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A new hybrid algorithm for rainfall–runoff process

modeling based on the wavelet transform and genetic

fuzzy system

Vahid Nourani, Ahmad Tahershamsi, Peyman Abbaszadeh,

Jamal Shahrabi and Esmaeil Hadavandi
ABSTRACT
In this paper, two hybrid artificial intelligence (AI) based models were introduced for rainfall–runoff

modeling. In the first model, a genetic fuzzy system (GFS) was developed and evolved for the

prediction of watersheds’ runoff one time step ahead. In the second model, the wavelet-GFS (WGFS)

model, wavelet transform was also used as a data pre-processing method prior to GFS modeling and

in this way the main time series of two variables (rainfall and runoff) were decomposed into some

multi-frequency time series by the wavelet transform. Then, the GFS was trained using the

transformed time series, and finally the runoff discharge was predicted one time step ahead. In

addition, to specify the capability and reliability of the proposed WGFS model, multi-step ahead

runoff forecasting was also implemented for the watersheds. The obtained results through the

application of the models for rainfall–runoff modeling of two distinct watersheds, located in

Azerbaijan, Iran showed that the runoff could be better forecasted through the proposed WGFS

model than other AI-based models in terms of determination coefficient and root mean squared

error criteria in both training and verifying steps.
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INTRODUCTION
Over the past decades, the data-driven models such as artifi-

cial neural network (ANN), adaptive neuro fuzzy inference

system (ANFIS) and genetic algorithms (GAs) have been

appropriately applied in modeling and forecasting non-

linear hydrological time series (e.g. Cheng & Chau ;

Jain et al. ; Nayak et al. ; Chau et al. ; Chau

; Muttil & Chau ; Wu et al. ; Rajaee et al.

; Sudheer et al. ; Taormina et al. ; Asadi et al.

). In the modeling of hydrological process, particularly

in the field of rainfall–runoff process, sometimes there can

be a shortfall when time series fluctuations are highly non-

stationary and the physical hydrologic process operates

under a large range of scales varying from 1 day to several

decades. This can mean the data-driven models may not
be able to cope with non-stationary data (Cannas et al.

; Nourani et al. , ). In these situations, the com-

bination of artificial intelligence (AI) based models with

other data pre-processing approaches as hybrid models

may be an appropriate choice. The basic idea of model com-

bination in forecasting is to use each model’s unique features

to capture different patterns in the data. Both theoretical

and empirical findings suggest that combining different

methods can be an efficient way to improve forecasting

(Zhang ). Hence, wavelet-ANN (WANN) and wavelet-

ANFIS (WANFIS) have been recently generated as efficient

hybrid models for hydrological time series forecasting.

Wavelet analysis can effectively detect and diagnose the sig-

nal’s main frequency components and abstract local
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information of the time series (Wang & Ding ). In

recent years, the wavelet technique has been successfully

applied to hydrology in general as well as rainfall–runoff

modeling (Partal & Kis ; Nourani et al. , ;

Adamowski & Sun ).

In some hydrological processes, the use of ANFIS model

has led to promising results. Most of the learning algorithms

for ANFIS are based on gradient descent. The calculation of

gradients in each step is difficult and the use of the chain rule

may cause a local minimum, which can definitely affect mod-

eling accuracy. To cope with this deficiency, in the current

research, a hybridization of fuzzy logic and GAs as genetic

fuzzy systems (GFSs) (Cordón et al. ) is used. A GFS is

basically a fuzzy system that is augmented by a learning pro-

cess based on evolutionary computation, which includes GAs

and other evolutionary algorithms (Cordón & Herrera ).

In recent years some articles have been published in favor of

using GFS for time series forecasting (Shahrabi et al. ).

They reported satisfactory results and concluded that GFS

is a promising approach for forecasting issues because the

ability to obtain better accuracy in modeling complex and

chaotic systems, in comparison with other models such as

statistical and intelligent models.

In this paper, two new multivariate black box models

based on AI techniques are proposed for the rainfall–runoff

modeling of two watersheds located in Azerbaijan, Iran

with different climatologic characteristics. In the first

model, considering the existence of highly nonlinear depen-

dence between model inputs and output, the authors focus

on a new nonlinear approximator, called GFS model, in

order to forecast watershed runoff one and several time

steps ahead. A multivariate wavelet-GFS (WGFS) model is

then introduced as the second model which combines the dis-

crete wavelet transform (DWT) and GFS algorithm to

capture the periodic and seasonal characteristics of the pro-

cess. To the best of the authors’ knowledge, the presented

study is the first application of the hybrid WGFS not only

in hydrological studies but also in any engineering field.
PROPOSED HYBRID MODELS

The current research presents two new hybrid AI based

models as GFS and WGFS in order to predict watershed
://iwaponline.com/jh/article-pdf/16/5/1004/387373/1004.pdf
runoff. Also in the modeling process, the data set was

divided into two parts: the first 75% of total data were

used as a training set and the second 25% were used for ver-

ifying the models.

The first model presented in this paper is GFS. There are

three main stages in this research to construct the GFS

model. Variable selection is the first stage in which a step-

wise regression analysis (SRA) is used to choose the key

variables that are to be considered as the model inputs. In

the second stage, GFS is constructed for prediction of the

target runoff 1 month ahead. Finally, the proposed GFS is

tested in the third stage using test data set by reporting the

determination coefficient and root mean squared error.

In the second model, by applying wavelet transform, the

main time series of two variables (rainfall and runoff) are

decomposed into some multi-frequency time series. Then,

these time series (transformed data) are imposed as input

data into the GFS model. Finally, the proposed WGFS

model is verified using a test data set. In order to evaluate

the efficiency of the proposed hybrid models, the obtained

results are also compared with the results of ANN,

ANFIS, WANN, and WANFIS models presented by Nour-

ani et al. (). It should be noted that for WGFS model,

after obtaining the wavelet-based sub-series, the GFS

should be calibrated using theses sub-series which may

lead to different GFS parameters in comparison to the first

GFS model.

The schematic of the proposed GFS model is shown in

Figure 1. The GFS type used in this article consists of two

general stages: stage 1 derives the rule base (RB) of the

Fuzzy Rule Base System (FRBS) and stage 2 tunes the data-

base of FRBS. Details of each stage are described below.

