
Vol. 3C 33-1

INTEL® PROCESSOR TRACE

CHAPTER 33
INTEL® PROCESSOR TRACE

33.1 OVERVIEW
Intel® Processor Trace (Intel PT) is an extension of Intel® Architecture that captures information about software
execution using dedicated hardware facilities that cause only minimal performance perturbation to the software
being traced. This information is collected in data packets. The initial implementations of Intel PT offer control
flow tracing, which generates a variety of packets to be processed by a software decoder. The packets include
timing, program flow information (e.g., branch targets, branch taken/not taken indications) and program-induced
mode related information (e.g., Intel TSX state transitions, CR3 changes). These packets may be buffered inter-
nally before being sent to the memory subsystem or other output mechanism available in the platform. Debug soft-
ware can process the trace data and reconstruct the program flow.
Intel Processor Trace was first introduced in Intel® processors based on Broadwell microarchitecture and Intel
Atom® processors based on Goldmont microarchitecture. Later generations include additional trace sources,
including software trace instrumentation using PTWRITE, and Power Event tracing.

33.1.1 Features and Capabilities
Intel PT’s control flow trace generates a variety of packets that, when combined with the binaries of a program by
a post-processing tool, can be used to produce an exact execution trace. The packets record flow information such
as instruction pointers (IP), indirect branch targets, and directions of conditional branches within contiguous code
regions (basic blocks).
Intel PT can also be configured to log software-generated packets using PTWRITE, and packets describing
processor power management events. Further, Precise Event-Based Sampling (PEBS) can be configured to log
PEBS records in the Intel PT trace; see Section 20.5.5.2.
In addition, the packets record other contextual, timing, and bookkeeping information that enables both functional
and performance debugging of applications. Intel PT has several control and filtering capabilities available to
customize the tracing information collected and to append other processor state and timing information to enable
debugging. For example, there are modes that allow packets to be filtered based on the current privilege level
(CPL) or the value of CR3.
Configuration of the packet generation and filtering capabilities are programmed via a set of MSRs. The MSRs
generally follow the naming convention of IA32_RTIT_*. The capability provided by these configuration MSRs are
enumerated by CPUID, see Section 33.3. Details of the MSRs for configuring Intel PT are described in Section
33.2.8.

33.1.1.1 Packet Summary
After a tracing tool has enabled and configured the appropriate MSRs, the processor will collect and generate trace
information in the following categories of packets (for more details on the packets, see Section 33.4):
• Packets about basic information on program execution; these include:

— Packet Stream Boundary (PSB) packets: PSB packets act as ‘heartbeats’ that are generated at regular
intervals (e.g., every 4K trace packet bytes). These packets allow the packet decoder to find the packet
boundaries within the output data stream; a PSB packet should be the first packet that a decoder looks for
when beginning to decode a trace.

— Paging Information Packet (PIP): PIPs record modifications made to the CR3 register. This information,
along with information from the operating system on the CR3 value of each process, allows the debugger
to attribute linear addresses to their correct application source.

— Time-Stamp Counter (TSC) packets: TSC packets aid in tracking wall-clock time, and contain some portion
of the software-visible time-stamp counter.

— Core Bus Ratio (CBR) packets: CBR packets contain the core:bus clock ratio.

33-2 Vol. 3C

INTEL® PROCESSOR TRACE

— Mini Time Counter (MTC) packets: MTC packets provide periodic indication of the passing of wall-clock time.

— Cycle Count (CYC) packets: CYC packets provide indication of the number of processor core clock cycles
that pass between packets.

— Overflow (OVF) packets: OVF packets are sent when the processor experiences an internal buffer overflow,
resulting in packets being dropped. This packet notifies the decoder of the loss and can help the decoder to
respond to this situation.

• Packets about control flow information:

— Taken Not-Taken (TNT) packets: TNT packets track the “direction” of direct conditional branches (taken or
not taken).

— Target IP (TIP) packets: TIP packets record the target IP of indirect branches, exceptions, interrupts, and
other branches or events. These packets can contain the IP, although that IP value may be compressed by
eliminating upper bytes that match the last IP. There are various types of TIP packets; they are covered in
more detail in Section 33.4.2.2.

— Flow Update Packets (FUP): FUPs provide the source IP addresses for asynchronous events (interrupt and
exceptions), as well as other cases where the source address cannot be determined from the binary.

— MODE packets: These packets provide the decoder with important processor execution information so that
it can properly interpret the dis-assembled binary and trace log. MODE packets have a variety of formats
that indicate details such as the execution mode (16-bit, 32-bit, or 64-bit).

• Packets inserted by software:

— PTWRITE (PTW) packets: includes the value of the operand passed to the PTWRITE instruction (see
“PTWRITE—Write Data to a Processor Trace Packet” in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2B).

• Packets about processor power management events:

— MWAIT packets: Indicate successful completion of an MWAIT operation to a C-state deeper than C0.0.

— Power State Entry (PWRE) packets: Indicate entry to a C-state deeper than C0.0.

— Power State Exit (PWRX) packets: Indicate exit from a C-state deeper than C0.0, returning to C0.

— Execution Stopped (EXSTOP) packets: Indicate that software execution has stopped, due to events such as
P-state change, C-state change, or thermal throttling.

• Packets containing groups of processor state values:

— Block Begin Packets (BBP): Indicate the type of state held in the following group.

— Block Item Packets (BIP): Indicate the state values held in the group.

— Block End Packets (BEP): Indicate the end of the current group.

33.2 INTEL® PROCESSOR TRACE OPERATIONAL MODEL
This section describes the overall Intel Processor Trace mechanism and the essential concepts relevant to how it
operates.

33.2.1 Change of Flow Instruction (COFI) Tracing
A basic program block is a section of code where no jumps or branches occur. The instruction pointers (IPs) in this
block of code need not be traced, as the processor will execute them from start to end without redirecting code
flow. Instructions such as branches, and events such as exceptions or interrupts, can change the program flow.
These instructions and events that change program flow are called Change of Flow Instructions (COFI). There are
three categories of COFI:
• Direct transfer COFI.
• Indirect transfer COFI.
• Far transfer COFI.

Vol. 3C 33-3

INTEL® PROCESSOR TRACE

The following subsections describe the COFI events that result in trace packet generation. Table 33-1 lists branch
instruction by COFI types. For detailed description of specific instructions, see the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual.

33.2.1.1 Direct Transfer COFI
Direct Transfer COFI are relative branches. This means that their target is an IP whose offset from the current IP is
embedded in the instruction bytes. It is not necessary to indicate target of these instructions in the trace output
since it can be obtained through the source disassembly. Conditional branches need to indicate only whether the
branch is taken or not. Unconditional branches do not need any recording in the trace output. There are two sub-
categories:
• Conditional Branch (Jcc, J*CXZ) and LOOP

To track this type of instruction, the processor encodes a single bit (taken or not taken — TNT) to indicate the
program flow after the instruction.

Jcc, J*CXZ, and LOOP can be traced with TNT bits. To improve the trace packet output efficiency, the processor
will compact several TNT bits into a single packet.

• Unconditional Direct Jumps

There is no trace output required for direct unconditional jumps (like JMP near relative or CALL near relative)
since they can be directly inferred from the application assembly. Direct unconditional jumps do not generate a
TNT bit or a Target IP packet, though TIP.PGD and TIP.PGE packets can be generated by unconditional direct
jumps that toggle Intel PT enables (see Section 33.2.6).

33.2.1.2 Indirect Transfer COFI
Indirect transfer instructions involve updating the IP from a register or memory location. Since the register or
memory contents can vary at any time during execution, there is no way to know the target of the indirect transfer
until the register or memory contents are read. As a result, the disassembled code is not sufficient to determine the
target of this type of COFI. Therefore, tracing hardware must send out the destination IP in the trace packet for
debug software to determine the target address of the COFI. Note that this IP may be a linear or effective address
(see Section 33.3.1.1).
An indirect transfer instruction generates a Target IP Packet (TIP) that contains the target address of the branch.
There are two sub-categories:
• Near JMP Indirect and Near Call Indirect

As previously mentioned, the target of an indirect COFI resides in the contents of either a register or memory
location. Therefore, the processor must generate a packet that includes this target address to allow the
decoder to determine the program flow.

• Near RET
When a CALL instruction executes, it pushes onto the stack the address of the next instruction following the
CALL. Upon completion of the call procedure, the RET instruction is often used to pop the return address off of
the call stack and redirect code flow back to the instruction following the CALL.
A RET instruction simply transfers program flow to the address it popped off the stack. Because a called
procedure may change the return address on the stack before executing the RET instruction, debug software

Table 33-1. COFI Type for Branch Instructions

COFI Type Instructions

Conditional Branch JA, JAE, JB, JBE, JC, JCXZ, JECXZ, JRCXZ, JE, JG, JGE, JL, JLE, JNA, JNAE, JNB, JNBE, JNC, JNE, JNG, JNGE, JNL,
JNLE, JNO, JNP, JNS, JNZ, JO, JP, JPE, JPO, JS, JZ, LOOP, LOOPE, LOOPNE, LOOPNZ, LOOPZ

Unconditional Direct Branch JMP (E9 xx, EB xx), CALL (E8 xx)

Indirect Branch JMP (FF /4), CALL (FF /2), RET (C3, C2 xx)

Far Transfers INT1, INT3, INT n, INTO, IRET, IRETD, IRETQ, JMP (EA xx, FF /5), CALL (9A xx, FF /3), RET (CB, CA xx),
SYSCALL, SYSRET, SYSENTER, SYSEXIT, VMLAUNCH, VMRESUME

33-4 Vol. 3C

INTEL® PROCESSOR TRACE

can be misled if it assumes that code flow will return to the instruction following the last CALL. Therefore,
even for near RET, a Target IP Packet may be sent.

— RET Compression

A special case is applied if the target of the RET is consistent with what would be expected from tracking the
CALL stack. If it is assured that the decoder has seen the corresponding CALL (with “corresponding” defined
as the CALL with matching stack depth), and the RET target is the instruction after that CALL, the RET
target may be “compressed”. In this case, only a single TNT bit of “taken” is generated instead of a Target
IP Packet. To ensure that the decoder will not be confused in cases of RET compression, only RETs that
correspond to CALLs which have been seen since the last PSB packet may be compressed in a given logical
processor. For details, see “Indirect Transfer Compression for Returns (RET)” in Section 33.4.2.2.

33.2.1.3 Far Transfer COFI
All operations that change the instruction pointer and are not near jumps are “far transfers”. This includes excep-
tions, interrupts, traps, TSX aborts, and instructions that do far transfers.
All far transfers will produce a Target IP (TIP) packet, which provides the destination IP address. For those far
transfers that cannot be inferred from the binary source (e.g., asynchronous events such as exceptions and inter-
rupts), the TIP will be preceded by a Flow Update packet (FUP), which provides the source IP address at which the
event was taken. Table 33-23 indicates exactly which IP will be included in the FUP generated by a far transfer.

33.2.2 Software Trace Instrumentation with PTWRITE
PTWRITE provides a mechanism by which software can instrument the Intel PT trace. PTWRITE is a ring3-acces-
sible instruction that can be passed to a register or memory variable, see “PTWRITE—Write Data to a Processor
Trace Packet” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B, for details. The
contents of that variable will be used as the payload for the PTW packet (see Table 33-40 “PTW Packet Definition”),
inserted at the time of PTWRITE retirement, assuming PTWRITE is enabled and all other filtering conditions are
met. Decode and analysis software will then be able to determine the meaning of the PTWRITE packet based on the
IP of the associated PTWRITE instruction.
PTWRITE is enabled via IA32_RTIT_CTL.PTWEn[12] (see Table 33-6). Optionally, the user can use IA32_R-
TIT_CTL.FUPonPTW[5] to enable PTW packets to be followed by FUP packets containing the IP of the associated
PTWRITE instruction. Support for PTWRITE is introduced in Intel Atom processors based on the Goldmont Plus
microarchitecture.

33.2.3 Power Event Tracing
Power Event Trace is a capability that exposes core- and thread-level sleep state and power down transition infor-
mation. When this capability is enabled, the trace will expose information about:

— Scenarios where software execution stops.

• Due to sleep state entry, frequency change, or other powerdown.

• Includes the IP, when in the tracing context.

— The requested and resolved hardware thread C-state.

• Including indication of hardware autonomous C-state entry.

— The last and deepest core C-state achieved during a sleep session.

— The reason for C-state wake.
This information is in addition to the bus ratio (CBR) information provided by default after any powerdown, and the
timing information (TSC, TMA, MTC, CYC) provided during or after a powerdown state.
Power Event Trace is enabled via IA32_RTIT_CTL.PwrEvtEn[4]. Support for Power Event Tracing is introduced in
Intel Atom processors based on the Goldmont Plus microarchitecture.

Vol. 3C 33-5

INTEL® PROCESSOR TRACE

33.2.4 Event Tracing
Event Trace is a capability that exposes details about the asynchronous events, when they are generated, and
when their corresponding software event handler completes execution. These include:
• Interrupts, including NMI and SMI, including the interrupt vector when defined.
• Faults, exceptions including the fault vector.

— Page faults additionally include the page fault address, when in context.
• Event handler returns, including IRET and RSM.
• VM exits and VM entries.1

— VM exits include the values written to the “exit reason” and “exit qualification” VMCS fields.
• INIT and SIPI events.
• TSX aborts, including the abort status returned for the RTM instructions.
• Shutdown.
Additionally, it provides indication of the status of the Interrupt Flag (IF), to indicate when interrupts are masked.
Event Trace is enabled via IA32_RTIT_CTL.EventEn[31]. Event Trace information is conveyed in Control Flow Event
(CFE) and Event Data (EVD) packets, as well as the legacy MODE.Exec packet. See Section 33.4.2 for packet
details. Support for Event Trace is introduced in Intel® processors based on Gracemont microarchitecture.

33.2.5 Trace Filtering
Intel Processor Trace provides filtering capabilities, by which the debug/profile tool can control what code is traced.

33.2.5.1 Filtering by Current Privilege Level (CPL)
Intel PT provides the ability to configure a logical processor to generate trace packets only when CPL = 0, when
CPL > 0, or regardless of CPL.
CPL filtering ensures that no IPs or other architectural state information associated with the filtered CPL can be
seen in the log. For example, if the processor is configured to trace only when CPL > 0, and software executes
SYSCALL (changing the CPL to 0), the destination IP of the SYSCALL will be suppressed from the generated packet
(see the discussion of TIP.PGD in Section 33.4.2.5).
It should be noted that CPL is always 0 in real-address mode and that CPL is always 3 in virtual-8086 mode. To
trace code in these modes, filtering should be configured accordingly.
When software is executing in a non-enabled CPL, ContextEn is cleared. See Section 33.2.6.1 for details.

33.2.5.2 Filtering by CR3
Intel PT supports a CR3-filtering mechanism by which the generation of packets containing architectural states can
be enabled or disabled based on the value of CR3. A debugger can use CR3 filtering to trace only a single applica-
tion without context switching the state of the RTIT MSRs. For the reconstruction of traces from software with
multiple threads, debug software may wish to context-switch for the state of the RTIT MSRs (if the operating
system does not provide context-switch support) to separate the output for the different threads (see Section
33.3.5, “Context Switch Consideration”).
To trace for only a single CR3 value, software can write that value to the IA32_RTIT_CR3_MATCH MSR, and set
IA32_RTIT_CTL.CR3Filter. When CR3 value does not match IA32_RTIT_CR3_MATCH and IA32_RTIT_CTL.CR3Filter
is 1, ContextEn is forced to 0, and packets containing architectural states will not be generated. Some other
packets can be generated when ContextEn is 0; see Section 33.2.6.3 for details. When CR3 does match IA32_R-
TIT_CR3_MATCH (or when IA32_RTIT_CTL.CR3Filter is 0), CR3 filtering does not force ContextEn to 0 (although it
could be 0 due to other filters or modes).

1. Logging of VMX transitions depends on VMCS configuration, see Section 33.5.1.

33-6 Vol. 3C

INTEL® PROCESSOR TRACE

CR3 matches IA32_RTIT_CR3_MATCH if the two registers are identical for bits 63:12, or 63:5 when in PAE paging
mode; the lower 5 bits of CR3 and IA32_RTIT_CR3_MATCH are ignored. CR3 filtering is independent of the value of
CR0.PG.
When CR3 filtering is in use, PIP packets may still be seen in the log if the processor is configured to trace when
CPL = 0 (IA32_RTIT_CTL.OS = 1). If not, no PIP packets will be seen.

33.2.5.3 Filtering by IP
Trace packet generation with configurable filtering by IP is supported if CPUID.(EAX=14H, ECX=0):EBX[bit 2] = 1.
Intel PT can be configured to enable the generation of packets containing architectural states only when the
processor is executing code within certain IP ranges. If the IP is outside of these ranges, generation of some
packets is blocked.
IP filtering is enabled using the ADDRn_CFG fields in the IA32_RTIT_CTL MSR (Section 33.2.8.2), where the digit
'n' is a zero-based number that selects which address range is being configured. Each ADDRn_CFG field configures
the use of the register pair IA32_RTIT_ADDRn_A and IA32_RTIT_ADDRn_B (Section 33.2.8.5). IA32_RTIT_AD-
DRn_A defines the base and IA32_RTIT_ADDRn_B specifies the limit of the range in which tracing is enabled. Thus
each range, referred to as the ADDRn range, is defined by [IA32_RTIT_ADDRn_A, IA32_RTIT_ADDRn_B]. There
can be multiple such ranges, software can query CPUID (Section 33.3.1) for the number of ranges supported on a
processor.
Default behavior (ADDRn_CFG=0) defines no IP filter range, meaning FilterEn is always set. In this case code at
any IP can be traced, though other filters, such as CR3 or CPL, could limit tracing. When ADDRn_CFG is set to
enable IP filtering (see Section 33.3.1), tracing will commence when a taken branch or event is seen whose target
address is in the ADDRn range.
While inside a tracing region and with FilterEn is set, leaving the tracing region may only be detected once a taken
branch or event with a target outside the range is retired. If an ADDRn range is entered or exited by executing the
next sequential instruction, rather than by a control flow transfer, FilterEn may not toggle immediately. See Section
33.2.6.5 for more details on FilterEn.
Note that these address range base and limit values are inclusive, such that the range includes the first and last
instruction whose first instruction byte is in the ADDRn range.
Depending upon processor implementation, IP filtering may be based on linear or effective address. This can cause
different behavior between implementations if CSbase is not equal to zero or in real mode. See Section 33.3.1.1 for
details. Software can query CPUID to determine filters are based on linear or effective address (Section 33.3.1).
Note that some packets, such as MTC (Section 33.3.7) and other timing packets, do not depend on FilterEn. For
details on which packets depend on FilterEn, and hence are impacted by IP filtering, see Section 33.4.1.

TraceStop

The ADDRn ranges can also be configured to cause tracing to be disabled upon entry to the specified region. This is
intended for cases where unexpected code is executed, and the user wishes to immediately stop generating
packets in order to avoid overwriting previously written packets.
The TraceStop mechanism works much the same way that IP filtering does, and uses the same address comparison
logic. The TraceStop region base and limit values are programmed into one or more ADDRn ranges, but
IA32_RTIT_CTL.ADDRn_CFG is configured with the TraceStop encoding. Like FilterEn, TraceStop is detected when
a taken branch or event lands in a TraceStop region.
Further, TraceStop requires that TriggerEn=1 at the beginning of the branch/event, and ContextEn=1 upon
completion of the branch/event. When this happens, the CPU will set IA32_RTIT_STATUS.Stopped, thereby
clearing TriggerEn and hence disabling packet generation. This may generate a TIP.PGD packet with the target IP
of the branch or event that entered the TraceStop region. Finally, a TraceStop packet will be inserted, to indicate
that the condition was hit.
If a TraceStop condition is encountered during buffer overflow (Section 33.3.8), it will not be dropped, but will
instead be signaled once the overflow has resolved.
Note that a TraceStop event does not guarantee that all internally buffered packets are flushed out of internal
buffers. To ensure that this has occurred, the user should clear TraceEn.

Vol. 3C 33-7

INTEL® PROCESSOR TRACE

To resume tracing after a TraceStop event, the user must first disable Intel PT by clearing IA32_RTIT_CTL.TraceEn
before the IA32_RTIT_STATUS.Stopped bit can be cleared. At this point Intel PT can be reconfigured, and tracing
resumed.
Note that the IA32_RTIT_STATUS.Stopped bit can also be set using the ToPA STOP bit. See Section 33.2.7.2.

IP Filtering Example

The following table gives an example of IP filtering behavior. Assume that IA32_RTIT_ADDRn_A = the IP of Range-
Base, and that IA32_RTIT_ADDRn_B = the IP of RangeLimit, while IA32_RTIT_CTL.ADDRn_CFG = 0x1 (enable
ADDRn range as a FilterEn range).

IP Filtering and TraceStop

It is possible for the user to configure IP filter range(s) and TraceStop range(s) that overlap. In this case, code
executing in the non-overlapping portion of either range will behave as would be expected from that range. Code
executing in the overlapping range will get TraceStop behavior.

33.2.6 Packet Generation Enable Controls
Intel Processor Trace includes a variety of controls that determine whether a packet is generated. In general, most
packets are sent only if Packet Enable (PacketEn) is set. PacketEn is an internal state maintained in hardware in
response to software configurable enable controls, PacketEn is not visible to software directly. The relationship of
PacketEn to the software-visible controls in the configuration MSRs is described in this section.

33.2.6.1 Packet Enable (PacketEn)
When PacketEn is set, the processor is in the mode that Intel PT is monitoring. PacketEn is composed of other
states according to this relationship:

PacketEn := TriggerEn AND ContextEn AND FilterEn AND BranchEn
These constituent controls are detailed in the following subsections.
PacketEn ultimately determines when the processor is tracing. When PacketEn is set, all control flow packets are
enabled. When PacketEn is clear, no control flow packets are generated, though other packets (timing and book-
keeping packets) may still be sent. See Section 33.2.7 for details of PacketEn and packet generation.
Note that, on processors that do not support IP filtering (i.e., CPUID.(EAX=14H, ECX=0):EBX[bit 2] = 0), FilterEn
is treated as always set.

Table 33-2. IP Filtering Packet Example

Code Flow Packets

Bar:
jmp RangeBase // jump into filter range

RangeBase:
jcc Foo // not taken
add eax, 1

Foo:
jmp RangeLimit+1 // jump out of filter range

RangeLimit:
nop
jcc Bar

TIP.PGE(RangeBase)

TNT(0)

TIP.PGD(RangeLimit+1)

33-8 Vol. 3C

INTEL® PROCESSOR TRACE

33.2.6.2 Trigger Enable (TriggerEn)
Trigger Enable (TriggerEn) is the primary indicator that trace packet generation is active. TriggerEn is set when
IA32_RTIT_CTL.TraceEn is set, and cleared by any of the following conditions:
• TraceEn is cleared by software.
• A TraceStop condition is encountered and IA32_RTIT_STATUS.Stopped is set.
• IA32_RTIT_STATUS.Error is set due to an operational error (see Section 33.3.10).
Software can discover the current TriggerEn value by reading the IA32_RTIT_STATUS.TriggerEn bit. When Trig-
gerEn is clear, tracing is inactive and no packets are generated.

33.2.6.3 Context Enable (ContextEn)
Context Enable (ContextEn) indicates whether the processor is in the state or mode that software configured
hardware to trace. For example, if execution with CPL = 0 code is not being traced (IA32_RTIT_CTL.OS = 0), then
ContextEn will be 0 when the processor is in CPL0.
Software can discover the current ContextEn value by reading the IA32_RTIT_STATUS.ContextEn bit. ContextEn is
defined as follows:

ContextEn = !((IA32_RTIT_CTL.OS = 0 AND CPL = 0) OR
(IA32_RTIT_CTL.USER = 0 AND CPL > 0) OR (IS_IN_A_PRODUCTION_ENCLAVE1) OR
(IA32_RTIT_CTL.CR3Filter = 1 AND IA32_RTIT_CR3_MATCH does not match CR3)

If the clearing of ContextEn causes PacketEn to be cleared, a Packet Generation Disable (TIP.PGD) packet is gener-
ated, but its IP payload is suppressed. If the setting of ContextEn causes PacketEn to be set, a Packet Generation
Enable (TIP.PGE) packet is generated.
When ContextEn is 0, control flow packets (TNT, FUP, TIP.*, MODE.*) are not generated, and no Linear Instruction
Pointers (LIPs) are exposed. However, some packets, such as MTC and PSB (see Section 33.4.2.16 and Section
33.4.2.17), may still be generated while ContextEn is 0. For details of which packets are generated only when
ContextEn is set, see Section 33.4.1.
The processor does not update ContextEn when TriggerEn = 0.
The value of ContextEn will toggle only when TriggerEn = 1.

33.2.6.4 Branch Enable (BranchEn)
This value is based purely on the IA32_RTIT_CTL.BranchEn value. If BranchEn is not set, then relevant COFI
packets (TNT, TIP*, FUP, MODE.*) are suppressed. Other packets related to timing (TSC, TMA, MTC, CYC), as well
as PSB, will be generated normally regardless. Further, PIP and VMCS continue to be generated, as indicators of
what software is running.

33.2.6.5 Filter Enable (FilterEn)
Filter Enable indicates that the Instruction Pointer (IP) is within the range of IPs that Intel PT is configured to watch.
Software can get the state of Filter Enable by a RDMSR of IA32_RTIT_STATUS.FilterEn. For details on configuration
and use of IP filtering, see Section 33.2.5.3.
On clearing of FilterEn that also clears PacketEn, a Packet Generation Disable (TIP.PGD) will be generated, but
unlike the ContextEn case, the IP payload may not be suppressed. For direct, unconditional branches, as well as for
indirect branches (including RETs), the PGD generated by leaving the tracing region and clearing FilterEn will
contain the target IP. This means that IPs from outside the configured range can be exposed in the trace, as long
as they are within context.
When FilterEn is 0, control flow packets are not generated (e.g., TNT, TIP). However, some packets, such as PIP,
MTC, and PSB, may still be generated while FilterEn is clear. For details on packet enable dependencies, see Section
33.4.1.

1. Trace packets generation is disabled in a production enclave, see Section 33.2.9.5. See the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3D, about differences between a production enclave and a debug enclave.

Vol. 3C 33-9

INTEL® PROCESSOR TRACE

After TraceEn is set, FilterEn is set to 1 at all times if there is no IP filter range configured by software
(IA32_RTIT_CTL.ADDRn_CFG != 1, for all n), or if the processor does not support IP filtering (i.e.,
CPUID.(EAX=14H, ECX=0):EBX[bit 2] = 0). FilterEn will toggle only when TraceEn=1 and ContextEn=1, and when
at least one range is configured for IP filtering.

33.2.7 Trace Output
Intel PT output should be viewed independently from trace content and filtering mechanisms. The options available
for trace output can vary across processor generations and platforms.
Trace output is written out using one of the following output schemes, as configured by the ToPA and FabricEn bit
fields of IA32_RTIT_CTL (see Section 33.2.8.2):
• A single, contiguous region of physical address space.
• A collection of variable-sized regions of physical memory. These regions are linked together by tables of

pointers to those regions, referred to as Table of Physical Addresses (ToPA). The trace output stores bypass
the caches and the TLBs, but are not serializing. This is intended to minimize the performance impact of the
output.

• A platform-specific trace transport subsystem.
Regardless of the output scheme chosen, Intel PT stores bypass the processor caches by default. This ensures that
they don't consume precious cache space, but they do not have the serializing aspects associated with un-cache-
able (UC) stores. Software should avoid using MTRRs to mark any portion of the Intel PT output region as UC, as
this may override the behavior described above and force Intel PT stores to UC, thereby incurring severe perfor-
mance impact.
There is no guarantee that a packet will be written to memory or other trace endpoint after some fixed number of
cycles after a packet-producing instruction executes. The only way to assure that all packets generated have
reached their endpoint is to clear TraceEn and follow that with a store, fence, or serializing instruction; doing so
ensures that all buffered packets are flushed out of the processor.

33.2.7.1 Single Range Output
When IA32_RTIT_CTL.ToPA and IA32_RTIT_CTL.FabricEn bits are clear, trace packet output is sent to a single,
contiguous memory (or MMIO if DRAM is not available) range defined by a base address in
IA32_RTIT_OUTPUT_BASE (Section 33.2.8.7) and mask value in IA32_RTIT_OUTPUT_MASK_PTRS (Section
33.2.8.8). The current write pointer in this range is also stored in IA32_RTIT_OUTPUT_MASK_PTRS. This output
range is circular, meaning that when the writes wrap around the end of the buffer they begin again at the base
address.
This output method is best suited for cases where Intel PT output is either:
• Configured to be directed to a sufficiently large contiguous region of DRAM.
• Configured to go to an MMIO debug port, in order to route Intel PT output to a platform-specific trace endpoint

(e.g., JTAG). In this scenario, a specific range of addresses is written in a circular manner, and SoC will intercept
these writes and direct them to the proper device. Repeated writes to the same address do not overwrite each
other, but are accumulated by the debugger, and hence no data is lost by the circular nature of the buffer.

