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Preface
Developing Generative Adversarial Networks (GANs) is a complex task, and it is often
hard to find code that is easy to understand. This book leads you through eight different
examples of modern GAN implementation, including CycleGAN, SimGAN, DCGAN, and
imitation learning with GANs. Each chapter builds on a common architecture in Python
and Keras to explore increasingly difficult GAN architectures in an easy-to-read format.

The Generative Adversarial Networks Cookbook starts by covering the different types of GAN
architecture to help you understand how the model works. You will learn how to perform
key tasks and operations, such as creating false and high-resolution images, text-to-image
synthesis, and generating videos with this recipe-based guide. You will also work with use
cases such as DCGAN and deepGAN. To become well versed in the working of complex
applications, you will take different real-world datasets and put them to use.

By the end of this book, you will be equipped to deal with the challenges and issues that
you may face while working with GAN models thanks to easy-to-follow code solutions that
you can implement right away.

Who this book is for
This book is for data scientists, machine learning (ML) developers, and deep learning
practitioners looking for a quick reference to tackle challenges and tasks in the GAN
domain. Familiarity with machine learning concepts and a working knowledge of the
Python programming language will help you get the most out of the book.

What this book covers
Chapter 1, What is a Generative Adversarial Network?, introduces you to GAN architectures
and looks at the implementation of each of them.

Chapter 2, Data First – Easy Environment and Data Preparation, lays down the groundwork
for manipulating data, augmenting your data, and balancing imbalanced datasets or data
with massive outliers.

Chapter 3, My First GAN in Under 100 Lines, covers how to take the theory we'll have
discussed and produce a simple GAN model using Keras, TensorFlow, and Docker.
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Chapter 4, Dreaming of New Outdoor Structures Using DCGAN, covers the building blocks
required to build your first deep convolutional generative adversarial network (DCGAN)
implementation.

Chapter 5, Pix2Pix Image-to-Image Translation, covers Pix2Pix, how it works, and how it is
implemented.

Chapter 6, Style Transfering Your Image Using CycleGAN, explains what CycleGAN is, and
how to parse the CycleGAN datasets and implementations.

Chapter 7, Using Simulated Images To Create Photo-Realistic Eyeballs with SimGAN,
demonstrates how SimGAN works, and how it is implemented.

Chapter 8, From Images to 3D Models Using GANs, talks about 3D models and techniques to
implement these 3D models using images.

To get the most out of this book
A basic knowledge of Python is a prerequisite, while a familiarity with machine learning
concepts will be helpful.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

http://www.packt.com
http://www.packt.com/support
http://www.packt.com
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The code bundle for the book is also hosted on GitHub
at https://github.com/PacktPublishing/Generative-Adversarial-Networks-
Cookbook. In case there's an update to the code, it will be updated on the existing GitHub
repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ /www. packtpub. com/ sites/ default/ files/
downloads/9781789139907_ ColorImages. pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "You can run the nvidia-smi command to know which version of driver is
installed on your system."

A block of code is set as follows:

docker volume ls -q -f driver=nvidia-docker | xargs -r -I{} -n1 docker ps -
q -a -f volume={} | xargs -r docker rm -f

Any command-line input or output is written as follows:

sudo ./build.sh

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Now, click Save and let's check to make sure that we have the appropriate directory
structure with our files."

https://github.com/PacktPublishing/Generative-Adversarial-Networks-Cookbook
https://github.com/PacktPublishing/Generative-Adversarial-Networks-Cookbook
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/9781789139907_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789139907_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789139907_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789139907_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789139907_ColorImages.pdf
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Warnings or important notes appear like this.

Tips and tricks appear like this.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do
it..., How it works..., There's more..., and See also).

To give clear instructions on how to complete a recipe, use these sections as follows:

Getting ready
This section tells you what to expect in the recipe and describes how to set up any software
or any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the previous
section.

There's more…
This section consists of additional information about the recipe in order to increase your
knowledge of it.

See also
This section provides helpful links to other useful information for the recipe.



Preface

[ 5 ]

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise, in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packt.com/submit-errata
http://authors.packtpub.com/
http://www.packt.com/
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1
What Is a Generative
Adversarial Network?

In this chapter, we'll cover the following recipes:

Generative and discriminative models
A neural network love story
Deep neural networks
Architecture structure basics
Basic building block- generator
Basic building block – loss functions
Training
GAN pieces come together in different ways
What does a GAN output?
Understanding the benefits of a GAN structure

Introduction
I'm sure you've heard of a neural network dreaming? Maybe you've heard that AI is
coming for you? Well, I'm here to tell you that there's no need to worry just yet. A Neural
Network dreaming isn't too far away from the truth though. Generative Adversarial
Networks (GANs), represent a shift in architecture design for deep neural networks. This
new architecture pits two or more neural networks against each other in adversarial
training to produce generative models. Throughout this book, we'll focus on covering the
basic implementation of this architecture and then focus on modern representations of this
new architecture in the form of recipes.
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GANs are a hot topic of research today in the field of deep learning. Popularity has soared
with this architecture style, with it's ability to produce generative models that are typically
hard to learn. There are a number of advantages to using this architecture: it generalizes
with limited data, conceives new scenes from small datasets, and makes simulated data
look more realistic. These are important topics in deep learning because many techniques
today require large amounts of data. Using this new architecture, it's possible to drastically
reduce the amount of data needed to complete these tasks. In extreme examples, these
types of architectures can use 10% of the data needed for other types of deep learning
problems.

By the end of this chapter, you'll have learned about the following concepts:

Do all GANs have the same architecture?
Are there any new concepts within the GAN architecture?
The basic construction of the GAN architecture in practice

Ready, set, go!

Generative and discriminative models
Machine learning (ML) and deep learning can be described by two terms: generative and
discriminative modeling. When discussing the machine learning techniques that most
people are familiar with, the thinking of a discriminative modeling technique, such as
classification.

How to do it...
The difference between these two types of can be described by the following analogy:

Discriminative modeling: Observe paintings and determine the style of
painting based on observations.

Here are a few steps that describe how we would do this in machine learning:

First, we create a machine learning model that use convolutional layers or other1.
learned features to understand the divisions in the data
Next, we collect a dataset that has both a training set (60-90% of your data) and a2.
validation dataset (10-40% of your data)
Train the machine learning model using your data3.
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 Use this model to predict which datapoint belongs to a particular class - in our4.
example, which painting belongs to which author

Generative modeling: Learn and reproduce paintings in various painters' styles
and determine the painting style from the styles you learned.

Here are a few steps to describe a possible way to accomplish this type of modeling:

Create a machine learning model that learns how to reproduce different painting1.
styles
Collect a training and validation dataset2.
Train the machine learning model using the data3.
Use this model to predict (inference) to produce examples of the paint author -4.
use similarity metrics to verify the ability of the model to reproduce the painting
style.

How it works...
Discriminative models will learn the boundary conditions between classes for a
distribution:

Discriminative models get their power from more data
These models are not designed to work in an unsupervised manner or with
unlabeled data

This can be described in a more graphical way, as follows:

Generative models will model the distribution of the classes for a given input
distribution:

This creates a probabilistic model of each class in order to estimate
the distribution
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A generative model has the ability to use unlabeled data since it
learns labels during the training process

This can be described in a more graphical way, as follows:

So, generative models are incredibly difficult to produce as they have to accurately model
and reproduce the input distribution. The discriminative models are learning decision
boundaries, which is why neural networks have been incredibly successful in recent years.
The GAN architecture represents a radical departure from older techniques in the
generative modeling area. We'll cover how neural networks are developed and then dive
right in the GAN architecture development.

A neural network love story
Since you've come here to learn more about a specific neural network architecture, we're
going to assume you have a baseline understanding of current machine and deep learning
techniques that revolve around neural networks. Neural networks have exploded in
popularity since the advent of the deep neural network-style architectures. By utilizing
many hidden layers and large sums of data, modern deep learning techniques are able to
exceed human-level performance in a dizzying number of applications. How is this
possible? Neural networks are now able to learn baseline features and relationships in
similar ways to our brains. Along those same lines, researchers have been exploring new
styles of mixing neural networks to replicate the thought process that our brains take
automatically. 
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How to do it...
The story is a classic: researcher goes drinking with a few friends and has an epiphany-
what if you were able to pit two neural networks against each other to solve a problem? Ian
Goodfellow, affectionately called the GANfather, helped popularize this adversarial
architecture with his hallmark paper in 2014, called Generative Adversarial Networks.
Researchers all over the world began developing variations on this technique: can you pit
three or more networks against each other? What happens when you provide more than
one loss function? These are actually the types of questions you should be able to answer by
the end of this book, because we'll focus on implementing modern renditions of this
architecture to solve these types of problems.

How it works...
It's important to understand the difference and difficulties that surround generative and
discriminative modeling. In recent years, discriminative modeling has seen some great
successes. Typically requiring Markov decision processes in order for the generative
modeling process to work, these techniques suffered from a lack of flexibility without
heavy design tuning. That is, until the advent of the GANs architecture that we're
discussing today. Goodfellow adequately summed up the issues surrounding
discriminative and generative models in his paper in 2014:

Goodfellow and his coauthors presented a graphic on the challenges associated with generative modeling in the literature up until 2014
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What are Goodfellow and his fellow authors getting at in this screenshot? Essentially, prior
generative models were painful to train/build. GANs can have their challenges in terms of
training and design, but represent a fundamental shift in flexibility in output given the ease
of setup. In the Chapter 3, My First GAN in Under 100 Lines, we'll build a GAN network in
under 100 lines of code. 

Deep neural networks
But first, let's review the concept of a deep neural network. A neural network, in ML,
represents a technique to mimic the same neurological processes that occur in our brain.
Neurons, like those in our brains, represent the basic building blocks of the neural network
architecture that we use to learn and retain a baseline set of information around our
knowledge.

How to do it...
Our neurological process uses previous experience as examples, learning a structure to
understand the data and form a conclusion or output:

Neurons making connections to go from input to hidden layer to single output

This basic architecture will form the foundation of our deep neural network, which we'll
present in the next section.
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Here are the basic steps of how the model is built:

 An input (an image or other input data) is sent into an input (static) layer1.
The single or series of hidden layer then operates on this data2.
The output layer aggregates all of this information into an output format3.

How it works...
Originally conceived in the early 1940s as a mathematical construct, the artificial neural
network was popularized in the 1980s through a method called backpropagation.
Backprop, for short, allows an artificial neural network to adjust the weights of each layer at
every epoch of training. In the 1980s, the limits of computational power only allowed for a
certain level of training. As the computing power expanded and the research grew, there
was a renaissance with ML.

With the advent of cheap computing power, a new technique was born: deep neural
networks. Utilizing the ability of GPUs to compute tensors very quickly, a few libraries
have been developed to build these deep neural networks. To become a deep neural
network, the basic premise is this: add four or more hidden layers between the input and
output. Typically, there are thousands of neurons in the graph and the neural network has
a much larger capacity to learn. This construct is illustrated in the following diagram:

A deep neural network is a relatively simple expansion of the basic architecture of the neural network
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This represents the basic architecture for how a deep neural network is structured. There
are plenty of modifications and basic restructuring of this architecture, but this basic graph
provides the right pieces to implement a Deep Neural Network. How does all of this fit into
GANs? Deep neural networks are a critical piece of the GAN architecture, as you'll see in
the next section.

Practice building neural network architectures in frameworks such as
scikit-learn or Keras to understand fundamental concepts. It's beneficial to
understand the differences in various types of dropout and activation
functions. These tools will serve you well as you work through the
examples in this book.

Architecture structure basics
Now, this is the part you've been waiting for: how do I build a GAN? There are a few
principal components to the construction of this network architecture. First, we need to
have a method to produce neural networks easily, such as Keras or PyTorch (using the
TensorFlow backend). This critical piece will be covered extensively in Chapter 2, Data
First Easy Environment, and Data Prep and Chapter 3, My First GAN in Under 100 Lines.
Second, we need to produce the two neural-network-based components, named the
generator and discriminator.

How to do it...
The classic analogy is the counterfeiter (generator) and FBI agent (discriminator). The 
counterfeiter is constantly looking for new ways to produce fake documents that can pass
the FBI agent's tests. Let's break it down into a set of goals:

Counterfeiter (generator) goal: Produce products so that the cop cannot1.
distinguish between the real and fake ones
Cop (discriminator) goal: Detect anomalous products by using prior experience2.
to classify real and fake products
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How it works...
Now, enough with the analogies, right? Let's restructure this into a game-theory-style
problem-the minimax problem from the first GAN implementation. The following steps
illustrate how we can create this type of problem:

Generator goal: Maximize the likelihood that the discriminator misclassifies its
output as real
Discriminator goal: Optimize toward a goal of 0.5, where the discriminator can't
distinguish between real and generated images

The Minimax Problem (sometimes called MinMax) is a theory that focuses
on maximizing a function at the greatest loss (or vice versa). In the case of
GANs, this is represented by the two models training in an adversarial
way. The training step will focus on minimizing the error on the training
loss for the generator while getting as close to 0.5 as possible on the
discriminator (where the discriminator can't tell the difference between
real and fake).

In the GAN framework, the generator will start to train alongside the discriminator; the
discriminator needs to train for a few epochs prior to starting the adversarial training as the
discriminator will need to be able to actually classify images. There's one final piece to this
structure, called the loss function. The loss function provides the stopping criteria for the
Generator and Discriminator training processes. Given all of these pieces, how do we
structure these pieces into something we can train? Check out the following diagram:

A high-level description of the flow of the Generative Adversarial Network, showing the basic functions in block format

With this architecture, it's time to break each piece into its component technology:
generator, discriminator, and loss function. There will also be a section on training and
inference to briefly cover how to train the model and get data out once it is trained.
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Basic building block – generator
It's important to focus on each of these components to understand how they come together.
For each of these sections, I'll be highlighting the architecture pieces to make it more
apparent.

How to do it...
The following diagram represents the important pieces of the generator:

The generator components in the architecture diagram: latent space, generator, and image generation by the generator

The focus in the diagram ensures that you see the core piece of code that you'll be
developing in the generator section.

Here are a few steps to describe how we create a generator conceptually:

First, the generator samples from a latent space and creates a relationship1.
between the latent space and the output
We then create a neural network that goes from an input (latent space) to output2.
(image for most examples)
We'll train the generator in an adversarial mode where we connect the generator3.
and discriminator together in a model ( every generator and GAN recipe in this
book will show these steps)
The generator can then be used for inference after training4.
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How it works...
Each of these building blocks is fairly unique, but the generator is arguably the most
important concept to understand. Ultimately, the generator will produce the images or
output that we see after this entire training process is complete. When we talk about
training GANs, it refers directly to training the generator. As we mentioned in a previous
section, the discriminator will need to train for a few epochs prior to beginning the training
process in most architectures or it would never complete training.

For each of these sections, it is important to understand the structure of the code we'll start
building through the course of this book. In each chapter, we're going to define classes for
each of the components. The generator will need to have three main functions within the
class:

Class template for developing the generator – these represent the basic components we need to implement for each of our generator classes

The loss function will define a custom loss function in training the model (if needed for that
particular implementation). The buildModel function will construct the actual model of
the given neural network. Specific training sequences for a model will go inside this class
though we'll likely not use the internal training methods for anything but the
discriminator. 

Basic building block – discriminator
The generator generates the data in the GAN architecture, and now we are going to
introduce the Discriminator architecture. The discriminator is used to determine whether
the output of the generator and a real image are real or fake.
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How to do it...
The discriminator architecture determines whether the image is real or fake. In this case, we
are focused solely on the neural network that we are going to create- this doesn't involve
the training step that we'll cover in the training recipe in this chapter:

The basic components of the discriminator architecture

The discriminator is typically a simple Convolution Neural Network (CNN) in
simple architectures. In our first few examples, this is the type of neural network we'll be
using.

Here are a few steps to illustrate how we would build a discriminator:

First, we'll create a convolutional neural network to classify real or fake (binary1.
classification)
We'll create a dataset of real data and we'll use our generator to create fake2.
dataset
We train the discriminator model on the real and fake data3.
We'll learn to balance training of the discriminator with the generator training - if4.
the discriminator is too good, the generator will diverge

How it works...
So, why even use the discriminator in this case? The discriminator is able to take all of the
good things we have with discriminative models and act as an adaptive loss function for
the GAN as a whole. This means that the discriminator is able to adapt to the underlying
distribution of data. This is one of the reasons that current deep learning discriminative
models are so successful today—in the past, techniques relied too heavily on directly
computing some heuristic on the underlying data distribution. Deep neural networks today
are able to adapt and learn based on the distribution of the data, and the GAN technique
takes advantage of that. 
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Ultimately, the discriminator is going to evaluate the output of the real image and the
generated image for authenticity. The real images will score high on the scale initially,
while the generated images will score lower. Eventually, the discriminator will have
trouble distinguishing between the generated and real images. The discriminator will rely
on building a model and potentially an initial loss function. The following class template
will be used throughout this book to represent the discriminator:

Class template for developing the discriminator—these represent the basic components we need to implement for each of our discriminator classes

In the end, the discriminator will be trained along with the generator in a sequential
model; we'll only use the trainModel method in this class for specific architectures. For
the sake of simplicity and uniformity, the method will go unimplemented in most recipes.

Basic building block – loss functions
Each neural network has certain structural components in order to train. The process of
training is tuning the weights to optimize the loss function for the given problem set. The
loss function selected for the neural network therefore is essential to ensure the neural
network produces good results and converges. 
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How to do it...
The generator is a neural network and requires a loss function. So, what kind of loss
function should we employ in this architecture? That's almost as fundamental a question as
what car you should drive. The loss functions need to be selected appropriately for the
Generator to converge with the caveat that the loss function selection will depend on what's
your goal for it.

How it works...
Each of the diverse architectures we'll cover in this book will use different tools to get
different results. Take, for instance, the generator loss function from the initial GAN paper
by Goodfellow and his associates: 

Loss function used with the Generator in adversarial training

This equation simply states that the discriminator is minimizing the log probability that the
discriminator is correct. It's part of the adversarial mode of training that occurs. Another
thing to consider in this context is that the loss function of the generator does matter.
Gradient Saturation, an issue that occurs when the learning gradients are near zero and
make learning nearly impossible, can occur for poorly-designed loss functions. The
selection of the correct loss function is imperative even for the generator.

Now, let's check out the loss function of the discriminator from the Goodfellow paper:

Standard cross-entropy implementation applied to GANs

This is a standard cross-entropy implementation. Essentially, one of the unique things
about this equation is how it is trained through multiple mini-batches. We'll talk about that
in a later section in this chapter.
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As mentioned before, the discriminator acts as a learned loss function for the overall
architecture. When building each of the models though and in paired GAN architectures, it
is necessary to have multiple loss functions. In this case, let's define a template class for the
loss function in order to store these loss methods:

The class template for loss functions that will be optionally implemented depending on the availability of the lost functions used

During the development of these recipes, we are going to come back to these templates
over and over again. A bit of standardization to the code base will go a long way in
ensuring that your code remains readable and maintainable. 

Training
Have you got all the pieces? We're ready to go, right? WRONG! We need to understand the
best a strategy for how we can train this type of architecture.

How to do it...
The GAN model relies on so-called adversarial training. You'll notice in the following
diagram that there are two seemingly conflicting error functions being
minimized/maximized.
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How it works...
We've talked about the MiniMax problem at work here. By sampling two mini-batches at
every epoch, the GAN architecture is able to simultaneously maximize the error to the
generator and minimize the error to the discriminator:

Architecture diagram updated to show the backpropagation step in training the GAN model

In each chapter, we'll revisit what it means to train a GAN. Generative models are
notoriously difficult to train to get good results. GANs are no different in this respect. There
are tips and tricks that you will learn throughout this book in order to get your models to
converge and produce results.

GAN pieces come together in different ways
We have explored a few simple GAN structures; we are going to look at seven different
styles of GANs in this book. The important thing to realize about the majority of these
papers is that the changes occur on the generator and the loss functions.

How to do it...
The generator is going to be producing the images or output, and the loss function will
drive the training process to optimize different functions. In practice, what types of
variation will there be? Glad you're here. Let's take a brief look at the different
architectures.
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How it works...
Let's discuss the simplest concept to understand with GANs: style transfer. This type of
methodology manifests itself in many different variations, but one of the things I find
fascinating is that the architecture of the GAN needs to change based on the specific type of
transfer that needs to occur. For instance, one of the papers coming out of Adobe Research
Labs focuses on makeup application and removal. Can you apply the same style of makeup
as seen in a photo to a photo of another person? The architecture itself is actually rather
advanced to make this happen in a realistic fashion, as seen by the architecture diagram:

This particular architecture is one of the most advanced to date-there are five separate loss
functions! One of the interesting things about this architecture is that it is able to
simultaneously learn a makeup application and makeup removal function. Once the GAN
understands how to apply the makeup, it already has a source image to remove the
makeup. Along with the five loss functions, the generator is fairly unique in its
construction, as given by the following diagram:
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So, why does this even matter? One of the recipes we are going to cover is style transfer,
and you'll see during that particular recipe that our GAN model won't be this advanced.
Why is that? In constructing a realistic application of makeup, it takes additional loss
functions to appropriately tune the model into fooling the discriminator. In the case of
transferring a painter's style, it is easier to transfer a uniform style than multiple disparate
makeup styles, like you would see in the preceding data distribution.

What does a GAN output?
So, we've seen the different structures and types of GANs. We know that GANs can be
used for a variety of tasks. But, what does a GAN actually output? Similar to the structure
of a neural network (deep or otherwise), we can expect that the GAN will be able to output
any value that a neural network can produce. This can take the form of a value, an image,
or many other types of variables. Nowadays, we usually use the GAN architecture to
apply and modify images.

How to do it...
Let's take a few examples to explore the power of GANs. One of the great parts about this
section is that you will be able to implement every one of these architectures by the end of
this book. Here are the topics we'll cover in the next section:

Working with limited data – style transfer
Dreaming new scenes – DCGAN
Enhancing simulated data – SimGAN

How it works...
There are three core sections we want to discuss here that involve typical applications of
GANs: style transfer, DCGAN, and enhancing simulated data.
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Working with limited data – style transfer
Have you ever seen a neural network that was able to easily convert a photo into a famous
painter's style, such as Monet? GAN architecture is often employed for this type of
network, called style transfer, and we'll learn how to do style transfer in one of our recipes
in this book. This represents one of the simplest applications of  generative adversarial
network architecture that we can apply quickly. A simple example of the power of this
particular architecture is shown here: 

Image A represents in the input and Image B represents the style transferred image. The <style> has been applied to this input image.

One of the unique things about these agents is that they require fewer examples than the
typical deep learning techniques you may be familiar with. With famous painters, there
aren't that many training examples for each of their styles, which produces a very
limited dataset and it took more advanced techniques in the past to replicate their painting
styles. Today, this technique will allow all of us to find our inner Monet.

Dreaming new scenes – DCGAN
We talked about the network dreaming a new scene. Here's another powerful example of the
GAN architecture. The Deep Convolution Generative Adversarial
Network (DCGAN) architecture allows a neural network to operate in the opposite
direction of a typical classifier. An input phrase goes into the network and produces an
image output. The network that produces output images is attempting to beat a
discriminator based on a classic CNN architecture.
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Once the generator gets past a certain point, the discriminator stops training (https:/ /www.
slideshare.net/enakai/ dcgan- how- does- it-work) and the following image shows how
we go from an input to an output image with the DCGAN architecture:

Image A represents in the input and Image B represents the style transferred image; the input image now represents the conversion of the input to the new output space

Ultimately, the DCGAN takes in a set of random numbers (or numbers derived from a
word, for instance) and produces an image. DCGANs are fun to play with because they
learn relationships between an input and their corresponding label. If we attempted to use
a word the model has never seen, it'll still produce an output image. I wonder what types of
image the model will give us for words it has never seen.

Enhancing simulated data – simGAN
Apple recently released the simGAN paper focused on making simulated images look real-
how? They used a particular GAN architecture, called simGAN, to improve images of
eyeballs. Why is this problem interesting? Imagine realistic hands with no models needed.
It provides a whole new avenue and revenue stream for many companies once these
techniques can be replicated in real life. Using the simGAN architecture, you'll notice that
the actual network architectures aren't that complicated:

A simple example of the simGAN architecture. The architecture and implementation will be discussed at length 
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The real secret sauce is in the loss function that the Apple developers used to train the
networks. A loss function is how the GAN is able to know when to stop training the GAN.
Here’s the powerful piece to this architecture: labeled real data can be expensive to produce
or generate. In terms of time and cost, simulated data with perfect labels is easy to produce
and the trade space is controllable.

Understanding the benefits of a GAN
structure
So, what kinds of cool tidbits did you learn in this particular chapter? I'll try to use this final
chapter as a recap of why the GAN structure is cool and what kinds of things make this a
powerful tool for your future research.

How to do it...
 As a recap, we start with three key questions: 

Are GANs all the same architecture?1.
Are there any new concepts within the GAN architecture?2.
How do we practically construct the GAN Architecture?3.

We'll also review the key takeaways from this chapter.

How it works...
Let's address these three key questions: 

Are GANs all the same architecture?
GANs come in all shapes and sizes. There are simple
implementations and complex ones. It just depends what domain
you are approaching and what kind of accuracy you need in the
generated input.

Are there any new concepts within the GAN architecture?
GANs rely heavily on advances in the deep learning world around
Deep Neural Networks. The novel part of a GAN lies in the
architecture and the adversarial nature of training two (or more)
neural networks against each other.
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How do we practically construct the GAN architecture architecture?:
The generator, discriminator, and associated loss functions are
fundamental building blocks that we'll pull on for each of the
chapters in order to build these models.

What are the key things to remember from this chapter?

The initial GAN paper was only the beginning of a movement within the
machine learning space
The generator and discriminator are neural networks in a unique training
configuration
The loss functions are critical to ensuring that the architecture can converge
during training

Exercise
You really didn't think I'd let you get out of this chapter without some homework, did you?
I've got a few basic problems to get you ready for the following lessons:

Produce a CNN based on ImageNet to classify all of the MSCOCO classes.1.

Hint: There are plenty of available models out there. Simply get one running in
inference mode and see how it works.

Draw the basic GAN architecture. Now, draw an improvement to that2.
architecture based on the topics you learned in this chapter. Think of the
generator and discriminator as building blocks.



2
Data First, Easy Environment,

and Data Prep
In this chapter, we'll cover the following recipes:

Is data that important?
But first, set up your development environment
Data types
Data preprocessing
Anomalous data
Balancing data
Data augmentation

Introduction
Data can make or break your machine learning (ML) algorithm. This chapter will lay the
basic ground work for manipulating data, augmenting data, and balancing imbalanced
datasets or data with massive outliers. Each recipe will provide a guide on how to use open
source libraries to accelerate our Generative Adversarial Network (GAN) training.
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Is data that important?
Data is the lifeblood of ML algorithms. Your models will only be as good as the data you
provide to them. After all, you are what you eat. We have to focus on developing a good,
clean dataset for learning. This begins with getting an environment set up and preparing
the data to be ingested into an algorithm. We do have a fundamental advantage within this
process because GANs can take considerably smaller sets of data than other techniques.
This advantage comes with the explicit caveat that we will need to ensure that the data
we're using encompasses the entire trade space of possibilities for our application.

Getting ready
One of the deep dark secrets they don't teach you about this field is that you're going to
spend a large chunk of your time preparing the data (sometimes as much as 75% of a
project). I've had people ask me over the years why data preparation can absorb so much
time and the answer really is simple:

Garbage in -> Garbage out

Data will drive your project to success or failure. It's imperative that we are diligent in
exploring the data we have available and using the right portion of the data for learning. 

How to do it...
 We have to build a pipeline that includes the following components:

Data preprocessing
Balancing data
Anomalous data
Data augmentation

These four concepts make up the cornerstone of this chapter. As we work through
examples in each of these domains, you'll see that each contribution is important to
ensuring your model is learning the right traits and qualities.

Let's start with a simple example of how we could apply all of these basic
technologies. We'll focus on introducing the concepts, then the rest of this chapter will focus
on the practical implementation of these concepts. Basically, this is going to be the template
that we are going to fill in piece-by-piece:
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These are the steps for producing a data processing pipeline:

Read in data as a NumPy array1.
Check the distribution of the data for anomalous indices2.
Balance the dataset for the learning step3.
Throw out the anomalous data4.
Augment our data in an structured and intelligent manner5.

How it works...
The next few recipes will focus on filling in the code to produce this pipeline for data
parsing. The pipeline recipe will walk you through the steps to make this pipeline into a
class that we can use as a template in future chapters.

There's more...
The topics in this chapter are going to be the beginning of our journey into the different
processing techniques for deep learning data processing. A large part of the job of deep
learning practitioners is the data parsing part of the job. We need to take it seriously in
order to ensure our models are learning from the right data. Throughout this book, you'll
understand that the data parsing is a critical component of getting GANs to converge and
to get decent results out of these models. Architecture is far from the only thing that can
affect our learners.

There's an expansive set of examples that you will be exposed to during the course of this
chapter. The key reading in the beginning is to understand the tools you'll need to run the
code with this Docker overview found here: https:/ / docs. docker. com/ engine/ docker-
overview/.

We also recommend you read up on Python, NumPy, and SciPy:

Python: https:/ /wiki. python. org/moin/ BeginnersGuide/ Overview

NumPy: https:/ / docs. scipy. org/doc/ numpy/ 

SciPy: https:/ / www. scipy. org/ getting- started. html

I will emphasize here that the expectation is that you have a baseline understanding of
these techniques. These links are meant strictly as a reference.
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But first, set up your development
environment
What's a development environment? Everyone thinks setting up a development
environment needs to be this incredibly arduous process. The installation process could be
worse. It's actually quite simple and I intend to show you the basics in this recipe.

Getting ready
Let's lay out the requirements for the equipment you'll need to be successful in this book:

GPU: 10 series CUDA-enabled Nidea GPU 
Operating system: Ubuntu Linux 16.04+
CPU/RAM: i5 or i7 with at least 8 GB of RAM

First and foremost, the GPU is a requirement for this type of book. Although these
algorithms can technically train on a CPU, it could take days in some cases for a single
model to converge. It can take a GPU a day or more to converge in some instances. GPUs
offer an immense computational power increase over CPUs and hence are a necessity to
ensure that you get the most out of this book. It's easy today to find a laptop with a 1,060 or
better in it for around $900. 

Ubuntu is the typical operating system for this type of development. This book will assume
Ubuntu and Bash as the default interaction with the operating system. All examples will
revolve around the assumption that you have Ubuntu installed and the correct hardware
inside your computer. This portion of this book will break down the basic pieces needed to
be successful.

How to do it...
There are a few common steps that will need to be for each new developer—these steps will
be addressed in the following subsections of installing an NVIDIA driver, installing the
NVIDIA-Docker solution, and building a common container for development, in the next
chapters.
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Installing the NVIDIA driver for your GPU
Installing the correct NVIDIA driver is incredibly important. A key component to all of
these implementations is the usage of CUDA in TensorFlow. NVIDIA has this description
for the CUDA library:

"CUDA® is a parallel computing platform and programming model developed by
NVIDIA for general computing on graphical processing units (GPUs). With CUDA,
developers are able to dramatically speed up computing applications by harnessing the
power of GPUs." (Source: https:/ /developer. nvidia. com/ cuda- zone).

Using CUDA, TensorFlow can achieve drastic speedups in terms of processing power. In
order to make this happen, we need to have a certain type of GPU and driver installed on
the host machine.

So, let's start installing the things that we require.

In this section, a recommended driver will be specified and a few options for installation
will be proposed. It's hard to ensure that the installation will be the same for each developer
because the installation can vary for each machine it's installed on. Instead, we'll show
some methods on how to get it done but will rely on the reader to figure out the nitty-gritty
for their application.

You can run the nvidia-smi command to know which version of driver is installed on
your system.

The following is an example of the nvidia-smi command:

The output of nvidia-smi will show your GPU, any processes you have running, and the current driver version installed
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Installing Nvidia-Docker
The following is an Nvidia-Docker hierarchy that we need to understand before installing
it:

NVIDIA-Docker hierarchy that allows the Docker engine to interact with the GPU

What is Docker? According to the Docker website, the keyword for
it's lightweight. Docker containers running on a single machine share that machine's
operating system kernel; they start instantly and use less compute and RAM. Images are
constructed from filesystem layers and share common files (source: https:/ /www. docker.
com/what-container).

Essentially, Docker allows us to create a lightweight Virtual Machine (VM) in a container
where we can house all of our applications and guarantee that the environment is going to
be the same every time we enter this container. NVIDIA-Docker goes one step further and
provides the appropriate linkage for our Docker containers to be able to interact with a
GPU. This is a critical piece for our development environment. Once we have NVIDIA-
Docker set up, the rest of the environment is fairly straightforward to integrate.

The installation is easy. I'd encourage you to visit the website and ensure that the directions
haven't changed since publication: https:/ /github. com/ NVIDIA/ nvidia- docker. At this
time, NVIDIA-Docker2 is the latest version of development. When you install the NVIDIA-
Docker2 system with these steps, it should allow you to upgrade periodically with  sudo
apt upgrade.
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When going to the website, you should see a set of instructions similar to this one:

Ubuntu 14.04/16.04/18.04, Debian Jessie/Stretch
# If you have nvidia-docker 1.0 installed: we need to remove it and all
existing GPU containers
docker volume ls -q -f driver=nvidia-docker | xargs -r -I{} -n1 docker ps -
q -a -f volume={} | xargs -r docker rm -f
sudo apt-get purge -y nvidia-docker

# Add the package repositories
curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | \
  sudo apt-key add -
distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-
docker.list | \
  sudo tee /etc/apt/sources.list.d/nvidia-docker.list
sudo apt-get update

# Install nvidia-docker2 and reload the Docker daemon configuration
sudo apt-get install -y nvidia-docker2
sudo pkill -SIGHUP dockerd

# Test nvidia-smi with the latest official CUDA image
docker run --runtime=nvidia --rm nvidia/cuda nvidia-smi

The instructions source is found at: https:/ / github. com/ NVIDIA/ nvidia-
docker.

Now, let's go over each of these commands in detail.

Purging all older versions of Docker 
First things first—you have to wipe out all old versions of Docker prior to this installation.
The folks maintaining this repository conveniently provided a a few commands. The first
command removes all old versions of Docker:

docker volume ls -q -f driver=nvidia-docker | xargs -r -I{} -n1 docker ps -
q -a -f volume={} | xargs -r docker rm -f

After completing this command, the next step is to use the purge method in apt-get to
remove any previous installations of NVIDIA-Docker from your previous work:

sudo apt-get purge -y nvidia-docker

Here, we've completed our step 1 installation!
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Adding package repositories
Now we've removed all of the older versions of NVIDIA-Docker. it's time to add the keys
and repository to the typical apt-get repositories that you can pull from. First, in
the Installing NVIDIA-Docker recipe, we need to add the appropriate key for  apt-get to
communicate with the NVIDIA-Docker repository:

curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | \
  sudo apt-key add -
distribution=$(. /etc/os-release;echo $ID$VERSION_ID)

After adding the key, we add the repo to the sources that apt-get can pull from when
installing packages:

curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-
docker.list | \
  sudo tee /etc/apt/sources.list.d/nvidia-docker.list

Finally, an apt-get update allows apt-get to update its list of installable packages. Since
we just added a new repository, the update will allow us to install the NVIDIA-Docker
repository in the next step:

sudo apt-get update

Now we move on to the next step.