Input selection by SRA

Input selection is the process of selecting an optimum subset

of input variables from the set of potentially useful variables

which may be available in a given problem. Different

researchers have applied a variety of feature selection

methods such as GA (ElAlami ), principal component

analysis and SRA to select key factors in their prediction

systems (Zhang ). Linear regression portrays a funda-

mental relationship between inputs and output variables in

a system. In recent years, many researchers have used SRA



Figure 1 | The framework of proposed GFS model.
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for input variable selection for a nonlinear system and have

obtained promising results (Hadavandi et al. ; Fazel Zar-

andi et al. ; Asadi et al. a, b). In the same way, an

autoregressive structure was chosen in order to develop the

GFSmodel. The use of SRA is a suitable method for choosing

the significant lagged variables. In this study, five lags for

each variable were assumed and by the use of SRA, themean-

ingful number of lagged variables was chosen.

The criterion for adding or removing is determined by

F-test statistic value and decreasing the sum of squared

error. After the entrance of first variable to the model, the

variable number is increased step by step; once it is removed

from this model, it will never enter the model again. Before

selecting variables, the critical point, level of significant and

the values of Fe (F-to-enter) and Fr (F-to-remove) have to be

determined first. Then the partial F value of each step has to

be calculated and compared to Fe and Fr; If F> Fe, it is con-

sidered to add variables to the model; otherwise, if F< Fr,

the variables are removed from model (for more detail see

Asadi et al. a).

The proposed GFS

The FRBS can be classified into three broad types, namely

the linguistic (Mamdani-type), the relational equation,

and the Takagi–Sugeno–Kang (TSK). In linguistic models,

both the antecedent and the consequence are fuzzy sets,
om http://iwaponline.com/jh/article-pdf/16/5/1004/387373/1004.pdf
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while in the TSK model the antecedent consists of fuzzy

sets but the consequence is made up of linear equations.

Fuzzy relational equation models aim at building the fuzzy

relation matrices according to the input–output data set

(Wang ).

The Mamdani-type FRBS was used in this study because

it has the following advantages (Hamam & Georganas

): expressive power; easy formalization and interpret-

ability; reasonable results with relatively simple structure;

intuitive and interpretable nature of the RB. For this

reason Mamdani-type FRBS is widely used in particular

for decision support application. It can be used for both

multiple-input and single-output, and multiple-input and

multiple-output systems, and finally output can be either

fuzzy or crisp.

The difficulty presented by human experts in expressing

their knowledge in the form of fuzzy rules has forced

researchers to develop automatic techniques. In this sense,

several methods have been proposed to automatically gener-

ate fuzzy rules from numerical data. Usually, they use

complex rule generation mechanisms such as ANNs

(Nauck et al. ) or GAs (Cordón et al. ; Hadavandi

et al. ).

Using the GAs, each individual in the population needs

to be described in a chromosome representation. A chromo-

some is made up of a sequence of genes from a certain

alphabet. An alphabet could consist of binary digits,
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continuous values, integers, symbols, matrices, etc. The rep-

resentation method determines how the problem is

structured in the GA and determines the genetic operators

to be used. In this work, a chromosome is represented by

a vector of continuous values, as it has been shown that

natural representations are more efficient and produce

better solutions. In this case, the chromosome length is the

vector length of the solution which comprises coefficients

of the proposed model.

GAs have been demonstrated to be a modeling tool for

automating the definition of the knowledge base (KB),

since adaptive control, learning, and self-organization may

be considered in many cases as optimization or search pro-

cesses (Cordón & Herrera ). In this paper we use a

Mamdani-type FRBS to deal with the prediction of target.

The process we use in this paper for evolving the KB of

FRBS consists of two general stages: stage 1 learns the RB

of FRBS and stage 2 tunes the database of FRBS, which

are briefly described in the following sub-sections.

Genetic learning of the rule base

The most common types for the membership functions (in

FRBSs) are triangular, trapezoidal or Gaussian functions.

Among them, the triangular membership functions are com-

putationally simpler and there are some well established

methods for tuning them available in the literature

(Cordón et al. ).

Uniform fuzzy partitions with triangular membership

functions crossing at height 0.5 is considered in constructing

of the model. The number of linguistic terms forming each of

them can be specified by the GFS designer, and then the
Figure 2 | (a) A uniform partitioning with four triangular membership functions. (b) Interval of

://iwaponline.com/jh/article-pdf/16/5/1004/387373/1004.pdf
Pittsburgh approach (Smith ) is used for learning the

RB. Each chromosome encodes a whole fuzzy rule set and

the learned RB is the best individual of the last population.

The Pittsburgh approach is described below. A uniform par-

titioning with 4 triangular membership functions is also

shown in Figure 2.

Many GFSs employ the decision table proposed by

Thrift () as the common classical representation for

the RB of an FRBS. A fuzzy decision table represents a

special case of a crisp relation (the ordinary type of relations

we are familiar with) defined over the collections of fuzzy

sets corresponding to the input and output variables. A

fuzzy rule in the Mamdani-type FRBS and for a first order

TSK-type FRBS is presented by following way.

A chromosome is obtained from the decision table by

going row-wise and coding each output fuzzy set as an inte-

ger number starting from 1 to the number of output variable

linguistic terms (Hadavandi et al. ).

Fuzzy decision table for an FRBS with two inputs (X1,

X2) (in our case study, the inputs could be runoff at time

steps t–1(Qt�1) and rainfall at time step t–1(It�1)) and one

output (Y ) variable that is runoff at time step t(Qt), with

three fuzzy sets (A11, A12, A13, A21, A22, A23) related to

each input variable, and three fuzzy sets (B1, B2, B3) related

to the runoff at time step t (Qt). Application of this code to

the fuzzy decision table is presented in Figure 3.

Initial chromosomes (Npop) are randomly generated,

while the alleles are in the set {1, 2,… , NB} (NB is the

number of Qt linguistic terms). All consequent labels have

the same probability of being assigned to each gene.

Regarding the fitness function, it is based on an

application-specific measure usually employed in the
performance of membership function.



