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Abstract How to predict stock price movements based

on quantitative market data modeling is an attractive topic.

In front of the market news and stock prices that are

commonly believed as two important market data sources,

how to extract and exploit the hidden information within

the raw data and make both accurate and fast predictions

simultaneously becomes a challenging problem. In this

paper, we present the design and architecture of our trading

signal mining platform that employs extreme learning

machine (ELM) to make stock price prediction based on

those two data sources concurrently. Comprehensive

experimental comparisons between ELM and the state-of-

the-art learning algorithms, including support vector

machine (SVM) and back-propagation neural network (BP-

NN), have been undertaken on the intra-day tick-by-tick

data of the H-share market and contemporaneous news

archives. The results have shown that (1) both RBF ELM

and RBF SVM achieve higher prediction accuracy and

faster prediction speed than BP-NN; (2) the RBF ELM

achieves similar accuracy with the RBF SVM and (3) the

RBF ELM has faster prediction speed than the RBF SVM.

Simulations of a preliminary trading strategy with the

signals are conducted. Results show that strategy with more

accurate signals will make more profits with less risk.

Keywords Stock market prediction � Trading signal

mining platform � Extreme learning machine

1 Introduction

Stock market is one of the most important and active

financial markets. Market players use different models to

analyze the huge market data to make predictions. Many

previous works in computer science put the problem into a

machine learning framework. Schumaker and Chen [1]

make forecasting based on financial news articles by a text

classification approach. Yeh et al. [2] use multi-kernel

learning model to regress on the stock prices. However,

most previous approaches only focus on the prediction

accuracy, and rarely analyze the speed that is an important

aspect of the online forecasting. Since both the prediction

accuracy and speed are highly demanding in stock price

predictions, we build up a trading signal mining platform
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that could take news and market prices as inputs and pre-

dict stock short-term price movements with high accuracy

and fast speed.

Prediction accuracy, which is also known as the accu-

racy of trading signals, is the first requirement of the

model. Generally speaking, trading signals that consis-

tently have the accuracy statistically different from random

predictions are useful. Execution strategies, such as vol-

ume-weighted average price (VWAP) and market on close

(MOC) etc., can benefit from accurate predictions by

adjusting their trading schedules or tilting their trading

volumes according to the directions of the trading signals.

Proprietary strategies, such as market making (MM), trend

following (TF) etc., could use the trading signals to avoid

adverse selection cost, or they could even directly bet on

the signals. Therefore, higher accuracy of trading signals

indicates greater chance of profitability.

The other requirement is the prediction speed of the

system. For intra-day high frequency trading (HFT), the

speed of incoming real-time market data is at millisecond

level for most stock markets. Thus, in order to adapt to the

dynamics of the intra-day market conditions and give

enough time for the trading strategies to respond to the

trading signals, the prediction speed of the system should

be faster than market data speed. The model’s training or

tuning time, on the other hand, is not critical, since those

phases can be arranged as an overnight job and finish

before the market opens.

Extreme learning machine (ELM), as an emergent

supervised technique [3, 4], is reported to have high

accuracy and fast prediction speed while solving various

real-life problems. As shown by Huang et al. [3], ELM

randomly assigns the input weights and hidden layer biases

instead of fully tuning all the internal parameters such as

BP-NN. Specific to Single-hidden Layer Feedforward

Networks (SLFNs), ELM could analytically determine the

output weights. With the proof of theorems (Theorem 2.1

and 2.2 in [3]), it gives the smallest norm of weights, easy

implementation and fast prediction speed. Huang and Siew

[4] kernelize the basic version of ELM, which further

improves the ELM’s prediction accuracy. Solid experi-

mental results on UCI Machine Learning Repository data

sets (http://www.ics.uci.edu) could be found in [5, 6].

Based on aforementioned good properties and perfor-

mance, we consider ELM as a candidate with a high pri-

ority to match the two key requirements of the stock market

prediction problem. In this paper, we build up a trading

signal mining platform that uses ELM to integrate two

kinds of market information sources, i.e., market news and

prices. We compare the performance of ELM with SVM

and BP-NN on one year H-share news articles and intra-

day tick prices. Experimental comparisons demonstrate the

effectiveness of the proposed system.