Installing NVIDIA-Docker2 and reloading the daemon
This is the point you've been waiting for! (Probably not.) Use apt-get to install the
nvidia-docker2 package:

sudo apt-get install -y nvidia-docker2

Next, use pkill to restart the Docker daemon after the installation:

sudo pkill -SIGHUP dockerd

Now, we're ready for a simple test of the installation.

Testing nvidia-smi through the Docker container
This is the moment of truth—if this command runs correctly, you should see the nvidia-
smi output that you see on your machine outside of the container:

docker run --runtime=nvidia --rm nvidia/cuda nvidia-smi
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Your output should look similar to the nvidia-smi command example we showed in the
Installing NVIDIA driver for your GPU section:

Testing nvidia-smi

Now you're ready to move onto actually building a development environment.

Building a container for development
What's a container? A container is Docker's name for a VM with a certain configuration of
operating system and software. In our case, it'll be the piece that allows us to change our
configuration from chapter to chapter without having to worry about installing new
packages to learn a new package. Docker containers allow us the flexibility to have a
different development environment for every chapter with minimal downtime. For each of
these chapters, you will be supplied with a corresponding Dockerfile that represents the
base configuration for completing the recipe.

This section will simply explain a small example Dockerfile to give you an idea of how
powerful these particular tools are. Here's the example we are going to cover:

FROM nvidia/cuda:9.0-cudnn7-devel-ubuntu16.04
ARG KERAS=2.2.0
ARG TENSORFLOW=1.8.0

# Update the repositories within the container

RUN apt-get update

# Install Python 2 and 3 + our basic dev tools
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RUN apt-get install -y \
          python-dev \
          python3-dev \
          curl \
          git \
          vim

# Install pip

RUN curl -O https://bootstrap.pypa.io/get-pip.py &amp;&amp; \
         python get-pip.py &amp;&amp; \
         rm get-pip.py

# Install Tensorflow and Keras

RUN pip --no-cache-dir install \
         tensorflow_gpu==${TENSORFLOW} \
         keras==${KERAS}

This is the basics of how you will build a basic image for the rest of the chapters in this
book. This is called the base_image for this book and will be inherited by almost every
chapter from now on.

There's more...
Here are a few topics to cover in case you are curious about how the RUN commands work
in Dockerfiles: https:/ /docs. docker. com/ engine/ reference/ run/.

Data types
In computer science, data types will represent the way the data is stored in the program.
For this section, we are going to discuss the structure of the MNIST data and demonstrate
how to simply manipulate the data.
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Getting ready
Focusing on data types is where we will begin the data processing journey. Each step in this
process is crucial to understand. Data types refer to the structure in which the data is held
in Python. Think of a dictionary, array of floats, and so on. These are the data types that we
would like to understand and consider. The example that we are going to explore in this set
of recipes is going to be a parsing example for images since the first few recipes in this book
will revolve around the usage of two-dimensional imagery. We're going to start with a
simple and small dataset called the MNIST dataset. This data is used across all kinds of ML
and for good reason. it's a set with 60,000 handwritten images that're labeled and easy to
understand. Also, the data is quite small so downloading and manipulating it's fairly
simple. For some sample methods, this data will allow us to quickly work and it won't take
up a lot of space.

First, we should understand the original intent of the data. Almost every dataset supplied
out there with the intent of being use for deep learning will have a description of the data.
MNIST has a description and we can review it prior to understanding the data type we'll
use for training or manipulation. The basics are located at the following link: http:/ /yann.
lecun.com/exdb/mnist/ .

How to do it...
Notice how the authors provide a nice and tidy summation of the things included in the
dataset. They're extremely clear about how the data is separated and made. In our case, we
are going to work with the train-images and train-labels files from here on out. Keep in
mind that, in this case, we are going to use the Linux wget function inside the Dockerfile to
include the data for use any time we use that particular Dockerfile. Here's a sample of how
that's done:

FROM base_image

ADD types.py /

In this Docker file, we inherit our base image and proceed to copy our Python file into the
container.
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Finally, let's talk about what is in each of those tar files. We need to understand both the
images (our X or input data) and the labels (our Y or output variable). Although this may
seem obvious, I want to instill in you something that I have had to painfully learn over
years of experience. Reviewing and understanding the basic structure of the data is the
most important thing you can do. Don't take for granted that this data is just an image. There
are methods that require a different order to the channels, different encodings, scaling,
grayscale, and so on. Assumptions have only led to redoing the work for me. I'm hopeful
that, as we progress through this book, you'll understand why I take time to understand
and evaluate the data prior to using it for learning.

The labels are a simple encoding of 0 to 9. After all, this is a handwriting identification task
so we are simply attempting to recognize numbers (discriminative modeling) or create
numbers based on input (generative modeling). This is all nice but how are we going to use
any of this information?

We're going to go through a simple example of checking out this data. We've already
unzipped the data inside the container so the next step is to ensure that we have the right
typing by reading the data. For the sake of speed and simplicity, let's read a few files in and
look at their format. Here's the code we're going to use to analyze the data and learn basic
information:

Import to do the work:1.

#!/usr/bin/env python
import numpy as npimport matplotlib.pyplot as pltfrom
tensorflow.examples.tutorials.mnist import input_data

Read from this directory:2.

mnist = input_data.read_data_sets("MNIST_data/", one_hot=False)

Look at the shape of the images training data:3.

print("Shape of the Image Training Data is
      "+str(mnist.train.images.shape))

The output of the preceding code is as follows:

Shape of the Image Training Data is (55000, 784)

Look at the shape of the label training data:4.

print("Shape of the Label Training Data is
"+str(mnist.train.labels.shape))
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The output of the preceding code is as follows:

One-Hot False : Shape of the Label Training Data is (55000,)
One-Hot True : Shape of the Label Training Data is (55000,10)

Take a random example from the datasets:5.

index = np.random.choice(mnist.train.images.shape[0], 1)
random_image = mnist.train.images[index]
random_label = mnist.train.labels[index]
random_image = random_image.reshape([28, 28]);

Plot the image:6.

plt.gray()
plt.imshow(random_image)
plt.show()

How it works...
Let's walk through this code piece by piece to understand everything we to do in order to
work with this data. As always, we start with boilerplate items for coding in Python. The
first line establishes which Python interpreter we should use:

#!/usr/bin/env python

import numpy as np
import matplotlib.pyplot as plt
from tensorflow.examples.tutorials.mnist import input_data

Next, we grab the data from the TensorFlow examples library:

# Read from this directory
mnist = input_data.read_data_sets("MNIST_data/", one_hot=False)

There's an option for one-hot encoding in this import function. For this particular example,
we will simply leave one-hot false.

One-hot encoding: Categorical variables need a simple way to encode the
values into a numerical space. One-hot encoding represents the process of
mapping categorical variables to an integer value and then a binary vector
representation. One-hot encoding is simple in SciPy as there are one line
methods for encoding these variable types with ease.
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For every dataset, I recommend checking the shape of the data to ensure that you've got the
data you expect:

# Look at the shape of the images training data:
print("Shape of the Image Training Data is "+str(mnist.train.images.shape))

# Look at the shape of the labels training data:
print("Shape of the Label Training Data is "+str(mnist.train.labels.shape))

This is the output you should see when running this snippet:

Shape of the Image Training Data is (55000, 784)
Shape of the Label Training Data is (55000,)   # (if One-Hot False)
Shape of the Label Training Data is (55000,10) # (if One-Hot True

Next, let's have a look at a sample image from the dataset:

# Take a Random Example from the DatasetS:
index = np.random.choice(mnist.train.images.shape[0], 1)
random_image = mnist.train.images[index]
random_label = mnist.train.labels[index]
random_image = random_image.reshape([28, 28]);

# Plot the Image
plt.gray()
plt.imshow(random_image)
plt.show()

This is fun because we actually get to see the content of the data. You'll notice that we
needed to reshape the array from a single dimension of 784 to a 28 x 28 image. TensorFlow
will keep images in different formats depending on the technique to be used. This is why I
keep saying we should visualize the data to ensure we understand the information we are
working with. We've now got a full setup to run the Python code. Let's use our
development environment to run this file.

In the repository, there will always be a build and run script. The build script, as you
remember, will build the Dockerfile and the run script will run the environment. With the
current setup, you will need to build in order for new changes to take effect. With the
Docker run file, it's possible to map a folder on your computer to the Docker image also.
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Running this code in the Docker container
We're going to inherit our Docker container and add the code that we just built into the
container:

FROM base_image

ADD types.py /

This Dockerfile is inheriting our base container we built in the earlier part of this chapter.
We then add the Python file into the container. This will mean that we need to build the
container every time we would like to run this code. Luckily, we can make this happen
through some shell scripts that we will introduce now.

To test this Python file, we need to open a Terminal, change directory to the data types
directory, and create the following build.sh script:

#/bin/bash
nvidia-docker build -t ch2 .

In this script, we are ensuring the Ubuntu OS knows which environment to use. Then, we
use nvidia-docker to build a new ch2 container. Given that we are just making simple
samples throughout this chapter and I don't want to create a bunch of extraneous
containers, we will just overwrite the container as we go through this chapter. Now, you
have a build script and a Dockerfile—you should be able to issue the following command
to make it build:

sudo ./build.sh

Then, you can issue the next command after it's done building:

sudo ./run.sh
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If everything has been installed correctly, you will see an image similar to this one:

Congratulations! You've checked out a common deep learning dataset.

There's more...
This discussion is often referred to as the ontology of the data in the literature. How is the
data actually broken down and used? What are the important classes? Can you describe the
class distribution and types? These are topics that would be explored in a report focused on
the ontology. As you delve deeper into this part of the science, you'll find that there are also
a bunch of topics such as anomaly detection and balancing of the data. In practice, it's hard
to come by a dataset that is balanced from the onset. Typically, you'll need to do
preparation with the data. We'll touch on both topics in this chapter.

Now you understand some of the common types of data types that we will work with this
in this field. I am going to suggest a few links to get more educated on other possible data
types or ways of using the data with the following links:

Data types with Python: https:/ /developer. rhino3d. com/ guides/
rhinopython/ python- datatypes/ 

Data types within TensorFlow: https:/ /www. tensorflow. org/ versions/ r1. 2/
programmers_ guide/ dims_ types
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Data preprocessing
Data preprocessing is the explicit process of ensuring that your data can be ingested into
your algorithm simply. In this section, you will learn how to work with data for ML in
future sections.

Getting ready
Why even worry about preprocessing? It's easy to overlook the easy steps. As we ingest
data into our algorithms, we'll need to ensure that each of the data points is both useful and
accurate. This means we need to ensure that both the X data and Y labels, in a supervised
learning problem space, are correct prior to going to a learner. So, how do we ensure that
each of the data points is correct? For large datasets, we can look at macro metrics such as a
three sigma outlier. For smaller datasets, visually inspecting a percentage of the training
data from each class or type could be another option. In essence, the point of this recipe is
to introduce you to some of these techniques and then we will apply them throughout the
chapters as we need them.

Remember in the preceding section ( Data types: There's more...) when we requested that you
read up on Python, NumPy, and all of those other fancy pieces of technology? Well, now
you are going to get the opportunity to go and apply these techniques to real-world
practical problems.

How to do it...
Preprocessing of the data typically refers to the stage where you read in the data and do
basic actions to make the data usable in your domain. In our case, this means we'd like the
data in a pandas or NumPy data frame. Their formats are interchangeable with minimal
sets of code and hence are used commonly in the data science field. In the following
example, you'll get experience reading in a dataset and converting categorical variables to
numerical variables. This process can easily be converted to a method later in this chapter.

Here's the recipe:

Import the following packages to start the work:1.

!/usr/bin/env python
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
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Read the UCI Machine Learning Income data (https:/ /archive. ics.uci. edu/2.
ml/datasets/ adult) from this directory. There are three different ways to read
the data. Notice how this incorrectly reads the first line as the header:

df0 = pd.read_csv('/data/adult.data')

header=None enumerates the classes without a name:3.

df2 = pd.read_csv('/data/adult.data', names = ['age', 'workclass',
                  'fnlwgt', 'education', 'education-num', 'marital-
                   status', 'occupation', 'relationship', 'race',
                  'sex', 'capital-gain', 'capital-loss', 'hours-
per-
                   week', 'native-country','Label'])

Create an empty dictionary:4.

mappings = {}

Run through all columns in the CSV for col_name in df2.columns:5.

if(df2[col_name].dtype == 'object'):

If the type of variables are categorical, they will be an object type.

Create a mapping from categorical to numerical variables:6.

df2[col_name]= df2[col_name].astype('category')
df2[col_name], mapping_index = pd.Series(df2[col_name]).factorize()

Store the mappings in the dictionary:7.

mappings[col_name]={}
        for i in range(len(mapping_index.categories)):
             mappings[col_name][i]=mapping_index.categories[i]

Store a continuous tag for variables that are already numerical else:8.

mappings[col_name] = 'continuous'

We'll cover the details of the recipes in the next section.
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How it works...
This is where we're going to cover how a works—what components are driving this
particular code snippet to work. As we progress through this recipe, I encourage you to
work through it with me. The first thing we need to do in the script is tell the interpreter
where our Python is and import our core libraries for use in the script:

#!/usr/bin/env python

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

After installing the right libraries, we need to talk about the right way to read in the data. I
provided a few examples of the right way and the correct way to read in the data. It's
important to understand how the data can be read in, what happens, and what you do
when not specifying any argument like this:

# Notice this incorrectly reads the first line as the header

df0 = pd.read_csv('/data/adult.data')

After executing this command, you'll notice that the pandas read_csv method will
incorrectly read one of the columns as a header. Next, we will attempt not to specify a
header. Let's look at the result:

# The header=None enumerates the classes without a name

df1 = pd.read_csv('/data/adult.data', header = None)

The data is correctly read in except for the fact that we don't have any header names for
each of the columns. Finally, by using the data description, we are able to specify the
header and name the columns appropriately:

# Specifying the header, the read_csv method will work correctly

df2 = pd.read_csv('/data/adult.data', names = ['age', 'workclass',
                  'fnlwgt', 'education', 'education-num', 'marital-
                   status', 'occupation', 'relationship', 'race',
                  'sex', 'capital-gain', 'capital-loss', 'hours-per-
                   week', 'native-country','Label'])
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The data is now correctly read into an array and ready to  for use in the next section. After
we have a set of data we can manipulate, we are going to need to ensure that we convert all
of our categorical variables to numerical variables. The following method is going to create
a numerical mapping for every categorical variable automatically. Here's the general method:

# Create an empty dictionary

mappings = {}

# Run through all columns in the CSV

for col_name in df2.columns:

   # If the type of variables are categorical, they will be an 'object'
   type

    if(df2[col_name].dtype == 'object'):

        # Create a mapping from categorical to numerical variables

        df2[col_name]= df2[col_name].astype('category')
        df2[col_name], mapping_index =
        pd.Series(df2[col_name]).factorize()

    # Store the mappings in dictionary

        mappings[col_name]={}
        for i in range(len(mapping_index.categories)):
             mappings[col_name][i]=mapping_index.categories[i]

    # Store a continuous tag for variables that are already numerical

    else:
        mappings[col_name] = 'continuous'

This block of code is fairly simple in that it simply detects whether the column contains
categorical or numerical data. One issue you will notice with this method is that it naively
assumes that all of the data is one type or another (numerical or categorical). Part of your
exercise will be to handle cases where the data contains a mix of data types.
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Let's cover the basis of how we'll start this function:

# Create an empty dictionary

mappings = {}

# Run through all columns in the CSV

for col_name in df2.columns:

We've created an empty array and we're going to walk through each column within the
.columns method. Now, for every column, we are going to check whether the data is
categorical and then do an operation:

    # If the type of variables are categorical, they will be an
   'object' type

    if(df2[col_name].dtype == 'object'):

        # Create a mapping from categorical to numerical variables

        df2[col_name]= df2[col_name].astype('category')
        df2[col_name], mapping_index =
        pd.Series(df2[col_name]).factorize()

    # Store the mappings in dictionary

        mappings[col_name]={}
        for i in range(len(mapping_index.categories)):
             mappings[col_name][i]=mapping_index.categories[i]

The first two lines are going to create a mapping index using the factorize method. This
method will simply assign numerical indices to each of the categorical variables. Once we 
have this mapping, we create a dictionary that we can use in the future to convert back to
the categorical variable. After all, an indexed value for country is meaningless without the
keys to know what each number means. Next, let's see what we do when the variable isn't a
categorical variable:

# Store a continuous tag for variables that are already numerical

  else:
      mappings[col_name] = 'continuous'

We simply assign the dictionary with the  continuous tag. In the future, we can do a
simple check to ensure whether the continuous tag is or isn't there.
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Now, let's check out the results for our mapping index—this represents a portion of the
mapping dictionary:

 'education-num': 'continuous',
 'fnlwgt': 'continuous',
 'hours-per-week': 'continuous',
 'marital-status': {0: ' Divorced',
  1: ' Married-AF-spouse',
  2: ' Married-civ-spouse',
  3: ' Married-spouse-absent',
  4: ' Never-married',
  5: ' Separated',
  6: ' Widowed'},

Now, we've made a method to filter the data and ensure that all of our data is numerical for
learning.

There's more...
You thought I'd let you get out of this chapter without understanding the data itself? Let's
check in at this page in order to find out some extra details about the data we just analyzed:

https://archive. ics. uci. edu/ ml/ machine- learning- databases/ adult/ adult. names.

This file basically describes the basic details of the data. As you'll see when you look
through this file, our mapping that we produce with this code actually matches the
representation shown in this file. And that's the point! If we have done our job correctly, we
should be able to create a mapping in code that allows us to freely manipulate the data to
produce models while maintaining the class labels, for instance.

You've learned about a new library, pandas—it's common for usage with deep learning and
data science. More details on the pandas library can be found here:

http://pandas.pydata. org/ pandas- docs/ stable/ .

Along with pandas, we also learned about the need for understanding one-hot encoding
and categorical variables. There are algorithms that can handle categorical variables out of
the box but the majority of algorithms that you will be exposed to will simply need an
encoding applied to the data. Here's a few more details on a different method for doing
one-hot encoding:

http://scikit-learn. org/ stable/ modules/ generated/ sklearn. preprocessing.
OneHotEncoder.html.
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Anomalous data
Anomalous data is the risk that your data is not evenly distributed or easily separable.
Datasets from the real world are going to contain outliers and data that needs to be
adjusted. In this recipe, we will discuss a basic technique used in data analysis to work with
anomalous data and distribute the results while maintaining the data distribution.

Getting ready
Outliers are a huge issue with datasets where you want to have a clean distribution of data.
In terms of the generative model, we are interested in ensuring that the model can find the
right representation of the distribution and model it appropriately. This recipe is going to
focus on the tools you will use in these instances to solve problems with outliers in some of
these datasets.

Here is an easy to understand general technique I would like you to understand in this
recipe - the Univariate method.

How to do it...
Why are these methods important? You need to develop a set of tools in your repertoire to
understand data as you go through this process. These types of techniques encompass the
basis of you will adjust and/or balance data with extreme outliers. Only in the cleanest of
datasets will you not need to employ one of these basic techniques or even a more
advanced technique.

These three methods are the most common methods to work with anomalous data and
we're going to talk about the practical use of these techniques.

Univariate method
This method focuses on removing values that fall far away from the median value for a
single value. Typically, the evaluation metric is called the cleaning parameter. This 
parameter will define which values to remove from the distribution. Choosing an
aggressive cleaning parameter could remove diverse data. On the contrary, choosing too
large of a cleaning parameter won't change much about the distribution.
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Here's an example of how to perform a univariate fit on some sample data:

#!/usr/bin/env python
from numpy import linspace,exp
from numpy.random import randn
import matplotlib.pyplot as plt
from scipy.interpolate import UnivariateSpline

########## Univariate Fit
x = linspace(-5, 5, 200)
y = exp(-x**2) + randn(200)/10
s = UnivariateSpline(x, y, s=1)
xs = linspace(-5, 5, 1000)
ys = s(xs)
plt.plot(x, y, '.-')
plt.plot(xs, ys)
plt.show()0

Here's the breakdown of the code:

Import all of the required packages to attempt this section:1.

#!/usr/bin/env python
from numpy import linspace,exp
from numpy.random import randn
import matplotlib.pyplot as plt
from scipy.interpolate import UnivariateSpline

Define the line:2.

########## Univariate Fit
x = linspace(-5, 5, 200)
y = exp(-x**2) + randn(200)/10

Fit a univariate model to the data:3.

s = UnivariateSpline(x, y, s=1)

Define parameters for the line:4.

xs = linspace(-5, 5, 1000)
ys = s(xs)

Plot the parameters:5.

plt.plot(x, y, '.-')
plt.plot(xs, ys)
plt.show()0
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Create a Dockerfile and install it in the imbalanced-learn package:6.

FROM base_image

ADD demo.py /demo.py

Create a run file:7.

#/bin/bash
nvidia-docker build -t ch2 .

xhost +
docker run -it \
   --runtime=nvidia \
   --rm \
   -e DISPLAY=$DISPLAY \
   -v /tmp/.X11-unix:/tmp/.X11-unix \
   ch2 python demo.py

Run the code by issuing this command at the Terminal:8.

sudo ./run.sh

Following are the results from running this code:9.
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There's more...
There are quite a few libraries out there that are focused solely on the purpose of balancing
data. This is a fairly common problem in the machine learning space. Consider the anomaly
detection side of discriminatory modeling. Typically, you'll see cases where there are
potentially 10% to 20% anomalies in the base data. Sometimes, it's even worse than just
that. There have been some cases in my career where the rate of defect was around 1%. If
we created a classifier in this case that strictly predicted no defect, then we would get 99%
accuracy. In this way, we have to pay very careful attention to the structure and
distribution of our data as we attempt to learn the understanding distribution.

Here's another really simple way to visualize the outliers in a dataset:

https://www.itl. nist. gov/ div898/ handbook/ prc/ section1/ prc16. htm.

The following link is to an article that focuses on practical graphing techniques for
multivariate problems:

https://machinelearningmastery. com/ visualize- machine- learning- data- python-
pandas/.

Balancing data
Balancing data and handling anomalous data are often thought of as the same process. In
our case, data balancing involves understanding the techniques used to spread anomalous
data without disrupting the underlying data distribution. In this recipe, we will discuss the
core concepts in data balancing.

Getting ready
Generative modeling is attempting to build a model that represents the entire data
distribution. In order to learn this underlying distribution, the data must represent that
data in a verbose but compact form—that is, we want to ensure that each of the traits on
features that we are attempting to learn, is represented in similar quantities the way in
which they would be generated.
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How to do it...
Two predominant sets of class of techniques to fix imbalance are as follows:

Sampling techniques
Ensemble techniques

These techniques focus on sampling the data in a constructive or destructive way to achieve
a better balanced distribution or working on the learning side to ensemble multiple learners
together to form a consensus on a problem set.

Sampling techniques
Sampling techniques focus on solving the issues through manipulation of the data—similar
to removing anomalous data, we are going to modify the data distribution to make sure
that the data is balanced.

Random undersampling
In this method, you randomly undersample the majority class in a distribution to make it
match the distribution of other minority classes you would like to predict. Your data can
suffer from a probability of over predicting the under served classes. In the generative
paradigm, undersampling can bias the model to over-represent minority classes.

We have a simple code example that we will go through in this section:

Import all of the necessary classes to random undersampling:1.

import matplotlib.pyplot as plt
import numpy as np
from sklearn.datasets import make_classification
from sklearn.decomposition import PCA
from imblearn.under_sampling import RandomUnderSampler

Use scikit-learn to generate a dataset to demonstrate the random undersampling:2.

# Generate the dataset
X, y = make_classification(n_classes=2, class_sep=2, weights=[0.15,
                           0.95],
                           n_informative=3, n_redundant=1,
flip_y=0,
                           n_features=20, n_clusters_per_class=2,
                           n_samples=1000, random_state=10)
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Instantiate a Principal Component Analysis (PCA), and PCA object and fit a3.
transform:

pca = PCA(n_components=3)
X_vis = pca.fit_transform(X)

Use the RandomUnderSampler class and fit to the same—transform using4.
PCA:

# Apply the random under-sampling
rus = RandomUnderSampler(return_indices=True)
X_resampled, y_resampled, idx_resampled = rus.fit_sample(X, y)
X_res_vis = pca.transform(X_resampled)

Create the basic plot for showing the new balanced data:5.

fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)

idx_samples_removed = np.setdiff1d(np.arange(X_vis.shape[0]),
                                   idx_resampled)

idx_class_0 = y_resampled == 0
plt.scatter(X_res_vis[idx_class_0, 0], X_res_vis[idx_class_0, 1],
            alpha=.8, label='Class #0')
plt.scatter(X_res_vis[~idx_class_0, 0], X_res_vis[~idx_class_0, 1],
            alpha=.8, label='Class #1')
plt.scatter(X_vis[idx_samples_removed, 0],
X_vis[idx_samples_removed, 1],
            alpha=.8, label='Removed samples')

Add some additional parameters to clean up the plot:6.

# make nice plotting
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.get_xaxis().tick_bottom()
ax.get_yaxis().tick_left()
ax.spines['left'].set_position(('outward', 10))
ax.spines['bottom'].set_position(('outward', 10))
ax.set_xlim([-6, 6])
ax.set_ylim([-6, 6])

plt.title('Under-sampling using random under-sampling')
plt.legend()
plt.tight_layout()
plt.show()
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Create a Dockerfile and install in the imbalanced-learn package:7.

FROM base_image

RUN pip install -U imbalanced-learn

ADD demo.py /demo.py

Create a run file:8.

#/bin/bash
nvidia-docker build -t ch2 .

xhost +
docker run -it \
   --runtime=nvidia \
   --rm \
   -e DISPLAY=$DISPLAY \
   -v /tmp/.X11-unix:/tmp/.X11-unix \
   ch2 python demo.py

Run the code by issuing this command at the Terminal:9.

sudo ./run.sh

Following are the results from running this code:10.



Data First, Easy Environment, and Data Prep Chapter 2

[ 58 ]

Random oversampling
In random oversampling, you will increase the number of instances in the minority classes
by either randomly duplicating instances of the minority classes until they match the
distribution of the majority class. The sampling can become biased depending on the
technique and so it's important to understand the underlying strategy of your technique.

Synthetic minority oversampling technique
Synthetic Minority Oversampling Technique (SMOTE) involves creating synthetic
examples of the minority class through this technique. With the preceding techniques,
simply duplicating minority examples, or reducing majority examples isn't enough.
SMOTE is a technique used to bridge these special cases.

Ensemble techniques
There are a few algorithmic techniques I'd like to touch on in this section. This involves
using multiple learners in an ensemble (group) to come to a combined output. Obviously,
this is going to be harder in a generative paradigm but I do believe it's important to at least
be aware of these techniques.

Bagging
Bagging works by sampling a smaller set of data and matching the distribution of the
greater set of data—the algorithms are then trained on these smaller sets and later fused to
form a single decision. Bagging will only help with learners that are capable—learning a
bunch of bad models will lead to bad results.

Boosting
Boosting works by taking weak learners and combining their decisions or output to
produce a strong output. Boosting will weight the outputs of the different learners to
improve the output of the ensemble until some stopping criteria is met.
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AdaBoost
Adaptive Boosting, or AdaBoost, essentially takes boosting and applies rules to the 
boosting step. By adding simple rules, you allow the ensemble to adapt to different
anomalies to predict. This technique can be sensitive to the rule set and extreme outliers in
the data.

There's more...
Scikit-learn is a very popular ML library. Recently, a new library was added into the scikit-
learn ecosystem called imbalanced, which allows the user to apply many of these
techniques with ease. If you have experience with scikit, you'll know that the library
requires your data to be formatted a certain way. Once you have your data in this standard
format, it becomes easy to apply these techniques using this library. A link to the
imbalanced-learn library is included in the follow-up reading section of this recipe.

This website offers a solid explanation of how SMOTE works:

https://www.cs.cmu. edu/ afs/ cs/ project/ jair/ pub/ volume16/ chawla02a- html/
chawla2002.html.

And there is a simple implementation in the scikit-learn imbalanced library:

http://contrib.scikit- learn. org/ imbalanced- learn/ stable/ generated/ imblearn.
over_sampling.SMOTE. html.

Finally, check out the imbalanced library here:

http://contrib.scikit- learn. org/ imbalanced- learn/ stable/ index. html.

Data augmentation
Data augmentation is the idea that one image can be altered or corrupted to encourage
deep learning techniques to generalize for the objective, rather than focusing on single
features. In this section, we'll show a simple script for applying different augmentations.
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Getting ready
The imgaug library is commonly used in deep learning research and this figure
demonstrates a subset of available augmentations in this free-to-use library:

Data augmentation is a cornerstone of deep learning data analysis. Each project needs to
understand how data augmentation can improve their project. Why would you choose to
include data augmentation in your project? In images, it's easy to understand. By
augmenting your data—think flipping, noise, and so on—you are essentially forcing the
algorithm to understand the content of the image without memorizing or keying in on
singular features. With the advent of deep learners, it's now possible for discriminative
modeling techniques to memorize entire datasets or hyper focus on singular features that
make the learning component easy (think fast convergence during the training step). It's
imperative that we use techniques such as data augmentation to force generalization
during training. For a generative modeling architecture such as GANs, we will need to be
fairly selective about which augmentations we use during training. This will be addressed
in certain recipes throughout this book.
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How to do it...
So, how do we attack the high-level problem of doing image augmentation? Luckily, there
are great folks out there developing awesome libraries to solve these very problems. One of
my favorite libraries is a library called imgaug. This library allows you to dynamically and
randomly apply transformations. Why is that advantageous? During the training process in
deep learners, augmentations will force the learners to generalize. The imgaug library is
going to make your life so much easier in this facet. I've got a small demo code set that we'll
go over in the next section to ensure you've got a good idea of the power of this library:

Import the required packages:1.

import imgaug as ia
from imgaug import augmenters as iaa
import numpy as np

This seed can be changed-random seed:2.

ia.seed(1)

Here we have an example batch of 100 images:3.

images = np.array(
    [ia.quokka(size=(64, 64)) for _ in range(100)],
    dtype=np.uint8
)

Create the transformer function by specifying the different augmentations:4.

seq = iaa.Sequential([# Horizontal Flips
    iaa.Fliplr(0.5),

    # Random Crops
    iaa.Crop(percent=(0, 0.1)),# Gaussian blur for 50% of the
images
    iaa.Sometimes(0.5,
        iaa.GaussianBlur(sigma=(0, 0.5))
    ),
    # Strengthen or weaken the contrast in each image.
    iaa.ContrastNormalization((0.75, 1.5)),

    # Add gaussian noise.
    iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.05*255),
per_channel=0.5),

    # Make some images brighter and some darker.
    iaa.Multiply((0.8, 1.2), per_channel=0.2),
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Apply Affine transformations to each image:5.

    iaa.Affine(
        scale={"x": (0.5, 1.5), "y": (0.5, 1.5)},
        translate_percent={"x": (-0.5, 0.5), "y": (-0.5, 0.5)},
        rotate=(-10, 10),
        shear=(-10, 10)
    )],

Apply augmenters in random order:6.

random_order=True)

This should display a random set of augmentations in a window:7.

images_aug = seq.augment_images(images)
seq.show_grid(images[0], cols=8, rows=8)

Let's go over this code in detail!

How it works...
Time to dive right in! Image augmentation using imgaug is as easy as importing the library
and doing some basic preparations in your Python code:

import imgaug as ia
from imgaug import augmenters as iaa
import numpy as np

# This seed can be changed - random seed
ia.seed(1)

# Example batch of 100 images
images = np.array(
    [ia.quokka(size=(64, 64)) for _ in range(100)],
    dtype=np.uint8
)

This step essentially allows us to use the imgaug library as iaa and import some demo
images to augment to show the power of image augmentation. Next, we are going to create
a transformer function to specify all of the different augmentations that we'd like applied to
our images:

# Create the transformer function by specifying the different augmentations
seq = iaa.Sequential([
    # Horizontal Flips
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    iaa.Fliplr(0.5),

    # Random Crops
    iaa.Crop(percent=(0, 0.1)),

    # Gaussian blur for 50% of the images
    iaa.Sometimes(0.5,
        iaa.GaussianBlur(sigma=(0, 0.5))
    ),
    # Strengthen or weaken the contrast in each image.
    iaa.ContrastNormalization((0.75, 1.5)),

    # Add gaussian noise.
    iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.05*255),
per_channel=0.5),

    # Make some images brighter and some darker.
    iaa.Multiply((0.8, 1.2), per_channel=0.2),

    # Apply affine transformations to each image.
    iaa.Affine(
        scale={"x": (0.5, 1.5), "y": (0.5, 1.5)},
        translate_percent={"x": (-0.5, 0.5), "y": (-0.5, 0.5)},
        rotate=(-10, 10),
        shear=(-10, 10)
    )
],
# apply augmenters in random order
random_order=True)

You'll notice there are quite a few different augmentations included in this demo piece. One
of the great things about this library is that it offers a wide assortment of ready to use
augmentations that're compatible with deep learning and flexible to be used in other
applications. Finally, we need to display the images to a window to understand what types
of augmentations we've applied to this images:

# This should display a random set of augmentations in a window
images_aug = seq.augment_images(images)
seq.show_grid(images[0], cols=8, rows=8

I encourage you to experiment with the different types of augmentations when you get to
the exercise section in this chapter.
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There's more...
Here's the thing about augmentation—it's still debated throughout the community on
whether it's an absolute requirement for every machine learning project. I've supplied some
follow up papers for your reading leisure to understand more modern discussions on data
augmentation. In data poor environments, it's generally accepted that carefully selected
augmentation can improve accuracy but cannot be used in place of actual data. In data-rich
environments, augmentation can be applied more judiciously and will generally improve
performance. Data augmentation, however- that is randomly chosen without benchmarks
for your learners- can lead to decreased performance for the learners in the long run.

Data augmentation is a big topic in deep learning but is largely not discussed in scholarly
journals for GANs. There are quite a few articles we can recommend to learn about vanilla
data augmentation (especially for images) seen in the following examples:

Return of the Devil in the Details: Delving Deep into Convolutional Nets:
Example of a paper where they do a rigorous exploration of augmentation
around their problems space: https:/ /arxiv. org/pdf/ 1405. 3531. pdf.
Lecture: Data Augmentation case studies for deep convolutional models https:/ /
www.coursera. org/ learn/ convolutional- neural- networks/ lecture/ AYzbX/
data-augmentation.

imgaug library: Details on the imgaug library: https:/ /media. readthedocs.
org/pdf/ imgaug/ latest/ imgaug. pdf.

Exercise
We'll make the exercise fairly straightforward for the end of this chapter—this will ensure
that these techniques sink in prior to continuing with the recipes in this book:

Select a dataset from the UCI repository and prepare it for a learning task by1.
reading the data in, analyzing the distribution, and saving it to a npy formatted
array for later usage.
Add a different form of image augmentation to the augmentation recipe in this2.
chapter.
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3
My First GAN in Under 100

Lines
The topics that are going to be covered in this chapter are as follows:

From theory to code – a simple example
Building a neural network in Keras and TensorFlow
Explaining your first GAN component – discriminator
Explaining your second GAN component – generator
Putting all the GAN pieces together
Training your first GAN
Training the model and understanding the GAN output

Introduction
In this chapter, we will cover how to take the theory we've discussed so far and produce a
simple Generative Adversarial Network (GAN) model using Keras, TensorFlow, and
Docker.
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From theory to code – a simple example
So, we've finally got all the right tools to produce a GAN in code. Why is it important that
the entry level version of a GAN is small? The goal of this code is to make it as compact as
possible to ensure that, as we expand on the concept of a GAN, it becomes obvious what
changes need to be made to make improvements on this basic formula.

