scikit-learn.org/imbalanced-learn/stable/index.html
http://contrib.scikit-learn.org/imbalanced-learn/stable/index.html
http://contrib.scikit-learn.org/imbalanced-learn/stable/index.html
http://contrib.scikit-learn.org/imbalanced-learn/stable/index.html
http://contrib.scikit-learn.org/imbalanced-learn/stable/index.html

Data First, Easy Environment, and Data Prep Chapter 2

Getting ready

The imgaug library is commonly used in deep learning research and this figure
demonstrates a subset of available augmentations in this free-to-use library:

Data augmentation is a cornerstone of deep learning data analysis. Each project needs to
understand how data augmentation can improve their project. Why would you choose to
include data augmentation in your project? In images, it's easy to understand. By
augmenting your data—think flipping, noise, and so on—you are essentially forcing the
algorithm to understand the content of the image without memorizing or keying in on
singular features. With the advent of deep learners, it's now possible for discriminative
modeling techniques to memorize entire datasets or hyper focus on singular features that
make the learning component easy (think fast convergence during the training step). It's
imperative that we use techniques such as data augmentation to force generalization
during training. For a generative modeling architecture such as GANs, we will need to be
fairly selective about which augmentations we use during training. This will be addressed
in certain recipes throughout this book.

[60]

Data First, Easy Environment, and Data Prep

How to do it...

So, how do we attack the high-level problem of doing image augmentation? Luckily, there
are great folks out there developing awesome libraries to solve these very problems. One of
my favorite libraries is a library called imgaug. This library allows you to dynamically and
randomly apply transformations. Why is that advantageous? During the training process in
deep learners, augmentations will force the learners to generalize. The imgaug library is
going to make your life so much easier in this facet. I've got a small demo code set that we'll
go over in the next section to ensure you've got a good idea of the power of this library:

1. Import the required packages:

import imgaug as ia
from imgaug import augmenters as iaa
import numpy as np

2. This seed can be changed-random seed:

ia.seed (1)

3. Here we have an example batch of 100 images:

images = np.array (

)

4. Create the transformer function by specifying the different augmentations:

seq

[ia.quokka (size= (64, 64)) for _ in range(100)7],
dtype=np.uint8

= iaa.Sequential ([# Horizontal Flips
iaa.Fliplr(0.5),

Random Crops

iaa.Crop(percent=(0, 0.1)),# Gaussian blur for 50% of the

images

per_

iaa.Sometimes (0.5,
iaa.GaussianBlur (sigma=(0, 0.5))
) 4
Strengthen or weaken the contrast in each image.
iaa.ContrastNormalization((0.75, 1.5)),

Add gaussian noise.
iaa.AdditiveGaussianNoise (loc=0, scale=(0.0, 0.05*255),
channel=0.5),

Make some images brighter and some darker.
iaa.Multiply((0.8, 1.2), per_channel=0.2),

[61]

Data First, Easy Environment, and Data Prep Chapter 2

5. Apply Af fine transformations to each image:

iaa.Affine(
scale={"x": (0.5, 1.5), "y": (0.5, 1.5)},
translate_percent={"x": (-0.5, 0.5), "y": (-0.5, 0.5)},
rotate=(-10, 10),
shear=(-10, 10)

)1

6. Apply augmenters in random order:

random_order=True)

7. This should display a random set of augmentations in a window:

images_aug = seqg.augment_images (images)
seq.show_grid(images[0], cols=8, rows=8)

Let's go over this code in detail!

How it works...

Time to dive right in! Image augmentation using imgaug is as easy as importing the library
and doing some basic preparations in your Python code:

import imgaug as ia
from imgaug import augmenters as iaa
import numpy as np

This seed can be changed - random seed
ia.seed (1)

Example batch of 100 images

images = np.array (
[ia.quokka (size=(64, 64)) for _ in range(100)],
dtype=np.uint8

)

This step essentially allows us to use the imgaug library as iaa and import some demo
images to augment to show the power of image augmentation. Next, we are going to create

a transformer function to specify all of the different augmentations that we'd like applied to
our images:

Create the transformer function by specifying the different augmentations
seq = iaa.Sequential ([
Horizontal Flips

[62]

Data First, Easy Environment, and Data Prep Chapter 2

iaa.Fliplr(0.5),

Random Crops
iaa.Crop(percent=(0, 0.1)),

Gaussian blur for 50% of the images
iaa.Sometimes (0.5,

iaa.GaussianBlur (sigma=(0, 0.5))
) ’
Strengthen or weaken the contrast in each image.
iaa.ContrastNormalization((0.75, 1.5)),

Add gaussian noise.
iaa.AdditiveGaussianNoise (loc=0, scale=(0.0, 0.05*255),
per_channel=0.5),

Make some images brighter and some darker.
iaa.Multiply((0.8, 1.2), per_channel=0.2),

Apply affine transformations to each image.

iaa.Affine(
scale={"x": (0.5, 1.5), "y": (0.5, 1.5)},
translate_percent={"x": (-0.5, 0.5), "y": (-0.5, 0.5)},
rotate=(-10, 10),
shear=(-10, 10)

] ’
apply augmenters in random order
random_order=True)

You'll notice there are quite a few different augmentations included in this demo piece. One
of the great things about this library is that it offers a wide assortment of ready to use
augmentations that're compatible with deep learning and flexible to be used in other
applications. Finally, we need to display the images to a window to understand what types
of augmentations we've applied to this images:

This should display a random set of augmentations in a window
images_aug = seqg.augment_images (images)
seq.show_grid(images[0], cols=8, rows=8

I encourage you to experiment with the different types of augmentations when you get to
the exercise section in this chapter.

[63]

Data First, Easy Environment, and Data Prep Chapter 2

There's more...

Here's the thing about augmentation—it's still debated throughout the community on
whether it's an absolute requirement for every machine learning project. I've supplied some
follow up papers for your reading leisure to understand more modern discussions on data
augmentation. In data poor environments, it's generally accepted that carefully selected
augmentation can improve accuracy but cannot be used in place of actual data. In data-rich
environments, augmentation can be applied more judiciously and will generally improve
performance. Data augmentation, however- that is randomly chosen without benchmarks
for your learners- can lead to decreased performance for the learners in the long run.

Data augmentation is a big topic in deep learning but is largely not discussed in scholarly
journals for GANs. There are quite a few articles we can recommend to learn about vanilla
data augmentation (especially for images) seen in the following examples:

¢ Return of the Devil in the Details: Delving Deep into Convolutional Nets:
Example of a paper where they do a rigorous exploration of augmentation
around their problems space: https://arxiv.org/pdf/1405.3531.pdf.

¢ Lecture: Data Augmentation case studies for deep convolutional models https://
wWww.coursera.org/learn/convolutional-neural-networks/lecture/AYzbX/

data-augmentation.

¢ imgaug library: Details on the imgaug library: https://media.readthedocs.
org/pdf/imgaug/latest/imgaug.pdf.