The processor will determine the address to which to write the next trace packet output byte as follows:

OutputBase[63:0] := IA32_RTIT_OUTPUT_BASE[63:0]
OutputMask[63:0] := ZeroExtend64(IA32_RTIT_OUTPUT_MASK_PTRS[31:0])
OutputOffset[63:0] := ZeroExtend64(IA32_RTIT_OUTPUT_MASK_PTRS[63:32])
trace_store_phys_addr := (OutputBase & ~OutputMask) + (OutputOffset & OutputMask)

33-10 Vol. 3C

INTEL® PROCESSOR TRACE

Single-Range Output Errors

If the output base and mask are not properly configured by software, an operational error (see Section 33.3.10)
will be signaled, and tracing disabled. Error scenarios with single-range output are:
• Mask value is non-contiguous.

IA32_RTIT_OUTPUT_MASK_PTRS.MaskOrTablePointer value has a 0 in a less significant bit position than the
most significant bit containing a 1.

• Base address and Mask are mis-aligned, and have overlapping bits set.
IA32_RTIT_OUTPUT_BASE && IA32_RTIT_OUTPUT_MASK_PTRS[31:0] > 0.

• Illegal Output Offset
IA32_RTIT_OUTPUT_MASK_PTRS.OutputOffset is greater than the mask value
IA32_RTIT_OUTPUT_MASK_PTRS[31:0].

Also note that errors can be signaled due to trace packet output overlapping with restricted memory, see Section
33.2.7.4.

33.2.7.2 Table of Physical Addresses (ToPA)
When IA32_RTIT_CTL.ToPA is set and IA32_RTIT_CTL.FabricEn is clear, the ToPA output mechanism is utilized. The
ToPA mechanism uses a linked list of tables; see Figure 33-1 for an illustrative example. Each entry in the table
contains some attribute bits, a pointer to an output region, and the size of the region. The last entry in the table
may hold a pointer to the next table. This pointer can either point to the top of the current table (for circular array)
or to the base of another table. The table size is not fixed, since the link to the next table can exist at any entry.
The processor treats the various output regions referenced by the ToPA table(s) as a unified buffer. This means that
a single packet may span the boundary between one output region and the next.
The ToPA mechanism is controlled by three values maintained by the processor:
• proc_trace_table_base.

This is the physical address of the base of the current ToPA table. When tracing is enabled, the processor loads
this value from the IA32_RTIT_OUTPUT_BASE MSR. While tracing is enabled, the processor updates the
IA32_RTIT_OUTPUT_BASE MSR with changes to proc_trace_table_base, but these updates may not be
synchronous to software execution. When tracing is disabled, the processor ensures that the MSR contains the
latest value of proc_trace_table_base.

• proc_trace_table_offset.
This indicates the entry of the current table that is currently in use. (This entry contains the address of the
current output region.) When tracing is enabled, the processor loads the value from bits 31:7 (MaskOrT-
ableOffset) of the IA32_RTIT_OUTPUT_MASK_PTRS into bits 27:3 of proc_trace_table_offset. While tracing is
enabled, the processor updates IA32_RTIT_OUTPUT_MASK_PTRS.MaskOrTableOffset with changes to
proc_trace_table_offset, but these updates may not be synchronous to software execution. When tracing is
disabled, the processor ensures that the MSR contains the latest value of proc_trace_table_offset.

• proc_trace_output_offset.
This a pointer into the current output region and indicates the location of the next write. When tracing is
enabled, the processor loads this value from bits 63:32 (OutputOffset) of the
IA32_RTIT_OUTPUT_MASK_PTRS. While tracing is enabled, the processor updates
IA32_RTIT_OUTPUT_MASK_PTRS.OutputOffset with changes to proc_trace_output_offset, but these updates
may not be synchronous to software execution. When tracing is disabled, the processor ensures that the MSR
contains the latest value of proc_trace_output_offset.

Vol. 3C 33-11

INTEL® PROCESSOR TRACE

Figure 33-1 provides an illustration (not to scale) of the table and associated pointers.

With the ToPA mechanism, the processor writes packets to the current output region (identified by
proc_trace_table_base and the proc_trace_table_offset). The offset within that region to which the next byte will
be written is identified by proc_trace_output_offset. When that region is filled with packet output (thus
proc_trace_output_offset = RegionSize–1), proc_trace_table_offset is moved to the next ToPA entry,
proc_trace_output_offset is set to 0, and packet writes begin filling the new output region specified by
proc_trace_table_offset.
As packets are written out, each store derives its physical address as follows:

trace_store_phys_addr := Base address from current ToPA table entry +
proc_trace_output_offset

Eventually, the regions represented by all entries in the table may become full, and the final entry of the table is
reached. An entry can be identified as the final entry because it has either the END or STOP attribute. The END
attribute indicates that the address in the entry does not point to another output region, but rather to another ToPA
table. The STOP attribute indicates that tracing will be disabled once the corresponding region is filled. See Table
33-3 and the section that follows for details on STOP.
When an END entry is reached, the processor loads proc_trace_table_base with the base address held in this END
entry, thereby moving the current table pointer to this new table. The proc_trace_table_offset is reset to 0, as is
the proc_trace_output_offset, and packet writes will resume at the base address indicated in the first entry.
If the table has no STOP or END entry, and trace-packet generation remains enabled, eventually the maximum
table size will be reached (proc_trace_table_offset = 0FFFFFF8H). In this case, the proc_trace_table_offset and
proc_trace_output_offset are reset to 0 (wrapping back to the beginning of the current table) once the last output
region is filled.

Figure 33-1. ToPA Memory Illustration

0FF_FFFF _FFFFH

STOP=1

proc_trace_output_offset: IA32_RTIT_OUTPUT_MASK_PTRS.OutputOffset

proc_trace_table_offset:

proc_trace_table_base: IA32_RTIT_OUTPUT_BASE

0

ToPA Table B

Physical Memory

64K OutputBaseX
4K OutputBaseY
END=1 TableBaseB

ToPA Table A

OutputRegionY

OutputRegionX

 IA32_RTIT_OUTPUT_MASK_PRS.MaskOrTableOffset<<3

33-12 Vol. 3C

INTEL® PROCESSOR TRACE

It is important to note that processor updates to the IA32_RTIT_OUTPUT_BASE and
IA32_RTIT_OUTPUT_MASK_PTRS MSRs are asynchronous to instruction execution. Thus, reads of these MSRs
while Intel PT is enabled may return stale values. Like all IA32_RTIT_* MSRs, the values of these MSRs should not
be trusted or saved unless trace packet generation is first disabled by clearing IA32_RTIT_CTL.TraceEn. This
ensures that the output MSR values account for all packets generated to that point, after which the processor will
cease updating the output MSR values until tracing resumes. 1

The processor may cache internally any number of entries from the current table or from tables that it references
(directly or indirectly). If tracing is enabled, the processor may ignore or delay detection of modifications to these
tables. To ensure that table changes are detected by the processor in a predictable manner, software should clear
TraceEn before modifying the current table (or tables that it references) and only then re-enable packet generation.

Single Output Region ToPA Implementation

The first processor generation to implement Intel PT supports only ToPA configurations with a single ToPA entry
followed by an END entry that points back to the first entry (creating one circular output buffer). Such processors
enumerate CPUID.(EAX=14H,ECX=0):ECX.MENTRY[bit 1] = 0 and CPUID.(EAX=14H,ECX=0):ECX.TOPAOUT[bit
0] = 1.
If CPUID.(EAX=14H,ECX=0):ECX.MENTRY[bit 1] = 0, ToPA tables can hold only one output entry, which must be
followed by an END=1 entry which points back to the base of the table. Hence only one contiguous block can be
used as output.
The lone output entry can have INT or STOP set, but nonetheless must be followed by an END entry as described
above. Note that, if INT=1, the PMI will actually be delivered before the region is filled.

ToPA Table Entry Format

The format of ToPA table entries is shown in Figure 33-2. The size of the address field is determined by the
processor’s physical-address width (MAXPHYADDR) in bits, as reported in CPUID.80000008H:EAX[7:0].

Table 33-3 describes the details of the ToPA table entry fields. If reserved bits are set to 1, an error is signaled.

1. Although WRMSR is a serializing instruction, the execution of WRMSR that forces packet writes by clearing Tra-
ceEn does not itself cause these writes to be globally observed.

Figure 33-2. Layout of ToPA Table Entry

Table 33-3. ToPA Table Entry Fields

ToPA Entry Field Description

Output Region
Base Physical
Address

If END=0, this is the base physical address of the output region specified by this entry. Note that all regions
must be aligned based on their size. Thus a 2M region must have bits 20:12 clear. If the region is not properly
aligned, an operational error will be signaled when the entry is reached.
If END=1, this is the 4K-aligned base physical address of the next ToPA table (which may be the base of the cur-
rent table, or the first table in the linked list if a circular buffer is desired). If the processor supports only a single
ToPA output region (see above), this address must be the value currently in the IA32_RTIT_OUTPUT_BASE
MSR.

11 91012MAXPHYADDR–1

9:6 Size

6 5 0

4 : STOP
2 : INT
0 : END

Output Region Base Physical Address

4 13 2

Reserved

63

Vol. 3C 33-13

INTEL® PROCESSOR TRACE

ToPA STOP

Each ToPA entry has a STOP bit. If this bit is set, the processor will set the IA32_RTIT_STATUS.Stopped bit when
the corresponding trace output region is filled. This will clear TriggerEn and thereby cease packet generation. See
Section 33.2.8.4 for details on IA32_RTIT_STATUS.Stopped. This sequence is known as “ToPA Stop”.
No TIP.PGD packet will be seen in the output when the ToPA stop occurs, since the disable happens only when the
region is already full. When this occurs, output ceases after the last byte of the region is filled, which may mean
that a packet is cut off in the middle. Any packets remaining in internal buffers are lost and cannot be recovered.
When ToPA stop occurs, the IA32_RTIT_OUTPUT_BASE MSR will hold the base address of the table whose entry
had STOP=1. IA32_RTIT_OUTPUT_MASK_PTRS.MaskOrTableOffset will hold the index value for that entry, and the
IA32_RTIT_OUTPUT_MASK_PTRS.OutputOffset should be set to the size of the region minus one.
Note that this means the offset pointer is pointing to the next byte after the end of the region, a configuration that
would produce an operational error if the configuration remained when tracing is re-enabled with
IA32_RTIT_STATUS.Stopped cleared.

ToPA PMI

Each ToPA entry has an INT bit. If this bit is set, the processor will signal a performance-monitoring interrupt (PMI)
when the corresponding trace output region is filled. This interrupt is not precise, and it is thus likely that writes to
the next region will occur by the time the interrupt is taken.
The following steps should be taken to configure this interrupt:

1. Enable PMI via the LVT Performance Monitor register (at MMIO offset 340H in xAPIC mode; via MSR 834H in
x2APIC mode). See the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B, for more
details on this register. For ToPA PMI, set all fields to 0, save for the interrupt vector, which can be selected by
software.

2. Set up an interrupt handler to service the interrupt vector that a ToPA PMI can raise.

3. Set the interrupt flag by executing STI.

4. Set the INT bit in the ToPA entry of interest and enable packet generation, using the ToPA output option. Thus,
TraceEn=ToPA=1 in the IA32_RTIT_CTL MSR.

Once the INT region has been filled with packet output data, the interrupt will be signaled. This PMI can be distin-
guished from others by checking bit 55 (Trace_ToPA_PMI) of the IA32_PERF_GLOBAL_STATUS MSR (MSR 38EH).
Once the ToPA PMI handler has serviced the relevant buffer, writing 1 to bit 55 of the MSR at 390H
(IA32_GLOBAL_STATUS_RESET) clears IA32_PERF_GLOBAL_STATUS.Trace_ToPA_PMI.

Size Indicates the size of the associated output region. Encodings are:
0: 4K, 1: 8K, 2: 16K, 3: 32K, 4: 64K, 5: 128K, 6: 256K, 7: 512K,
8: 1M, 9: 2M, 10: 4M, 11: 8M, 12: 16M, 13: 32M, 14: 64M, 15: 128M
This field is ignored if END=1.

STOP When the output region indicated by this entry is filled, software should disable packet generation. This will be
accomplished by setting IA32_RTIT_STATUS.Stopped, which clears TriggerEn. This bit must be 0 if END=1; oth-
erwise it is treated as reserved bit violation (see ToPA Errors).

INT When the output region indicated by this entry is filled, signal Perfmon LVT interrupt.
Note that if both INT and STOP are set in the same entry, the STOP will happen before the INT. Thus the inter-
rupt handler should expect that the IA32_RTIT_STATUS.Stopped bit will be set, and will need to be reset before
tracing can be resumed.
This bit must be 0 if END=1; otherwise it is treated as reserved bit violation (see ToPA Errors).

END If set, indicates that this is an END entry, and thus the address field points to a table base rather than an output
region base.
If END=1, INT and STOP must be set to 0; otherwise it is treated as reserved bit violation (see ToPA Errors). The
Size field is ignored in this case.
If the processor supports only a single ToPA output region (see above), END must be set in the second table
entry.

Table 33-3. ToPA Table Entry Fields (Contd.)

ToPA Entry Field Description

33-14 Vol. 3C

INTEL® PROCESSOR TRACE

Intel PT is not frozen on PMI, and thus the interrupt handler will be traced (though filtering can prevent this). The
Freeze_Perfmon_on_PMI and Freeze_LBRs_on_PMI settings in IA32_DEBUGCTL will be applied on ToPA PMI just as
on other PMIs, and hence Perfmon counters are frozen.
Assuming the PMI handler wishes to read any buffered packets for persistent output, or wishes to modify any Intel
PT MSRs, software should first disable packet generation by clearing TraceEn. This ensures that all buffered packets
are written to memory and avoids tracing of the PMI handler. The configuration MSRs can then be used to deter-
mine where tracing has stopped. If packet generation is disabled by the handler, it should then be manually re-
enabled before the IRET if continued tracing is desired.
In rare cases, it may be possible to trigger a second ToPA PMI before the first is handled. This can happen if another
ToPA region with INT=1 is filled before, or shortly after, the first PMI is taken, perhaps due to EFLAGS.IF being
cleared for an extended period of time. This can manifest in two ways: either the second PMI is triggered before the
first is taken, and hence only one PMI is taken, or the second is triggered after the first is taken, and thus will be
taken when the handler for the first completes. Software can minimize the likelihood of the second case by clearing
TraceEn at the beginning of the PMI handler. Further, it can detect such cases by then checking the Interrupt
Request Register (IRR) for PMI pending, and checking the ToPA table base and off-set pointers (in
IA32_RTIT_OUTPUT_BASE and IA32_RTIT_OUTPUT_MASK_PTRS) to see if multiple entries with INT=1 have been
filled.

PMI Preservation

In some cases a ToPA PMI may be taken after completion of an XSAVES instruction that saves Intel PT state, and in
such cases any modification of Intel PT MSRs within the PMI handler will not persist when the saved Intel PT context
is later restored with XRSTORS. To account for such a scenario, the PMI Preservation feature has been added.
Support for this feature is indicated by CPUID.(EAX=14H, ECX=0):EBX[bit 6].
When IA32_RTIT_CTL.InjectPsbPmiOnEnable[56] = 1, PMI preservation is enabled. When a ToPA region with
INT=1 is filled, a PMI is pended and the new IA32_RTIT_STATUS.PendToPAPMI[7] is set to 1. If this bit is set when
Intel PT is enabled, such that IA32_RTIT_CTL.TraceEn[0] transitions from 0 to 1, a ToPA PMI is pended. This
behavior ensures that any ToPA PMI that is pended during XSAVES, and hence can't be properly handled, will be re-
pended when the saved PT state is restored.
When this feature is enabled, the PMI handler should take the following actions:

1. Ignore ToPA PMIs that are taken when TraceEn = 0. This indicates that the PMI was pended during Intel PT
disable, and the PendToPAPMI flag will ensure that the PMI is re-pended once Intel PT is re-enabled in the same
context. For this reason, the PendToPAPMI bit should be left set to 1.

2. If TraceEn=1 and the PMI can be properly handled, clear the new PendTopaPMI bit. This will ensure that
additional, spurious ToPA PMIs are not taken. It is required that PendToPAPMI is cleared before the PMI LVT
mask is cleared in the APIC, and before any clearing of either LBRS_FROZEN or COUNTERS_FROZEN in
IA32_PERF_GLOBAL_STATUS.

ToPA PMI and Single Output Region ToPA Implementation

A processor that supports only a single ToPA output region implementation (such that only one output region is
supported; see above) will attempt to signal a ToPA PMI interrupt before the output wraps and overwrites the top
of the buffer. To support this functionality, the PMI handler should disable packet generation as soon as possible.
Due to PMI skid, it is possible that, in rare cases, the wrap will have occurred before the PMI is delivered. Software
can avoid this by setting the STOP bit in the ToPA entry (see Table 33-3); this will disable tracing once the region is
filled, and no wrap will occur. This approach has the downside of disabling packet generation so that some of the
instructions that led up to the PMI will not be traced. If the PMI skid is significant enough to cause the region to fill
and tracing to be disabled, the PMI handler will need to clear the IA32_RTIT_STATUS.Stopped indication before
tracing can resume.

Vol. 3C 33-15

INTEL® PROCESSOR TRACE

ToPA PMI and XSAVES/XRSTORS State Handling

In some cases the ToPA PMI may be taken after completion of an XSAVES instruction that switches Intel PT state,
and in such cases any modification of Intel PT MSRs within the PMI handler will not persist when the saved Intel PT
context is later restored with XRSTORS. To account for such a scenario, it is recommended that the Intel PT output
configuration be modified by altering the ToPA tables themselves, rather than the Intel PT output MSRs. On proces-
sors that support PMI preservation (CPUID.(EAX=14H, ECX=0):EBX[bit 6] = 1), setting IA32_RTIT_CTL.InjectPsb-
PmiOnEnable[56] = 1 will ensure that a PMI that is pending at the time PT is disabled will be recorded by setting
IA32_RTIT_STATUS.PendTopaPMI[7] = 1. A PMI will then be pended when the saved PT context is later restored.
Table 33-4 depicts a recommended PMI handler algorithm for managing multi-region ToPA output and handling
ToPA PMIs that may arrive between XSAVES and XRSTORS, if PMI preservation is not in use. This algorithm is flex-
ible to allow software to choose between adding entries to the current ToPA table, adding a new ToPA table, or using
the current ToPA table as a circular buffer. It assumes that the ToPA entry that triggers the PMI is not the last entry
in the table, which is the recommended treatment.

ToPA Errors

When a malformed ToPA entry is found, an operational error results (see Section 33.3.10). A malformed entry
can be any of the following:

1. ToPA entry reserved bit violation.
This describes cases where a bit marked as reserved in Section 33.2.7.2 above is set to 1.

2. ToPA alignment violation.
This includes cases where illegal ToPA entry base address bits are set to 1:

a. ToPA table base address is not 4KB-aligned. The table base can be from a WRMSR to
IA32_RTIT_OUTPUT_BASE, or from a ToPA entry with END=1.

b. ToPA entry base address is not aligned to the ToPA entry size (e.g., a 2MB region with base address[20:12]
not equal to 0), for ToPA entries with END=0.

c. ToPA entry base address sets upper physical address bits not supported by the processor.

Table 33-4. Algorithm to Manage Intel PT ToPA PMI and XSAVES/XRSTORS

Pseudo Code Flow

IF (IA32_PERF_GLOBAL_STATUS.ToPA)
 Save IA32_RTIT_CTL value;
 IF (IA32_RTIT_CTL.TraceEN)
 Disable Intel PT by clearing TraceEn;
 FI;
 IF (there is space available to grow the current ToPA table)
 Add one or more ToPA entries after the last entry in the ToPA table;
 Point new ToPA entry address field(s) to new output region base(s);
 ELSE
 Modify an upcoming ToPA entry in the current table to have END=1;
 IF (output should transition to a new ToPA table)
 Point the address of the “END=1” entry of the current table to the new table base;
 ELSE
 /* Continue to use the current ToPA table, make a circular. */
 Point the address of the “END=1”l entry to the base of the current table;
 Modify the ToPA entry address fields for filled output regions to point to new, unused output regions;
 /* Filled regions are those with index in the range of 0 to (IA32_RTIT_MASK_PTRS.MaskOrTableOffset -1). */
 FI;

FI;
Restore saved IA32_RTIT_CTL.value;

FI;

33-16 Vol. 3C

INTEL® PROCESSOR TRACE

3. Illegal ToPA Output Offset.
IA32_RTIT_OUTPUT_MASK_PTRS.OutputOffset is greater than or equal to the size of the current ToPA output
region size.

4. ToPA rules violations.
These are similar to ToPA entry reserved bit violations; they are cases when a ToPA entry is encountered with
illegal field combinations. They include the following:

a. Setting the STOP or INT bit on an entry with END=1.

b. Setting the END bit in entry 0 of a ToPA table.

c. On processors that support only a single ToPA entry (see above), two additional illegal settings apply:

i) ToPA table entry 1 with END=0.

ii) ToPA table entry 1 with base address not matching the table base.
In all cases, the error will be logged by setting IA32_RTIT_STATUS.Error, thereby disabling tracing when the prob-
lematic ToPA entry is reached (when proc_trace_table_offset points to the entry containing the error). Any packet
bytes that are internally buffered when the error is detected may be lost.
Note that operational errors may also be signaled due to attempts to access restricted memory. See Section
33.2.7.4 for details.
A tracing software have a range of flexibility using ToPA to manage the interaction of Intel PT with application
buffers, see Section 33.4.2.26.

33.2.7.3 Trace Transport Subsystem
When IA32_RTIT_CTL.FabricEn is set, the IA32_RTIT_CTL.ToPA bit is ignored, and trace output is written to the
trace transport subsystem. The endpoints of this transport are platform-specific, and details of configuration
options should refer to the specific platform documentation. The FabricEn bit is available to be set if
CPUID(EAX=14H,ECX=0):EBX[bit 3] = 1.

33.2.7.4 Restricted Memory Access
Packet output cannot be directed to any regions of memory that are restricted by the platform. In particular, all
memory accesses on behalf of packet output are checked against the SMRR regions. If there is any overlap with
these regions, trace data collection will not function properly. Exact processor behavior is implementation-depen-
dent; Table 33-5 summarizes several scenarios.

It should also be noted that packet output should not be routed to the 4KB APIC MMIO region, as defined by the
IA32_APIC_BASE MSR. For details about the APIC, refer to the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3A. No error is signaled for this case.

Modifications to Restricted Memory Regions

It is recommended that software disable packet generation before modifying the SMRRs to change the scope of the
SMRR regions. This is because the processor reserves the right to cache any number of ToPA table entries inter-
nally, after checking them against restricted memory ranges. Once cached, the entries will not be checked again,
meaning one could potentially route packet output to a newly restricted region. Software can ensure that any
cached entries are written to memory by clearing IA32_RTIT_CTL.TraceEn.

Table 33-5. Behavior on Restricted Memory Access

Scenario Description

ToPA output region
overlaps with
SMRR

Stores to the restricted memory region will be dropped, and that packet data will be lost. Any attempt to read
from that restricted region will return all 1s. The processor also may signal an error (Section 33.3.10) and dis-
able tracing when the output pointer reaches the restricted region. If packet generation remains enabled, then
packet output may continue once stores are no longer directed to restricted memory (on wrap, or if the output
region is larger than the restricted memory region).

ToPA table overlaps
with SMRR

The processor will signal an error (Section 33.3.10) and disable tracing when the ToPA write pointer (IA32_R-
TIT_OUTPUT_BASE + proc_trace_table_offset) enters the restricted region.

Vol. 3C 33-17

INTEL® PROCESSOR TRACE

33.2.8 Enabling and Configuration MSRs

33.2.8.1 General Considerations
Trace packet generation is enabled and configured by a collection of model-specific registers (MSRs), which are
detailed below. Some notes on the configuration MSR behavior:
• If Intel Processor Trace is not supported by the processor (see Section 33.3.1), RDMSR or WRMSR of the

IA32_RTIT_* MSRs will cause #GP.
• A WRMSR to any of the IA32_RTIT_* configuration MSRs while packet generation is enabled

(IA32_RTIT_CTL.TraceEn=1) will generate a #GP exception. Packet generation must be disabled before the
configuration MSRs can be changed.

Note: Software may write the same value back to IA32_RTIT_CTL without #GP, even if TraceEn=1.
• All configuration MSRs for Intel PT are duplicated per logical processor
• For each configuration MSR, any MSR write that attempts to change bits marked reserved, or utilize encodings

marked reserved, will cause a #GP fault.
• All configuration MSRs for Intel PT are cleared on a warm or cold RESET.

— If CPUID.(EAX=14H, ECX=0):EBX[bit 2] = 1, only the TraceEn bit is cleared on warm RESET; though this
may have the impact of clearing other bits in IA32_RTIT_STATUS. Other MSR values of the trace configu-
ration MSRs are preserved on warm RESET.

• The semantics of MSR writes to trace configuration MSRs in this chapter generally apply to explicit WRMSR to
these registers, using VMexit or VM entry MSR load list to these MSRs, XRSTORS with requested feature bit
map including XSAVE map component of state_8 (corresponding to IA32_XSS[bit 8]), and the write to
IA32_RTIT_CTL.TraceEn by XSAVES (Section 33.3.5.2).

33.2.8.2 IA32_RTIT_CTL MSR
IA32_RTIT_CTL, at address 570H, is the primary enable and control MSR for trace packet generation. Bit positions
are listed in Table 33-6.

Table 33-6. IA32_RTIT_CTL MSR

Position Bit Name At Reset Bit Description

0 TraceEn 0 If 1, enables tracing; else tracing is disabled.

When this bit transitions from 1 to 0, all buffered packets are flushed out of internal buffers.
A further store, fence, or architecturally serializing instruction may be required to ensure that
packet data can be observed at the trace endpoint. See Section 33.2.8.3 for details of
enabling and disabling packet generation.

Note that the processor will clear this bit on #SMI (Section 33.2.9.3) and warm reset. Other
MSR bits of IA32_RTIT_CTL (and other trace configuration MSRs) are not impacted by these
events.

1 CYCEn 0 0: Disables CYC Packet (see Section 33.4.2.14).

1: Enables CYC Packet.

This bit is reserved if CPUID.(EAX=14H, ECX=0):EBX[bit 1] = 0.

2 OS 0 0: Packet generation is disabled when CPL = 0.

1: Packet generation may be enabled when CPL = 0.

3 User 0 0: Packet generation is disabled when CPL > 0.

1: Packet generation may be enabled when CPL > 0.

4 PwrEvtEn 0 0: Power Event Trace packets are disabled.

1: Power Event Trace packets are enabled (see Section 33.2.3, “Power Event Tracing”).

33-18 Vol. 3C

INTEL® PROCESSOR TRACE

5 FUPonPTW 0 0: PTW packets are not followed by FUPs.

1: PTW packets are followed by FUPs.

This bit is reserved when CPUID.(EAX=14H, ECX=0):EBX[bit 4] (“PTWRITE Supported”) is 0.

6 FabricEn 0 0: Trace output is directed to the memory subsystem, mechanism depends on
IA32_RTIT_CTL.ToPA.

1: Trace output is directed to the trace transport subsystem, IA32_RTIT_CTL.ToPA is ignored.
This bit is reserved if CPUID.(EAX=14H, ECX=0):ECX[bit 3] = 0.

7 CR3Filter 0 0: Disables CR3 filtering.

1: Enables CR3 filtering.

This bit is reserved if CPUID.(EAX=14H, ECX=0):EBX[bit 0] (“CR3 Filtering Support”) is 0.

8 ToPA 0 0: Single-range output scheme enabled if CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2]
= 1 and IA32_RTIT_CTL.FabricEn=0.

1: ToPA output scheme enabled (see Section 33.2.7.2) if CPUID.(EAX=14H,
ECX=0):ECX.TOPA[bit 0] = 1, and IA32_RTIT_CTL.FabricEn=0.

Note: WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit and FabricEn would
cause #GP, if CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0.

WRMSR to IA32_RTIT_CTL that sets this bit causes #GP, if CPUID.(EAX=14H,
ECX=0):ECX.TOPA[bit 0] = 0.

9 MTCEn 0 0: Disables MTC Packet (see Section 33.4.2.16).

1: Enables MTC Packet.

This bit is reserved if CPUID.(EAX=14H, ECX=0):EBX[bit 3] = 0.

10 TSCEn 0 0: Disable TSC packets.

1: Enable TSC packets (see Section 33.4.2.11).

11 DisRETC 0 0: Enable RET compression.

1: Disable RET compression (see Section 33.2.1.2).

12 PTWEn 0 0: PTWRITE packet generation disabled.

1: PTWRITE packet generation enabled (see Table 33-40 “PTW Packet Definition”).

This bit is reserved when CPUID.(EAX=14H, ECX=0):EBX[bit 4] (“PTWRITE Supported”) is 0.

13 BranchEn 0 0: Disable COFI-based packets.

1: Enable COFI-based packets: FUP, TIP, TIP.PGE, TIP.PGD, TNT, MODE.Exec, MODE.TSX.

See Section 33.2.6.4 for details on BranchEn.