Getting ready
Did you forget yet? Let's pull up the diagram on GANs so that we can discuss the different
parts of the structure we will be producing classes for in this chapter:

This basic structure is what we will be converting to code. The key to this particular recipe
is understanding what pieces we need to convert and what pieces are simply going to be
wrapped up into a single class. For example, the latent space will be sampled from a
Gaussian distribution that's available in the NumPy library. Since we are just sampling
from this Gaussian distribution, it is necessary to know the size of the latent space at each
step, as you will see as we make progress on these GAN tools.

There are three core classes that we need to develop to build the structure of a GAN for
adversarial training. First, we need a discriminator. This is the piece of the architecture that
is focused on deciding whether an input belongs to a particular class or not. In this chapter,
we will simply limit the discriminator model to that of a binary classification (true or false).
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How to do it...
There will be three core classes contained in our first GAN:

Discriminator base class
Generator base class
GAN base class

Discriminator base class
The Discriminator class will have the following core structure:

class Discriminator(object):
    def __init__(self, width = 28, height= 28, channels = 1,
                 latent_size=100):
        # Initialize Variables

    def model(self):
        # Build the binary classifier and return it
        return model

    def summary(self):
        # Prints the Model Summary to the Screen

    def save_model(self):
        # Saves the model structure to a file in the data folder

The discriminator, generator, and the GAN structure itself share the same four common
methods. Here are some additional details on each of the methods:

init: Initializes any variables that need to be available during use of the object. It
can also run basic functionality to initialize internal methods.
model: Creates a deep neural network that represents a particular class. In the
case of the Discriminator, it's a simple binary classification type neural
network.
summary: This is a simple wrapper for pretty printing the model summary.
save_model: The function saves a photo of the model structure—in this case, it
uses the .png format.

In each of the following example cases, the base class will only differ in the init and model
methods. These sections will discuss those differences.
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Generator base class
As you can see, the Generator base class is similar to the Discriminator:

class Generator(object):
    def __init__(self, width = 28, height= 28, channels = 1,
                 latent_size=100):
        # Initialize Variables

    def model(self):
        # Build the generator model and returns it
        return model

    def summary(self):
        # Prints the Model Summary to the screen

    def save_model(self):
        # Saves the model structure to a file in the data folder

The main difference will be in the different init and model statements when we get to that
recipe. The generator is a simple sequential model. The sequential model just represents a
way of constructing and connecting layers in a neural network together.

GAN base class
Finally, we connect the generator and discriminator into a single model in adversarial form:

class GAN(object):
    def __init__(self, discriminator_model,generator_model):
        # Initialize Variables

    def model(self):
        # Build the adversarial model and return it
        return model

    def summary(self):
        # Prints the Model Summary to the Screen

    def save_model(self):
        # Saves the model structure to a file in the data folder

This skeleton class is meant to demonstrate to you how the similar structure of each of
these model types is relative to each other. The advantage of this structure is that we will
reuse this class over and over again throughout this book.
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See also
Now, there are plenty of repositories out there that are focused on GANs. It's important for
us to focus on the core functionalities that we'll utilize in this chapter through
Keras, https://keras. io/ .

Building a neural network in Keras and
TensorFlow
This is the core of this particular set of recipes. Let's remind ourselves what it looks like to
work with Keras and TensorFlow. In the past, it would take hundreds of lines of code to
define a simple network. In the Keras framework, a network can be instantiated in under
three lines of code! For this recipe, we will introduce a few of the basic tools needed to
understand the neural networks that we will work with in this chapter.

Getting ready
For this recipe, we need to ensure that we have all the appropriate tools to compile our
code. You need the following pieces to make this recipe happen:

A computer with an NVIDIA GPU
Ubuntu 16.04
 NVIDIA Docker installed

With these two items, we can once again build the necessary run scripts and images to run
our very first GAN. The GAN consists of three pieces (generator, discriminator, and
loss function) and all three can very simply be represented in the Keras framework. First,
we will build the container that will run the Keras code we're going to develop.

How to do it...
Let's define a run script and a Dockerfile for our environment. First, let's check1.
out the basic structure of the Dockerfile:

FROM base_image
RUN pip3 install ipython
ADD . /

https://keras.io/
https://keras.io/
https://keras.io/
https://keras.io/
https://keras.io/
https://keras.io/
https://keras.io/
https://keras.io/
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Save this file to a named text file called Dockerfile.

Next, we will want to develop a run shell script to simplify running the script2.
during development. Here's the basic structure of the shell script:

#/bin/bash

Build the Docker container:3.

nvidia-docker build -t ch3

Allow the Docker container to produce windows outside of the container:4.

xhost +

Now, run the container with the training script:5.

docker run -it \
   --runtime=nvidia \
   --rm \
   -e DISPLAY=$DISPLAY \
   -v /tmp/.X11-unix:/tmp/.X11-unix \
   -v /home/jk/Desktop/book_repos/Chapter3/full-gan/data:/data \
   ch3 python3 train.py

These are all the tools we will need to run our training code for the GAN. Let's discuss the
details of each of the lines in these two important pieces!

Building the Docker containers
This is a fairly simple development environment. In future chapters, these development
environments will get more complicated. This chapter is all about establishing the basics of
building a GAN. One of the most critical things we can do is set up a reliable development
environment to work from.

The Docker container
In this case, we will set up the leanest container we can to house our code:

FROM base_image

RUN apt install -y python3-pydot python-pydot-ng graphviz

ADD . /
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Each line is easy to break down. First, we inherit from our base_image we developed in
Chapter 2, Data First, Easy Environment, and Data Prep, with the following:

FROM base_image

Next, we install one of the most handy tools in Python development—IPython:

RUN apt install -y python3-pydot python-pydot-ng graphviz ipython

IPython allows you to drop down to a shell in the middle of any Python code. If you are
having trouble understanding an issue with your Python code, I suggest using IPython to
help troubleshoot. If you want an interactive console at a particular line in your code,
simply add the following line:

from IPython import embed; embed()

This will open an interactive shell at that line. Finally, let's add all of the files in the current
directory into the root directory of the container:

ADD . /

It is possible to specify specific files, but with the dot (.), we are telling Docker to add all of
the files into the root directory of the container.

All three of these lines should be added into a file called Dockerfile in a folder called
full-gan. Your directory structure should look like this when you are done:

full-gan/
└── Dockerfile

The run file
Now, we've got a Dockerfile ready to go. Let's create the build script that will build this
container and allow us to work inside of this Docker container. Create a folder in the full-
gan folder called data. Then, create a file in the full-gan folder called run.sh. A .sh file
is a shell script and will allow us to run a series of commands, as if we are running from the
Terminal. Open the run.sh script and type the following commands:

#/bin/bash
nvidia-docker build -t ch3 .
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As in Chapter 2, Data First – Easy Environment and Data Prep, /bin/bash tells the
interpreter to use the bash interpreter for this script. The NVIDIA-Docker container
command allows us to build the image with the tag ch3 and uses the Dockerfile in the
current directory because of the dot at the end of the command. Next, let's make sure that
any Windows OS we want to pass through the container can get through by issuing the
following command:

xhost +

This tells xhost to grant the appropriate privileges to the Docker container to allow
Windows OS to pass through and appear in our xhost (the Window Manager) on our
Ubuntu machine. Finally, let's see what the docker command does to run this container:

docker run -it \
   --runtime=nvidia \
   --rm \
   -e DISPLAY=$DISPLAY \
   -v /tmp/.X11-unix:/tmp/.X11-unix \
   -v $HOME/full-gan/data:/data \
   ch3 /bin/bash # python3 train.py

Here's the breakdown for each one of these commands, with a comment next to each line:

docker run -it \: This flag allows the container to run in interactive mode.
--runtime=nvidia \: This means use the NVIDIA runtime so that we have
access to the graphics card.
--rm \: This flag tells the Docker system to discard any changes to the image
after exit.
-e DISPLAY=$DISPLAY \: This is a variable to allow the Window OS to pass
through the container.
-v /tmp/.X11-unix:/tmp/.X11-unix \: This allows the Windows OS to pass
through the container.
-v $HOME/full-gan/data:/data \: This maps a folder at the root directory to
your data folder.
ch3 /bin/bash: End of ch3: python3 train.py .For now, /bin/bash opens
a bash Terminal.
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Now, click Save and let's check to make sure that we have the appropriate directory
structure with our files:

full-gan/
├── Dockerfile
└── run.sh

One last thing before we finish this chapter—make sure to make the shell script executable
so that we can use it throughout this chapter:

chmod 775 run.sh

Go ahead and run it so that you can ensure that it properly builds the Dockerfile and
allows you to get an interactive shell:

sudo ./run.sh

This should do it! Make sure you can access Python3 and Keras. Then, go to the next recipe!

See also
If you want a few more details on different flags for Dockerfiles, check out the following
sites:

 https:/ / docs. docker. com/ engine/ reference/ builder/ 

https:// docs. docker. com/ develop/ develop- images/ dockerfile_ best-
practices/ 

Explaining your first GAN component –
discriminator
The discriminator is the easiest part of a GAN structure to understand—the discriminator is
going to classify the input image as real or not. This classification will happen in the
adversarial training. Essentially, the discriminator will classify the inputs during the
forward pass of the neural network. As the generator gets better, it will be harder and
harder for the GAN to distinguish between the real and fake images. We monitor the loss
functions on the Terminal screen, but we could use them in the future to stop training early.

https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
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Getting ready
Remember that folder we created earlier in this chapter? You will want to create three new
files in this folder. Here are the files you need to create in this folder (you can use the Linux
command touch filename.py to create them):

generator.py

discriminator.py

gan.py

After creating these files, your directory structure should look like this inside of the full-
gan folder:

full-gan/
├── discriminator.py
├── Dockerfile
├── gan.py
├── generator.py
└── run.sh

We've got all the right files in our directory, so now it's time to start adding code to each of
these files. The discriminator.py file is the first file we will populate with code. We're
going to go through each block of code piece by piece. The goal of this recipe is to
understand the core components of this basic discriminator. In future recipes, we will use
much more complex representations of the discriminator and in some cases, multiple
discriminators to improve the performance of these structures. Remember, it can be hard
for these models to converge without some tuning.

How to do it...
Let's break this recipe into a few core pieces—imports, initialization (init), model method,
and helper functions. This will help to articulate what each of the functions is doing and
ensure that we highlight the key points for each model's structure.
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Imports
The discriminator has typical imports, including sys for file IO and numpy for basic array
manipulation within Python. The keras imports are a bit more interesting, as can be seen
here:

#!/usr/bin/env python3
import sys
import numpy as np
from keras.layers import Input, Dense, Reshape, Flatten, Dropout
from keras.layers.advanced_activations import LeakyReLU
from keras.models import Sequential, Model
from keras.optimizers import Adam

We've imported the layers we will use, including the basic structural layers and a 
specialized structure called Leaky Rectified Linear Unit (LeakyReLU). We also import the
basic structural glue or model structure called Sequential. Finally, we are only using the
Adam optimizer in this model example, but we could also add a method to make the
optimizer selectable.

Initialization variables (init in the Discriminator class)
When creating a class in any object oriented programming, selecting what variables and
quantities are initialized in init is an important step. In this case, we need to know the
capacity of the model, the shape of the input, initialize the optimizer, and build the model,
as follows:

Class initialization with width, height, channels, and latent space size:1.

class Discriminator(object):
    def __init__(self, width = 28, height= 28, channels = 1,
                 latent_size=100):

Add the input arguments as internal variables to the class:2.

self.CAPACITY = width*height*channels
self.SHAPE = (width,height,channels)
self.OPTIMIZER = Adam(lr=0.0002, decay=8e-9)

Initialize the model based on the method we will define later in this recipe:3.

self.Discriminator = self.model()
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Compile a model with a binary_crossentropy loss and our specified4.
optimizer:

self.Discriminator.compile(loss='binary_crossentropy',
                   optimizer=self.OPTIMIZER, metrics=['accuracy'] )

Display a text summary of the model on the Terminal:5.

self.Discriminator.summary()

In this case, we call the model method and compile the model using
binary_crossentropy. During the training step to update the weights, the optimizer
will be the Adam optimizer. One of the key points I'd like to highlight here is that we made a
big deal about the loss function for GANs. Why are we only using a built-in loss function
here? Simply put—this is as an example GAN, and we'll have many more opportunities to
implement custom loss functions. The modern GAN structures actually rely on custom loss
functions to achieve higher accuracy. In this case, the key is to ensure that we are able to
build the basic structure and get it to train. After that, we can focus on building custom
functionality.

Model definition for the discriminator
The model definition for the discriminator is a binary classifier structure. We'll go over the
structure here:

This method starts with a sequential model—this simply allows us to stitch1.
layers together in an easy fashion. Keras makes a few assumptions along the
way, such as the previous layer's size is the input to the proceeding layer:

model = Sequential()

Next, we can check out the first layer:2.

model.add(Flatten(input_shape=self.SHAPE))

This layer does exactly what it sounds like: it is flattening the data into a single
data stream. 

The next layer is going to do the brunt of the work:3.

model.add(Dense(self.CAPACITY, input_shape=self.SHAPE))
model.add(LeakyReLU(alpha=0.2))
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A dense layer is simply a fully connected layer of neurons. It is one of the
fundamental building blocks of neural networks and allows for the inputs to
reach each of the neurons. The LeakyReLU is a special kind of activation layer
that ensures that small gradients can be used when the unit is not active. In
practice, this is advantageous over a normal ReLU for ensuring that you have
issues with non-activated units when the activation approaches zero.

As is standard practice, we continue our layers in the following fashion:4.

model.add(Dense(int(self.CAPACITY/2)))
model.add(LeakyReLU(alpha=0.2))

The next block is simply halving the capacity available at this layer, hopefully
allowing for this layer to learn the important features as it goes through the net.
Again, the LeakyReLU activation layer is used.

Finally, we have the final layer, which represents the probability that the input is5.
part of the class or not:

model.add(Dense(1, activation='sigmoid'))
return mode

After we build the model, it is returned by the method.

Helper methods in the Discriminator class
There are a few helper methods that enable you to understand key information about the
structures you are developing:

The first method called summary will print the summary that's available from1.
Keras of the model you produced previously:

def summary(self):
    return self.Discriminator.summary()

The summary function should put out data just like this on the Terminal:

Layer (type)                 Output Shape              Param #
=================================================================
flatten_1 (Flatten)          (None, 784)               0
_________________________________________________________________
dense_6 (Dense)              (None, 784)               615440
_________________________________________________________________
leaky_re_lu_5 (LeakyReLU)    (None, 784)               0
_________________________________________________________________
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dense_7 (Dense)              (None, 392)               307720
_________________________________________________________________
leaky_re_lu_6 (LeakyReLU)    (None, 392)               0
_________________________________________________________________
dense_8 (Dense)              (None, 1)                 393
=================================================================
Total params: 923,553
Trainable params: 923,553
Non-trainable params: 0
_________________________________________________________________

Our next helper function, called save_model , produces the photographic2.
version of the model structure:

def save_model(self):
        plot_model(self.Discriminator.model,
        to_file='/data/Discriminator_Model.png')

The output of the save model function will save an image just like this to the data folder:

Hence, you have now understood how to build your first GAN discriminator. 
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Explaining your second GAN component –
generator
The generator is the fun part of this structure. The generator is going to take inputs from
the latent space (a sample from a normal distribution in this recipe) and produce realistic
looking data. The generator will also be added to the adversarial part of the training. The
GAN will take in latent examples with labels and train on that until the generator itself is
able to produce realistic looking images. We'll see some examples of the generated images
in the near future.

Getting ready
As with the discriminator development, the important part of this recipe is that you have
the appropriate folder structure and the discriminator.py file. Testing each of these
components will come once we develop all three of the pieces, and will come once we get to
the training script later in this chapter.

How to do it...
This class is broken down into a few sections in order to better divide up the
information—imports, generator initialization, model definition of the generator, and
helper functions. I'd encourage you to pay attention to the model definition and to
experiment with different architectures with this class to understand if you can improve
this example code.
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Imports
The imports are a key piece:

#!/usr/bin/env python3
import sys
import numpy as np
from keras.layers import Dense, Reshape
from keras.layers import BatchNormalization
from keras.layers.advanced_activations import LeakyReLU
from keras.models import Sequential, Model
from keras.optimizers import Adam

As in previous classes, you will need the availability of sys and numpy. The basic layer
types are imported for use in the model, along with the LeakyReLU activation layer. The
Adam optimizer is used here, but a exercise problem is to expand each class to have a
different optimizer available.

Generator initialization
The Generator class needs to have a few input variables such as the width, height, and
channels of the input data. The latent space is also important as it helps define the size of
the distribution that we will sample and the side of the neural network. The code is as
follows:

class Generator(object):
    def __init__(self, width = 28, height= 28, channels = 1,
                 latent_size=100):
        self.W = width
        self.H = height
        self.C = channels
        self.OPTIMIZER = Adam(lr=0.0002, decay=8e-9)

        self.LATENT_SPACE_SIZE = latent_size
        self.latent_space = np.random.normal(0,1,
                                        (self.LATENT_SPACE_SIZE,))

        self.Generator = self.model()
        self.Generator.compile(loss='binary_crossentropy',
                               optimizer=self.OPTIMIZER)
        self.Generator.summary()
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A few of the variables are defined within the class such as the height, width, and
channels. The optimizer is instantiated and the latent space is defined. Finally, every time
we call a generator object, we want it to build and compile itself. When it is complete, it
will print a summary of the model built by these steps.

Model definition of the generator
The model is the heart of each of these classes. In this case, we are defining a model that is
going to take a sample from the latent space as an input and use it to produce an image
with the same shape as the original image. Let's break down this model code to understand
how this is happening:

First, let's define the model and begin with the basic Sequential structure:1.

def model(self, block_starting_size=128,num_blocks=4):
        model = Sequential()

Next, we start with our first block of layers in the neural network:2.

block_size = block_starting_size
model.add(Dense(block_size, input_shape=(self.LATENT_SPACE_SIZE,)))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))

This adds a dense layer to the network with an input shape that is a latent sample
and a starting size of our initial block size. In this case, we are starting with 128
neurons. Using the LeakyReLU activation layer, we are able to avoid vanishing
gradients and non-activated neurons. Then, BatchNormalization cleans up the
layer by normalizing the activations based on the previous layer. This improves
the efficiency of the network.

Next, we have the trickiest part:3.

for i in range(num_blocks-1):
                block_size = block_size * 2
                model.add(Dense(block_size))
                model.add(LeakyReLU(alpha=0.2))
                model.add(BatchNormalization(momentum=0.8))
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This set of code allows us to add additional blocks like the previous one, but
doubles the dense layer size. I'd encourage you to experiment with different
numbers of blocks. What are the outcomes? Do you see increased performance?
Faster convergence? Divergence? This set of code should allow you to experiment
with this type of architecture in a more flexible way.

The last piece to this method involves restructuring the output to be the same4.
shape as the input image and return the model:

model.add(Dense(self.W * self.H * self.C, activation='tanh'))
model.add(Reshape((self.W, self.H, self.C)))
return model

Helper methods of the generator
Helper methods make things in a class more efficient or frequently used throughout the
method. In our case, it seemed important to ensure that we could check the structure of the
model as a text output and graphically:

The text summary available from Keras is easy to implement:1.

def summary(self):
    return self.Generator.summary()

The summary function should return an output in the Terminal like this once we2.
use the Generator class:

_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
dense_1 (Dense) (None, 128) 12928
_________________________________________________________________
leaky_re_lu_1 (LeakyReLU) (None, 128) 0
_________________________________________________________________
batch_normalization_1 (Batch (None, 128) 512
_________________________________________________________________
dense_2 (Dense) (None, 256) 33024
_________________________________________________________________
leaky_re_lu_2 (LeakyReLU) (None, 256) 0
_________________________________________________________________
batch_normalization_2 (Batch (None, 256) 1024
_________________________________________________________________
dense_3 (Dense) (None, 512) 131584
_________________________________________________________________
leaky_re_lu_3 (LeakyReLU) (None, 512) 0
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_________________________________________________________________
batch_normalization_3 (Batch (None, 512) 2048
_________________________________________________________________
dense_4 (Dense) (None, 1024) 525312
_________________________________________________________________
leaky_re_lu_4 (LeakyReLU) (None, 1024) 0
_________________________________________________________________
batch_normalization_4 (Batch (None, 1024) 4096
_________________________________________________________________
dense_5 (Dense) (None, 784) 803600
_________________________________________________________________
reshape_1 (Reshape) (None, 28, 28, 1) 0
=================================================================
Total params: 1,514,128
Trainable params: 1,510,288
Non-trainable params: 3,840
_________________________________________________________________

Next, let's go over the generator's version of the model saver. This function is3.
identical to the function inside of the Discriminator, except for the path:

def save_model(self):
        plot_model(self.Discriminator.model,
        to_file='/data/Discriminator_Model.png')
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This function will output a PNG in the data folder that represents the structure of the
model:
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So, this was how we built the GAN generator. I hope you found it easy. We are now ready
to make a masterpiece.

Putting all the GAN pieces together
We've got a generator and a discriminator—that's all we need, right? Not so fast. We need
to actually create the adversarial model. Also, there is an open ended question about why
are we not focusing more on the loss function. In this case, each of the loss functions are
built into the Keras library, so we aren't going to focus heavily on that aspect right now.
When we cover more complex models, the loss functions will need to be customized, and
that will require more explanation. For now, let's keep our focus on how to structure a basic
GAN and how we can train it in an adversarial manner.

Getting ready
All of this code will be put into the gan.py file under the full-gan folder. This class
represents the adversarial model portion of the model development and will allow us to
put the two neural networks against each other. This recipe requires the same basic tools
that you have used for the last two recipes.

How it works...
The Generative Adversarial model takes the Discriminator and Generator as inputs. It
will focus on setting these two models into a combined model that will be able to train with
the latent example as input. The output is a prediction from the discriminator. This class
shares the same basic structure as the other classes in terms of core methods.

The GAN class has the same core components that the discriminator and generator have in
their classes. This way, the GAN model basically inherits the same basic pieces from each of
those skeleton classes. This structure is actually quite easy to construct once you start
working with it.
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Step 1 – GAN class initialization
There are a few key things to notice in this initialization step, as shown here:

class GAN(object):
    def __init__(self,discriminator,generator):
        self.OPTIMIZER = Adam(lr=0.0002, decay=8e-9)
        self.Generator = generator

        self.Discriminator = discriminator
        self.Discriminator.trainable = False
        self.gan_model = self.model()
        self.gan_model.compile(loss='binary_crossentropy',
                               optimizer=self.OPTIMIZER)
        self.gan_model.summary()

First, notice that we are grabbing both the discriminator and generator models. The
discriminator then sets its trainability to False, meaning that during the adversarial
training, it will not be training. The generator is consistently getting better, but the
discriminator will remain the same. In this architecture, this step is necessary so that it can
converse. The model is then built and compiled. At the end, a summary is printed.

Step 2 – model definition
The model is very simple in this case:

def model(self):
      model = Sequential()
      model.add(self.Generator)
      model.add(self.Discriminator)
      return model

Use a sequential model with the generator as the first piece and the discriminator as the
second. The GAN model will then take in a latent sample and output a probability
regarding whether it belongs to that class or not.

Step 3 – helper functions
Helper functions are the same as the discriminator and generator—just with the GAN
model context. Here's the model summary:

def summary(self):
    return gan_model.summary()
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With this summary, you should see this output in the Terminal:

_________________________________________________________________
Layer (type)                 Output Shape              Param #
=================================================================
sequential_1 (Sequential)    (None, 28, 28, 1)         1514128
_________________________________________________________________
sequential_2 (Sequential)    (None, 1)                 923553
=================================================================
Total params: 2,437,681
Trainable params: 1,510,288
Non-trainable params: 927,393
_________________________________________________________________

Then, we have the same save_model function that produces a PNG of the model structure:

def save_model(self):
    plot_model(self.gan_model.model, to_file='/data/GAN_Model.png')

And, that output file should look like this:

You have now completed your very first GAN in under 100 lines of code!

Training your first GAN
Training is the life blood of your model. You've created something, but without a way to
train and show it to the world, it is meaningless. This class is going to provide your model
with a way to train and a method for you to spot check the training.
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Getting ready
Remember to complete all of the steps up until this point! Once you get that done, you need
to create the train.py and run.py files in the full-gan folder. Also, if you haven't done
so already, go ahead and create the data folder inside of the full-gan folder. Ensure that
you have put the full-gan folder at the $HOME/full-gan location, or you might need to
update your run.sh script.

How to do it...
There are two big parts to training a GAN—the training class that we will define and
describe and the script that runs that training class. There are two main sections, training
class definition and run script definition, and they will cover the basics of each of these
pieces.

Training class definition
Let's walk through each of the methods in the trainer that you will need to fill in your own
implementation. We'll break this up into a few key components—imports, init method in
the class, load data method, training method, and helper functions.

Imports
The imports for this section are straightforward—the classes we need and some helper
functions needed throughout this class:

#!/usr/bin/env python3
from gan import GAN
from generator import Generator
from discriminator import Discriminator
from keras.datasets import mnist
from random import randint
import numpy as np
import matplotlib.pyplot as plt\
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init method in class
The initialization method for this class has two important sections—the variables that we
can use to tune the GAN and the initialization of the models themselves. You'll notice that
we initialize all of the models and then load the MNIST data in the init method. This
ensures that the class is ready to train once it is loaded. A new instance of the class will be
needed if you need to change any of the parameters. If those parameters need to be
dynamically reconfigurable, you would need to develop a set of helper functions to do that.
For the scope of this example, that functionality has been left out.

Here are the steps to build the init class:

Initialize the class with the size of the image, latent space, size, number of epochs,1.
batch, and a model_type parameter:

class Trainer:
    def __init__(self, width = 28, height= 28, channels = 1,
                 latent_size=100, epochs =50000, batch=32,
                 checkpoint=50,model_type=-1):

Make all of the parameters available as internal variables to the class:2.

self.W = width
self.H = height
self.C = channels
self.EPOCHS = epochs
self.BATCH = batch
self.CHECKPOINT = checkpoint
self.model_type=model_type
self.LATENT_SPACE_SIZE = latent_size

Initialize the Generator and Discriminator classes we built in the previous3.
recipes:

self.generator = Generator(height=self.H, width=self.W,
              channels=self.C, latent_size=self.LATENT_SPACE_SIZE)
self.discriminator = Discriminator(height=self.H, width=self.W,
                                   channels=self.C)
self.gan = GAN(generator=self.generator.Generator,
               discriminator=self.discriminator.Discriminator)
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Finally, call the load_MNIST method—this method will pull in the MNIST data4.
into our class automatically:

self.load_MNIST()

Load data method
The MNIST data is a beautiful dataset because it is simple and well-known. Everyone has
toyed with the MNIST dataset, and it is quick to download. For our purposes, we are going
to load the MNIST data in the trainer as an example. Within this class, there's also some
functionality to allow us to only use one number if we would like to build a generator that
is good at one number instead of them all:

    def load_MNIST(self,model_type=3):
        allowed_types = [-1,0,1,2,3,4,5,6,7,8,9]
        if self.model_type not in allowed_types:
            print('ERROR: Only Integer Values from -1 to 9 are
                   allowed')

        (self.X_train, self.Y_train), (_, _) = mnist.load_data()
        if self.model_type!=-1:
            self.X_train =
              self.X_train[np.where(self.Y_train==int(self.model_type))
                                    [0]]
        self.X_train = ( np.float32(self.X_train) - 127.5) / 127.5
        self.X_train = np.expand_dims(self.X_train, axis=3)
        return

The model_type allows us to switch between all of the MNIST digits (model_type = -1)
to a particular digit (model_type = [0,9]). We load the X_train set for use in the rest of
the class. Y_train is only needed in this case if you would like to pick a particular digit to
produce a model.

Training method
Let's talk about the critical pieces in this architecture to make sure this is easy to
understand:

First, we create a train method and loop over the number of specified epochs:1.

def train(self):
    for e in range(self.EPOCHS):
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Next, we are going to grab a batch of random images from our training dataset2.
and create our x_real_images and y_real_labels variables:

# Grab a batch
count_real_images = int(self.BATCH/2)
starting_index = randint(0, (len(self.X_train)-count_real_images))
real_images_raw = self.X_train[ starting_index : (starting_index +
                                count_real_images) ]
x_real_images = real_images_raw.reshape( count_real_images, self.W,
                                         self.H, self.C )
 y_real_labels = np.ones([count_real_images,1])

Notice that we only grabbed half the number of images that we specified with3.
the BATCH variable—why? Because, we're going to generate images with our
generator in the next step for the other half of the batch:

# Grab Generated Images for this training batch
latent_space_samples = self.sample_latent_space(count_real_images)
x_generated_images =
      self.generator.Generator.predict(latent_space_samples)
y_generated_labels = np.zeros([self.BATCH-count_real_images,1])

We've now developed a whole batch for training. We need to concatenate these4.
two sets into the x_batch and y_batch variables for training:

# Combine to train on the discriminator
x_batch = np.concatenate( [x_real_images, x_generated_images] )
y_batch = np.concatenate( [y_real_labels, y_generated_labels] )

This is where it gets interesting—we're going to use this batch to train our
discriminator. The discriminator knows that these images are not real when it is
trained, so the discriminator is constantly looking for the imperfections in the
generated images versus the real images.

Let's train the discriminator and grab a loss value to report:5.

# Now, train the discriminator with this batch
discriminator_loss =
  self.discriminator.Discriminator.train_on_batch(x_batch,y_batch)
  [0]
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We'll now train the GAN with mislabeled generator outputs. That is to say that
we will generate images from noise and assign a label to one of them while
training with the GAN. Why? This is the so-called adversarial training portion of
the training where we are using the newly trained discriminator to improve the
generated output—the report GAN loss is going to describe the confusion of the
discriminator from the generated outputs.

Here's the code to train the generator:6.

# Generate Noise
x_latent_space_samples = self.sample_latent_space(self.BATCH)
y_generated_labels = np.ones([self.BATCH,1])
generator_loss =
    self.gan.gan_model.train_on_batch(x_latent_space_samples,
                                      y_generated_labels)

Two pieces are left at the end of the script—printing loss metrics to the screen7.
and checking the model with printed images in the data folder:

print ('Epoch: '+str(int(e))+', [Discriminator :: Loss:
          '+str(discriminator_loss)+'], [ Generator :: Loss:
                                    '+str(generator_loss)+']')
            if e % self.CHECKPOINT == 0 :
                self.plot_checkpoint(e)
        return

That's how you train the GAN. You're now officially a GAN master.

Helper functions
But wait, there's more! We've got a few helper functions to go over that we've been using
throughout this class:

First, we have a convenience function called sample_latent_space:1.

def sample_latent_space(self, instances):
        return np.random.normal(0, 1,
                         (instances,self.LATENT_SPACE_SIZE))

This function is essentially wrapping a call to numpy in an easy to use method call.
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Next is the code to plot the model checkpoint—this function is going to print a2.
graphic that shows random samples of the generator output. Let's briefly cover
the core pieces in our plotting function:

Define a method for plotting checkpoint images—take a numeric1.
value, e, as input:

def plot_checkpoint(self,e):
    filename = "/data/sample_"+str(e)+".png"

Create noise from the latent space, and then generate an image with2.
our generator:

    noise =     self.sample_latent_space(16)
    images = self.generator.Generator.predict(noise)

Plot these newly generated images—in this case, we produced 16 images at each3.
epoch checkpoint:

            plt.figure(figsize=(10,10))
               for i in range(images.shape[0]):
                 plt.subplot(4, 4, i+1)
                 image = images[i, :, :, :]
                 image = np.reshape(image,
[self.H,self.W])
            plt.imshow(image, cmap='gray')
            plt.axis('off')

Finally, plot, save the figure, and close the figure:4.

            plt.tight_layout()
            plt.savefig(filename)
            plt.close('all')
        return

The key part to notice here is that we still don't have any established metrics for the
goodness of our model outputs. The first thing to do was to ensure that we can train the
model and the loss converges to a minima (fully trained). In future chapters, we are going
to discuss metrics for evaluating the goodness of the generator output.
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Run script definition
The run script is a little easier to deal with in terms of details—just add the necessary
variables into the script and run the train method:

#!/usr/bin/env python3
from train import Trainer

HEIGHT  = 28
WIDTH   = 28
CHANNEL = 1
LATENT_SPACE_SIZE = 100
EPOCHS = 50001
BATCH = 32
CHECKPOINT = 500
MODEL_TYPE = -1
trainer = Trainer(height=HEIGHT,\
                 width=WIDTH,\
                 channels=CHANNEL,\
                 latent_size=LATENT_SPACE_SIZE,\
                 epochs =EPOCHS,\
                 batch=BATCH,\
                 checkpoint=CHECKPOINT,
                 model_type=MODEL_TYPE)
trainer.train()

Due to the width, height, and channel being derived from the MNIST data, you might
wonder why we define it here. Well, another one of those pesky exercise problems will be
to implement the ability for the class to take in different datasets. Given the structure of the
code, it should be straightforward to allow the class to take different datasets.

Training the model and understanding the
GAN output
The most important part of the lesson after building a model is training! How do you train
this beautiful yet simple architecture you have just developed, you might ask? Quite
simply, now that we have laid the appropriate framework to do so, the key part is to
understand how to run all of these tools that we have developed and then understand the
output we are getting from the model.
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Getting ready
This is the moment of truth—have you completed all of the previous recipes up until this
point? If not, go back and work on them. Your directory should look like the following,
minus the items in the data folder if you haven't run the script yet:

full-gan/
├── data
│   ├── Discriminator_Model.png
│   ├── GAN_Model.png
│   ├── Generator_Model.png
│   ├── sample_0.png
│   ├── sample_1000.png
├── discriminator.py
├── Dockerfile
├── gan.py
├── generator.py
├── README.md
├── run.py
├── run.sh
└── train.py

It's important to get every one of these pieces built and in this repository (without the items
inside of the data folder) before proceeding on, as the next few steps will involve using all
of the previously built items.

How to do it...
You've done all the hard work! No, really, you have. It's a fairly simple endeavor to run the
code if you don't have any translation errors in the code. Essentially, you follow a few
simple steps to run your GAN:

Run the following command in the root folder of your repository:1.

sudo ./run.sh

You should see the following output in the Terminal once everything is working2.
correctly:

username@username-comp:~/full-gan$ sudo ./run.sh
[sudo] password for username:
Sending build context to Docker daemon 3.998MB
Step 1/3 : FROM base_image
 ---> c398836f2b23
Step 2/3 : RUN apt install -y python3-pydot python-pydot-ng
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graphviz
 ---> Using cache
 ---> 37424cd81385
Step 3/3 : ADD . /
 ---> c91a0189d9c1
Successfully built c91a0189d9c1
Successfully tagged ch3:latest
access control disabled, clients can connect from any host
################# Model Summaries
################# Download MNIST
################# Tensorflow connecting to the GPU
Epoch: 0, [Discriminator :: Loss: 0.7186179], [ Generator :: Loss:
                                                0.7297293]
Epoch: 1, [Discriminator :: Loss: 0.39331502], [ Generator :: Loss:
                                                 0.7450044]
Epoch: 2, [Discriminator :: Loss: 0.3295707], [ Generator :: Loss:
                                                0.8133272]
Epoch: 3, [Discriminator :: Loss: 0.29371032], [ Generator :: Loss:
                                                 0.8316293]
Epoch: 4, [Discriminator :: Loss: 0.29231048], [ Generator :: Loss:
                                                 1.032237]
Epoch: 5, [Discriminator :: Loss: 0.30067348], [ Generator :: Loss:
                                                 1.07507]
Epoch: 6, [Discriminator :: Loss: 0.23213515], [ Generator :: Loss:
                                                 1.2063006]
...