Exercise

We'll make the exercise fairly straightforward for the end of this chapter—this will ensure
that these techniques sink in prior to continuing with the recipes in this book:

1. Select a dataset from the UCI repository and prepare it for a learning task by
reading the data in, analyzing the distribution, and saving it to a npy formatted
array for later usage.

2. Add a different form of image augmentation to the augmentation recipe in this
chapter.

[64]

https://arxiv.org/pdf/1405.3531.pdf
https://arxiv.org/pdf/1405.3531.pdf
https://arxiv.org/pdf/1405.3531.pdf
https://arxiv.org/pdf/1405.3531.pdf
https://arxiv.org/pdf/1405.3531.pdf
https://arxiv.org/pdf/1405.3531.pdf
https://arxiv.org/pdf/1405.3531.pdf
https://arxiv.org/pdf/1405.3531.pdf
https://arxiv.org/pdf/1405.3531.pdf
https://arxiv.org/pdf/1405.3531.pdf
https://arxiv.org/pdf/1405.3531.pdf
https://arxiv.org/pdf/1405.3531.pdf
https://arxiv.org/pdf/1405.3531.pdf
https://arxiv.org/pdf/1405.3531.pdf
https://arxiv.org/pdf/1405.3531.pdf
https://www.coursera.org/learn/convolutional-neural-networks/lecture/AYzbX/data-augmentation
https://www.coursera.org/learn/convolutional-neural-networks/lecture/AYzbX/data-augmentation
https://www.coursera.org/learn/convolutional-neural-networks/lecture/AYzbX/data-augmentation
https://www.coursera.org/learn/convolutional-neural-networks/lecture/AYzbX/data-augmentation
https://www.coursera.org/learn/convolutional-neural-networks/lecture/AYzbX/data-augmentation
https://www.coursera.org/learn/convolutional-neural-networks/lecture/AYzbX/data-augmentation
https://www.coursera.org/learn/convolutional-neural-networks/lecture/AYzbX/data-augmentation
https://www.coursera.org/learn/convolutional-neural-networks/lecture/AYzbX/data-augmentation
https://www.coursera.org/learn/convolutional-neural-networks/lecture/AYzbX/data-augmentation
https://www.coursera.org/learn/convolutional-neural-networks/lecture/AYzbX/data-augmentation
https://www.coursera.org/learn/convolutional-neural-networks/lecture/AYzbX/data-augmentation
https://www.coursera.org/learn/convolutional-neural-networks/lecture/AYzbX/data-augmentation
https://www.coursera.org/learn/convolutional-neural-networks/lecture/AYzbX/data-augmentation
https://www.coursera.org/learn/convolutional-neural-networks/lecture/AYzbX/data-augmentation
https://www.coursera.org/learn/convolutional-neural-networks/lecture/AYzbX/data-augmentation
https://www.coursera.org/learn/convolutional-neural-networks/lecture/AYzbX/data-augmentation
https://www.coursera.org/learn/convolutional-neural-networks/lecture/AYzbX/data-augmentation
https://www.coursera.org/learn/convolutional-neural-networks/lecture/AYzbX/data-augmentation
https://www.coursera.org/learn/convolutional-neural-networks/lecture/AYzbX/data-augmentation
https://www.coursera.org/learn/convolutional-neural-networks/lecture/AYzbX/data-augmentation
https://www.coursera.org/learn/convolutional-neural-networks/lecture/AYzbX/data-augmentation
https://www.coursera.org/learn/convolutional-neural-networks/lecture/AYzbX/data-augmentation
https://www.coursera.org/learn/convolutional-neural-networks/lecture/AYzbX/data-augmentation
https://media.readthedocs.org/pdf/imgaug/latest/imgaug.pdf
https://media.readthedocs.org/pdf/imgaug/latest/imgaug.pdf
https://media.readthedocs.org/pdf/imgaug/latest/imgaug.pdf
https://media.readthedocs.org/pdf/imgaug/latest/imgaug.pdf
https://media.readthedocs.org/pdf/imgaug/latest/imgaug.pdf
https://media.readthedocs.org/pdf/imgaug/latest/imgaug.pdf
https://media.readthedocs.org/pdf/imgaug/latest/imgaug.pdf
https://media.readthedocs.org/pdf/imgaug/latest/imgaug.pdf
https://media.readthedocs.org/pdf/imgaug/latest/imgaug.pdf
https://media.readthedocs.org/pdf/imgaug/latest/imgaug.pdf
https://media.readthedocs.org/pdf/imgaug/latest/imgaug.pdf
https://media.readthedocs.org/pdf/imgaug/latest/imgaug.pdf
https://media.readthedocs.org/pdf/imgaug/latest/imgaug.pdf
https://media.readthedocs.org/pdf/imgaug/latest/imgaug.pdf
https://media.readthedocs.org/pdf/imgaug/latest/imgaug.pdf
https://media.readthedocs.org/pdf/imgaug/latest/imgaug.pdf
https://media.readthedocs.org/pdf/imgaug/latest/imgaug.pdf
https://media.readthedocs.org/pdf/imgaug/latest/imgaug.pdf

My First GAN in Under 100
Lines

The topics that are going to be covered in this chapter are as follows:

e From theory to code — a simple example

Building a neural network in Keras and TensorFlow

Explaining your first GAN component — discriminator

Explaining your second GAN component — generator
Putting all the GAN pieces together

e Training your first GAN

Training the model and understanding the GAN output

Introduction

In this chapter, we will cover how to take the theory we've discussed so far and produce a
simple Generative Adversarial Network (GAN) model using Keras, TensorFlow, and
Docker.

My First GAN in Under 100 Lines Chapter 3

From theory to code — a simple example

So, we've finally got all the right tools to produce a GAN in code. Why is it important that
the entry level version of a GAN is small? The goal of this code is to make it as compact as
possible to ensure that, as we expand on the concept of a GAN, it becomes obvious what
changes need to be made to make improvements on this basic formula.

Getting ready

Did you forget yet? Let's pull up the diagram on GANSs so that we can discuss the different
parts of the structure we will be producing classes for in this chapter:

Back Propagation: Maximize Error

Latent Generator
Generator
Space Image
RCE]
Discriminator » or
Fake

Dataset Real ‘ Back Propagation: Minimize Error
Image

This basic structure is what we will be converting to code. The key to this particular recipe
is understanding what pieces we need to convert and what pieces are simply going to be
wrapped up into a single class. For example, the latent space will be sampled from a
Gaussian distribution that's available in the NumPy library. Since we are just sampling
from this Gaussian distribution, it is necessary to know the size of the latent space at each
step, as you will see as we make progress on these GAN tools.

There are three core classes that we need to develop to build the structure of a GAN for

adversarial training. First, we need a discriminator. This is the piece of the architecture that
is focused on deciding whether an input belongs to a particular class or not. In this chapter,
we will simply limit the discriminator model to that of a binary classification (true or false).

[66]

My First GAN in Under 100 Lines Chapter 3

How to do it...

