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Abstract

The research on the stock market prediction has been more popular in recent years. Numerous researchers tried to predict the imme-
diate future stock prices or indices based on technical indices with various mathematical models and machine learning techniques such as
artificial neural networks (ANN), support vector machines (SVM) and ARIMA models. Although some researches in the literature exhi-
bit satisfactory prediction achievement when the average percentage error and root mean square error are used as the performance met-
rics, the prediction accuracy of whether stock market goes or down is seldom analyzed. This paper employs wrapper approach to select
the optimal feature subset from original feature set composed of 23 technical indices and then uses voting scheme that combines different
classification algorithms to predict the trend in Korea and Taiwan stock markets. Experimental result shows that wrapper approach can
achieve better performance than the commonly used feature filters, such as v2-Statistic, Information gain, ReliefF, Symmetrical uncer-
tainty and CFS. Moreover, the proposed voting scheme outperforms single classifier such as SVM, kth nearest neighbor, back-propa-
gation neural network, decision tree, and logistic regression.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Stock market prediction is regarded as a challenging
task of financial time-series prediction. There have been
many studies using artificial neural networks (ANNs) in
this area. A large number of successful applications have
shown that ANN can be a very useful tool for time-series
modeling and forecasting. The early researchers focused
on application of ANNs to stock market prediction.
Recent research tends to hybridize several artificial intelli-
gence (AI) techniques. Kim and Han proposed a genetic
algorithms approach to feature discretization (Kim &
Han, 2000) and the determination of connection weights
for ANN to predict the stock price index. They suggested
that their approach reduced the dimensionality of the fea-
ture space and enhanced the prediction performance.
0957-4174/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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Some of these studies, however, showed that ANN had
some drawback in learning the patterns because stock mar-
ket data has enormous noise and complex dimensionality.
Thus, ANN exhibits inconsistent and unpredictable perfor-
mance on noisy data. Nevertheless, back-propagation (BP)
neural network, the most popular neural network model,
suffers from difficulty in selecting a large number of con-
trolling parameters which include relevant input variables,
hidden layer size, learning rate and momentum term.

Recently, a support vector machine (SVM), a novel neu-
ral network algorithm, was developed by Vapnik (1998).
Many traditional neural network models had implemented
the empirical risk minimization principle, while SVM
implements the structural risk minimization principle.
The former seeks to minimize the misclassification error
or deviation from correct solution of the training data
but the latter searches to minimize an upper bound of gen-
eralization error. In addition, the solution of SVM may be
global optimum while other neural network models may
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tend to fall into a local optimal solution. Thus, over-fitting
is unlikely to occur with SVM.

Kim (2003) proposed a SVM approach to predict the
direction of the stock price. Eleven technical indices were
taken as the inputs in Kim (2003) and the best prediction
rate is up to 57%. To tackle this challenge, we attempt to
use an appropriate feature selection method to select the
most relevant technical indices from 23 commonly used
ones and then feed the chosen technical indices into the
SVM classifier to predict future stock trend in Taiwan
and Korea markets. Moreover, we propose a new voting
scheme which combines different classification algorithms
with the feature set selected by wrapper approach to each
classifier. The difference between the ordinary voting
scheme, named stacking, and our proposed voting scheme
is that the ordinary stacking scheme only combines several
different classifiers to make the consensus. In our scheme,
we further use wrapper feature selection algorithm to find
the finest feature set for each specified classifier we employ
in the voting scheme.

The remainder of this paper is organized as follows. In
Section 2, we describe the feature selection methods in data
mining domain. The voting scheme plus wrapper approach
for feature selection is present in Section 3. In Section 4,
wrapper approach is compared with the commonly used
feature selection methods as described in Section 2 and
the comparison of the proposed voting scheme with differ-
ent single classifiers is also presented. Conclusions are given
in Section 5.

2. Related works

In many practical situations, there are far too many fea-
tures related to stock trend classification. Some of them are
irrelevant and some are redundant from the viewpoint of
machine learning domain. It is well-known that the inclu-
sion of irrelevant and redundant information may cause
incorrect result of some machine learning algorithms.

Feature subset selection can be seen as a search through
the space of feature subsets. There are many approaches
for feature selection proposed in the literature, such as:

(1) v2-Statistic: This method measures the importance of
a feature by computing the value of the v2-statistic
with respect to the class.