A few key points here:3.
Anything with ############ has been reduced to a simple summary
line—there's too many lines for a book to show them.
This code could be improved with a graphical look at the
Discriminator and Generator losses.
If you want to check to make sure that your docker image has been
built, check it using the docker images command in another
Terminal window. You should see that a ch3 image was recently built.
If you aren't seeing PNGs in your data directory, make sure that the
data directory is located at $HOME/full-gan/data. If the directory is
not there, feel free to modify your run.sh file to change the mapped
volume.

Now, let's talk about the results of this GAN!
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How it works...
All of this work, and what do we have to show for it? Well, I decided to make a little
graphic to show you the fruits of your labor throughout this chapter. Here are the MNIST
digit generator results for 40,000 epochs:

One of the mind-blowing things about these results to me is that you can see what kind of
data the first epoch produces—it's essentially noise. As the adversarial training continues,
the generator eventually learns the ability to move the pixels to the center, but it is hard to
discern any noticeable digits at the 5,000 mark. At 15,000, it is starting to become clear that
some numbers are being produced and that you can make them out. At 40,000 epochs, the
generator is able to do a few digits pretty well—notice that the 1 and the other digits still
need additional refining. So, what happens if we train a GAN on only a single digit from
the MNIST data?

Let's check out some of the results from my three generator:

The first thing you will notice is that the GAN model is able to converge much quicker with
the three model. Ideally, the model is able to learn this image type very well. And,
eventually at 40,000 epochs, the GAN is able to produce realistic looking 3 in almost all the
example cases that were pulled for this particular graphic.
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So, what does this tell us about training GANs on different datasets? Let's go over some
high level points:

A more constrained space for the GAN to learn over will result in faster
convergence
The digits dataset as a whole is more challenging due to the nature of digits and
the fact that some of these digits look similar:

The model would need to train longer (and potentially with more
examples) to learn an appropriate representation of the training
data

Exercise
This is the exercise set for the Chapter:

Expand the generator to allow for the use of the model's flexibility. Experiment1.
with different parameters for those two variables in the model definition.
Describe the effects.
Expand the training class capability to be able to take in different datasets other2.
than MNIST. Do you need to change anything else, but allow for the training
data to be an argument? What else needs to be changed?
Create a graphical way to visualize the Discriminator and Generator losses3.
with loss as your y value and epochs as your x value.



4
Dreaming of New Outdoor
Structures Using DCGAN

This chapter will cover the building blocks required to build your first Deep Convolutional
Generative Adversarial Network (DCGAN) implementation, including the following
recipes:

What is a DCGAN? A simple pseudocode example
Tools—do I need any unique tools?
Parsing the data—is our data unique?
Code implementation—generator
Code implementation—discriminator
Training
Evaluation—how do we know it worked?
Adjusting parameters for better performance

Introduction
A DCGAN was the first popularized improvement to Ian Goodfellow's hallmark structure,
as proposed for the first Generative Adversarial Network (GAN). DCGAN enables the use
of a repeatable, trainable architecture for GANs that will rarely diverge once dialed in. 
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What is DCGAN? A simple pseudocode
example
The DCGAN architecture simply requires updates for the model of the discriminator and
generator. We will also need to update our training step to improve convergence. The
MNIST data we used in the first example is the simplest of the examples we can work with.
Convergence for GANs, as you will remember, is one of the hardest parts about building
such an architecture, but the DCGAN architecture helps ensure that convergence happens
reliably. We'll take a detailed look at convergence with the help of pseudocode in the next
section.

Getting ready
First, let's break down the DCGAN architecture into the principal, important components:
the discriminator and the generator. The next section will focus on how we develop these
structures, but first, let's talk about the basic structure of DCGAN, which is made up of the
following sections:

Numbered steps on the high-level DCGAN
Pseudocode generator
Pseudocode discriminator
Pseudocode trainer

How to do it...
The generator can be simply described, as shown in the following diagram from the
DCGAN paper:
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The DCGAN paper highlights the structure of the generator they use to achieve their published results. Our model will use the same basic architecture, but simplified

The preceding diagram explains what will inspire the way we build our generator in future
sections. One of the key elements to understand here, and what is different from other
neural network architecture, is that this structure does not rely on fully-connected layers or
pooling. In this way, the network receives enforced generalization, as each neuron does not
need to be connected to another in the subsequent layer (fully-connected), nor does it
combine outputs of neurons (known as pooling).

The discriminator presents itself in a much easier way; we can simply employ any
convolutional classification technique we like in the discriminator. For the sake of ensuring
model convergence, we have simplified the architecture used.

Note that one of the exercise questions at the end of this chapter will focus
on experimenting with different discriminators.
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Generator
The Generator class only has two notable differences—one in the initialization step of the
class, where we can choose either simple GAN or convolutional GAN, while the other
difference is that we need to actually build the DCGAN model, giving us an additional
stubbed-out function in the class that develops the model.

Now, let's move on and build a simple pseudocode example using the following steps:

First, initialize the class as normal, including imports, as follows:1.

#!/usr/bin/env python3
imports

Create a class for the generator that allows us to toggle the type of model with2.
the following model_type flag:

class Generator(object):
    def __init__(self, width = 28, height= 28, channels = 1,
                 latent_size=100, model_type = 'simple'):
        # Initialize Class Variables

Write a simple example of how to toggle between the two different styles of3.
models, as follows:

if model_type=='simple':
   # Initialize Simple Generator
elif model_type=='DCGAN':
  # Initialize Convolutional Generator

The model architecture for the Generator itself will go inside the following4.
method:

    def dc_model(self):
        # Convolutional Generator
        return model

As we plan to keep the original model we built, let's compare the two different5.
methods as follows:

    def model(self, block_starting_size=128,num_blocks=4):
        # Simple GAN
        return model
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Finally, introduce helper methods to each one of the classes to help provide a6.
summary, and then save the model, as follows:

    def summary(self):
        # Summary Helper Function

    def save_model(self):
        # Model Saver Helper Function

Discriminator
The Discriminator class involves similar changes to those seen in Chapter 3, My First
GAN in Under 100 Lines. However, there are two significant differences: the if statement in
the initialization step and the method for the model instantiation.

Note that we will go over these new pieces of code in detail in later
chapters.

Now, let's take a look at a simple discriminator pseudocode example by using the following
steps:

As with the generator example, use python3 and perform the necessary imports,1.
as follows:

#!/usr/bin/env python3
imports

Create a class called Discriminator that allows you to toggle the model_type,2.
as follows:

class Discriminator(object):
    def __init__(self, width = 28, height= 28, channels = 1,
latent_size=100, model_type = 'simple'):
        # Initialize Class Variables

Stub out the model type selector in the initialization step of the class, as follows:3.

if model_type=='simple':
   # Initialize Simple Generator
elif model_type=='DCGAN':
   # Initialize Convolutional Generator
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Create a method that develops the dc_model, as follows:4.

def dc_model(self):
    # Convolutional Generator
    return model

Maintain the following original model from the previous chapter:5.

def model(self, block_starting_size=128,num_blocks=4):
    # Simple GAN
    return model

Finally, input the following helper functions for the Discriminator function:6.

def summary(self):
    # Summary Helper Function

def save_model(self):
    # Model Saver Helper Function

See also
Refer back to the section in Chapter 3, My First GAN in Under 100 Lines, on
generators and discriminators

Tools – do I need any unique tools?
This section will show you how to create the underlying infrastructure that allows you to
use Large-Scale Scene Understanding (LSUN) data. This will make sure that you have
created the right Docker container and that all of your folders are structured in the correct
format. Here, we'll also begin the process of downloading the LSUN dataset for the
DCGAN recipe.
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Getting ready
This section will lay the groundwork for future coding sections. First, create the following
folders for file storage:

DCGAN
├── data
│   └── README.md
├── docker
│   ├── build.sh
│   ├── clean.sh
│   └── Dockerfile
├── README.md
├── scripts

Make sure that you create a DCGAN directory in the $HOME directory in your Ubuntu
installation. Many of the scripts we will develop are going to rely on this installation
location when mapping volumes using Docker's commands. However, if you are
comfortable with changing the mapped volumes in the run command, you won't need to
install it in $HOME.

In machine learning (ML), algorithm development is driven by the different datasets that
are used for training. For this chapter, we are going to introduce the LSUN dataset. This
section will describe how you can download the dataset for this chapter and then format it
for the learning step.

In this section, we will cover the following topics:

Setting up your environment:
Dockerfile

Build script
Clean script

Collecting LSUN data

How to do it...
As with Chapter 2, Data First, Easy Environment, and Data Prep, and Chapter 3, My First
GAN in Under 100 Lines, first ensure that there is a Docker environment set up and ready for
learning.



Dreaming of New Outdoor Structures Using DCGAN Chapter 4

[ 106 ]

The development environment for DCGAN
There are three critical components to the Dockerfile that inherit our base_image. In the
docker folder in the DCGAN directory, create a Dockerfile and complete the following
steps: 

Import the base_image we've been using for each of our chapters using the1.
following command:

FROM base_image

As we are using the LSUN dataset, we are going to use the LSUN repository to2.
download the raw data, as follows:

RUN git clone https://github.com/fyu/lsun.git

There are a few miscellaneous installations that end up being useful for3.
debugging (IPython) and visualization (pydot and graphviz), which can be run
with the following commands:

RUN apt install -y python3-pydot python-pydot-ng graphviz
RUN pip3 install ipython

Now, to build the Dockerfile, we need to create a build script (aptly called4.
build.sh in DCGAN and docker), as follows:

#/bin/bash
nvidia-docker build -t ch4 .

Next, implement a clean script to remove the image from your machine if5.
necessary (this is stored in a file called clean.sh in DCGAN and docker) with the
following code:

#/bin/bash
docker rmi ch4

As with all shell scripts, ensure that each of them is executable prior to using6.
them. You can do this with the following command:

chmod 777 <filename>.sh
# Replace filename with the name of the file you want to grant
  executable privileges to
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Your directory structure should now look like the following:7.

DCGAN
├── data
│   └── README.md
├── docker
│   ├── build.sh
│   ├── clean.sh
│   └── Dockerfile

Now, we have a Dockerfile and a build script, build the Docker image by8.
issuing the following command:

sudo ./build.sh

Now, it's time to move on and download some data!

Downloading and unpacking LSUN data
The LSUN dataset is quite popular in the ML field and is well-suited to the GAN task. This
dataset in particular contains a few useful classes relating to our task. The following
diagram illustrates how the data was labelled:

How the LSUN dataset is trained 
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There are a few things to note when looking over the dataset—first, that it has been labeled
by humans and a network, and so there may be a few label errors. The other thing to note is
that when you see a class such as outdoor_church, as we will use, it will involve a wide
variety of structures. The GAN will learn a general representation relating to the structure
of the image, but clean results will require tuning the network and underlying parameters.

So, let's go over how to get data from the LSUN dataset. First, we need to use our newly
built Docker image to download the data and unpack it. We'll create the create_data.sh
shell script and give it executable privileges. This file will involve the following three steps:

At the top of the script, you'll need the bin/bash statement and xhost1.
commands that we learned about in previous recipes, as follows:

#/bin/bash
xhost +

The first run command is simply going to use the download script from the2.
LSUN group to download the data into your data folder. This file is about 3
gigabytes, as follows:

# Download the data into our data folder
docker run -it \
   --runtime=nvidia \
   --rm \
   -v $HOME/DCGAN/data:/data \
  ch4 python lsun/download.py -o /data -c church_outdoor && unzip
church_outdoor_train_lmdb.zip && unzip church_outdoor_val_lmdb.zip
&& mkdir /data/church_outdoor_train_lmdb/expanded

Next, the following run command expands the data into a flat directory structure3.
containing about 126,000 images, which could take a while:

# Expand the data into our data folder
docker run -it \
   --runtime=nvidia \
   --rm \
   -v $HOME/DCGAN/data:/data \
      ch4 python lsun/data.py export
/data/church_outdoor_train_lmdb
      --out_dir /data/church_outdoor_train_lmdb/expanded --flat
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To run the Python script we'll create in the next recipe, we're need to add one4.
more run command to our create_data.sh shell script in the scripts folder,
which is as follows:

# Save to NPY File
docker run -it \
 --runtime=nvidia \
 --rm \
 -v $HOME/DCGAN/data:/data \
 -v $HOME/Chapter4/DCGAN/src:/src \
          ch4 python3 src/save_to_npy.py

In the next section, we'll complete the data processing by reading all of the preceding files
into an NPY file for use in our GAN.

There's more...
For more information, read the paper on the original LSUN dataset
at https://arxiv.org/pdf/1506.03365.pdf.
Or check out their website at http:/ /lsun. cs. princeton. edu/ 2017/ .

See also
Refer to the Chapter 2, Data First, Easy Environment, and Data Prep, in the But
first, set up your development environment recipe

Parsing the data – is our data unique?
Data is the lifeblood of these algorithms. If you take nothing else away from this book,
please learn this lesson. In this recipe, we'll read each of the files in an array, resize them for
learning, and save them into an easy-to-access compressed format.

https://arxiv.org/pdf/1506.03365.pdf
http://lsun.cs.princeton.edu/2017/
http://lsun.cs.princeton.edu/2017/
http://lsun.cs.princeton.edu/2017/
http://lsun.cs.princeton.edu/2017/
http://lsun.cs.princeton.edu/2017/
http://lsun.cs.princeton.edu/2017/
http://lsun.cs.princeton.edu/2017/
http://lsun.cs.princeton.edu/2017/
http://lsun.cs.princeton.edu/2017/
http://lsun.cs.princeton.edu/2017/
http://lsun.cs.princeton.edu/2017/
http://lsun.cs.princeton.edu/2017/
http://lsun.cs.princeton.edu/2017/
http://lsun.cs.princeton.edu/2017/
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Getting ready
First, let's perform a sanity check on our directory structure to make sure that we have all
the right pieces; it should look as follows:

DCGAN
├── data
│   └── README.md
├── docker
│   ├── build.sh
│   ├── clean.sh
│   └── Dockerfile
├── README.md
├── scripts
│   └── create_data.sh
└── src
    ├── save_to_npy.py

You should notice the new folder, src, along with a new file, save_to_npy.py. The
following recipe will focus on this Python file and how to run it to save data.

How to do it...
First, create the save_to_npy.py file and add the following lines to import the1.
necessary dependencies and point to the python3 interpreter:

#!/usr/bin/env python3
from PIL import Image
import numpy as np
import os

Next, build the first core method for this script, which will grab a list of the files2.
from a given folder based on an extension, as follows:

def grabListOfFiles(startingDirectory,extension=".webp"):
    listOfFiles = []
    for file in os.listdir(startingDirectory):
        if file.endswith(extension):
            listOfFiles.append(os.path.join(startingDirectory,
                               file))
    return listOfFiles

The great thing about the preceding function is that it will recursively search the
directory and find every file with the given extension. In our case, the LSUN
dataset has all of its images saved in a WebP format.
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The second method called grabArrayOfImages will read the image and convert3.
the image to RGB or grayscale depending on your flag, as follows:

def
grabArrayOfImages(listOfFiles,resizeW=64,resizeH=64,gray=False):
    imageArr = []
    for f in listOfFiles:
        if gray:
            im = Image.open(f).convert("L")
        else:
            im = Image.open(f).convert("RGB")
        im = im.resize((resizeW,resizeH))
        imData = np.asarray(im)
        imageArr.append(imData)
    return imageArr

It's important to use the Image class from Pillow in the preceding example in
order to read the WebP files correctly. Using the built-in functionality of Pillow,
we are able to resize the image to a smaller, square size (64 x 64 is reasonable for
most graphics cards). Once the image has been read and resized, we can then
append it to an array. Once the list of files has been exhausted, we return the
array.

Finally, let's use each of the functions that we have discussed to grab a list of the4.
files, process the images in both grayscale and color, and then finally use
Numpy's built-in save function to save the images to their own npy files, as
follows:

direc = "/data/church_outdoor_train_lmdb/expanded/"

listOfFiles = grabListOfFiles(direc)
imageArrGray =
    grabArrayOfImages(listOfFiles,resizeW=64,resizeH=64,gray=True)
imageArrColor =
grabArrayOfImages(listOfFiles,resizeW=64,resizeH=64)

print("Shape of ImageArr Gray: ", np.shape(imageArrGray))
print("Shape of ImageArr Color: ", np.shape(imageArrColor))

np.save('/data/church_outdoor_train_lmdb_gray.npy', imageArrGray)
np.save('/data/church_outdoor_train_lmdb_color.npy', imageArrColor)



Dreaming of New Outdoor Structures Using DCGAN Chapter 4

[ 112 ]

Now, we need to ensure that the create_data shell script is executable (chmod5.
777 create_data.sh). Run the following command to download the data,
unpack it, and then save it to the relevant files for learning:

sudo ./create_data.sh

At the end of this script, you should see an output similar to the following:

Archive: church_outdoor_val_lmdb.zip
  creating: church_outdoor_val_lmdb/
  inflating: church_outdoor_val_lmdb/lock.mdb
  inflating: church_outdoor_val_lmdb/data.mdb
.
.
Exporting /data/church_outdoor_train_lmdb to
Finished 1000 images
Finished 2000 images
Finished 3000 images
Finished 4000 images
Finished 5000 images
Finished 6000 images
Finished 7000 images
.
.
Shape of ImageArr Gray: (126227, 64, 64, 1)
Shape of ImageArr Color: (126227, 64, 64, 3)

Let's move on to the next recipe!

Code implementation – generator
Now, it's time for the interesting part! As well as interesting, the following preparation
steps will make your adventure in GAN coding much easier to follow. The Generator
code has two core changes, which we covered in the earlier pseudocode step. In this
section, we'll go over the implementation of the code's two core changes, along with the
deep convolutional generator.
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Getting ready
Perform a directory check, as follows:

DCGAN
├── data
├── docker
├── README.md
├── run.sh
├── scripts
└── src
    ├── generator.py
    ├── save_to_npy.py

In this section, we will build the generator.py script. You can either build it from scratch
or take Generator.py from Chapter 3, My First GAN in Under 100 Lines, and upgrade it to
accommodate DCGAN capabilities.

The following script may seem like a long block of text, but fear not!

How to do it...
As you should know, there is a set of key imports for each of the classes we use—make sure
that you have them at the top of your file for each recipe we go through.

Initializing generator – the DCGAN update
The Generator class initialization looks very similar to what we saw in Chapter 3, My
First GAN in Under 100 Lines. There is, however, one difference: the if statement stuck in
the middle:

First, initialize the class, just like we did previously, but take care to add one1.
additional argument for the model type, as follows:

class Generator(object):
    def __init__(self, width = 28, height= 28, channels = 1,
latent_size=100, model_type = 'simple'):
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Add all of the following variables as internal variables for the class to use:2.

self.W = width
self.H = height
self.C = channels
self.LATENT_SPACE_SIZE = latent_size
self.latent_space = np.random.normal(0,1,
                                 (self.LATENT_SPACE_SIZE,))

For the if statement, we can switch between the simple and DCGAN3.
architecture at runtime. This feature will allow you to turn the DCGAN model on
or off depending on what task you're doing, as shown in the following code
block:

if model_type=='simple':
   self.Generator = self.model()
   self.OPTIMIZER = Adam(lr=0.0002, decay=8e-9)
   self.Generator.compile(loss='binary_crossentropy',
                          optimizer=self.OPTIMIZER)
elif model_type=='DCGAN':
     self.Generator = self.dc_model()
     self.OPTIMIZER = Adam(lr=1e-4, beta_1=0.2)
     self.Generator.compile(loss='binary_crossentropy',
                     optimizer=self.OPTIMIZER,metrics=['accuracy'])

You'll notice that the optimizer for the generator in the DCGAN architecture is
slightly different. Note that we also specified a metric for evaluation in the
declaration. It's very easy to get divergence when training GANs (when the
discriminator loss goes to zero), where you simply get noise as output from the
generator. The settings in the preceding files should allow you to get decent
generator outputs, but you will need to tune them for improved performance.

Finally, add the following lines as diagnostics:4.

self.save_model()
self.summary()



Dreaming of New Outdoor Structures Using DCGAN Chapter 4

[ 115 ]

Building the DCGAN structure
First, as we did in an earlier neural network model, we need to instantiate the1.
Sequential model type and add the first dense layer, as follows:

def dc_model(self):
    model = Sequential()
    model.add(Dense(256*8*8,activation=LeakyReLU(0.2),
    input_dim=self.LATENT_SPACE_SIZE))
    model.add(BatchNormalization()

This first dense layer represents the input layer with a LeakyReLU activation.
Also, notice that the input is the latent space size. The first number in the dense
layer is the number of filters initialized; however, in the future, you may want to
experiment with changing the network's starting value. The paper here starts
with 1,024 filters, but starting out with more can help the GAN's convergence.

Next, we need to reshape the tensor so that it can be built back up in an image.2.
(Notice that the number of filters, 256 x 8 x 8, equals the multiplication of each
channel in the reshape layer). Each layer must match the original information of
the last—the previous tensor's sizing information must match. After the reshape
to (8, 8, 256), we'll upsample it and then look at a generator image of 16 x 16
(by three channels). From there, will do two of the same blocks, as follows:

model.add(Reshape((8, 8, 256)))
model.add(UpSampling2D())
# 16x16
model.add(Convolution2D(128, 5, 5,
          border_mode='same', activation=LeakyReLU(0.2)))
model.add(BatchNormalization())
model.add(UpSampling2D())

# 32x32
model.add(Convolution2D(64, 5, 5,
          border_mode='same', activation=LeakyReLU(0.2)))
model.add(BatchNormalization())
model.add(UpSampling2D())
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The preceding blocks are simple in their design thanks to the following features:

Two-dimensional convolution across any intermediate generated
images allows you to choose the filter size, stride, border mode
(how you handle the edges with a convolutional filter), and the
activation function
Using LeakyReLU works well in practice
BatchNormalization on the preceding convolutional layer helps
to ensure there are neither very high nor very low activations
while also speeding up training and reducing overfitting
UpSampling2D scales are increased twice by default, such as 16 x
16 -> 32 x 32 -> 64 x 64

The output tensor for this model is structured in a similar way to previous layers,3.
with the exception of the activation. tanh is recommended by authors and
appears to be necessary in this particular architecture; see it in action as follows:

# 3x64x64
model.add(Convolution2D(self.C, 5, 5, border_mode='same',
                        activation='tanh'))
return model

After returning the model, save the model structure into a PNG, as shown in the4.
following diagram:
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See also
Refer to Chapter 3, My First GAN in Under 100 Lines
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Code implementation – discriminator
The discriminator is simpler in comparison to the generator. Deep convolutional networks
are commonplace in classification research. The key thing to remember with GANs,
however, is that the training should be adversarial—simply grabbing state-of-the-art
classification techniques may not give the generator the ability to learn. In essence, there is
a balancing act to structuring your discriminator.

Getting ready
As always, keep track of your directory and make sure that you are placing newly
developed structures in the right place, as follows:

DCGAN
├── data
├── docker
├── README.md
├── run.sh
├── scripts
└── src
    ├── discriminator.py
    ├── gan.py
    ├── generator.py
    ├── save_to_npy.py

Note that discriminator.py and gan.py from the previous section will
be integrated into the following recipe.

How to do it...
It's simple to modify the following structure from Goodfellow, to a DCGAN type; all you
need to do is add two core changes to the Chapter 3, My First GAN in Under 100 Lines, code
used to create the DCGAN model. We'll avoid giving you a review of the imports here, but
if you need it in the script, import it at the top. Don't forget to point to the right interpreter,
too! Now, let's move on to the interesting stuff!
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Initializing the Discriminator class
First, we need to add an argument relating to what model_type we would like1.
to use, as well as provide the ability for users to select either GAN or DCGAN, as
follows:

class Discriminator(object):
    def __init__(self, width = 28, height= 28, channels = 1,
latent_size=100,model_type = 'simple'):

Next, perform the following basic setup within the class, as follows:2.

self.W = width
self.H = height
self.C = channels
self.CAPACITY = width*height*channels
self.SHAPE = (width,height,channels)

The following is the same code used in Chapter 3, My First GAN in Under 1003.
Lines, except it is wrapped with an if statement to become selectable:

if model_type=='simple':
   self.Discriminator = self.model()
   self.OPTIMIZER = Adam(lr=0.0002, decay=8e-9)
   self.Discriminator.compile(loss='binary_crossentropy',
        optimizer=self.OPTIMIZER, metrics=['accuracy'] )

The following else-if statement allows you to select the DCGAN architecture.4.
Here, we use the Adam optimizer, but you can experiment with different types of
optimizers:

elif model_type=='DCGAN':
     self.Discriminator = self.dc_model()
     self.OPTIMIZER = Adam(lr=1e-4, beta_1=0.2)
     self.Discriminator.compile(loss='binary_crossentropy',
                 optimizer=self.OPTIMIZER, metrics=['accuracy'] )

Finally, save the model and provide a summary on the Terminal as follows:5.

self.save_model()
self.summary()

Remember—if the discriminator or generator loss falls to zero, the model has diverged!
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Building the model structure
This model structure is intuitive, so we'll use convolutional layers to trigger a binary
classification about the input image: real or fake, as shown in the following code block:

def dc_model(self):
    model = Sequential()

    model.add(Convolution2D(64, 5, 5, subsample=(2,2), input_shape=
             (self.W,self.H,self.C),
              border_mode='same', activation=LeakyReLU(alpha=0.2)))
    model.add(Dropout(0.3))
    model.add(BatchNormalization())

    model.add(Convolution2D(128, 5, 5, subsample=(2,2),
              border_mode='same', activation=LeakyReLU(alpha=0.2)))
    model.add(Dropout(0.3))
    model.add(BatchNormalization())

    model.add(Flatten())
    model.add(Dense(1, activation='sigmoid'))
    return model

Take the following steps while structuring the discriminator:

Instantiate a sequential model and start with a 2D convolutional layer with 641.
filters, a 5 x 5 kernel, a sub-sample of 2 x 2, and an input shape of the image
Drop enforced sparcity at each step; in this example, we'll drop 30% of the2.
learned weights after each pass to ensure that the model doesn't overfit and can
learn the key features
Perform BatchNormalization3.
Repeat the process with a larger number of filters (such as 128)4.
Finally, flatten the model and ensure the output is a prediction (either 1 for real5.
or 0 for fake)

After building the model, check the structure with the saveModel function to ensure that
the layers are connected in the manner illustrated in the following diagram:
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You can copy the exact GAN.py file from Chapter 3, My First GAN in
Under 100 Lines, and use it in this DCGAN architecture.

Now, let's move on to training!

See also
Refer to the section on GAN models in Chapter 3, My First GAN in Under 100
Lines, for more information
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Training
The training script from Chapter 3, My First GAN in Under 100 Lines, has been modified to
accept our new data format, and we have also added some new tricks to ensure that more
complicated architecture is able to converge. We'll also fully implement a batch and epoch
system for our GAN trainer in this section.

Getting ready
Add the following files, which you'll need to train the GAN:

DCGAN
├── data
├── docker
├── README.md
├── run.sh
├── scripts
└── src
    ├── discriminator.py
    ├── gan.py
    ├── generator.py
    ├── run.py
    ├── save_to_npy.py
    └── train.py

The train.py and run.py files will drive the training of your DCGAN architecture.

How to do it...
In this section, we'll focus on the training script's key changes.

Changes to class initialization
First, notice that there is a new optional argument in the Trainer class called1.
model_type, as shown in the following snippet:

class Trainer:
    def __init__(self, width = 28, height= 28, channels = 1,
                 latent_size=100, epochs =50000, batch=32,
checkpoint=50,model_type='DCGAN',data_path = ''):
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As you will recall, we used this parameter in Chapter 3, My First GAN in Under
100 Lines, when selecting the MNIST number we wanted to train on. In this
instance, we'll use it to select the model type for the generator and discriminator.
For this implementation, we will assume that both the generator and
discriminator will want to use the same model type. An optional change to
consider in the future would be to allow different model types for the generator
and discriminator.

Next, we need to use the model_type variable with the Discriminator and2.
Generator, as follows:

self.generator = Generator(height=self.H, width=self.W,
     channels=self.C, latent_size=self.LATENT_SPACE_SIZE,model_type
             = self.model_type)
self.discriminator = Discriminator(height=self.H, width=self.W,
                     channels=self.C,model_type = self.model_type)
self.gan = GAN(generator=self.generator.Generator,
               discriminator=self.discriminator.Discriminator)

#self.load_MNIST()
self.load_npy(data_path)

The GAN model is unchanged from Chapter 3, My First GAN in Under 100 Lines,
at this point, so we simply stick our models in the GAN class to produce a GAN
model for adversarial training.

The final change worth highlighting in class initialization is data loading; here,3.
we are no longer using clean, built-in datasets. The load_npy function will
instead load data from an npy file, as follows:

def load_npy(self,npy_path,amount_of_data=0.25):
        self.X_train = np.load(npy_path)
        self.X_train =
           self.X_train[:int(amount_of_data*float
                                    (len(self.X_train)))]
        self.X_train = (self.X_train.astype(np.float32) -
                        127.5)/127.5
        self.X_train = np.expand_dims(self.X_train, axis=3)
        return

Note the following assumptions:

The data has been cleaned and resized for learning—this means a structure of
sample, channels, height, and width.
The images are all the same size.
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The amount of the data you can ingest is based on your machine; for instance,
when using a 1,060 GPU with 16GB of RAM, approximately 50% of the data will
load. Remember to modify the amount_of_data parameter based on your own
system.

Understanding the changes in pseudocode
The original training process as seen in Chapter 3, My First GAN in Under 100 Lines, is as
follows:

### Pseudocode
On Epoch:
    Batch Size = ##
    x_train_real = Half of Batch From Real Images
    y_train_real = 1s (Real) x Batch Size
    x_train_gen  = Half of Batch from Generated Images
    y_train_gen  = 0s (Fake) x Batch Size

    train_discriminator(concat(x_train_real,x_train_gen),
                        concat(y_train_real,y_train_gen))

    x_generated_images = generator(batch_size)
    y_labels = 1s for Real
    train_gan(x_generated_images,y_labels)

The updated process is as follows:

### Pseudocode
On Epoch:
    Batch Size = ##
    flipcoin()
        x_train = Half of Batch From Real Images
        y_train = 1s (Real) x Batch Size
    else:
        x_train  = Half of Batch from Generated Images
        y_train  = 0s (Fake) x Batch Size

    train_discriminator(x_train,y_train)

    x_generated_images = generator(batch_size)
    flipcoin()
        y_labels = 1s for Real
    else:
        y_labels = 0s for Fake (Noisy Labels)
    train_gan(x_generated_images,y_labels)
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A key change with this training step is that we no longer mix the generated and real images
when training the discriminator, as illustrated in the following diagram:

These minor changes to the trainer class work toward improving the performance of
GAN, and in some cases, are the reason you can converge. For example, when writing this
chapter, we ran into a few instances where the discriminator would diverge, making the
generator only produce noise.

We'll discuss coin flipping in the upcoming recipe on parameter tuning.
The preceding Python code represents the pseudocode.

The new and improved training script
In this section, we'll cover the highlights of what has changed in our training method:

First, we need to define the training method and loop over the epochs, as follows:1.

def train(self):
    for e in range(self.EPOCHS):
        b = 0

Here, we're using the variable b to keep track of the number of batches we need to
do to complete the epoch.
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Now, using the following code, make a copy of the training data so that you can2.
operate on it. Then, create batches until you have depleted the last of the training
data:

X_train_temp = deepcopy(self.X_train)
  while len(X_train_temp)>self.BATCH:
       # Keep track of Batches
       b=b+1

Remember to increment the variable b to keep track of the batch being used
within the epoch.

To train the discriminator, grab the training data for each of the epochs. In the3.
following example, we have implemented a trainer where it either trains on real
data (true, in this if statement) or on generated data (false):

# Train Discriminator
# Make the training batch for this model be half real, half noise
# Grab Real Images for this training batch
if self.flipCoin():
   count_real_images = int(self.BATCH)
   starting_index = randint(0, (len(X_train_temp)-
                            count_real_images))
   real_images_raw = X_train_temp[ starting_index : (starting_index
                     + count_real_images) ]
# self.plot_check_batch(b,real_images_raw) ## This will put out a
lot of files!

# Delete the images used until we have none left
X_train_temp = np.delete(X_train_temp,range(starting_index,
               (starting_index + count_real_images)),0)
x_batch = real_images_raw.reshape( count_real_images, self.W,
                                   self.H, self.C )
y_batch = np.ones([count_real_images,1])
else:
# Grab Generated Images for this training batch
latent_space_samples = self.sample_latent_space(self.BATCH)
x_batch = self.generator.Generator.predict(latent_space_samples)
y_batch = np.zeros([self.BATCH,1])

As you can see, we have sampled the training data at random and then deleted it
from the copied variable.
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After receiving the training data, train the discriminator and record the loss of4.
the discriminator, as follows:

# Now, train the discriminator with this batch
discriminator_loss =
self.discriminator.Discriminator.train_on_batch(x_batch,y_batch)
                                                    [0]

Finally, train the adversarial GAN model with the generated labels. One time out5.
of ten, introduce intentional label errors into the training process, as follows:

# In practice, flipping the label when training the generator
improves convergence
if self.flipCoin(chance=0.9):
   y_generated_labels = np.ones([self.BATCH,1])
else:
   y_generated_labels = np.zeros([self.BATCH,1])
   x_latent_space_samples = self.sample_latent_space(self.BATCH)
generator_loss =
  self.gan.gan_model.train_on_batch(x_latent_space_samples,
                                    y_generated_labels)

Finally, check all the results with a print statement, a plotting function, and a6.
checkpoint at each of the epochs as assigned by the initialization, as shown in the
following snippet:

print ('Batch: '+str(int(b))+', [Discriminator :: Loss:
       '+str(discriminator_loss)+'], [ Generator :: Loss:
       '+str(generator_loss)+']')
if b % self.CHECKPOINT == 0 :
       label = str(e)+'_'+str(b)
       self.plot_checkpoint(label)

print ('Epoch: '+str(int(e))+', [Discriminator :: Loss:
       '+str(discriminator_loss)+'], [ Generator :: Loss:
       '+str(generator_loss)+']')
if e % self.CHECKPOINT == 0 :
       self.plot_checkpoint(e)
return



Dreaming of New Outdoor Structures Using DCGAN Chapter 4

[ 128 ]

Python run script
Now, we have all the pieces to make this DCGAN run! First, take a look at the
following Python run script:

#!/usr/bin/env python3
from train import Trainer

# Command Line Argument Method
HEIGHT = 64
WIDTH = 64
CHANNEL = 3
LATENT_SPACE_SIZE = 100
EPOCHS = 100
BATCH = 128
CHECKPOINT = 10
PATH = "/data/church_outdoor_train_lmdb_color.npy"

trainer = Trainer(height=HEIGHT,\
                 width=WIDTH,\
                 channels=CHANNEL,\
                 latent_size=LATENT_SPACE_SIZE,\
                 epochs =EPOCHS,\
                 batch=BATCH,\
                 checkpoint=CHECKPOINT,\
                 model_type='DCGAN',\
                 data_path=PATH)
trainer.train()

Note the following points in the updated Python run script:

The height and width are 64 x 64—the same size as in the npy file
128 is the recommended batch
The Model_Type flag is set to DCGAN
Each epoch goes through the entire dataset of batches prior to moving on to the
next epoch; this means there is a minimum data_size or batch_size
The path in this call should be a path that the Dockerfile can reach—ensure
that the -v call in your Docker run script is appropriately configured
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Shell run script
It's now time to run the appropriate shell script, which is as follows:

#/bin/bash

# Training Step
xhost +
docker run -it \
   --runtime=nvidia \
   --rm \
   -e DISPLAY=$DISPLAY \
   -v /tmp/.X11-unix:/tmp/.X11-unix \
   -v /home/jk/Desktop/book_repos/Chapter4/DCGAN/data:/data \
   -v /home/jk/Desktop/book_repos/Chapter4/DCGAN/src:/src \
   ch4 python3 /src/run.py

Ensure that the script is executable (use chmod, as in other recipes) and place it at the
appropriate level. At this point, your directory structure should look like the following:

DCGAN
├── data
├── docker
├── README.md
├── run.sh
├── scripts
└── src
    ├── discriminator.py
    ├── gan.py
    ├── generator.py
    ├── run.py
    ├── save_to_npy.py
    └── train.py

To run training, make sure that your Python run script is up to date, and then execute the
shell run script at the root of DCGAN, as follows:

sudo ./run.sh

Now, let's talk about the results!
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Evaluation – how do we know it worked?
Okay, it's time to take a deep breath. You now have your results, but how do you know it
worked? In this recipe, we are going to qualitatively look at our results and discuss the
methods that are available for investigating them.