Figure 3 | Coding rule set of fuzzy rainfall–runoff prediction system as a chromosome.
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design of GFSs, the mean-squared error (MSE) over the rain-

fall–runoff training data set. A binary tournament selection

scheme is used. The best rule set is added to the current

population in the newly generated (Npop–1) chromosome

to form the next population.
Genetic tuning of the database

After generation of the RB, the genetic tuning process pro-

posed by Cordón & Herrera () is utilized. This tuning

process slightly adjusts the shape of the membership func-

tions of a preliminary defined database (DB) for rainfall–

runoff variables. This approach can be performed in the fol-

lowing way. Each chromosome encodes a different DB

definition. Triangular membership functions are used for

input and output variables’ linguistic terms. Each triangular

membership function is encoded by three real values, a pri-

mary fuzzy partition is represented as an array composed of

3N real values, with N being the number of linguistic terms

for each variable (we take the same number of linguistic

terms for each input and output linguistic variable). The

complete DB for a problem, in which M linguistic variables

are involved, is encoded into a fixed-length real coded

chromosome Cj built by joining the partial representations
Figure 4 | Coding database of fuzzy rainfall–runoff prediction system as a chromosome.

om http://iwaponline.com/jh/article-pdf/16/5/1004/387373/1004.pdf
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of each of variable fuzzy partitions as shown in Equation (1):

Cj
i ¼ aji1, b

j
i1, c

j
i1, a

j
i2, b

j
i2, c

j
i2, . . . , a

j
iN , b

j
iN , c

j
iN

� �
(1)

Cj ¼ Cj
1C

j
2C

j
3 . . .C

j
M�1C

j
M (2)

A sample coded database with one input variable (runoff

at time step t–1(Qt�1)) aswell as one output variable (runoff at

time step t (Qt) is shown in Figure 4. Each variable is defined

by a fuzzy linguistic term such as small, medium, and large.

The initial population (Npop) is created using the initial

DB definition. The first chromosome (C1) is encoded directly

from initialDBdefinition. The remaining individuals (Npop–1)

are generated by associating an interval of performance,

[clh, c
r
h] to every gene ch in C1, h ¼ 1, 2, . . . , 3NM. Each inter-

val of performance will be the interval of adjustment for the

corresponding variable, chϵ[clh, c
r
h].

If tmod3 ¼ 1, then ct is the left value of the support of a

triangular fuzzy number. The triangular fuzzy number is

defined by the three parameters ct, ctþ1, ctþ2ð Þ and the inter-

vals of performance as Equations (3)–(5) (Figure 2):

ctϵ clt, c
r
t

h i
¼ ct � ctþ1 � ct

2
, ct þ ctþ1 � ct

2

h i
(3)

ctþ1ϵ cltþ1, c
r
tþ1

h i
¼ ctþ1 � ctþ1 � ct

2
, ctþ1 þ ctþ2 � ctþ1

2

h i
(4)

ctþ2ϵ cltþ2, c
r
tþ2

h i
¼ ctþ2 � ctþ2 � ctþ1

2
, ctþ2 þ ctþ3 � ctþ2

2

h i

(5)

MSE over a training data set is used as the fitness func-

tion. The best ten percent of the population are copied

without changes in the elitism set. The elitism set ensures
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that the best chromosomes will not be destroyed during

crossover and mutation. The selection process is then

implemented. A binary tournament selection scheme is

used to select chromosomes for the mating pool. The size

of the mating pool equals ninety percent of the population

size.

BLX–0.1 crossover (the blend crossover, BLX-a) (Eshel-

man & Schaffer ) and uniform mutation are used in the

proposed genetic tuning process. The current population is

replaced by the newly generated offsprings, which forms

the next generation by integrating the elitism set.
Proposed hybrid WGFS model

Wavelet transform

The wavelet transform is a strong mathematical tool that

provides a time–frequency representation of an analyzed

signal in the time domain. The time-scale wavelet transform

of a continuous time signal, x(t), is defined as (Mallat )

T(a, b) ¼ 1ffiffiffi
a

p
ðþ∞

�∞

g� t� b
a

� �
x(t):dt (6)

where g* corresponds to the complex conjugate and g(t) is

the wavelet function or mother wavelet. The parameter a

acts as a dilation factor, while b corresponds to a temporal

translation of the function g(t), which allows the study of

the signal around b. For practical applications in hydrology,

discrete time signals are usually available, rather than con-

tinuous time signal processes. A discretization of Equation

(6) based on the trapezoidal rule is the simplest discretiza-

tion of the continuous wavelet transform (Addison et al.

). A discrete mother wavelet has the form

gm,n(t) ¼ 1ffiffiffiffiffiffi
am0

p g
t� nb0am0

am0

� �
(7)

where m and n are integers that control the wavelet dilation

and translation, respectively, a0 is a specified dilation step

greater than 1, and b0 is the location parameter, which

must be greater than zero. The most common and simplest

choice for parameters are a0¼ 2 and b0¼ 1.
://iwaponline.com/jh/article-pdf/16/5/1004/387373/1004.pdf
This power of two logarithmic scaling of the translation

and dilation is known as the dyadic grid arrangement. The

dyadic wavelet can be written in more compact notation

as (Mallat )

gm,n(t) ¼ 2�m=2g(2�mt� n) (8)

Since both rainfall and runoff time series are measured

points and in a discrete form, in this study dyadic DWT

was used rather than a continuous wavelet.

For a discrete time series, xi, the dyadic wavelet trans-

form becomes (Mallat )

Tm,n ¼ 2�m=2
XN�1

i¼0

g(2�mi� n)xi (9)

where Tm, n is the wavelet coefficient for the discrete wavelet

of scale a¼ 2m and location b¼ 2mn. Equation (9) considers

a finite time series, xi, i¼ 0, 1, 2,… , N–1, and N is an integer

power of 2, N¼ 2M. This gives the ranges of m and n as

0< n< 2M�m � 1 and 1<m<M, respectively. The inverse

discrete transform is given by (Mallat )

xi ¼ �T þ
XM
m¼1

X2M�m

n¼0

Tm,n2�m=2g(2�mi� n) (10)

or in a simple format as (Mallat )

xi ¼ �T(t)þ
XM
m¼1

Wm(t) (11)

where �T (t) is the approximation sub-signal at level M and

Wm(t) are detail sub-signals at levels m¼ 1, 2,… , M. The

wavelet coefficients, Wm(t) (m¼ 1, 2,… , M), provide the

detail signals, which can capture small features of interpreta-

tional value in the data. The residual term �T (t) represents the

background information of data.