(2) Information gain: This method measures the impor-
tance of a feature by measuring the information gain
with the respect to the class. Information gain is given
by:
InfoGain ¼ HðY Þ � HðY jX Þ; ð1Þ
where X and Y are features and
HðY Þ ¼ �
X
y2Y

pðyÞlog2ðpðyÞÞ; ð2Þ

HðY jX Þ ¼ �
X
x2X

pðxÞ
X
y2Y

pðyjxÞlog2ðpðyjxÞÞ: ð3Þ
Both, the information gain and the v2-statistic, are
biased in favor of features with higher dispersion.

(3) Symmetrical uncertainty: This method measures the
importance of a feature by measuring the symmetri-
cal uncertainty with respect to the class, and the
balances for the information gain’s bias is:
SU ¼ 2:0� InfoGain

HðY Þ þ HðX Þ : ð4Þ
(4) ReliefF: This method is feature weighting algorithm
that is sensitive to feature interaction. The key idea
of ReliefF is to rate features according to how well
their values distinguish among instances of different
classes and how well they cluster instances of the
same class. To this end, ReliefF repeatedly chooses
a single instance at random from data, and then
locates the nearest instances of the same class and
the nearest instances pertaining to different classes.
The feature values of these instances are used to
update the scores for each feature.

(5) Correlation based feature selection: CFS evaluates a
subset of features by considering the individual pre-
dictive ability of each feature along with the degree
of redundancy among them:
CFSS ¼
k�rcfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k þ kðk � 1Þ�rff

p ; ð5Þ
where CFSS is the score of a feature subset S contain-
ing k features, �rcf is the average feature to class cor-
relation (f 2 S), and �rff is the average feature to
feature correlation. The difference between normal
filter algorithm and CFS is that while normal filter
provide scores for each feature independently, CFS
gives a heuristic ‘‘merit’’ of a feature subset and re-
ports the best subset it finds.
3. Wrapper approach plus voting machine technique

3.1. Wrapper feature selection method

The wrapper approach searches for an optimal feature
subset tailored to the particular algorithm (Kohavi & John,
1995), whereas the filter approaches attempt to measure
values of features from the data set. The concept of wrap-
per approach is shown in Fig. 1. In the wrapper approach,
the feature subset selection is done by induction algorithm
as a black box. The feature subset selection algorithm con-
ducts a search for a good subset using the induction algo-
rithm itself as part of the evaluation function. The accuracy
of induced classifiers is estimated by accuracy estimation
technique. The classification algorithm itself is used to
determine the attribute subset. Since the wrapper approach
optimizes the evaluation measure of the classification algo-
rithm while removing features, it mostly leads to greater
accuracy than the so-called filter approaches as described
in Section 2.



Fig. 1. The wrapper approach.

Fig. 2. Support vectors and margin.
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3.2. Voting machine technique

Voting is a well-known aggregation procedure that com-
bines different opinions of voters into consensus. In the
simplest form of voting method, each data item is assigned
a number of votes. Since there are advantages and disad-
vantages for different classification algorithms, we thus
try to combine support vector machine (SVM), kth nearest
neighbors, back-propagation neural network, decision tree
and logistic regression into the voting scheme in this paper
in order to predict the direction of change in daily Taiwan
and Korea stock price indices. Meanwhile, we adopt differ-
ent features selected by wrapper method for different clas-
sification algorithms since we believe that it may not be
suitable to use the same feature set for different algorithms.

3.2.1. Support vector machines

In a decade, support vector machines (SVMs) (Burges,
1998; Chang & Lin, 2001; Cristianini & Shawe-Taylor,
2000; Haykin, 1994; Vapnik, 1995) have attracted much
attention as a new classification technique with good gener-
alization ability. The basic idea of SVMs is to map input
vectors into a high-dimensional feature space and linearly
separate the feature vectors with an optimal hyper-plane
in terms of margins, i.e. distances of given examples from
a separating hyper-plane.

Support vector machines (SVMs) are promising methods
for the prediction of financial time-series because they use a
risk function consisting of the empirical error and a regular-
ized term which is derived from the structural risk minimi-
zation principle. Given a training dataset represented by the
X-matrix (X1, . . .,Xm) divided into two linearly separable
classes with class labels (+1 and �1) stored in the Y-vector
(y1, . . .,ym) as given in Fig. 1, the maximum margin plane
can be found by minimizing (kwk2):

kwk2 ¼ w � w ¼
Xd

i¼1

w2
i ; ð6Þ

with constraints:

yiðw � xi þ bÞP 1; ð7Þ
where i = 1, . . .,m, b 2 R, and xi 2 Rd.
Fig. 2 shows the simplest case of two linearly separable
classes. The concept of support vectors is illustrated by the
points closest to the surface separating two classes, and the
margin is given by the distance between support vectors
and separating surface.