17:14 MTCFreq 0 Defines MTC packet Frequency, which is based on the core crystal clock, or Always Running
Timer (ART). MTC will be sent each time the selected ART bit toggles. The following Encodings
are defined:

0: ART(0), 1: ART(1), 2: ART(2), 3: ART(3), 4: ART(4), 5: ART(5), 6: ART(6), 7: ART(7),
8: ART(8), 9: ART(9), 10: ART(10), 11: ART(11), 12: ART(12), 13: ART(13), 14: ART(14), 15:

ART(15)
Software must use CPUID to query the supported encodings in the processor, see Section
33.3.1. Use of unsupported encodings will result in a #GP fault. This field is reserved if
CPUID.(EAX=14H, ECX=0):EBX[bit 3] = 0.

18 Reserved 0 Must be 0.

Table 33-6. IA32_RTIT_CTL MSR (Contd.)

Position Bit Name At Reset Bit Description

Vol. 3C 33-19

INTEL® PROCESSOR TRACE

22:19 CycThresh 0 CYC packet threshold, see Section 33.3.6 for details. CYC packets will be sent with the first
eligible packet after N cycles have passed since the last CYC packet. If CycThresh is 0 then
N=0, otherwise N is defined as 2(CycThresh-1). The following Encodings are defined:

0: 0, 1: 1, 2: 2, 3: 4, 4: 8, 5: 16, 6: 32, 7: 64,
8: 128, 9: 256, 10: 512, 11: 1024, 12: 2048, 13: 4096, 14: 8192, 15: 16384
Software must use CPUID to query the supported encodings in the processor, see Section
33.3.1. Use of unsupported encodings will result in a #GP fault. This field is reserved if
CPUID.(EAX=14H, ECX=0):EBX[bit 1] = 0.

23 Reserved 0 Must be 0.

27:24 PSBFreq 0 Indicates the frequency of PSB packets. PSB packet frequency is based on the number of Intel
PT packet bytes output, so this field allows the user to determine the increment of
IA32_IA32_RTIT_STATUS.PacketByteCnt that should cause a PSB to be generated. Note that
PSB insertion is not precise, but the average output bytes per PSB should approximate the
SW selected period. The following Encodings are defined:

0: 2K, 1: 4K, 2: 8K, 3: 16K, 4: 32K, 5: 64K, 6: 128K, 7: 256K,
8: 512K, 9: 1M, 10: 2M, 11: 4M, 12: 8M, 13: 16M, 14: 32M, 15: 64M
Software must use CPUID to query the supported encodings in the processor, see Section
33.3.1. Use of unsupported encodings will result in a #GP fault. This field is reserved if
CPUID.(EAX=14H, ECX=0):EBX[bit 1] = 0.

30:28 Reserved 0 Must be 0.

31 EventEn 0 0: Event Trace packets are disabled.

1: Event Trace packets are enabled.

This bit is reserved when CPUID.(EAX=14H, ECX=0):EBX[bit 7] (“Event Trace Supported”) is 0.

35:32 ADDR0_CFG 0 Configures the base/limit register pair IA32_RTIT_ADDR0_A/B based on the following
encodings:

0: ADDR0 range unused.

1: The [IA32_RTIT_ADDR0_A..IA32_RTIT_ADDR0_B] range defines a FilterEn range. FilterEn
will only be set when the IP is within this range, though other FilterEn ranges can additionally
be used. See Section 33.2.5.3 for details on IP filtering.

2: The [IA32_RTIT_ADDR0_A..IA32_RTIT_ADDR0_B] range defines a TraceStop range.
TraceStop will be asserted if code branches into this range. See 4.2.8 for details on TraceStop.

3..15: Reserved (#GP).

This field is reserved if CPUID.(EAX=14H, ECX=1):EBX.RANGECNT[2:0] < 1.

39:36 ADDR1_CFG 0 Configures the base/limit register pair IA32_RTIT_ADDR1_A/B based on the following
encodings:

0: ADDR1 range unused.

1: The [IA32_RTIT_ADDR1_A..IA32_RTIT_ADDR1_B] range defines a FilterEn range. FilterEn
will only be set when the IP is within this range, though other FilterEn ranges can additionally
be used. See Section 33.2.5.3 for details on IP filtering.

2: The [IA32_RTIT_ADDR1_A..IA32_RTIT_ADDR1_B] range defines a TraceStop range.
TraceStop will be asserted if code branches into this range. See Section 33.4.2.10 for details
on TraceStop.

3..15: Reserved (#GP).

This field is reserved if CPUID.(EAX=14H, ECX=1):EBX.RANGECNT[2:0] < 2.

Table 33-6. IA32_RTIT_CTL MSR (Contd.)

Position Bit Name At Reset Bit Description

33-20 Vol. 3C

INTEL® PROCESSOR TRACE

33.2.8.3 Enabling and Disabling Packet Generation with TraceEn
When TraceEn transitions from 0 to 1, Intel Processor Trace is enabled, and a series of packets may be generated.
These packets help ensure that the decoder is aware of the state of the processor when the trace begins, and that
it can keep track of any timing or state changes that may have occurred while packet generation was disabled. A
full PSB+ (see Section 33.4.2.17) will be generated if IA32_RTIT_STATUS.PacketByteCnt=0, and may be gener-
ated in other cases as well. Otherwise, timing packets will be generated, including TSC, TMA, and CBR (see Section
33.4.1.1).
In addition to the packets discussed above, if and when PacketEn (Section 33.2.6.1) transitions from 0 to 1 (which
may happen immediately, depending on filtering settings), a TIP.PGE packet (Section 33.4.2.3) will be generated.
When TraceEn is set, the processor may read ToPA entries from memory and cache them internally. For this reason,
software should disable packet generation before making modifications to the ToPA tables (or changing the config-

43:40 ADDR2_CFG 0 Configures the base/limit register pair IA32_RTIT_ADDR2_A/B based on the following
encodings:

0: ADDR2 range unused.

1: The [IA32_RTIT_ADDR2_A..IA32_RTIT_ADDR2_B] range defines a FilterEn range. FilterEn
will only be set when the IP is within this range, though other FilterEn ranges can additionally
be used. See Section 33.2.5.3 for details on IP filtering.

2: The [IA32_RTIT_ADDR2_A..IA32_RTIT_ADDR2_B] range defines a TraceStop range.
TraceStop will be asserted if code branches into this range. See Section 33.4.2.10 for details
on TraceStop.

3..15: Reserved (#GP).

This field is reserved if CPUID.(EAX=14H, ECX=1):EBX.RANGECNT[2:0] < 3.

47:44 ADDR3_CFG 0 Configures the base/limit register pair IA32_RTIT_ADDR3_A/B based on the following
encodings:

0: ADDR3 range unused.

1: The [IA32_RTIT_ADDR3_A..IA32_RTIT_ADDR3_B] range defines a FilterEn range. FilterEn
will only be set when the IP is within this range, though other FilterEn ranges can additionally
be used. See Section 33.2.5.3 for details on IP filtering.

2: The [IA32_RTIT_ADDR3_A..IA32_RTIT_ADDR3_B] range defines a TraceStop range.
TraceStop will be asserted if code branches into this range. See Section 33.4.2.10 for details
on TraceStop.

3..15: Reserved (#GP).

This field is reserved if CPUID.(EAX=14H, ECX=1):EBX.RANGECNT[2:0] < 4.

54:48 Reserved 0 Reserved only for future trace content enables, or address filtering configuration enables.
Must be 0.

55 DisTNT 0 0: Include TNT packets in control flow trace.

1: Omit TNT packets from control flow trace.

This bit is reserved when CPUID.(EAX=14H, ECX=0):EBX[bit 8] (“TNT Disable Supported”) is 0.
SeeSection 33.3.9 for details.

56 InjectPsbPmi
OnEnable

0 1: Enables use of IA32_RTIT_STATUS bits PendPSB[6] and PendTopaPMI[7], see Section
33.2.8.4, “IA32_RTIT_STATUS MSR,” for behavior of these bits.

0: IA32_RTIT_STATUS bits 6 and 7 are ignored.

This field is reserved if CPUID.(EAX=14H, ECX=0):EBX[bit 6] = 0.

59:57 Reserved 0 Reserved only for future trace content enables, or address filtering configuration enables.
Must be 0.

63:60 Reserved 0 Must be 0.

Table 33-6. IA32_RTIT_CTL MSR (Contd.)

Position Bit Name At Reset Bit Description

Vol. 3C 33-21

INTEL® PROCESSOR TRACE

uration of restricted memory regions). See Section 33.7 for more details of packets that may be generated with
modifications to TraceEn.

Disabling Packet Generation

Clearing TraceEn causes any packet data buffered within the logical processor to be flushed out, after which the
output MSRs (IA32_RTIT_OUTPUT_BASE and IA32_RTIT_OUTPUT_MASK_PTRS) will have stable values. When
output is directed to memory, a store, fence, or architecturally serializing instruction may be required to ensure
that the packet data is globally observed. No special packets are generated by disabling packet generation, though
a TIP.PGD may result if PacketEn=1 at the time of disable.

Other Writes to IA32_RTIT_CTL

Any attempt to modify IA32_RTIT_CTL while TraceEn is set will result in a general-protection fault (#GP) unless the
same write also clears TraceEn. However, writes to IA32_RTIT_CTL that do not modify any bits will not cause a
#GP, even if TraceEn remains set.

33.2.8.4 IA32_RTIT_STATUS MSR
The IA32_RTIT_STATUS MSR is readable and writable by software, though some fields cannot be modified by soft-
ware. See Table 33-7 for details. The WRMSR instruction ignores these bits in the source operand (attempts to
modify these bits are ignored and do not cause WRMSR to fault).
This MSR can only be written when IA32_RTIT_CTL.TraceEn is 0; otherwise WRMSR causes a general-protection
fault (#GP). The processor does not modify the value of this MSR while TraceEn is 0 (software can modify it with
WRMSR).

Table 33-7. IA32_RTIT_STATUS MSR

Position Bit Name At Reset Bit Description

0 FilterEn 0 This bit is written by the processor, and indicates that tracing is allowed for the current IP,
see Section 33.2.6.5. Writes are ignored.

1 ContextEn 0 The processor sets this bit to indicate that tracing is allowed for the current context. See
Section 33.2.6.3. Writes are ignored.

2 TriggerEn 0 The processor sets this bit to indicate that tracing is enabled. See Section 33.2.6.2. Writes are
ignored.

3 Reserved 0 Must be 0.

4 Error 0 The processor sets this bit to indicate that an operational error has been encountered. When
this bit is set, TriggerEn is cleared to 0 and packet generation is disabled. For details, see
“ToPA Errors” in Section 33.2.7.2.

When TraceEn is cleared, software can write this bit. Once it is set, only software can clear it.
It is not recommended that software ever set this bit, except in cases where it is restoring a
prior saved state.

5 Stopped 0 The processor sets this bit to indicate that a ToPA Stop condition has been encountered.
When this bit is set, TriggerEn is cleared to 0 and packet generation is disabled. For details,
see “ToPA STOP” in Section 33.2.7.2.

When TraceEn is cleared, software can write this bit. Once it is set, only software can clear it.
It is not recommended that software ever set this bit, except in cases where it is restoring a
prior saved state.

6 PendPSB 0 If IA32_RTIT_CTL.InjectPsbPmiOnEnable[56] = 1, the processor sets this bit when the
threshold for a PSB+ to be inserted has been reached. The processor will clear this bit when
the PSB+ has been inserted into the trace. If PendPSB = 1 and InjectPsbPmiOnEnable = 1
when IA32_RTIT_CTL.TraceEn[0] transitions from 0 to 1, a PSB+ will be inserted into the
trace.

This field is reserved if CPUID.(EAX=14H, ECX=0):EBX[bit 6] = 0.

33-22 Vol. 3C

INTEL® PROCESSOR TRACE

33.2.8.5 IA32_RTIT_ADDRn_A and IA32_RTIT_ADDRn_B MSRs
The role of the IA32_RTIT_ADDRn_A/B register pairs, for each n, is determined by the corresponding ADDRn_CFG
fields in IA32_RTIT_CTL (see Section 33.2.8.2). The number of these register pairs is enumerated by
CPUID.(EAX=14H, ECX=1):EAX.RANGECNT[2:0].
• Processors that enumerate support for 1 range support:

— IA32_RTIT_ADDR0_A, IA32_RTIT_ADDR0_B
• Processors that enumerate support for 2 ranges support:

— IA32_RTIT_ADDR0_A, IA32_RTIT_ADDR0_B

— IA32_RTIT_ADDR1_A, IA32_RTIT_ADDR1_B
• Processors that enumerate support for 3 ranges support:

— IA32_RTIT_ADDR0_A, IA32_RTIT_ADDR0_B

— IA32_RTIT_ADDR1_A, IA32_RTIT_ADDR1_B

— IA32_RTIT_ADDR2_A, IA32_RTIT_ADDR2_B
• Processors that enumerate support for 4 ranges support:

— IA32_RTIT_ADDR0_A, IA32_RTIT_ADDR0_B

— IA32_RTIT_ADDR1_A, IA32_RTIT_ADDR1_B

— IA32_RTIT_ADDR2_A, IA32_RTIT_ADDR2_B

— IA32_RTIT_ADDR3_A, IA32_RTIT_ADDR3_B
Each register has a single 64-bit field that holds a linear address value. Writes must ensure that the address is in
canonical form, otherwise a general-protection fault (#GP) fault will result.
Each MSR can be written only when IA32_RTIT_CTL.TraceEn is 0; otherwise WRMSR causes a general-protection
fault (#GP).

33.2.8.6 IA32_RTIT_CR3_MATCH MSR
The IA32_RTIT_CR3_MATCH register is compared against CR3 when IA32_RTIT_CTL.CR3Filter is 1. Bits 63:5 hold
the CR3 address value to match, bits 4:0 are reserved to 0. For more details on CR3 filtering and the treatment of
this register, see Section 33.2.5.2.

7 PendTopaPMI 0 If IA32_RTIT_CTL.InjectPsbPmiOnEnable[56] = 1, the processor sets this bit when the
threshold for a ToPA PMI to be inserted has been reached. Software should clear this bit once
the ToPA PMI has been handled, see “ToPA PMI” for details. If PendTopaPMI = 1 and
InjectPsbPmiOnEnable = 1 when IA32_RTIT_CTL.TraceEn[0] transitions from 0 to 1, a PMI will
be pended.

This field is reserved if CPUID.(EAX=14H, ECX=0):EBX[bit 6] = 0.

31:8 Reserved 0 Must be 0.

48:32 PacketByteCnt 0 This field is written by the processor, and holds a count of packet bytes that have been sent
out. The processor also uses this field to determine when the next PSB packet should be
inserted. Note that the processor may clear or modify this field at any time while
IA32_RTIT_CTL.TraceEn=1. It will have a stable value when IA32_RTIT_CTL.TraceEn=0.

See Section 33.4.2.17 for details.

This field is reserved when CPUID.(EAX=14H,ECX=0):EBX[bit 1] (“Configurable PSB and
CycleAccurate Mode Supported”) is 0.

63:49 Reserved 0 Must be 0.

Table 33-7. IA32_RTIT_STATUS MSR

Position Bit Name At Reset Bit Description

Vol. 3C 33-23

INTEL® PROCESSOR TRACE

This MSR is accessible if CPUID.(EAX=14H, ECX=0):EBX[bit 0], “CR3 Filtering Support”, is 1. This MSR can be
written only when IA32_RTIT_CTL.TraceEn is 0; otherwise WRMSR causes a general-protection fault (#GP).
IA32_RTIT_CR3_MATCH[4:0] are reserved and must be 0; an attempt to set those bits using WRMSR causes a
#GP.

33.2.8.7 IA32_RTIT_OUTPUT_BASE MSR
This MSR is used to configure the trace output destination, when output is directed to memory
(IA32_RTIT_CTL.FabricEn = 0). The size of the address field is determined by the maximum physical address width
(MAXPHYADDR), as reported by CPUID.80000008H:EAX[7:0].
When the ToPA output scheme is used, the processor may update this MSR when packet generation is enabled, and
those updates are asynchronous to instruction execution. Therefore, the values in this MSR should be considered
unreliable unless packet generation is disabled (IA32_RTIT_CTL.TraceEn = 0).
Accesses to this MSR are supported only if Intel PT output to memory is supported, hence when either
CPUID.(EAX=14H, ECX=0):ECX[bit 0] or CPUID.(EAX=14H, ECX=0):ECX[bit 2] are set. Otherwise WRMSR or
RDMSR cause a general-protection fault (#GP). If supported, this MSR can be written only when
IA32_RTIT_CTL.TraceEn is 0; otherwise WRMSR causes a general-protection fault (#GP).

33.2.8.8 IA32_RTIT_OUTPUT_MASK_PTRS MSR
This MSR holds any mask or pointer values needed to indicate where the next byte of trace output should be
written. The meaning of the values held in this MSR depend on whether the ToPA output mechanism is in use. See
Section 33.2.7.2 for details.
The processor updates this MSR while when packet generation is enabled, and those updates are asynchronous to
instruction execution. Therefore, the values in this MSR should be considered unreliable unless packet generation
is disabled (IA32_RTIT_CTL.TraceEn = 0).
Accesses to this MSR are supported only if Intel PT output to memory is supported, hence when either
CPUID.(EAX=14H, ECX=0):ECX[bit 0] or CPUID.(EAX=14H, ECX=0):ECX[bit 2] are set. Otherwise WRMSR or
RDMSR cause a general-protection fault (#GP). If supported, this MSR can be written only when
IA32_RTIT_CTL.TraceEn is 0; otherwise WRMSR causes a general-protection fault (#GP).

Table 33-8. IA32_RTIT_OUTPUT_BASE MSR

Position Bit Name At Reset Bit Description

6:0 Reserved 0 Must be 0.

MAXPHYADDR-1:7 BasePhysAddr 0 The base physical address. How this address is used depends on the value of
IA32_RTIT_CTL.ToPA:

0: This is the base physical address of a single, contiguous physical output region.
This could be mapped to DRAM or to MMIO, depending on the value.

The base address should be aligned with the size of the region, such that none of
the 1s in the mask value(Section 33.2.8.8) overlap with 1s in the base address. If
the base is not aligned, an operational error will result (see Section 33.3.10).

1: The base physical address of the current ToPA table. The address must be 4K
aligned. Writing an address in which bits 11:7 are non-zero will not cause a #GP, but
an operational error will be signaled once TraceEn is set. See “ToPA Errors” in
Section 33.2.7.2, as well as Section 33.3.10.

63:MAXPHYADDR Reserved 0 Must be 0.

33-24 Vol. 3C

INTEL® PROCESSOR TRACE

33.2.9 Interaction of Intel® Processor Trace and Other Processor Features

33.2.9.1 Intel® Transactional Synchronization Extensions (Intel® TSX)
The operation of Intel TSX is described in Chapter 14 of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1. For tracing purpose, packet generation does not distinguish between hardware lock elision
(HLE) and restricted transactional memory (RTM), but speculative execution does have impacts on the trace
output. Specifically, packets are generated as instructions complete, even for instructions in a transactional region
that is later aborted. For this reason, debugging software will need indication of the beginning and end of a trans-
actional region; this will allow software to understand when instructions are part of a transactional region and
whether that region has been committed.
To enable this, TSX information is included in a MODE packet leaf. The mode bits in the leaf are:
• InTX: Set to 1 on an TSX transaction begin, and cleared on transaction commit or abort.
• TXAbort: Set to 1 only when InTX transitions from 1 to 0 on an abort. Cleared otherwise.
If BranchEn=1, this MODE packet will be sent each time the transaction status changes. See Table 33-10 for
details.

Table 33-9. IA32_RTIT_OUTPUT_MASK_PTRS MSR

Position Bit Name At Reset Bit Description

6:0 LowerMask 7FH Forced to 1, writes are ignored.

31:7 MaskOrTableO
ffset

0 The use of this field depends on the value of IA32_RTIT_CTL.ToPA:

0: This field holds bits 31:7 of the mask value for the single, contiguous physical output
region. The size of this field indicates that regions can be of size 128B up to 4GB. This value
(combined with the lower 7 bits, which are reserved to 1) will be ANDed with the
OutputOffset field to determine the next write address. All 1s in this field should be
consecutive and starting at bit 7, otherwise the region will not be contiguous, and an
operational error (Section 33.3.10) will be signaled when TraceEn is set.

1: This field holds bits 27:3 of the offset pointer into the current ToPA table. This value can
be added to the IA32_RTIT_OUTPUT_BASE value to produce a pointer to the current ToPA
table entry, which itself is a pointer to the current output region. In this scenario, the lower 7
reserved bits are ignored. This field supports tables up to 256 MBytes in size.

63:32 OutputOffset 0 The use of this field depends on the value of IA32_RTIT_CTL.ToPA:

0: This is bits 31:0 of the offset pointer into the single, contiguous physical output region.
This value will be added to the IA32_RTIT_OUTPUT_BASE value to form the physical address
at which the next byte of packet output data will be written. This value must be less than or
equal to the MaskOrTableOffset field, otherwise an operational error (Section 33.3.10) will
be signaled when TraceEn is set.

1: This field holds bits 31:0 of the offset pointer into the current ToPA output region. This
value will be added to the output region base field, found in the current ToPA table entry, to
form the physical address at which the next byte of trace output data will be written.

This value must be less than the ToPA entry size, otherwise an operational error (Section
33.3.10) will be signaled when TraceEn is set.

Table 33-10. TSX Packet Scenarios with BranchEn=1

TSX Event Instruction Packets

Transaction Begin Either XBEGIN or XACQUIRE lock (the latter if executed
transactionally)

MODE(TXAbort=0, InTX=1), FUP(CurrentIP)

Transaction
Commit

Either XEND or XRELEASE lock, if transactional execution
ends. This happens only on the outermost commit

MODE(TXAbort=0, InTX=0), FUP(CurrentIP)

Vol. 3C 33-25

INTEL® PROCESSOR TRACE

The CurrentIP listed above is the IP of the associated instruction. The TargetIP is the IP of the next instruction to
be executed; for HLE, this is the XACQUIRE lock; for RTM, this is the fallback handler.
Intel PT stores are non-transactional, and thus packet writes are not rolled back on TSX abort.

33.2.9.2 TSX and IP Filtering
A complication with tracking transactions is handling transactions that start or end outside of the tracing region.
Transactions can’t span across a change in ContextEn, because CPL changes and CR3 changes each cause aborts.
But a transaction can start within the IP filter region and end outside it.
To assist the decoder handling this situation, MODE.TSX packets can be sent even if FilterEn=0, though there will
be no FUP attached. Instead, they will merely serve to indicate to the decoder when transactions are active and
when they are not. When tracing resumes (due to PacketEn=1), the last MODE.TSX preceding the TIP.PGE will indi-
cate the current transaction status.

33.2.9.3 System Management Mode (SMM)
SMM code has special privileges that non-SMM code does not have. Intel Processor Trace can be used to trace SMM
code, but special care is taken to ensure that SMM handler context is not exposed in any non-SMM trace collection.
Additionally, packet output from tracing non-SMM code cannot be written into memory space that is either
protected by SMRR or used by the SMM handler.
SMM is entered via a system management interrupt (SMI). SMI delivery saves the value of
IA32_RTIT_CTL.TraceEn into SMRAM and then clears it, thereby disabling packet generation.
The saving and clearing of IA32_RTIT_CTL.TraceEn ensures two things:

1. All internally buffered packet data is flushed before entering SMM (see Section 33.2.8.2).

2. Packet generation ceases before entering SMM, so any tracing that was configured outside SMM does not
continue into SMM. No SMM instruction pointers or other state will be exposed in the non-SMM trace.

When the RSM instruction is executed to return from SMM, the TraceEn value that was saved by SMI delivery is
restored, allowing tracing to be resumed. As is done any time packet generation is enabled, ContextEn is re-eval-
uated, based on the values of CPL, CR3, etc., established by RSM.
Like other interrupts, delivery of an SMI produces a FUP containing the IP of the next instruction to execute. By
toggling TraceEn, SMI and RSM can produce TIP.PGD and TIP.PGE packets, respectively, indicating that tracing was
disabled or re-enabled. See Table 33.7 for more information about packets entering and leaving SMM.
Although #SMI and RSM change CR3, PIP packets are not generated in these cases. With #SMI tracing is disabled
before the CR3 change; with RSM TraceEn is restored after CR3 is written.
TraceEn must be cleared before executing RSM, otherwise it will cause a shutdown. Further, on processors that
restrict use of Intel PT with LBRs (see Section 33.3.1.2), any RSM that results in enabling of both will cause a shut-
down.
Intel PT can support tracing of System Transfer Monitor operating in SMM, see Section 33.6.

Transaction Abort XABORT or other transactional abort MODE(TXAbort=1, InTX=0), FUP(CurrentIP),
TIP(TargetIP)

Other One of the following:
• Nested XBEGIN or XACQUIRE lock
• An outer XACQUIRE lock that doesn’t begin a transaction

(InTX not set)
• Non-outermost XEND or XRELEASE lock

None. No change to TSX mode bits for these
cases.

Table 33-10. TSX Packet Scenarios with BranchEn=1

TSX Event Instruction Packets

33-26 Vol. 3C

INTEL® PROCESSOR TRACE

33.2.9.4 Virtual-Machine Extensions (VMX)
Initial implementations of Intel Processor Trace do not support tracing in VMX operation. Such processors indicate
this by returning 0 for IA32_VMX_MISC[bit 14]. On these processors, execution of the VMXON instruction clears
IA32_RTIT_CTL.TraceEn and any attempt to write IA32_RTIT_CTL in VMX operation causes a general-protection
exception (#GP).
Processors that support Intel Processor Trace in VMX operation return 1 for IA32_VMX_MISC[bit 14]. Details of
tracing in VMX operation are described in Section 33.4.2.26.

33.2.9.5 Intel® Software Guard Extensions (Intel® SGX)
Intel SGX provides an application with the ability to instantiate a protective container (an enclave) with confidenti-
ality and integrity (see the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3D). On a
processor with both Intel PT and Intel SGX enabled, when executing code within a production enclave, no control
flow packets are produced by Intel PT. An enclave entry will clear ContextEn, thereby blocking control flow packet
generation. A TIP.PGD packet will be generated if PacketEn=1 at the time of the entry.
Upon enclave exit, ContextEn will no longer be forced to 0. If other enables are set at the time, a TIP.PGE may be
generated to indicate that tracing is resumed.
During the enclave execution, Intel PT remains enabled, and periodic or timing packets such as PSB, TSC, MTC, or
CBR can still be generated. No IPs or other architectural state will be exposed.
For packet generation examples on enclave entry or exit, see Section 33.7.

Debug Enclaves

Intel SGX allows an enclave to be configured with relaxed protection of confidentiality for debug purposes, see the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3D. In a debug enclave, Intel PT continues
to function normally. Specifically, ContextEn is not impacted by an enclave entry or exit. Hence, the generation of
ContextEn-dependent packets within a debug enclave is allowed.

33.2.9.6 SENTER/ENTERACCS and ACM
GETSEC[SENTER] and GETSEC[ENTERACCS] instructions clear TraceEn, and it is not restored when those instruc-
tion complete. SENTER also causes TraceEn to be cleared on other logical processors when they rendezvous and
enter the SENTER sleep state. In these two cases, the disabling of packet generation is not guaranteed to flush
internally buffered packets. Some packets may be dropped.
When executing an authenticated code module (ACM), packet generation is silently disabled during ACRAM setup.
TraceEn will be cleared, but no TIP.PGD packet is generated. After completion of the module, the TraceEn value will
be restored. There will be no TIP.PGE packet, but timing packets, like TSC and CBR, may be produced.

33.2.9.7 Intel® Memory Protection Extensions (Intel® MPX)
Bounds exceptions (#BR) caused by Intel MPX are treated like other exceptions, producing FUP and TIP packets
that indicate the source and destination IPs.

33.3 CONFIGURATION AND PROGRAMMING GUIDELINE

33.3.1 Detection of Intel Processor Trace and Capability Enumeration
Processor support for Intel Processor Trace is indicated by CPUID.(EAX=07H,ECX=0H):EBX[bit 25] = 1. CPUID
function 14H is dedicated to enumerate the resource and capability of processors that report
CPUID.(EAX=07H,ECX=0H):EBX[bit 25] = 1. Different processor generations may have architecturally-defined
variation in capabilities. Table 33-11 describes details of the enumerable capabilities that software must use across
generations of processors that support Intel Processor Trace.

Vol. 3C 33-27

INTEL® PROCESSOR TRACE

Table 33-11. CPUID Leaf 14H Enumeration of Intel Processor Trace Capabilities

CPUID.(EAX=14H,ECX=0) Name Description Behavior

Register Bits

EAX 31:0 Maximum valid sub-leaf Index Specifies the index of the maximum valid sub-leaf for this CPUID leaf.

EBX

0 CR3 Filtering Support 1: Indicates that IA32_RTIT_CTL.CR3Filter can be set to 1, and that
IA32_RTIT_CR3_MATCH MSR can be accessed. See Section 33.2.8.

0: Indicates that writes that set IA32_RTIT_CTL.CR3Filter to 1, or any
access to IA32_RTIT_CR3_MATCH, will generate a #GP exception.

1 Configurable PSB and Cycle-
Accurate Mode Supported

1: (a) IA32_RTIT_CTL.PSBFreq can be set to a non-zero value, in order to
select the preferred PSB frequency (see below for allowed values). (b)
IA32_RTIT_STATUS.PacketByteCnt can be set to a non-zero value, and
will be incremented by the processor when tracing to indicate progress
towards the next PSB. If trace packet generation is enabled by setting
TraceEn, a PSB will only be generated if PacketByteCnt=0. (c)
IA32_RTIT_CTL.CYCEn can be set to 1 to enable Cycle-Accurate Mode.
See Section 33.2.8.