There will be three core classes contained in our first GAN:

e Discriminator base class
e Generator base class

e GAN base class

Discriminator base class

The Discriminator class will have the following core structure:

class Discriminator (object) :
def __init__ (self, width = 28, height= 28, channels = 1,
latent_size=100) :
Initialize Variables

def model (self):
Build the binary classifier and return it
return model

def summary (self):
Prints the Model Summary to the Screen

def save_model (self) :
Saves the model structure to a file in the data folder

The discriminator, generator, and the GAN structure itself share the same four common
methods. Here are some additional details on each of the methods:

e init: Initializes any variables that need to be available during use of the object. It
can also run basic functionality to initialize internal methods.

e model: Creates a deep neural network that represents a particular class. In the
case of the Discriminator, it's a simple binary classification type neural
network.

e summary: This is a simple wrapper for pretty printing the model summary.

¢ save_model: The function saves a photo of the model structure—in this case, it
uses the .png format.

In each of the following example cases, the base class will only differ in the init and model
methods. These sections will discuss those differences.

[671]

My First GAN in Under 100 Lines Chapter 3

Generator base class

As you can see, the Generator base class is similar to the Discriminator:

class Generator (object) :
def __init__ (self, width = 28, height= 28, channels = 1,
latent_size=100) :
Initialize Variables

def model (self) :
Build the generator model and returns it
return model

def summary (self):
Prints the Model Summary to the screen

def save_model (self) :
Saves the model structure to a file in the data folder

The main difference will be in the different init and model statements when we get to that
recipe. The generator is a simple sequential model. The sequential model just represents a
way of constructing and connecting layers in a neural network together.

GAN base class

Finally, we connect the generator and discriminator into a single model in adversarial form:

class GAN (object) :
def __init__ (self, discriminator_model,generator_model) :
Initialize Variables

def model (self):
Build the adversarial model and return it
return model

def summary (self):
Prints the Model Summary to the Screen

def save_model (self):
Saves the model structure to a file in the data folder

This skeleton class is meant to demonstrate to you how the similar structure of each of
these model types is relative to each other. The advantage of this structure is that we will
reuse this class over and over again throughout this book.

[68]

My First GAN in Under 100 Lines Chapter 3

See also

Now, there are plenty of repositories out there that are focused on GANS. It's important for
us to focus on the core functionalities that we'll utilize in this chapter through
Keras, https://keras.io/.

Building a neural network in Keras and
TensorFlow

This is the core of this particular set of recipes. Let's remind ourselves what it looks like to
work with Keras and TensorFlow. In the past, it would take hundreds of lines of code to
define a simple network. In the Keras framework, a network can be instantiated in under
three lines of code! For this recipe, we will introduce a few of the basic tools needed to
understand the neural networks that we will work with in this chapter.

Getting ready

For this recipe, we need to ensure that we have all the appropriate tools to compile our
code. You need the following pieces to make this recipe happen:

e A computer with an NVIDIA GPU
e Ubuntu 16.04
¢ NVIDIA Docker installed

With these two items, we can once again build the necessary run scripts and images to run
our very first GAN. The GAN consists of three pieces (generator, discriminator, and
loss function) and all three can very simply be represented in the Keras framework. First,
we will build the container that will run the Keras code we're going to develop.

How to do it...

1. Let's define a run script and a Dockerfile for our environment. First, let's check
out the basic structure of the Dockerfile:

FROM base_image
RUN pip3 install ipython
ADD . /

[69]

https://keras.io/
https://keras.io/
https://keras.io/
https://keras.io/
https://keras.io/
https://keras.io/
https://keras.io/
https://keras.io/

My First GAN in Under 100 Lines Chapter 3

Save this file to a named text file called Dockerfile.

2. Next, we will want to develop a run shell script to simplify running the script
during development. Here's the basic structure of the shell script:

#/bin/bash
3. Build the Docker container:
nvidia-docker build -t ch3
4. Allow the Docker container to produce windows outside of the container:
xhost +
5. Now, run the container with the training script:
docker run —-it \
—-—runtime=nvidia \
——rm \
—e DISPLAY=$DISPLAY \
-v /tmp/.X1l-unix:/tmp/.X11-unix \
-v /home/jk/Desktop/book_repos/Chapter3/full-gan/data:/data \

ch3 python3 train.py

These are all the tools we will need to run our training code for the GAN. Let's discuss the
details of each of the lines in these two important pieces!

Building the Docker containers

This is a fairly simple development environment. In future chapters, these development
environments will get more complicated. This chapter is all about establishing the basics of
building a GAN. One of the most critical things we can do is set up a reliable development
environment to work from.

The Docker container

In this case, we will set up the leanest container we can to house our code:

FROM base_image
RUN apt install -y python3-pydot python-pydot-ng graphviz

ADD . /

[70]

My First GAN in Under 100 Lines Chapter 3

Each line is easy to break down. First, we inherit from our base_image we developed in
Chapter 2, Data First, Easy Environment, and Data Prep, with the following:

FROM base_image
Next, we install one of the most handy tools in Python development—IPython:
RUN apt install -y python3-pydot python-pydot-ng graphviz ipython

IPython allows you to drop down to a shell in the middle of any Python code. If you are
having trouble understanding an issue with your Python code, I suggest using IPython to
help troubleshoot. If you want an interactive console at a particular line in your code,
simply add the following line:

from IPython import embed; embed()

This will open an interactive shell at that line. Finally, let's add all of the files in the current
directory into the root directory of the container:

ADD . /

It is possible to specify specific files, but with the dot (.), we are telling Docker to add all of
the files into the root directory of the container.

All three of these lines should be added into a file called Dockerfile in a folder called
full-gan. Your directory structure should look like this when you are done:

full-gan/
L—— Dockerfile

The run file

Now, we've got a Dockerfile ready to go. Let's create the build script that will build this
container and allow us to work inside of this Docker container. Create a folder in the full-
gan folder called data. Then, create a file in the full-gan folder called run.sh. A .sh file
is a shell script and will allow us to run a series of commands, as if we are running from the
Terminal. Open the run. sh script and type the following commands:

#/bin/bash
nvidia-docker build -t ch3 .

[71]

My First GAN in Under 100 Lines Chapter 3

Asin chapter 2, Data First — Easy Environment and Data Prep, /bin/bash tells the
interpreter to use the bash interpreter for this script. The NVIDIA-Docker container
command allows us to build the image with the tag ch3 and uses the Dockerfile in the
current directory because of the dot at the end of the command. Next, let's make sure that
any Windows OS we want to pass through the container can get through by issuing the
following command:

xhost +

This tells xhost to grant the appropriate privileges to the Docker container to allow
Windows OS to pass through and appear in our xhost (the Window Manager) on our
Ubuntu machine. Finally, let's see what the docker command does to run this container:

docker run —-it \
—-—runtime=nvidia \
——rm \
—e DISPLAY=S$DISPLAY \
-v /tmp/.X1l-unix:/tmp/.X11l-unix \
-v $HOME/full-gan/data:/data \
ch3 /bin/bash # python3 train.py

Here's the breakdown for each one of these commands, with a comment next to each line:

docker run -it \:This flag allows the container to run in interactive mode.
—-runtime=nvidia \:This means use the NVIDIA runtime so that we have
access to the graphics card.