Structure of WGFS

One of the advantages of the AI based-wavelet conjunction

model compared with the AI method is its ability to identify

data components in a time series such as irregular



1010 V. Nourani et al. | Hybrid artificial intelligent-wavelet modeling of rainfall–runoff Journal of Hydroinformatics | 16.5 | 2014

Downloaded fr
by guest
on 20 April 202
components with multi-level wavelet decomposition (Ada-

mowski & Chan ). For this purpose, each of the

rainfall and runoff signals (It, Qt) were separated into differ-

ent temporal scales (levels) by DWT. The schematic diagram

of the developed model is shown in Figure 5. In this way,

each of the mentioned parameters was considered as input

signals to wavelet operator. As can be seen in Figure 5, Ia
and Qa denote rainfall and runoff approximation sub-

signals, respectively, and also Idi and Qdi show detail sub-

signals (i refers to the decomposition level). Hence, all of

the obtained sub-signals were used as inputs to the GFS

model in order to forecast runoff 1 month ahead. Some of

the most popular wavelet families such as (1) Haar wavelet,

a simple wavelet, (2) Daubechies-4(db4) wavelet and (3)

coiflets-1(Coif1) were considered to develop the hybrid

WGFS model.
EFFICIENCY CRITERIA

The following measures of evaluation have been used

to compare the performance of the different models
Figure 5 | The schematic flowchart for WGFS.

om http://iwaponline.com/jh/article-pdf/16/5/1004/387373/1004.pdf
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(Nourani et al. )

R2 ¼ 1�
PN

i¼1 (Yi � Pi)
2

PN
i¼1 (Yi � �Yi)

2 (12)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

(Yi � Pi)
2

vuut (13)

where R2, RMSE, N, Yi, Pi and �Yi are determination coeffi-

cient, root mean squared error, number of observations,

observed data, computed values and mean of observed

data, respectively. Likewise, Legates & McCabe () indi-

cated that a hydrological model can be sufficiently evaluated

by these two statistics. Moreover, due to the uppermost

importance of the extreme values in the rainfall runoff mod-

eling, Equation (14) can be used to compare the ability of

different models in capturing the peak values in runoff

time series, similar to Equation (12) for the total data

R2
Peak ¼ 1�

Pn
i¼1 (QPCi �QPOi )

2

Pn
i¼1 (QPOi � �QPO)

2 (14)
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where R2
Peak determination coefficient for peak values, n

number of peak values, QPOi , QPCi and �QPO are observed

data, computed values and mean of observed data for peak

values, respectively.
STUDY AREA DESCRIPTION

The data used in this paper are from the Aghchai and Lighvan-

chai watersheds, located in northwest Iran at Azerbaijan

province. The time series data for 12 (from 1995 to 2007) and

17 (from1990 to 2007) yearswere used for rainfall–runoffmod-

eling of the Aghchai and Lighvanchi watersheds, respectively.

Due to the data limitation in the current research, monthly

data were adopted for examining the proposed model. This

issue has always been one of the major drawbacks in data gath-

ering for hydrologicalmodeling. Thefirst 75%of total datawere

used as training set and the second 25%were used for verifying

the models. Therefore, for the Aghchai watershed, the data

series were divided into a training set from 1995 to 2004 and a

testing set from 2004 to 2007, and also for the Lighvanchai

watershed the data were split into a training set from 1990 to

2003anda testing set from2003 to2007.The statistics of rainfall

and runoff for both watersheds in monthly time scale are tabu-

lated in Table 1. The time series data before going through the

network were normalized between 0 and 1. A brief description

aboutothercharacteristicsof thewatersheds ispresentedbelow.

Case (1): The Aghchai watershed is located between

38W400 and 39W300 North latitude and 44W100 and 44W570 East

longitude. The watershed area is 1,440 km2. Watershed

elevation varies between 1,168 meters and about 3,280

meters above sea level and its longest waterway is 64.88 km
Table 1 | Statistic characteristics of rainfall and runoff data for case studies

Rainfall time series (mm)

Case study Max Min Mean Standard deviati

Calibration data set

Aghchai 133.5 0 21.12 22.05

Lighvanchi 89 0 22.92 19.20

Verification data set

Aghchai 117 0 27.81 25.71

Lighvanchi 151 0 18.21 23.75
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in length (Figure 6). The topography is steep with an average

slope of 25%.

Case (2): The Lighvanchai watershed is located between

37W450 and 37W500 North latitude and 46W250 and 46W260 East

longitude. The watershed area is 75 km2 (Figure 6). Water-

shed elevation varies from 2,140 m to 3,620 m above sea

level and its longest waterway is 17 km in length.

Likewise, in spite of similarities between the twowatersheds

fromthestandpointofclimatologicalandgeologicalcriteria (due

to the fact that both watersheds are adjacent), there are signifi-

cant differences in terms of runoff, slope, and area. By

comparisonof thementionedcharacteristicsofbothwatersheds,

it is concluded that theAghchaiwatershed canbe categorized as

awildwatershedwith respect to theLighvanchaiwatershed. For

instance, theaveragesloperatio (25:11) forAghchaiwatershed is

twice that of the Lighvanchai watershed. This characteristic

causes the Aghchai watershed to have a quicker response than

theLighvanchaiwatershed foraneventofprecipitation.Thepre-

vailing climate of the study areas is rainy and sub-humid having

four well defined seasons, viz. spring, summer, autumn and

winter. During the wet season, the area is under the influence

of middle latitude westerlies, and most of the rain that occurs

over the region during this period is caused by depressions

moving over the area, after forming in the Mediterranean Sea

on a branch of the polar jet stream in the upper troposphere.

The mean daily temperatures vary from �22 WC in January up

to 40 WC in July with a yearly average of 9 WC. The mean annual

temperature over the two watersheds is quite mild at 11.9 WC.