0: (a) Any attempt to write a non-zero value to IA32_RTIT_CTL.PSBFreq
or IA32_RTIT_STATUS.PacketByteCnt will generate a #GP exception. (b)
If trace packet generation is enabled by setting TraceEn, a PSB is always
generated. (c) Any attempt to write a non-zero value to
IA32_RTIT_CTL.CYCEn or IA32_RTIT_CTL.CycThresh will generate a #GP
exception.

2 IP Filtering and TraceStop
supported, and Preserve Intel
PT MSRs across warm reset

1: (a) IA32_RTIT_CTL provides at one or more ADDRn_CFG field to
configure the corresponding address range MSRs for IP Filtering or IP
TraceStop. Each ADDRn_CFG field accepts a value in the range of 0:2
inclusive. The number of ADDRn_CFG fields is reported by
CPUID.(EAX=14H, ECX=1):EAX.RANGECNT[2:0]. (b) At least one register
pair IA32_RTIT_ADDRn_A and IA32_RTIT_ADDRn_B are provided to
configure address ranges for IP filtering or IP TraceStop. (c) On warm
reset, all Intel PT MSRs will retain their pre-reset values, though
IA32_RTIT_CTL.TraceEn will be cleared. The Intel PT MSRs are listed in
Section 33.2.8.

0: (a) An Attempt to write IA32_RTIT_CTL.ADDRn_CFG with non-zero
encoding values will cause #GP. (b) Any access to IA32_RTIT_ADDRn_A
and IA32_RTIT_ADDRn_B, will generate a #GP exception. (c) On warm
reset, all Intel PT MSRs will be cleared.

3 MTC Supported 1: IA32_RTIT_CTL.MTCEn can be set to 1, and MTC packets will be
generated. See Section 33.2.8.

0: An attempt to set IA32_RTIT_CTL.MTCEn or IA32_RTIT_CTL.MTCFreq
to a non-zero value will generate a #GP exception.

4 PTWRITE Supported 1: Writes can set IA32_RTIT_CTL[12] (PTWEn) and IA32_RTIT_CTL[5]
(FUPonPTW), and PTWRITE can generate packets.

0: Writes that set IA32_RTIT_CTL[12] or IA32_RTIT_CTL[5] will
generate a #GP exception, and PTWRITE will #UD fault.

5 Power Event Trace Supported 1: Writes can set IA32_RTIT_CTL[4] (PwrEvtEn), enabling Power Event
Trace packet generation.

0: Writes that set IA32_RTIT_CTL[4] will generate a #GP exception.

33-28 Vol. 3C

INTEL® PROCESSOR TRACE

If CPUID.(EAX=14H, ECX=0):EAX reports a non-zero value, additional capabilities of Intel Processor Trace are
described in the sub-leaves of CPUID leaf 14H.

6 PSB and PMI Preservation
Supported

1: Writes can set IA32_RTIT_CTL[56] (InjectPsbPmiOnEnable), enabling
the processor to set IA32_RTIT_STATUS[7] (PendTopaPMI) and/or
IA32_RTIT_STATUS[6] (PendPSB) in order to preserve ToPA PMIs and/or
PSBs otherwise lost due to Intel PT disable. Writes can also set
PendToPAPMI and PendPSB.

0: Writes that set IA32_RTIT_CTL[56], IA32_RTIT_STATUS[7], or
IA32_RTIT_STATUS[6] will generate a #GP exception.

7 Event Trace Supported 1: Writes can set IA32_RTIT_CTL[31] (EventEn), enabling Event Trace
packet generation.

0: Writes that set IA32_RTIT_CTL[31] will generate a #GP exception.

8 TNT Disable Supported 1: Writes can set IA32_RTIT_CTL[55] (DisTNT), disabling TNT packet
generation.

0: Writes that set IA32_RTIT_CTL[55] will generate a #GP exception.

31:9 Reserved

ECX

0 ToPA Output Supported 1: Tracing can be enabled with IA32_RTIT_CTL.ToPA = 1, hence utilizing
the ToPA output scheme (Section 33.2.7.2) IA32_RTIT_OUTPUT_BASE
and IA32_RTIT_OUTPUT_MASK_PTRS MSRs can be accessed.

0: Unless CPUID.(EAX=14H, ECX=0):ECX.SNGLRNGOUT[bit 2] = 1. writes
to IA32_RTIT_OUTPUT_BASE or IA32_RTIT_OUTPUT_MASK_PTRS.
MSRs will generate a #GP exception.

1 ToPA Tables Allow Multiple
Output Entries

1: ToPA tables can hold any number of output entries, up to the
maximum allowed by the MaskOrTableOffset field of
IA32_RTIT_OUTPUT_MASK_PTRS.

0: ToPA tables can hold only one output entry, which must be followed
by an END=1 entry which points back to the base of the table.

Further, ToPA PMIs will be delivered before the region is filled. See ToPA
PMI in Section 33.2.7.2.

If there is more than one output entry before the END entry, or if the
END entry has the wrong base address, an operational error will be
signaled (see “ToPA Errors” in Section 33.2.7.2).

2 Single-Range Output
Supported

1: Enabling tracing (TraceEn=1) with IA32_RTIT_CTL.ToPA=0 is
supported.

0: Unless CPUID.(EAX=14H, ECX=0):ECX.TOPAOUT[bit 0] = 1. writes to
IA32_RTIT_OUTPUT_BASE or IA32_RTIT_OUTPUT_MASK_PTRS. MSRs
will generate a #GP exception.

3 Output to Trace Transport
Subsystem Supported

1: Setting IA32_RTIT_CTL.FabricEn to 1 is supported.

0: IA32_RTIT_CTL.FabricEn is reserved. Write 1 to
IA32_RTIT_CTL.FabricEn will generate a #GP exception.

30:4 Reserved

31 IP Payloads are LIP 1: Generated packets which contain IP payloads have LIP values, which
include the CS base component.

0: Generated packets which contain IP payloads have RIP values, which
are the offset from CS base.

EDX 31:0 Reserved

Table 33-11. CPUID Leaf 14H Enumeration of Intel Processor Trace Capabilities (Contd.)

CPUID.(EAX=14H,ECX=0) Name Description Behavior

Register Bits

Vol. 3C 33-29

INTEL® PROCESSOR TRACE

Table 33-12. CPUID Leaf 14H, sub-leaf 1H Enumeration of Intel Processor Trace Capabilities

CPUID.(EAX=14H,ECX=1) Name Description Behavior

Register Bits

EAX 2:0 Number of Address Ranges A non-zero value specifies the number ADDRn_CFG field supported in
IA32_RTIT_CTL and the number of register pair
IA32_RTIT_ADDRn_A/IA32_RTIT_ADDRn_B supported for IP filtering
and IP TraceStop.

NOTE: Currently, no processors support more than 4 address ranges.

15:3 Reserved

31:16 Bitmap of supported MTC
Period Encodings

The non-zero bits indicate the map of supported encoding values for
the IA32_RTIT_CTL.MTCFreq field. This applies only if
CPUID.(EAX=14H, ECX=0):EBX[bit 3] = 1 (MTC Packet generation is
supported), otherwise the MTCFreq field is reserved to 0.

Each bit position in this field represents 1 encoding value in the 4-bit
MTCFreq field (ie, bit 0 is associated with encoding value 0). For each
bit:

1: MTCFreq can be assigned the associated encoding value.

0: MTCFreq cannot be assigned to the associated encoding value. A
write to IA32_RTIT_CTLMTCFreq with unsupported encoding will cause
#GP fault.

EBX 15:0 Bitmap of supported Cycle
Threshold values

The non-zero bits indicate the map of supported encoding values for
the IA32_RTIT_CTL.CycThresh field. This applies only if
CPUID.(EAX=14H, ECX=0):EBX[bit 1] = 1 (Cycle-Accurate Mode is
Supported), otherwise the CycThresh field is reserved to 0. See Section
33.2.8.

Each bit position in this field represents 1 encoding value in the 4-bit
CycThresh field (ie, bit 0 is associated with encoding value 0). For each
bit:

1: CycThresh can be assigned the associated encoding value.

0: CycThresh cannot be assigned to the associated encoding value. A
write to CycThresh with unsupported encoding will cause #GP fault.

31:16 Bitmap of supported
Configurable PSB Frequency
encoding

The non-zero bits indicate the map of supported encoding values for
the IA32_RTIT_CTL.PSBFreq field. This applies only if
CPUID.(EAX=14H, ECX=0):EBX[bit 1] = 1 (Configurable PSB is
supported), otherwise the PSBFreq field is reserved to 0. See Section
33.2.8.

Each bit position in this field represents 1 encoding value in the 4-bit
PSBFreq field (ie, bit 0 is associated with encoding value 0). For each
bit:

1: PSBFreq can be assigned the associated encoding value.

0: PSBFreq cannot be assigned to the associated encoding value. A
write to PSBFreq with unsupported encoding will cause #GP fault.

ECX 31:0 Reserved

EDX 31:0 Reserved

33-30 Vol. 3C

INTEL® PROCESSOR TRACE

33.3.1.1 Packet Decoding of RIP versus LIP
FUP, TIP, TIP.PGE, and TIP.PGE packets can contain an instruction pointer (IP) payload. On some processor gener-
ations, this payload will be an effective address (RIP), while on others this will be a linear address (LIP). In the
former case, the payload is the offset from the current CS base address, while in the latter it is the sum of the offset
and the CS base address (Note that in real mode, the CS base address is the value of CS<<4, while in protected
mode the CS base address is the base linear address of the segment indicated by the CS register.). Which IP type
is in use is indicated by enumeration (see CPUID.(EAX=14H, ECX=0):ECX.LIP[bit 31] in Table 33-11).
For software that executes while the CS base address is 0 (including all software executing in 64-bit mode), the
difference is indistinguishable. A trace decoder must account for cases where the CS base address is not 0 and the
resolved LIP will not be evident in a trace generated on a CPU that enumerates use of RIP. This is likely to cause
problems when attempting to link the trace with the associated binaries.
Note that IP comparison logic, for IP filtering and TraceStop range calculation, is based on the same IP type as
these IP packets. For processors that output RIP, the IP comparison mechanism is also based on RIP, and hence on
those processors RIP values should be written to IA32_RTIT_ADDRn_[AB] MSRs. This can produce differing
behavior if the same trace configuration setting is run on processors reporting different IP types, i.e.,
CPUID.(EAX=14H, ECX=0):ECX.LIP[bit 31]. Care should be taken to check CPUID when configuring IP filters.

33.3.1.2 Model Specific Capability Restrictions
Some processor generations impose restrictions that prevent use of LBRs/BTS/BTM/LERs when software has
enabled tracing with Intel Processor Trace. On these processors, when TraceEn is set, updates of LBR, BTS, BTM,
LERs are suspended but the states of the corresponding IA32_DEBUGCTL control fields remained unchanged as if
it were still enabled. When TraceEn is cleared, the LBR array is reset, and LBR/BTS/BTM/LERs updates will resume.
Further, reads of these registers will return 0, and writes will be dropped.
The list of MSRs whose updates/accesses are restricted follows.
• MSR_LASTBRANCH_x_TO_IP, MSR_LASTBRANCH_x_FROM_IP, MSR_LBR_INFO_x, MSR_LASTBRANCH_TOS
• MSR_LER_FROM_LIP, MSR_LER_TO_LIP
• MSR_LBR_SELECT
For processors with CPUID DisplayFamily_DisplayModel signatures of 06_3DH, 06_47H, 06_4EH, 06_4FH, 06_56H,
and 06_5EH, the use of Intel PT and LBRs are mutually exclusive.

33.3.2 Enabling and Configuration of Trace Packet Generation
To configure trace packets, enable packet generation, and capture packets, software starts with using CPUID
instruction to detect its feature flag, CPUID.(EAX=07H,ECX=0H):EBX[bit 25] = 1; followed by enumerating the
capabilities described in Section 33.3.1.
Based on the capability queried from Section 33.3.1, software must configure a number of model-specific registers.
This section describes programming considerations related to those MSRs.

33.3.2.1 Enabling Packet Generation
When configuring and enabling packet generation, the IA32_RTIT_CTL MSR should be written after any other Intel
PT MSRs have been written, since writes to the other configuration MSRs cause a general-protection fault (#GP) if
TraceEn = 1. If a prior trace collection context is not being restored, then software should first clear
IA32_RTIT_STATUS. This is important since the Stopped, and Error fields are writable; clearing the MSR clears any
values that may have persisted from prior trace packet collection contexts. See Section 33.2.8.2 for details of
packets generated by setting TraceEn to 1.
If setting TraceEn to 1 causes an operational error (see Section 33.3.10), there may be a delay after the WRMSR
completes before the error is signaled in the IA32_RTIT_STATUS MSR.
While packet generation is enabled, the values of some configuration MSRs (e.g., IA32_RTIT_STATUS and
IA32_RTIT_OUTPUT_*) are transient, and reads may return values that are out of date. Only after packet genera-
tion is disabled (by clearing TraceEn) do reads of these MSRs return reliable values.

Vol. 3C 33-31

INTEL® PROCESSOR TRACE

33.3.2.2 Disabling Packet Generation
After disabling packet generation by clearing IA32_RTIT_CTL, it is advisable to read the IA32_RTIT_STATUS MSR
(Section 33.2.8.4):
• If the Error bit is set, an operational error was encountered, and the trace is most likely compromised. Software

should check the source of the error (by examining the output MSR values), correct the source of the problem,
and then attempt to gather the trace again. For details on operational errors, see Section 33.3.10. Software
should clear IA32_RTIT_STATUS.Error before re-enabling packet generation.

• If the Stopped bit is set, software execution encountered an IP TraceStop (see Section 33.2.5.3) or the ToPA
Stop condition (see “ToPA STOP” in Section 33.2.7.2) before packet generation was disabled.

33.3.3 Flushing Trace Output
Packets are first buffered internally and then written out asynchronously. To collect packet output for post-
processing, a collector needs first to ensure that all packet data has been flushed from internal buffers. Software
can ensure this by stopping packet generation by clearing IA32_RTIT_CTL.TraceEn (see “Disabling Packet Genera-
tion” in Section 33.2.8.2).
When software clears IA32_RTIT_CTL.TraceEn to flush out internally buffered packets, the logical processor issues
an SFENCE operation which ensures that WC trace output stores will be ordered with respect to the next store, or
serializing operation. A subsequent read from the same logical processor will see the flushed trace data, while a
read from another logical processor should be preceded by a store, fence, or architecturally serializing operation on
the tracing logical processor.
When the flush operations complete, the IA32_RTIT_OUTPUT_* MSR values indicate where the trace ended. While
TraceEn is set, these MSRs may hold stale values. Further, if a ToPA region with INT=1 is filled, meaning a ToPA PMI
has been triggered, IA32_PERF_GLOBAL_STATUS.Trace_ToPA_PMI[55] will be set by the time the flush completes.

33.3.4 Warm Reset
The MSRs software uses to program Intel Processor Trace are cleared after a power-on RESET (or cold RESET). On
a warm RESET, the contents of those MSRs can retain their values from before the warm RESET with the exception
that IA32_RTIT_CTL.TraceEn will be cleared (which may have the side effect of clearing some bits in
IA32_RTIT_STATUS).

33.3.5 Context Switch Consideration
To facilitate construction of instruction execution traces at the granularity of a software process or thread context,
software can save and restore the states of the trace configuration MSRs across the process or thread context
switch boundary. The principle is the same as saving and restoring the typical architectural processor states across
context switches.

33.3.5.1 Manual Trace Configuration Context Switch
The configuration can be saved and restored through a sequence of instructions of RDMSR, management of MSR
content and WRMSR. To stop tracing and to ensure that all configuration MSRs contain stable values, software must
clear IA32_RTIT_CTL.TraceEn before reading any other trace configuration MSRs. The recommended method for
saving trace configuration context manually follows:

1. RDMSR IA32_RTIT_CTL, save value to memory

2. WRMSR IA32_RTIT_CTL with saved value from RDMSR above and TraceEn cleared

3. RDMSR all other configuration MSRs whose values had changed from previous saved value, save changed
values to memory

33-32 Vol. 3C

INTEL® PROCESSOR TRACE

When restoring the trace configuration context, IA32_RTIT_CTL should be restored last:

1. Read saved configuration MSR values, aside from IA32_RTIT_CTL, from memory, and restore them with
WRMSR

2. Read saved IA32_RTIT_CTL value from memory, and restore with WRMSR.

33.3.5.2 Trace Configuration Context Switch Using XSAVES/XRSTORS
On processors whose XSAVE feature set supports XSAVES and XRSTORS, the Trace configuration state can be
saved using XSAVES and restored by XRSTORS, in conjunction with the bit field associated with supervisory state
component in IA32_XSS. See Chapter 13, “Managing State Using the XSAVE Feature Set‚” of Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1.

33.3.6 Cycle-Accurate Mode
Intel PT can be run in a cycle-accurate mode which enables CYC packets (see Section 33.4.2.14) that provide low-
level information in the processor core clock domain. This cycle counter data in CYC packets can be used to
compute IPC (Instructions Per Cycle), or to track wall-clock time on a fine-grain level.
To enable cycle-accurate mode packet generation, software should set IA32_RTIT_CTL.CYCEn=1. It is recom-
mended that software also set TSCEn=1 anytime cycle-accurate mode is in use. With this, all CYC-eligible packets
will be preceded by a CYC packet, the payload of which indicates the number of core clock cycles since the last CYC
packet. In cases where multiple CYC-eligible packets are generated in a single cycle, only a single CYC will be
generated before the CYC-eligible packets, otherwise each CYC-eligible packet will be preceded by its own CYC. The
CYC-eligible packets are:
• TNT, TIP, TIP.PGE, TIP.PGD, MODE.EXEC, MODE.TSX, PIP, VMCS, OVF, MTC, TSC, PTWRITE, EXSTOP
TSC packets are generated when there is insufficient information to reconstruct wall-clock time, due to tracing
being disabled (TriggerEn=0), or power down scenarios like a transition to a deep-sleep MWAIT C-state. In this
case, the CYC that is generated along with the TSC will indicate the number of cycles actively tracing (those
powered up, with TriggerEn=1) executed between the last CYC packet and the TSC packet. And hence the amount
of time spent while tracing is inactive can be inferred from the difference in time between that expected based on
the CYC value, and the actual time indicated by the TSC.
Additional CYC packets may be sent stand-alone, so that the processor can ensure that the decoder is aware of the
number of cycles that have passed before the internal hardware counter wraps, or is reset due to other micro-
architectural condition. There is no guarantee at what intervals these standalone CYC packets will be sent, except
that they will be sent before the wrap occurs. An illustration is given below.

Example 33-1. An Illustrative CYC Packet Example

Time (cycles) Instruction Snapshot Generated Packets Comment

x call %eax CYC(?), TIP ?Elapsed cycles from the previous CYC unknown

x + 2 call %ebx CYC(2), TIP 1 byte CYC packet; 2 cycles elapsed from the previous CYC

x + 8 jnz Foo (not taken) CYC(6) 1 byte CYC packet

x + 9 ret (compressed)

x + 12 jnz Bar (taken)

x + 16 ret (uncompressed) TNT, CYC(8), TIP 1 byte CYC packet

x + 4111 CYC(4095) 2 byte CYC packet

x + 12305 CYC(8194) 3 byte CYC packet

x + 16332 mov cr3, %ebx CYC(4027), PIP 2 byte CYC packet

Vol. 3C 33-33

INTEL® PROCESSOR TRACE

33.3.6.1 Cycle Counter
The cycle counter is implemented in hardware (independent of the time stamp counter or performance monitoring
counters), and is a simple incrementing counter that does not saturate, but rather wraps. The size of the counter
is implementation specific.
The cycle counter is reset to zero any time that TriggerEn is cleared, and when a CYC packet is sent. The cycle
counter will continue to count when ContextEn or FilterEn are cleared, and cycle packets will still be generated. It
will not count during sleep states that result in Intel PT logic being powered-down, but will count up to the point
where clocks are disabled, and resume counting once they are re-enabled.

33.3.6.2 Cycle Packet Semantics
Cycle-accurate mode adheres to the following protocol:
• All packets that precede a CYC packet represent instructions or events that took place before the CYC time.
• All packets that follow a CYC packet represent instructions or events that took place at the same time as, or

after, the CYC time.
• The CYC-eligible packet that immediately follows a CYC packet represents an instruction or event that took

place at the same time as the CYC time.
These items above give the decoder a means to apply CYC packets to a specific instruction in the assembly stream.
Most packets represent a single instruction or event, and hence the CYC packet that precedes each of those
packets represents the retirement time of that instruction or event. In the case of TNT packets, up to 6 conditional
branches and/or compressed RETs may be contained in the packet. In this case, the preceding CYC packet provides
the retirement time of the first branch in the packet. It is possible that multiple branches retired in the same cycle
as that first branch in the TNT, but the protocol will not make that obvious. Also note that a MTC packet could be
generated in the same cycle as the first JCC in the TNT packet. In this case, the CYC would precede both the MTC
and the TNT, and apply to both.
Note that there are times when the cycle counter will stop counting, though cycle-accurate mode is enabled. After
any such scenario, a CYC packet followed by TSC packet will be sent. See Section 33.8.3.2 to understand how to
interpret the payload values

Multi-packet Instructions or Events

Some operations, such as interrupts or task switches, generate multiple packets. In these cases, multiple CYC
packets may be sent for the operation, preceding each CYC-eligible packet in the operation. An example, using a
task switch on a software interrupt, is shown below.

33.3.6.3 Cycle Thresholds
Software can opt to reduce the frequency of cycle packets, a trade-off to save bandwidth and intrusion at the
expense of precision. This is done by utilizing a cycle threshold (see Section 33.2.8.2).
IA32_RTIT_CTL.CycThresh indicates to the processor the minimum number of cycles that must pass before the
next CYC packet should be sent. If this value is 0, no threshold is used, and CYC packets can be sent every cycle in
which a CYC-eligible packet is generated. If this value is greater than 0, the hardware will wait until the associated

Example 33-2. An Example of CYC in the Presence of Multi-Packet Operations

Time (cycles) Instruction Snapshot Generated Packets

x jnz Foo (not taken) CYC(?)

x + 2 ret (compressed)

x + 8 jnz Bar (taken)

x + 9 jmp %eax TNT, CYC(9), TIP

x + 12 jnz Bar (not taken) CYC(3)

x + 32 int3 (task gate) TNT, FUP, CYC(10), PIP, CYC(20), MODE.Exec, TIP

33-34 Vol. 3C

INTEL® PROCESSOR TRACE

number of cycles have passed since the last CYC packet before sending another. CPUID provides the threshold
options for CycThresh, see Section 33.3.1.
Note that the cycle threshold does not dictate how frequently a CYC packet will be posted, it merely assigns the
maximum frequency. If the cycle threshold is 16, a CYC packet can be posted no more frequently than every 16
cycles. However, once that threshold of 16 cycles has passed, it still requires a new CYC-eligible packet to be gener-
ated before a CYC will be inserted. Table 33-13 illustrates the threshold behavior.

33.3.7 Decoder Synchronization (PSB+)
The PSB packet (Section 33.4.2.17) serves as a synchronization point for a trace-packet decoder. It is a pattern in
the trace log for which the decoder can quickly scan to align packet boundaries. No legal packet combination can
result in such a byte sequence. As such, it serves as the starting point for packet decode. To decode a trace log
properly, the decoder needs more than simply to be aligned: it needs to know some state and potentially some
timing information as well. The decoder should never need to retain any information (e.g., LastIP, call stack,
compound packet event) across a PSB; all compound packet events will be completed before a PSB, and any
compression state will be reset.
When a PSB packet is generated, it is followed by a PSBEND packet (Section 33.4.2.18). One or more packets may
be generated in between those two packets, and these inform the decoder of the current state of the processor.
These packets, known collectively as PSB+, should be interpreted as “status only”, since they do not imply any
change of state at the time of the PSB, nor are they associated directly with any instruction or event. Thus, the
normal binding and ordering rules that apply to these packets outside of PSB+ can be ignored when these packets
are between a PSB and PSBEND. They inform the decoder of the state of the processor at the time of the PSB.
PSB+ can include:
• Timestamp (TSC), if IA32_RTIT_CTL.TSCEn=1.
• Timestamp-MTC Align (TMA), if IA32_RTIT_CTL.TSCEn=1 && IA32_RTIT_CTL.MTCEn=1.
• Paging Information Packet (PIP), if ContextEn=1 and IA32_RTIT_CTL.OS=1. The non-root bit (NR) is set if the

logical processor is in VMX non-root operation and the “conceal VMX from PT” VM-execution control is 0.
• VMCS packet, if either the logical is in VMX root operation or the logical processor is in VMX non-root operation

and the “conceal VMX from PT” VM-execution control is 0.
• Core Bus Ratio (CBR).
• MODE.TSX, if ContextEn=1 and BranchEn = 1.
• MODE.Exec, if PacketEn=1.
• Flow Update Packet (FUP), if PacketEn=1.
PSB is generated only when TriggerEn=1; hence PSB+ has the same dependencies. The ordering of packets within
PSB+ is not fixed. Timing packets such as CYC and MTC may be generated between PSB and PSBEND, and their
meanings are the same as outside PSB+.

Table 33-13. An Illustrative CYC Packet Example

Time (cycles) Instruction Snapshot
Threshold

0 16 32 64

x jmp %eax CYC, TIP CYC, TIP CYC, TIP CYC, TIP

x + 9 call %ebx CYC, TIP TIP TIP TIP

x + 15 call %ecx CYC, TIP TIP TIP TIP

x + 30 jmp %edx CYC, TIP CYC, TIP TIP TIP

x + 38 mov cr3, %eax CYC, PIP PIP CYC, PIP PIP

x + 46 jmp [%eax] CYC, TIP CYC, TIP TIP TIP

x + 64 call %edx CYC, TIP CYC, TIP TIP CYC,TIP

x + 71 jmp %edx CYC, TIP TIP CYC,TIP TIP

Vol. 3C 33-35

INTEL® PROCESSOR TRACE

A PSB+ can be lost in some scenarios. If IA32_RTIT_STATUS.TriggerEn is cleared just as the PSB threshold is
reached, e.g., due to TraceEn being cleared, the PSB+ may not be generated. On processors that support PSB
preservation (CPUID.(EAX=14H, ECX=0):EBX[bit 6] = 1), setting IA32_RTIT_CTL.InjectPsbPmiOnEnable[56] = 1
will ensure that a PSB+ that is pending at the time PT is disabled will be recorded by setting
IA32_RTIT_STATUS.PendPSB[6] = 1. A PSB will be inserted, and PendPSB cleared, when PT is later re-enabled
while PendPSB = 1.
Note that an overflow can occur during PSB+, and this could cause the PSBEND packet to be lost. For this reason,
the OVF packet should also be viewed as terminating PSB+. If IA32_RTIT_STATUS.TriggerEn is cleared just as the
PSB threshold is reached, the PSB+ may not be generated. TriggerEn can be cleared by a WRMSR that clears
IA32_RTIT_CTL.TraceEn, a VM exit that clears IA32_RTIT_CTL.TraceEn, an #SMI, or any time that either
IA32_RTIT_STATUS.Stopped is set (e.g., by a TraceStop or ToPA stop condition) or IA32_RTIT_STATUS.Error is set
(e.g., by an Intel PT output error). On processors that support PSB preservation (CPUID.(EAX=14H,
ECX=0):EBX[bit 6] = 1), setting IA32_RTIT_CTL.InjectPsbPmiOnEnable[56] = 1 will ensure that a PSB+ that is
pending at the time PT is disabled will be recorded by setting IA32_RTIT_STATUS.PendPSB[6] = 1. A PSB will then
be pended when the saved PT context is later restored.

33.3.8 Internal Buffer Overflow
In the rare circumstances when new packets need to be generated but the processor’s dedicated internal buffers
are all full, an “internal buffer overflow” occurs. On such an overflow packet generation ceases (as packets would
need to enter the processor’s internal buffer) until the overflow resolves. Once resolved, packet generation
resumes.
When the buffer overflow is cleared, an OVF packet (Section 33.4.2.16) is generated, and the processor ensures
that packets which follow the OVF are not compressed (IP compression or RET compression) against packets that
were lost.
If IA32_RTIT_CTL.BranchEn = 1, the OVF packet will be followed by a FUP if the overflow resolves while Pack-
etEn=1. If the overflow resolves while PacketEn = 0 no packet is generated, but a TIP.PGE will naturally be gener-
ated later, once PacketEn = 1. The payload of the FUP or TIP.PGE will be the Current IP of the first instruction upon
which tracing resumes after the overflow is cleared. If the overflow resolves while PacketEn=1, only timing packets
may come between the OVF and the FUP. If the overflow resolves while PacketEn=0, any other packets that are not
dependent on PacketEn may come between the OVF and the TIP.PGE.