The rest of this paper is organized as follows. Section 2

reviews the approaches to stock market predictions, the

formulation of ELM and its applications. Section 3 presents

our proposed system. Section 4 reports the experimental

comparisons and discussions. Section 5 gives the conclu-

sion and future work directions.

2 Related work and background

2.1 Information sources in stock market

Market news and stock prices, known as two of the most

important sources of market information, are widely

adopted by both academic researchers and market practi-

tioners. With the advancement of the HFT, the reporting

speed and the volume of market data have been increas-

ingly significant. In particular, useful trading signals are

mined by high performance computers, together with

algorithms of financial engineering and machine learning.

In order to better utilize these signals, how to model and

make accurate and fast predictions has become a chal-

lenging problem.

In our previous work [7], it was discovered that com-

bining both market news and prices achieves better pre-

diction accuracy. Therefore, in this paper, instead of

modeling the mapping from market information to pre-

diction signal separately as

p : N7!L or p : P 7!L; ð1Þ

where N denotes the information source of news, P denotes

the information source of prices and L is the set of

prediction labels, we combine N and P together and make

the model as

p : fN;Pg7!L: ð2Þ

2.2 Traditional approaches

Analysis of news articles has been reported in the literature

of computer sciences. Following the approaches of text

mining on news articles, Seo et al. [8] build a multi-agent

system for intelligent portfolio management, which can

assess the risk associated with companies by analyzing

news articles. Yu et al. [9] propose a four-stage SVM based

on the multi-agent ensemble learning approach to credit

risk evaluation. The AZFinText system, built by Schu-

maker and Chen [10], makes not only directional predic-

tions but also quantified estimations of prices.

As illustrated in Fig. 1, the processing pipeline of the

approaches that use news could be summarized below:

1. Representation of news articles A piece of news is

usually represented as a term vector by using the
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vector space model after the removal of stop words and

feature selection [11–14]. Sentiment analysis is occa-

sionally employed to analyze news at a semantic level

[15–18].

2. Labeling Each piece of news is then assigned with a

label. In a classification model, pieces of news are

sorted by their time stamps, and labeled with nominal

values, such as positive/neutral/negative. While in

regression approaches, news is simply labeled with a

continuous value.

3. Model training and evaluation Machine learning

models are employed in this step. Except for evalu-

ating models by means of standard metrics, such as

accuracy and mean square error (MSE).

Besides the works on news, there are also many pub-

lished papers on mining signals from market prices. Gestel

et al. [19] use a Bayesian evidence framework and apply it

to least-squares SVM regression for price and volatility

predictions. Tay et al. [20, 21] and Cao et al. [22] modify

the SVM objective function and make C an adaptive

parameter for non-stationary time series. For predicting

index prices, Kim [23] concludes that the performance of

SVM is better than that of BP-NN. By applying SVM to

predict S&P 500 daily prices, Cao et al. [24, 25] also find

that SVM has the better performance based on the metrics

of normalized mean square error and mean absolute error.

Huang et al. [26] predict the price directional movement of

NIKKEI 225 index using SVM. After comparing SVM

with linear discriminant analysis, quadratic discriminant

analysis, and BP-NN, they reach the same conclusion. To

summarize, the steps of the approaches in this category are:

(1) preprocessing raw prices. Since the absolute price level

contains very little information, inter-day or intra-day

historical prices are usually translated into various indica-

tors and taken as the inputs of a model. (2) patten classi-

fication. Patterns of indicators are then classified (or

regressed) by SVM into predetermined categories (or

estimated values).

2.3 Extreme learning machine

The basic version of ELM is a SLFN with random hidden

nodes. Suppose we have N arbitrary distinct instances

(xi, ti), where xi [ Rn and ti [ Rm. The standard SLFNs

with ~N hidden neurons and activation function g(x) are

mathematically modeled as

X~N

i¼1

bigðwi � xj þ biÞ ¼ oj; j ¼ 1; . . .;N; ð3Þ

where bi is the output weight, wi is the input weight and bi

is the bias of ith hidden neuron. With the ability of zero-

error approximation, i.e.,
P ~N

j¼1 koj � tjk ¼ 0; Eq. (3) could

be rewritten as

Hb ¼ T: ð4Þ

Following the naming convention in Huang et al. [3], H is

named as the hidden layer output matrix of the neural

network.

