The NG § NI il are - TFe Loy
Do, Phape fflons H e

Module Guide for Minimization Cost Analysis for Data

Centers

Ning Wang
March 18, 2023

Contents

1

2

6

Introduction

Anticipated and Unlikely Changes
2.1 Anticipated Changes
2.2 Unlikely Changes e

Module Hierarchy
Connection Between Requirements and Design

Module Decomposition

5.1 Hardware Hiding Modules (M1)
5.1.1 Input Parameter Module (M2)
5.1.2 Input Verification Module (M3)
5.1.3 Output Format Module (M4)
5.1.4 Output Verification Module (M5)
5.1.5 Optimization Module (M7)
5.1.6 Control Module (M8)
5.1.7 Sequence Data Structure Module (M9)
5.1.8 Plotting Module (M10)

Traceability Matrix

7 Use Hierarchy Between Modules

[sBNoIEN BEN BIEN BEN BEN eI e NI @)

Qo

©

reviewer
Pencil

1 Introduction

Decomposing a system into modules is a commonly accepted approach to developing soft-
ware. A module is a work assignment for a programmer or programming team. In the
best practices for scientific computing (SC), advise a modular design, but are silent on the
criteria to use to decompose the software into modules. We advocate a decomposition based
on the principle of information hiding. This principle supports design for change, because
the “secrets” that each module hides represent likely future changes. Design for change is
valuable in SC, where modifications are frequent, especially during initial development as
the solution space is explored.
Our design follows the rules layed out, as follows:

e System details that are likely to change independently should be the secrets of separate
modules.

e Fach data structure is used in only one module.

e Any other program that requires information stored in a module’s data structures must
obtain it by calling access programs belonging to that module.

After completing the first stage of the design, the Software Requirements Specification
(SRS), the Module Guide (MG) . The MG specifies the modular structure of the system
and is intended to allow both designers and maintainers to easily identify the parts of the
software. The potential readers of this document are as follows:

e New project members: This document can be a guide for a new project member to
easily understand the overall structure and quickly find the relevant modules they are
searching for.

e Maintainers: The hierarchical structure of the module guide improves the maintainers’
understanding when they need to make changes to the system. It is important for a
maintainer to update the relevant sections of the document after changes have been
made.

e Designers: Once the module guide has been written, it can be used to check for consis-
tency, feasibility and flexibility. Designers can verify the system in various ways, such
as consistency among modules, feasibility of the decomposition, and flexibility of the
design.

The rest of the document is organized as follows. Section 2 lists the anticipated and
unlikely changes of the software requirements. Section 3 summarizes the module decomposi-
tion that was constructed according to the likely changes. Section 4 specifies the connections
between the software requirements and the modules. Section 5 gives a detailed description
of the modules. Section 6 includes two traceability matrices. One checks the completeness
of the design against the requirements provided in the SRS. The other shows the relation
between anticipated changes and the modules. Section 7 describes the use relation between
modules.

2 Anticipated and Unlikely Changes

This section lists possible changes to the system. According to the likeliness of the change,
the possible changes are classified into two categories. Anticipated changes are listed in
Section 2.1, and unlikely changes are listed in Section 2.2.

2.1 Anticipated Changes

Anticipated changes are the source of the information that is to be hidden inside the modules.
Ideally, changing one of the anticipated changes will only require changing the one module
that hides the associated decision. The approach adapted here is called design for change.
Anticipated changes are numbered by AC followed by a number. I‘_é\

~Tor ff U"TW "

. o V7

AC2: Changes in the total power CorlsulrrlptiOEA\/7 IS J 0*-

AC3: Changes in the distance between the power station and the data centers‘}lfr (}/W
AC4: Changes in the maximum power consumption per data center.

AC5: Changes in the power loss due to dlstancj ’\'L\SS‘ &\JX\“ (/
ACG6: The constraints on the output results. Q,(l/‘ﬂ’? W

ACT: Add more detailed comments to explain the purpose of each block of code and how

it works. 'r/\ \ Cﬂ/b» % M‘bj

ACB8: Use more descriptive variable names to improve readability. % s

AC1: Increase or decrease in the number of data centers.

AC9: Add input validation to ensure that the user enters a valid number for the num
of data centers.

AC10: Use a try-catch block to handle input errors and prevent the program from Crashmg.
AC11: The algorithm used for the minimization analysis.

AC12: Add a default value for the number of data centers in case the user does not enter
a value.

AC13: Add error handling for cases where the number of data centers is too large or too
small.

AC14: Add a function to calculate the power loss due to distance based on a formula rather
than a constant value.

AC15: Add a function to calculate the cost for each data center based on the renewable
energy rate, grid energy rate, and power consumption.