33.3.8.1 Overflow Impact on Enables
The address comparisons to ADDRn ranges, for IP filtering and TraceStop (Section 33.2.5.3), continue during a
buffer overflow, and TriggerEn, ContextEn, and FilterEn may change during a buffer overflow. Like other packets,
however, any TIP.PGE or TIP.PGD packets that would have been generated will be lost. Further,
IA32_RTIT_STATUS.PacketByteCnt will not increment, since it is only incremented when packets are generated.
If a TraceStop event occurs during the buffer overflow, IA32_RTIT_STATUS.Stopped will still be set, tracing will
cease as a result. However, the TraceStop packet, and any TIP.PGD that result from the TraceStop, may be
dropped.

33.3.8.2 Overflow Impact on Timing Packets
Any timing packets that are generated during a buffer overflow will be dropped. If only a few MTC packets are
dropped, a decoder should be able to detect this by noticing that the time value in the first MTC packet after the
buffer overflow incremented by more than one. If the buffer overflow lasted long enough that 256 MTC packets are
lost (and thus the MTC packet ‘wraps’ its 8-bit CTC value), then the decoder may be unable to properly understand
the trace. This is not an expected scenario. No CYC packets are generated during overflow, even if the cycle counter
wraps.
Note that, if cycle-accurate mode is enabled, the OVF packet will generate a CYC packet. Because the cycle counter
counts during overflows, this CYC packet can provide the duration of the overflow. However, there is a risk that the
cycle counter wrapped during the overflow, which could render this CYC misleading.

33-36 Vol. 3C

INTEL® PROCESSOR TRACE

33.3.9 TNT Disable
Software can opt to omit TNT packets from control flow trace (BranchEn=1) by setting IA32_RTIT_CTL.DisTNT[bit
55]. This can dramatically reduce trace size. Results will vary by workload, but trace size reductions of 40-75% are
typical, which will have a corresponding reduction in performance overhead and memory bandwidth consumption
from Intel PT. However, omitting TNT packets means the decoder is not able to follow the full control flow trace,
since conditional branch and compressed RET results won't be known. Thus, TNT Disable should be employed only
for usages that do not depend on full control flow trace.

NOTE
To avoid loss of RET results with TNT Disable, software may wish to disable RET compression by
setting IA32_RTIT_CTL.DisRETC[bit 11].

33.3.10 Operational Errors
Errors are detected as a result of packet output configuration problems, which can include output alignment issues,
ToPA reserved bit violations, or overlapping packet output with restricted memory. See “ToPA Errors” in Section
33.2.7.2 for details on ToPA errors, and Section 33.2.7.4 for details on restricted memory errors. Operational errors
are only detected and signaled when TraceEn=1.
When an operational error is detected, tracing is disabled and the error is logged. Specifically,
IA32_RTIT_STATUS.Error is set, which will cause IA32_RTIT_STATUS.TriggerEn to be 0. This will disable generation
of all packets. Some causes of operational errors may lead to packet bytes being dropped.
It should be noted that the timing of error detection may not be predictable. Errors are signaled when the processor
encounters the problematic configuration. This could be as soon as packet generation is enabled but could also be
later when the problematic entry or field needs to be used.
Once an error is signaled, software should disable packet generation by clearing TraceEn, diagnose and fix the error
condition, and clear IA32_RTIT_STATUS.Error. At this point, packet generation can be re-enabled.

33.4 TRACE PACKETS AND DATA TYPES
This section details the data packets generated by Intel Processor Trace. It is useful for developers writing the inter-
pretation code that will decode the data packets and apply it to the traced source code.

33.4.1 Packet Relationships and Ordering
This section introduces the concept of packet “binding”, which involves determining the IP in a binary disassembly
at which the change indicated by a given packet applies. Some packets have the associated IP as the payload (FUP,
TIP), while for others the decoder need only search for the next instance of a particular instruction (or instructions)
to bind the packet (TNT). However, in many cases, the decoder will need to consider the relationship between
packets, and to use this packet context to determine how to bind the packet.
Section 33.4.1.1 below provides detailed descriptions of the packets, including how packets bind to IPs in the disas-
sembly, to other packets, or to nothing at all. Many packets listed are simple to bind, because they are generated
in only a few scenarios. Those that require more consideration are typically part of “compound packet events”, such
as interrupts, exceptions, and some instructions, where multiple packets are generated by a single operation
(instruction or event). These compound packet events frequently begin with a FUP to indicate the source address
(if it is not clear from the disassembly), and are concluded by a TIP or TIP.PGD packet that indicates the destination
address (if one is provided). In this scenario, the FUP is said to be “coupled” with the TIP packet.
Other packets could be in between the coupled FUP and TIP packet. Timing packets, such as TSC, MTC, CYC, or
CBR, could arrive at any time, and hence could intercede in a compound packet event. If an operation changes CR3
or the processor’s mode of execution, a state update packet (i.e., PIP or MODE) is generated. The state changes
indicated by these intermediate packets should be applied at the IP of the TIP* packet. A summary of compound
packet events is provided in Table 33-14; see Section 33.4.1.1 for more per-packet details and Section 33.7 for
more detailed packet generation examples.

Vol. 3C 33-37

INTEL® PROCESSOR TRACE

33.4.1.1 Packet Blocks
Packet blocks are a means to dump one or more groups of state values. Packet blocks begin with a Block Begin
Packet (BBP), which indicates what type of state is held within the block. Following each BBP there may be one or
more Block Item Packets (BIPs), which contain the state values. The block is terminated by either a Block End
Packet (BEP) or another BBP indicating the start of a new block.
The BIP packet includes an ID value that, when combined with the Type field from the BBP that preceded it,
uniquely identifies the state value held in the BIP payload. The size of each BIP packet payload is provided by the
Size field in the preceding BBP packet.
Each block type can have up to 32 items defined for it. There is no guarantee, however, that each block of that type
will hold all 32 items. For more details on which items to expect, see documentation on the specific block type of
interest.
See the BBP packet description (Section 33.4.2.26) for details on packet block generation scenarios.
Packet blocks are entirely generated within an instruction or between instructions, which dictates the types of
packets (aside from BIPs) that may be seen within a packet block. Packets that indicate control flow changes, or
other indication of instruction completion, cannot be generated within a block. These are listed in the following
table. Other packets, including timing packets, may occur between BBP and BEP.

It is possible to encounter an internal buffer overflow in the middle of a block. In such a case, it is guaranteed that
packet generation will not resume in the middle of a block, and hence the OVF packet terminates the current block.
Depending on the duration of the overflow, subsequent blocks may also be lost.

Decoder Implications

When a Block Begin Packet (BBP) is encountered, the decoder will need to decode some packets within the block
differently from those outside a block. The Block Item Packet (BIP) header byte has the same encoding as a TNT
packet outside of a block, but must be treated as a BIP header (with following payload) within one.
When an OVF packet is encountered, the decoder should treat that as a block ending condition. Packet generation
will not resume within a block.

Table 33-14. Compound Packet Event Summary

Event Type Beginning Middle End Comment

Unconditional,
uncompressed
control-flow

transfer

FUP or none Any combination
of PIP, VMCS,
MODE.Exec, or
none

TIP or TIP.PGD FUP only for asynchronous events. Order of middle packets
may vary.

PIP/VMCS/MODE only if the operation modifies the state
tracked by these respective packets.

TSX Update MODE.TSX, and
(FUP or none)

None TIP, TIP.PGD, or
none

FUP

TIP/TIP.PGD only for TSX abort cases.

Overflow OVF PSB, PSBEND, or
none

FUP or TIP.PGE FUP if overflow resolves while ContextEn=1, else TIP.PGE.

Table 33-15. Packets Forbidden Between BBP and BEP

TNT

TIP, TIP.PGE, TIP.PGD

MODE.Exec, MODE.TSX

PIP, VMCS

TraceStop

PSB, PSBEND

PTW

MWAIT

33-38 Vol. 3C

INTEL® PROCESSOR TRACE

33.4.2 Packet Definitions
The following description of packet definitions are in tabular format. Figure 33-3 explains how to interpret them.
Packet bits listed as “RSVD” are not guaranteed to be 0.

Figure 33-3. Interpreting Tabular Definition of Packet Format

Name Packet name

Packet Format

Description of fields

Dependencies Depends on packet generation con-
figuration enable controls or other
bits (Section 33.2.6).

Generation Scenario Which instructions, events, or other
scenarios can cause this packet to be
generated.

Description Description of the packet, including the purpose it serves, meaning of the information or payload, etc

Application How a decoder should apply this packet. It may bind to a specific instruction from the binary, or to
another packet in the stream, or have other implications on decode

7 6 5 4 3 2 1 0

0 0 1 0 1 0 1 0 1

1 1 1 0 0 0 1 1 0

2 0 1 0 0 0 1 1 0

Byte Number Payload in White
Header bits
in GreenBit Number

Vol. 3C 33-39

INTEL® PROCESSOR TRACE

33.4.2.1 Taken/Not-taken (TNT) Packet

Table 33-16. TNT Packet Definition

Name Taken/Not-taken (TNT) Packet

Packet Format

B1…BN represent the last N conditional branch or compressed RET (Section 33.4.2.2) results, such that B1 is oldest
and BN is youngest. The short TNT packet can contain from 1 to 6 TNT bits. The long TNT packet can contain from
1 to 47 TNT bits.

Irrespective of how many TNT bits is in a packet, the last valid TNT bit is followed by a trailing 1, or Stop bit, as
shown above. If the TNT packet is not full (fewer than 6 TNT bits for the Short TNT, or fewer than 47 TNT bits for
the Long TNT), the Stop bit moves up, and the trailing bits of the packet are filled with 0s. Examples of these
“partial TNTs” are shown below. An implementation may choose to use long TNTs, short TNTs, or both.

Dependencies PacketEn &&
~IA32_RTIT_CTL.DisTNT

Generation
Scenario

On a conditional branch or compressed RET, if it fills the TNT.
Also, partial TNTs may be generated at any time, as a result of
other packets being generated, or certain micro-architectural
conditions occurring, before the TNT is full.

7 6 5 4 3 2 1 0

0 1 B1 B2 B3 B4 B5 B6 0 Short TNT

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0 Long TNT

1 1 0 1 0 0 0 1 1

2 B40 B41 B42 B43 B44 B45 B46 B47

3 B32 B33 B34 B35 B36 B37 B38 B39

4 B24 B25 B26 B27 B28 B29 B30 B31

5 B16 B17 B18 B19 B20 B21 B22 B23

6 B8 B9 B10 B11 B12 B13 B14 B15

7 1 B1 B2 B3 B4 B5 B6 B7

7 6 5 4 3 2 1 0

0 0 0 1 B1 B2 B3 B4 0 Short TNT

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0 Long TNT

1 1 0 1 0 0 0 1 1

2 B24 B25 B26 B27 B28 B29 B30 B31

3 B16 B17 B18 B19 B20 B21 B22 B23

4 B8 B9 B10 B11 B12 B13 B14 B15

5 1 B1 B2 B3 B4 B5 B6 B7

6 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0

33-40 Vol. 3C

INTEL® PROCESSOR TRACE

33.4.2.2 Target IP (TIP) Packet

IP Compression

The IP payload in a TIP. FUP, TIP.PGE, or TIP.PGD packet can vary in size, based on the mode of execution, and the
use of IP compression. IP compression is an optional compression technique the processor may choose to employ
to reduce bandwidth. With IP compression, the IP to be represented in the payload is compared with the last IP sent
out, via any of FUP, TIP, TIP.PGE, or TIP.PGD. If that previous IP had the same upper (most significant) address
bytes, those matching bytes may be suppressed in the current packet. The processor maintains an internal state of
the “Last IP” that was encoded in trace packets, thus the decoder will need to keep track of the “Last IP” state in

Description Provides the taken/not-taken results for the last 1..6 (Short TNT) or 1..47 (Long TNT) conditional branches (Jcc,
J*CXZ, or LOOP) or compressed RETs (Section 33.4.2.2). The TNT payload bits should be interpreted as follows:
• 1 indicates a taken conditional branch, or a compressed RET
• 0 indicates a not-taken conditional branch
TNT payload bits are stored internal to the processor in a TNT buffer, until either the buffer is filled or another
packet is to be generated. In either case a TNT packet holding the buffered bits will be emitted, and the TNT buffer
will be marked as empty.

Application Each valid payload bit (that is, bits between the header bits and the trailing Stop bit) applies to an upcoming condi-
tional branch or RET instruction. Once a decoder consumes a TNT packet with N valid payload bits, these bits should
be applied to (and hence provide the destination for) the next N conditional branches or RETs.

Table 33-17. IP Packet Definition

Name Target IP (TIP) Packet

Packet Format

Dependencies PacketEn Generation Sce-
nario

Indirect branch (including un-compressed RET), far branch, interrupt,
exception, INIT, SIPI, VM exit, VM entry, TSX abort, EENTER, EEXIT, ERE-
SUME, AEX1.

NOTES:

1. EENTER, EEXIT, ERESUME, AEX would be possible only for a debug enclave.

Description Provides the target for some control flow transfers

Application Anytime a TIP is encountered, it indicates that control was transferred to the IP provided in the payload.

The source of this control flow change, and hence the IP or instruction to which it binds, depends on the packets
that precede the TIP. If a TIP is encountered and all preceding packets have already been bound, then the TIP will
apply to the upcoming indirect branch, far branch, or VMRESUME. However, if there was a preceding FUP that
remains unbound, it will bind to the TIP. Here, the TIP provides the target of an asynchronous event or TSX abort
that occurred at the IP given in the FUP payload. Note that there may be other packets, in addition to the FUP, which
will bind to the TIP packet. See the packet application descriptions for other packets for details.

Table 33-16. TNT Packet Definition (Contd.)

7 6 5 4 3 2 1 0

0 IPBytes 0 1 1 0 1

1 TargetIP[7:0]

2 TargetIP[15:8]

3 TargetIP[23:16]

4 TargetIP[31:24]

5 TargetIP[39:32]

6 TargetIP[47:40]

7 TargetIP[55:48]

8 TargetIP[63:56]

Vol. 3C 33-41

INTEL® PROCESSOR TRACE

software, to match fidelity with packets generated by hardware. “Last IP” is initialized to zero, hence if the first IP
in the trace may be compressed if the upper bytes are zeroes.
The “IPBytes” field of the IP packets (FUP, TIP, TIP.PGE, TIP.PGD) serves to indicate how many bytes of payload are
provided, and how the decoder should fill in any suppressed bytes. The algorithm for reconstructing the IP for a
TIP/FUP packet is shown in the table below.

The processor-internal Last IP state is guaranteed to be reset to zero when a PSB is sent out. This means that the
IP that follows the PSB with either be un-compressed (011b or 110b, see Table 33-18), or compressed against
zero.
At times, “IPbytes” will have a value of 0. As shown above, this does not mean that the IP payload matches the full
address of the last IP, but rather that the IP for this packet was suppressed. This is used for cases where the IP that
applies to the packet is out of context. An example is the TIP.PGD sent on a SYSCALL, when tracing only USR code.
In that case, no TargetIP will be included in the packet, since that would expose an instruction point at CPL = 0.
When the IP payload is suppressed in this manner, Last IP is not cleared, and instead refers to the last IP packet
with a non-zero IPBytes field.
On processors that support a maximum linear address size of 32 bits, IP payloads may never exceed 32 bits
(IPBytes <= 010b).

Indirect Transfer Compression for Returns (RET)

In addition to IP compression, TIP packets for near return (RET) instructions can also be compressed. If the RET
target matches the next IP of the corresponding CALL, then the TIP packet is unneeded, since the decoder can
deduce the target IP by maintaining a CALL/RET stack of its own.
When a RET is compressed, a Taken indication is added to the TNT buffer. Because the RET generates no TIP
packet, it also does not update the internal Last IP value, and thus the decoder should treat it the same way. If the
RET is not compressed, it will generate a TIP packet (just like when RET compression is disabled, via
IA32_RTIT_CTL.DisRETC).
A CALL/RET stack can be maintained by the decoder by doing the following:

1. Allocate space to store 64 RET targets.

2. For near CALLs, push the Next IP onto the stack. Once the stack is full, new CALLs will force the oldest entry off
the end of the stack, such that only the youngest 64 entries are stored. Note that this excludes zero-length
CALLs, which are direct near CALLs with displacement zero (to the next IP). These CALLs typically don’t have
matching RETs.

3. For near RETs, pop the top (youngest) entry off the stack. This will be the expected target of the RET.
In cases where a RET is compressed, the RET target is guaranteed to match the expected target from 3) above. If
the target is not compressed, a TIP packet will be generated with the RET target, which may differ from the
expected target in some cases.

Table 33-18. FUP/TIP IP Reconstruction

IPBytes Uncompressed IP Value

63:56 55:48 47:40 39:32 31:24 23:16 15:8 7:0

000b None, IP is out of context

001b Last IP[63:16] IP Payload[15:0]

010b Last IP[63:32] IP Payload[31:0]

011b IP Payload[47] extended IP Payload[47:0]

100b Last IP [63:48] IP Payload[47:0]

101b Reserved

110b IP Payload[63:0]

111b Reserved

33-42 Vol. 3C

INTEL® PROCESSOR TRACE

The hardware ensures that packets read by the decoder will always have seen the CALL that corresponds to any
compressed RET. The processor will never compress a RET across a PSB, a buffer overflow, or scenario where Pack-
etEn=0. This means that a RET whose corresponding CALL executed while PacketEn=0, or before the last PSB, etc.,
will not be compressed.
If the CALL/RET stack is manipulated or corrupted by software, and thereby causes a RET to transfer control to a
target that is inconsistent with the CALL/RET stack, then the RET will not be compressed, and will produce a TIP
packet. This can happen, for example, if software executes a PUSH instruction to push a target onto the stack, and
a later RET uses this target.
For processors that employ deferred TIPs (Section 33.4.2.3), an uncompressed RET will not be deferred, and hence
will force out any accumulated TNTs or TIPs. This serves to avoid ambiguity, and make clear to the decoder whether
the near RET was compressed, and hence a bit in the in-progress TNT should be consumed, or uncompressed, in
which case there will be no in-progress TNT and thus a TIP should be consumed.
Note that in the unlikely case that a RET executes in a different execution mode than the associated CALL, the
decoder will need to model the same behavior with its CALL stack. For instance, if a CALL executes in 64-bit mode,
a 64-bit IP value will be pushed onto the software stack. If the corresponding RET executes in 32-bit mode, then
only the lower 32 target bits will be popped off of the stack, which may mean that the RET does not go to the CALL’s
Next IP. This is architecturally correct behavior, and this RET could be compressed, thus the decoder should match
this behavior.

33.4.2.3 Deferred TIPs
The processor may opt to defer sending out the TNT when TIPs are generated. Thus, rather than sending a partial
TNT followed by a TIP, both packets will be deferred while the TNT accumulates more Jcc/RET results. Any number
of TIP packets may be accumulated this way, such that only once the TNT is filled, or once another packet (e.g.,
FUP) is generated, the TNT will be sent, followed by all the deferred TIP packets, and finally terminated by the other
packet(s) that forced out the TNT and TIP packets. Generation of many other packets (see list below) will force out
the TNT and any accumulated TIP packets. This is an optional optimization in hardware to reduce the bandwidth
consumption, and hence the performance impact, incurred by tracing.

Table 33-19. TNT Examples with Deferred TIPs

Code Flow Packets, Non-Deferred TIPS Packets, Deferred TIPS

0x1000 cmp %rcx, 0

0x1004 jnz Foo // not-taken

0x1008 jmp %rdx
TNT(0b0), TIP(0x1308)

0x1308 cmp %rcx, 1

0x130c jnz Bar // not-taken

0x1310 cmp %rcx, 2

0x1314 jnz Baz // taken

0x1500 cmp %eax, 7

0x1504 jg Exit // not-taken

0x1508 jmp %r15

TNT(0b010), TIP(0x1100)

0x1100 cmp %rbx, 1

0x1104 jg Start // not-taken

0x1108 add %rcx, %eax

0x110c … // an asynchronous Interrupt arrives

INThandler:

0xcc00 pop %rdx

TNT(0b0), FUP(0x110c),
TIP(0xcc00)

TNT(0b00100), TIP(0x1308),
TIP(0x1100), FUP(0x110c),
TIP(0xcc00)

Vol. 3C 33-43

INTEL® PROCESSOR TRACE

33.4.2.4 Packet Generation Enable (TIP.PGE) Packet

Table 33-20. TIP.PGE Packet Definition

Name Target IP - Packet Generation Enable (TIP.PGE) Packet

Packet Format

Dependencies PacketEn transitions to 1 Generation
Scenario

Any branch instruction, control flow transfer, or MOV
CR3 that sets PacketEn, a WRMSR that enables
packet generation and sets PacketEn

Description Indicates that PacketEn has transitioned to 1. It provides the IP at which the tracing begins.
This can occur due to any of the enables that comprise PacketEn transitioning from 0 to 1, as long as all the others
are asserted. Examples:
• TriggerEn: This is set on software write to set IA32_RTIT_CTL.TraceEn as long as the Stopped and Error bits in

IA32_RTIT_STATUS are clear. The IP payload will be the Next IP of the WRMSR.
• FilterEn: This is set when software jumps into the tracing region. This region is defined by enabling IP filtering in

IA32_RTIT_CTL.ADDRn_CFG, and defining the range in IA32_RTIT_ADDRn_[AB], see. Section 33.2.5.3. The
IP payload will be the target of the branch.

• ContextEn: This is set on a CPL change, a CR3 write or any other means of changing ContextEn. The IP payload
will be the Next IP of the instruction that changes context if it is not a branch, otherwise it will be the target of
the branch.

Application TIP.PGE packets bind to the instruction at the IP given in the payload.

7 6 5 4 3 2 1 0

0 IPBytes 1 0 0 0 1

1 TargetIP[7:0]

2 TargetIP[15:8]

3 TargetIP[23:16]

4 TargetIP[31:24]

5 TargetIP[39:32]

6 TargetIP[47:40]

7 TargetIP[55:48]

8 TargetIP[63:56]

33-44 Vol. 3C

INTEL® PROCESSOR TRACE

33.4.2.5 Packet Generation Disable (TIP.PGD) Packet

Table 33-21. TIP.PGD Packet Definition

Name Target IP - Packet Generation Disable (TIP.PGD) Packet

Packet Format

Dependencies PacketEn transitions to
0

Generation
Scenario

Any branch instruction, control flow transfer, or MOV CR3 that clears
PacketEn, a WRMSR that disables packet generation and clears PacketEn

Description Indicates that PacketEn has transitioned to 0. It will include the IP at which the tracing ends, unless ContextEn= 0 or
TraceEn=0 at the conclusion of the instruction or event that cleared PacketEn.
PacketEn can be cleared due to any of the enables that comprise PacketEn transitioning from 1 to 0. Examples:
• TriggerEn: This is cleared on software write to clear IA32_RTIT_CTL.TraceEn, or when

IA32_RTIT_STATUS.Stopped is set, or on operational error. The IP payload will be suppressed in this case, and the
“IPBytes” field will have the value 0.

• FilterEn: This is cleared when software jumps out of the tracing region. This region is defined by enabling IP
filtering in IA32_RTIT_CTL.ADDRn_CFG, and defining the range in IA32_RTIT_ADDRn_[AB], see. Section 33.2.5.3.
The IP payload will depend on the type of the branch. For conditional branches, the payload is suppressed
(IPBytes = 0), and in this case the destination can be inferred from the disassembly. For any other type of branch,
the IP payload will be the target of the branch.

• ContextEn: This can happen on a CPL change, a CR3 write or any other means of changing ContextEn. See
Section 33.2.5.3 for details. In this case, when ContextEn is cleared, there will be no IP payload. The “IPBytes”
field will have value 0.

Note that, in cases where a branch that would normally produce a TIP packet (i.e., far transfer, indirect branch, inter-
rupt, etc) or TNT update (conditional branch or compressed RT) causes PacketEn to transition from 1 to 0, the TIP or
TNT bit will be replaced with TIP.PGD. The payload of the TIP.PGD will be the target of the branch, unless the result
of the instruction causes TraceEn or ContextEn to be cleared (ie, SYSCALL when IA32_RTIT_CTL.OS=0, In the case
where a conditional branch clears FilterEn and hence PacketEn, there will be no TNT bit for this branch, replaced
instead by the TIP.PGD.

Application TIP.PGD can be produced by any branch instructions, as well as some non-branch instructions, that clear PacketEn.
When produced by a branch, it replaces any TIP or TNT update that the branch would normally produce.
In cases where there is an unbound FUP preceding the TIP.PGD, then the TIP.PGD is part of compound operation (i.e.,
asynchronous event or TSX abort) which cleared PacketEn. For most such cases, the TIP.PGD is simply replacing a
TIP, and should be treated the same way. The TIP.PGD may or may not have an IP payload, depending on whether
the operation cleared ContextEn.
If there is not an associated FUP, the binding will depend on whether there is an IP payload. If there is an IP payload,
then the TIP.PGD should be applied to either the next direct branch whose target matches the TIP.PGD payload, or
the next branch that would normally generate a TIP or TNT packet. If there is no IP payload, then the TIP.PGD should
apply to the next branch or MOV CR3 instruction.

7 6 5 4 3 2 1 0

0 IPBytes 0 0 0 0 1

1 TargetIP[7:0]

2 TargetIP[15:8]

3 TargetIP[23:16]

4 TargetIP[31:24]

5 TargetIP[39:32]

6 TargetIP[47:40]

7 TargetIP[55:48]

8 TargetIP[63:56]

Vol. 3C 33-45

INTEL® PROCESSOR TRACE

33.4.2.6 Flow Update (FUP) Packet

FUP IP Payload

Flow Update Packet gives the source address of an instruction when it is needed. In general, branch instructions do
not need a FUP, because the source address is clear from the disassembly. For asynchronous events, however, the
source address cannot be inferred from the source, and hence a FUP will be sent. Table 33-23 illustrates cases
where FUPs are sent, and which IP can be expected in those cases.

Table 33-22. FUP Packet Definition

Name Flow Update (FUP) Packet

Packet Format

Dependencies TriggerEn && ContextEn.
(Typically depends on
BranchEn and FilterEn as well,
see Section 33.2.5, Section
33.4.2.21, and Section
33.4.2.22 for details.)

Generation
Scenario

Asynchronous Events (interrupts, exceptions, INIT, SIPI, SMI, VM exit,
#MC), PSB+, XBEGIN, XEND, XABORT, XACQUIRE, XRELEASE, EENTER,
EEXIT, ERESUME, EEE, AEX,1, INTO, INT1, INT3, INT n, a WRMSR that
disables packet generation.

NOTES:

1. EENTER, EEXIT, ERESUME, EEE, AEX apply only if Intel Software Guard Extensions is supported.

Description Provides the source address for asynchronous events, and some other instructions. Is never sent alone, always sent
with an associated TIP or MODE packet, and potentially others.

Application FUP packets provide the IP to which they bind. However, they are never standalone, but are coupled with other
packets.
In TSX cases, the FUP is immediately preceded by a MODE.TSX, which binds to the same IP. A TIP will follow only in
the case of TSX aborts, see Section 33.4.2.8 for details.
Otherwise, FUPs are part of compound packet events (see Section 33.4.1). In these compound cases, the FUP pro-
vides the source IP for an instruction or event, while a following TIP (or TIP.PGD) packet will provide the destination
IP. Other packets may be included in the compound event between the FUP and TIP.

7 6 5 4 3 2 1 0

0 IPBytes 1 1 1 0 1

1 IP[7:0]

2 IP[15:8]

3 IP[23:16]

4 IP[31:24]

5 IP[39:32]

6 IP[47:40]

7 IP[55:48]

8 IP[63:56]

33-46 Vol. 3C

INTEL® PROCESSOR TRACE

On a canonical fault due to sequentially fetching an instruction in non-canonical space (as opposed to jumping to
non-canonical space), the IP of the fault (and thus the payload of the FUP) will be a non-canonical address. This is
consistent with what is pushed on the stack for such faulting cases.
If there are post-commit task switch faults, the IP value of the FUP will be the original IP when the task switch
started. This is the same value as would be seen in the LBR_FROM field. But it is a different value as is saved on the
stack or VMCS.

Table 33-23. FUP Cases and IP Payload

Event Flow Update IP Comment

External Interrupt, NMI/SMI, Traps,
Machine Check (trap-like), INIT/SIPI

Address of next instruction (Next IP) that
would have been executed

Functionally, this matches the LBR FROM field
value and also the EIP value which is saved onto
the stack.

Exceptions/Faults, Machine check
(fault-like)

Address of the instruction which took the

exception/fault (Current IP)

This matches the similar functionality of LBR
FROM field value and also the EIP value which is
saved onto the stack.

Software Interrupt Address of the software interrupt instruction
(Current IP)

This matches the similar functionality of LBR
FROM field value, but does not match the EIP
value which is saved onto the stack (Next
Linear Instruction Pointer - NLIP).

EENTER, EEXIT, ERESUME, Enclave
Exiting Event (EEE), AEX1

Current IP of the instruction This matches the LBR FROM field value and also
the EIP value which is saved onto the stack.

XACQUIRE Address of the X* instruction

XRELEASE, XBEGIN, XEND,
XABORT, other transactional abort

Current IP

#SMI IP that is saved into SMRAM

WRMSR that clears TraceEn, PSB+ Current IP

NOTES:

1. Information on EENTER, EEXIT, ERESUME, EEE, Asynchronous Enclave eXit (AEX) can be found in the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 3D.