Average monthly temperatures have a range of 29.2 WC which

is a moderate range. July is the warmest month (hot) with a

mean temperature of 26 WC and January is the coolest month

(slightly cold) having a mean temperature of�3.2 WC.
Runoff time series (m3 /s)

on Max Min Mean Standard deviation

762.5 9.96 122.64 132.70

157 0 21.88 30.09

610.2 27.5 143.51 137.06

99 0 13.41 22.02



Figure 6 | Location of the study areas.
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Table 2 shows the seasonal behavior of the rainfall and

runoff time series in both case studies. Moreover, according

to the evaluation and comparison of a linear model and a

non-linear model presented by Nourani et al. (), the rain-

fall–runoff process of both watersheds are characterized by

high non-linearity and non-stationary behavior.
RESULTS AND DISCUSSION

Results of proposed GFS model

In this section, the proposed GFS model is examined for the

rainfall–runoff modeling of the watersheds. To this end, first

the relationship between input and output variables is to be
Table 2 | Average seasonal values of both watersheds

Rainfall time series (mm)

Case study Spring Summer Autumn Win

Aghchai 18.05 13.28 20.42 26

Lighvanchi 16.14 11.32 19.74 24

om http://iwaponline.com/jh/article-pdf/16/5/1004/387373/1004.pdf
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scrutinized; subsequently the results based on correlation coef-

ficients analysis showed there is poor linear relationship

between input and output data (Table 3) which approved a

need for utilization of non-linear modeling. In the current

research, the best input combination was selected according

to the SRA in which both pervious rainfall and runoff time

series that are more related to output, (Q(tþ 1)), were con-

sidered as inputs of the proposed model. Then SRA was used

to eliminate low impact inputs and choose the most influential

ones out of thementioned inputs. The statistical software SPSS

17.0 (Ho ) was used to apply the SRA in this research con-

sidering Fe¼ 3.84 and Fr¼ 2.71. These parameters gain the

best-fit regression model with highest R-square. The outcomes

of this stage for the Aghchai watershed were runoff at time

steps t–1(Qt�1), t–2 (Qt�2) and rainfall at time step t–1(It�1),
Runoff time series (m3/s)

ter Spring Summer Autumn Winter

.81 76.23 65.78 95.45 154.66

.03 43.45 28.33 51.12 60.01



Table 3 | The correlation coefficients between input and output data in both watersheds

Time series Aghchai Lighvanchai

The correlation coefficients between observed Qt and I in both
watersheds

It 0.46 0.36

It�1 0.40 0.21

It�2 0.13 0.05

It�3 0.031 0.012

It�4 �0.066 �0.058

The correlation coefficients between observed Qt and its lags in
both watersheds

Qt�1 0.51 0.48

Qt�2 0.19 0.18

Qt�3 0.038 0.08

Qt�4 �0.24 �0.26
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and for the Lighvanchai watershed were runoff at time step t–1

(Qt�1) and rainfall at time step t–1(It�1) whichwere considered

as inputs to the GFSmodel. In the second stage, GFS was built

using training data. Finally, the prediction was verified by

means of the test data.

Fine-tuning the parameters of a learning algorithm is

always a difficult task and the parameter values may have

a strong effect on the results of the learning for each pro-

blem (Eiben et al. ; Alsinet et al. ). The modeling

process was initiated using the parameters set; it is rec-

ommended to start with the values which are known to be

good for a number of numeric tests (Eiben et al. ),

accordingly the architecture of the model was improved by

sampling the parameter space, considering a stream of

instances, sequentially evaluating candidates by comparing

number of hit rates, discarding statistically worse candidates

and selecting the winning architecture.

Regarding the above explanations, in order to meet the

best architecture (i.e. best parameter values) yielding least
Table 4 | Suitable features of GFS

Parameters

Case study Number of labels Population size Nu

Aghchai 3 80 50

Lighvanchi 3 90 25

://iwaponline.com/jh/article-pdf/16/5/1004/387373/1004.pdf
error, different feature of parameters (i.e. different numeric

values) were examined for each learning model and suitable

values were obtained. For both watersheds, the suitable fea-

tures of GFS after examination of different parameters are

shown in Table 4.

Therefore, for the first case study (Aghchai), the determi-

nation coefficient and RMSE for the calibration stage were

obtained by the GFS model as 0.92 and 12.20 m3/s, respect-

ively. The same metrics as above for the verification stage

were also acquired: 0.90 and 13.72 m3/s, respectively. The

GFS model shows a higher determination coefficient and

lower RMSE as compared with the ANN (R2¼ 0.70,

RMSE¼ 32.02 m3/s) and the ANFIS (R2¼ 0.86, RMSE¼
27.45 m3/s) methods. In the second case study (Lighvan-

chai), for the calibration stage the determination coefficient

and RMSE could be reported as 0.93 and 2.35 m3/s, respect-

ively. Also in verification of the model the same metrics were

derived to be 0.91 and 3.14 m3/s, respectively. With regard to

the ANN (R2¼ 0.77, RMSE¼ 5.65 m3/s) and ANFIS (R2¼
0.89, RMSE¼ 3.45 m3/s) models, it was elicited that the

GFS model is superior to the others. For both watersheds

the GFS-estimated time series significantly approximate the

general behavior of the observed data. In particular, the

observed runoff peaks in the testing period were closely esti-

mated by the GFS model. It is worth mentioning that the

results based on the GFS model are quite significant since

the ANN and ANFIS models face difficulties in forecasting

the extreme values of the observed runoff series.

A model which has been over-fitted generally has poor

predictive performance and exaggerates minor fluctuations

in data. In this study, as mentioned, the evolved GFS capa-

bility in performing predictions on test data set (which was

not fed to GFS model at the evolving stage) was acceptable

and better than ANFIS and ANN models, so it can be con-

cluded that the GFS model was not over-fitted. Testing with

data not seen before can be done while training to see how
mber of generation Crossover probability Mutation rate

0 0.78 0.05

0 0.85 0.08



Figure 7 | Approximation and details of sub-signals of db4 Wavelet (level 2).
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much training is required in order to perform well without

over-fitting.

The experimental results show that the proposed GFS

model is better than ANN and ANFIS in terms of determi-

nation coefficient and RMSE criteria. It also has the

following characteristics: GAs have been demonstrated to

be a modeling tool for automating the definition of the

fuzzy rule-based systems, the proposed GFS uses GAs for

extracting the RB of the fuzzy expert system. To improve

the forecasting accuracy, the proposed GFS tunes the data-

base of the fuzzy system using a GA.