In order to find bi, wi and bi such that

kHðŵ; b̂Þb̂� Tk ¼ min
w;b;b
kHðw; bÞb� Tk; ð5Þ

which is the same as to minimize the error

E ¼
XN

j¼1

X~N

i¼1

bigðwi � xj þ biÞ � tj

 !2

: ð6Þ

Besides the commonly known gradient-based learning

algorithm, Huang et al. [3] propose a solution that does not

need to tune all the parameters within the network, which is

to solve the linear system, i.e.,

b̂ ¼ HyT; ð7Þ

to give the smallest norm least-squares solution. They also

prove that the solution is unique (Theorem 2.1 in [3]).

Huang and Siew [4] extend the basic ELM to RBF

kernel-based ELM. With the ability of infinite differential,

Fig. 1 Architecture of traditional approaches
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gaussian kernel is included in ELM, and Eq. (4) could be

formulated as

X~N

i¼1

biexp
kxj � lik2

ri

 !
¼ tj; j ¼ 1; . . .;N: ð8Þ

In a similar way as the basic ELM, b̂ can be solved by

Eq. (7), and the algorithms for solving basic and kernel

ELM could be compactly written as: given a training data

set, (1) arbitrarily assign parameters (for basic ELM, the

parameters refer to the weights and bias; for RBF kernel

ELM, the parameters refer to the kernel’s mean and width);

(2) calculate hidden layer output matrix H; (3) calculate the

output weight b.

ELM has been applied to many real-life problems. Sun

et al. [27] apply ELM to fashion retail sales predictions and

find the performance better than BP-NN. Sun et al. [28]

apply OS-ELM to p2p networks based on an ensemble

classification framework. In the field of Bioinformatics,

Handoko et al. [29] use ELM to predict peptides binding to

the human leukocyte antigens (HLA). Sarawathi et al. [30]

use a combination of integer-coded genetic algorithm

(ICGA) and particle swarm optimization (PSO) together

with ELM for gene selection and classification. In this

paper, we apply ELM to another challenging domain—the

stock market prediction.

3 Trading signal mining platform

Following the preprocessing steps in [7], we build up our

trading signal mining platform, and the work flow is

illustrated in Fig. 2. Section 3.1 shows how to preprocess

the tick prices and news articles. Section 3.2 illustrates how

to construct the instances and their labels. Section 3.3

discusses data normalization.

3.1 Preprocessing of prices and news

After sorting the tick prices by their transaction time, the

tick data are represented as an unequally spaced series.

Since time intervals between consecutive prices are not the

same, if we sample at a predetermined frequency, it is

possible that at some points there is no appropriate value.

This is the issue of what value should be filled in for the

blank periods. To address this issue, we use the nearest

previous sampling value to fill in. This method splits tick

data series by a fixed window with length w and extracts

the last trade price in each w. If there is no record in region

of [wi-1, wi], the extracted price of [wi-2, wi-1] is taken as

the price of [wi-1, wi].

Before processing the raw news articles, some of them

are not included for further consideration because of two

constrains: (1) market rules and (2) news impact overlap.

Take H-share market for example, according to the regu-

lation of H-share market in year 2001, continuous trading

sessions are from 10:00 to 12:30, and from 14:30 to 16:00,

which are the main trading hours. Since we only consider

intra-day short-term predictions in our platform, only the

news articles that have time stamps within the main trading

Fig. 2 Architecture of the trading signal mining platform
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hours are kept for further processing1. Besides the trading

hour constraints, it is also suggested by Schumaker et al.

[31] that we eliminate the first 20 min after the market

open of the morning session and the first 20 min after the

market open of the afternoon session. This is to absorb

news impact in the morning before market open and lunch

break. Another issue is the overlap of news impacts. As

illustrated in Fig. 3, assume two news articles d1 and d2 are

released within the same time window D; where both of

them are related to the same company, it is then hard to

determine whether the price movement at time tþD is

caused by d1, or d2, or both. To avoid this situation, d1 is

purposely eliminated in our platform.