Vol. 3C 33-47

INTEL® PROCESSOR TRACE

33.4.2.7 Paging Information (PIP) Packet

33.4.2.8 MODE Packets
MODE packets keep the decoder informed of various processor modes about which it needs to know in order to
properly manage the packet output, or to properly disassemble the associated binaries. MODE packets include a
header and a mode byte, as shown below.

Table 33-24. PIP Packet Definition

Name Paging Information (PIP) Packet

Packet Format

Dependencies TriggerEn && ContextEn &&
IA32_RTIT_CTL.OS

Generation
Scenario

MOV CR3, Task switch, INIT, SIPI, PSB+, VM exit,
VM entry

Description The CR3 payload shown includes only the address portion of the CR3 value. For PAE paging, CR3[11:5] are thus
included. For other paging modes (32-bit and 4-level paging1), these bits are 0.
This packet holds the CR3 address value. It will be generated on operations that modify CR3:
• MOV CR3 operation
• Task Switch
• INIT and SIPI
• VM exit, if “conceal VMX from PT” VM-exit control is 0 (see Section 33.5.1)
• VM entry, if “conceal VMX from PT” VM-entry control is 0
PIPs are not generated, despite changes to CR3, on SMI and RSM. This is due to the special behavior on these oper-
ations, see Section 33.2.9.3 for details. Note that, for some cases of task switch where CR3 is not modified, no PIP
will be produced.
The purpose of the PIP is to indicate to the decoder which application is running, so that it can apply the proper
binaries to the linear addresses that are being traced.
The PIP packet contains the new CR3 value when CR3 is written.
PIPs generated by VM entries set the NR bit. PIPs generated in VMX non-root operation set the NR bit if the “con-
ceal VMX from PT” VM-execution control is 0 (see Section 33.5.1). All other PIPs clear the NR bit.

NOTES:

1. Earlier versions of this manual used the term “IA-32e paging” to identify 4-level paging.

Application The purpose of the PIP packet is to help the decoder uniquely identify what software is running at any given time.
When a PIP is encountered, a decoder should do the following:
1) If there was a prior unbound FUP (that is, a FUP not preceded by a packet such as MODE.TSX that consumes it,
and it hence pairs with a TIP that has not yet been seen), then this PIP is part of a compound packet event (Section
33.4.1). Find the ending TIP and apply the new CR3/NR values to the TIP payload IP.
2) Otherwise, look for the next MOV CR3, far branch, or VMRESUME/VMLAUNCH in the disassembly, and apply the
new CR3 to the next (or target) IP.
For examples of the packets generated by these flows, see Section 33.7.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 0 1 0 0 0 0 1 1

2 CR3[11:5] or 0 RSVD/NR

3 CR3[19:12]

4 CR3[27:20]

5 CR3[35:28]

6 CR3[43:36]

7 CR3[51:44]

33-48 Vol. 3C

INTEL® PROCESSOR TRACE

The MODE Leaf ID indicates which set of mode bits are held in the lower bits.

MODE.Exec Packet

Table 33-25. General Form of MODE Packets

7 6 5 4 3 2 1 0

0 1 0 0 1 1 0 0 1

1 Leaf ID Mode

Table 33-26. MODE.Exec Packet Definition

Name MODE.Exec Packet

Packet Format

MODE Leaf ID is '000.

Dependencies TriggerEn
&&
ContextEn
&& FilterEn

Generation
Scenario

Any operation that changes the CS.L, CS.D, or EFER.LMA, if
IA32_RTIT_CTL.BranchEn=1.
Any operation that changes RFLAGS.IF, if IA32_RTIT_CTL.EventEn=1.
Any TIP.PGE scenario, such that any of the mode bits tracked may have changed
since the last MODE.Exec.

Description Indicates whether software is in 16, 32, or 64-bit mode, by providing the CS.D and (CS.L & IA32_EFER.LMA) values.
Essential for the decoder to properly disassemble the associated binary. Further, if CPUID.0x14.0.EBX[6]=1 (“Event
Trace Support”), it indicates when interrupts are masked by providing the RFLAGS.IF value.

MODE.Exec is sent at the time of a mode change, if dependencies are met at the time, otherwise it is sent when
tracing resumes. In the former case, the MODE.Exec packet is generated along with other packets that result from
the operation that changes the mode, and is guaranteed to be followed by a TIP or TIP.PGE for branch operations, or
a FUP for non-branch operations (CLI, STI, or POPF if EventEn=1). In cases where the mode changes while filtering
dependencies are not met, the processor ensures that the decoder doesn't lose track of the mode by sending any
needed MODE.Exec once tracing resumes (preceding the TIP.PGE, if BranchEn=1). The processor may opt to sup-
press the MODE.Exec when tracing resumes if the mode matches that of the last MODE.Exec packet.
MODE.Exec packets are generated on CS.L, CS.D, or EFER.LMA changes only if control flow tracing is enabled
(BranchEn=1). This is essential for the decoder to properly disassemble the associated binary.

MODE.Exec packets are generated on interrupt flag (RFLAGS.IF) changes only if event tracing is enabled
(EventEn=1).

Application MODE.Exec always precedes an IP packet (TIP, TIP.PGE, or FUP). The mode change applies to the IP address in the
payload of the IP packet. When MODE.Exec is followed by a FUP, it is a stand-alone FUP and should be consumed by
the MODE.Exec.

7 6 5 4 3 2 1 0

0 1 0 0 1 1 0 0 1

1 0 0 0 Reserved IF CS.D (CS.L & LMA)

CS.D (CS.L & IA32_EFER.LMA) Addressing Mode

1 1 N/A

0 1 64-bit mode

1 0 32-bit mode

0 0 16-bit mode

Vol. 3C 33-49

INTEL® PROCESSOR TRACE

MODE.TSX Packet

Table 33-27. MODE.TSX Packet Definition

Name MODE.TSX Packet

Packet Format

Dependencies TriggerEn && ContextEn Generation
Scenario

XBEGIN, XEND, XABORT, XACQUIRE, XRELEASE, if InTX
changes, Asynchronous TSX Abort, PSB+

Description Indicates when a TSX transaction (either HLE or RTM) begins, commits, or aborts. Instructions executed transaction-
ally will be “rolled back” if the transaction is aborted.

Application If PacketEn=1, MODE.TSX always immediately precedes a FUP. If the TXAbort bit is zero, then the mode change
applies to the IP address in the payload of the FUP. If TXAbort=1, then the FUP will be followed by a TIP, and the
mode change will apply to the IP address in the payload of the TIP.
MODE.TSX packets may be generated when PacketEn=0, due to FilterEn=0. In this case, only the last MODE.TSX
generated before TIP.PGE need be applied.

7 6 5 4 3 2 1 0

0 1 0 0 1 1 0 0 1

1 0 0 1 0 0 0 TXAbort InTX

TXAbort InTX Implication

1 1 N/A

0 1 Transaction begins, or executing transactionally

1 0 Transaction aborted

0 0 Transaction committed, or not executing transactionally

33-50 Vol. 3C

INTEL® PROCESSOR TRACE

33.4.2.9 TraceStop Packet

33.4.2.10 Core:Bus Ratio (CBR) Packet

Table 33-28. TraceStop Packet Definition

Name TraceStop Packet

Packet Format

Dependencies TriggerEn && ContextEn Generation
Scenario

Taken branch with target in TraceStop IP region, MOV CR3 in TraceS-
top IP region, or WRMSR that sets TraceEn in TraceStop IP region.

Description Indicates when software has entered a user-configured TraceStop region.
When the IP matches a TraceStop range while ContextEn and TriggerEn are set, a TraceStop action occurs. This dis-
ables tracing by setting IA32_RTIT_STATUS.Stopped, thereby clearing TriggerEn, and causes a TraceStop
packet to be generated.
The TraceStop action also forces FilterEn to 0. Note that TraceStop may not force a flush of internally buffered
packets, and thus trace packet generation should still be manually disabled by clearing IA32_RTIT_CTL.TraceEn
before examining output. See Section 33.2.5.3 for more details.

Application If TraceStop follows a TIP.PGD (before the next TIP.PGE), then it was triggered either by the instruction that cleared
PacketEn, or it was triggered by some later instruction that executed while FilterEn=0. In either case, the TraceStop
can be applied at the IP of the TIP.PGD (if any).
If TraceStop follows a TIP.PGE (before the next TIP.PGD), it should be applied at the last known IP.

Table 33-29. CBR Packet Definition

Name Core:Bus Ratio (CBR) Packet

Packet Format

Dependencies TriggerEn Generation
Scenario

After any frequency change, on C-state wake up, PSB+, and after
enabling trace packet generation.

Description Indicates the core:bus ratio of the processor core. Useful for correlating wall-clock time and cycle time.

Application The CBR packet indicates the point in the trace when a frequency transition has occurred. On some implementa-
tions, software execution will continue during transitions to a new frequency, while on others software execution
ceases during frequency transitions. There is not a precise IP provided, to which to bind the CBR packet.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 1 0 0 0 0 0 1 1

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 1 1

2 Core:Bus Ratio

3 Reserved

Vol. 3C 33-51

INTEL® PROCESSOR TRACE

33.4.2.11 Timestamp Counter (TSC) Packet

Table 33-30. TSC Packet Definition

Name Timestamp Counter (TSC) Packet

Packet Format

Dependencies IA32_RTIT_CTL.TSCEn &&
TriggerEn

Generation
Scenario

Sent after any event that causes the processor clocks or Intel PT timing
packets (such as MTC or CYC) to stop, This may include P-state changes,
wake from C-state, or clock modulation. Also on transition of TraceEn
from 0 to 1.

Description When enabled by software, a TSC packet provides the lower 7 bytes of the current TSC value, as returned by the
RDTSC instruction. This may be useful for tracking wall-clock time, and synchronizing the packets in the log with
other timestamped logs.

Application TSC packet provides a wall-clock proxy of the event which generated it (packet generation enable, sleep state wake,
etc). In all cases, TSC does not precisely indicate the time of any control flow packets; however, all preceding packets
represent instructions that executed before the indicated TSC time, and all subsequent packets represent instruc-
tions that executed after it. There is not a precise IP to which to bind the TSC packet.

7 6 5 4 3 2 1 0

0 0 0 0 1 1 0 0 1

1 SW TSC[7:0]

2 SW TSC[15:8]

3 SW TSC[23:16]

4 SW TSC[31:24]

5 SW TSC[39:32]

6 SW TSC[47:40]

7 SW TSC[55:48]

33-52 Vol. 3C

INTEL® PROCESSOR TRACE

33.4.2.12 Mini Time Counter (MTC) Packet

Table 33-31. MTC Packet Definition

Name Mini time Counter (MTC) Packet

Packet Format

Dependencies IA32_RTIT_CTL.MTCEn &&
TriggerEn

Generation
Scenario

Periodic, based on the core crystal clock, or Always Running Timer
(ART).

Description When enabled by software, an MTC packet provides a periodic indication of wall-clock time. The 8-bit CTC (Common
Timestamp Copy) payload value is set to (ART >> N) & FFH. The frequency of the ART is related to the Maximum
Non-Turbo frequency, and the ratio can be determined from CPUID leaf 15H, as described in Section 33.8.3.
Software can select the threshold N, which determines the MTC frequency by setting the IA32_RTIT_CTL.MTCFreq
field (see Section 33.2.8.2) to a supported value using the lookup enumerated by CPUID (see Section 33.3.1).
See Section 33.8.3 for details on how to use the MTC payload to track TSC time.
MTC provides 8 bits from the ART, starting with the bit selected by MTCFreq to dictate the frequency of the packet.
Whenever that 8-bit range being watched changes, an MTC packet will be sent out with the new value of that 8-bit
range. This allows the decoder to keep track of how much wall-clock time has elapsed since the last TSC packet was
sent, by keeping track of how many MTC packets were sent and what their value was. The decoder can infer the
truncated bits, CTC[N-1:0], are 0 at the time of the MTC packet.
There are cases in which MTC packet can be dropped, due to overflow or other micro-architectural conditions. The
decoder should be able to recover from such cases by checking the 8-bit payload of the next MTC packet, to deter-
mine how many MTC packets were dropped. It is not expected that >256 consecutive MTC packets should ever be
dropped.

Application MTC does not precisely indicate the time of any other packet, nor does it bind to any IP. However, all preceding pack-
ets represent instructions or events that executed before the indicated ART time, and all subsequent packets repre-
sent instructions that executed after, or at the same time as, the ART time.

7 6 5 4 3 2 1 0

0 0 1 0 1 1 0 0 1

1 CTC[N+7:N]

Vol. 3C 33-53

INTEL® PROCESSOR TRACE

33.4.2.13 TSC/MTC Alignment (TMA) Packet

Table 33-32. TMA Packet Definition

Name TSC/MTC Alignment (TMA) Packet

Packet Format

Dependencies IA32_RTIT_CTL.MTCEn &&
IA32_RTIT_CTL.TSCEn && TriggerEn

Generation Sce-
nario

Sent with any TSC packet.

Description The TMA packet serves to provide the information needed to allow the decoder to correlate MTC packets with TSC
packets. With this packet, when a MTC packet is encountered, the decoder can determine how many timestamp
counter ticks have passed since the last TSC or MTC packet. See Section 33.8.3.2 for details on how to make this cal-
culation.

Application TMA is always sent immediately following a TSC packet, and the payload values are consistent with the TSC payload
value. Thus the application of TMA matches that of TSC.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 0 1 1 1 0 0 1 1

2 CTC[7:0]

3 CTC[15:8]

4 Reserved 0

5 FastCounter[7:0]

6 Reserved FC[8]

33-54 Vol. 3C

INTEL® PROCESSOR TRACE

33.4.2.14 Cycle Count (CYC) Packet

Table 33-33. Cycle Count Packet Definition

Name Cycle Count (CYC) Packet

Packet Format

Dependencies IA32_RTIT_CTL.CYCEn &&
TriggerEn

Generation Sce-
nario

Can be sent at any time, though a maximum of one CYC packet is
sent per core clock cycle. See Section 33.3.6 for CYC-eligible packets.

Description The Cycle Counter field increments at the same rate as the processor core clock ticks, but with a variable length for-
mat (using a trailing EXP bit field) and a range-capped byte length.
If the CYC value is less than 32, a 1-byte CYC will be generated, with Exp=0. If the CYC value is between 32 and
4095 inclusive, a 2-byte CYC will be generated, with byte 0 Exp=1 and byte 1 Exp=0. And so on.
CYC provides the number of core clocks that have passed since the last CYC packet. CYC can be configured to be
sent in every cycle in which an eligible packet is generated, or software can opt to use a threshold to limit the num-
ber of CYC packets, at the expense of some precision. These settings are configured using the
IA32_RTIT_CTL.CycThresh field (see Section 33.2.8.2). For details on Cycle-Accurate Mode, IPC calculation, etc, see
Section 33.3.6.
When CycThresh=0, and hence no threshold is in use, then a CYC packet will be generated in any cycle in which any
CYC-eligible packet is generated. The CYC packet will precede the other packets generated in the cycle, and provides
the precise cycle time of the packets that follow.
In addition to these CYC packets generated with other packets, CYC packets can be sent stand-alone. These packets
serve simply to update the decoder with the number of cycles passed, and are used to ensure that a wrap of the
processor’s internal cycle counter doesn’t cause cycle information to be lost. These stand-alone CYC packets do not
indicate the cycle time of any other packet or operation, and will be followed by another CYC packet before any
other CYC-eligible packet is seen.
When CycThresh>0, CYC packets are generated only after a minimum number of cycles have passed since the last
CYC packet. Once this threshold has passed, the behavior above resumes, where CYC will either be sent in the next
cycle that produces other CYC-eligible packets, or could be sent stand-alone.
When using CYC thresholds, only the cycle time of the operation (instruction or event) that generates the CYC
packet is truly known. Other operations simply have their execution time bounded: they completed at or after the
last CYC time, and before the next CYC time.

Application CYC provides the offset cycle time (since the last CYC packet) for the CYC-eligible packet that follows. If another CYC
is encountered before the next CYC-eligible packet, the cycle values should be accumulated and applied to the next
CYC-eligible packet.
If a CYC packet is generated by a TNT, note that the cycle time provided by the CYC packet applies to the first
branch in the TNT packet.

7 6 5 4 3 2 1 0

0 Cycle Counter[4:0] Exp 1 1

1 Cycle Counter[11:5] Exp

2 Cycle Counter[18:12] Exp

... ... (if Exp = 1 in the previous byte)

Vol. 3C 33-55

INTEL® PROCESSOR TRACE

33.4.2.15 VMCS Packet

Table 33-34. VMCS Packet Definition

Name VMCS Packet

Packet Format

Dependencies TriggerEn && ContextEn;
Also in VMX operation.

Generation Scenario Generated on successful VMPTRLD, and optionally on PSB+, SMM
VM exits, and VM entries that return from SMM (see Section 33-
53).

Description The VMCS packet provides a VMCS pointer for a decoder to determine the transition of code contexts:

• On a successful VMPTRLD (i.e., a VMPTRLD that doesn’t fault, fail, or VM exit), the VMCS packet contains the
logical processor’s VMCS pointer established by VMPTRLD (for subsequent execution of a VM guest context).

• An SMM VM exit loads the logical processor’s VMCS pointer with the SMM-transfer VMCS pointer. If the “conceal
VMX from PT” VM-exit control is 0 (see Section 33.5.1), a VMCS packet provides this pointer. See Section 33.6 on
tracing inside and outside STM.

• A VM entry that returns from SMM loads the logical processor’s VMCS pointer from a field in the SMM-transfer
VMCS. If the “conceal VMX from PT” VM-entry control is 0, a VMCS packet provides this pointer. Whether the
VM entry is to VMX root operation or VMX non-root operation is indicated by the PIP.NR bit.

A VMCS packet generated before a VMCS pointer has been loaded, or after the VMCS pointer has been cleared will
set all 64 bits in the VMCS pointer field.
VMCS packets will not be seen on processors with IA32_VMX_MISC[bit 14]=0, as these processors do not allow
TraceEn to be set in VMX operation.

Application The purpose of the VMCS packet is to help the decoder uniquely identify changes in the executing software context
in situations that CR3 may not be unique.
When a VMCS packet is encountered, a decoder should do the following:
• If there was a prior unbound FUP (that is, a FUP not preceded by a packet such as MODE.TSX that consumes it, and

it hence pairs with a TIP that has not yet been seen), then this VMCS is part of a compound packet event (Section
33.4.1). Find the ending TIP and apply the new VMCS base pointer value to the TIP payload IP.

• Otherwise, look for the next VMPTRLD, VMRESUME, or VMLAUNCH in the disassembly, and apply the new VMCS
base pointer on the next VM entry.

For examples of the packets generated by these flows, see Section 33.7.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 1 1 0 0 1 0 0 0

2 VMCS pointer [19:12]

3 VMCS pointer [27:20]

4 VMCS pointer [35:28]

5 VMCS pointer [43:36]

6 VMCS pointer [51:44]

33-56 Vol. 3C

INTEL® PROCESSOR TRACE

33.4.2.16 Overflow (OVF) Packet

33.4.2.17 Packet Stream Boundary (PSB) Packet

Table 33-35. OVF Packet Definition

Name Overflow (OVF) Packet

Packet Format

Dependencies TriggerEn Generation
Scenario

On resolution of internal buffer overflow

Description OVF simply indicates to the decoder that an internal buffer overflow occurred, and packets were likely lost. If
BranchEN= 1, OVF is followed by a FUP or TIP.PGE which will provide the IP at which packet generation resumes. See
Section 33.3.8.

Application When an OVF packet is encountered, the decoder should skip to the IP given in the subsequent FUP or TIP.PGE. The
cycle counter for the CYC packet will be reset at the time the OVF packet is sent.
Software should reset its call stack depth on overflow, since no RET compression is allowed across an overflow. Sim-
ilarly, any IP compression that follows the OVF is guaranteed to use as a reference LastIP the IP payload of an IP
packet that preceded the overflow.

Table 33-36. PSB Packet Definition

Name Packet Stream Boundary (PSB) Packet

Packet Format

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 1 1 1 1 0 0 1 1

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 1 0 0 0 0 0 1 0

2 0 0 0 0 0 0 1 0

3 1 0 0 0 0 0 1 0

4 0 0 0 0 0 0 1 0

5 1 0 0 0 0 0 1 0

6 0 0 0 0 0 0 1 0

7 1 0 0 0 0 0 1 0

8 0 0 0 0 0 0 1 0

9 1 0 0 0 0 0 1 0

10 0 0 0 0 0 0 1 0

11 1 0 0 0 0 0 1 0

12 0 0 0 0 0 0 1 0

13 1 0 0 0 0 0 1 0

14 0 0 0 0 0 0 1 0

15 1 0 0 0 0 0 1 0

Vol. 3C 33-57

INTEL® PROCESSOR TRACE

33.4.2.18 PSBEND Packet

Dependencies TriggerEn Generation
Scenario

Periodic, based on the number of output bytes generated while tracing. PSB is sent
when IA32_RTIT_STATUS.PacketByteCnt=0, and each time it crosses the software
selected threshold after that. May be sent for other micro-architectural conditions
as well.

Description PSB is a unique pattern in the packet output log, and hence serves as a sync point for the decoder. It is a pattern
that the decoder can search for in order to get aligned on packet boundaries. This packet is periodic, based on the
number of output bytes, as indicated by IA32_RTIT_STATUS.PacketByteCnt. The period is chosen by software, via
IA32_RTIT_CTL.PSBFreq (see Section 33.2.8.2). Note, however, that the PSB period is not precise, it simply reflects
the average number of output bytes that should pass between PSBs. The processor will make a best effort to
insert PSB as quickly after the selected threshold is reached as possible. The processor also may send extra
PSB packets for some micro-architectural conditions.
PSB also serves as the leading packet for a set of “status-only” packets collectively known as PSB+ (Section 33.3.7).

Application When a PSB is seen, the decoder should interpret all following packets as “status only”, until either a PSBEND or
OVF packet is encountered. “Status only” implies that the binding and ordering rules to which these packets nor-
mally adhere are ignored, and the state they carry can instead be applied to the IP payload in the FUP packet that is
included.

Table 33-37. PSBEND Packet Definition

Name PSBEND Packet

Packet Format

Dependencies TriggerEn Generation
Scenario

Always follows PSB packet, separated by PSB+ packets

Description PSBEND is simply a terminator for the series of “status only” (PSB+) packets that follow PSB (Section 33.3.7).

Application When a PSBEND packet is seen, the decoder should cease to treat packets as “status only”.

Table 33-36. PSB Packet Definition (Contd.)

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 0 0 1 0 0 0 1 1

33-58 Vol. 3C

INTEL® PROCESSOR TRACE

33.4.2.19 Maintenance (MNT) Packet

33.4.2.20 PAD Packet

Table 33-38. MNT Packet Definition

Name Maintenance (MNT) Packet

Packet Format

Dependencies TriggerEn Generation
Scenario

Implementation specific.

Description This packet is generated by hardware, the payload meaning is model-specific.

Application Unless a decoder has been extended for a particular family/model/stepping to interpret MNT packet payloads, this
packet should simply be ignored. It does not bind to any IP.

Table 33-39. PAD Packet Definition

Name PAD Packet

Packet Format

Dependencies TriggerEn Generation
Scenario

Implementation specific

Description PAD is simply a NOP packet. Processor implementations may choose to add pad packets to improve packet align-
ment or for implementation-specific reasons.

Application Ignore PAD packets.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 1 1 0 0 0 0 1 1

2 1 0 0 0 1 0 0 0

3 Payload[7:0]

4 Payload[15:8]

5 Payload[23:16]

6 Payload[31:24]

7 Payload[39:32]

8 Payload[47:40]

9 Payload[55:48]

10 Payload[63:56]

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0

Vol. 3C 33-59

INTEL® PROCESSOR TRACE

33.4.2.21 PTWRITE (PTW) Packet

Table 33-40. PTW Packet Definition

Name PTW Packet

Packet Format

The PayloadBytes field indicates the number of bytes of payload that follow the header bytes. Encodings are as fol-
lows:

IP bit indicates if a FUP, whose payload will be the IP of the PTWRITE instruction, will follow.

Dependencies TriggerEn && ContextEn &&
FilterEn && PTWEn

Generation
Scenario

PTWRITE Instruction

Description Contains the value held in the PTWRITE operand.
This packet is CYC-eligible, and hence will generate a CYC packet if IA32_RTIT_CTL.CYCEn=1 and any CYC Threshold
has been reached.

Application Binds to the associated PTWRITE instruction. The IP of the PTWRITE will be provided by a following FUP, when
PTW.IP=1.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 IP PayloadBytes 1 0 0 1 0

2 Payload[7:0]

3 Payload[15:8]

4 Payload[23:16]

5 Payload[31:24]

6 Payload[39:32]

7 Payload[47:40]

8 Payload[55:48]

9 Payload[63:56]

PayloadBytes Bytes of Payload

‘00 4

‘01 8

‘10 Reserved

‘11 Reserved

33-60 Vol. 3C

INTEL® PROCESSOR TRACE

33.4.2.22 Execution Stop (EXSTOP) Packet

Table 33-41. EXSTOP Packet Definition

Name EXSTOP Packet

Packet Format

Dependencies TriggerEn && PwrEvtEn Generation
Scenario

C-state entry, P-state change, or other processor clock power-
down. Includes :
• Entry to C-state deeper than C0.0
• TM1/2
• STPCLK#
• Frequency change due to IA32_CLOCK_MODULATION, Turbo

Description This packet indicates that software execution has stopped due to processor clock powerdown. Later packets will
indicate when execution resumes.
If EXSTOP is generated while ContextEn is set, the IP bit will be set, and EXSTOP will be followed by a FUP packet
containing the IP at which execution stopped. More precisely, this will be the IP of the oldest instruction that has
not yet completed.
This packet is CYC-eligible, and hence will generate a CYC packet if IA32_RTIT_CTL.CYCEn=1 and any CYC Threshold
has been reached.

Application If a FUP follows EXSTOP (hence IP bit set), the EXSTOP can be bound to the FUP IP. Otherwise the IP is not known.
Time of powerdown can be inferred from the preceding CYC, if CYCEn=1. Combined with the TSC at the time of
wake (if TSCEn=1), this can be used to determine the duration of the powerdown.

IP bit indicates if a FUP will follow.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 IP 1 1 0 0 0 1 0

Vol. 3C 33-61

INTEL® PROCESSOR TRACE

33.4.2.23 MWAIT Packet

Table 33-42. MWAIT Packet Definition

Name MWAIT Packet

Packet Format

Dependencies TriggerEn && PwrEvtEn &&
ContextEn

Generation
Scenario

MWAIT, UMWAIT, or TPAUSE instructions, or I/O redirection to
MWAIT, that complete without fault or VMexit.

Description Indicates that an MWAIT operation to C-state deeper than C0.0 completed. The MWAIT hints and extensions passed
in by software are exposed in the payload. For UMWAIT and TPAUSE, the EXT field holds the input register value
that determines the optimized state requested.
For entry to some highly optimized C0 sub-C-states, such as C0.1, no MWAIT packet is generated.
This packet is CYC-eligible, and hence will generate a CYC packet if IA32_RTIT_CTL.CYCEn=1 and any CYC Threshold
has been reached.

Application The binding for the upcoming EXSTOP packet also applies to the MWAIT packet. See Section 33.4.2.22.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 1 1 0 0 0 0 1 0

2 MWAIT Hints[7:0]

3 Reserved

4 Reserved

5 Reserved

6 Reserved EXT[1:0]

7 Reserved

8 Reserved

9 Reserved

33-62 Vol. 3C

INTEL® PROCESSOR TRACE

33.4.2.24 Power Entry (PWRE) Packet

Table 33-43. PWRE Packet Definition

Name PWRE Packet

Packet Format

Dependencies TriggerEn && PwrEvtEn Generation
Scenario

Transition to a C-state deeper than C0.0.

Description Indicates processor entry to the resolved thread C-state and sub C-state indicated. The processor will remain in this
C-state until either another PWRE indicates the processor has moved to a C-state deeper than C0.0, or a PWRX
packet indicates a return to C0.0.
For entry to some highly optimized C0 sub-C-states, such as C0.1, no PWRE packet is generated.
Note that some CPUs may allow MWAIT to request a deeper C-state than is supported by the core. These deeper C-
states may have platform-level implications that differentiate them. However, the PWRE packet will provide only
the resolved thread C-state, which will not exceed that supported by the core.
If the C-state entry was initiated by hardware, rather than a direct software request (such as MWAIT, UMWAIT,
TPAUSE, HLT, or shutdown), the HW bit will be set to indicate this. Hardware Duty Cycling (see Section 15.5, “Hard-
ware Duty Cycling (HDC),” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B) is an
example of such a case.

Application When transitioning from C0.0 to a deeper C-state, the PWRE packet will be followed by an EXSTOP. If that EXSTOP
packet has the IP bit set, then the following FUP will provide the IP at which the C-state entry occurred. Subsequent
PWRE packets generated before the next PWRX should bind to the same IP.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 0 0 1 0 0 0 1 0

2 HW Reserved

3 Resolved Thread C-State Resolved Thread Sub C-State

Vol. 3C 33-63

INTEL® PROCESSOR TRACE

33.4.2.25 Power Exit (PWRX) Packet

Table 33-44. PWRX Packet Definition

Name PWRX Packet

Packet Format

Dependencies TriggerEn && PwrEvtEn Generation
Scenario

Transition from a C-state deeper than C0.0 to C0.