Results of proposed WGFS model

This paper proposes a new hybrid model of GFS and wave-

let transform for runoff prediction of the Aghchai and

Lighvanchai watersheds. In this work, when wavelet trans-

form is combined with the GFS model, the effects of

various decomposition levels and mother wavelet type on

the model efficiency should be examined which makes the

modeling process time consuming.

In order to overcome this problem, in the current

research, decomposition level was determined based on

other studies which offer the following formula (Wang &

Ding ; Nourani et al. ):

L ¼ int[ logN] (15)

where L and N are the decomposition level and time series

length, respectively. For the first case study at hand, N¼
144, so L¼ 2 and also for the second case study the

mentioned parameters were specified as 204 and 2, respect-

ively. Hence, several WGFS models were developed using

different input scenarios extracted by decomposition levels

at levels 1 and 2. For instance, the level 2 decomposition

of rainfall time series for the Lighvanchai watershed

which yields three sub-series (one approximation and two

details at levels 1, 2) by db4 wavelet is shown in Figure 7.

The detail sub-series can take several negative values (as

well as positive values) but approximation may take only a

few small negative values when the rainfall values of the

original time series are zero, due to the applied mother

wavelet. It does not matter that we see the negative values

for the sub-series, because according to Equation (11) the
om http://iwaponline.com/jh/article-pdf/16/5/1004/387373/1004.pdf
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summation of these sub-series (e.g., summation of three

sub-series of Figure 7) should be the original time series

(for rainfall all values of this summation will be positive or

zero). So, these sub-series even with some negative values
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are imposed into the GFS as inputs where the GFS applies

weights to these inputs, and finally in the output unit, the

model will sum all to get the output (runoff).

To continue, the calibration data set of rainfall and

runoff signals were decomposed by passing through high-

pass and low pass wavelet filters which were then con-

sidered as inputs to the GFS model. Predictive capability

of the model was then validated by the test data set. The

results of the modeling have been presented based on R2

and RMSE criteria in Table 5. It should be noted that in

Table 5 the rainfall and runoff decomposition levels (i.e.,

i and j) can be substituted by different values but considering

the direct relation between rainfall and runoff amounts, it is

expected that both rainfall and runoff time series have the

same seasonal levels. Hence, the decomposition levels for
Table 5 | Results of WGFS model

Calibration Verification

Mother
wavelet type

Decomposition level
(i¼ j) R2

RMSE
(m3/s) R2

RMSE
(m3/s)

Aghchai

Coif1 1 0.95 12.20 0.93 12.96

Coif1 2 0.96 11.43 0.95 12.20

Haar 1 0.95 13.72 0.93 13.72

Haar 2 0.95 12.96 0.94 12.20

Db4 1 0.96 11.43 0.94 12.20

Db4 2 0.98 10.67 0.97 11.43

Lighvanchi

Coif1 1 0.93 2.82 0.92 3.14

Coif1 2 0.94 2.66 0.93 2.82

Haar 1 0.92 3.14 0.91 3.29

Haar 2 0.93 2.82 0.92 2.98

Db4 1 0.95 2.51 0.94 2.66

Db4 2 0.97 2.35 0.96 2.51

Table 6 | Suitable features of WGFS (mother wavelet is db4 at level 2)

Parameters

Case study Number of labels Population size Nu

Aghchai 2 90 1,

Lighvanchi 2 90
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the rainfall (i) and runoff (j) time series were considered

equal in the current study.

Based on the results (Table 5), there is an increasing

trend in the model’s performance from low decomposition

level towards higher decomposition level. The obtained

results for both watersheds show that the db4 mother wave-

let decomposed at level 2 could provide a good match

between observed and predicted runoff time series in both

calibration and verification steps. For both watersheds opti-

mum features of WGFS after examination of different

parameters for decomposing by db4 at level 2 are shown

in Table 6.

For the first case study (Aghchai), the tuned membership

functions of input and output variables in the best proposed

WGFS (db4 at level 2-GFS) and their RB are shown in

Figures 8 and 9, respectively. These membership functions

represent the linguistic terms characterized by fuzzy sets

rather than quantity terms. For example, the exposure

level of input and output variables is regularly expressed

linguistically as MF1¼ ‘low’, MF2¼ ‘moderate’, and

MF3¼ ‘high’. These linguistic variables with non-crisp infor-

mation are consistent with the imprecise and uncertain

nature. Comparing the WGFS model results with those of

individual ANN, ANFIS and GFS models, the WGFS is

more efficient (Table 7). The reason for such an outcome

may be related to the wavelet used in the WGFS model;

thus, by decomposing the main time series into multi-scale

sub-signals, each sub-signal represents a separate seasonal

scale and therefore, the multi-seasonality features of the

time series can be handled. Therefore, the results of the

WGFS model are more satisfactory when compared with

those of other models (i.e., ANN, ANFIS, GFS, WANN,

and WANFIS) in terms of prediction accuracy by consider-

ing uncertainty and multi-resolution features of the

process. More details about the implementation of these

models are shown in Table 8. Although the WGFS model
mber of generation Crossover probability Mutation rate

200 0.85 0.08

850 0.8 0.08
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has a costly structure, this is unavoidable when you consider

it catches all uncertain and multi-scale seasonality effects in

a modeling process.

To sum up, the GFS model was first developed employ-

ing meaningful lagged data of rainfall and runoff time series
Figure 8 | Membership functions of input and output variables in WGFS model. (continued)

om http://iwaponline.com/jh/article-pdf/16/5/1004/387373/1004.pdf
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and in this way, SRA was used to select dominant inputs.

However, for the WGFS model, rainfall and runoff sub-

signals at different scales (levels) obtained via the wavelet

transform were considered as inputs in which each sub-

signal represents a specific scale of l (as 2l-mode) and



Figure 8 | Continued.
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Figure 9 | Fuzzy RB in WGFS model.
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these input sub-signals can play the same role of lagged data

in the GFS or classic ANN models.
Comparison of models

Finally, in order to evaluate the performance of the pro-

posed hybrid models (i.e., GFS and WGFS), the obtained
Table 7 | Comparison of different rainfall–runoff models

Case study Aghchai

Model Calibration (R2) Verification (R2) b (R2
p

ANNa 0.78 0.70 0.41

ANFISa 0.89 0.86 0.71

WANNa 0.91 0.88 0.85

WANFISa 0.94 0.93 0.96

GFS 0.92 0.90 0.93

WGFS 0.98 0.97 0.97

aNourani et al. (2011).
bDetermination coefficient for peak values.