News articles, as they have different nature from the

prices, are preprocessed through another approach. The

market news we get are all written in Chinese language,

the first step in the processing pipeline is to segment the

terms in the news. In addition to the Chinese segmentation

software2 we use, we also artificially build up a small

market-specific dictionary to improve the segmentation

accuracy. Following many previous works [1, 10, 31, 32],

we keep the relatively more representative words, such as

adjectives, nouns and verbs etc., and remove the less

important words, i.e., the stop words, in the second step.

Then, we use commonly adopted weighting scheme—

tf � idf—to calculate the weights of each word. In this way,

each news article is projected onto the term space and

could be simply represented as a vector. However, the

length of the vector is quite long and not all the words are

necessarily included in the final feature list. Feldman [33]

filters out 90 % of the features and only keeps about top

10 % words as features. In our approach, we do feature

selection by using the chi-square (v2) method that com-

pares the difference of one vector with another vector, and

gives a score for the difference, as shown in Formula (9).

To be specific, the v2 method calculates the difference

score feature-by-feature by comparing the vector of the

feature with the vector of the labels. For example, let p(tk)

denote the percentage that word tk occurs in the articles,

and denote 1� pðtkÞaspðtkÞ; and p(? ) and p(-) are the

probability of class labels. Then,

v2 ¼ ðad � bcÞ2N

ðaþ bÞðaþ cÞðbþ dÞðcþ dÞ ; ð9Þ

where

a ¼ N � pðtk;�Þ;
b ¼ N � pðtk;þÞ;
c ¼ N � pðtk;�Þ;
d ¼ N � pðtk;þÞ:

ð10Þ

The higher the v2 score is, the more informative the feature

will be. In our platform, to make the continuous label

discretized, we choose thresholds ±0.3 % (which is usu-

ally considered as the transaction cost of the market) as the

cutoffs of the future return in order to label each news, and

also we choose a = 0.05 for v2 and keeps top 1,000 v2

scored words as features.

3.2 Extract the price context for news

As shown in Eq. (2), our approach uses both the informa-

tion set from news and also the one from tick prices. The

way we combine the two information sources with differ-

ent characteristics together is to extract the ‘‘price context’’

around each news event, construct features for the ‘‘price

context’’ and then combine the features from news and the

features from prices.

3.2.1 Extract and process after-event prices

In HFT, the short-term price movements after news release

have attracted great attention of investors. Such ‘‘price

context’’ is termed as after-event prices. Gidofalvi [34]

claims that the impact of news reaches the greatest level

within 20 min after it is released. To the best of our

Fig. 3 Example of news filtering

1 To inter-day value traders and news traders, they usually take the

overnight news articles into consideration, as they analyze the mid- or

long-term impacts of news, such as daily, weekly and even monthly.

However, for high frequency trading, they usually make use of intra-

day short-term signals. Since before the main trading hours, there is

an auction session in H-share market, the impact of the news

overnight is assumed to be reflected in the auction prices and

absorbed before continuous session starts. Therefore, regarding to our

platform’s prediction frequency, we only keep intra-day news. This

approach also follows the method in many previous works in

computer science, e.g., Schumaker et al. [31].
2 Software is downloaded on ictclas.org.
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knowledge, there is neither a theoretical nor a practical

method that could accurately calculate how long the news

impact will last. In order to test more cases, we extract

future 5, 10, 15, 20, 25 and 30 min prices after news is

released and convert the prices into simple return,

respectively, which are further used to label news articles.

In this way, we extend the work [31] by testing one pre-

diction window to six different ones.

More precisely, assume the time stamp of one piece of

news is t0, and we could find the corresponding price p0 in

the tick price series preprocessed. Similarly, we could also

find the future 5, 10, 15, 20, 25 and 30 min prices in the

series, denoted as p?5, p?10, p?15, p?20, p?25, and

p?30, respectively. Then, we use Formula (11) to convert

the after-event prices into simple return,

R ¼ pi � p0

p0

; ð11Þ

where R is the simple return that we will use to label news

articles. As the aforementioned trading hour constraint,

there is no price during the lunch break and the market

close. Thus, we need to leave a time buffer before each

trading session closes. Take t0?20 for example, if t0 is

15:45, which does not have 20 min before market close, we

will denote this time stamp as trading hour constraints

violation and eliminate the corresponding news article.