Description Indicates processor return to thread C0 from a C-state deeper than C0.0.
For return from some highly optimized C0 sub-C-states, such as C0.1, no PWRX packet is generated.
The Last Core C-State field provides the MWAIT encoding for the core C-state at the time of the wake. The Deepest
Core C-State provides the MWAIT encoding for the deepest core C-state achieved during the sleep session, or since
leaving thread C0. MWAIT encodings for C-states can be found in Table 4-11 in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 2B. Note that these values reflect only the core C-state, and hence will
not exceed the maximum supported core C-state, even if deeper C-states can be requested.
The Wake Reason field is one-hot, encoded as follows:

Application PWRX will always apply to the same IP as the PWRE. The time of wake can be discerned from (optional) timing pack-
ets that precede PWRX.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 1 0 1 0 0 0 1 0

2 Last Core C-State Deepest Core C-State

3 Reserved Wake Reason

4 Reserved

5 Reserved

6 Reserved

Bit Field Meaning

0 Interrupt Wake due to external interrupt received.

1 Timer Deadline Wake due to timer expiration, such as
UMWAIT/TPAUSE TSC-quanta.

2 Store to Monitored Address Wake due to store to monitored address.

3 HW Wake Wake due to hardware autonomous condition,
such as HDC.

33-64 Vol. 3C

INTEL® PROCESSOR TRACE

33.4.2.26 Block Begin Packet (BBP)

Table 33-45. Block Begin Packet Definition

Name BBP

Packet Format

Dependencies TriggerEn Generation
Scenario

PEBS event, if IA32_PEBS_ENABLE.OUTPUT=1.

Description This packet indicates the beginning of a block of packets which are collectively tied to a single event or instruction.
The size of the block item payloads within this block is provided by the Size (SZ) bit:
SZ=0: 8-byte block items
SZ=1: 4-byte block items
The meaning of the BIP payloads is provided by the Type field:

Application A BBP will always be followed by a Block End Packet (BEP), and when the block is generated while ContextEn=1
that BEP will have IP=1 and be followed by a FUP that provides the IP to which the block should be bound. Note
that, in addition to BEP, a block can be terminated by a BBP (indicating the start of a new block) or an OVF packet.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 0 1 1 0 0 0 1 1

2 SZ Reserved Type[4:0]

BBP.Type Block name

0x00 Reserved

0x01 General-Purpose Registers

0x02..0x03 Reserved

0x04 PEBS Basic

0x05 PEBS Memory

0x06..0x07 Reserved

0x08 LBR Block 0

0x09 LBR Block 1

0x0A LBR Block 2

0x0B..0x0F Reserved

0x10 XMM Registers

0x11..0x1F Reserved

Vol. 3C 33-65

INTEL® PROCESSOR TRACE

33.4.2.27 Block Item Packet (BIP)

BIP State Value Encodings

The table below provides the encoding values for all defined block items. State items that are larger than 8 bytes,
such as XMM register values, are broken into multiple 8-byte components. BIP packets with Size=1 (4 byte
payload) will provide only the lower 4 bytes of the associated state value.

Table 33-46. Block Item Packet Definition

Name BIP

Packet Format If the preceding BBP.SZ=0:

If the preceding BBP.SZ=1:

Dependencies TriggerEn Generation
Scenario

See BBP.

Description The size of the BIP payload is determined by the Size field in the preceding BBP packet.
The BIP header provides the ID value that, when combined with the Type field from the preceding BBP, uniquely
identifies the state value held in the BIP payload. See Table 33-47 below for the complete list.

Application See BBP.

Table 33-47. BIP Encodings

BBP.Type BIP.ID State Value

General-Purpose Registers

0x01 0x00 R/EFLAGS

0x01 0x01 R/EIP

0x01 0x02 R/EAX

0x01 0x03 R/ECX

7 6 5 4 3 2 1 0

0 ID[5:0] 1 0 0

1 Payload[7:0]

2 Payload[15:8]

3 Payload[23:16]

4 Payload[31:24]

5 Payload[39:32]

6 Payload[47:40]

7 Payload[55:48]

8 Payload[63:56]

7 6 5 4 3 2 1 0

0 ID[5:0] 1 0 0

1 Payload[7:0]

2 Payload[15:8]

3 Payload[23:16]

4 Payload[31:24]

33-66 Vol. 3C

INTEL® PROCESSOR TRACE

0x01 0x04 R/EDX

0x01 0x05 R/EBX

0x01 0x06 R/ESP

0x01 0x07 R/EBP

0x01 0x08 R/ESI

0x01 0x09 R/EDI

0x01 0x0A R8

0x01 0x0B R9

0x01 0x0C R10

0x01 0x0D R11

0x01 0x0E R12

0x01 0x0F R13

0x01 0x10 R14

0x01 0x11 R15

PEBS Basic Info (Section 20.9.2.2.1)

0x04 0x00 Instruction Pointer

0x04 0x01 Applicable Counters

0x04 0x02 Timestamp

PEBS Memory Info (Section 20.9.2.2.2)

0x05 0x00 MemAccessAddress

0x05 0x01 MemAuxInfo

0x05 0x02 MemAccessLatency

0x05 0x03 TSXAuxInfo

LBR_0

0x08 0x00 LBR[TOS-0]_FROM_IP

0x08 0x01 LBR[TOS-0]_TO_IP

0x08 0x02 LBR[TOS-0]_INFO

0x08 0x03 LBR[TOS-1]_FROM_IP

0x08 0x04 LBR[TOS-1]_TO_IP

0x08 0x05 LBR[TOS-1]_INFO

0x08 0x06 LBR[TOS-2]_FROM_IP

0x08 0x07 LBR[TOS-2]_TO_IP

0x08 0x08 LBR[TOS-2]_INFO

0x08 0x09 LBR[TOS-3]_FROM_IP

0x08 0x0A LBR[TOS-3]_TO_IP

0x08 0x0B LBR[TOS-3]_INFO

0x08 0x0C LBR[TOS-4]_FROM_IP

0x08 0x0D LBR[TOS-4]_TO_IP

Table 33-47. BIP Encodings (Contd.)

BBP.Type BIP.ID State Value

Vol. 3C 33-67

INTEL® PROCESSOR TRACE

0x08 0x0E LBR[TOS-4]_INFO

0x08 0x0F LBR[TOS-5]_FROM_IP

0x08 0x10 LBR[TOS-5]_TO_IP

0x08 0x11 LBR[TOS-5]_INFO

0x08 0x12 LBR[TOS-6]_FROM_IP

0x08 0x13 LBR[TOS-6]_TO_IP

0x08 0x14 LBR[TOS-6]_INFO

0x08 0x15 LBR[TOS-7]_FROM_IP

0x08 0x16 LBR[TOS-7]_TO_IP

0x08 0x17 LBR[TOS-7]_INFO

0x08 0x18 LBR[TOS-8]_FROM_IP

0x08 0x19 LBR[TOS-8]_TO_IP

0x08 0x1A LBR[TOS-8]_INFO

0x08 0x1B LBR[TOS-9]_FROM_IP

0x08 0x1C LBR[TOS-9]_TO_IP

0x08 0x1D LBR[TOS-9]_INFO

0x08 0x1E LBR[TOS-10]_FROM_IP

0x08 0x1F LBR[TOS-10]_TO_IP

LBR_1

0x09 0x00 LBR[TOS-10]_INFO

0x09 0x01 LBR[TOS-11]_FROM_IP

0x09 0x02 LBR[TOS-11]_TO_IP

0x09 0x03 LBR[TOS-11]_INFO

0x09 0x04 LBR[TOS-12]_FROM_IP

0x09 0x05 LBR[TOS-12]_TO_IP

0x09 0x06 LBR[TOS-12]_INFO

0x09 0x07 LBR[TOS-13]_FROM_IP

0x09 0x08 LBR[TOS-13]_TO_IP

0x09 0x09 LBR[TOS-13]_INFO

0x09 0x0A LBR[TOS-14]_FROM_IP

0x09 0x0B LBR[TOS-14]_TO_IP

0x09 0x0C LBR[TOS-14]_INFO

0x09 0x0D LBR[TOS-15]_FROM_IP

0x09 0x0E LBR[TOS-15]_TO_IP

0x09 0x0F LBR[TOS-15]_INFO

0x09 0x10 LBR[TOS-16]_FROM_IP

0x09 0x11 LBR[TOS-16]_TO_IP

0x09 0x12 LBR[TOS-16]_INFO

Table 33-47. BIP Encodings (Contd.)

BBP.Type BIP.ID State Value

33-68 Vol. 3C

INTEL® PROCESSOR TRACE

0x09 0x13 LBR[TOS-17]_FROM_IP

0x09 0x14 LBR[TOS-17]_TO_IP

0x09 0x15 LBR[TOS-17]_INFO

0x09 0x16 LBR[TOS-18]_FROM_IP

0x09 0x17 LBR[TOS-18]_TO_IP

0x09 0x18 LBR[TOS-18]_INFO

0x09 0x19 LBR[TOS-19]_FROM_IP

0x09 0x1A LBR[TOS-19]_TO_IP

0x09 0x1B LBR[TOS-19]_INFO

0x09 0x1C LBR[TOS-20]_FROM_IP

0x09 0x1D LBR[TOS-20]_TO_IP

0x09 0x1E LBR[TOS-20]_INFO

0x09 0x1F LBR[TOS-21]_FROM_IP

LBR_2

0x0A 0x00 LBR[TOS-21]_TO_IP

0x0A 0x01 LBR[TOS-21]_INFO

0x0A 0x02 LBR[TOS-22]_FROM_IP

0x0A 0x03 LBR[TOS-22]_TO_IP

0x0A 0x04 LBR[TOS-22]_INFO

0x0A 0x05 LBR[TOS-23]_FROM_IP

0x0A 0x06 LBR[TOS-23]_TO_IP

0x0A 0x07 LBR[TOS-23]_INFO

0x0A 0x08 LBR[TOS-24]_FROM_IP

0x0A 0x09 LBR[TOS-24]_TO_IP

0x0A 0x0A LBR[TOS-24]_INFO

0x0A 0x0B LBR[TOS-25]_FROM_IP

0x0A 0x0C LBR[TOS-25]_TO_IP

0x0A 0x0D LBR[TOS-25]_INFO

0x0A 0x0E LBR[TOS-26]_FROM_IP

0x0A 0x0F LBR[TOS-26]_TO_IP

0x0A 0x10 LBR[TOS-26]_INFO

0x0A 0x11 LBR[TOS-27]_FROM_IP

0x0A 0x12 LBR[TOS-27]_TO_IP

0x0A 0x13 LBR[TOS-27]_INFO

0x0A 0x14 LBR[TOS-28]_FROM_IP

0x0A 0x15 LBR[TOS-28]_TO_IP

0x0A 0x16 LBR[TOS-28]_INFO

0x0A 0x17 LBR[TOS-29]_FROM_IP

Table 33-47. BIP Encodings (Contd.)

BBP.Type BIP.ID State Value

Vol. 3C 33-69

INTEL® PROCESSOR TRACE

0x0A 0x18 LBR[TOS-29]_TO_IP

0x0A 0x19 LBR[TOS-29]_INFO

0x0A 0x1A LBR[TOS-30]_FROM_IP

0x0A 0x1B LBR[TOS-30]_TO_IP

0x0A 0x1C LBR[TOS-30]_INFO

0x0A 0x1D LBR[TOS-31]_FROM_IP

0x0A 0x1E LBR[TOS-31]_TO_IP

0x0A 0x1F LBR[TOS-31]_INFO

XMM Registers

0x10 0x00 XMM0_Q0

0x10 0x01 XMM0_Q1

0x10 0x02 XMM1_Q0

0x10 0x03 XMM1_Q1

0x10 0x04 XMM2_Q0

0x10 0x05 XMM2_Q1

0x10 0x06 XMM3_Q0

0x10 0x07 XMM3_Q1

0x10 0x08 XMM4_Q0

0x10 0x09 XMM4_Q1

0x10 0x0A XMM5_Q0

0x10 0x0B XMM5_Q1

0x10 0x0C XMM6_Q0

0x10 0x0D XMM6_Q1

0x10 0x0E XMM7_Q0

0x10 0x0F XMM7_Q1

0x10 0x10 XMM8_Q0

0x10 0x11 XMM8_Q1

0x10 0x12 XMM9_Q0

0x10 0x13 XMM9_Q1

0x10 0x14 XMM10_Q0

0x10 0x15 XMM10_Q1

0x10 0x16 XMM11_Q0

0x10 0x17 XMM11_Q1

0x10 0x18 XMM12_Q0

0x10 0x19 XMM12_Q1

0x10 0x1A XMM13_Q0

0x10 0x1B XMM13_Q1

0x10 0x1C XMM14_Q0

Table 33-47. BIP Encodings (Contd.)

BBP.Type BIP.ID State Value

33-70 Vol. 3C

INTEL® PROCESSOR TRACE

33.4.2.28 Block End Packet (BEP)

0x10 0x1D XMM14_Q1

0x10 0x1E XMM15_Q0

0x10 0x1F XMM15_Q1

Table 33-48. Block End Packet Definition

Name BEP

Packet Format

Dependencies TriggerEn Generation
Scenario

See BBP.

Description Indicates the end of a packet block. The IP bit indicates if a FUP will follow, and will be set if ContextEn=1.

Application The block, from initial BBP to the BEP, binds to the FUP IP, if IP=1, and consumes the FUP.

Table 33-47. BIP Encodings (Contd.)

BBP.Type BIP.ID State Value

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 IP 0 1 1 0 0 1 1

Vol. 3C 33-71

INTEL® PROCESSOR TRACE

33.4.2.29 Control Flow Event (CFE) Packet

CFE Packet Type and Vector Fields

Every CFE has a Type field, which provides the type of event which generated the packet. For a subset of CFE
Types, the CFE.Vector field may be valid. Details on these fields, as well as the IP to be expected in any following
FUP packet, are provided in the table below.

Table 33-49. Control Flow Event Packet Definition

Name CFE

Packet Format

IP bit indicates if a stand-alone FUP will follow.

Dependencies IA32_RTIT_CTL.EventEn &&
TriggerEn && ContextEn
On ContextEn transitions, the CFE
will be generated regardless of
direction (1→0 or 0→1). VM
exit is an exception, where
CFE.VMEXIT depends only on the
prior value of ContextEn.

Generation
Scenario

Software interrupt, external interrupt, user interrupt, or
exception, including those injected on VM entry.
INIT, SIPI, SMI, RSM, IRET, Shutdown.
VM exit, if “Conceal VMX in PT” VMCS exit control is 0.
VM entry, if “Conceal VMX in PT” VMCS entry control is 0.
TSX Abort.

Description This packet indicates that an asynchronous event or related event (see list above) has occurred. The type of event
is provided in the packet (see Table 33-50 below), and, if the IP bit is set, the IP at which the event occurred is pro-
vided in a stand-alone FUP packet that follows. Further, in the case of an interrupt or exception, the vector field
provides the vector of the event.
The IP bit will be set only when ContextEn=1 before the event is taken, and either BranchEn=0 or else no FUP is
generated for this event by BranchEn=1. There are some cases, such as SIPI and RSM, where no FUP is generated.
Note that events that are not delivered to software, such as nested events or events which cause a VM exit, do not
generate CFE packets.

Application If the IP bit is set, a FUP will follow that is stand-alone (not part of a compound packet event), and the CFE con-
sumes the FUP. If the IP bit is not set, the CFE binds to the next FUP if PacketEn=1 (hence the CFE comes after a
TIP.PGE but before the next TIP.PGD), and is stand-alone if PacketEn=0.

Table 33-50. CFE Packet Type and Vector Fields Details

CFE Subtype Type Vector FUP IP Details

INTR 0x1 Event Vector Varies Used for interrupts (external and software),
Exceptions, Faults, and NMI. FUP contains that address
of the instruction that has not completed (NLIP for trap
events, CLIP for fault events).

IRET 0x2 Invalid CLIP

SMI 0x3 Invalid NLIP

RSM 0x4 Invalid None

SIPI 0x5 SIPI Vector None

INIT 0x6 Invalid NLIP

VMENTRY 0x7 Invalid CLIP FUP contains IP of VMLAUNCH/VMRESUME.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 0 0 0 1 0 0 1 1

2 IP Reserved Type[4:0]

3 Vector[7:0]

33-72 Vol. 3C

INTEL® PROCESSOR TRACE

VMEXIT 0x8 Invalid Varies FUP IP varies depending on type of VM exit, but will be
the address of the instruction that has not completed.
Will be consistent with Guest IP saved in VMCS.

VMEXIT_INTR 0x9 Event Vector Varies Sent in cases where VM exit was caused by an INTR
event (interrupt, exception, fault, or NMI). Vector
provided is for the event which caused the VM exit.
FUP IP behavior matches that of INTR type above.

SHUTDOWN 0xa Invalid Varies FUP IP varies depending on the type of event that
caused shutdown, but will be the address of the
instruction that has not completed.

Reserved 0xb N/A N/A

UINTR 0xc User Interrupt Vector NLIP User interrupt delivered.

UIRET 0xd Invalid CLIP Exiting from user interrupt routine.

Reserved 0xe...0x1f N/A N/A Reserved

Table 33-50. CFE Packet Type and Vector Fields Details (Contd.)

CFE Subtype Type Vector FUP IP Details

Vol. 3C 33-73

INTEL® PROCESSOR TRACE

33.4.2.30 Event Data (EVD) Packet

33.5 TRACING IN VMX OPERATION
On processors that IA32_VMX_MISC[bit 14] reports 1, TraceEn can be set in VMX operation. The VMM can
configure specific VMX controls to control what virtualization-specific data is included within the trace packets (see
Section 33.5.1 for details). The VMM can also configure the VMCS to limit tracing to non-root operation, or to trace
across both root and non-root operation. The VMCS controls exist to simplify virtualization of Intel PT for guest use,
including the “Clear IA32_RTIT_CTL” exit control (See Section 25.7.1), “Load IA32_RTIT_CTL” entry control (See
Section 25.8.1), and “Intel PT uses guest physical addresses” execution control (See Section 26.5.3).
For older processors that do not support these VMCS controls, the MSR-load areas used by VMX transitions can be
employed by the VMM to restrict tracing to the desired context. See Section 33.5.2 for details. Tracing with SMM
Transfer Monitor is described in Section 33.6.

Table 33-51. Event Data Packet Definition

Name EVD

Packet Format

Dependencies IA32_RTIT_CTL.EventEn &&
TriggerEn && ContextEn

Generation
Scenario

Page fault, including those injected on VM entry.
VM exit, if “Suppress VMX packets on exit” VMCS exit control
is 0.

Description Provides additional data about the event that caused the following CFE. The Payload field is dictated by the Type.

EVD packets are never generated in cases where a CFE is not.

Application EVD packets bind to the same IP (if any) as the subsequent CFE packet.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0

1 0 1 0 1 0 0 1 1

2 Reserved Type[5:0]

3 Payload[7:0]

4 Payload[15:8]

5 Payload[23:16]

6 Payload[31:24]

7 Payload[39:32]

8 Payload[47:40]

9 Payload[55:48]

10 Payload[63:56]

Type Payload

'000000 Page Fault Linear Address, same as CR2 (PFA)

'000001 VMX Exit Qualification (VMXQ)

'000010 VMX Exit Reason (VMXR)

'000011 - '111111 Reserved

33-74 Vol. 3C

INTEL® PROCESSOR TRACE

33.5.1 VMX-Specific Packets and VMCS Controls
In all of the usages of VMX and Intel PT, a decoder in the host or VMM context can identify the occurrences of VMX
transitions with the aid of VMX-specific packets. There are four kinds of packets relevant to VMX:
• VMCS packet. The VMX transitions of individual VMs can be distinguished by a decoder using the VMCS-

pointer field in a VMCS packet. A VMCS packet is sent on a successful execution of VMPTRLD, and its VMCS-
pointer field stores the VMCS pointer loaded by that execution. See Section 33.4.2.15 for details.

• The NR (non-root) bit in a PIP packet. Normally, the NR bit is set in any PIP packet generated in VMX non-
root operation. In addition, PIP packets are generated with each VM entry and VM exit. Thus a transition of the
NR bit from 0 to 1 indicates the occurrence of a VM entry, and a transition of 1 to 0 indicates the occurrence of
a VM exit.

• CFE packet. Identifies VM exit and VM entry operations.
• EVD packet. Provides the exit reason and exit qualification for VM exits.
There are VMX controls that a VMM can set to conceal some of this VMX-specific information (by suppressing its
recording) and thereby prevent it from leaking across virtualization boundaries. There is one of these controls
(each of which is called “conceal VMX from PT”) of each type of VMX control.

The 0-settings of these VMX controls enable all VMX-specific packet information. The scenarios that would use
these default settings also do not require the VMM to use VMX MSR-load areas to enable and disable trace-packet
generation across VMX transitions.
If IA32_VMX_MISC[bit 14] reports 0, the 1-settings of the VMX controls in Table 33-52 are not supported, and
VM entry will fail on any attempt to set them.

33.5.2 Managing Trace Packet Generation Across VMX Transitions
In tracing scenarios that collect packets for both VMX root operation and VMX non-root operation, a host executive
can manage the MSRs associated with trace packet generation directly. The states of these MSRs need not be modi-
fied across VMX transitions.
For tracing scenarios that collect packets only within VMX root operation or only within VMX non-root operation, the
VMM can toggle IA32_RTIT_CTL.TraceEn on VMX transitions.

Table 33-52. VMX Controls For Intel Processor Trace

Type of VMX
Control

Bit
Position1

NOTES:

1. These are the positions of the control bits in the relevant VMX control fields.

Value Behavior

Secondary
processor-based
VM-execution
control

19 0 Each PIP generated in VM non-root operation will set the NR bit.

PSB+ in VMX non-root operation will include the VMCS packet, to ensure that the decoder
knows which guest is currently in use.

1 Each PIP generated in VMX non-root operation will clear the NR bit.

PSB+ in VMX non-root operation will not include the VMCS packet.

VM-exit control 24 0 Each VM exit generates a PIP in which the NR bit is clear, and a CFE/EVD if Event Trace is
enabled.

In addition, SMM VM exits generate VMCS packets.

1 VM exits do not generate PIPs, CFEs, or EVDs, and no VMCS packets are generated on SMM
VM exits.

VM-entry control 17 0 Each VM entry generates a PIP in which the NR bit is set (except VM entries that return
from SMM to VMX root operation), and a CFE if Event Trace is enabled.

In addition, VM entries that return from SMM generate VMCS packets.

1 VM entries do not generate PIPs or CFEs, and no VMCS packets are generated on
VM entries that return from SMM.

Vol. 3C 33-75

INTEL® PROCESSOR TRACE

33.5.2.1 System-Wide Tracing
When a host or VMM configures Intel PT to collect trace packets of the entire system, it can leave the relevant VMX
controls clear to allow VMX-specific packets to provide information across VMX transitions.
The decoder will desire to identify the occurrence of VMX transitions. The packets of interests to a decoder are
shown in Table 33-53.

Since the VMX controls that suppress packet generation are cleared, a VMCS packet will be included in all PSB+ for
this usage scenario. Additionally, VMPTRLD will generate such a packet. Thus the decoder can distinguish the
execution context of different VMs.
When the host VMM configures a system to collect trace packets in this scenario, it should emulate CPUID to report
CPUID.(EAX=07H, ECX=0):EBX[bit 26] as 0 to guests, indicating to guests that Intel PT is not available.

VMX TSC Manipulation

The TSC packets generated while in VMX non-root operation will include any changes resulting from the use of a
VMM’s use of the TSC offsetting or TSC scaling VMX controls (see Chapter 26, “VMX Non-Root Operation”). In this
system-wide usage model, the decoder may need to account for the effect of per-VM adjustments in the TSC
packets generated in VMX non-root operation and the absence of TSC adjustments in TSC packets generated in
VMX root operation. The VMM can supply this information to the decoder.

33.5.2.2 Guest-Only Tracing
A VMM can configure trace-packet generation while in VMX non-root operation for guests executing normally. This
is accomplished by utilizing VMCS controls to manipulate the guest IA32_RTIT_CTL value on VMX transitions. For

Table 33-53. Packets on VMX Transitions (System-Wide Tracing)

Event Packets Enable Description

VM exit EVD.VMXR,
EVD.VMXQ,
CFE.VMEXIT*

EventEn The CFE identifies the transfer as a VM exit, while the associated EVDs
provide the exit reason and exit qualification.

FUP(GuestIP) BranchEn or
EventEn

The FUP indicates at which point in the guest flow the VM exit occurred. This
is important, since VM exit can be an asynchronous event. The IP will match
that written into the VMCS.

PIP(HostCR3, NR=0) The PIP packet provides the new host CR3 value, as well as indication that
the logical processor is entering VMX root operation. This allows the decoder
to identify the change of executing context from guest to host and load the
appropriate set of binaries to continue decode.

TIP(HostIP) BranchEn The TIP indicates the destination IP, the IP of the first instruction to be
executed in VMX root operation.

Note, this packet could be preceded by a MODE.Exec packet (Section
33.4.2.8). This is generated only in cases where CS.D or (CS.L & EFER.LMA)
change during the transition.

VM entry CFEVMENTRY,

FUP(CLIP)

EventEn The CFE identifies the transfer as a VM entry, while the FUP identifies the
VMLAUNCH/VMRESUME IP.

PIP(GuestCR3, NR=1) BranchEn The PIP packet provides the new guest CR3 value, as well as indication that
the logical processor is entering VMX non-root operation. This allows the
decoder to identify the change of executing context from host to guest and
load the appropriate set of binaries to continue decode.

TIP(GuestIP) BranchEn The TIP indicates the destination IP, the IP of the first instruction to be
executed in VMX non-root operation. This should match the RIP loaded from
the VMCS.

Note, this packet could be preceded by a MODE.Exec packet (Section
33.4.2.8). This is generated only in cases where CS.D or (CS.L & EFER.LMA)
change during the transition.

33-76 Vol. 3C

INTEL® PROCESSOR TRACE

older processors that do not support these VMCS controls, a VMM can use the VMX MSR-load areas on VM exits
(see Section 25.7.2, “VM-Exit Controls for MSRs”) and VM entries (see Section 25.8.2, “VM-Entry Controls for
MSRs”) to limit trace-packet generation to the guest environment.
For this usage, VM entry is programmed to enable trace packet generation, while VM exit is programmed to clear
IA32_RTIT_CTL.TraceEn so as to disable trace-packet generation in the host. Further, if it is preferred that the
guest packet stream contain no indication that execution was in VMX non-root operation, the VMM should set to 1
all the VMX controls enumerated in Table 33-52.

33.5.2.3 Emulation of Intel PT Traced State
If a VMM emulates an element of processor state by taking a VM exit on reads and/or writes to that piece of state,
and the state element impacts Intel PT packet generation or values, it may be incumbent upon the VMM to insert
or modify the output trace data.
If a VM exit is taken on a guest write to CR3 (including “MOV CR3” as well as task switches), the PIP packet
normally generated on the CR3 write will be missing.
To avoid decoder confusion when the guest trace is decoded, the VMM should emulate the missing PIP by writing it
into the guest output buffer. If the guest CR3 value is manipulated, the VMM may also need to manipulate the
IA32_RTIT_CR3_MATCH value, in order to ensure the trace behavior matches the guest's expectation.
Similarly, if a VMM emulates the TSC value by taking a VM exit on RDTSC, the TSC packets generated in the trace
may mismatch the TSC values returned by the VMM on RDTSC. To ensure that the trace can be properly aligned
with software logs based on RDTSC, the VMM should either make corresponding modifications to the TSC packet
values in the guest trace, or use mechanisms such as TSC offsetting or TSC scaling in place of exiting.

33.5.2.4 TSC Scaling
When TSC scaling is enabled for a guest using Intel PT, the VMM should ensure that the value of Maximum Non-
Turbo Ratio[15:8] in MSR_PLATFORM_INFO (MSR 0CEH) and the TSC/”core crystal clock” ratio (EBX/EAX) in CPUID
leaf 15H are set in a manner consistent with the resulting TSC rate that will be visible to the VM. This will allow the
decoder to properly apply TSC packets, MTC packets (based on the core crystal clock or ART, whose frequency is
indicated by CPUID leaf 15H), and CBR packets (which indicate the ratio of the processor frequency to the Max
Non-Turbo frequency). Absent this, or separate indication of the scaling factor, the decoder will be unable to prop-
erly track time in the trace. See Section 33.8.3 for details on tracking time within an Intel PT trace.

33.5.2.5 Failed VM Entry
The packets generated by a failed VM entry depend both on the VMCS configuration, as well as on the type of
failure. The results to expect are summarized in the table below. Note that packets in italics may or may not be
generated, depending on implementation choice, and the point of failure.