Table 8 | Structures of the ANN and ANFIS models

Case study Network structure

ANN

Aghchai (8,10,1)

Lighvanchai (8,5,1)

ANFIS

Aghchai gbellmf-2a

Lighvanchai gbellmf-2a

aBell function as the membership function and two MFs.
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results were also compared with results of ANN, ANFIS,

WANN and WANFIS models which have already been pre-

sented by Nourani et al. () (it should be noted that all of

these methods are applied to the same data sets with the

same portion of training and test data). The time series of

observed and forecasted runoff through mentioned models

for the Aghchai and Lighvanchai watersheds are plotted in

Figures 10 and 11. Whereas multi-step ahead forecasting is

essential to show whether the proposed model is properly

tested or not, the potential of WGFS model for 2 and 3

months ahead flow forecasting was also investigated in the

current research for both watersheds. The WGFS model

was compared to the WANFIS model for 2 and 3 months

ahead flow forecasting. It is worth mentioning that the cor-

relation coefficients between sub-signals and original data

provide information about the selection of the conjunction

model inputs. Therefore, the input combinations were

obtained after the examination of the correlation coeffi-

cients between each of sub-time series and original data.

db4 wavelet transformation at level 2, which was known
Lighvanchai

eak) Calibration (R2) Verification (R2) b (R2
peak)

0.77 0.69 0.53

0.89 0.84 0.79

0.92 0.90 0.91

0.96 0.93 0.96

0.93 0.91 0.92

0.97 0.96 0.97

Input variables epoch

Qt, Qt�1, Qt�2, Qt�3, It, It�1, It�2, It�3 150

Qt, Qt�1, Qt�2, Qt�3, It, It�1, It�2, It�3 150

Qt, Qt�1, Qt�2, Qt�3, It, It�1, It�2, It�3 200

Qt, Qt�1, It, It�1 200



Figure 10 | The results of different models for (a) Aghchai watershed with (b) detail of first 25 months.
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as an appropriate wavelet function in the previous section,

was also considered for decomposition purposes. Table 9

shows the dominant combinations of input data for both

watersheds. After the implementation of the two models

for multi-step ahead flow forecasting, it was determined

that for both 2 and 3 months ahead forecasting, the

WGFS model could provide more accurate results than

the WANFIS model. The superiority of the WGFS model

in multi-step ahead forecasting is shown in Figures 12

and 13. The forecasting performances of the WGFS and

WANFIS models during the testing period are presented

in Table 9 in terms of RMSE and R2. Table 9 shows that

WGFS model has a positive effect on multi-step ahead

runoff forecasting.

The main aim of this paper is to develop a hybrid fuzzy

system and wavelet transform for the runoff discharge pre-

diction in which most of the characteristics of the process
://iwaponline.com/jh/article-pdf/16/5/1004/387373/1004.pdf
could be taken into consideration. According to the

obtained results, it is clear that the GFS model is more effi-

cient than the ANN and ANFIS models in forecasting both

watersheds runoff. The reason for this fact may be related to

the use of a tuning method in the developed model. Thus, in

spite of the uncertainty of the process which is captured

using a GFS model similar to the ANFIS model, in the

GFS, the GA as a global search method has been employed

to escape the local optimum and finding the best parameters

of the fuzzy system. In this way, the proposed model can find

the appropriate parameters of the fuzzy system under the

complex and chaotic conditions of the rainfall–runoff

process. Therefore, with regard to the mentioned models,

it is expected that the GFS model would be more appropri-

ate to simulate the non-linear behavior of the phenomenon.

What is more, there are remarkable weaknesses in capturing

peak values through ANN and ANFIS models and to cope



Table 9 | Results of 2 and 3 months ahead forecasting for WGFS and WANFIS models during the testing period

Case study Input Output R2 RMSE (m3/s)

WANFIS

Aghchai It, Qt, It�1 and Qt�1 in level 2 Qtþ2 0.91 16.77
It, Qt, It�1 and Qt�1 in level 2 Qtþ3 0.89 20.58

Lighvanchai It, Qt, It�1, Qt�1, It�2 and Qt�2, in level 2 Qtþ2 0.90 3.61
It, Qt, It�1, Qt�1, It�2 and Qt�2, in level 2 Qtþ3 0.87 4.55

WGFS

Aghchai It, Qt, It�1 and Qt�1 in level 2 Qtþ2 0.94 15.25
It, Qt, It�1 and Qt�1 in level 2 Qtþ3 0.92 16.77

Lighvanchai It, Qt, It�1, Qt�1, It�2 and Qt�2, in level 2 Qtþ2 0.93 3.29
It, Qt, It�1, Qt�1, It�2 and Qt�2, in level 2 Qtþ3 0.91 3.45

Figure 11 | The results of different models for (a) Lighvanchai watershed with (b) details of first 35 months.
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with this deficiency the GFS model considering the afore-

mentioned benefits was implemented. In the same vein,

this model has significant advantages under some critical

hydrological conditions, such as in the case of severe
om http://iwaponline.com/jh/article-pdf/16/5/1004/387373/1004.pdf

1

storm when extreme values are created by the sudden impo-

sition of extreme inputs on the hydrological system, and so is

able to estimate such peak values better than other auto-

regressive black box models such as ANN and ANFIS.



Figure 13 | The results of WGFS model in multi-step ahead forecasting for the Lighvanchai watershed.

Figure 12 | The results of WGFS model in multi-step ahead forecasting for the Aghchai watershed.
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One of the most significant characteristics of the hydro-

logical time series is seasonality pattern. The seasonality

feature is the dominant factor in monthly modeling. There-

fore, as core to the paper, we developed a novel hydrologic

process model called WGFS, which could lead to more

reliable results than other seasonal models (i.e., WANN

and WANFIS); by applying multi-scale time series as

inputs to the GFS model. In spite of conclusive evidence,

according to the R2 and RMSE, about the superiority of

the proposed method to other techniques, in order to

ensure the superiority of the WGFS model over the

WANFIS model – which has been recently known as vigor-

ous tool in perdition of the rainfall–runoff process – the

hypothesis was tested.
://iwaponline.com/jh/article-pdf/16/5/1004/387373/1004.pdf
The best fit model out of WGFS and WANFIS (Nourani

et al. ) would be chosen by hypothesis testing. To meet

this purpose following hypothesis was proposed:

H0: There is no difference between prediction accuracy of

WGFS and WANFIS.