We use thresholds ±0.3 % (average transaction costs in

the market) as the cutoffs for the labels. In another word, if

R is greater than 0.3 %, instance is labeled with positive, and

news will be labeled as negative if R is less than -0.3 %.

3.2.2 Extract and process before-event prices

In contrast to the after-event prices, the short-term historical

prices are named as before-event prices in our setting. We

sample at the frequency of 1 sample per 1 min on the price

series before the news is released. One way to construct fea-

tures from before-event prices is simply to use the 30 sampled

prices as 30 features. However, machine learning model, such

as ELM and SVM, will assume that features are not dependent

on each other. Suppose we permute the position of the 30

values, learning model will treat them the same as before. In

other words, the sequential information is not kept. To address

this issue, we follow Cao and Tay [20, 35] approach, which

uses RDP indicators to summarize the short price series. The

formulae of RDPs are listed in Table 1, we use the same

formulae to convert before-event prices into indicators.

Follow the thinking of converting prices into indicators,

we also adopt some other technical indicators from stock

technical analysis in addition to RDPs. The formulae and

descriptions of technical indicators are listed in Table 2,

where pi is the price at time point i and q is the order of the

formula. In such a way of conversion, 30 before-event price

points are summarized by 6 RDPs and five technical

indicators. We will simply refer them as indicators in the

following sections.

3.3 Normalization

According to the pipelines proposed in Fig. 2, many

instances have been generated: (1) instances of news arti-

cles. Each news instance is represented by a row vector and

all the vectors form a matrix N. (2) instances of before-

event prices. Each price instance is represented by a row

vector of indicators and all the vectors form a matrix I.

(3) A column vector L that contains the labels of all instances.

Since each instance in N and I is generated from the same

news and its ‘‘price context’’, the numbers of rows in matrix

N, I and L are the same as the numbers of news articles.

The normalization step is divided into two parts: (1) For

those features that only take non-negative values, such as

the tf � idf values of news features, we use Eq. (12) to

normalize them,

normðfinÞ ¼
fin �minff�ng

maxff�ng �minff�ng
; ð12Þ

where fin is the ith value in the nth feature and max(f*n)

(min(f*n)) is the greatest (smallest) value in the nth feature.

After normalization, the range of the value is [0, 1]. (2) For

those features that could take both negative and non-

negative values, such as some features of the indicators, we

use Eq. (13) to normalize them,

normðfinÞ ¼
fin

maxf f�nj jg
: ð13Þ

After normalization, the range of the value is [-1, 1].

4 Experimental results and discussions

4.1 Data sets

We use two data sets, namely the market news and stock

tick prices:

Table 1 The formulae of RDPs

RDP Formula

RDP-5 100*(pi - pi-5)/pi-5

RDP-10 100*(pi - pi-10)/pi-10

RDP-15 100*(pi - pi-15)/pi-15

RDP-20 100*(pi - pi-20)/pi-20

RDP-25 100*(pi - pi-25)/pi-25

RDP-30 100*(pi - pi-30)/pi-30
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Market news We bought one year market news archive

from Caihua (http://www.finet.hk). The news archive

tags each news article with a time stamp, where the time

is the release time of the news. News are in Traditional

Chinese, UTF-16LE coded.

Stock tick prices The stock tick prices contain all the tick

prices of all the names listed in H-share market in year

2001.

H-share market lists thousands of stocks. However, only

a proportion of them are traded actively, which are mainly

the liquid stocks of Hang Seng Index constituents (HSI,

http://www.hsi.com.hk). According to the change history

of HSI, in year 2001, HSI has 33 stocks and there are two

replacements of the constituents within the year, which

happened on 1st June and 31th July. Due to the tyranny of

indexing [36], which observes that during the first few

months, the price behaviors of the newly added constitu-

ents do not appear rational and they are usually mispriced.

Therefore, only the stocks that are the constituents

throughout the whole year are selected. As a consequence,

the total number of stocks reduces to 23.

There are 28,885 pieces of news in sum. The numbers of

instances after preprocessing are listed in Table 3.

As illustrated in Fig. 4, we split the data set for each

prediction time horizon into training, validation and testing

sets. The size of validation and testing sets is fixed as 100

instances. The size of training set starts from 1,200

instances and increases by 1 instance after each round of

running. Note that, the three sets are sequentially located,

and there is no overlap between them.