——rm \: This flag tells the Docker system to discard any changes to the image
after exit.

—-e DISPLAY=$DISPLAY \:Thisis a variable to allow the Window OS to pass
through the container.

-v /tmp/.X1l-unix:/tmp/.X11-unix \:This allows the Windows OS to pass
through the container.

-v $HOME/full-gan/data:/data \:This maps a folder at the root directory to
your data folder.

ch3 /bin/bash: End of ch3: python3 train.py .Fornow, /bin/bash opens
a bash Terminal.

[72]

My First GAN in Under 100 Lines Chapter 3

Now, click Save and let's check to make sure that we have the appropriate directory
structure with our files:

full-gan/

—— Dockerfile
L— run.sh

One last thing before we finish this chapter—make sure to make the shell script executable
so that we can use it throughout this chapter:

chmod 775 run.sh

Go ahead and run it so that you can ensure that it properly builds the Dockerfile and
allows you to get an interactive shell:

sudo ./run.sh

This should do it! Make sure you can access Python3 and Keras. Then, go to the next recipe!

See also

If you want a few more details on different flags for Dockerfiles, check out the following
sites:

® https://docs.docker.com/engine/reference/builder/

® https://docs.docker.com/develop/develop-images/dockerfile_best-
practices/

Explaining your first GAN component -
discriminator

The discriminator is the easiest part of a GAN structure to understand—the discriminator is
going to classify the input image as real or not. This classification will happen in the
adversarial training. Essentially, the discriminator will classify the inputs during the
forward pass of the neural network. As the generator gets better, it will be harder and
harder for the GAN to distinguish between the real and fake images. We monitor the loss
functions on the Terminal screen, but we could use them in the future to stop training early.

[73]

https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/

My First GAN in Under 100 Lines Chapter 3

Getting ready

Remember that folder we created earlier in this chapter? You will want to create three new
files in this folder. Here are the files you need to create in this folder (you can use the Linux
command touch filename.py to create them):

® generator.py

e discriminator.py

® gan.py

After creating these files, your directory structure should look like this inside of the full-
gan folder:

full-gan/

—— discriminator.py
—— Dockerfile

F—— gan.py

%——— generator.py
L— run.sh

We've got all the right files in our directory, so now it's time to start adding code to each of
these files. The discriminator.py file is the first file we will populate with code. We're
going to go through each block of code piece by piece. The goal of this recipe is to
understand the core components of this basic discriminator. In future recipes, we will use
much more complex representations of the discriminator and in some cases, multiple
discriminators to improve the performance of these structures. Remember, it can be hard
for these models to converge without some tuning.

How to do it...

Let's break this recipe into a few core pieces—imports, initialization (init), model method,
and helper functions. This will help to articulate what each of the functions is doing and
ensure that we highlight the key points for each model's structure.

[74]

My First GAN in Under 100 Lines Chapter 3

Imports

The discriminator has typical imports, including sys for file IO and numpy for basic array
manipulation within Python. The keras imports are a bit more interesting, as can be seen
here:

#!/usr/bin/env python3

import sys

import numpy as np

from keras.layers import Input, Dense, Reshape, Flatten, Dropout
from keras.layers.advanced_activations import LeakyReLU

from keras.models import Sequential, Model

from keras.optimizers import Adam

We've imported the layers we will use, including the basic structural layers and a
specialized structure called Leaky Rectified Linear Unit (LeakyReLU). We also import the
basic structural glue or model structure called sequential. Finally, we are only using the
Adam optimizer in this model example, but we could also add a method to make the
optimizer selectable.

Initialization variables (init in the Discriminator class)

When creating a class in any object oriented programming, selecting what variables and
quantities are initialized in init is an important step. In this case, we need to know the
capacity of the model, the shape of the input, initialize the optimizer, and build the model,
as follows:

1. Class initialization with width, height, channels, and latent space size:
class Discriminator (object) :
def __init__ (self, width = 28, height= 28, channels = 1,

latent_size=100) :

2. Add the input arguments as internal variables to the class:
self.CAPACITY = width*height*channels
self.SHAPE = (width,height,channels)
self .OPTIMIZER = Adam(lr=0.0002, decay=8e-9)

3. Initialize the model based on the method we will define later in this recipe:

self.Discriminator = self.model ()

[75]

My First GAN in Under 100 Lines Chapter 3

4. Compile a model with abinary_crossentropy loss and our specified
optimizer:

self.Discriminator.compile (loss='binary_crossentropy',
optimizer=self.OPTIMIZER, metrics=['accuracy'])

5. Display a text summary of the model on the Terminal:

self.Discriminator.summary ()

In this case, we call the model method and compile the model using
binary_crossentropy. During the training step to update the weights, the optimizer
will be the Adam optimizer. One of the key points I'd like to highlight here is that we made a
big deal about the loss function for GANs. Why are we only using a built-in loss function
here? Simply put—this is as an example GAN, and we'll have many more opportunities to
implement custom loss functions. The modern GAN structures actually rely on custom loss
functions to achieve higher accuracy. In this case, the key is to ensure that we are able to
build the basic structure and get it to train. After that, we can focus on building custom
functionality.

Model definition for the discriminator

The model definition for the discriminator is a binary classifier structure. We'll go over the
structure here:

1. This method starts with a sequential model—this simply allows us to stitch
layers together in an easy fashion. Keras makes a few assumptions along the
way, such as the previous layer's size is the input to the proceeding layer:

model = Sequential ()
2. Next, we can check out the first layer:

model.add (Flatten (input_shape=self.SHAPE))

This layer does exactly what it sounds like: it is flattening the data into a single
data stream.

3. The next layer is going to do the brunt of the work:

model.add (Dense (self.CAPACITY, input_shape=self.SHAPE))
model.add (LeakyReLU (alpha=0.2))

[76]

My First GAN in Under 100 Lines Chapter 3

A dense layer is simply a fully connected layer of neurons. It is one of the
fundamental building blocks of neural networks and allows for the inputs to
reach each of the neurons. The LeakyReLU is a special kind of activation layer
that ensures that small gradients can be used when the unit is not active. In
practice, this is advantageous over a normal ReLU for ensuring that you have
issues with non-activated units when the activation approaches zero.

4. Asis standard practice, we continue our layers in the following fashion:

model.add (Dense (int (self.CAPACITY/2)))
model .add (LeakyReLU (alpha=0.2))

The next block is simply halving the capacity available at this layer, hopefully
allowing for this layer to learn the important features as it goes through the net.
Again, the LeakyReLU activation layer is used.

5. Finally, we have the final layer, which represents the probability that the input is
part of the class or not:

model.add (Dense (1, activation='sigmoid'))
return mode

After we build the model, it is returned by the method.

