diff --git a/Dockerfile.tmpl b/Dockerfile.tmpl index 4b3dfee5..ae3f4e94 100644 --- a/Dockerfile.tmpl +++ b/Dockerfile.tmpl @@ -45,9 +45,11 @@ RUN uv pip install --no-build-isolation --system "git+https://github.com/Kaggle/ # b/408281617: Torch is adamant that it can not install cudnn 9.3.x, only 9.1.x, but Tensorflow can only support 9.3.x. # This conflict causes a number of package downgrades, which are handled in this command -RUN uv pip install --system --force-reinstall --extra-index-url https://pypi.nvidia.com pynvjitlink-cu12 cuml-cu12==25.2.1 \ - nvidia-cudnn-cu12==9.3.0.75 scipy tsfresh -RUN uv pip install --system --force-reinstall pynvjitlink-cu12==0.5.2 +# b/302136621: Fix eli5 import for learntools +RUN uv pip install --system --force-reinstall --extra-index-url https://pypi.nvidia.com "cuml-cu12==25.2.1" \ + "nvidia-cudnn-cu12==9.3.0.75" scipy tsfresh scikit-learn==1.2.2 category-encoders eli5 + +RUN uv pip install --system --force-reinstall "pynvjitlink-cu12==0.5.2" # b/385145217 Latest Colab lacks mkl numpy, install it. RUN uv pip install --system --force-reinstall -i https://pypi.anaconda.org/intel/simple numpy diff --git a/kaggle_requirements.txt b/kaggle_requirements.txt index 3bc1dfd1..159a02e8 100644 --- a/kaggle_requirements.txt +++ b/kaggle_requirements.txt @@ -20,7 +20,6 @@ arrow bayesian-optimization boto3 catboost -category-encoders cesium comm cytoolz @@ -33,7 +32,6 @@ deap dipy docker easyocr -eli5 emoji fastcore>=1.7.20 fasttext @@ -111,8 +109,6 @@ qtconsole ray rgf-python s3fs - # b/302136621: Fix eli5 import for learntools -scikit-learn==1.2.2 # Scikit-learn accelerated library for x86 scikit-learn-intelex>=2023.0.1 scikit-multilearn