4.2 Model setup and parameter tuning

We setup four state-of-the-art models in the framework for

comparison:

Back-propagation neural network (BP-NN) Following

Huang et al. [3], we include a fast BP algorithm named

Levenberg–Marquardt into our experiments3. The

parameter to be tuned for BP-NN is the number of

hidden nodes, #(hidden_nodes)4. As required by the

convergence condition of BP-NN, the parameter should

be greater than or equal to #(input_nodes) which are

1,011 features in our problem. After several trials of

running, we find it impossible for our server to support

that high number of nodes due to the limit of memory.

We then empirically set #(hidden_nodes) = 10 in order

to balance the hardware feasibility and BP-NN.

Support vector machines (SVM) As reviewed in Sect. 2,

SVM is widely applied in finance domain. The param-

eters to be tuned for SVM are the kernel type and related

kernel parameters. Since RBF SVM is reported to have

better accuracy on text classification problem, RBF

kernel is adopted in our setting. Grid search is applied,

where kernel’s parameter c searches

f2�17; 2�16; . . .; 22g and penalty parameter C searches

f2�5; 2�4; . . .; 214g; and the best combination among

the 20 9 20 = 400 pairs is selected based on SVM’s

accuracy on the validation set.

Basic ELM (B-ELM) Similar to BP-NN, B-ELM has

only the number of hidden nodes to be tuned. Unlike BP-

Table 2 Stock technical

indicators
Indicator Description Formula

RSI(q) Relative Strength Index 100*Up/(Up ? Down)

Up ¼
P

pi [ ð
P

i
piÞ=q
ðpi � ð

P
i piÞ=qÞ

Down ¼
P

pi\ð
P

i
piÞ=q
ðpi � ð

P
i piÞ=qÞ

RSV(q) Raw Stochastic Value 100 � ðp0 �minqðpiÞÞ=ðmaxqðpiÞ �minqðpiÞÞ
R(q) Williams Index 100 � ðmaxqðpiÞ � p0Þ=ðmaxqðpiÞ �minqðpiÞÞ
BIAS(q) Bias 100 � ðp0 � ð

P
i piÞ=qÞ=ðð

P
i piÞ=qÞ

PSY(q) Psychological Line 100 � ð
P

1fpi [ pi�1gÞ=q

Table 3 The numbers of instances after preprocessing

5 m 10 m 15 m 20 m 25 m 30 m

Total 1,721 1,953 2,035 1,965 1,963 1,906

Fig. 4 Rolling window mode of each round

3 Levenberg–Marquardt algorithm has its implementation in MAT-

LAB 7.14 toolbox.
4 Notation #(X) indicates the number of object X.
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NN, B-ELM does not require much memory while

running. Therefore, following the guideline that

#ðinput nodesÞ�#ðhidden nodesÞ

and

#ðhidden nodesÞ�#ðinstancesÞ;

we arbitrarily set #(hidden_nodes) = 1100 which is in

the range [1011, 1200].

Kernel ELM (K-ELM) K-ELM has the similar tuning

process as the SVM case. For comparison, the RBF

kernel is also adopted for K-ELM. The c of RBF kernel

searches f2�17; 2�16; . . .; 22g and regulation term

searches f2�5; 2�4; . . .; 214g. As illustrated in Fig. 4,

the training, validation and testing round advances 1

instance each time, and we test 200 rounds in total.

4.3 Experimental results and findings

We evaluate the models from both the prediction accuracy

and speed. The accuracy is measured by

acc ¼ tþþ þ t00 þ t��
all

; ð14Þ

and

all ¼ tþþ þ t00 þ t�� þ f0þ þ f�þ þ fþ0 þ f�0 þ fþ�
þ f0�;

ð15Þ

where t??, t00, t–, f0?, f–?, f?0, f–0, f?– and f0– are

defined in Table 4.

Model prediction speed is measured by CPU time.

The accuracy of each model at each time point is listed

in Table 5. We calculate the average accuracy (shown in

avg. column) over the 200 rounds as well as the standard

deviation (shown in dev. column).