We want to understand the inputs and outputs of the training script, so the following
screenshot is an example of a 128 image input batch:
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The following screenshot is an example of our generator output early on in training:

So, what are the practical results of hours of training? Check out the next section to find
out!

Getting ready
Your code will need to be running. If it is not, go back to previous recipes and make sure
that you have followed all of the instructions correctly.
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How it works...
The following diagram shows shows our results in one spot:

As you may have noticed, these results show us that there's some work left to do. You can
see that we stopped our process intentionally at epoch 50, rather than 100. Why? Well, there
are many knobs and parameters that can be tuned to get different results, and it appears
this generator has started to overfit to certain types of structures. We may be able to enforce
additional generalization, but there are some incredibly hard-to-see examples in this
dataset.

The generator will only learn what it trains from. In this case, then, it may be of use to train
a smaller subset of data and learn a certain type of structure.

Adjusting parameters for better performance
Now that we have working code and a generator that produces images, what do we do
next? Let's look at what parameters we can use to improve the performance of our network.
This section will focus on showing you the various areas where you may be able to improve
your code.
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How to do it...
There are many ways to optimize code—too many to cover here. With that in mind, we'll
cover some of the basics to ensure that you have an idea of where to start modifying the
code in this recipe:

The training code—each of the flipcoin functions (these functions have a
modified probability, where the higher the probability, the higher the chance it
will evaluate to true)
The generation and discriminator's structures
The number of images

Training parameters
In each of the flipcoin events in the training code, consider making a modifiable
parameter in the run script. As a reminder, the pseudocode is as follows:

### Pseudocode
On Epoch:
    Batch Size = ##
    flipcoin()
        x_train = Half of Batch From Real Images
        y_train = 1s (Real) x Batch Size
    else:
        x_train  = Half of Batch from Generated Images
        y_train  = 0s (Fake) x Batch Size

    train_discriminator(x_train,y_train)

    x_generated_images = generator(batch_size)
    flipcoin()
        y_labels = 1s for Real
    else:
        y_labels = 0s for Fake (Noisy Labels)
    train_gan(x_generated_images,y_labels)
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Each flipcoin step has a changeable parameter, and exposing this parameter allows you
to modify how often you provide real or generated images in discriminator training. In the
second flipcoin event, we can also induce additional label noise on GAN training. Both
of these parameters should be exposed and tuned for your application; the following steps
can be used as an example:

The flipCoin method in the training script is as follows:1.

# Train Discriminator
# Make the training batch for this model be half real, half noise
# Grab Real Images for this training batch
if self.flipCoin():

The following code is the flipCoin definition:2.

def flipCoin(self,chance=0.5):
    return np.random.binomial(1, chance)

Notice that we can change the chance that this evaluates to true. This is an
important parameter to consider in discriminator training, as it will lead to more,
or fewer, generated images in the process.

To change the parameter and adjust it, use the following code:3.

# Train Discriminator
# Make the training batch for this model be half real, half noise
# Grab Real Images for this training batch
if self.flipCoin(chance=0.8):

Now, see what results you get!4.

Discriminator and generator architecture parameters
The DCGAN authors proposed the following tips for constructing the structure of each
model:

Guidelines by the authors of the DCGAN paper. Reference: https://arxiv.org/pdf/1511.06434.pdf
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For the generator, you can add additional layers in the network at the cost of training time
and the additional chance of divergence. For the discriminator, you can build a state-of-the-
art binary classifier, but this will likely create an increased risk of divergence.

Essentially, you need to experiment with this architecture based on your own application's
needs and figure out what the best parameters for your network are.

Exercise
Modify the generator of DCGAN to exactly match the paper—are you able to1.
faithfully recreate their results? Why or why not?
Modify the download script and download a different LSUN dataset. Did you2.
need to modify your code to get results? What parameters were important?



5
Pix2Pix Image-to-Image

Translation
We'll be covering the following recipes in this chapter: 

Introducing Pix2Pix with pseudocode
Parsing our dataset
Code implementation – generator
Code – the GAN network
Code implementation – discriminator
Training

Introduction
Pix2Pix is a popular style-transfer application that uses a Generative Adversarial Network
(GAN) architecture. The ease of training the Pix2Pix architecture has made it a popular
choice for researchers and end users around the world. In this chapter, you'll learn the
basics of implementing this algorithm along with a simple training script.

Introducing Pix2Pix with pseudocode
When image-to-image translation with conditional adversarial networks, released as
Pix2Pix, came out in 2016, it was widely praised as a simple style-transfer network that
works out of the box. The network requires less parameter tuning than other techniques in
the field, and you'll see the power of this network at the end of this chapter. In this recipe,
we're going to cover the basics of the algorithm and present pseudocode prior to
implementing the actual code.
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Getting ready
Grab the Image-to-Image Translation with Conditional Adversarial Networks paper: https:/ /
arxiv.org/pdf/1611. 07004. pdf.

Then, read it and move on—we'll cover the basics of implementing the paper in this recipe.

How to do it...
There are two key components to building this network: the discriminator and generator
methods. The following graphic shows an illustration of these two networks in action:

The general network architecture for Image-to-Image Translation with Conditional Adversarial Networks 

The next two sections will cover the basic pseudocode for each component.

Discriminator
The discriminator in this architecture is fairly straightforward, but we'll take a few steps to
explain how to construct it at a high-level:

Define a model to keep our discriminator in the class:1.

define a model:

For this network, we're going to have two input images concatenated together at2.
the beginning—this is where the conditional adversarial portion of the paper
comes in—by providing the original image and a fake image. It provides a
classification based on this input:

input_A = Input(shape=Shape of Input A)
input_B = Input(shape= Shape of Input B)
input_layer = Concatenate(axis=-1)([input_A, input_B])

https://arxiv.org/pdf/1611.07004.pdf
https://arxiv.org/pdf/1611.07004.pdf
https://arxiv.org/pdf/1611.07004.pdf
https://arxiv.org/pdf/1611.07004.pdf
https://arxiv.org/pdf/1611.07004.pdf
https://arxiv.org/pdf/1611.07004.pdf
https://arxiv.org/pdf/1611.07004.pdf
https://arxiv.org/pdf/1611.07004.pdf
https://arxiv.org/pdf/1611.07004.pdf
https://arxiv.org/pdf/1611.07004.pdf
https://arxiv.org/pdf/1611.07004.pdf
https://arxiv.org/pdf/1611.07004.pdf
https://arxiv.org/pdf/1611.07004.pdf
https://arxiv.org/pdf/1611.07004.pdf
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Using the convolutional two-dimensional layers, we're learning features at a3.
small scale all of the way up to contextual features by increasing the number of
filters at each layer:

conv2d(small)
conv2d(medium)
conv2d(big)
conv2d(bigger)
conv2d(biggest)

The output_layer is classification (a number between 0 to 1 or fake to real):4.

output_layer = Convolution2D(1)
return Model([input_A, input_B],output_layer)

The model is defined as a two-image input and a single-classification output.

Generator
The generator in this paper is based on a popular encoder-decoder-style network called U-
Net. I encourage you to read the original U-Net network paper to understand the
architecture. Here's a diagram included with the Image-to-Image Translation with Conditional
Adversarial Networks paper:

U-Net features an Encoder-decoder structure with skip connections that link both sides of the architecture 

Here are some pseudocode steps to implement this network:

Create a method that will define this model: 1.

define a model:
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Define the input tensor to be the shape of the image:2.

model = input(image.shape)

Build the encode architecture—the details of each layer will be addressed in a3.
later recipe. For now, the convolutional two-dimensional layers are defined as
big, medium, and small, depending on the size of their filters and resulting
tensors:

# Encoder Architecture
conv2d(big)
conv2d(medium)
conv2d(small)
conv2d(small)
conv2d(small)
conv2d(small)

For the decoder, we're taking the reduced image and bringing it back up to full4.
resolution using convolutional two-dimensional layers—notice the skill-
connection layers built here:

# Decoder Architecture
conv2d(small)
skip_connection()
conv2d(medium)
skip_connection()
conv2d(medium)
skip_connection()
conv2d(big)
skip_connection()
conv2d(big)
skip_connection()
conv2d(big)
skip_connection()
conv2d(big)

In practice with Keras, a skip connection manifests itself as a concatenate layer
within the network.

Create an output layer and return the model:5.

output(image.shape)
return model
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Parsing our dataset
As with every one of these networks, data is life. Without good data, there's no way our
network will be effective. In this case, we'll take advantage of data sources from the authors
of the aforementioned paper to experiment with this network.

Getting ready
We always need to ensure that we're building the right structure in our repository. A tidy
workspace will lead to cleaner code—trust me! The following tree is in our Pix2Pix folder
at our $HOME directory in Ubuntu:

├── docker
│   ├── build.sh
│   ├── clean.sh
│   └── Dockerfile
├── README.md
├── run.sh
└── src
|   ├──

Create placeholders for all of the shell scripts in the docker folder; go ahead and make the
src directory, which we'll use throughout this book.

How to do it...
By now, you must be used to building Docker images and downloading data. The
following recipe streamlines those steps and downloads the data within the image for
simplicity.

Building the Docker container with a new Dockerfile
The Docker container is based on our base_image and installs the basic components you'll
need to execute this network. Make sure that this container is building and available prior
to moving on to the next recipes.
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Follow these steps:

Inherent from our base_image, which we built in Chapter 2, Data First, Easy1.
Environment, and Data Prep:

FROM base_image

Install the necessary plotting tools, along with IPython, in case we need to do2.
some debugging:

RUN apt update && apt install -y python3-pydot python-pydot-ng
    graphviz
RUN pip3 install ipython

Download the cityscapes dataset and store it inside the container—the3.
cityscapes dataset should only be around 100 MB:

RUN wget -N
    http://efrosgans.eecs.berkeley.edu/pix2pix/datasets
          /cityscapes.tar.g z
RUN mkdir -p /data/cityscapes/
RUN tar -zxvf cityscapes.tar.gz -C /data/cityscapes/
RUN rm cityscapes.tar.gz

Building the auxiliary scripts
Each of these shell scripts is critical to the usability of the images we're building.

Follow these steps:

In a file called build. sh, enter the following text and save it:1.

#/bin/bash
nvidia-docker build -t ch6 .

Make the sure the script is executable by issuing this at the Terminal window:2.

chmod +x build.sh

Execute the script to build the image:3.

./build.sh
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Open a build called clean.sh, add the following text, and save:4.

#/bin/bash
docker rmi ch6

Make the sure the script is executable by issuing this at the Terminal window:5.

chmod +x clean.sh

Only use the clean.sh script if you need to remove the container and rebuild6.
from scratch.

Code implementation – generator
The generator uses the U-NET architecture in the pseudocode we introduced previously.
This recipe is going to cover the practical side of implementing that network. 

Getting ready
Spot check! Make sure you have the following files in your working directory:

├── docker
│   ├── build.sh
│   ├── clean.sh
│   └── Dockerfile
├── README.md
├── run.sh
└── src
|   ├── generator.py

Don't pass this step until you've completed the previous recipes and added the
generator.py file to your working directory for the Pix2Pix implementation.
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How to do it...
In the generator.py file, input the following steps into the file to create the network
architecture:

With all of these networks, we'll need to import the necessary libraries to1.
implement the class:

#!/usr/bin/env python3
import sys
import numpy as np
from keras.layers import Dense, Reshape, Input, BatchNormalization,
Concatenate
from keras.layers.core import Activation
from keras.layers.convolutional import UpSampling2D, Convolution2D,
MaxPooling2D,Deconvolution2D
from keras.layers.advanced_activations import LeakyReLU
from keras.models import Sequential, Model
from keras.optimizers import Adam, SGD, Nadam,Adamax
from keras import initializers
from keras.utils import plot_model

Create the Generator object the same way we have in previous chapters—notice2.
that the init class does not change much:

class Generator(object):
    def __init__(self, width = 256, height= 256, channels = 3):
        self.W = width
        self.H = height
        self.C = channels
        self.SHAPE = (width,height,channels)

        self.Generator = self.model()
        self.OPTIMIZER = Adam(lr=2e-4, beta_1=0.5,decay=1e-5)
        self.Generator.compile(loss='binary_crossentropy',
             optimizer=self.OPTIMIZER,metrics=['accuracy'])

        self.save_model()
        self.summary()

This next method defines our generator model:3.

def model(self):
    input_layer = Input(shape=self.SHAPE)
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We implement the top of the encoder with these first four layers:4.

down_1 = Convolution2D(64 , kernel_size=4, strides=2,
padding='same',activation=LeakyReLU(alpha=0.2))(input_layer)

down_2 = Convolution2D(64*2, kernel_size=4, strides=2,
         padding='same',activation=LeakyReLU(alpha=0.2))(down_1)
norm_2 = BatchNormalization()(down_2)

down_3 = Convolution2D(64*4, kernel_size=4, strides=2,
         padding='same',activation=LeakyReLU(alpha=0.2))(norm_2)
norm_3 = BatchNormalization()(down_3)

We maintain the same four layers before moving on to the decoder:5.

down_4 = Convolution2D(64*8, kernel_size=4, strides=2,
         padding='same',activation=LeakyReLU(alpha=0.2))(norm_3)
norm_4 = BatchNormalization()(down_4)

down_5 = Convolution2D(64*8, kernel_size=4, strides=2,
         padding='same',activation=LeakyReLU(alpha=0.2))(norm_4)
norm_5 = BatchNormalization()(down_5)

down_6 = Convolution2D(64*8, kernel_size=4, strides=2,
         padding='same',activation=LeakyReLU(alpha=0.2))(norm_5)
norm_6 = BatchNormalization()(down_6)

down_7 = Convolution2D(64*8, kernel_size=4, strides=2,
         padding='same',activation=LeakyReLU(alpha=0.2))(norm_6)
norm_7 = BatchNormalization()(down_7)

In this step, we keep the same filter size but begin upsampling the encoder's6.
output—notice the skip connections by using the Concatenate layer type:

upsample_1 = UpSampling2D(size=2)(norm_7)
up_conv_1 = Convolution2D(64*8, kernel_size=4, strides=1,
            padding='same',activation='relu')(upsample_1)
norm_up_1 = BatchNormalization(momentum=0.8)(up_conv_1)
add_skip_1 = Concatenate()([norm_up_1,norm_6])

upsample_2 = UpSampling2D(size=2)(add_skip_1)
up_conv_2 = Convolution2D(64*8, kernel_size=4, strides=1,
            padding='same',activation='relu')(upsample_2)
norm_up_2 = BatchNormalization(momentum=0.8)(up_conv_2)
add_skip_2 = Concatenate()([norm_up_2,norm_5])

upsample_3 = UpSampling2D(size=2)(add_skip_2)
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up_conv_3 = Convolution2D(64*8, kernel_size=4, strides=1,
            padding='same',activation='relu')(upsample_3)
norm_up_3 = BatchNormalization(momentum=0.8)(up_conv_3)
add_skip_3 = Concatenate()([norm_up_3,norm_4])

The top of decoder is implemented as follows—the block structure in U-Net is7.
the same all of the way up to the output layer:

upsample_4 = UpSampling2D(size=2)(add_skip_3)
up_conv_4 = Convolution2D(64*4, kernel_size=4, strides=1,
            padding='same',activation='relu')(upsample_4)
norm_up_4 = BatchNormalization(momentum=0.8)(up_conv_4)
add_skip_4 = Concatenate()([norm_up_4,norm_3])

upsample_5 = UpSampling2D(size=2)(add_skip_4)
up_conv_5 = Convolution2D(64*2, kernel_size=4, strides=1,
            padding='same',activation='relu')(upsample_5)
norm_up_5 = BatchNormalization(momentum=0.8)(up_conv_5)
add_skip_5 = Concatenate()([norm_up_5,norm_2])

upsample_6 = UpSampling2D(size=2)(add_skip_5)
up_conv_6 = Convolution2D(64, kernel_size=4, strides=1,
            padding='same',activation='relu')(upsample_6)
norm_up_6 = BatchNormalization(momentum=0.8)(up_conv_6)
add_skip_6 = Concatenate()([norm_up_6,down_1])

last_upsample and output_layer essentially define the output image:8.

last_upsample = UpSampling2D(size=2)(add_skip_6)
output_layer = Convolution2D(self.C, kernel_size=4, strides=1,
               padding='same',activation='tanh')(last_upsample)

return Model(input_layer,output_layer)

There are two helper functions that we implement with every network we9.
produce:

def summary(self):
    return self.Generator.summary()

def save_model(self):
    plot_model(self.Generator, to_file='/data/Generator_Model.png')
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Code – the GAN network
The GAN network combines the discriminator and generator from previous recipes into a
conditional adversarial configuration for training.

Getting ready
Keep track of the fact that you remembered to add gan.py to your working directory:

├── docker
│   ├── build.sh
│   ├── clean.sh
│   └── Dockerfile
├── README.md
├── run.sh
└── src
|   ├── generator.py
|   ├── gan.py

How to do it...
The GAN network in this case is arguably the easiest part to implement—we're simply
going to link up our networks so they can train together:

Import all of the libraries we need to use for this class:1.

#!/usr/bin/env python3
import sys
import numpy as np
from keras.models import Sequential, Model
from keras.layers import Input
from keras.optimizers import Adam, SGD
from keras.utils import plot_model



Pix2Pix Image-to-Image Translation Chapter 5

[ 147 ]

Implement the init class with the Adam optimizer and then an array of2.
model_inputs and model_outputs:

class GAN(object):
    def __init__(self, model_inputs=[],model_outputs=[]):
        self.inputs = model_inputs
        self.outputs = model_outputs
        self.gan_model = Model(inputs = self.inputs, outputs =
                               self.outputs)
        self.OPTIMIZER = Adam(lr=2e-4, beta_1=0.5)
        self.gan_model.compile(loss=['mse', 'mae'],
                               loss_weights=[ 1, 100],
                               optimizer=self.OPTIMIZER)
        self.save_model()
        self.summary()

It's important to note that we need to have two separate loss functions because of
the way the input is hooked into the network. In the training script, you'll see
how we connect the generator and discriminator into this GAN network.

Define a model to give us access outside of the class:3.

def model(self):
    model = Model()
    return model

These are the normal helper functions from every one of our other chapters:4.

def summary(self):
    return self.gan_model.summary()

def save_model(self):
    plot_model(self.gan_model, to_file='/data/GAN_Model.png')

Code implementation – discriminator
The discriminator network is similar to other classification networks. In this recipe, we'll
cover the basics of implementing the Pix2Pix discriminator.
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Getting ready
Keep track of the fact that you remembered to add discriminator.py to your working
directory:

├── docker
│   ├── build.sh
│   ├── clean.sh
│   └── Dockerfile
├── README.md
├── run.sh
└── src
|   ├── generator.py
|   ├── gan.py
|   ├── discriminator.py

How it works...
Follow these steps:

Add these import steps to your discriminator.py file to get ready to build the1.
class:

#!/usr/bin/env python3
import sys
import numpy as np
from keras.layers import Input, Dense, Reshape, Flatten, Dropout,
BatchNormalization, Lambda, Concatenate
from keras.layers.core import Activation
from keras.layers.convolutional import Convolution2D
from keras.layers.advanced_activations import LeakyReLU
from keras.models import Sequential, Model
from keras.optimizers import Adam, SGD,Nadam, Adamax
import keras.backend as K
from keras.utils import plot_model

Create a Discriminator class and initialize it with width, height,2.
and channels and the number of starting_filters in Discriminator:

class Discriminator(object):
    def __init__(self, width = 256, height= 256, channels = 3,
starting_filters=64):
        self.W = width
        self.H = height
        self.C = channels
        self.CAPACITY = width*height*channels
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        self.SHAPE = (width,height,channels)
        self.FS = starting_filters #FilterStart
        self.Discriminator = self.model()
        self.OPTIMIZER = Adam(lr=2e-4, beta_1=0.5,decay=1e-5)
        self.Discriminator.compile(loss='mse',
             optimizer=self.OPTIMIZER, metrics=['accuracy'] )

        self.save_model()
        self.summary()

The real magic happens when we define our model in this method:3.

def model(self):
    input_A = Input(shape=self.SHAPE)
    input_B = Input(shape=self.SHAPE)
    input_layer = Concatenate(axis=-1)([input_A, input_B])

This is different from previous networks, as it takes two images as input and
concatenates them into a single tensor.

We use a simple architecture with Convolutional2D layers and LeakyReLU:4.

up_layer_1 = Convolution2D(self.FS, kernel_size=4, strides=2,
      padding='same',activation=LeakyReLU(alpha=0.2))(input_layer)

up_layer_2 = Convolution2D(self.FS*2, kernel_size=4, strides=2,
     padding='same',activation=LeakyReLU(alpha=0.2))(up_layer_1)
     leaky_layer_2 = BatchNormalization(momentum=0.8)(up_layer_2)

up_layer_3 = Convolution2D(self.FS*4, kernel_size=4, strides=2,
padding='same',activation=LeakyReLU(alpha=0.2))(leaky_layer_2)
      leaky_layer_3 = BatchNormalization(momentum=0.8)(up_layer_3)

up_layer_4 = Convolution2D(self.FS*8, kernel_size=4, strides=2,
     padding='same',activation=LeakyReLU(alpha=0.2))(leaky_layer_3)
     leaky_layer_4 = BatchNormalization(momentum=0.8)(up_layer_4)

The final output_layer is binary classification from 0 to 1 or fake to real:5.

output_layer = Convolution2D(1, kernel_size=4, strides=1,
                             padding='same')(leaky_layer_4)
return Model([input_A, input_B],output_layer)
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Use these two helper functions to return a summary and plot the model:6.

def summary(self):
    return self.Discriminator.summary()

def save_model(self):
    plot_model(self.Discriminator,
               to_file='/data/Discriminator_Model.png')

Training
This is the step that brings it all together: training! In this recipe, you'll learn how to put all
of these networks together and train your Pix2Pix network to do a style transfer.

Getting ready
Spot check! Make sure you have the following files in your working directory:

├── docker
│   ├── build.sh
│   ├── clean.sh
│   └── Dockerfile
├── README.md
├── run.sh
└── src
|   ├── generator.py
|   ├── discriminator.py
|   ├── gan.py
|   ├── train.py

Make sure you have the generator, discriminator, and GAN networks all built—otherwise,
nothing in the training script will work!

How to do it...
This is how we start training our models - we need to create the right connections to each of
the networks and inputs in the class instantiation,. build the training method that allows up
to train this network, and finally understand the helper functions that allow us to make all
of this code possible.
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Setting up the class
Follow these steps to set up your class and initialize your training method:

The imports in the training function are primarily not Keras and simply NumPy1.
and other helper libraries:

#!/usr/bin/env python3
from gan import GAN
from generator import Generator
from discriminator import Discriminator
from keras.layers import Input
from keras.datasets import mnist
from random import randint
import numpy as np
import matplotlib.pyplot as plt
from copy import deepcopy
import os
from PIL import Image
import random
import numpy as np

The Trainer class starts out with the same types of inputs from other models:2.

class Trainer:
    def __init__(self, height = 256, width = 256, channels=3,
                 epochs = 50000, batch = 1, checkpoint = 50,
                 train_data_path = '',test_data_path=''):
        self.EPOCHS = epochs
        self.BATCH = batch
        self.H = height
        self.W = width
        self.C = channels
        self.CHECKPOINT = checkpoint

Read in the dataset for training and another set of dataset for comparing when3.
we use the checkpoint plots:

self.X_train_A, self.X_train_B = self.load_data(train_data_path)
self.X_test_A, self.X_test_B = self.load_data(test_data_path)

Instantiate the Generator object within the training class:4.

self.generator = Generator(height=self.H, width=self.W,
                           channels=self.C)
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Create two input with the shape of our input images—in this case, our images5.
have the exact same size, shape, and number of channels:

self.orig_A = Input(shape=(self.W, self.H, self.C))
self.orig_B = Input(shape=(self.W, self.H, self.C))

Here's the conditional training part—we use orig_b as the input to the6.
generator:

self.fake_A = self.generator.Generator(self.orig_B)7.

Next, we build the Discriminator object and set the discriminator network7.
trainable to False:

self.discriminator = Discriminator(height=self.H, width=self.W,
                                   channels=self.C)
self.discriminator.trainable = False

With this discriminator object, we then point the inputs to the fake_A and8.
orig_B networks we created:

self.valid =
     self.discriminator.Discriminator([self.fake_A,self.orig_B])

Finally, we have all the correct connections setup. We now create our adversarial9.
model with the inputs of orig_A and orig_B and the outputs of valid and
fake_A:

model_inputs = [self.orig_A,self.orig_B]
model_outputs = [self.valid, self.fake_A]
self.gan =
GAN(model_inputs=model_inputs,model_outputs=model_outputs)

Now, we move onto how we are going to train this network with the main training
method!

Training method
The training method is the heart of the training class - in this method, we will use all of the
data we imported, train our models with the CycleGAN architecture, and check the results
of our training as we go.
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The following steps will show you the basic structure of how we train these models:

First, we define a train method that will run through the number of epochs—at1.
each epoch, you will want to make a copy of the A and B training data:

    def train(self):
        for e in range(self.EPOCHS):
            X_train_A_temp = deepcopy(self.X_train_A)
            X_train_B_temp = deepcopy(self.X_train_B)

In the next step, we define the number of batches (batch size of 1 for style2.
transfer) and run through the batches:

            number_of_batches = len(self.X_train_A)
            for b in range(number_of_batches):

In this step, we are grabbing random indices for both A and B sets (the data is3.
paired so we grab the same indices for each of the A and B datasets):

                # Train Discriminator
                # Grab Real Images for this training batch
                starting_ind = randint(0, (len(X_train_A_temp)-1))
                real_images_raw_A = X_train_A_temp[ starting_ind :
                (starting_ind + 1) ]
                real_images_raw_B = X_train_B_temp[ starting_ind :
                (starting_ind + 1) ]

After grabbing our images, we delete the images from the temp arrays:4.

                # Delete the images used until we have none left
                X_train_A_temp = np.delete(X_train_A_temp,range
                (starting_ind,(starting_ind + 1)),0)
                X_train_B_temp = np.delete
                (X_train_B_temp,range(starting_ind,(starting_ind + 1)),0)

We create our batches for the our prediction and training steps:5.

                batch_A = real_images_raw_A.reshape
                ( 1, self.W, self.H, self.C )
                batch_B = real_images_raw_B.reshape
                ( 1, self.W, self.H, self.C )
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Using the PatchGAN papers structure to the Y labels, we create the y_valid and6.
y_fake labels for our training:

                y_valid = np.ones((1,)+(int(self.W / 2**4), int
                (self.W / 2**4), 1))
                y_fake = np.zeros((1,)+(int(self.W / 2**4), int
                (self.W / 2**4), 1))

Next, we create our Fake A images by using the generator to generate results7.
based on the batch B input:

                fake_A = self.generator.Generator.predict(batch_B)

We train our discriminator on both the real and fake datasets—collect the loss for8.
both training steps:

                # Now, train the discriminator with this batch of reals
                discriminator_loss_real =
                self.discriminator.Discriminator.
                train_on_batch([batch_A,batch_B],y_valid)[0]
                discriminator_loss_fake =
                self.discriminator.Discriminator.
                train_on_batch([fake_A,batch_B],y_fake)[0]

In this step, we compute an aggregate loss by just averaging the two values:9.

            full_loss = 0.5 * np.add(discriminator_loss_real,
            discriminator_loss_fake)

Next, we train the adversarial model with batch A and batch B as inputs and10.
y_valid and batch A as outputs:

            generator_loss = self.gan.gan_model.train_on_batch
            ([batch_A, batch_B],[y_valid,batch_A])

At a given interval (our checkpoint value), we want to plot some diagnostic11.
graphics to make sure we are going the right direction on training:

             if b % self.CHECKPOINT == 0 :
                 label = str(e)+'_'+str(b)
                 self.plot_checkpoint(label)
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In the last step, we print diagnostics at every batch and every epoch:12.

print ('Batch: '+str(int(b))+', [Full Discriminator :: Loss:
'+str(full_loss)+'], [ Generator :: Loss:
'+str(generator_loss)+']')
        print ('Epoch: '+str(int(e))+', [Full Discriminator ::
Loss:'+str(full_loss)+'], [ Generator :: Loss:
'+str(generator_loss)+']')

That's it! This is how you create the training method - the next two sections will cover how
we do checkpoint plotting and actually running this training script.

Plotting the results
With every one of our GAN networks, we want some confirmation that our training is
going the right direction. This plotting function allows us to see the style, generated image,
and the original image. In these plots, we should be able to confirm that the style is being
transferred to the next image and back to the original image.

Here's a list of steps to create this plotting function:

 First, we define the function and create a filename to save at every batch:1.

  def plot_checkpoint(self,b):
    orig_filename = "/out/batch_check_"+str(b)+"_original.png"

Next, we define how many rows and columns we'll need in our graph plus the2.
number of samples we would like to grab for checkpoint evaluation of the
models:

    r, c = 3, 3
    random_inds = random.sample(range(len(self.X_test_A)),3)

Next, we grab images from our test set and format them to evaluated by our3.
generator:

    imgs_A = self.X_test_A[random_inds].reshape(3, self.W, self.H, self.C )
    imgs_B = self.X_test_B[random_inds].reshape(3, self.W, self.H, self.C )
    fake_A = self.generator.Generator.predict(imgs_B)



Pix2Pix Image-to-Image Translation Chapter 5

[ 156 ]

We put all the data into a single array to make plotting easier:4.

    gen_imgs = np.concatenate([imgs_B, fake_A, imgs_A])

Next, we rescale all of the images to be from 0-1 for plotting:5.

    # Rescale images 0 - 1
    gen_imgs = 0.5 * gen_imgs + 0.5

In this step, we create the titles, configure the plot, and plot each image in the6.
plot:

    titles = ['Style', 'Generated', 'Original']
    fig, axs = plt.subplots(r, c)
    cnt = 0
    for i in range(r):
        for j in range(c):
            axs[i,j].imshow(gen_imgs[cnt])
            axs[i, j].set_title(titles[i])
            axs[i,j].axis('off')
            cnt += 1

In the last step, we save the figure and close the figure (saves memory on the7.
machine):

    fig.savefig("/out/batch_check_"+str(b)+".png")
    plt.close('all')

     return

Finally, we will move on to addressing the helper functions in this class.

Helper functions
There are a few helper functions I want to highlight in this section in the following steps:

The load data function helps define the downloaded input data—the images are1.
stitched together as 256 x 512, so this function reads them in and splits them into
two arrays: 

def load_data(self,data_path):
    listOFFiles = self.grabListOfFiles(data_path,extension="jpg")
    imgs_temp = np.array(self.grabArrayOfImages(listOFFiles))
    imgs_A = []
    imgs_B = []
    for img in imgs_temp:
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        imgs_A.append(img[:,:self.H])
        imgs_B.append(img[:,self.H:])

     imgs_A_out = self.norm_and_expand(np.array(imgs_A))
     imgs_B_out = self.norm_and_expand(np.array(imgs_B))

     return imgs_A_out, imgs_B_out

This is a convenience function that puts the array in the correct shape for the2.
network to use it:

def norm_and_expand(self,arr):
    arr = (arr.astype(np.float32) - 127.5)/127.5
    normed = np.expand_dims(arr, axis=3)
    return normed

This function lets us grab a list of files from a starting directory:3.

def grabListOfFiles(self,startingDirectory,extension=".webp"):
    listOfFiles = []
    for file in os.listdir(startingDirectory):
        if file.endswith(extension):
           listOfFiles.append(os.path.join(startingDirectory,
file))
        return listOfFiles

Given a list of files, read in the images into an array and return them:4.

def grabArrayOfImages(self,listOfFiles,gray=False):
    imageArr = []
    for f in listOfFiles:
        if gray:
           im = Image.open(f).convert("L")
        else:
           im = Image.open(f).convert("RGB")
       imData = np.asarray(im)
       imageArr.append(imData)
    return imageArr

Now, we'll move on to how we train this model now that we have the class setup and
working.
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Running the Training Script
We've got a training class - let's write some code to use this training class and train the
Pix2Pix architecture. Here are the steps needed to run the training class and change the
settings:

Create a run.py file in the src folder that has the following code inside of it:1.

#!/usr/bin/env python3
from train import Trainer

# Command Line Argument Method
HEIGHT = 256
WIDTH = 256
CHANNELS = 3
EPOCHS = 100
BATCH = 1
CHECKPOINT = 50
TRAIN_PATH = "/data/cityscapes/cityscapes/train/"
TEST_PATH = "/data/cityscapes/cityscapes/val/"

trainer = Trainer(height=HEIGHT,width=WIDTH,
channels=CHANNELS,epochs =EPOCHS,\
                 batch=BATCH,\
                 checkpoint=CHECKPOINT,\
                 train_data_path=TRAIN_PATH,\
                 test_data_path=TEST_PATH)
trainer.train()

The training class has the following inputs:

HEIGHT: Height of the input images
WIDTH: Width of the input images
CHANNELS: Number of Channels to the input image
EPOCHS: Number of times we will train the model with the dataset
BATCH: How many images per forward pass through the network
CHECKPOINT: How often do we want to check the model outputs
TRAIN_PATH: The path to the training data
TEST_PATH: The path to the test data
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Next, create a file called run.sh script at the root of the code directory and add2.
the following text into the file:

#/bin/bash

# Training Step
xhost +
docker run -it \
   --runtime=nvidia \
   --rm \
   -e DISPLAY=$DISPLAY \
   -v /tmp/.X11-unix:/tmp/.X11-unix \
   -v $HOME/Chapter5/out:/out \
   -v $HOME/Chapter5/src:/src \
   ch5 python3 /src/run.py

At the root of this chapter's repository, run the following script with the sudo3.
command (make sure the shell script is executable):

sudo ./run.sh

Your model should be training now - congratulations! You have successfully implemented
Pix2Pix from scratch.