Table 33-54. Packets on a Failed VM Entry

Usage Model Entry Configuration Early Failure (fall
through to next IP)

Late Failure (VM exit like)

System-Wide No use of “Load
IA32_RTIT_CTL” entry
control or VM-entry
MSR-load area

TIP (NextIP) CFE.VMENTRY, FUP(CLIP) if EventEn=1

PIP(Guest CR3, NR=1), TraceEn 0→1 Packets (See Section
33.2.8.3), PIP(HostCR3, NR=0), TIP(HostIP)

VMM Only “Load IA32_RTIT_CTL”
entry control or VM-
entry MSR-load area
used to clear TraceEn

TIP (NextIP) TraceEn 0→1 Packets (See Section 33.2.8.3), TIP(HostIP)

VM Only “Load IA32_RTIT_CTL”
entry control or VM-
entry MSR-load area
used to set TraceEn

None None

Vol. 3C 33-77

INTEL® PROCESSOR TRACE

33.5.2.6 VMX Abort
VMX abort conditions take the processor into a shutdown state. On a VM exit that leads to VMX abort, some
packets (FUP, PIP) may be generated, but any expected TIP, TIP.PGE, or TIP.PGD may be dropped.

33.6 TRACING AND SMM TRANSFER MONITOR (STM)
The SMM-transfer monitor (STM) is a VMM that operates inside SMM while in VMX root operation. An STM operates
in conjunction with an executive monitor. The latter operates outside SMM and in VMX root operation. Transitions
from the executive monitor or its VMs to the STM are called SMM VM exits. The STM returns from SMM via a
VM entry to the VM in VMX non-root operation or the executive monitor in VMX root operation.
Intel PT supports tracing in an STM similar to tracing support for VMX operation as described above in Section 33.5.
As a result, on a SMM VM exit resulting from #SMI, TraceEn is neither saved nor cleared by default. Software can
save the state of the trace configuration MSRs and clear TraceEn using the MSR load/save lists.
Within Event Trace, SMM VM exits generate packets indicating both an #SMI and a VM exit. Similarly, VM entries
that return from SMM generate packets that indicate both an RSM and a VM entry. SMM VM exits initiated by the
VMCALL instruction do not generate any CFE packet, though the subsequent VM entry returning from SMM will
generate a CFE.RSM.

33.7 PACKET GENERATION SCENARIOS
The following tables provides examples of packet generation for various operations. The following acronyms are
used in the packet examples below:
• CLIP - Current LIP
• NLIP - Next Sequential LIP
• BLIP - Branch Target LIP
Table 33-55 illustrates the packets generated by a series of example operations, assuming that PacketEn
(TriggerEn && ContextEn && FilterEn && BranchEn) is set before and after the operation.

Table 33-55. Packet Generation under Different Example Operations

Case Operation Details Packets

1 Normal non-jump operation None

2 Conditional branch 6th branch in internal TNT buffer TNT

3 Conditional branch 1st..5th branch in internal TNT buffer None

4 Near indirect JMP or CALL TIP(BLIP)

5 Direct near JMP or CALL None

6 Near RET Uncompressed TIP(BLIP)

7 Near RET Compressed, 6th branch in internal TNT buffer TNT

8 Far Branch Assumes no update to CR3, CS.L, or CS.D TIP(BLIP)

9 Far Branch Assumes update to CR3 PIP(NewCR3), TIP(BLIP)

10 Far Branch Assumes update to CR3 and CS.D/CS.L PIP(NewCR3), MODE.Exec, TIP(BLIP)

11 External Interrupt or NMI Assumes no update to CR3, CS.D, or CS.L FUP(NLIP), TIP(BLIP)

12 External Interrupt or NMI Assumes update to CR3 and CS.D/CS.L FUP(NLIP), PIP(NewCR3),
MODE.Exec, TIP(BLIP)

13 Exception/Fault or Software Interrupt Assumes no update to CR3, CS.D, or CS.L FUP(CLIP), TIP(BLIP)

14 MOV to CR3 PIP(NewCR3, NR)

33-78 Vol. 3C

INTEL® PROCESSOR TRACE

Table 33-56 illustrates the packets generated in example scenarios where the operation alters the value of
PacketEn. Note that insertion of PSB+ is not included here, though it can be coincident with initial enabling of Intel
PT. See Section 33.3.7 for details.

15 VM exit Assumes system-wide tracing, see Section
33.5.2.1

See Table 33-53

16 VM entry Assumes system-wide tracing, see Section
33.5.2.1

See Table 33-53

17 ENCLU[EENTER] / ENCLU[ERESUME] /
ENCLU[EEXIT] / AEX/EEE

Only debug enclaves allow PacketEn to be set
during enclave execution. Assumes no change
to CS.L or CS.D.

FUP(CLIP), TIP(BLIP)

18 XBEGIN/XACQUIRE/XEND/XRELEASE Does not begin/end transactional execution None

19 XBEGIN/XACQUIRE Assumes beginning of transactional execution MODE.TSX(InTX=1, TXAbort=0),
FUP(CLIP)

20 XEND/XRELEASE Completes transaction MODE.TSX(InTX=0, TXAbort=0),
FUP(CLIP)

21 XABORT or Asynchronous Abort Aborts transactional execution MODE.TSX(InTX=0, TXAbort=1),
FUP(CLIP), TIP(BLIP)

22 INIT On BSP. Assumes no CR3, CS.D, or CS.L update. FUP(NLIP), TIP(ResetLIP)

23 INIT On AP, goes to wait-for-SIPI. Assumes no CR3
update.

FUP(NLIP)

24 SIPI Assumes no CS.D or CS.L update TIP.PGE(SIPI.LIP)

25 Wake from state deeper than C0.1, P-
state change, or other scenario where
timing packets (MTC, CYC) may have
ceased.

TSC if TSCEn=1
TMA if TSCEn=MTCEn=1

TSC?, TMA?, CBR

26 UINTR User interrupt handler entry. FUP(NLIP)

27 UIRET Exiting from user interrupt handler. FUP(NLIP)

Table 33-56. Packet Generation with Operations That Alter the Value of PacketEn

Case Operation PktEn
Before

PktEn
After

CntxEn
After

Details Packets

1 WRMSR/XRSTORS that
changes TraceEn 0 → 1

0 1 0 TSC if TSCEn=1;
TMA if TSCEn=MTCEn=1

TSC?, TMA?, CBR, MODE.Exec

2 WRMSR/XRSTORS that
changes TraceEn 0 → 1

0 1 1 TSC if TSCEn=1;
TMA if TSCEn=MTCEn=1

TSC?, TMA?, CBR, MODE.Exec,
TIP.PGE(NLIP)

3 WRMSR that changes
TraceEn 1 → 0

1 0 D.C. FUP(CLIP), TIP.PGD()

4 Taken Branch 1 0 1 Source is in IP filter region.
Target is outside IP filter region.

TIP.PGD(BLIP)

5 Taken Branch, Interrupt,
EEXIT, etc.

0 1 1 Source is outside IP filter region.
Target is in IP filter region.

TIP.PGE(BLIP)

6 Far Branch, Interrupt, EEN-
TER, etc.

1 0 0 Requires change to CPL or CR3,
or entry to opt-out enclave.

TIP.PGD()

Table 33-55. Packet Generation under Different Example Operations

Case Operation Details Packets

Vol. 3C 33-79

INTEL® PROCESSOR TRACE

Table 33-57 illustrates examples of PTWRITE, assuming TriggerEn && PTWEn is true.

Table 33-58 illustrates examples of Power Event Trace, assuming TriggerEn && PwrEvtEn is true.

7 Trap-like event (external
interrupt, NMI, VM exit/entry,
etc.)

1 0 0 Requires change to CPL or CR3. FUP(NLIP), TIP.PGD()

8 Fault-like event (excep-
tion/fault, software inter-
rupt, VM exit/entry, etc.)

1 0 0 Requires change to CPL or CR3. FUP(CLIP), TIP.PGD()

9 SMI, VM exit/entry 1 0 0 TraceEn is cleared. FUP(NLIP), TIP.PGD()

10 RSM, VM exit/entry 0 1 1 TraceEn is set. See Case 2 for packets on
enable. FUP/TIP.PGE IP is the
BLIP.

11 VM Exit 1 0 0 Assumes guest-only tracing, see
Section 33.5.2.2.
TraceEn is cleared.

FUP(VMCSg.RIP), TIP.PGD()

12 VM entry 0 1 1 Assumes guest-only tracing, see
Section 33.5.2.2.
TraceEn is set.

TIP.PGE(VMCSg.RIP)

Table 33-57. Examples of PTWRITE when TriggerEn && PTWEn is True

Case Operation ContextEn Details Packets

1 MWAIT/UMWAIT gets fault or VM exit. D.C. None.
Other trace sources may generate pack-
ets on fault or VM exit.

2 MWAIT/UMWAIT requests C0, or moni-
tor not armed, or VMX virtual-interrupt
delivery.

D.C. None.

3 MWAIT/UMWAIT enters C-state deeper
than C0.1.

0 PWRE(Cx), EXSTOP

4 MWAIT/UMWAIT enters C-state deeper
than C0.1.

1 MWAIT(Cy), PWRE(Cx), EXSTOP(IP),
FUP(CLIP)

5 HLT, Triple-fault shutdown, other oper-
ation that enters C1.

1 PWRE(C1), EXSTOP(IP), FUP(CLIP)

6 Hardware Duty Cycling (HDC). 1 TSC if TSCEn=1
TMA if TSCEn=MTCEn=1

PWRE(HW, C6), EXSTOP(IP), FUP(NLIP),
TSC?, TMA?, CBR, PWRX(CC6, CC6, 0x8)

7 Wake event during Cx (x > 0). D.C. TSC if TSCEn=1
TMA if TSCEn=MTCEn=1

TSC?, TMA?, CBR, PWRX(LCC, DCC, 0x1)

Other trace sources may generate pack-
ets for the wake operation (e.g., inter-
rupt).

Table 33-58. Examples of Power Event Trace when TriggerEn && PwrEvtEn is True

Case Operation ContextEn
&&

FilterEn

Details Packets

1 PTWRITE rm32/64 0 None

Table 33-56. Packet Generation with Operations That Alter the Value of PacketEn (Contd.)

Case Operation PktEn
Before

PktEn
After

CntxEn
After

Details Packets

33-80 Vol. 3C

INTEL® PROCESSOR TRACE

Table 33-59 illustrates examples of Event Trace, assuming TriggerEn && ContextEn && EventEn is true. In all cases,
other trace sources (e.g., BranchEn), if enabled, may generate additional packets. For details, see the other tables
in this section.

2 PTWRITE rm32 1 FUP, PTW.IP=1 if FUPonPTW=1 PTW(IP=1?, 4B, rm32_value),
FUP(CLIP)?

3 PTWRITE rm64 1 FUP, PTW.IP=1 if FUPonPTW=1 PTW(IP=1?, 8B, rm64_value),
FUP(CLIP)?

Table 33-59. Event Trace Examples when TriggerEn && ContextEn && EventEn is True

Case Operation ContextEn
Before

ContextEn
After

Details Packets

1 IRET 1 D.C. CFE.IRET(IP=1), FUP(CLIP)

2 IRET 0 1 CFE(IRET)

3 External interrupt, including
NMI

1 D.C. CFE.INTR(IP=1, Vector), FUP(NLIP)

4 External interrupt, including
NMI

1 1 Assumes BranchEn=1,
illustrates the shared FUP.

CFE.INTR(IP=0, Vector), FUP(NLIP),
TIP(BLIP)

5 SW Interrupt, Exception/Fault
other than #PF

1 D.C. CFE.INTR(IP=1, Vector), FUP(CLIP)

6 Page Fault (#PF) 1 D.C. EVD.PFA, CFE.INTR(IP=1,14),
FUP(CLIP)

7 Page Fault (#PF) 0 D.C. None

10 SMI 1 D.C. CFE.SMI(IP=1), FUP(NLIP)

11 RSM, TraceEn restored to 1 D.C. 1 CFE.RSM(IP=0)

12 Entry to Shutdown 1 D.C. CFE.SHUTDOWN(IP=1), FUP(CLIP)

13 VM exit caused by interrupt,
fault, or SMI

1 D.C. Assumes “Conceal VMX in
PT” exit control is 0.

EVD.VMXQ, EVD.VMXR,
CFE.VMEXIT_INTR(IP=1, Vector),
FUP(VMCSg.LIP)

14 VM exit caused by other than
interrupt, fault, or SMI

1 D.C. Assumes “Conceal VMX in
PT” exit control is 0.

EVD.VMXQ, EVD.VMXR,
CFE.VMEXIT(IP=1), FUP(VMCSg.LIP)

15 VM exit caused by other than
interrupt, fault, or SMI

0 1 Assumes “Conceal VMX in
PT” exit control is 0.

CFE.VMEXIT(IP=0)

16 VM entry 1 D.C. Assumes “Conceal VMX in
PT” entry control is 0.

CFE.VMENTRY(IP=1), FUP(VMCSh.LIP)

17 AEX/EEE, from opt-out (non-
debug) enclave

0 0 None

18 AEX/EEE, from opt-out (non-
debug) enclave

0 1 CFE.INTR(IP=0)

19 AEX, from opt-in (debug)
enclave

1 D.C. CFE.INTR(IP=1, Vec), FUP(AEP LIP)

20 INIT 1 D.C. CFE.INIT(IP=1), FUP(NLIP)

21 SIPI 1 D.C. CFE.SIPI(IP=0)

Table 33-58. Examples of Power Event Trace when (Contd.)TriggerEn && PwrEvtEn is True

Case Operation ContextEn
&&

FilterEn

Details Packets

Vol. 3C 33-81

INTEL® PROCESSOR TRACE

33.8 SOFTWARE CONSIDERATIONS

33.8.1 Tracing SMM Code
Nothing prevents an SMM handler from configuring and enabling packet generation for its own use. As described in
Section Section 33.2.9.3, SMI will always clear TraceEn, so the SMM handler would have to set TraceEn in order to
enable tracing. There are some unique aspects and guidelines involved with tracing SMM code, which follow:

1. SMM should save away the existing values of any configuration MSRs that SMM intends to modify for tracing.
This will allow the non-SMM tracing context to be restored before RSM.

2. It is recommended that SMM wait until it sets CSbase to 0 before enabling packet generation, to avoid possible
LIP vs RIP confusion.

3. Packet output cannot be directed to SMRR memory, even while tracing in SMM.

4. Before performing RSM, SMM should take care to restore modified configuration MSRs to the values they had
immediately after #SMI. This involves first disabling packet generation by clearing TraceEn, then restoring any
other configuration MSRs that were modified.

5. RSM

— Software must ensure that TraceEn=0 at the time of RSM. Tracing RSM is not a supported usage model, and
the packets generated by RSM are undefined.

— For processors on which Intel PT and LBR use are mutually exclusive (see Section 33.3.1.2), any RSM
during which TraceEn is restored to 1 will suspend any LBR or BTS logging.

33.8.2 Cooperative Transition of Multiple Trace Collection Agents
A third-party trace-collection tool should take into consideration the fact that it may be deployed on a processor
that supports Intel PT but may run under any operating system.
In such a deployment scenario, Intel recommends that tool agents follow similar principles of cooperative transition
of single-use hardware resources, similar to how performance monitoring tools handle performance monitoring
hardware:
• Respect the “in-use” ownership of an agent who already configured the trace configuration MSRs, see architec-

tural MSRs with the prefix “IA32_RTIT_” in Chapter 2, “Model-Specific Registers (MSRs)‚” in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 4, where “in-use” can be determined by reading the
“enable bits” in the configuration MSRs.

• Relinquish ownership of the trace configuration MSRs by clearing the “enabled bits” of those configuration
MSRs.

33.8.3 Tracking Time
This section describes the relationships of several clock counters whose update frequencies reside in different
domains that feed into the timing packets. To track time, the decoder also needs to know the regularity or irregu-
larity of the occurrences of various timing packets that store those clock counters.
Intel PT provides time information for three different but related domains:

22 STI/CLI/POPF 1 1 Assumes a change to
RFLAGS.IF.

MODE.Exec, FUP(CLIP)

Table 33-59. Event Trace Examples when TriggerEn && ContextEn && EventEn is True

Case Operation ContextEn
Before

ContextEn
After

Details Packets

33-82 Vol. 3C

INTEL® PROCESSOR TRACE

• Processor timestamp counter

This counter increments at the max non-turbo or P1 frequency, and its value is returned on a RDTSC. Its
frequency is fixed. The TSC packet holds the lower 7 bytes of the timestamp counter value. The TSC packet
occurs occasionally and are much less frequent than the frequency of the time stamp counter. The timestamp
counter will continue to increment when the processor is in deep C-States, with the exception of processors
reporting CPUID.80000007H:EDX.InvariantTSC[bit 8] =0.

• Core crystal clock

The ratio of the core crystal clock to timestamp counter frequency is known as P, and can be calculated as
CPUID.15H:EBX[31:0] / CPUID.15H:EAX[31:0]. The frequency of the core crystal clock is fixed and lower
than that of the timestamp counter. The periodic MTC packet is generated based on software-selected
multiples of the crystal clock frequency. The MTC packet is expected to occur more frequently than the TSC
packet.

• Processor core clock

The processor core clock frequency can vary due to P-state and thermal conditions. The CYC packet provides
elapsed time as measured in processor core clock cycles relative to the last CYC packet.

A decoder can use all or some combination of these packets to track time at different resolutions throughout the
trace packets.

33.8.3.1 Time Domain Relationships
The three domains are related by the following formula:

TimeStampValue = (CoreCrystalClockValue * P) + AdjustedProcessorCycles + Software_Offset;
The CoreCrystalClockValue, also known as the Always Running Timer (ART) value, can provide the coarse-grained
component of the TSC value. P, or the TSC/ART ratio, can be derived from CPUID leaf 15H, as described in Section
33.8.3.
The AdjustedProcessorCycles component provides the fine-grained distance from the rising edge of the last core
crystal clock. Specifically, it is a cycle count in the same frequency as the timestamp counter from the last crystal
clock rising edge. The value is adjusted based on the ratio of the processor core clock frequency to the Maximum
Non-Turbo (or P1) frequency.
The Software_Offsets component includes software offsets that are factored into the timestamp value, such as
IA32_TSC_ADJUST.

33.8.3.2 Estimating TSC within Intel PT
For many usages, it may be useful to have an estimated timestamp value for all points in the trace. The formula
provided in Section 33.8.3.1 above provides the framework for how such an estimate can be calculated from the
various timing packets present in the trace.
The TSC packet provides the precise timestamp value at the time it is generated; however, TSC packets are infre-
quent, and estimates of the current timestamp value based purely on TSC packets are likely to be very inaccurate
for this reason. In order to get more precise timing information between TSC packets, CYC packets and/or MTC
packets should be enabled.
MTC packets provide incremental updates of the CoreCrystalClockValue. On processors that support CPUID leaf
15H, the frequency of the timestamp counter and the core crystal clock is fixed, thus MTC packets provide a means
to update the running timestamp estimate. Between two MTC packets A and B, the number of crystal clock cycles
passed is calculated from the 8-bit payloads of respective MTC packets:
(CTCB - CTCA), where CTCi = MTCi[15:8] << IA32_RTIT_CTL.MTCFreq and i = A, B.
The time from a TSC packet to the subsequent MTC packet can be calculated using the TMA packet that follows the
TSC packet. The TMA packet provides both the crystal clock value (lower 16 bits, in the CTC field) and the Adjust-
edProcessorCycles value (in the FastCounter field) that can be used in the calculation of the corresponding core
crystal clock value of the TSC packet.
When the next MTC after a pair of TSC/TMA is seen, the number of crystal clocks passed since the TSC packet can
be calculated by subtracting the TMA.CTC value from the time indicated by the MTCNext packet by
CTCDelta[15:0] = (CTCNext[15:0] - TMA.CTC[15:0]), where CTCNext = MTCPayload << IA32_RTIT_CTL.MTCFreq.

Vol. 3C 33-83

INTEL® PROCESSOR TRACE

The TMA.FastCounter field provides the number of AdjustedProcessorCycles since the last crystal clock rising edge,
from which it can be determined the percentage of the next crystal clock cycle that had passed at the time of the
TSC packet.
CYC packets can provide further precision of an estimated timestamp value to many non-timing packets, by
providing an indication of the time passed between other timing packets (MTCs or TSCs).
When enabled, CYC packets are sent preceding each CYC-eligible packet, and provide the number of processor
core clock cycles that have passed since the last CYC packet. Thus between MTCs and TSCs, the accumulated CYC
values can be used to estimate the AdjustedProcessorCycles component of the timestamp value. The accumulated
CPU cycles will have to be adjusted to account for the difference in frequency between the processor core clock and
the P1 frequency. The necessary adjustment can be estimated using the core:bus ratio value given in the CBR
packet, by multiplying the accumulated cycle count value by P1/CBRpayload.
Note that stand-alone TSC packets (that is, TSC packets that are not a part of a PSB+) are typically generated only
when generation of other timing packets (MTCs and CYCs) has ceased for a period of time. Example scenarios
include when Intel PT is re-enabled, or on wake after a sleep state. Thus any calculated estimate of the timestamp
value leading up to a TSC packet will likely result in a discrepancy, which the TSC packet serves to correct.
A greater level of precision may be achieved by calculating the CPU clock frequency, see Section 33.8.3.4 below for
a method to do so using Intel PT packets.
CYCs can be used to estimate time between TSCs even without MTCs, though this will likely result in a reduction in
estimated TSC precision.

33.8.3.3 VMX TSC Manipulation
When software executes in non-Root operation, additional offset and scaling factors may be applied to the TSC
value. These are optional, but may be enabled via VMCS controls on a per-VM basis. See Chapter 26, “VMX Non-
Root Operation‚” for details on VMX TSC offsetting and TSC scaling.
Like the value returned by RDTSC, TSC packets will include these adjustments, but other timing packets (such as
MTC, CYC, and CBR) are not impacted. In order to use the algorithm above to estimate the TSC value when TSC
scaling is in use, it will be necessary for software to account for the scaling factor. See Section 33.5.2.4 for details.

33.8.3.4 Calculating Frequency with Intel PT
Because Intel PT can provide both wall-clock time and processor clock cycle time, it can be used to measure the
processor core clock frequency. Either TSC or MTC packets can be used to track the wall-clock time. By using CYC
packets to count the number of processor core cycles that pass in between a pair of wall-clock time packets, the
ratio between processor core clock frequency and TSC frequency can be derived. If the P1 frequency is known, it
can be applied to determine the CPU frequency. See Section 33.8.3.1 above for details on the relationship between
TSC, MTC, and CYC.

33-84 Vol. 3C

INTEL® PROCESSOR TRACE

	Chapter 33 Intel® Processor Trace
	33.1 Overview
	33.1.1 Features and Capabilities
	33.1.1.1 Packet Summary

	33.2 Intel® Processor Trace Operational Model
	33.2.1 Change of Flow Instruction (COFI) Tracing
	33.2.1.1 Direct Transfer COFI
	33.2.1.2 Indirect Transfer COFI
	33.2.1.3 Far Transfer COFI

	33.2.2 Software Trace Instrumentation with PTWRITE
	33.2.3 Power Event Tracing
	33.2.4 Event Tracing
	33.2.5 Trace Filtering
	33.2.5.1 Filtering by Current Privilege Level (CPL)
	33.2.5.2 Filtering by CR3
	33.2.5.3 Filtering by IP

	33.2.6 Packet Generation Enable Controls
	33.2.6.1 Packet Enable (PacketEn)
	33.2.6.2 Trigger Enable (TriggerEn)
	33.2.6.3 Context Enable (ContextEn)
	33.2.6.4 Branch Enable (BranchEn)
	33.2.6.5 Filter Enable (FilterEn)

	33.2.7 Trace Output
	33.2.7.1 Single Range Output
	33.2.7.2 Table of Physical Addresses (ToPA)
	Single Output Region ToPA Implementation
	ToPA Table Entry Format
	ToPA STOP
	ToPA PMI
	PMI Preservation
	ToPA PMI and Single Output Region ToPA Implementation
	ToPA PMI and XSAVES/XRSTORS State Handling
	ToPA Errors

	33.2.7.3 Trace Transport Subsystem
	33.2.7.4 Restricted Memory Access
	Modifications to Restricted Memory Regions

	33.2.8 Enabling and Configuration MSRs
	33.2.8.1 General Considerations
	33.2.8.2 IA32_RTIT_CTL MSR
	33.2.8.3 Enabling and Disabling Packet Generation with TraceEn
	Disabling Packet Generation
	Other Writes to IA32_RTIT_CTL

	33.2.8.4 IA32_RTIT_STATUS MSR
	33.2.8.5 IA32_RTIT_ADDRn_A and IA32_RTIT_ADDRn_B MSRs
	33.2.8.6 IA32_RTIT_CR3_MATCH MSR
	33.2.8.7 IA32_RTIT_OUTPUT_BASE MSR
	33.2.8.8 IA32_RTIT_OUTPUT_MASK_PTRS MSR

	33.2.9 Interaction of Intel® Processor Trace and Other Processor Features
	33.2.9.1 Intel® Transactional Synchronization Extensions (Intel® TSX)
	33.2.9.2 TSX and IP Filtering
	33.2.9.3 System Management Mode (SMM)
	33.2.9.4 Virtual-Machine Extensions (VMX)
	33.2.9.5 Intel® Software Guard Extensions (Intel® SGX)
	33.2.9.6 SENTER/ENTERACCS and ACM
	33.2.9.7 Intel® Memory Protection Extensions (Intel® MPX)

	33.3 Configuration and programming Guideline
	33.3.1 Detection of Intel Processor Trace and Capability Enumeration
	33.3.1.1 Packet Decoding of RIP versus LIP
	33.3.1.2 Model Specific Capability Restrictions

	33.3.2 Enabling and Configuration of Trace Packet Generation
	33.3.2.1 Enabling Packet Generation
	33.3.2.2 Disabling Packet Generation

	33.3.3 Flushing Trace Output
	33.3.4 Warm Reset
	33.3.5 Context Switch Consideration
	33.3.5.1 Manual Trace Configuration Context Switch
	33.3.5.2 Trace Configuration Context Switch Using XSAVES/XRSTORS

	33.3.6 Cycle-Accurate Mode
	33.3.6.1 Cycle Counter
	33.3.6.2 Cycle Packet Semantics
	33.3.6.3 Cycle Thresholds

	33.3.7 Decoder Synchronization (PSB+)
	33.3.8 Internal Buffer Overflow
	33.3.8.1 Overflow Impact on Enables
	33.3.8.2 Overflow Impact on Timing Packets

	33.3.9 TNT Disable
	33.3.10 Operational Errors

	33.4 Trace Packets and Data Types
	33.4.1 Packet Relationships and Ordering
	33.4.1.1 Packet Blocks
	Decoder Implications

	33.4.2 Packet Definitions
	33.4.2.1 Taken/Not-taken (TNT) Packet
	33.4.2.2 Target IP (TIP) Packet
	IP Compression
	Indirect Transfer Compression for Returns (RET)

	33.4.2.3 Deferred TIPs
	33.4.2.4 Packet Generation Enable (TIP.PGE) Packet
	33.4.2.5 Packet Generation Disable (TIP.PGD) Packet
	33.4.2.6 Flow Update (FUP) Packet
	FUP IP Payload

	33.4.2.7 Paging Information (PIP) Packet
	33.4.2.8 MODE Packets
	MODE.Exec Packet
	MODE.TSX Packet

	33.4.2.9 TraceStop Packet
	33.4.2.10 Core:Bus Ratio (CBR) Packet
	33.4.2.11 Timestamp Counter (TSC) Packet
	33.4.2.12 Mini Time Counter (MTC) Packet
	33.4.2.13 TSC/MTC Alignment (TMA) Packet
	33.4.2.14 Cycle Count (CYC) Packet
	33.4.2.15 VMCS Packet
	33.4.2.16 Overflow (OVF) Packet
	33.4.2.17 Packet Stream Boundary (PSB) Packet
	33.4.2.18 PSBEND Packet
	33.4.2.19 Maintenance (MNT) Packet
	33.4.2.20 PAD Packet
	33.4.2.21 PTWRITE (PTW) Packet
	33.4.2.22 Execution Stop (EXSTOP) Packet
	33.4.2.23 MWAIT Packet
	33.4.2.24 Power Entry (PWRE) Packet
	33.4.2.25 Power Exit (PWRX) Packet
	33.4.2.26 Block Begin Packet (BBP)
	33.4.2.27 Block Item Packet (BIP)
	BIP State Value Encodings

	33.4.2.28 Block End Packet (BEP)
	33.4.2.29 Control Flow Event (CFE) Packet
	CFE Packet Type and Vector Fields

	33.4.2.30 Event Data (EVD) Packet

	33.5 Tracing in VMX Operation
	33.5.1 VMX-Specific Packets and VMCS Controls
	33.5.2 Managing Trace Packet Generation Across VMX Transitions
	33.5.2.1 System-Wide Tracing
	33.5.2.2 Guest-Only Tracing
	33.5.2.3 Emulation of Intel PT Traced State
	33.5.2.4 TSC Scaling
	33.5.2.5 Failed VM Entry
	33.5.2.6 VMX Abort

	33.6 Tracing and SMM Transfer Monitor (STM)
	33.7 Packet Generation Scenarios
	33.8 Software Considerations
	33.8.1 Tracing SMM Code
	33.8.2 Cooperative Transition of Multiple Trace Collection Agents
	33.8.3 Tracking Time
	33.8.3.1 Time Domain Relationships
	33.8.3.2 Estimating TSC within Intel PT
	33.8.3.3 VMX TSC Manipulation
	33.8.3.4 Calculating Frequency with Intel PT