The decision function takes the form f(x) = sgn(w Æ
x + b), where sgn(Æ) is simply a sign function which returns
+1 for positive arguments and �1 for negative arguments.
This simple classification problem is generalized to a non-
separable case by introducing slack variables xi and mini-
mizing the following quantity:

1

2
w � w ¼ C

Xm

i¼1

ni; ð8Þ

where yi(w Æ xi + b) P 1 � ni and ni > 0.
The above quadratic optimization problem with

constraints can be reformulated by introducing Lagran-
gian multipliers a, m, and the following Lagrangian is
formed,
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Lðw; b; n; a; mÞ ¼ 1

2
w � wþ C

Xm

i¼1

ni

�
Xm

i¼1

ai½yiðw � xi þ bÞ � 1þ ni� �
Xm

i¼1

mini:

ð9Þ

Stationary points of this Lagrangian can be obtained by:

oL
ow
¼ w�

Xm

i¼1

aiyixi ¼ 0; ð10Þ

oL
ob
¼
Xm

i¼1

aiyi ¼ 0; ð11Þ

oL
oni
¼ ai þ mi � C ¼ 0: ð12Þ

Two remaining derivatives oL
oa ;

oL
om

� �
recover the constraint

equations. By substituting the expression w ¼
Pm

i¼1aiyixi

back into the Lagrangian, we obtain this simpler dual
formulation

W ðaÞ ¼ 1

2

Xm

i¼1

aiajyiyjxi � xj �
Xm

i¼1

ai; ð13Þ

with the constraints 0 6 ai 6 C and
P

aiyi = 0.
Given a mapping

x! /ðxÞ; ð14Þ

the dot product in the final space can be replaced by a
Mercer kernel

/ðxÞ/ðyÞ ! Kðx; yÞ: ð15Þ

Since /(Æ) typically maps x into the space of much higher
dimensionality, it is usually specified by defining the kernel
implicitly. The above dual formulation thus becomes a pre-
ferred approach due to highly dimensional feature space
induced by /(Æ) mapping. The decision function for classi-
fication problems is then given by:

f ðxÞ ¼ sgn
X

sv

aiyiKðxi; xÞ þ b

 !
: ð16Þ
3.2.2. kth nearest neighboring

The kth nearest neighbor (KNN) algorithm (Kelly et al.,
1991; Peterson, Doom, & Raymer, 2005) is a classification
algorithm based on closest training example feature space.
The training phase of the algorithm consists of storing the
feature vectors and class labels of the training samples. In
the actual classification phase, the same features are com-
puted as before for the test sample whose class is not
known. Distances from the new vector to all stored vectors
are computed and k closest samples are selected. The new
point is predicted to belong to the most numerous class
within the set.

The KNN method is a simple yet effective method for
classification in the areas of pattern recognition, machine
learning, data mining, and information retrieval. It has
been successfully used in a variety of real-world applica-
tions. The performance of KNN can be comparable with
the state-of-the-art classification methods with simpler
computation (Atkeson, Moore, & Schaal, 1997).

Given an instance with unknown classification,
instances with known classification that are closer to this
instance are given more weights. The distance or similarity
between instances is typically determined by the Euclidean
distance. However, other distance functions can also be
applied. The Euclidean distance defines the dissimilarity
or distance d(i, j)between instances i and j as:

dði; jÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jxi1�j1j

R1

� �2

þ jxi2�j2j
R2

� �2

þ � � � þ jxip�jpj
Rp

� �2
s

;

ð17Þ

where Rf = maxhxhf � maxhxhf, which denotes the range of
attribute f.