H1: There is a difference between the prediction accuracy of

the two models.

Since the data used for prediction in both models are the

same, paired t-test (two samples for mean) on prediction

accuracy (relative error percentage) was carried out.

As has been shown, since the P-value (0:0014) is <0.002

so H0 was rejected in level of confidence α¼ 0.002. The

results of the paired t-test in terms of mean deviation,
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standard deviation and t-test value are �2.61, 4.856 and

�3.356, respectively.

The evidence indicates that the average prediction error

(μ) of WGFS is significantly lower than that of WANFIS.

Thus, again, the WGFS model was concluded to be a rigor-

ous method for constructing watershed’s runoff response.

Since the feasible estimation of peak values is usually

the most important factor in any flood mitigation program,

another key point when comparing different models is the

capability of the models in estimating peak values. For this

purpose, peak values were sampled by considering the

threshold of the top 5% of the data from the original

runoff time series contractually. The performances of the

various models in this respect were evaluated using

Equation (14) and are presented in Table 6. By comparing

the results, it is found that the capability of the WGFS

model for predicting extreme values is better than ANN,

ANFIS, GFS and WANN models. Also, the efficiency of

the WGFS model is 0.97 compared with 0.96 for

WANFIS. There is an identical high capability of the two

models in predicting peak flows. But as mentioned above,

WGFS has promising results, especially in the low-flow con-

text. Therefore, not only is the proposed model appropriate

in monitoring peak values, but it can also be considered as a

promising streamflow forecasting tool which is necessary in

the water resources systems management where it is directly

influenced by streamflow forecasting. Furthermore, one of

the main traits that distinguishes the WGFS model over

the WANFIS model is its capability in multi-step ahead fore-

casting, one of the significant concerns of hydrologists.

In spite of the issue that by a combination of wavelet

transform and AI models watershed runoff can be predicted

precisely and that under such circumstances the seasonality

feature of the process can be captured remarkably well,

through hybridization of wavelet transform and AI models

(in the current research is GFS) the capability of the

model in predicting extreme values is considerably

increased due to the essence of the wavelet transform. The

GFS as the main structure of the WGFS model plays a key

role not only in estimating high values but also more so in

the low-flow context. As can be seen, all WGFS models

have led to satisfactory results in terms of R2 and RMSE,

but in this research the db4 wavelet transform at level 2

yielded the highest capability in forecasting watershed
om http://iwaponline.com/jh/article-pdf/16/5/1004/387373/1004.pdf
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runoff. Such an outcome was obtained using the available

12 and 17 year monthly data but it is clear, as with any

data-driven model, the proposed model may lead to much

more promising results if a longer data set is used (if

available) in the modeling. Due to the climatological con-

ditions, for both case study watersheds, there may have

been some snowy days every year and this snowmelt water

may impact on the runoff. This impact is more remarkable

in the daily modeling than the presented monthly modeling.

In the freezing days, it may take a few days for the snow to

melt and change the runoff, and as a result, the current day

snow may impact on the outlet runoff a few days later. How-

ever, this condition is much less significant in the monthly

modeling since in the monthly time scale there is enough

time (1 month) to see the impact of snowmelt on the outlet.
CONCLUDING REMARKS

The purpose of this study was to investigate the effect of a

hybrid GFS model and wavelet transform on improving

the accuracy of monthly runoff forecasting by considering

dominant hydrological characteristics of the rainfall–runoff

process, simultaneously. To this end, the Lighvanchai and

Aghchai basins were used as case studies, in which rainfall

and runoff time series of both watersheds are characterized

by high non-linearity, non-stationary and seasonality

behavior.

Based on previous research (Nourani et al. ) imple-

menting ANN and ANFIS models, the non-linear

relationship of input and output data could not be deter-

mined thoroughly and these models also face difficulties in

estimating peak runoff values. Therefore, in order to cope

with these weaknesses, in the current research the GFS

model was introduced. The use of GA in the framework of

the GFS model invigorates it to escape the local optimum

and consequently acquire the appropriate parameters of

the fuzzy system. The obtained results showed a good

improvement in the runoff forecasting for both watersheds

through the hybrid GFS model in comparison with those

of individual autoregressive ANN and ANFIS models.

The next task was to capture the seasonality feature of

the rainfall–runoff process. Therefore, the second hybrid

model called WGFS was also proposed, in which the
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wavelet transform, which can capture the multi-scale fea-

tures of a signal, was used to decompose the Lighvanchai

and Aghchai rainfall and runoff time series. The sub-signals

were then used as inputs to the GFS model to predict the

runoff discharge 1 month ahead. In this research, in order

to overcome the time-consuming issue of the modeling pro-

cess, the wavelet decomposition level was selected

according to signal length. It is worth noting that the wavelet

transform type plays a pivotal role on the performance of the

WGFS model. Thus, different kinds of wavelet transforms

(i.e., Coif1, Haar and db4) were evaluated on how they

enhanced the capability of the proposed model in runoff

forecasting. In this paper, for both watersheds Daubechies

wavelet order-4 (db4) at level 2, considering the shape simi-

larity with main time series, provided a good match between

observed and predicted runoff time series. The comparison

of the results showed that the WGFS model is able to fore-

cast watershed runoff better than both autoregressive (i.e.,

ANN, ANFIS and GFS) and seasonal models (i.e., WANN

and WANFIS). Moreover, this claim was proven with

respect to the superiority of the WGFS model in estimating

extreme values and in the field of multi-step ahead

forecasting.

For future work, it is recommended to use the presented

methodology to forecast the runoff in daily scale and also to

model the rainfall–runoff process of a watershed by adding

other hydrological time series and variables (e.g., tempera-

ture or/and evapotranspiration) to the input layer of the

model.
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