Helper methods in the Discriminator class

There are a few helper methods that enable you to understand key information about the
structures you are developing:

1. The first method called summary will print the summary that's available from
Keras of the model you produced previously:

def summary (self):
return self.Discriminator.summary ()

The summary function should put out data just like this on the Terminal:

Layer (type) Output Shape Param #
flatten_1 (Flatten) (None, 784) 0
dense_6 (Dense) (None, 784) 615440
leaky_re_lu_5 (LeakyReLU) (None, 784) 0

[77]

My First GAN in Under 100 Lines

Chapter 3

dense_7 (Dense) (None, 392) 307720
leaky_re_lu_6 (LeakyRelU) (None, 392) 0
dense_8 (Dense) (None, 1) 393

Total params: 923,553
Trainable params: 923,553
Non-trainable params: 0

2. Our next helper function, called save_model , produces the photographic

version of the model structure:

def save_model (self) :
plot_model (self.Discriminator.model,
to_file='/data/Discriminator_Model.png')

The output of the save model function will save an image just like this to the data folder:

‘ 139705506091528 |

flatten_1: Flatten

[
L)

dense_6: Dense

leaky re_lu 5: LeakyReLU |

dense 7: Dense
A

leaky re_lu 6: LeakyReLU |

]

dense 8: Dense

i

Hence, you have now understood how to build your first GAN discriminator.

[78]

My First GAN in Under 100 Lines Chapter 3

Explaining your second GAN component -
generator

The generator is the fun part of this structure. The generator is going to take inputs from
the latent space (a sample from a normal distribution in this recipe) and produce realistic
looking data. The generator will also be added to the adversarial part of the training. The
GAN will take in latent examples with labels and train on that until the generator itself is
able to produce realistic looking images. We'll see some examples of the generated images
in the near future.

Getting ready

As with the discriminator development, the important part of this recipe is that you have
the appropriate folder structure and the discriminator.py file. Testing each of these
components will come once we develop all three of the pieces, and will come once we get to
the training script later in this chapter.

How to do it...

This class is broken down into a few sections in order to better divide up the
information—imports, generator initialization, model definition of the generator, and
helper functions. I'd encourage you to pay attention to the model definition and to
experiment with different architectures with this class to understand if you can improve
this example code.

[79]

My First GAN in Under 100 Lines Chapter 3

Imports

The imports are a key piece:

#!/usr/bin/env python3

import sys

import numpy as np

from keras.layers import Dense, Reshape

from keras.layers import BatchNormalization

from keras.layers.advanced_activations import LeakyReLU
from keras.models import Sequential, Model

from keras.optimizers import Adam

As in previous classes, you will need the availability of sys and numpy. The basic layer
types are imported for use in the model, along with the LeakyReLU activation layer. The
Adam optimizer is used here, but a exercise problem is to expand each class to have a
different optimizer available.

Generator initialization

The Generator class needs to have a few input variables such as the width, height, and
channels of the input data. The latent space is also important as it helps define the size of
the distribution that we will sample and the side of the neural network. The code is as
follows:

class Generator (object) :
def __init__ (self, width = 28, height= 28, channels = 1,
latent_size=100) :

self.W = width
self.H = height
self.C = channels

self .OPTIMIZER = Adam(lr=0.0002, decay=8e-9)

self.LATENT_SPACE_SIZE = latent_size
self.latent_space = np.random.normal (0,1,
(self.LATENT_SPACE_SIZE,))

self.Generator = self.model ()
self.Generator.compile (loss="'binary_crossentropy',

optimizer=self.OPTIMIZER)
self.Generator.summary ()

[80]

My First GAN in Under 100 Lines Chapter 3

A few of the variables are defined within the class such as the height, width, and
channels. The optimizer is instantiated and the latent space is defined. Finally, every time
we call a generator object, we want it to build and compile itself. When it is complete, it
will print a summary of the model built by these steps.

Model definition of the generator

The model is the heart of each of these classes. In this case, we are defining a model that is
going to take a sample from the latent space as an input and use it to produce an image
with the same shape as the original image. Let's break down this model code to understand
how this is happening:

1. First, let's define the model and begin with the basic Sequential structure:

def model (self, block_starting_size=128,num_blocks=4):
model = Sequential ()

2. Next, we start with our first block of layers in the neural network:

block_size = block_starting_size

model.add (Dense (block_size, input_shape=(self.LATENT_SPACE_SIZE,)))
model.add (LeakyReLU (alpha=0.2))

model.add (BatchNormalization (momentum=0.8))

This adds a dense layer to the network with an input shape that is a latent sample
and a starting size of our initial block size. In this case, we are starting with 128
neurons. Using the LeakyReLU activation layer, we are able to avoid vanishing
gradients and non-activated neurons. Then, Bat chNormalization cleans up the
layer by normalizing the activations based on the previous layer. This improves
the efficiency of the network.

3. Next, we have the trickiest part:

for i in range (num_blocks-1):
block_size = block_size * 2
model.add (Dense (block_size))
model.add (LeakyReLU (alpha=0.2))
model.add (BatchNormalization (momentum=0.8))

[81]

My First GAN in Under 100 Lines Chapter 3

This set of code allows us to add additional blocks like the previous one, but
doubles the dense layer size. I'd encourage you to experiment with different
numbers of blocks. What are the outcomes? Do you see increased performance?
Faster convergence? Divergence? This set of code should allow you to experiment
with this type of architecture in a more flexible way.

4. The last piece to this method involves restructuring the output to be the same
shape as the input image and return the model:

model.add (Dense (self.W * self.H * self.C, activation='tanh'))
model.add (Reshape ((self.W, self.H, self.C)))
return model

Helper methods of the generator

Helper methods make things in a class more efficient or frequently used throughout the
method. In our case, it seemed important to ensure that we could check the structure of the
model as a text output and graphically:

1. The text summary available from Keras is easy to implement:

def summary (self):
return self.Generator.summary ()

2. The summary function should return an output in the Terminal like this once we
use the Generator class:

Layer (type) Output Shape Param #

dense_1 (Dense) (None, 128) 12928

leaky_re_lu_1 (LeakyReLU) (None, 128) O

batch_normalization_1 (Batch (None, 128) 512

dense_2 (Dense) (None, 256) 33024

leaky_re_lu_2 (LeakyRelLU) (None, 256) O

batch_normalization_2 (Batch (None, 256) 1024

dense_3 (Dense) (None, 512) 131584

leaky_re_lu_3 (LeakyRelLU) (None, 512) O

[82]

My First GAN in Under 100 Lines Chapter 3

batch_normalization_3 (Batch (None, 512) 2048

dense_4 (Dense) (None, 1024) 525312

leaky_re_lu_4 (LeakyRelU) (None, 1024) 0

batch_normalization_4 (Batch (None, 1024) 4096

dense_5 (Dense) (None, 784) 803600

reshape_1 (Reshape) (None, 28, 28, 1) O

Total params: 1,514,128
Trainable params: 1,510,288
Non-trainable params: 3,840

3. Next, let's go over the generator's version of the model saver. This function is
identical to the function inside of the Discriminator, except for the path:

def save_model (self) :
plot_model (self.Discriminator.model,
to_file='/data/Discriminator_Model.png')