Once k nearest neighbors with known classification are
selected for an unclassified instance p, a classification com-
bination method that combines the classifications from the
k nearest neighbors predicts the classification for p. The
simplest classification combination method is the voting
method. The classification for p is assigned as the majority
class in the k nearest neighbors. The second classification
combination method eliminates the effect of unequal
instances of different classes in the k nearest neighbors by
taking the average distance for each class. Thus, the
instance p is classified as belonging to class Y if:

1

k1

X
i2Y ðp;kÞ

dði; pÞ < 1

k2

X
i2Nðp;kÞ

dði; pÞ; ð18Þ

where k = k1 + k2, k1 is the number of instances belongs to
class Y in the k nearest neighbors, and k2 is the number of
instances belonging to class N in k nearest neighbors.

The third combination method compares the sum of
similarity of each class in the k nearest neighbors. Assume
there are two decision classes, Y and N. The instance p will
be classified as belonging to class Y if:X
i2Y ðp;kÞ

dði; pÞ <
X

i2Nðp;kÞ
dði; pÞ: ð19Þ

When the distribution of class Y and N are extremely
asymmetric in the training data set, it may lead to the clas-
sification decision that favors the class with majority
instances. Instead of selecting k nearest neighbors for an
unclassified instance p, k1 nearest neighbors that belong
to class Y and k2 nearest neighbors belonging to N are
selected, where k1 and k2 are user-defined parameters.

Fig. 3 shows an example of KNN algorithm. Here the
displayed training points represented by hollow circle and
solid circle are known to the algorithm. When a new point,
Xq, is queried, the nearest three points are found by using
the City-block distance measure. Two of the points closest
to the query point are hollow circle and only one is solid
circle so Xq is classified as hollow circle.



Fig. 3. An example of KNN algorithm.
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3.2.3. Back-propagation neural network

A neural network is able to recognize patterns and gen-
eralize from them. An essential feature of this technology is
that it improves its performance on a particular task by
gradually learning a mapping between inputs and outputs.
Generalization is used to predict the possible outcome for a
particular task. This process involves two phases known as
the training phase and the testing phase. Back-propagation
(BP) neural network (Medsker & Liebowitz, 1994; Russel
& Norvig, 1995) is one of neural networks most in common
use. Fig. 4 shows an example of back-propagation neural
network. In back-propagation, the learning procedure
basically follows that of a traditional feed-forward neural
network. However, there are two main differences. The first
difference is the use of the activation function of the hidden
Fig. 4. A back-propagat
unit yj, and the second is that the gradient of the activation
function is contained.

A back-propagation neural network consists of several
layers of nodes including an input layer, one or more hid-
den layers and an output layer. Each node in a layer
receives its input from the output of the previous layer
nodes. The connections between nodes are associated to
synaptic weights that are iteratively adjusted during the
training process. Each hidden and output node is associ-
ated to an activation function. Several functions can be
used as activation functions, but the most common choice
is the sigmoid function:

f ðaÞ ¼ 1

1þ e�a
: ð20Þ

Provided that the activation function of the hidden layer
nodes is non-linear, a back-propagation neural network
with an adequate number of hidden nodes is able to
approximate every non-linear function. The adjustment
of the synaptic weights in an error back-propagation algo-
rithm consists of four steps:

(1) The network is initialized by assigning random values
to synaptic weights.

(2) A training pattern is fed and propagated forward
through the network to compute an output value
for each output node.

(3) Actual outputs are compared with the expected
outputs.

(4) A backward pass through the network is performed,
changing the synaptic weights on the basis of the
observed output errors.
ion neural network.



Sunny Rain

Over cast

High TrueNormal False

Fig. 5. An example of decision tree algorithm.
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Steps (2)–(4) are iterated for each pattern in a training
set until convergence.

In the case of neural networks with a single hidden layer
as shown in Fig. 4, the forward propagation step is carried
out as follows:

hk ¼
Xnhþ1

j¼1

xjwjk ðk ¼ 1; 2; . . . ; nhÞ; ð21Þ

where xjis the jth input from input layer, and wjk is the
weight of the connections between input xj and the kth
node at hidden layer. To compute the outputs of the hid-
den layer, these weighted sums are passed to the activation
function,

gk ¼ f ðhkÞ; ð22Þ
gnhþ1 ¼ 1; ð23Þ

where gnhþ1 denotes the output of the bias node at hidden
layer. Then, the network outputs are computed by:

ol ¼
Xnhþ1

k¼1

hkzkl ðl ¼ 1; 2; . . . ; noÞ: ð24Þ

After the forward propagation, estimated output ol of
the lth node at output layer is compared with expected out-
put yland a mean quadratic error for the current pattern is
derived by:

E ¼ 1

no

Xno

l¼1

ðyl � olÞ2 ð25Þ

In the back-propagation step, all the synaptic weights
are adjusted in order to follow a gradient descent on the
error surface. For the connection weight between the kth
node at hidden layer and the lth node at output layer,
zkl, is adjusted by:

zkl ¼ zkl þ gdo
l hk ðk ¼ 1; 2; . . . ; nh þ 1; l ¼ 1; 2; . . . ; noÞ;

ð26Þ
where g denotes the learning rate and

do
l ¼ ðyl � olÞ � f 0ðolÞ ¼ ðyl � olÞ � olð1� olÞ: ð27Þ

The weight wjk of the connection between the kth node
at hidden layer and the jth input is adjusted by:

wjk ¼ wjk þ gdh
kxj ðk ¼ 1; 2; . . . ; nh; j ¼ 1; 2; . . . ; niÞ; ð28Þ

where dh
k is computed by,

dh
k ¼ f 0ðhkÞ �

Xno

l¼1

do
l zkl ¼ hkð1� hkÞ �

Xno

l¼1

do
l zkl: ð29Þ

The network training is iterated until a given condition is
met.

3.2.4. Decision tree

Decision tree (Breiman, Friedman, Olshen, & Stone,
1984; Hughes, 1968; Safavian & Landgrebe, 1991) is a pre-
dictive mode, a mapping of observations about an item to
conclude about the item’s target value. Each interior node
corresponds to a variable; an arc to a child represents a
possible value of that variable. A leaf represents the pre-
dicted value of target variable given the values of the vari-
ables represented by the path from the root. There are
several advantages for decision tree. For instance, it is sim-
ple to understand and interpret, and it is able to handle
nominal and categorical data and perform well with large
data set in a short time. In this work, we use C4.5 decision
tree to predict the direction change of stock price because
C4.5 decision tree performs well in prediction application
as report in Peterson et al. (2005).

A decision tree is a hierarchy of yes/no questions in
which the specific questions asked depend on the answers
given to the previous questions, with the branches spread-
ing out from the original question until an appropriate
response is given. Decision trees can be used to encapsulate
the knowledge of an expert about a specific system. Various
methods exist for the development of decision trees from
datasets, with the goal of each method being to produce
a structure that gives the highest degree of accuracy for
the smallest tree design (Endou & Zhao, 2002; Llorà &
Garrell, 2001; Papagelis & Kalles, 2001).

Fig. 5 shows an example of decision tree algorithm. The
algorithm starts at the topmost point in the tree and ask the
question, pWhat is the outlook for the day ?y The answer
to the question determines the path we take through the
tree. For instance, if the response to the question is ‘‘Over-
cast’’, we move down the middle path to a position which
provides a class value for the observation in question. The
square given in Fig. 5 represents an example of final desti-
nations, leaf node, which has no other paths leading away
from it.

Decision tree learning is one of the most widely used and
practical methods for inductive inference. It is a method for
approximating discrete-valued functions that is robust to
noisy data and capable of learning disjunctive expressions.
C4.5, one of the most widely used decision tree learning
algorithm, is adopted in our work.

In the process of constructing the decision tree, the root
node is first selected by evaluating each attribute using a
statistical test to determine how well it alone classifies the
training examples. The best attribute is selected and used
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to test at the root node of the tree. A descendant of the root
node is created for each possible value of this selected attri-
bute, and the training examples are sorted to the appropri-
ate descendant node. The entire process is then repeated
using the training examples associated with each descen-
dant node to select the best attribute to test at that point
in the tree.

There are two frequently used metrics for attributes
selection. One is the information gain, Gain(S,A) of an
attribute A, relative to a collection of examples S,

GainðS;AÞ ¼ EntropyðSÞ �
X

v2ValueðAÞ

jSvj
jSj EntropyðSvÞ;

ð30Þ

where Value(A) is the set of all possible values for attribute
A, and Sv is the subset of S for which attribute A has value
v. Entropy(S) is the entropy of S. The entropy is defined as:

EntropyðSÞ ¼ �
Xc

t¼1

pilog2pi; ð31Þ

where c denotes the number of all possible values for attri-
bute A. Notably, the first term on the right hand side of Eq.
(30) denotes the entropy of the original collection S, and
the second term is the expected value of the entropy after
S is partitioned using attribute A.