', Yo S0 &

reviewer
Pencil

reviewer
Pencil

reviewer
Pencil

AC16: Add error handling for cases where the optimization fails to find a solution.

AC17: Add a function to check the total power consumption and display a warning if it is
less than the assigned power for any data center.

AC18: Add a function to plot the power consumption and cost for each data center as a
bar chart.

AC19: Add a function to save the power consumption and cost data to a file for further
analysis.

AC20: Add a function to allow the user to specify the distance units (e.g., kilometers or
miles).

AC21: Add a function to allow the user to choose between different optimization algo-
rithms.

AC22: Add a function to allow the user to specify the tolerance for the total power con-
sumption check.

AC23: Add a function to allow the user to compare different scenarios by varying the input
parameters.

AC24: Add a function to generate a report summarizing the results and recommendations
based on the optimization output.

2.2 Unlikely Changes

The module design should be as general as possible. However, a general system is more
complex. Sometimes this complexity is not necessary. Fixing some design decisions at the
system architecture stage can simplify the software design. If these decision should later
need to be changed, then many parts of the design will potentially need to be modified.
Hence, it is not intended that these decisions will be changed. As an example, the ODEs
for the temperature and the energy equations are assumed to follow the structure given in
the SRS; that is, even if they need to be modified, the modifications should be possible by
changing how the input parameters are used in the definition. If new parameters are needed,
this will mean a change to both the input parameters module, the calculation module and
the output module. Unlikely changes are numbered by UC followed by a number.

UCI1: Input devices, only accept csv file, other type not looks like accepta@ /2\‘

UC2: Remove the check for valid distance values between{ 0 and 2000.

UC3: Change the renewable energy rate to a fixed value instead off a variable input.

Ass spotqle

UC4: Remove the calculation of power loss due to distance.

reviewer
Pencil

UC5: Change the max load input to be less than the total load input.
UC6: Remove the lower bound constraint in the optimization.

UCT: Change the upper bound constraint for renewable energy consumption to be less
than the max load.

UCS8: Add a calculation for tax on the total cost.

UC9: The goal of the system is get the minimize cost.

3 Module Hierarchy

This section provides an overview of the module design. Modules are summarized in a
hierarchy decomposed by secrets in Table 1. The modules listed below, which are leaves in
the hierarchy tree, are the modules that will actually be implemented. Modules are numbered
by M followed by a number.

M1: Hardware-Hiding Module

M2: Input File Reading Module

Ma3: Input Verification Module

M4: Output Format Module

M5: Output Verification Module

M6: Power loss Calculation Module
MT7: Optimization Module

MS8: Control Module

M9: Sequence Data Structure Module

M10: Plotting Module

Note that M1 is a commonly used module and is already implemented by the operating
system. It will not be reimplemented. and M7 are already available in Matlab and will not
be reimplemented.

4 Connection Between Requirements and Design

The design of the system is intended to satisfy the requirements developed in the SRS. In
this stage, the system is decomposed into modules. The connection between requirements
and modules is listed in Table 2.

Level 1 Level 2
Hardware-Hiding Module

Input Parameters Module

Input Verification Module

Output Format Module
Behaviour-Hiding Module ~ Output Verification Module

Control Module

Specification Parameters Module

Optimization Module
Software Decision Module Sequence Data Structure Module
Plotting Module

Table 1: Module Hierarchy

5 Module Decomposition

Modules are decomposed according to the principle of “information hiding” proposed by 7.
The Secrets field in a module decomposition is a brief statement of the design decision hidden
by the module. The Services field specifies what the module will do without documenting
how to do it. For each module, a suggestion for the implementing software is given under
the Implemented By title. If the entry is OS, this means that the module is provided by
the operating system or by standard programming language libraries. If the entry is Matlab,
this means that the module is provided by Matlab. DCMCA means the module will be
implemented by the Data Centers Minimization Cost Analysis MATLAB Program. Only
the leaf modules in the hierarchy have to be implemented. If a dash (-) is shown, this means
that the module is not a leaf and will not have to be implemented. Whether or not this
module is implemented depends on the programming language selected.

5.1 Hardware Hiding Modules (M1)

Secrets: To implement the virtual hardware use OS to display.

Services: — P \A\(f WM}&C [
f oo

C
Secrets: The LNV file containing input parameters, the system of files for input data. &2

Implemented By: OS

5.1.1 Input Paragmeter Module (M2)

Services: read;nput.sv() functiontoreadtheinputC SV fileandreturnatableo finputparameters fromusers(incl

=

6 \

——

reviewer
Pencil

reviewer
Pencil

erification Module (M3)

Implemented Idyretd: The format and value under software constraints and under the
capable Tequirement.