Exercise
You've completed the Pix2Pix Chapter! Here is a problem to ponder:

What happens if we add more layers to the generator? Do you think that would1.
improve or worsen performance?



6
Style Transfering Your Image

Using CycleGAN
The following recipes will be covered in this chapter:

Pseudocode – how does it work?
Parsing the CycleGAN datasets
Code implementation – generator
Code implementation – discriminator
Code implementation – GAN
On to training

Introduction
CycleGAN is one of the most well-known architectures in the GAN community for good
reason. It doesn't require paired training data to produce stunning style transfer results. As
you'll see in this chapter, we're going to go over the basic structure of the model and the
results you can expect when you use it. 

Pseudocode – how does it work?
This recipe will focus on dissecting the internal pieces of the CycleGAN paper (https:/ /
arxiv.org/pdf/1703. 10593. pdf)—the structure they propose, simple tips they suggest
throughout their development, and any potential metrics that we may want to use in our
development for this chapter.

https://arxiv.org/pdf/1703.10593.pdf
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https://arxiv.org/pdf/1703.10593.pdf
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Getting ready
For this recipe, you will simply need to create a folder for this chapter's code in your home
directory. As a reminder, ensure that you've completed all of the prerequisite installation
steps such as installing Docker, Nvidia-Docker, and the Nvidia drivers. Last, grab the
CycleGAN paper (https:/ /arxiv. org/ pdf/1703. 10593. pdf) and make sure to read it
before you go on to the next section.

How to do it...
As with every chapter, I'd like to encourage you to begin by reading the paper that this
particular algorithm was derived from. The paper provides a foundation for implementing
the paper and grounds assumptions that we make during the development. For instance,
we won't necessarily always faithfully implement these papers as there are small
innovations since these chapters have come out that allow our development to make
improvements over the original concept.

What is so powerful about CycleGAN?
One of the best parts of CycleGAN is that it does not require paired input and output data.
In many applications of style transfer, paired data is a critical piece of the training.
CycleGAN was one of the first GAN implementations that was able to break that mold and
reliably train models without paired input:

Unpaired input data from the CycleGAN paper

https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/pdf/1703.10593.pdf
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https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/pdf/1703.10593.pdf
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CycleGAN has fairly simply Convolutional Neural Networks (CNNs) for the generator
and the discriminator. The real secret sauce to this particular paper is in the implementation
of the architecture—how we stitch these networks together to train them to learn this
representation from A to B and B to A. The pseudocode is fairly straightforward but does
require us to pay attention to our bookkeeping (we'll have a lot of generators!):

Initialize the generator that goes from A to B and B to A:1.

# Build the models from the paper
init generator_A_to_B
init generator_B_to_A

Initialize a discriminator for each of the image types—one for each style:2.

init discriminatorA
init discriminatorB

Put all of the networks into an adversarial training architecture and initialize the3.
network to train: 

init GAN()

Train the networks by grabbing the batches for A and B, training each4.
discriminator and training the GAN model in an adversarial mode:

while batches available:
    grab BatchA
     grab BatchB

     train discriminatorA(BatchA)
     train discriminatorB(BatchB)

     train GAN(BatchA, BatchB)

As you can see, the design is fairly simple—the secret sauce is actually built into the GAN
architecture itself. In the CycleGAN paper, there're a few great graphics that show how the
architecture should be built.
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There're three steps to cover in the overall design:

To translate between two different styles, we'll need two generators and two1.
discriminators. The generator G will translate from X to Y and be checked by
discriminator Y (DY). Likewise, the generator F will translate from Y to X and be
checked by discriminator X (DX):

Basic CycleGAN architecture 

One of the key features of the CycleGAN paper is evaluating from x to  then2.
reconstructed . By going back to the reconstructed , you will actually have a
solid metric to base your learners on:

X to Y then reconstructed X CycleGAN architecture 

As with step 2, we will go from y to style transferred  and then reconstructed 3.
. By going in both directions, we are able to define an architecture that can
evaluate the translated photo and the reconstructed photo in the adversarial
steps:
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Y to X then reconstructed Y CycleGAN architecture

Parsing the CycleGAN dataset
You'll get tired of hearing how important data is to us—but honestly, it can make or break
your development. In our case, we are going to simply use the same datasets that the
original CycleGAN authors used in their development. This has two use cases: we can
compare our results to theirs and we can take advantage of their small curated datasets.

Getting ready
So far, we've focused on just reviewing the structure of how we will solve the problem. As
with every one of these chapters, we need to spend a few minutes collecting training data
for our experiments. Replicate the directory structure with files, as seen as follows:

├── data
│   ├──
├── docker
│   ├── build.sh
│   ├── clean.sh
│   └── Dockerfile
├── README.md
├── run.sh
├── scripts
│   └── create_data.sh
├── src
│   ├──

We'll go and introduce the files you'll need to build so you can have a development
environment and data to work with on CycleGAN.
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How to do it...
This should start to become a habit by now—create a docker file, create a build and, a run
script, and download some data. Ultimately, we want to start building habits that
standardize our architecture for development and standardize how we approach each of
these problems. The core setup of Chapter 2, Data First, Easy Environment, and Data Prep,
and Chapter 3, My First GAN in Under 100 Lines, can be used over and over again. This
time will be no different. We'll check out the Docker implementation first.

Docker implementation
We'll break the Docker file and its associated shell scripts into a few steps:

Under your docker folder create a file named Dockerfile and start with the1.
following commands:

FROM base_image
RUN apt update && apt install -y python3-pydot python-pydot-ng
    graphviz
RUN pip3 install ipython
RUN pip3 uninstall keras -y && pip3 install keras==2.2.1

Notice we inherit from base_image and install a few necessary packages to our
development. The last line is an important point—we need to install a particular
build of Keras in order to utilize the Keras contributor layers that we'll install in
the next step. Essentially, there're some specific layers to these networks that
haven't been folded into Keras proper.

Clone and install the Keras contributor layers—install for python3: 2.

# Download and Install the Keras Contributor layers
# Some papers have layers not implemented in default keras
RUN git clone https://www.github.com/keras-team/keras-contrib.git
RUN cd keras-contrib && git checkout 04b64a47a7552f && python
    setup.py install
RUN cd keras-contrib && python3 setup.py install

Moving on, create a shell script called build.sh and put the following test into3.
the file:

#/bin/bash
nvidia-docker build -t ch5 .
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To build our newly minted Dockerfile, simply type the following commands4.
in the Terminal to make your build script executable and execute:

sudo chmod 775 build.sh && ./build.sh

Make sure that you are in the docker folder prior to executing these
commands!

To make your life easier, let's create a clean script called clean.sh:5.

#/bin/bash
docker rmi ch5

This script just makes it easier to clean the image if you need a rebuild in the future.

The data download script
The download script looks oddly familiar, doesn't it? In this run command, we are going to
use the newly built container to grab a download script and download data into our data
folder:

#/bin/bash
xhost +

docker run -it \
   --runtime=nvidia \
   --rm \
   -v /home/jk/Desktop/book_repos/Chapter5/data:/data \
   ch5 wget -N
https://raw.githubusercontent.com/junyanz/CycleGAN/master/datasets/download
_dataset.sh -O /data/download_dataset.sh  && ./download_dataset.sh
horse2zebra

What does the data actually look like?
Here's the great part about CycleGAN—you just need two arrays of images but they don't
need to be matched up. In supervised learning, you may be used to having some input X
and a corresponding output Y. The agent will learn the relationship between X and Y. For
this task, we just need an input A and and input B where you want to transfer the style
from B onto A. With the CycleGAN models, we will be able to go from A to B and from B to
A in terms of style.
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For example, we have an example of a horse and a zebra as follows:

                                                

Our implementation of CycleGAN will learn to go from horse to zebra or from zebra to
horse. Both models are trained during this process in the adversarial setup.

Code implementation – generator
It might seem obvious by now but each of the generators we've built until this point has
been an incremental improvement on the last GAN to Deep Convolutional
Generative Adversarial Network (DCGAN) to CycleGAN will represent a similar
incremental change in the generator code. In this case, we'll downsample for a few blocks
then upsample. We'll also introduce a new layer called InstanceNormalization that the
authors used to enforce better training for style transfer.

Getting ready
Every recipe is going to demonstrate the structure that you should have in your directory.
This ensures that you've got the right files at each step of the way:

├── data
│   ├──
├── docker
│   ├── build.sh
│   ├── clean.sh
│   └── Dockerfile
├── README.md
├── run.sh
├── scripts
│   └── create_data.sh
├── src
│   ├── generator.py
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How to do it....
With the generator, we will replicate the paper with the number of filters and the block
style.

These are the steps for this:

Imports will match many of the previous chapters:1.

#!/usr/bin/env python
import sys
import numpy as np
from keras.layers import Dense, Reshape, Input, BatchNormalization,
                         Concatenate
from keras_contrib.layers.normalization import
InstanceNormalization
from keras.layers.core import Activation
from keras.layers.convolutional import UpSampling2D, Convolution2D,
                       MaxPooling2D,Deconvolution2D
from keras.layers.advanced_activations import LeakyReLU
from keras.models import Sequential, Model
from keras.optimizers import Adam, SGD, Nadam, Adamax
from keras import initializers
from keras.utils import plot_model

It's important to note that we are using a keras_contributer layer—the
InstanceNormalization layer. This layer is used in the original CycleGAN
paper and we are lucky there is an open source implementation we can leverage
here.

Next, we instantiate the class and simplify the input to the class:2.

class Generator(object):
    def __init__(self, width = 28, height= 28, channels = 1):
        self.W = width
        self.H = height
        self.C = channels
        self.SHAPE = (width,height,channels)

        self.Generator = self.model()
        self.OPTIMIZER = Adam(lr=1e-4, beta_1=0.2)
        self.Generator.compile(loss='binary_crossentropy',
               optimizer=self.OPTIMIZER,metrics=['accuracy'])

        self.save_model()
        self.summary()
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This class is much simpler than other instantiations in the past—why? The
complexity in the CycleGAN paper is in the architecture and the structure of the
combination of models.

The critical piece to this generator is the model—here is where we start:3.

    def model(self):
        input_layer = Input(shape=self.SHAPE)

The first part of the model involves 2D convolutions with this4.
InstanceNormalization layer:

down_1 = Convolution2D(32  , kernel_size=4, strides=2,
    padding='same',activation=LeakyReLU(alpha=0.2))(input_layer)
    norm_1 = InstanceNormalization()(down_1)

down_2 = Convolution2D(32*2, kernel_size=4, strides=2,
     padding='same',activation=LeakyReLU(alpha=0.2))(norm_1)
     norm_2 = InstanceNormalization()(down_2)

down_3 = Convolution2D(32*4, kernel_size=4, strides=2,
     padding='same',activation=LeakyReLU(alpha=0.2))(norm_2)
     norm_3 = InstanceNormalization()(down_3)

down_4 = Convolution2D(32*8, kernel_size=4, strides=2,
     padding='same',activation=LeakyReLU(alpha=0.2))(norm_3)
     norm_4 = InstanceNormalization()(down_4)

How does InstanceNormalization differ from BatchNormalization and
other similar techniques?

The upsample blocks are similar to the downsample but bring us back up to the5.
original resolution of our images:

upsample_1 = UpSampling2D()(norm_4)
up_conv_1 = Convolution2D(32*4, kernel_size=4, strides=1,
        padding='same',activation='relu')(upsample_1)
        norm_up_1 = InstanceNormalization()(up_conv_1)
        add_skip_1 = Concatenate()([norm_up_1,norm_3])

upsample_2 = UpSampling2D()(add_skip_1)
up_conv_2 = Convolution2D(32*2, kernel_size=4, strides=1,
        padding='same',activation='relu')(upsample_2)
        norm_up_2 = InstanceNormalization()(up_conv_2)
        add_skip_2 = Concatenate()([norm_up_2,norm_2])

upsample_3 = UpSampling2D()(add_skip_2)
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up_conv_3 = Convolution2D(32, kernel_size=4, strides=1,
        padding='same',activation='relu')(upsample_3)
        norm_up_3 = InstanceNormalization()(up_conv_3)
        add_skip_3 = Concatenate()([norm_up_3,norm_1])

Notice the use of InstanceNormalization again—this layer is an important one
in the development of the generator that gives the network better generalization
for the style transfer function.

The last piece of the generator model method is the output layer and the6.
structure of this model:

last_upsample = UpSampling2D()(add_skip_3)
output_layer = Convolution2D(3, kernel_size=4, strides=1,
       padding='same',activation='tanh')(last_upsample)
       return Model(input_layer,output_layer)

This generator model will need the return statement—where we actually build
the model in the return—why? Because when we go to link up the architecture in
the GAN stage, we will need this type of structure to link the input and output of
models.

As with our previous classes, we have similar helper methods included with this7.
class:

def summary(self):
        return self.Generator.summary()

    def save_model(self):
        plot_model(self.Generator.model,
to_file='/data/Generator_Model.png')

That's it! This is what you need from the generator to make it work.

Code implementation – discriminator
Discriminators are the bread and butter of the discriminative modeling world—it's funny
that we use them in such a unique way. Each discriminator that're designed is built to
understand the difference between real and fake data but not too well. Why? If the
discriminator could always tell the difference between the two types of data then the
generator would never improve consistently. The next discriminator, based on the 
CycleGAN paper, will use a structure heavily based on their original implementation.
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Getting ready
Your directory structure should look like the following tree:

├── data
│   ├──
├── docker
│   ├── build.sh
│   ├── clean.sh
│   └── Dockerfile
├── README.md
├── run.sh
├── scripts
│   └── create_data.sh
├── src
│   ├── discriminator.py
│   ├── generator.py

How to do it...
The discriminator takes the image as input and outputs a decision (real or fake). We'll cover
the general construction of the discriminator class (hint: it'll look pretty similar to our
previous discriminator recipes):

First and foremost, we import all of the components we will use in this class:1.

#!/usr/bin/env python3
import sys
import numpy as np
from keras.layers import Input, Dense, Reshape, Flatten, Dropout,
     BatchNormalization, Lambda, concatenate
from keras.layers.core import Activation
from keras_contrib.layers.normalization import
InstanceNormalization
from keras.layers.convolutional import Convolution2D
from keras.layers.advanced_activations import LeakyReLU
from keras.models import Sequential, Model
from keras.optimizers import Adam, SGD,Nadam, Adamax
import keras.backend as K
from keras.utils import plot_model
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In this import section, we are also importing the custom layer from the
contributors package. If you have a few free moments, check out some of the
other available layers in this package. The open source community certainly
works hard to implement the more obscure layers.

Instantiate the Discriminator class in a similar way—these are quite a few less2.
parameters for CycleGAN:

class Discriminator(object):
    def __init__(self, width = 28, height= 28, channels = 1):
        self.W = width
        self.H = height
        self.C = channels
        self.CAPACITY = width*height*channels
        self.SHAPE = (width,height,channels)
        self.Discriminator = self.model()
        self.OPTIMIZER = Adam(lr=2e-4, beta_1=0.5)
        self.Discriminator.compile(loss='mse',
               optimizer=self.OPTIMIZER, metrics=['accuracy'] )

        self.save_model()
        self.summary()

You may be used to seeing the latent space named in each of the classes. For the
style transfer domain, we will not generate our images from a randomly sampled
set of noise but rather we will be using the image as an input. 

Another note is that the authors used the mean squared error (MSE) optimizer
for their base discriminator implementation; this is different from previous
models but a common function used in the deep learners. Moving on to the third
step:

Moving on to the model method in this class definition—start with our typical3.
model development:

def model(self):
    input_layer = Input(self.SHAPE)

This should start to look more or less as a template for the discriminator—a few4.
2D convolutional layers until we get to our output layer:

up_layer_1 = Convolution2D(64, kernel_size=4, strides=2,
   padding='same',activation=LeakyReLU(alpha=0.2))(input_layer)

up_layer_2 = Convolution2D(64*2, kernel_size=4, strides=2,
   padding='same',activation=LeakyReLU(alpha=0.2))(up_layer_1)
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norm_layer_1 = InstanceNormalization()(up_layer_2)

up_layer_3 = Convolution2D(64*4, kernel_size=4, strides=2,
   padding='same',activation=LeakyReLU(alpha=0.2))(norm_layer_1)
norm_layer_2 = InstanceNormalization()(up_layer_3)

up_layer_4 = Convolution2D(64*8, kernel_size=4, strides=2,
   padding='same',activation=LeakyReLU(alpha=0.2))(norm_layer_2)
norm_layer_3 =InstanceNormalization()(up_layer_4)

As an aside, why don't we make the number of convolutional layers variable?
There's one simple reason we can name right off the top of our head—the
network would have enough capacity to essentially memorize the input. There is
a trade-off between the number of layers and generalizability. If we memorize the
input data, the model would diverge.

The final few layers will bring us back to our output variable and appropriately5.
flatten it:

output_layer = Convolution2D(1, kernel_size=4, strides=1,
                             padding='same')(norm_layer_3)
output_layer_1 = Flatten()(output_layer)
output_layer_2 = Dense(1, activation='sigmoid')(output_layer_1)
return Model(input_layer,output_layer_2)

The return statement in this method should look similar to the generator. We
need this type of structure to make our architecture easier when we start stitching
these models together.

Let's finish this class off with a few of our common helper functions:6.

def summary(self):
return self.Discriminator.summary()

def save_model(self):
    plot_model(self.Discriminator.model,
               to_file='/data/Discriminator_Model.png')

Code implementation – GAN
Building the GAN is a core step with every one of these architectures—we have to be
somewhat careful with CycleGAN because it's one of the first times we are going to
develop a multilevel model. The GAN model will have six models in adversarial training
mode—let's build it!
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Getting ready
Every recipe is going to demonstrate the structure that you should have in your directory.
This ensures that you've got the right files at each step of the way:

├── data
│   ├──
├── docker
│   ├── build.sh
│   ├── clean.sh
│   └── Dockerfile
├── README.md
├── run.sh
├── scripts
│   └── create_data.sh
├── src
│   ├── generator.py
│   ├── discriminator.py
│   ├── gan.py

How to do it...
The code is quite simple but the power of Keras really shines here—we are able to place six
separate models into adversarial training in under 50 lines of code.

These are the steps for this:

Make sure to get your imports for the implementation phase of the code:1.

#!/usr/bin/env python3
import sys
import numpy as np
from keras.models import Sequential, Model
from keras.layers import Input
from keras.optimizers import Adam, SGD
from keras.utils import plot_model

Instantiate the class like we have in the past—notice the lambda variables:2.

class GAN(object):
    def __init__(self, model_inputs=[],model_outputs=
                 [],lambda_cycle=10.0,lambda_id=1.0):
                    self.OPTIMIZER = SGD(lr=2e-4,nesterov=True)

    self.inputs = model_inputs
     self.outputs = model_outputs
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lambda _cycle and lambda_id refer to the values of the loss functions for the X
to Y generation and X to Y to X reconstruction generation, respectively. The
lambda_id parameter should be 10% (according to the paper) of the
lambda_cycle variable.

Create a model with the input and output passed from the training class:3.

self.gan_model = Model(self.inputs,self.outputs)
self.OPTIMIZER = Adam(lr=2e-4, beta_1=0.5)

In this case, self.inputs are represented by an array of two Keras input classes
instantiated in the training class and passed to the GAN class.

The output array is six models, four generators, and two discriminators in an4.
adversarial setup. In the array coming up, you can see how the models are
stitched together:

self.gan_model.compile(loss=['mse', 'mse',
                             'mae', 'mae',
                             'mae', 'mae'],
        loss_weights=[  1, 1,lambda_cycle, lambda_cycle,
        lambda_id, lambda_id ], optimizer=self.OPTIMIZER)

Basic functionality of saving the model and print a summary that we have used5.
in the chapters:

self.save_model()
self.summary()

We use the same functionality from the previous two chapters:6.

def summary(self):
    return self.gan_model.summary()

This is the final method in our class:7.

def save_model(self):
    plot_model(self.gan_model.model, to_file='/data/GAN_Model.png')

Considering we've implemented one of the more complicated architectures in basic GANs,
this is concise representation!
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On to training
Here we are again—our ole friend training. Training for CycleGAN has its own
idiosyncratic components but you'll notice quite a bit of similarities with our previous
chapters. You should be on the lookout for additional training steps—because we are
training multiple generators and discriminators, we are increasing the time per batch and
consequently per epoch significantly. The only advantage is that our batch in this base is
only a single image. 

Getting ready
Your directory should match the following tree—if you don't have the Python files
beneath src, simply make sure to add the blank files for run.py and train.py and we
will fill in the code throughout this recipe:

├── data
│   ├──
├── docker
│   ├── build.sh
│   ├── clean.sh
│   └── Dockerfile
├── README.md
├── run.sh
├── scripts
│   └── create_data.sh
├── src
│   ├── discriminator.py
│   ├── gan.py
│   ├── generator.py
│   ├── run.py
│   ├── save_to_npy.py
│   └── train.py

Training can be broken into a few key components:

Initialization: Answer this question—what do I need to set up to actually train
the model?
Training method: Answer this question—what code trains the model?
Helpers: Answer this question—what auxiliary functions do I need to ensure
that I can train the model?
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How to do it...
We'll cover each of the concepts on Initialization, Training method, and Helpers in the
following section.

Initialization
Initialization in the CycleGAN implementation is more complex than the previous
implementations—we have to build a few more generators and discriminators to pass to
the GAN class. 

Let’s dive right in:

Imports should be fairly obvious by now—these are the key pieces and classes1.
we are importing in this training class definition:

#!/usr/bin/env python3
from gan import GAN
from generator import Generator
from discriminator import Discriminator
from keras.layers import Input
from keras.datasets import mnist
from random import randint
import numpy as np
import matplotlib.pyplot as plt
from copy import deepcopy
import os
from PIL import Image
import numpy as np

Instantiate the Trainer class with all of the input variables:2.

class Trainer:
    def __init__(self, height = 64, width = 64, epochs = 50000,
                 batch = 32, checkpoint = 50, train_data_path_A =
                 '',train_data_path_B =
                 '',test_data_path_A='',test_data_path_B=''):
                         self.EPOCHS = epochs
                         self.BATCH = batch
                         self.RESIZE_HEIGHT = height
                         self.RESIZE_WIDTH = width
                         self.CHECKPOINT = checkpoint
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We now have two separate folders for both a training and test setup. One of the
interesting parts of this recipe is that we will train a model on one dataset and
demonstrate the results of the generator on the test dataset—this makes sure that
we aren't overfitting to the relationship we are learning between the train_A and
train_B datasets.

Load all of the data into its respective class variables—we've got some new3.
helper functions that make this happen:

self.X_train_A, self.H_A, self.W_A, self.C_A =
                    self.load_data(train_data_path_A)
self.X_train_B, self.H_B, self.W_B, self.C_B  =
                    self.load_data(train_data_path_B)
self.X_test_A, self.H_A_test, self.W_A_test, self.C_A_test =
                    self.load_data(test_data_path_A)
self.X_test_B, self.H_B_test, self.W_B_test, self.C_B_test  =
                    self.load_data(test_data_path_B)

We'll cover the design of the load_data method later in this recipe. For now, just
understand that the load_data function expects a string that represents the path
to the folder and it'll read every image with a certain file ending within that
folder.

We need the generators that go from A to B and from B to A. The instantiation of4.
these models is direct:

self.generator_A_to_B = Generator(height=self.H_A, width=self.W_A,
                                  channels=self.C_A)
self.generator_B_to_A = Generator(height=self.H_B, width=self.W_B,
                                  channels=self.C_B)

Here's where we start to get serious—add the following lines to your5.
instantiation in the class definition for training:

self.orig_A = Input(shape=(self.W_A, self.H_A, self.C_A))
self.orig_B = Input(shape=(self.W_B, self.H_B, self.C_B))

self.fake_B = self.generator_A_to_B.Generator(self.orig_A)
self.fake_A = self.generator_B_to_A.Generator(self.orig_B)
self.reconstructed_A = self.generator_B_to_A.Generator(self.fake_B)
self.reconstructed_B = self.generator_A_to_B.Generator(self.fake_A)
self.id_A = self.generator_B_to_A.Generator(self.orig_A)
self.id_B = self.generator_A_to_B.Generator(self.orig_B)
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There are three distinct ideas contained in this block and other pre-step:

First, we need to make sure we have the original A and B images stored as the
Input class from Keras. Variables orig_A and orig_B are the input values
shared among the next three components.
fake_A and fake_B are the generators that take us from one style to the other
and produce an image with the translated style. Hence, this is why we say they
are fake.
reconstructed_A and reconstructed_B take the fake A and B images and
retranslate them into the original image style.
id_A and id_B are identity functions because they take in the original image and
translate back into the same style. Ideally, these functions would not apply any
style changes to these images

You now have the key generator pieces for us to construct the GAN.

There's more though! We need our discriminators that evaluate both A and B images—we
also need a validity discriminator that checks the fake_A and fake_B generators:

self.discriminator_A = Discriminator(height=self.H_A, width=self.W_A,
                                     channels=self.C_A)
self.discriminator_B = Discriminator(height=self.H_B, width=self.W_B,
                                     channels=self.C_B)
self.discriminator_A.trainable = False
self.discriminator_B.trainable = False
self.valid_A = self.discriminator_A.Discriminator(self.fake_A)
self.valid_B = self.discriminator_B.Discriminator(self.fake_B)

Here's where a bit of the magic happens; since we have set up our classes in a structured
way, we are able to simply pass all of the models to the GAN class and it will construct our
adversarial model:

model_inputs  = [self.orig_A,self.orig_B]
model_outputs = [self.valid_A,
  self.valid_B,self.reconstructed_A,self.reconstructed_B,self.id_A,
  self.id_B]
self.gan =
    GAN(model_inputs=model_inputs,model_outputs=model_outputs,
        lambda_cycle=10.0,lambda_id=1.0)
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Training  method
The train method shares common code with DCGAN with a few critical changes—we
need to collect our data for our batch generator differently and we need to train each one of
the discriminators we just developed (four in total):

Start out by defining the train method in a similar way to our DCGAN1.
implementation except with multiple sets of train folders:

    def train(self):
        for e in range(self.EPOCHS):
            b = 0
            X_train_A_temp = deepcopy(self.X_train_A)
            X_train_B_temp = deepcopy(self.X_train_B)
            while
      min(len(X_train_A_temp),len(X_train_B_temp))>self.BATCH:
                # Keep track of Batches
                b=b+1

Because the batch represents a single image, it isn't strictly required that each
domain contain the same number of images. Now, this means that our while
statement needs to take into account that there is one folder smaller than the
other. The epoch will end when there are no more images in the smaller array of
images between A and B.

This code will look familiar—the key difference is that we have now added an2.
additional data source and therefore we need to have an A and B version of our
batches:

# Train Discriminator
# Grab Real Images for this training batch
count_real_images = int(self.BATCH)
starting_indexs = randint(0,
   (min(len(X_train_A_temp),len(X_train_B_temp))-
count_real_images))
real_images_raw_A = X_train_A_temp[ starting_indexs :
                    (starting_indexs
                    + count_real_images) ]
real_images_raw_B = X_train_B_temp[ starting_indexs :
                    (starting_indexs
                    + count_real_images) ]

# Delete the images used until we have none left
X_train_A_temp = np.delete(X_train_A_temp,range(starting_indexs,
                          (starting_indexs + count_real_images)),0)
X_train_B_temp = np.delete(X_train_B_temp,range(starting_indexs,
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                          (starting_indexs + count_real_images)),0)
batch_A = real_images_raw_A.reshape( count_real_images, self.W_A,
                                     self.H_A, self.C_A )
batch_B = real_images_raw_B.reshape( count_real_images, self.W_B,
                                     self.H_B, self.C_B )

As introduced in Chapter 4, Dreaming of New Outdoor Structures Using DCGAN,3.
we introduce label noise into the training process with the development of the
batches for training the individual discriminators:

if self.flipCoin():
      x_batch_A = batch_A
      x_batch_B = batch_B
      y_batch_A = np.ones([count_real_images,1])
      y_batch_B = np.ones([count_real_images,1])
else:
     x_batch_B = self.generator_A_to_B.Generator.predict(batch_A)
     x_batch_A = self.generator_B_to_A.Generator.predict(batch_B)
     y_batch_A = np.zeros([self.BATCH,1])
     y_batch_B = np.zeros([self.BATCH,1])

Train discriminator A and discriminator B with the newly developed batches:4.

# Now, train the discriminator with this batch
self.discriminator_A.Discriminator.trainable = True
discriminator_loss_A =
       self.discriminator_A.Discriminator.train_on_batch
                     (x_batch_A,y_batch_A)[0]
       self.discriminator_A.Discriminator.trainable = False
       self.discriminator_B.Discriminator.trainable = True
       discriminator_loss_B =
       self.discriminator_B.Discriminator.train_on_batch
                     (x_batch_B,y_batch_B)[0]
       self.discriminator_B.Discriminator.trainable = False

Train your GAN model with all of your input values—record the loss:5.

# In practice, flipping the label when training the generator
improves convergence
if self.flipCoin(chance=0.9):
    y_generated_labels = np.ones([self.BATCH,1])
else:
    y_generated_labels =np.zeros([self.BATCH,1])
generator_loss = self.gan.gan_model.train_on_batch([x_batch_A,
     x_batch_B],[y_generated_labels, y_generated_labels,x_batch_A,
     x_batch_B,x_batch_A, x_batch_B])
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Check the output of the batches periodically and at the epoch level:6.

print ('Batch: '+str(int(b))+', [Discriminator_A :: Loss:
       '+str(discriminator_loss_A)+'], [ Generator :: Loss:
       '+str(generator_loss)+']')
if b % self.CHECKPOINT == 0 :
       label = str(e)+'_'+str(b)
       self.plot_checkpoint(label)

print ('Epoch: '+str(int(e))+', [Discriminator_A :: Loss:
       '+str(discriminator_loss_A)+'], [ Generator :: Loss:
       '+str(generator_loss)+']')
return

Helper method
We have a few new helper methods—instead of having independent data loading methods,
we simply have a new method inside of training. Also, when we've developed CycleGAN,
we need to be able to check the style transfer and the reconstruction from that transferred
style—the plotting function will do this for us.

Here are the steps:

Loading the data is fairly easy—just a rehashing of our data loading from1.
Chapter 4, Dreaming of New Outdoor Structures Using DCGAN:

def load_data(self,data_path,amount_of_data = 1.0):
    listOFFiles = self.grabListOfFiles(data_path,extension="jpg")
    X_train = np.array(self.grabArrayOfImages(listOFFiles))
    height, width, channels = np.shape(X_train[0])
    X_train = X_train[:int(amount_of_data*float(len(X_train)))]
    X_train = (X_train.astype(np.float32) - 127.5)/127.5
    X_train = np.expand_dims(X_train, axis=3)
    return X_train, height, width, channels

Grabbing the list of files is a straightforward method using OS:2.

    def grabListOfFiles(self,startingDirectory,extension=".webp"):
        listOfFiles = []
        for file in os.listdir(startingDirectory):
            if file.endswith(extension):
                listOfFiles.append(os.path.join(startingDirectory,
                                   file))
        return listOfFiles
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Coin flipping is carried over from Chapter 4, Dreaming of New Outdoor Structures3.
Using DCGAN:

    def flipCoin(self,chance=0.5):
        return np.random.binomial(1, chance)

Importing of images is merged in from the separate Python script introduced in4.
Chapter 4, Dreaming of New Outdoor Structures Using DCGAN:

    def grabArrayOfImages(self,listOfFiles,gray=False):
        imageArr = []
        for f in listOfFiles:
            if gray:
                im = Image.open(f).convert("L")
            else:
                im = Image.open(f).convert("RGB")
            im = im.resize((self.RESIZE_WIDTH,self.RESIZE_HEIGHT))
            imData = np.asarray(im)
            imageArr.append(imData)
        return imageArr

At each checkpoint, take an example from the test set and transfer style from A to5.
B, then back to A:

    def plot_checkpoint(self,b):
        orig_filename = "/data/batch_check_"+str(b)+"_original.png"

        image_A = self.X_test_A[5]
        image_A = np.reshape(image_A,
               [self.W_A_test,self.H_A_test,self.C_A_test])
        fake_B =
             self.generator_A_to_B.Generator.predict(image_A.reshape(1,
             self.W_A, self.H_A, self.C_A ))
        fake_B = np.reshape(fake_B,
             [self.W_A_test,self.H_A_test,self.C_A_test])
        reconstructed_A =
              self.generator_B_to_A.Generator.predict(fake_B.reshape(1,
              self.W_A, self.H_A, self.C_A ))
        reconstructed_A = np.reshape(reconstructed_A,
              [self.W_A_test,self.H_A_test,self.C_A_test])
        checkpoint_images = np.array([image_A, fake_B,
               reconstructed_A])
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Use Matplotlib's plotting function to plot all three of the images:6.

# Rescale images 0 - 1
checkpoint_images = 0.5 * checkpoint_images + 0.5

titles = ['Original', 'Translated', 'Reconstructed']
fig, axes = plt.subplots(1, 3)
for i in range(3):
         image = checkpoint_images[i]
         image = np.reshape(image,
                 [self.H_A_test,self.W_A_test,self.C_A_test])
         axes[i].imshow(image)
         axes[i].set_title(titles[i])
         axes[i].axis('off')
fig.savefig("/data/batch_check_"+str(b)+".png")
plt.close('all')
return

At each batch or epoch check, you should see an output image similar to this:

Exercise
Can you rewrite the discriminator and generator in more compact methods?1.



7
Using Simulated Images To

Create Photo-Realistic Eyeballs
with SimGAN

In this chapter, we'll cover the following recipes:

How the SimGAN architecture works
Pseudocode – how does it work?
How to work with training data
Code implementation – loss functions
Code implementation – generator
Code implementation – discriminator
Code implementation – GAN
Training the SimGAN network

Introduction
This chapter will focus on the SimGAN paper and how to take simulated data and make it
look more realistic. The generator network used in the SimGAN architecture is able to
improve the fidelity of simulated data.
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How SimGAN architecture works
Apple previously released a paper titled Learning from Simulated and Unsupervised Images
through Adversarial Training (https:/ / arxiv. org/pdf/ 1612. 07828. pdf), in which authors
coined the architecture type SimGAN. As set out in the paper, SimGAN allows users to
refine simulated data to make it look more realistic. In this section, we'll discuss how
SimGAN architecture works.

Getting ready
The only thing you'll need in this section is the paper previously mentioned, which can be
downloaded and read at: https:/ / arxiv. org/ pdf/ 1612. 07828. pdf titled Learning from
Simulated and Unsupervised Images through Adversarial Training.

How to do it...
In the SimGAN paper, authors set out to create a refiner network that can accurately
improve the realism of synthetic images in an unsupervised manner. In the past, it has been
quite hard to find matched simulation and real data for training such networks, but
SimGAN has changed the existing landscape thanks to its focus on a simulated and
unsupervised architecture. In SimGAN architecture, line-of-sight information is gathered
for use in real models that can simulate examples of a similar direction in simulation, which
allows the network to recognize a relationship between real and simulated actions. The
following diagram illustrates this technique:
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SimGAN architecture design

To see SimGAN architecture in action, we'll perform the following steps:

Build a Docker container and run a script to create models1.
Build a refiner network (the generator code) for the SimGAN architecture2.
Build a discriminator network3.
Develop a training code4.
Evaluate the output of the training code5.