[83]

My First GAN in Under 100 Lines

Chapter 3

This function will output a PNG in the data folder that represents the structure of the

model:

139705622899064

leaky re lu_1: LeakyRelU |

)

batch_normalization_1: BatchNormalization

dense_2: Dense

leaky re lu_2: LeakyRelLU |

)

batch_normalization_2: BatchNormalization

dense_3: Dense

leaky re lu_3: LeakyRelU |

)

batch_normalization_3: BatchNormalization

dense_4: Dense

leaky_re_lu_4: LeakyRelU |

)

batch_normalization_4: BatchNormalization

dense_5: Dense

reshape_1: Reshape

[84]

My First GAN in Under 100 Lines Chapter 3

So, this was how we built the GAN generator. I hope you found it easy. We are now ready
to make a masterpiece.

Putting all the GAN pieces together

We've got a generator and a discriminator—that's all we need, right? Not so fast. We need
to actually create the adversarial model. Also, there is an open ended question about why
are we not focusing more on the loss function. In this case, each of the loss functions are
built into the Keras library, so we aren't going to focus heavily on that aspect right now.
When we cover more complex models, the loss functions will need to be customized, and
that will require more explanation. For now, let's keep our focus on how to structure a basic
GAN and how we can train it in an adversarial manner.

Getting ready

All of this code will be put into the gan. py file under the full-gan folder. This class
represents the adversarial model portion of the model development and will allow us to
put the two neural networks against each other. This recipe requires the same basic tools
that you have used for the last two recipes.

How it works...

The Generative Adversarial model takes the Discriminator and Generator as inputs. It
will focus on setting these two models into a combined model that will be able to train with
the latent example as input. The output is a prediction from the discriminator. This class
shares the same basic structure as the other classes in terms of core methods.

The GAN class has the same core components that the discriminator and generator have in
their classes. This way, the GAN model basically inherits the same basic pieces from each of
those skeleton classes. This structure is actually quite easy to construct once you start
working with it.

[85]

My First GAN in Under 100 Lines Chapter 3

Step 1 — GAN class initialization
There are a few key things to notice in this initialization step, as shown here:

class GAN (object) :
def __init__ (self,discriminator,generator):
self.OPTIMIZER = Adam(lr=0.0002, decay=8e-9)
self.Generator = generator

self.Discriminator = discriminator
self.Discriminator.trainable = False
self.gan_model = self.model ()
self.gan_model.compile (loss="'binary_crossentropy',

optimizer=self.OPTIMIZER)
self.gan_model.summary ()

First, notice that we are grabbing both the discriminator and generator models. The
discriminator then sets its trainability to False, meaning that during the adversarial
training, it will not be training. The generator is consistently getting better, but the
discriminator will remain the same. In this architecture, this step is necessary so that it can
converse. The model is then built and compiled. At the end, a summary is printed.

Step 2 - model definition
The model is very simple in this case:

def model (self):
model = Sequential ()
model.add (self.Generator)
model.add (self.Discriminator)
return model

Use a sequential model with the generator as the first piece and the discriminator as the
second. The GAN model will then take in a latent sample and output a probability
regarding whether it belongs to that class or not.

Step 3 - helper functions

Helper functions are the same as the discriminator and generator—just with the GAN
model context. Here's the model summary:

def summary (self):
return gan_model.summary ()

[86]

My First GAN in Under 100 Lines Chapter 3

With this summary, you should see this output in the Terminal:

Layer (type) Output Shape Param #
sequential_1 (Sequential) (None, 28, 28, 1) 1514128
sequential_2 (Sequential) (None, 1) 923553

Total params: 2,437,681
Trainable params: 1,510,288
Non-trainable params: 927,393

Then, we have the same save_model function that produces a PNG of the model structure:

def save_model (self):
plot_model (self.gan_model.model, to_file='/data/GAN_Model.png')

And, that output file should look like this:

139705505840992

sequential_1: Sequential

y

sequential_2: Sequential

You have now completed your very first GAN in under 100 lines of code!

Training your first GAN

Training is the life blood of your model. You've created something, but without a way to
train and show it to the world, it is meaningless. This class is going to provide your model
with a way to train and a method for you to spot check the training.

[871]

My First GAN in Under 100 Lines Chapter 3

Getting ready

Remember to complete all of the steps up until this point! Once you get that done, you need
to create the train.py and run.py files in the full-gan folder. Also, if you haven't done
so already, go ahead and create the data folder inside of the full-gan folder. Ensure that
you have put the full-gan folder at the $HOME/ full-gan location, or you might need to
update your run. sh script.

How to do it...

There are two big parts to training a GAN—the training class that we will define and
describe and the script that runs that training class. There are two main sections, training
class definition and run script definition, and they will cover the basics of each of these
pieces.

Training class definition

Let's walk through each of the methods in the trainer that you will need to fill in your own
implementation. We'll break this up into a few key components—imports, init method in
the class, load data method, training method, and helper functions.

Imports

The imports for this section are straightforward—the classes we need and some helper
functions needed throughout this class:

#!/usr/bin/env python3

from gan import GAN

from generator import Generator

from discriminator import Discriminator
from keras.datasets import mnist

from random import randint

import numpy as np

import matplotlib.pyplot as plt\

[881]

My First GAN in Under 100 Lines Chapter 3

init method in class

The initialization method for this class has two important sections—the variables that we
can use to tune the GAN and the initialization of the models themselves. You'll notice that
we initialize all of the models and then load the MNIST data in the init method. This
ensures that the class is ready to train once it is loaded. A new instance of the class will be
needed if you need to change any of the parameters. If those parameters need to be
dynamically reconfigurable, you would need to develop a set of helper functions to do that.
For the scope of this example, that functionality has been left out.