Services: Verifies that the input parameters comply with physical and software constraints.
Throws an error if a parameter violates a physical constraint. Throws a warning if a
parameter violates a software constraint.

Implemented By: DCMCA

5.1.3 Output Format Module (M4)

Secrets: The format and structure of the output data.

Services: Outputs the results of the calculations, including the renewable and grid power
allocated to each data center and total cost, then writes them into a CSV file.

Implemented By: DCMCA

|
5.1.4 Output Verification Module (M5) /\/WS &j’%/‘(l{bﬂ

Secrets: The algorithm used to approximate expected results.

Services: Verifies that the output results follow by checking if thre sum of power assignw g&ﬁ((\

to each data center exceeds total power consumption.

Implemented By: DCMCA l/\ﬁ ‘C.
ik W

5.1.5 Optimization Module (MT7)

o

Secrets: The algorithms for solving the minimization cost analysis. The input parameters

include the number of data centers, distances, rates of renewable and grid energy, and %ﬁ
maximum and total power consumption.

Services: Defines the minimization equations set up and solves the linear programming
problem to find the optimal power consumption.

Implemented By: MATLAB

5.1.6 Control Module (M8)

Secrets: The algorithm for coordinating the running of the program.
Services: Provides the main program.

Implemented By: DCMCA

reviewer
Pencil

reviewer
Pencil

5.1.7 Sequence Data Structure Module (M9)

Secrets: The data structure for a sequence data type.

Services: Provides array manipulation, including building an array, accessing a specific
entry, slicing an array, etc.

Implemented By: Matlab

5.1.8 Plotting Module (M10)
Secrets: The data structures and algorithms for plotting data graphically.
Services: Provides a plotted final graph to view the distribution of power consumption.

Implemented By: Matlab

6 Traceability Matrix

This section shows two traceability matrices: between the modules and the requirements and
between the modules and the anticipated changes. Three of the anticipated changes (AC2,
AC3, AC4) related to the input parameters map to the same module (M2). The reason for
this is that the services of this module will never need to be provided separately. Input will
be provided to the system, stored and verified at the beginning of any simulation. From that
point on, the only access needed to the input parameters is read access.

Req. Modules

R1 M1, M2

R2 M2

R3 M2

R4 M4, M8

R5 M4, M6,M10
R6 M4, M6, M8, M9, M10
R7 M4, M7, M10
RS M4, M10

R9 M5, M7

R10 M4, M6, M8

Table 2: Trace Between Requirements and Modules

AC Modules

AC1 M1

AC?2 M1 O[}/\/\J\O
AC3 M1

Yt Ve M0 r@
Cacs” iy C

AC6 VIH O\/\Q

ACT M6

ACS M2 /[7AI'§

ACY M2 W\@Q
ACI0 M9 qu,qw“) /V‘d&@
ACII MS

ACI2 M10

ACI3 MS

AC14 MS

ACI5 M8

ACI6 M10

AC17 M2

ACIS M7

ACI9 M7

AC20 M7

AC21 M9

AC22 M9

AC23 M10

AC24 M10

Table 3: Trace Between Anticipated Changes and Modules

7 Use Hierarchy Between Modules

In this section, the uses hierarchy between modules is provided. ? said of two programs A
and B that A wuses B if correct execution of B may be necessary for A to complete the task
described in its specification. That is, A uses B if there exist situations in which the correct
functioning of A depends upon the availability of a correct implementation of B. Figure 1
illustrates the use relation between the modules. It can be seen that the graph is a directed
acyclic graph (DAG). Each level of the hierarchy offers a testable and usable subset of the
system, and modules in the higher level of the hierarchy are essentially simpler because they
use modules from the lower levels.

reviewer
Pencil

Control
Module(M7)

- Input Cutput
Optimization Ve?if#::r;;itcn Vemiﬂm,m Plotting Fnrr:at
Module(MB) Module(M3) Module(M8) Module(4)

Module(M5)
5

Input Hardware

Sequence Parameter Hiding
Data Module(Mz2) Modules(M1)
Structure
Module(M8)

Figure 1: Use hierarchy among modules

10

reviewer
Pencil

	Introduction
	Anticipated and Unlikely Changes
	Anticipated Changes
	Unlikely Changes

	Module Hierarchy
	Connection Between Requirements and Design
	Module Decomposition
	Hardware Hiding Modules (M1)
	Input Parameter Module (M2)
	Input Verification Module (M3)
	Output Format Module (M4)
	Output Verification Module (M5)
	Optimization Module (M7)
	Control Module (M8)
	Sequence Data Structure Module (M9)
	Plotting Module (M10)

	Traceability Matrix
	Use Hierarchy Between Modules