Pseudocode – how does it work?
With every technique, we need to understand the baseline algorithm before we can lay
down any code. So, in this section, we'll discuss how the training algorithm works.

Getting ready
In this section, we'll be referring to the SimGAN paper once again.
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How to do it...
In the SimGAN paper, the authors provided a convenient graphic for users to base their
development on. We already know that we need to develop models for each of the
networks, but how do we train a network in the first place? The following diagram offers
an explanation:

Algorithm 

Let's convert the preceding diagram into the following, tangible steps:

Read both synthetic images and real images into variables.1.
Then, for every epoch, do the following:2.

Train the refiner networks on a random mini batch for K_G times
Train the discriminator network on a random mini batch for K_D times

Stop when the number of epochs reached, or lost, has not changed significantly3.
for n epochs.
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How to work with training data
As with every architecture we train throughout this book, understanding the structure of
the data and the development environment is important to overall success. So, in this
section, we'll set up the development environment and download the data inside the
Docker container.

Getting ready
You'll need to create a folder at the $HOME directory level of your Linux machine with the
following directory structure (which can be checked using the tree function):

├── docker
│   ├── build.sh
│   ├── clean.sh
│   ├── Dockerfile
│   └── kaggle.json
├── out
├── README.md
├── run.sh
└── src

How to do it...
In this chapter, we're going to introduce the Kaggle API so we can grab the necessary data
for the SimGAN training architecture. Using the Kaggle API will require you to set up a
Kaggle account and get API token access.

Kaggle and its API
Kaggle.com is a popular online site that holds machine learning (ML) competitions and
discussions. Kaggle also supplies an API for accessing their datasets at no cost, and we'll
utilize that API to grab a dataset for the SimGAN training in this chapter.

http://Kaggle.com
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Perform the following steps to sign up for an account and get a token for accessing the API:

Sign up for a Kaggle account, as shown in the following screenshot:1.

Log in and select your user icon in the upper-right hand corner and select My2.
Account, as follows:
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Create a new API token and save the token to your docker folder, as follows:3.

Now that's done, we need to create the Docker container that will use this token.

Building the Docker image
The Docker image we'll use here is based on our base_image, which we built in Chapter
2, Data First, Easy Environment, and Data Prep. To build a Docker image, take the following
steps:

Create a Docker file and add the following line to inherit from base_image:1.

FROM base_image

Install a few dependencies for the Python and Kaggle libraries with the following2.
code:

# Installations for graphing and analysis
RUN apt update && apt install -y python3-pydot python-pydot-ng
graphviz
RUN pip3 install kaggle ipython pillow

From the previous exercise, copy kaggle.json into the Docker container, as3.
follows:

# Copy Kaggle.json
COPY kaggle.json ~/.kaggle/kaggle.json
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Download the data using the Kaggle API into the /data folder, as follows:4.

# Download the Data
#https://www.kaggle.com/c/mp18-eye-gaze-estimation/data
RUN kaggle datasets download -d 4quant/eye-gaze -p /data/

Move the working directory to the /data folder and then unzip the data into the5.
folder, as follows:

WORKDIR /data
RUN unzip eye-gaze.zip -d eye-gaze
RUN rm eye-gaze.zip

Remember to remove eye-gaze.zip to save space.

Set the working directory for the Docker container with the following. This will7.
be used when we want to run code:

WORKDIR /src

Running the Docker image
Last but certainly not least, we're going to put our usual scripts into the docker folder. To
building and remove Docker containers from your computer, perform the following steps:

Create a file called build.sh, make it executable, and place the following text1.
inside the file:

#/bin/bash
nvidia-docker build -t ch7

Create one more file called clean.sh, make it executable, and place the2.
following text inside the file:

#/bin/bash
docker rmi ch7

Now that we have a working environment, it's time to move on to developing the
generator!
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Code implementation – loss functions
In this section, we're going to develop custom loss functions that will be used for the
discriminator, generator, and adversarial models. We'll cover two loss functions in this
section, which we'll go over in detail.

Getting ready
It's time for a directory check! Make sure you've created and placed the relevant data in
each of the following folders and files. In this step, we're adding the loss.py file:

├── data
├── docker
│   ├── build.sh
│   ├── clean.sh
│   ├── Dockerfile
│   └── kaggle.json
├── out
├── README.md
├── run.sh
└── src
    ├── loss.py

How to do it...
This is a fairly simple section made up of three primary steps—creating the loss.py file
and placing two loss functions in it for us to inherit later on in the development.

Perform the following steps to create the loss.py file:

Add the python3 interpreter to the top of the file and import tensorflow, as1.
follows:

#!/usr/bin/env python3
import tensorflow as tf

Implement the self-regularization loss suggested by the authors (the math). The2.
implementation should be presented as follows:
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def self_regularization_loss(y_true,y_pred):
    return tf.multiply(0.0002,tf.reduce_sum(tf.abs(y_pred-y_true)))

In the preceding step, you're simply taking the normalized absolute value
between the predicted value and the true value during training.

Add the local adversarial loss function based on the mathematical presentation3.
from the paper, which is as follows:

def local_adversarial_loss(y_true,y_pred):
    truth = tf.reshape(y_true,(-1,2))
    predicted = tf.reshape(y_pred,(-1,2))

    computed_loss =
tf.nn.softmax_cross_entropy_with_logits_v2(labels=truth,logits=pred
icted)
    output = tf.reduce_mean(computed_loss)
    return output

As you can see in the preceding snippet, the softmax_cross_entropy_with_logits_v2
function will essentially compute the probability error between discrete classification tasks,
which in our case, is between real and simulated images.

Code implementation – generator
In this case, the generator in also known as the refiner network. This generator, therefore,
is the network that will take and refine the simulated data.

Getting ready
Check that you have the following files in the correct place:

├── data
├── docker
│   ├── build.sh
│   ├── clean.sh
│   ├── Dockerfile
│   └── kaggle.json
├── out
├── README.md
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├── run.sh
└── src
    ├── generator.py
    loss.py

How to do it...
In this section, we'll look at build boilerplate items, model development, and helper
functions in order to help us to build the full generator.

Boilerplate items
There are two key steps in the boilerplate, and they are as follows:

Add all of the following import statements needed to create the generator1.
(refiner) network:

#!/usr/bin/env python
import sys
import numpy as np
from keras.layers import Dense, Reshape, Input, BatchNormalization,
Concatenate, Activation
from keras.layers.core import Activation
from keras.layers.convolutional import UpSampling2D, Convolution2D,
MaxPooling2D,Deconvolution2D, Conv2D
from keras.layers.advanced_activations import LeakyReLU
from keras.models import Sequential, Model
from keras.optimizers import Adam, SGD, Nadam,Adamax
from keras import initializers
from keras import layers
from keras.utils import plot_model
import tensorflow as tf
from loss import Loss

Create the init method in the generator network to make sure you're building,2.
compiling, and saving the model, as follows:

class Generator(object):
    def __init__(self, width = 35, height= 55, channels =
1,name='generator'):
        self.W = width
        self.H = height
        self.C = channels
        self.SHAPE = (width,height,channels)
        self.NAME = name
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        self.Generator = self.model()
        self.OPTIMIZER = SGD(lr=0.001)
        self.Generator.compile(loss=Loss.self_regularization_loss,
                               optimizer=self.OPTIMIZER)

        self.save_model_graph()
        self.summary()

Model development
The generator network is a model based on a few res_net blocks and an output layer. The
following steps will build the generator network:

Build the model with an input layer and the first 2D convolution layer, as1.
follows: 

def model(self):
    # Input
      input_layer = Input(shape=self.SHAPE)
      x = Convolution2D(64, 3,3,
border_mode='same',activation='relu')(input_layer)

Take a look at the first ResNet block, as follows:2.

# ResNet Block 1
res_x_input_1 = Conv2D(64, (3,3),
border_mode='same',activation='relu')(x)
x = Convolution2D(64, 3,3, border_mode='same',activation='relu')
                 (res_x_input_1)
x = layers.Add()([res_x_input_1,x])
x = Activation('relu')(x)

Add three more ResNet blocks to this network architecture, as follows:3.

# ResNet Block 2
res_x_input_2 = Conv2D(64, (3,3),
border_mode='same',activation='relu')(x)
x = Convolution2D(64, 3,3, border_mode='same',activation='relu')
                 (res_x_input_2)
x = layers.Add()([res_x_input_2,x])
x = Activation('relu')(x)

# ResNet Block 3
res_x_input_3 = Conv2D(64, (3,3),
border_mode='same',activation='relu')(x)
x = Convolution2D(64, 3,3, border_mode='same',activation='relu')
                 (res_x_input_3)
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x = layers.Add()([res_x_input_3,x])
x = Activation('relu')(x)

# ResNet Block 4
res_x_input_4 = Conv2D(64, (3,3),
border_mode='same',activation='relu')(x)
x = Convolution2D(64, 3,3, border_mode='same',activation='relu')
                 (res_x_input_4)
x = layers.Add()([res_x_input_4,x])
x = Activation('relu')(x)

Build the model with the input and output later with the following code:4.

output_layer = Convolution2D(self.C,1,1,
border_mode='same',activation='tanh')
                            (x)
  return Model(input_layer,output_layer)

There are a few helper functions that we'll need to add into the class, so let's take a look at
them!

Helper functions
There is an important custom loss function that is needed for the generator network: the
self-regularization loss. We'll define this function as though it's part of our helper functions
in the generator:

Define self-regularization loss as follows:1.

def self_regularization_loss(self,y_true,y_pred):
    return tf.multiply(0.0002,tf.reduce_sum(tf.abs(y_pred-y_true)))

Create the summary helper function, as follows:2.

def summary(self):
    return self.Generator.summary()

Define the save_model_graph function as in previous sections, as follows:3.

def save_model_graph(self):
    plot_model(self.Generator, to_file='/out/Generator_Model.png')
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Save the model h5 file if requested by the user with the following code:4.

def save_model(self,epoch,batch):
self.Generator.save('/out/'+self.NAME+'_Epoch_'+epoch+'_Batch_'+bat
ch+
                        'model.h5')

Code implementation – discriminator
The discriminator in SimGAN is a fairly simple Convolutional Neural Network (CNN)
with a small twist at the end—it outputs the likelihood of simulated and real. In this
section, we'll also make use of a function from the loss class we built earlier.

Getting ready
We've built a set of loss functions and the generator class, so now it's time to build the
discriminator class. You should see the following structure in your directory:

├── data
├── docker
│   ├── build.sh
│   ├── clean.sh
│   ├── Dockerfile
│   └── kaggle.json
├── imgs
│   ├── create_token.png
│   ├── kaggle_signup.png
│   ├── MyAccount.png
│   ├── refiner_network_training.png
│   └── simGAN_network.png
├── out
│   └── Generator_Model.png
├── README.md
├── run.sh
└── src
 ├── discriminator.py
 ├── generator.py
 ├── loss.py
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How to do it...
The discriminator is very similar to other discriminators we've built in previous chapters. In
this case, we're essentially building a CNN with a slightly different output to work with our
custom loss functions.

Boilerplate
Here are  key steps in this piece, and they are as follows:

Define all of the imports for the discriminator and utilize python3 as follows:1.

#!/usr/bin/env python3
import sys
import numpy as np
from keras.layers import Input, Dense, Reshape, Flatten, Dropout,
BatchNormalization, Lambda, Concatenate, MaxPooling2D
from keras.layers.core import Activation
from keras.layers.convolutional import Convolution2D
from keras.layers.advanced_activations import LeakyReLU
from keras.activations import relu
from keras.models import Sequential, Model
from keras.optimizers import Adam, SGD,Nadam, Adamax
from keras.utils import plot_model
import tensorflow as tf
from loss import Loss

Create the Discriminator class and add the following initialization step:2.

class Discriminator(object):
    def __init__(self, width = 35, height= 55, channels =
                 1,name='discriminator'):

Using the variables we instantiated the class with, initialize the following internal3.
self variables:

self.W = width
self.H = height
self.C = channels
self.SHAPE = (width,height,channels)
self.NAME = name
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Create the model and the optimizer and then compile your model with the local4.
adversarial loss function, as follows:

self.Discriminator = self.model()
self.OPTIMIZER = SGD(lr=0.001)
self.Discriminator.compile(loss=Loss.local_adversarial_loss,
                           optimizer=self.OPTIMIZER)

Save the model graphic and print a summary, as follows:5.

self.save_model_graph()
self.summary()

Model architecture
Building the internal model function allows us to build and compile the discriminator
neural network. To build it, take the following steps:

Within the Discriminator class, define the model and create an input layer1.
based on the shape of the image, as follows:

    def model(self):
        input_layer = Input(shape=self.SHAPE)

Start with the following two convolutional layers:2.

x = Convolution2D(96,3,3, subsample=(2,2),
    border_mode='same',activation='relu')(input_layer)
x = Convolution2D(64,3,3, subsample=(2,2),
    border_mode='same',activation='relu')(x)

Add a max pooling layer, as suggested by the authors, as follows:3.

x = MaxPooling2D(pool_size=(3,3),border_mode='same')(x)

Finish the network with the final convolutional layers, as follows:4.

        x = Convolution2D(32,3,3, subsample=(1,1),
border_mode='same',activation='relu')(x)
        x = Convolution2D(32,1,1, subsample=(1,1),
border_mode='same',activation='relu')(x)
        x = Convolution2D(2,1,1, subsample=(1,1),
border_mode='same',activation='relu')(x)
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Construct the output layer for the network and return the model with the5.
following code:

output_layer = Reshape((-1,2))(x)
return Model(input_layer,output_layer)

Helper functions
At the end of each of these classes, we need to insert helper functions to complete simple
functionality, such as displaying a summary, saving a model file, and saving a model
graphic.

To add this functionality to the Discriminator class, take the following steps:

Add a definition in the Discriminator class called summary, which will display1.
the model summary as follows:

def summary(self):
    return self.Discriminator.summary()

The following helper function allows us to save the model with a variable for2.
epoch and batch:

def save_model(self,epoch,batch):
self.Discriminator.save('/out/'+self.NAME+'_Epoch_'+epoch+'_Batch_'
+batch+'model.h5')

Insert a save_model_graph function as follows. This will be called with every3.
discriminator object that's instantiated:

def save_model_graph(self):
    plot_model(self.Discriminator,
to_file='/data/Discriminator_Model.png')

Code implementation – GAN
The Generative Adversarial Model, or GAN, is at the heart of adversarial training
architecture. In fact, this model is different only in the fact that we use custom loss
functions in our compile step. Let's take a look at how it's implemented.
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Getting ready
This section will fill out the core of the base classes and functionality we need to have for
training the simGAN architecture. The following files, and structure, should be included in
your current directory:

├── data
├── docker
│   ├── build.sh
│   ├── clean.sh
│   ├── Dockerfile
│   └── kaggle.json
├── out
├── README.md
├── run.sh
└── src
    ├── discriminator.py
    ├── gan.py
    ├── generator.py
    ├── loss.py

How to do it...
The GAN model is vastly simplified in comparison to the building of the generator and
discriminator. Essentially, this class will put the generator and discriminator into
adversarial training along with the custom loss functions.

Take the following steps:

Use the python3 interpreter and import the necessary imports for the1.
implementation, as follows:

#!/usr/bin/env python3
import sys
import numpy as np
from keras.models import Sequential, Model
from keras.layers import Input
from keras.optimizers import Adam, SGD
from keras.utils import plot_model
from loss import Loss

Create the GAN class and create a few initialized variables, as follows:2.

class GAN(object):
    def __init__(self, model_inputs=[],model_outputs=[],
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name='gan'):
        self.OPTIMIZER = SGD(lr=2e-4,nesterov=True)
        self.NAME=name

Take the arrays of the model inputs and outputs from the instantiation and make3.
them internal variables to the class, as follows:

self.inputs = model_inputs
self.outputs = model_outputs

It's important that the model inputs and outputs are arrays so we can pass an
array of models into the GAN model.

Create the model, add the optimizer, and compile the model with the loss4.
functions, as follows:

        self.gan_model = Model(inputs = self.inputs, outputs =
self.outputs)
        self.OPTIMIZER = SGD(lr=0.001)
        self.gan_model.compile(loss=[Loss.self_regularization_loss,
Loss.self_regularization_loss],
                            optimizer=self.OPTIMIZER)

Save the model graphic and write a summary to the screen, as follows:5.

        self.save_model_graph()
        self.summary()

As in previous sections, add the following definition in order to display the6.
summary:

    def summary(self):
        return self.gan_model.summary()

Add another definition for saving the model graphic, as follows:7.

    def save_model_graph(self):
        plot_model(self.gan_model, to_file='/out/GAN_Model.png')

Add the following functionality. This will allow us to save the model if we want8.
to use it later:

def save_model(self,epoch,batch):
self.gan_model.save('/out/'+self.NAME+'_Epoch_'+epoch+'_Batch_'+bat
ch+'model.h5')
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Training the simGAN network
Now that we've built the infrastructure, we can develop the training methodology in the
train script. In this section, we'll also create the run python and shell scripts that will be
used for running everything in the Docker environment.

Getting ready
We're almost at the end! So, make sure you have every one of the following directories and
files in your $HOME directory:

├── data
├── docker
│   ├── build.sh
│   ├── clean.sh
│   ├── Dockerfile
│   └── kaggle.json
├── out
│   ├── GAN_Model.png
│   └── Generator_Model.png
├── README.md
├── run.sh
└── src
    ├── discriminator.py
    ├── gan.py
    ├── generator.py
    ├── loss.py
    ├── run.py
    └── train.py

How to do it...
The training script will read in data, process the data for input into the networks, and then
train the simGAN model.

Initialization
Take the following steps to initialize the training class and the basic functionality needed to
train the models:
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Create a train.py file and place the following imports at the top of the file:1.

#!/usr/bin/env python3
from gan import GAN
from generator import Generator
from discriminator import Discriminator
from keras.datasets import mnist
from keras.layers import Input
from random import randint
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
import os
import numpy as np
from copy import deepcopy

Create the top-level trainer class with the initialization step, as follows:2.

class Trainer:
    def __init__(self, height=55,width=35, channels=1,epochs =100,
batch=16,
checkpoint=50,sim_path='',real_path='',data_limit=0.001,generator_s
teps=2,discriminator_steps=1):

Initialize all of the internal variables for the training script, as follows:3.

        self.W = width
        self.H = height
        self.C = channels
        self.EPOCHS = epochs
        self.BATCH = batch
        self.CHECKPOINT = checkpoint
        self.DATA_LIMIT=data_limit
        self.GEN_STEPS = generator_steps
        self.DISC_STEPS = discriminator_steps

Load the data into the model as follows:4.

        self.X_real = self.load_h5py(real_path)
        self.X_sim = self.load_h5py(sim_path)
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There are two critical networks that we need to build for simGAN; they're the5.
refiner (generator) and the discriminator, as follows:

        self.refiner = Generator(height=self.H, width=self.W,
channels=self.C)
        self.discriminator = Discriminator(height=self.H,
width=self.W, channels=self.C)
        self.discriminator.trainable = False

Create the following inputs for the models:6.

 self.synthetic_image = Input(shape=(self.H, self.W, self.C))
 self.real_or_fake = Input(shape=(self.H, self.W, self.C))

Hook each of the models with the different inputs, as follows:7.

        self.refined_image =
self.refiner.Generator(self.synthetic_image)
        self.discriminator_output =
self.discriminator.Discriminator(self.real_or_fake)
        self.combined =
self.discriminator.Discriminator(self.refined_image)

Create the adversarial model with the inputs and outputs you just created, as8.
follows:

        model_inputs  = [self.synthetic_image]
        model_outputs = [self.refined_image, self.combined]
        self.gan =
GAN(model_inputs=model_inputs,model_outputs=model_outputs)

Training function
To build the training function, perform the following steps:

Create the train definition and go through each of the epochs, as follows:1.

    def train(self):
        for e in range(self.EPOCHS):

            b = 0
            X_real_temp = deepcopy(self.X_real)
            X_sim_temp = deepcopy(self.X_sim)

Remember to ensure that there are copies of both the real and simulated data
while keeping track of batches with the b variable.
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Create variables to store the losses from the combined model, the discriminator2.
sim, and discriminator real models, as follows:

            combined_loss =
np.zeros(shape=len(self.gan.gan_model.metrics_names))
            discriminator_loss_real =
np.zeros(shape=len(self.discriminator.Discriminator.metrics_names))
            discriminator_loss_sim =
np.zeros(shape=len(self.discriminator.Discriminator.metrics_names))

Loop through all of the data until there are no more batches, as follows:3.

            while min(len(X_real_temp),len(X_sim_temp))>self.BATCH:
                # Keep track of Batches
                b=b+1

Use the batch numbers to create the starting indices for grabbing the images, as4.
follows:

                count_real_images = int(self.BATCH)
                starting_indexs = randint(0,
(min(len(X_real_temp),len(X_sim_temp))-count_real_images))

Grab the real images and create the real y values for training the model, as shown5.
in the following snippet:

               real_images_raw = X_real_temp[ starting_indexs :
(starting_indexs + count_real_images) ]
                real_images = real_images_raw.reshape(
count_real_images, self.H, self.W, self.C )

                y_real = np.array([[[1.0, 0.0]] *
self.discriminator.Discriminator.output_shape[1]] * self.BATCH)

Create the images' sim variable with the following y_sim data:6.

                sim_images_raw = X_sim_temp[ starting_indexs :
(starting_indexs + count_real_images) ]
                sim_images = sim_images_raw.reshape(
count_real_images, self.H, self.W, self.C )

                y_sim = np.array([[[0.0, 1.0]] *
self.discriminator.Discriminator.output_shape[1]] * self.BATCH)



Using Simulated Images To Create Photo-Realistic Eyeballs with SimGAN Chapter 7

[ 208 ]

Train the generator for a given amount of steps, as follows:7.

                for _ in range(self.GEN_STEPS):
                    combined_loss =
np.add(self.gan.gan_model.train_on_batch(sim_images,[sim_images,
y_real]), combined_loss)

Train the discriminator and combined model for a given amount of steps, as8.
follows:

                for _ in range(self.DISC_STEPS):
                    improved_image_batch =
self.refiner.Generator.predict_on_batch(sim_images)
                    discriminator_loss_real =
np.add(self.discriminator.Discriminator.train_on_batch(real_images,
y_real), discriminator_loss_real)
                    discriminator_loss_sim =
np.add(self.discriminator.Discriminator.train_on_batch(improved_ima
ge_batch, y_sim),discriminator_loss_sim)

After each epoch, put out the following metrics for each of the networks:9.

            print ('Epoch: '+str(int(e))+', [Real Discriminator ::
Loss: '+str(discriminator_loss_real)+'], [ GAN :: Loss:
'+str(combined_loss)+']')
        return

Helper functions
We make use of a set of helper functions during the build-up to our training script. In this
section, we'll briefly cover these functions and the steps needed to make simGAN train:

Create a method for load_h5py to load the simulated and real eye gaze data:1.

     def load_h5py(self,data_path):
        with h5py.File(data_path,'r') as t_file:
            print('Images found:',len(t_file['image']))
            image_stack = np.stack([np.expand_dims(a,-1) for a in
t_file['image'].values()],0)
        return image_stack
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Python run script
Create a file within the src folder called run.py and place the following code in there:

#!/usr/bin/env python3
from train import Trainer

# Command Line Argument Method
HEIGHT  = 55
WIDTH   = 35
CHANNELS = 1
EPOCHS = 100
BATCH = 16
CHECKPOINT = 50
SIM_PATH = "/data/eye-gaze/gaze.h5"
REAL_PATH = "/data/eye-gaze/real_gaze.h5"

trainer = Trainer(height=HEIGHT,width=WIDTH, channels=CHANNELS,epochs
=EPOCHS,\
                 batch=BATCH,\
                 checkpoint=CHECKPOINT,\
                 sim_path=SIM_PATH,\
                 real_path=REAL_PATH)
trainer.train()

Shell run script
Finally, to run the run.py code, we need to run create a shell script called run.sh, make it
executable, and put the following code inside the script:

#/bin/bash

# Training Step
xhost +
docker run -it \
   --runtime=nvidia \
   --rm \
   -e DISPLAY=$DISPLAY \
   -v /tmp/.X11-unix:/tmp/.X11-unix \
   -v $HOME/simGAN/out:/out \
   -v $HOME/simGAN/src:/src \
 ch7 python3 /src/run.py



Using Simulated Images To Create Photo-Realistic Eyeballs with SimGAN Chapter 7

[ 210 ]

To run this script, in the root directory of your simGAN chapter:

sudo ./run.sh

That completes the training section of the simGAN chapter. I encourage you to try other
datasets with this architecture including experimenting with different loss functions.

Exercise
Create a way to pre-train the refiner and discriminator networks.1.



8
From Image to 3D Models

Using GANs
These are the recipes that we'll be covering in this chapter:

Introduction to using GANs in order to produce 3D models
Environment preparation
Encoding 2D data and matching to 3D objects
Code implementation – generator
Code implementation – discriminator
Code implementation – GAN
Training this model

Introduction
There are a few modern techniques for converting 2D images into 3D models and this
chapter seeks to simplify those into easy-to-understand techniques. This chapter will cover
recipes that encode 2D images into a latent space-like representation, 3D convolutions for
learning on 3D data, and visualization of those results.
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Introduction to using GANs in order to
produce 3D models
In this recipe, we're going to cover a few basic techniques for producing 3D models with
GANs and we'll see how we can simplify these architectures for learning.

Getting ready
There are three papers that you'll need to review to understand this recipe:

Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial
Modeling: http:/ /3dgan. csail. mit.edu/ papers/ 3dgan_ nips. pdf.
Learning Shape Priors for Single-View 3D Completion and Reconstruction: http:/ /
shapehd. csail. mit. edu/ papers/ shapehd_ eccv. pdf.
Interactive 3D Modeling with a Generative Adversarial Network: https:/ /arxiv. org/
pdf/1706. 05170. pdf.

How to do it...
There are two major steps in the process to go from 2D images to 3D voxelized
models—encoding and 3D convolutions.

In each section, we'll cover the basics of the concepts that you'll use throughout this
chapter.

For a 2D image – learning an encoding space for an
image
There are a few key steps when understanding how to take an image and produce a latent
space-like representation:

Create an encoder that takes and compresses an image down to an encoding1.
space—the following block diagram describes the process:
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A block diagram showing how an encoder produces a compressed representation of an image

Create a decoder that takes that encoded representation and recreates the image:2.

A block diagram showing how decoder takes a compressed representation and reproduces an image

Combine the two models to create an autoencoder and train it:3.

A block diagram showing how an autoencoder can train both an encoder and decoder at the same time

Save the encoder model to use for our future chapter development.4.

See the next recipe to see how we practically build an encoder model.

Training a model using 3D convolutions
All of the models that we worked on, until now, were 2D convolutions. This chapter will
introduce the notion of using 3D convolutions.
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There are a few basic ideas to understand how to use 3D convolutions:

For one dimensional (1D) arrays, we're going to compute weights and then1.
approximate a value for each of the arrays. This diagram represents the
approximations graphically:

Figure: 1D convolution across a 1D array to understand features pertaining to this array

We've been working with two dimensional arrays; for example images, are a 2D2.
array of points. When computing the convolutions over an image, there are two
important terms:

Kernel – how many pixels you aggregate in the convolution1.
computation
Stride – how many pixels you move the kernel to compute the next2.
kernel

The following diagram explains this step:

Figure: A 2D convolution example of taking a portion of a 2D image and producing a compressed representation 
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Now, we have a 3D array of data and we'll use similar convolutional layers to3.
traverse a kernel over the data. The following diagram illustrates this action:

Figure: A 3D convolution example of taking a portion of an 3D image and producing a compressed representation of that image 

With 3D convolutions, you have stride and kernel in three dimensions. One of the pitfalls of
3D convolutions is that they haven't yet implemented sparse arrays – that is to say, that the
convolutional layer has to traverse the entire array instead of only computing convolutions
on occupied pixels.

Next, we are going to move on to preparing our environment to use this new technique!

Environment preparation
This recipe will show you how to develop the Docker container needed to run this 3D
model generator and encoder. This chapter relies on the previous chapter, where you used
the Kaggle API to download data. We'll use the same API to download data for this
chapter.

Getting ready
As with previous chapters, we'll need to make sure that we have a folder created in the
home directory on your Ubuntu machine. Check to make sure your directory structure
appears as follows:

├── data
├── docker
│   ├── build.sh
│   ├── clean.sh
│   ├── Dockerfile
│   └── kaggle.json
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├── out
├── README.md
└── src

How to do it...
The Docker container is the heart of how we run these recipes—this chapter will start by
building the infrastructure and will end with building the Docker container.

Creating the Docker container
This is how to create the Docker container for this chapter:

Create a file under the docker folder called Dockerfile and place the following1.
text into the file:

FROM base_image

This simply inherits from our base image that we built all the way back in
Chapter 2, Data First, Easy Environment, and Data Prep.

Install the graphing utilities and the Kaggle API among other needed libraries:2.

# Installations for graphing and analysis
RUN apt update && apt install -y python3-pydot python-pydot-ng
graphviz
RUN pip3 install kaggle ipython pillow

In Chapter 7, Using Simulated Images To Create Photo-Realistic Eyeballs with3.
SimGAN, we learned how to get kaggle.json—use the same file here (placed in
the docker folder) and copy it into the container:

# Copy Kaggle.json
COPY kaggle.json /root/.kaggle/kaggle.json

We're going to download a dataset called the 3D MNIST dataset—this is simply a4.
dataset that contains 3D models of MNIST in voxelized or point cloud format:

# Download the Data
RUN kaggle datasets download -d daavoo/3d-mnist
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Unzip the dataset into a folder called 3d-mnist inside the container and remove5.
the ZIP file to save space:

RUN unzip 3d-mnist.zip -d 3d-mnist
RUN rm 3d-mnist.zip

Set the working directory that we'll start the container in at the src folder level:6.

WORKDIR /src

After finishing this file, we'll create a few shell scripts to allow us to build, clean, and work
with this new environment.

Building the Docker container
We have the docker file built—we simply need to create and then run a build script to
build this container for future use. Here are the steps to make that happen:

 Place the following text in the Docker folder in a file called build.sh (ensure1.
that this file is executable):

#/bin/bash
nvidia-docker build -t ch8 .

Run the following command from your Terminal:2.

sudo ./build.sh

If all goes well, you should have a container that is ready to build the encoder
recipe coming up next!

By way of final step, create the clean.sh script in case we want to create a brand3.
new container:

#/bin/bash
docker rmi ch8

Our environment is ready to go—let's use this environment in the next recipe to create
encodings of the MNIST dataset.
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Encoding 2D data and matching to 3D
objects
This recipe will break down how to create the autoencoder, including the encoder and
decoder, train it, and save it for later use in this chapter. We'll focus on a simplified
representation of an autoencoder for educational purposes.

Getting ready
Let's do a directory check and make sure we have all of the same files in our directory at
this point:

├── data
├── docker
│   ├── build.sh
│   ├── clean.sh
│   ├── Dockerfile
│   └── kaggle.json
├── out
├── README.md
├── run_autoencoder.sh
└── src
    ├── encoder.py

Also, make sure that you've built the container from the previous chapter since all future
recipes will rely on that container being built.

How to do it...
Autoencoders are simple to construct and train—this chapter is meant to make the process
simple and understandable. This recipe is meant to introduce the concepts of autoencoders
and how they can be used in the context of going from 2D to 3D.
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Code to run a simple encoder
This portion of this recipe will go over the steps needed to build the encoder script:

Gather all of the necessary imports to create an autoencoder—notice how few1.
packages we need to make this happen:

from keras.datasets import mnist
import numpy as np
from keras.layers import Input, Dense
from keras.models import Model

Download the mnist data through the Keras API and convert the values to be2.
between 0 and 1:

# Download the data and format for learning
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.astype('float32') / 255.
x_test = x_test.astype('float32') / 255.
x_train = x_train.reshape((len(x_train),
np.prod(x_train.shape[1:])))
x_test = x_test.reshape((len(x_test), np.prod(x_test.shape[1:])))

In this step, create the encoding dimension—how many numbers we need to3.
represent the MNIST dataset:

# How much encoding do we want for our setup?
encoding_dimension = 256

Choose a larger number in this instance to mimic a latent space sample, as  we
would in a traditional GAN architecture.

The Keras MNIST data has an input shape of 784, so we use that in the input4.
later. We're also creating an encoded and decoded set of layers—notice that this
model is very simple:

input_layer = Input(shape=(784,))
encoded_layer = Dense(encoding_dimension,
activation='relu')(input_layer)
decoded = Dense(784, activation='sigmoid')(encoded_layer)
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Build the autoencoder model by using input_layer as the input layer and5.
decoded as the output layer:

# Build the Model
ac = Model(input_layer, decoded)

Create an encoder model that we'll save for later:6.

# Create an encoder model that we'll save later
encoder = Model(input_layer, encoded_layer)

Train the autoencoder for 100 epochs and use the test data to validate:7.

# Train the autoencoder model, ac
ac.compile(optimizer='adadelta', loss='binary_crossentropy')
ac.fit(x_train, x_train,
                epochs=100,
                batch_size=256,
                shuffle=True,
                validation_data=(x_test, x_test))

Now that we have a trained autoencoder model, we can use the encoder model8.
to predict encodings for the entire x_train dataset—save it to use in our
training recipe:

# Save the Predicted Data x_train
x_train_encoded = encoder.predict(x_train)
np.save('/src/x_train_encoded.npy',x_train_encoded)

Do the same action for the test set—save the encoded x_test dataset into an npy9.
file:

# Save the Predicted Data x_test
x_test_encoded = encoder.predict(x_test)
np.save('/src/x_test_encoded.npy',x_test_encoded)

In case we need the encoder again, save an h5 model file with the model data:10.

# Save the Encoder model
encoder.save('/src/encoder_model.h5')

The next steps will show you how to run this script to produce the model and npy files.
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The shell script to run the encoder with our Docker
container
The last step in this section will be to build a shell script called run_autoencoder.sh at
the root of this directory and add the following:

#/bin/bash

# Run autoencoder step
xhost +
docker run -it \
   --runtime=nvidia \
   --rm \
   -e DISPLAY=$DISPLAY \
   -v /tmp/.X11-unix:/tmp/.X11-unix \
   -v $HOME/3d-gan-from-images/out:/out \
   -v $HOME/3d-gan-from-images/src:/src \
   ch8 python3 /src/encoder.py

To create the npy and model files, run the following command in the Terminal:

sudo ./run_autoencoder.sh

Now, we'll move on to building the core of the GAN architecture that will make use of
these encodings.

Code implementation – generator
The generator represents the part of the network that will generate new images based on
the input sample given to it. In our case, we'll be giving input from an encoded version of
an image and it will produce a 16 x 16 x 16 x 3 representation of an object (height by width
by length with a color).

Getting ready
We've built out the docker folder and the encoding code and now we're moving to create
the generator. In the src folder, create a file called generator.py and make sure you have
the same files and folders in your directory:

├── data
├── docker
│   ├── build.sh
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│   ├── clean.sh
│   ├── Dockerfile
│   └── kaggle.json
├── out
├── README.md
├── run_autoencoder.sh
└── src
    ├── encoder_model.h5
    ├── encoder.py
    ├── generator.py
    ├── x_test_encoded.npy
    └── x_train_encoded.npy

How to do it...
There are three basic pieces to creating the generator class—the preparation, the model, and
the helper functions. We'll cover each in detail throughout this recipe.