Here are the steps to build the init class:

1. Initialize the class with the size of the image, latent space, size, number of epochs,
batch, and a model_type parameter:

class Trainer:
def __init__ (self, width = 28, height= 28, channels = 1,
latent_size=100, epochs =50000, batch=32,
checkpoint=50,model_type=-1):

2. Make all of the parameters available as internal variables to the class:

self.W = width

self.H height

self.C channels

self .EPOCHS = epochs

self .BATCH = batch

self.CHECKPOINT = checkpoint
self.model_type=model_type
self.LATENT_SPACE_SIZE = latent_size

3. Initialize the Generator and Discriminator classes we built in the previous
recipes:

self.generator = Generator (height=self.H, width=self.W,
channels=self.C, latent_size=self.LATENT_SPACE_SIZE)
self.discriminator = Discriminator (height=self.H, width=self.W,
channels=self.C)
self.gan = GAN(generator=self.generator.Generator,
discriminator=self.discriminator.Discriminator)

[891]

My First GAN in Under 100 Lines Chapter 3

4. Finally, call the 1oad_MNIST method—this method will pull in the MNIST data
into our class automatically:

self.load _MNIST()

Load data method

The MNIST data is a beautiful dataset because it is simple and well-known. Everyone has
toyed with the MNIST dataset, and it is quick to download. For our purposes, we are going
to load the MNIST data in the trainer as an example. Within this class, there's also some
functionality to allow us to only use one number if we would like to build a generator that
is good at one number instead of them all:

def load_MNIST (self,model_type=3):
allowed_types = [-1,0,1,2,3,4,5,6,7,8,9]
if self.model_type not in allowed_types:
print ('ERROR: Only Integer Values from -1 to 9 are
allowed"')

(self.X_train, self.Y_train), (_, _) = mnist.load_data()
if self.model_type!=-1:
self.X_train =
self.X_train[np.where(self.Y_train==int (self.model_type))

[0]]
self.X_train = (np.float32(self.X_train) - 127.5) / 127.5
self.X_train = np.expand_dims (self.X_train, axis=3)
return
The model_type allows us to switch between all of the MNIST digits (model_type = -1)
to a particular digit (model_type = [0, 9]). We load the X_train set for use in the rest of

the class. Y_train is only needed in this case if you would like to pick a particular digit to
produce a model.

Training method

Let's talk about the critical pieces in this architecture to make sure this is easy to
understand:

1. First, we create a train method and loop over the number of specified epochs:

def train(self):
for e in range (self.EPOCHS) :

[90]

My First GAN in Under 100 Lines Chapter 3

2. Next, we are going to grab a batch of random images from our training dataset
and create our x_real_images and y_real_labels variables:

Grab a batch
count_real_images = int (self.BATCH/2)

starting_index = randint (0, (len(self.X_train)-count_real_images))
real_images_raw = self.X_train[starting_index : (starting_index +
count_real_images)]
xX_real_images = real_images_raw.reshape(count_real_images, self.W,
self.H, self.C)
y_real_labels = np.ones([count_real_images,1])

3. Notice that we only grabbed half the number of images that we specified with
the BATCH variable—why? Because, we're going to generate images with our
generator in the next step for the other half of the batch:

Grab Generated Images for this training batch
latent_space_samples = self.sample_latent_space (count_real_images)
X_generated_images =

self.generator.Generator.predict (latent_space_samples)
y_generated_labels = np.zeros([self.BATCH-count_real_images,1])

4. We've now developed a whole batch for training. We need to concatenate these
two sets into the x_batch and y_batch variables for training:

Combine to train on the discriminator
x_batch = np.concatenate([x_real_images, x_generated_images])
y_batch = np.concatenate([y_real_labels, y_generated_labels])

This is where it gets interesting—we're going to use this batch to train our
discriminator. The discriminator knows that these images are not real when it is
trained, so the discriminator is constantly looking for the imperfections in the
generated images versus the real images.

5. Let's train the discriminator and grab a loss value to report:

Now, train the discriminator with this batch

discriminator_loss =
self.discriminator.Discriminator.train_on_batch (x_batch, y_batch)
[0]

[91]

My First GAN in Under 100 Lines Chapter 3

We'll now train the GAN with mislabeled generator outputs. That is to say that
we will generate images from noise and assign a label to one of them while
training with the GAN. Why? This is the so-called adversarial training portion of
the training where we are using the newly trained discriminator to improve the
generated output—the report GAN loss is going to describe the confusion of the
discriminator from the generated outputs.

6. Here's the code to train the generator:

Generate Noise
x_latent_space_samples = self.sample_latent_space (self.BATCH)
y_generated_labels = np.ones([self.BATCH,1])
generator_loss =
self.gan.gan_model.train_on_batch(x_latent_space_samples,
y_generated_labels)

7. Two pieces are left at the end of the script—printing loss metrics to the screen
and checking the model with printed images in the data folder:

print ('Epoch: '+str(int(e))+', [Discriminator :: Loss:
'+str(discriminator_loss)+'], [Generator :: Loss:
'+str (generator_loss)+']")
if e % self.CHECKPOINT ==
self.plot_checkpoint (e)
return

That's how you train the GAN. You're now officially a GAN master.

Helper functions

But wait, there's more! We've got a few helper functions to go over that we've been using
throughout this class:

1. First, we have a convenience function called sample_latent_space:
def sample_latent_space(self, instances):
return np.random.normal (0, 1,

(instances, self.LATENT_SPACE_SIZE))

This function is essentially wrapping a call to numpy in an easy to use method call.

[92]

My First GAN in Under 100 Lines Chapter 3

2. Next is the code to plot the model checkpoint—this function is going to print a
graphic that shows random samples of the generator output. Let's briefly cover
the core pieces in our plotting function:

1. Define a method for plotting checkpoint images—take a numeric
value, e, as input:

def plot_checkpoint (self,e):
filename = "/data/sample_"+str(e)+".png"

2. Create noise from the latent space, and then generate an image with
our generator:

noise = self.sample_latent_space (16)
images = self.generator.Generator.predict (noise)

3. Plot these newly generated images—in this case, we produced 16 images at each
epoch checkpoint:

plt.figure (figsize=(10,10))
for i in range (images.shape([0]) :
plt.subplot (4, 4, i+1)
image = images[i, :, :, :]
image = np.reshape (image,
[self.H,self.W])
plt.imshow (image, cmap='gray')
plt.axis('off'")

4. Finally, plot, save the figure, and close the figure:

plt.tight_layout ()

plt.savefig(filename)

plt.close('all'")
return

The key part to notice here is that we still don't have any established metrics for the
goodness of our model outputs. The first thing to do was to ensure that we can train the
model and the loss converges to a minima (fully trained). In future chapters, we are going
to discuss metrics for evaluating the goodness of the generator output.

[93]

My First GAN in Under 100 Lines Chapter 3

Run script definition

The run script is a little easier to deal with in terms of details—just add the necessary
variables into the script and run the train method:

#!/usr/bin/env python3
from train import Trainer

HEIGHT = 28
WIDTH = 28
CHANNEL = 1

LATENT_SPACE_SIZE = 100
EPOCHS = 50001

BATCH = 32
CHECKPOINT = 500
MODEL_TYPE = -1

trainer = Trainer (height=HEIGHT, \
width=WIDTH, \
channels=CHANNEL, \
latent_size=LATENT_SPACE_SIZE, \
epochs =EPOCHS, \
batch=BATCH, \
checkpoint=CHECKPOINT,
model_type=MODEL_TYPE)
trainer.train ()

Due to the width, height, and channel being derived from the MNIST data, you might
wonder why we define it here. Well, another one of those pesky exercise problems will be
to implement the ability for the class to take in different datasets. Given the structure of the
code, it should be straightforward to allow the class to take different datasets.