From the accuracy results, we can see that

SVM and K-ELM perform better than the other two

models in the validation set. Among the 6 time points,

SVM achieves 6 the best results, which are marked in bold

font. K-ELM achieves 6 the second best results, which are

marked by underline. We also use a statistical testing

method t test to determine the difference significance

between SVM and K-ELM, and the result is presented in

Table 6, from which we can observe that SVM signifi-

cantly outperforms K-ELM on validation set.

K-ELM achieves the same level of accuracy as SVM in

the testing phase. Among the 6 time points, SVM

achieves 3 the best results and 3 the second best results,

while K-ELM achieves the other 3 the best results and 3

the second best results. Besides the average and standard

deviation, we draw the one-to-one comparison in Fig. 5.

Within each sub-figure, the blue diagonal line denotes

that K-ELM has the same accuracy as SVM; red circle

means on that specific testing set (while using rolling

window mode, there are 200 testing sets in total.), K-ELM

has higher accuracy than SVM; on the other hand, black

plus means SVM achieves higher accuracy than K-ELM on

that testing set. It could be clearly observed that in sub-

figures (1), (2) and (6), K-ELM is better than SVM, and in

(3), (4) and (5) SVM is better.

Table 4 The definition of tp, tn, fp and fn

Predict ? Predict 0 Predict -

True ? t?? f?0 f?-

True 0 f0? t00 f0-

True - f–? f-0 t–

Table 5 Results of the validation and testing accuracy

Validation 5 m 10 m 15 m

Avg. Dev. Avg. Dev. Avg. Dev.

BP-NN 0.521 0.045 0.538 0.054 0.548 0.059

SVM 0.625 0.024 0.661 0.023 0.694 0.029

B-ELM 0.499 0.054 0.492 0.049 0.503 0.047

K-ELM 0:605 0.021 0:650 0.029 0:680 0.027

Validation 20 m 25 m 30 m

Avg. Dev. Avg. Dev. Avg. Dev.

BP-NN 0.551 0.051 0.556 0.053 0.520 0.043

SVM 0.686 0.029 0.659 0.022 0.643 0.031

B-ELM 0.505 0.049 0.513 0.048 0.513 0.048

K-ELM 0:667 0.029 0:649 0.034 0:633 0.050

Testing 5 m 10 m 15 m

Avg. Dev. Avg. Dev. Avg. Dev.

BP-NN 0.499 0.046 0.526 0.055 0.537 0.058

SVM 0:544 0.060 0:573 0.047 0.644 0.031

B-ELM 0.493 0.051 0.506 0.047 0.499 0.052

K-ELM 0.570 0.049 0.584 0.033 0:607 0.044

Testing 20 m 25 m 30 m

Avg. Dev. Avg. Dev. Avg. Dev.

BP-NN 0.557 0.061 0.553 0.052 0.522 0.049

SVM 0.625 0.028 0.593 0.040 0:535 0.036

B-ELM 0.500 0.045 0.522 0.046 0.506 0.049

K-ELM 0:597 0.024 0:551 0.043 0.536 0.037
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Table 6 p Value of t test

between K-ELM and SVM
p-value 5 m 10 m 15 m 20 m 25 m 30 m

SVM v.s. K-ELM 2.8e-42 8.6e-18 1.9e-07 1.6e-13 1.7e-07 6.7e-04

Hypothesis 5 m 10 m 15 m 20 m 25 m 30 m

SVM outperforms K-ELM? Yes Yes Yes Yes Yes Yes

Fig. 5 One-to-one comparison

between K-ELM and SVM
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The results of the prediction speed of each model at each

time point are listed in Table 7. The key software and hardware

specifications of our server that we think may affect the per-

formance of the models are listed in Table 8. Since the training

speed is not critical in trading5, we compare the testing speed of

each model over 100 testing instances, 200 rounds.

From the results, we can see that both B-ELM and

K-ELM run faster than SVM and BP-NN, among which

K-ELM is the fastest on our machine (K-ELM has 6 best

results, and B-ELM has 6 second best results). This is due

to the advantage of ELM that the model keeps fewer nodes

than SVM’s support vectors while transferring from the

training phase to the testing phase.

We also examine the hardware requirement of K-ELM.

We set up a background monitor which captures the run-

time CPU and memory usage of one K-ELM process from

the training phase to the testing phase. The results are

illustrated in Fig. 6.