The second metric commonly used for attributes selec-
tion is called Gain Ratio,

GainRatioðS;AÞ ¼ GainðS;AÞ
SplitInformationðS;AÞ ; ð32Þ
Table 1
Technical indices and their formulae

Feature name Description

OP Open price
HP High price
LP Low price
CP Closing price
V Volume
MA6 Day moving average

MA12 Moving average

BIAS6 Bias

BIAS12 Bias
EMA12, EMA26 Exponential moving average
MACD Moving average convergence and divergence
DIF Difference
%K Stochastic %K

%D %D is a 3-day moving average of %K

TR True range (TR) of price movements
MTM6, MTM12 Momentum
OSC6 Oscillator

OSC12 Oscillator

%R5, %R10 Larry William’s %R

OBV On balance volume

Remarks: C is the closing price, Ct is the closing price at time t, Lt is the low pric
upward-day at time t, Uvt is the upward-index-value at time t, and DV t is the
where Split Information is defined as:

SplitInformationðS;AÞ ¼
Xc

t¼1

jSij
jSj log2

jSij
jSj ; ð33Þ

where S1 through Sc are the c subsets of examples resulting
from partitioning S by the c-values attribute A. Note that
Split Information is actually the entropy of S with respect
to the values of attribute A. Notably, the metric for attri-
bute selection as given in Eq. (32) is employed in C4.5 algo-
rithm for better performance achievement (Quinlan, 1993).

3.2.5. Logistic regression

Logistic regression (Kokuer, Naguib, Janclovic, Young-
husband, & Green, 2006) is a statistical regression model
for binary dependent variables. It can be considered as a
generalized linear model that utilizes the logit as its link
function, and has binomially distributed errors. The model
uses the form:

logitðpÞ ¼ ln
p

1� p

� �
¼ aþ b1x1;i þ � � � þ bkxk;i; ð34Þ

where i = 1, . . .,n, and

p ¼ PrðY i ¼ 1jX Þ ¼ eaþb1x1;iþ���þbk xk;i

1þ eaþb1x1;iþ���þbk xk;i
: ð35Þ

Here p is the probability of belonging to one class, p/
(1 � p) is the odds ratio, and a,b1, . . .,bn are regression
coefficients which are most widely estimated by maximum
likelihood.
Formula

Ot is the open price at time t

Ht is the high price at time t

Lt is the low price at time t

Ct is the closing price at time t

Vt is the volume at time t

MAt ¼ 1
6

P6
i¼1Ct�i

MAt ¼ 1
6

Pn
i¼1Ct�i

BIASt ¼ Ct�MAt
t

BIASt ¼ Ct�MAt
t

EMAt = a(Ct � EMAt�1) + EMAt�1, where a ¼ 2
tþ1

MACDt ¼ 2
10 ðDIFt �MACDt�1Þ þ EMAt�1

DIFt = EMA12 � EMA26

%K ¼ C�Lt
Ht�Lt

� 100

%D ¼ H3

L3
� 100, where H3 ¼

Pt
j¼t�3ðC � LjÞ, H3 ¼

Pt
j¼t�3ðHj � LjÞ

TR = max{X,Y,Z}, whereX = Ht � Lt, Y = Lt � Ct�1, X = Ht � Ct�1

MTM6 = Ct � Ct�6, MTM12 = Ct � Ct�12

OSCn ¼ Ct
Ct�n
� 100

OSCn ¼ Ct
Ct�n
� 100

%Rt ¼ 100� C�Lt
Ht�Lt

� 100

OBVt ¼ OBVt�1 þ
V t if Ct > Ct�1

0 if Ct ¼ Ct�1

�V t if Ct < Ct�1

8<
:

e at time t, Ht is the high price at time t, Vt is the volume at time t, Dt is the
download-index-value at time t.