Training the model and understanding the
GAN output

The most important part of the lesson after building a model is training! How do you train
this beautiful yet simple architecture you have just developed, you might ask? Quite
simply, now that we have laid the appropriate framework to do so, the key part is to
understand how to run all of these tools that we have developed and then understand the
output we are getting from the model.

[94]

My First GAN in Under 100 Lines Chapter 3

Getting ready

This is the moment of truth—have you completed all of the previous recipes up until this
point? If not, go back and work on them. Your directory should look like the following,
minus the items in the data folder if you haven't run the script yet:

| I Discriminator_Model.png
| F——— GAN_Model .png

| F——— Generator_Model.png

| — sample_0.png

| F— sample_1000.png

—— discriminator.py

—— Dockerfile

F— gan.py

F—— generator.py
—— README.md

F— run.py
F——— run.sh

L— train.py

It's important to get every one of these pieces built and in this repository (without the items
inside of the data folder) before proceeding on, as the next few steps will involve using all
of the previously built items.

How to do it...

You've done all the hard work! No, really, you have. It's a fairly simple endeavor to run the
code if you don't have any translation errors in the code. Essentially, you follow a few
simple steps to run your GAN:

1. Run the following command in the root folder of your repository:

sudo ./run.sh

2. You should see the following output in the Terminal once everything is working
correctly:

username@username—comp:~/full-gan$ sudo ./run.sh
[sudo] password for username:
Sending build context to Docker daemon 3.998MB
Step 1/3 : FROM base_image
—-—=> ¢398836£f2b23
Step 2/3 : RUN apt install -y python3-pydot python-pydot-ng

[95]

My First GAN in Under 100 Lines Chapter 3
graphviz
—-——> Using cache
———> 37424cd81385
Step 3/3 : ADD . /
-—-> ¢91a0189d9c1
Successfully built ¢91a0189d9c1l
Successfully tagged ch3:latest
access control disabled, clients can connect from any host
#HHF A H S H 4444 HF Model Summaries
#HHHHHH 444 4## Download MNIST
#H4EH S E 4SS 4 #$ES Tensorflow connecting to the GPU
Epoch: 0, [Discriminator :: Loss: 0.7186179], [Generator Loss:
0.7297293]
Epoch: 1, [Discriminator :: Loss: 0.39331502], [Generator Loss:
0.7450044]
Epoch: 2, [Discriminator :: Loss: 0.3295707], [Generator Loss:
0.8133272]
Epoch: 3, [Discriminator :: Loss: 0.29371032], [Generator Loss:
0.8316293]
Epoch: 4, [Discriminator :: Loss: 0.29231048], [Generator Loss:
1.032237]
Epoch: 5, [Discriminator :: Loss: 0.30067348], [Generator Loss:
1.07507]
Epoch: 6, [Discriminator :: Loss: 0.23213515], [Generator Loss:
1.2063006]

3. A few key points here:

o Anything with ############ has been reduced to a simple summary
line—there's too many lines for a book to show them.

e This code could be improved with a graphical look at the
Discriminator and Generator losses.

e If you want to check to make sure that your docker image has been

built, check it using the docker images command in another

Terminal window. You should see that a ch3 image was recently built.

e If you aren't seeing PNGs in your data directory, make sure that the
data directory is located at SHOME/ full-gan/data. If the directory is
not there, feel free to modify your run. sh file to change the mapped

volume.

Now, let's talk about the results of this GAN!

[961]

My First GAN in Under 100 Lines Chapter 3

How it works...

All of this work, and what do we have to show for it? Well, I decided to make a little
graphic to show you the fruits of your labor throughout this chapter. Here are the MNIST
digit generator results for 40,000 epochs:

All MNIST Generator

E 2 HEEH
EEE OEan
IIH BELE AEEE

5000 15000 40000

o
Epochs
P 0

One of the mind-blowing things about these results to me is that you can see what kind of
data the first epoch produces—it's essentially noise. As the adversarial training continues,
the generator eventually learns the ability to move the pixels to the center, but it is hard to
discern any noticeable digits at the 5,000 mark. At 15,000, it is starting to become clear that
some numbers are being produced and that you can make them out. At 40,000 epochs, the
generator is able to do a few digits pretty well—notice that the 1 and the other digits still
need additional refining. So, what happens if we train a GAN on only a single digit from
the MNIST data?

Let's check out some of the results from my three generator:

Only 3 Generator
1EIEIE EIEIEE HAEHE
;EﬁEEEEEE
EBEEFE BEBEB

15000 40000

Epoch

The first thing you will notice is that the GAN model is able to converge much quicker with
the three model. Ideally, the model is able to learn this image type very well. And,
eventually at 40,000 epochs, the GAN is able to produce realistic looking 3 in almost all the
example cases that were pulled for this particular graphic.

[97]

My First GAN in Under 100 Lines Chapter 3

So, what does this tell us about training GANSs on different datasets? Let's go over some
high level points:

¢ A more constrained space for the GAN to learn over will result in faster
convergence
¢ The digits dataset as a whole is more challenging due to the nature of digits and
the fact that some of these digits look similar:
¢ The model would need to train longer (and potentially with more
examples) to learn an appropriate representation of the training
data

Exercise

This is the exercise set for the Chapter:

1. Expand the generator to allow for the use of the model's flexibility. Experiment
with different parameters for those two variables in the model definition.
Describe the effects.

2. Expand the training class capability to be able to take in different datasets other
than MNIST. Do you need to change anything else, but allow for the training
data to be an argument? What else needs to be changed?

3. Create a graphical way to visualize the Discriminator and Generator losses
with loss as your y value and epochs as your x value.

[981]

Dreaming of New Outdoor
Structures Using DCGAN

This chapter will cover the building blocks required to build your first Deep Convolutional
Generative Adversarial Network (DCGAN) implementation, including the following
recipes:

e What is a DCGAN? A simple pseudocode example
¢ Tools—do I need any unique tools?

¢ Parsing the data—is our data unique?

¢ Code implementation—generator

¢ Code implementation—discriminator

e Training

¢ Evaluation—how do we know it worked?

¢ Adjusting parameters for better performance

Introduction

A DCGAN was the first popularized improvement to Ian Goodfellow's hallmark structure,
as proposed for the first Generative Adversarial Network (GAN). DCGAN enables the use
of a repeatable, trainable architecture for GANs that will rarely diverge once dialed in.

Dreaming of New Outdoor Structures Using DCGAN Chapter 4

What is DCGAN? A simple pseudocode
example

The DCGAN architecture simply requires updates for the model of the discriminator and
generator. We will also need to update our training step to improve convergence. The
MNIST data we used in the first example is the simplest of the examples we can work with.
Convergence for GANSs, as you will remember, is one of the hardest parts about building
such an architecture, but the DCGAN architecture helps ensure that convergence happens
reliably. We'll take a detailed look at convergence with the help of pseudocode in the next
section.

Getting ready

First, let's break down the DCGAN architecture into the principal, important components:
the discriminator and the generator. The next section will focus on how we develop these
structures, but first, let's talk about the basic structure of DCGAN, which is made up of the
followin<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>