The monitor samples once per second. It is surprised to

see that the CPU usage of K-ELM is high. It reaches 400 %

CPU power during the peak time, which means that 2 CPU

cores are dedicated to K-ELM. Comparing to SVM, the

number is no more than 50 % (using half one core) during

the peak time. If the system needs to analyze many stocks

in parallel and the hardware resource is not enough, this

would be a disadvantage for ELM that processes would

race for the CPU and further slow the prediction speed.

We design and implement a preliminary market making

strategy that adopts the signals generated by the models,

which (1) places limit orders on both best bid and ask prices

of the order book; (2) readjusts (cancels and resubmits) the

orders when signals change; (3) unwinds the inventory when

market closes. Simulations with out-of-sample historical

prices and news of 0005.HK are conducted for the strategy.

The measurements we use are daily profit and loss (PnL) and

Sharpe ratio, where Sharpe ratio is defined as

Sharperatio ¼ avgðPnLÞ
devðPnLÞ : ð16Þ

Sharpe ratio that is greater than 1 indicates that the strategy

is making profit with less risk. The simulation results are

presented in Table 10.

As we can see from the results, strategies with more

accurate signals (SVM and K-ELM) can make more profits

than the other two models.

5 Conclusion and future work

How to model market data and make both accurate and fast

short-term stock price predictions in stock market is an

Table 7 Results of the prediction speed

Prediction (100 instances) 5 m 10 m 15 m

Avg. Dev. Avg. Dev. Avg. Dev.

BP-NN 0.200 0.055 0.165 0.063 0.190 0.114

SVM 0.266 0.025 0.261 0.026 0.266 0.030

B-ELM 0:149 0.072 0:149 0.084 0:155 0.094

K-ELM 0.138 0.084 0.148 0.092 0.144 0.089

Prediction (100 instances) 20 m 25 m 30 m

Avg. Dev. Avg. Dev. Avg. Dev.

BP-NN 0.178 0.068 0.197 0.059 0.192 0.055

SVM 0.252 0.026 0.261 0.046 0.279 0.032

B-ELM 0:160 0.090 0:160 0.094 0:151 0.077

K-ELM 0.140 0.070 0.140 0.090 0.131 0.060

Table 8 Key software and hardware specs of our server

Software

BP-NN MATLAB 7.14

SVM LIBSVM 3.17, MATLAB interface

B-ELM MATLAB 7.14

K-ELM MATLAB 7.14

Hardware

CPU 4 core 8 thread, 2.53 GHz each

Mem 16 GB DDR3 1333 MHz

OS RedHat Enterprise Linux 5.4

5 Online dynamic reconfiguration is not discussed in the paper, since

all the four models are not online algorithms and training can be setup

as an overnight job. We record the training time of each model and

present them in Table 9. As we can see from the results, the training

time of four models is much longer than validation and testing time,

and the time of BP-NN is much longer than the time of the other three

models.
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attractive problem. In this paper, we build up a trading signal

mining platform that makes use of the two most important

information sources, i.e., market news articles and stock tick

prices. For the sake of high prediction accuracy and fast pre-

diction speed, we adopt B-ELM and K-ELM as the core

algorithms in our platform for information integration and price

movement predictions. We empirically evaluate the perfor-

mance of the platform by comparing ELM with another two

state-of-the-art learning algorithms, i.e., BP-NN and SVM.

Experiments have been conducted on the intra-day tick-by-tick

data of 23 stocks in the H-share market and corresponding

commercial news archives. From the results, we find that

Both the kernelized ELM and the RBF SVM achieve

higher prediction accuracy and faster prediction speed

than the BP-NN and the basic version of ELM;

The kernelized ELM achieves similar accuracy with the

RBF SVM;

The kernelized ELM has faster prediction speed than the

RBF SVM.

A preliminary market making strategy using the signals

is back-tested on out-of-sample historical data. The simu-

lation results give supportive evidences that strategies with

more accurate signals make more profits with less risk. We

also notice that the kernelized ELM requires more CPU

resources than the RBF SVM, which would cause running

processes racing for hardware resources, and the CPU

scheduling will thus become the bottleneck. How to reduce

the CPU requirement of the kernelized ELM while keep the

fast prediction speed is the problem that we need to

investigate in the future.
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