Table 2
Accuracy for different feature selection methods plus SVM for Korea
stock trend prediction

Feature selection method Prediction accuracy

Wrapper 67.61% (46/71)
v2-Statistic 40.8451% (29/71)
Information gain 49.2958% (35/71)
ReliefF 38.0282% (27/71)
Symmetrical uncertainty 49.2958% (35/71)
CFS 40.8451% (29/71)
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Logistic regression analysis is much like linear regres-
sion in that we are interested in the relationship of a group
of independent variables with a response or dependent var-
iable. One significant difference between the logistic and
linear models is that the linear model has a continuous
response variable and the logistic model uses a binary or
dichotomous response. As a result, the method of estima-
tion uses maximum likelihood as opposed to least squares
(Hosmer & Lemeshow, 2000).
Table 3
Comparison of prediction accuracy for different classification algorithms
for Korea stock trend prediction

Classification algorithm Prediction accuracy

Wrapper + voting 76.06% (54/71)
Wrapper + SVM 67.61% (48/71)
Wrapper + KNN 64.79% (46/71)
Wrapper + BP 69.01% (49/71)
Wrapper + C4.5 DT 64.79% (46/71)
Wrapper + logistic regression 64.79% (46/71)

Table 4
Comparison of prediction accuracy for different classification algorithms
for Taiwan stock trend prediction

Classification algorithm Prediction accuracy

Wrapper + voting 80.28% (57/71)
Wrapper + SVM 70.42% (50/71)
Wrapper + KNN 64.79% (46/71)
Wrapper + BP 66.2% (47/71)
Wrapper + C4.5 DT 71.83% (51/71)
Wrapper + logistic regression 67.61% (48/71)
3.3. Feature selection and classification

Around the beginning of the twentieth century, Charles
Dow was believed to be the first one to attempt to place
concepts such as price trends, the relationship between vol-
ume and price and even the ideas of support and resistance,
at the heart of the process of analyzing the likely behavior
of the price of a security. Technical analysis seeks to cap-
ture some or all of these factors in varying ways in different
indicators with the aim of analyzing the historical behavior
of the price of a security to determine its most likely future
price. Many of the techniques are capable of being ex-
pressed in a precise mathematical formula.

In this paper, we use 23 technical indices as the whole
features set and the direction of change in the daily Korea
and Taiwan stock price index as the prediction target.
Table 1 lists these technical indices and their definitions.
Since this work predicts the direction of daily stock price
index, we use ‘1’ and ‘�1’ to denote that the next day’s
index is higher or lower than today’s index, respectively.
The total number of samples is 365 trading days, spanned
from June 1990 to May 1991. The number of the training
data is 294 and that of holdout data is 71. Thus near
20% of the data is used for holdout and 80% for training.
The holdout data is used to test results with the data that
is not utilized to build the model. We first use wrapper
approach to find out the impact features for each individ-
ual classifier and use voting scheme to build prediction
model, and then examine the model with the collected data
set from the Taiwan and Korea stock exchange
corporations.
4. Experiment result

The experiments were performed with the assistance of
the Weka machine learning package (Wittena & Frank,
2005). We first compare the wrapper approach with other
feature selection algorithms, including v2-Statistic, Infor-
mation gain, ReliefF, Symmetrical uncertainty and CFS
to evaluate the feature selection algorithm. The adopted
prediction method is SVM. Next, we compared the voting
scheme with each single classification algorithm, including
SVM, KNN, BP, C4.5 DT and logistic regression to eval-
uate the proposed voting scheme. The wrapper approach
was used to determine the feature set for each individual
classifier. Tables 2–4 show the experiment results.
In Table 2, the comparison of Korea stock trend predic-
tion accuracy using SVM classifier along with different fea-
ture selection methods is given in Table 2. It can be seen
that wrapper method indeed selects the key features for
the corresponding classifier.

The comparison of Korea and Taiwan stock trend pre-
diction by using different classifiers along with wrapper fea-
ture selection method are given in Tables 3 and 4,
respectively. As expected, the proposed approach achieved
the best performance. This verifies that the wrapper
approach indeed can find the best feature subset with the
assistance of the prediction algorithm since it examines
all kinds of subset combinations from the original feature
set. Meanwhile, the voting machine takes advantage of
combing each classifier into consensus and thus outper-
forms each individual classifier.
5. Conclusion

In this paper, we show that among many feature selec-
tion algorithms, such as wrapper, v2-Statistic, Information
gain, ReliefF, Symmetrical uncertainty and CFS, wrapper
approach can find the most relevant feature from the fea-
ture set as expected. Experiment result shows that the accu-
racy for voting plus wrapper approach achieves the
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accurate prediction rate up to 80.28%. Meanwhile, the
experiment result also shows that it performs better when
different classifiers are combined into the voting scheme.
In the future work, we will try different combination of
classifiers such as weighted voting and find other useful fea-
tures besides the ordinarily used technical indices to
achieve better performance in stock market trend predic-
tion application.
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