Generator class preparation
The first thing we'll do is prepare our class by following these steps:

 The first step is to gather all of the packages we need to build the generator:1.

#!/usr/bin/env python3
import sys
import numpy as np
from keras.layers.advanced_activations import LeakyReLU
from keras.models import Sequential, Model
from keras.layers.convolutional import Conv3D, Deconv3D
from keras.layers import Input, BatchNormalization, Dense, Reshape
from keras.layers.core import Activation
from keras.optimizers import Adam, SGD
from keras.utils import plot_model

Create the class with an input shape of our latent space and an optimizer of2.
SGD:

class Generator(object):
    def __init__(self, latent_size=100):

        self.INPUT_SHAPE = (1, 1, 1, latent_size)
        self.OPTIMIZER = SGD(lr=0.001, nesterov=True)
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For initialization, the final step is to create the model, compile, and produce a3.
summary:

        self.Generator = self.model()
        self.Generator.compile(loss='binary_crossentropy',
                               optimizer=self.OPTIMIZER)
        self.summary()

We'll move on to creating the model method in the next step!

Building the generator model
Next, in this class development, we'll create two methods—a block method and a  model
creation method:

The block method is used in the model generation method—it focuses on1.
creating a template for a block reused in this model architecture of a Deconv3D
layer, BatchNorm, and a ReLU activation:

def
block(self,first_layer,filter_size=512,stride_size=(2,2,2),kernel_s
ize=
          (4,4,4),padding='same'):

        x = Deconv3D(filters=filter_size, kernel_size=kernel_size,
                    strides=stride_size,
kernel_initializer='glorot_normal',
                    bias_initializer='zeros',
padding=padding)(first_layer)
        x = BatchNormalization()(x)
        x = Activation(activation='relu')(x)

        return x

Create the model method that uses the input shape we defined in the2.
initialization step and that starts with one block:

    def model(self):
        input_layer = Input(shape=self.INPUT_SHAPE)

        x = self.block(input_layer,filter_size=256,stride_size=
                       (1,1,1),kernel_size=(4,4,4),padding='valid')
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Create a second block and halve the number of filters:3.

x =
self.block(x,filter_size=128,stride_size=(2,2,2),kernel_size=(4,4,4
))

The final block requires a few changes, so we'll define it explicitly  here—namely,4.
the padding:

x = Deconv3D(filters=3, kernel_size=(4,4,4),
             strides=(2,2,2), kernel_initializer='glorot_normal',
             bias_initializer='zeros', padding='same')(x)
x = BatchNormalization()(x)

At the end of this method, use a sigmoid activation and create the model by5.
explicitly pointing the input and output layers:

output_layer = Activation(activation='sigmoid')(x)
model = Model(inputs=input_layer, outputs=output_layer)
return model

The final action is to define the summary method (this should start to look6.
familiar by now):

def summary(self):
    return self.Generator.summary()

The next recipe will focus on developing the discriminator class!

Code implementation – discriminator
The discriminator's purpose is to determine whether the generated sample is real or
fake—there's a balance to strike in order to make sure the discriminator is just good enough
to keep the generator moving in the right direction. The discriminator class we'll use is 3D
convolutions to determine whether 3D samples are real or fake.

Getting ready
The generator is now complete and we're moving on to develop the discriminator class. In
the src folder, add the discriminator.py file.
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You should have the following directory structure:

├── data
├── docker
│   ├── build.sh
│   ├── clean.sh
│   ├── Dockerfile
│   └── kaggle.json
├── out
├── README.md
├── run_autoencoder.sh
└── src
    ├── discriminator.py
    ├── encoder_model.h5
    ├── encoder.py
    ├── generator.py
    ├── x_test_encoded.npy
    └── x_train_encoded.npy

How to do it...
The Discriminator class needs an initialization step, a block method, a model method,
and a summary method. The following recipe will cover how to create these pieces.

Discriminator class preparation
The Discriminator class will start by gathering imports and initializing the class:

Define all of the imports needed for this class:1.

#!/usr/bin/env python3
import sys
import numpy as np
from keras.layers import Input, Dense, Reshape, Flatten, Dropout,
                  BatchNormalization
from keras.layers.convolutional import Conv3D, Deconv3D
from keras.layers.core import Activation
from keras.layers.advanced_activations import LeakyReLU
from keras.models import Sequential, Model
from keras.optimizers import Adam
from keras.utils import plot_model
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Create the Discriminator class with the side length (assuming our 3D object is2.
cubic) as the only input:

class Discriminator(object):
    def __init__(self, side=16):
        self.INPUT_SHAPE = (side,side,side,3)

We also define the input shape as a cube with the defined side as the
length and a three channel color representation for every pixel.

Define the Adam optimizer and create the model:3.

self.OPTIMIZER = Adam(lr=0.000001, beta_1=0.5)
self.Discriminator = self.model()

Now that the model is created, we'll compile the model in the initialization step:4.

self.Discriminator.compile(loss='binary_crossentropy',
                   optimizer=self.OPTIMIZER, metrics=['accuracy'] )

Print the summary of the model to the screen:5.

self.summary()

Building the discriminator model
There are two crucial methods in this class: the block and model methods. The following
steps will show you how to create those methods:

 Define a method called block that takes in a layer input, filter size, and kernel1.
size:

def block(self,first_layer,filter_size=512,kernel_size=(3,3,3)):

    x = Conv3D(filters=filter_size, kernel_size=kernel_size,
               kernel_initializer='glorot_normal',
               bias_initializer='zeros',
padding='same')(first_layer)
     x = BatchNormalization()(x)
     x = LeakyReLU(0.2)(x)

     return x
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This block represents a common building block that we'll use throughout the
discriminator model method.

Let's define a model method with the input as the internal class2.
variable, INPUT_SHAPE:

def model(self):
    input_layer = Input(shape=self.INPUT_SHAPE)

Using the model method we defined, create a few blocks with multiple filter3.
sizes:

x = self.block(input_layer,filter_size=8)
x = self.block(x,filter_size=16,)
x = self.block(x,filter_size=32)
x = self.block(x,filter_size=64)

As with the Generator class, the last block has a few changes, so we define it4.
explicitly:

x = Conv3D(filters=1, kernel_size=(3,3,3),
           strides=(1,1,1), kernel_initializer='glorot_normal',
           bias_initializer='zeros', padding='valid')(x)
x = BatchNormalization()(x)
x = Flatten()(x)

At the end of the method, we define our singular output and define the model to5.
return:

output_layer = Dense(1, activation='sigmoid')(x)
model = Model(inputs=input_layer, outputs=output_layer)
return model

In the final step, define the summary helper function:6.

def summary(self):
    return self.Discriminator.summary()

Now, the next recipe will bring the discriminator and generator together in adversarial
training!
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Code implementation – GAN
The GAN architecture represents a way for us to put two or more neural networks in
adversarial training. The only major thing we've changed in our current architecture is to
use 3D convolutions and a new input format. This GAN architecture is very similar to other
structures we've introduced throughout this book.

Getting ready
After defining the generator and discriminator, we're going to continue our development
by defining a new file called gan.py. This file will be located under the src folder. Check
to make sure you have the same directory structure at this point:

├── data
├── docker
│   ├── build.sh
│   ├── clean.sh
│   ├── Dockerfile
│   └── kaggle.json
├── out
├── README.md
├── run_autoencoder.sh
└── src
    ├── discriminator.py
    ├── encoder_model.h5
    ├── encoder.py
    ├── gan.py
    ├── generator.py
    ├── x_test_encoded.npy
    └── x_train_encoded.npy

How to do it...
The GAN class will be straightforward to implement—it's essentially the same class we
defined back in Chapter 3, My First GAN in Under 100 Lines, and Chapter 4, Dreaming of
New Outdoor Structures Using DCGAN.
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Here are the steps to create it:

 Define all of the necessary packages to import for the GAN class:1.

#!/usr/bin/env python3
import sys
import numpy as np
from keras.models import Sequential, Model
from keras.optimizers import Adam
from keras.utils import plot_model

Define the class that takes in the discriminator and generator models as2.
input:

class GAN(object):
    def __init__(self,discriminator,generator):

After we initialize the class, define the optimizer and our internal variables for3.
the GAN architecture:

self.OPTIMIZER = Adam(lr=0.008, beta_1=0.5)
self.Generator = generator
self.Discriminator = discriminator
self.Discriminator.trainable = True

We'll use the model method (defined in step 5), compile the model, and print a4.
summary:

self.gan_model = self.model()
self.gan_model.compile(loss='binary_crossentropy',
optimizer=self.OPTIMIZER)
self.summary()

Let's create the model definition—the generator feeds into the discriminator:5.

def model(self):
    model = Sequential()
    model.add(self.Generator)
    model.add(self.Discriminator)
return model

For the final step, print a summary to screen with the summary method:6.

def summary(self):
    return self.gan_model.summary()

Finally, we'll move on to training this model and understanding the output!
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Training this model
Training is always an adventure—there are so many pitfalls when developing GAN
architectures. In this training class, we aim to provide a simple setup to train a GAN that
takes a 2D image and creates a 3D model.

Getting ready
This is the final recipe in our chapter, so we've got a few files to create—the train.py,
run.py, and run.sh files. Before continuing, check to make sure you have the exact same
directory structure in your directory:

├── data
├── docker
│   ├── build.sh
│   ├── clean.sh
│   ├── Dockerfile
│   └── kaggle.json
├── out
├── README.md
├── run_autoencoder.sh
├── run.sh
└── src
    ├── discriminator.py
    ├── encoder_model.h5
    ├── encoder.py
    ├── gan.py
    ├── generator.py
    ├── run.py
    ├── train.py
    ├── x_test_encoded.npy
    └── x_train_encoded.npy

How to do it...
There are a few steps to successfully training this model—preparing the class, importing
the data, training, plotting, and running the training code. This recipe will cover all of these
aspects in detail.
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Training class preparation
The training class initialization step will be described in the following section—here are the
steps to create the bare bones training class:

 Import all of the necessary packages to run the training class:1.

#!/usr/bin/env python3
from gan import GAN
from generator import Generator
from discriminator import Discriminator
from keras.datasets import mnist
from random import randint
import numpy as np
import matplotlib.pyplot as plt
import h5py
# This import registers the 3D projection, but is otherwise unused.
from mpl_toolkits.mplot3d import Axes3D  # noqa: F401 unused import
from voxelgrid import VoxelGrid

Define the Trainer class with a few input values:2.

class Trainer:
    def __init__(self, side=16, latent_size=32, epochs =100,
batch=32,
                 checkpoint=50, data_dir = ''):

Here's a description of each of the input values:

side: This is the length of the cube side as defined by the input
data.
latent_size: This is the size of the encoder output from earlier in
this chapter.
epochs: This is the number of iterations we want the training
script to go over the data.
batch: This is the size of the data that we want to gather for each
of the epochs.
checkpoint: This is how often we want to graph the results of our
training.
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After the import, create the internal variables that we'll use throughout the class:3.

     self.SIDE=side
     self.EPOCHS = epochs
     self.BATCH = batch
     self.CHECKPOINT = checkpoint
     self.LATENT_SPACE_SIZE = latent_size
     self.LABELS = [1]

We're going to use internal methods to load our data for use throughout the4.
class:

self.load_3D_MNIST(data_dir)
self.load_2D_encoded_MNIST()

We'll instantiate the generator and discriminator classes with their input:5.

self.generator = Generator(latent_size=self.LATENT_SPACE_SIZE)
self.discriminator = Discriminator(side=self.SIDE)

Create the GAN model using Generator and Discriminator that we just6.
instantiated:

self.gan = GAN(generator=self.generator.Generator,
               discriminator=self.discriminator.Discriminator)

Now that we have the basic training class structure, we will move on to developing helper
functions.

Helper functions
There are a few helper functions we need inside of class—we're going to go over the steps
to create them and why we need them here:

The array_to_color function is a helper function to the translate function in1.
step 2—it essentially simplifies one of our steps to map our points to a unique
color mapping:

# Translate data to color
def array_to_color(self,array, cmap="Oranges"):
    s_m = plt.cm.ScalarMappable(cmap=cmap)
return s_m.to_rgba(array)[:,:-1]
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The translate function provides functionality to convert the points in the 3D2.
MNIST data into a pixel x, y, z ,with a three-color definition associated with it:

def translate(self,x):
    xx = np.ndarray((x.shape[0], 4096, 3))
for i in range(x.shape[0]):
    xx[i] = self.array_to_color(x[i])
del x
return xx

The load_2d_encoded_MNIST function reads in the npy files we created from3.
our encoder in the Encoding 2D data recipe:

def load_2D_encoded_MNIST(self):
    (_, self.Y_train_2D), (_, self.Y_test_2D) = mnist.load_data()
    self.X_train_2D_encoded = np.load('x_train_encoded.npy')
    self.X_test_2D_encoded = np.load('x_test_encoded.npy')
return

The next method, load_3D_MNIST, takes the input of an input dir and loads the4.
3D MNIST data—the first step is to grab the raw data from the h5 file:

def load_3D_MNIST(self,input_dir):
     raw = h5py.File(input_dir, 'r')

We're going to grab the X_train data, normalize the data, and reshape it to our5.
input that we need for our models:

self.X_train_3D = np.array(raw['X_train'])
self.X_train_3D = ( np.float32(self.X_train_3D) - 127.5) / 127.5
self.X_train_3D = self.translate(self.X_train_3D).reshape(-1, 16,
16, 16, 3)

We'll repeat the same process for the test set—import the test set data, normalize,6.
and then reshape to match the model input:

self.X_test_3D = np.array(raw['X_test'])
self.X_test_3D = ( np.float32(self.X_test_3D) - 127.5) / 127.5
self.X_test_3D = self.translate(self.X_test_3D).reshape(-1, 16, 16,
16, 3)
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We'll save the Y datasets as they are not matched to their 2D counterparts:7.

self.Y_train_3D = np.array(raw['y_train'])
self.Y_test_3D = np.array(raw['y_test'])
return

Let's move on to the training method!

The training method
 The training method is the key method in this class—it'll define how we train each of the
models and use the data. The following steps will walk you through how we train this
architecture:

We're going to define the train method and start out by defining the number of1.
real images and generated images. From there, we'll run through the number of
epochs and run through each label in every epoch:

def train(self):
    count_generated_images = int(self.BATCH/2)
    count_real_images = int(self.BATCH/2)
          for e in range(self.EPOCHS):
              for label in self.LABELS:

We need to grab our 3D samples that match the label we defined in the2.
instantiation of the class:

# Grab the Real 3D Samples
all_3D_samples = self.X_train_3D[np.where(self.Y_train_3D==label)]

After we have all of the 3D samples that match our label, let's find a random3.
index that we can collect data from that's smaller than our batch size:

starting_index = randint(0, (len(all_3D_samples)-
count_real_images))

Once we have a random index, then we grab all of the samples from the starting4.
index to number in our batch size:

real_3D_samples = all_3D_samples[ starting_index :
int((starting_index +
                                  count_real_images)) ]
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Create the y_real_labels by creating an array of ones ( this means true to the5.
discriminator):

y_real_labels =  np.ones([count_generated_images,1])

Repeat the same selection process for the encoded samples:6.

# Grab Generated Images for this training batch
all_encoded_samples =
    self.X_train_2D_encoded[np.where(self.Y_train_2D==label)]
starting_index = randint(0, (len(all_encoded_samples)-
count_generated_images))
batch_encoded_samples = all_encoded_samples[ starting_index :
      int((starting_index + count_generated_images)) ]

Reshape the encoded samples to match the shape of the model input:7.

batch_encoded_samples = batch_encoded_samples.reshape(
count_generated_images,
                              1, 1, 1,self.LATENT_SPACE_SIZE)

Generate samples using the generator and generate labels for those samples to8.
train the discriminator:

x_generated_3D_samples =
            self.generator.Generator.predict(batch_encoded_samples)
y_generated_labels = np.zeros([count_generated_images,1])

Combine all of those datasets (real and fake) for training the discriminator:9.

# Combine to train on the discriminator
x_batch = np.concatenate( [real_3D_samples, x_generated_3D_samples]
)
y_batch = np.concatenate( [y_real_labels, y_generated_labels] )

 Using the newly concatenated data, train the discriminator:10.

# Now, train the discriminator with this batch
self.discriminator.Discriminator.trainable = False
discriminator_loss =
self.discriminator.Discriminator.train_on_batch(x_batch,y_batch)[0]
self.discriminator.Discriminator.trainable = True
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Just as we did previously, use that selection method to grab random indexes in11.
the encoded samples and create the GAN training data:

# Generate Noise
starting_index = randint(0, (len(all_encoded_samples)-self.BATCH))
x_batch_encoded_samples = all_encoded_samples[ starting_index :
        int((starting_index + self.BATCH)) ]
x_batch_encoded_samples = x_batch_encoded_samples.reshape(
int(self.BATCH), 1,
                          1, 1,self.LATENT_SPACE_SIZE)
y_generated_labels = np.ones([self.BATCH,1])

The generator is trained on encoded samples and the generated labels:12.

generator_loss =
self.gan.gan_model.train_on_batch(x_batch_encoded_samples,y_generat
ed_labels)

In this step, we're printing the loss for each of our models, along with the epoch13.
number and label that we're predicting:

print ('Epoch: '+str(int(e))+' Label: '+str(int(label))+',
[Discriminator :: Loss: '+str(discriminator_loss)+'], [ Generator
:: Loss:
      '+str(generator_loss)+']')

The final step is to make sure that we can checkpoint the model at our internal14.
checkpoint:

if e % self.CHECKPOINT == 0 and e != 0 :
   self.plot_checkpoint(e,label)
return

Let's understand how to build the internal plot_checkpoint method in this next set of
steps!
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Plotting the output of the network
The plotting function for this training method allows the user to check their progress along
the way when training this architecture—the following steps will help you plot the output
of the network:

We define the plotting method with two input values (the epoch number and1.
label we're evaluating), along with a filename combining that information:

def plot_checkpoint(self,e,label):
    filename = "/out/epoch_"+str(e)+"_label_"+str(label)+".png"

We create an array of encoded samples (similar to our training step) and we2.
resize the encoded sample so we can run it through the generator at this point:

all_encoded_samples =
self.X_test_2D_encoded[np.where(self.Y_test_2D==label)]
index = randint(0, (len(all_encoded_samples)-1))
batch_encoded_samples = all_encoded_samples[ index ]
batch_encoded_samples = batch_encoded_samples.reshape( 1, 1, 1,
                                      1,self.LATENT_SPACE_SIZE)

Use the generator at this point and produce a 3D image with color:3.

images = self.generator.Generator.predict(batch_encoded_samples)

Create a for loop that runs through each pixel and grabs pixels that aren't totally4.
black or totally white:

xs = []
ys = []
zs = []
cs = []
     for i in range(16):
         for j in range(16):
             for k in range(16):
                 color = images[0][i][j][k]
             if np.mean(color)<0.75 and np.mean(color)>0.25:
                xs.append(i)
                ys.append(j)
                zs.append(k)
                cs.append(color)
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Plot the pixels we grabbed using the Matplotlib scatter function—after we plot5.
it, we then save the file to our drive:

fig = plt.figure()
ax = fig.gca(projection='3d')
ax.scatter(xs,ys,zs,alpha=0.1,c=cs)
plt.savefig(filename)
plt.close()

return

We'll create the runner python script and run the shell script next!

Running the training script
Finally, we have everything set up to run the training code—these steps will allow you to
create the files and run the code:

 Create a file under the src folder called run.py and add the following code:1.

#!/usr/bin/env python3
from train import Trainer

# Command Line Argument Method
CUBE_SIDE=16
EPOCHS = 100000
BATCH = 64
CHECKPOINT = 10
LATENT_SPACE_SIZE = 256
DATA_DIR = "/3d-mnist/full_dataset_vectors.h5"

trainer = Trainer(side=CUBE_SIDE, \
                 latent_size=LATENT_SPACE_SIZE, \
                 epochs =EPOCHS,\
                 batch=BATCH,\
                 checkpoint=CHECKPOINT,\
                 data_dir = DATA_DIR)
trainer.train()

This code simply defines the input needed for the training class and runs the
training method for our GAN architecture.
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We need to create the run.sh script at the root directory (make sure it's2.
executable) and add the following to the file:

#/bin/bash

# Training Step
xhost +
docker run -it \
   --runtime=nvidia \
   --rm \
   -e DISPLAY=$DISPLAY \
   -v /tmp/.X11-unix:/tmp/.X11-unix \
   -v $HOME/3d-gan-from-images/out:/out \
   -v $HOME/3d-gan-from-images/src:/src \
   ch8 python3 /src/run.py

To run the code, execute the following command from a Terminal with the3.
directory as the root directory of this code:

sudo ./run.sh

That's it! You're training this architecture now!

Exercise
Can you adapt the network to generalize all of the MNIST digits? What subset1.
works the best?



Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Deep Learning with TensorFlow - Second Edition
Giancarlo Zaccone, Md. Rezaul Karim

ISBN: 9781788831109

Apply deep machine intelligence and GPU computing with TensorFlow
Access public datasets and use TensorFlow to load, process, and transform the
data
Discover how to use the high-level TensorFlow API to build more powerful
applications
Use deep learning for scalable object detection and mobile computing
Train machines quickly to learn from data by exploring reinforcement learning
techniques
Explore active areas of deep learning research and applications

https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-tensorflow-second-edition


Other Books You May Enjoy

[ 241 ]

Keras Deep Learning Cookbook
Rajdeep Dua, Manpreet Singh Ghotra, Manpreet Singh Ghotra, Recommended
for You , Manpreet Singh Ghotra, Recommended for You , Learning

ISBN: 9781788621755

Install and configure Keras in TensorFlow
Master neural network programming using the Keras library 
Understand the different Keras layers 
Use Keras to implement simple feed-forward neural networks, CNNs and RNNs
Work with various datasets and models used for image and text classification
Develop text summarization and reinforcement learning models using Keras

https://www.packtpub.com/big-data-and-business-intelligence/keras-deep-learning-cookbook


Other Books You May Enjoy

[ 242 ]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!



Index

2
2D data
   encoding  218

3
3D convolutions
   used, for training model  213, 214

A
AdaBoost  59
adversarial training  21
anomalous data  51
autoencoder
   for educational purposes  218

B
backpropagation  13
bagging  58
basic GAN
   structuring  85
boosting  58

C
cleaning parameter  51
code
   GAN, producing in  66
container
   about  37
   building, for development  37
Convolutional Neural Network (CNN)  198
counterfeiter  14
CUDA
   reference  33
CycleGAN dataset
   data download script  166

   data example  166
   Docker implementation  165
   parsing  164, 165
CycleGAN paper
   reference  160
CycleGAN
   about  160
   discriminator code implementation  170, 171,

173

   GAN code implementation  173, 175
   generator code implementation  167, 168, 169
   pseudocode example  160, 161
   significance  161
   training for  176

D
data augmentation
   about  59, 60, 61, 62
   reference  64
data preprocessing  45, 48, 49
data processing pipeline
   building  30
data types  38, 40, 42
data types, Python
   reference  44
data types, TensorFlow
   reference  44
data
   balancing  54
   parsing  109, 110, 111
   significance  30
DCGAN
   about  99
   development environment  106
   discriminator architecture parameters  134
   Discriminator class, initializing  119
   discriminator code implementation  118



[ 244 ]

   evaluation  131
   generator architecture parameters  134
   generator code implementation  112
   model structure, building for discriminator  120
   parameters, adjusting for better performance 

132

   pseudocode example  100
   training parameters  133
   training script  122
Deep Convolution Generative Adversarial Network

(DCGAN)  25
deep neural networks  12, 13
development environment
   setting up  32
discriminative modeling  8
discriminative models  9
Discriminator class
   about  103, 104
   helper methods  77
discriminator
   about  17, 73, 74
   boiler plate  199
   building  18, 19
   helper functions  201
   imports  75
   initialization variables  75, 76
   model architecture  200
   model definition  76, 77
Docker container
   code, running in  43
   creating, for running 3D model

generator/encoder  215, 216, 217
   nvidia-smi, testing through  36
Docker versions
   purging  35
Dockerfiles
   reference  73

E
encoder script
   building  219
encoding space
   learning, for 2D image  212
ensemble techniques
   about  58

   AdaBoost  59
   bagging  58
   boosting  58

G
GAN component
   discriminator  73, 74
   generator  79
GAN output  24, 94, 97
GAN structure
   about  22
   benefits  27
Generative Adversarial Network (GAN)
   3D models, producing  212
   about  99, 136
   architecture structure basics  14, 15
   class initialization  86
   code implementation  201, 202, 203
   core classes  67
   Discriminator base class  67
   Docker container  70, 71
   GAN base class  68
   Generator base class  68
   helper functions  86, 87
   model definition  86
   model, training  94, 97
   producing, in code  66
   run file  71, 72, 73
   run script definition  94
   training  87
   training class definition  88
generative modeling  9
generative models  9
Generator class  102, 103
generator class
   preparing  222
generator model
   building  223
generator
   about  16, 79
   boiler plate items  195
   creating  16
   DCGAN structure, building  115
   DCGAN update  113
   helper functions  197



[ 245 ]

   helper methods  82, 84
   images, generating  221
   imports  80
   initialization  80
   model definition  81, 82
   model development  196
GPU
   NVIDIA driver, installing for  33
graphing techniques, for multivariate problems
   reference  54

I
imbalanced library
   reference  59
imgaug library
   reference  64

K
Kaggle API
   using  189
Keras
   neural network, building  69

L
Large-Scale Scene Understanding (LSUN)  104
Leaky Rectified Linear Unit (LeakyReLU)  75
loss functions  19, 20, 21, 193
LSUN data
   downloading  107
   unpacking  108
LSUN dataset
   reference  109

M
machine learning (ML)  8
mean squared error (MSE)  172
MNIST dataset  39
models
   training, 3D convolutions used  213, 214

N
neural network
   about  10
   building, in Keras  69

   building, in TensorFlow  69
   working  11
NumPy
   reference  31
NVIDIA driver
   installing, for GPU  33
NVIDIA-Docker2
   installing  36
NVIDIA-Docker
   installing  34
   package repositories, adding  36
   reference  34
nvidia-smi
   testing, through Docker container  36

O
outliers
   reference  54

P
pandas
   reference  50
Pix2Pix
   dataset, parsing  140
   discriminator  137, 138, 147, 150
   GAN network  146, 147
   generator  138, 139, 142, 143, 144
   pseudocode example  136, 137
   training  150
pooling  101
Python
   reference  31

R
random oversampling  58
random undersampling  55, 57
refiner network  194
RUN commands, Dockerfiles
   reference  38

S
sampling techniques
   about  55
   random oversampling  58



   random undersampling  55, 57
   synthetic minority oversampling technique

(SMOTE)  58
scikit-learn  59
SciPy
   reference  31
shell script
   building, for running encoder with Docker

container  221
simGAN  26
SimGAN architecture
   discriminator code implementation  198
   Docker image, building  191
   Docker image, running  192
   generator code implementation  194
   Kaggle API  190
   working  186, 187
simGAN network
   helper functions  208
   initialization  204, 206
   Python run script  209
   shell run script  209
   training  204
   training function  206, 208
simulated data
   enhancing  27
style transfer  23, 25
synthetic minority oversampling technique

(SMOTE)
   about  58
   reference  59

T
TensorFlow
   neural network, building  69
training algorithm
   working  187, 188
training class definition, GAN
   data method, loading  90
   helper functions  92, 93
   imports  88
   init method  89
   training method  90, 91
training data
   working with  189
training script, DCGAN
   changes, in pseudocode  124, 125
   changes, to class initialization  122, 123
   improved training script  125, 126
   Python run script  128
   shell run script  129
training, CycleGAN
   helper method  182, 183
   initialization  177, 178, 179
   training method  180, 181
training, Pix2Pix
   class setup  151, 152
   helper functions  156
training
   adversarial training  21

U
U-Net  138
univariate method  51, 53


	Cover
	Title Page
	Copyright and Credits
	About Packt
	Dedication
	Contributors
	Table of Contents
	Preface
	Chapter 1: What Is a Generative Adversarial Network?
	Introduction
	Generative and discriminative models
	How to do it...
	How it works...

	A neural network love story
	How to do it...
	How it works...

	Deep neural networks
	How to do it...
	How it works...

	Architecture structure basics
	How to do it...
	How it works...

	Basic building block – generator
	How to do it...
	How it works...

	Basic building block – discriminator
	How to do it...
	How it works...

	Basic building block – loss functions
	How to do it...
	How it works...

	Training
	How to do it...
	How it works...

	GAN pieces come together in different ways
	How to do it...
	How it works...

	What does a GAN output?
	How to do it...
	How it works...
	Working with limited data – style transfer
	Dreaming new scenes – DCGAN
	Enhancing simulated data – simGAN


	Understanding the benefits of a GAN structure
	How to do it...
	How it works...

	Exercise

	Chapter 2: Data First, Easy Environment, and Data Prep
	Introduction
	Is data that important?
	Getting ready
	How to do it...
	How it works...
	There's more...

	But first, set up your development environment
	Getting ready
	How to do it...
	Installing the NVIDIA driver for your GPU
	Installing Nvidia-Docker
	Purging all older versions of Docker 
	Adding package repositories
	Installing NVIDIA-Docker2 and reloading the daemon
	Testing nvidia-smi through the Docker container

	Building a container for development

	There's more...

	Data types
	Getting ready
	How to do it...
	How it works...
	Running this code in the Docker container

	There's more...

	Data preprocessing
	Getting ready
	How to do it...
	How it works...
	There's more...

	Anomalous data
	Getting ready
	How to do it...
	Univariate method

	There's more...

	Balancing data
	Getting ready
	How to do it...
	Sampling techniques
	Random undersampling
	Random oversampling
	Synthetic minority oversampling technique

	Ensemble techniques
	Bagging
	Boosting
	AdaBoost


	There's more...

	Data augmentation
	Getting ready
	How to do it...
	How it works...
	There's more...

	Exercise

	Chapter 3: My First GAN in Under 100 Lines
	Introduction
	From theory to code – a simple example
	Getting ready
	How to do it...
	Discriminator base class
	Generator base class
	GAN base class

	See also

	Building a neural network in Keras and TensorFlow
	Getting ready
	How to do it...
	Building the Docker containers
	The Docker container
	The run file

	See also

	Explaining your first GAN component – discriminator
	Getting ready
	How to do it...
	Imports
	Initialization variables (init in the Discriminator class)
	Model definition for the discriminator
	Helper methods in the Discriminator class


	Explaining your second GAN component – generator
	Getting ready
	How to do it...
	Imports
	Generator initialization
	Model definition of the generator
	Helper methods of the generator


	Putting all the GAN pieces together
	Getting ready
	How it works...
	Step 1 – GAN class initialization
	Step 2 – model definition
	Step 3 – helper functions


	Training your first GAN
	Getting ready
	How to do it...
	Training class definition
	Imports
	init method in class
	Load data method
	Training method
	Helper functions

	Run script definition


	Training the model and understanding the GAN output
	Getting ready
	How to do it...
	How it works...

	Exercise

	Chapter 4: Dreaming of New Outdoor Structures Using DCGAN
	Introduction
	What is DCGAN? A simple pseudocode example
	Getting ready
	How to do it...
	Generator
	Discriminator

	See also

	Tools – do I need any unique tools?
	Getting ready
	How to do it...
	The development environment for DCGAN
	Downloading and unpacking LSUN data

	There's more...
	See also

	Parsing the data – is our data unique?
	Getting ready
	How to do it...

	Code implementation – generator
	Getting ready
	How to do it...
	Initializing generator – the DCGAN update
	Building the DCGAN structure

	See also

	Code implementation – discriminator
	Getting ready
	How to do it...
	Initializing the Discriminator class
	Building the model structure

	See also

	Training
	Getting ready
	How to do it...
	Changes to class initialization
	Understanding the changes in pseudocode
	The new and improved training script
	Python run script
	Shell run script


	Evaluation – how do we know it worked?
	Getting ready
	How it works...

	Adjusting parameters for better performance
	How to do it...
	Training parameters
	Discriminator and generator architecture parameters


	Exercise

	Chapter 5: Pix2Pix Image-to-Image Translation
	Introduction
	Introducing Pix2Pix with pseudocode
	Getting ready
	How to do it...
	Discriminator
	Generator


	Parsing our dataset
	Getting ready
	How to do it...
	Building the Docker container with a new Dockerfile
	Building the auxiliary scripts


	Code implementation – generator
	Getting ready
	How to do it...

	Code – the GAN network
	Getting ready
	How to do it...

	Code implementation – discriminator
	Getting ready
	How it works...

	Training
	Getting ready
	How to do it...
	Setting up the class
	Training method
	Plotting the results
	Helper functions
	Running the Training Script


	Exercise

	Chapter 6: Style Transfering Your Image Using CycleGAN
	Introduction
	Pseudocode – how does it work?
	Getting ready
	How to do it...
	What is so powerful about CycleGAN?


	Parsing the CycleGAN dataset
	Getting ready
	How to do it...
	Docker implementation
	The data download script
	What does the data actually look like?


	Code implementation – generator
	Getting ready
	How to do it....

	Code implementation – discriminator
	Getting ready
	How to do it...

	Code implementation – GAN
	Getting ready
	How to do it...

	On to training
	Getting ready
	How to do it...
	Initialization
	Training  method
	Helper method


	Exercise

	Chapter 7: Using Simulated Images To Create Photo-Realistic Eyeballs with SimGAN
	Introduction
	How SimGAN architecture works
	Getting ready
	How to do it...

	Pseudocode – how does it work?
	Getting ready
	How to do it...

	How to work with training data
	Getting ready
	How to do it...
	Kaggle and its API
	Building the Docker image
	Running the Docker image


	Code implementation – loss functions
	Getting ready
	How to do it...

	Code implementation – generator
	Getting ready
	How to do it...
	Boilerplate items
	Model development
	Helper functions


	Code implementation – discriminator
	Getting ready
	How to do it...
	Boilerplate
	Model architecture
	Helper functions


	Code implementation – GAN
	Getting ready
	How to do it...

	Training the simGAN network
	Getting ready
	How to do it...
	Initialization
	Training function
	Helper functions
	Python run script
	Shell run script


	Exercise

	Chapter 8: From Image to 3D Models Using GANs
	Introduction
	Introduction to using GANs in order to produce 3D models
	Getting ready
	How to do it...
	For a 2D image – learning an encoding space for an image
	Training a model using 3D convolutions


	Environment preparation
	Getting ready
	How to do it...
	Creating the Docker container
	Building the Docker container


	Encoding 2D data and matching to 3D objects
	Getting ready
	How to do it...
	Code to run a simple encoder
	The shell script to run the encoder with our Docker container


	Code implementation – generator
	Getting ready
	How to do it...
	Generator class preparation
	Building the generator model


	Code implementation – discriminator
	Getting ready
	How to do it...
	Discriminator class preparation
	Building the discriminator model


	Code implementation – GAN
	Getting ready
	How to do it...

	Training this model
	Getting ready
	How to do it...
	Training class preparation
	Helper functions
	The training method
	Plotting the output of the network
	Running the training script


	Exercise

	Other Books You May Enjoy
	Index

