Skip to content
master
Switch branches/tags
Go to file
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Genetic Algorithms

Genetic Algorithms and Evolutionary Computing (B-KUL-H02D1A)

PDF

PDF Status

Please star this repository if you found its content useful!

This document comes as is, without any warranties.

Printing

The paper size of this document is A5 to allow easy side-by-side printing. The file print.tex arranges the pages to be printed properly. However, because this requires the compiled pdf main.pdf, it cannot be automatically generated here. You are required to clone the repository locally, compile main.tex followed by compiling print.tex.

Papers

  • M. J. S. John R. Koza Martin A. Keane, “Evolving inventions”, Scientific American, no. 288, pp. 52–59, 2003.
  • Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs (3rd Ed.) London, UK, UK: Springer-Verlag, 1996, isbn: 3-540-60676-9.
  • K. Sims, “Evolving 3d morphology and behavior by competition”, Artif. Life, vol. 1, no. 4, pp. 353–372, 1994, issn: 1064-5462.
  • D. Floreano, L. Keller, and D. N. Deorum, Evolution of adaptive behaviour in robots by means of darwinian selection, 2010.
  • C. Janikow, “A knowledge-intensive genetic algorithm for supervised learning”, English, Machine Learning, vol. 13, no. 2-3, pp. 189–228, 1993, issn: 0885-6125. doi: 10.1007/BF00993043.
  • W. Spears and K. De Jong, “Using genetic algorithms for supervised concept learning”, in Tools for Artificial Intelligence, 1990.,Proceedings of the 2nd International IEEE Conference on, 1990, pp. 335–341. doi: 10. 1109/TAI.1990.130359.
  • J. Grefenstette, “Optimization of control parameters for genetic algorithms”, Systems, Man and Cybernet- ics, IEEE Transactions on, vol. 16, no. 1, pp. 122–128, 1986, issn: 0018-9472. doi: 10.1109/TSMC.1986. 289288.
  • B. McGinley, J. Maher, C. O’Riordan, and F. Morgan, “Maintaining healthy population diversity using adaptive crossover, mutation, and selection”, Evolutionary Computation, IEEE Transactions on, vol. 15, no. 5, pp. 692–714, 2011, issn: 1089-778X. doi: 10.1109/TEVC.2010.2046173.

Conventions

  • Please limit lines at 120 characters
  • Please use \autoref instead of \ref
  • Be consistent with the existing source

About

Genetic Algorithms and Evolutionary Computing (B-KUL-H02D1A)

Resources

License

Releases

No releases published

Packages

No packages published

Languages