Skip to content
Permalink
Branch: master
Find file Copy path
Find file Copy path
Fetching contributors…
Cannot retrieve contributors at this time
725 lines (629 sloc) 30.5 KB
""" Generate BpForms for all of the proteins in PRO, verify
them, and calculate their properties
:Author: Jonathan Karr <karr@mssm.edu>
:Date: 2019-06-24
:Copyright: 2019, Karr Lab
:License: MIT
"""
from Bio import SeqIO
from Bio.Seq import Seq
from Bio.SeqRecord import SeqRecord
from matplotlib import pyplot
from xml.etree import ElementTree
import bpforms
import copy
import csv
import matplotlib
import numpy
import os
import pickle
import re
import requests
import requests_cache
IN_URL = 'https://proconsortium.org/download/current/pro_nonreasoned.obo'
IN_OBO_FILENAME = os.path.join('examples', 'pro_nonreasoned.obo')
IN_PKL_FILENAME = os.path.join('examples', 'pro_nonreasoned.pkl')
IN_TSV_FILELANE = os.path.join('examples', 'pro_input.in.tsv') # from Darren Natale
IN_MONOMERS_FILENAME = os.path.join('examples', 'pro.monomers.csv')
UNIPROT_SEQ_ENDPOINT = 'https://www.uniprot.org/uniprot/{}.fasta'
UNIPROT_XML_ENDPOINT = 'https://www.uniprot.org/uniprot/{}.xml'
OUT_PICKLE_FILENAME = os.path.join('examples', 'pro_input.out.pkl')
OUT_PICKLE_FILENAME_2 = os.path.join('examples', 'pro_input.out.2.pkl')
OUT_TSV_FILENAME = os.path.join('examples', 'pro_input.out.tsv')
OUT_FASTA_FILENAME = os.path.join('examples', 'pro_input.fasta')
OUT_FIG_FILENAME = os.path.join('examples', 'pro_input.svg')
cache_name = os.path.join('examples', 'pro')
session = requests_cache.core.CachedSession(cache_name, backend='sqlite', expire_after=None)
session.mount('https://www.uniprot.org/', requests.adapters.HTTPAdapter(max_retries=5))
AA_CHARS_TO_CODES = {
'Ala': 'A',
'Arg': 'R',
'Asn': 'N',
'Asp': 'D',
'Cys': 'C',
'Glu': 'E',
'Gln': 'Q',
'Gly': 'G',
'His': 'H',
'Ile': 'I',
'Leu': 'L',
'Lys': 'K',
'Met': 'M',
'Phe': 'F',
'Pro': 'P',
'Ser': 'S',
'Thr': 'T',
'Trp': 'W',
'Tyr': 'Y',
'Val': 'V',
}
def run(in_obo_filename=IN_OBO_FILENAME, in_pkl_filename=IN_PKL_FILENAME, in_tsv_filename=IN_TSV_FILELANE,
in_monomers_filename=IN_MONOMERS_FILENAME,
max_num_proteins=None,
out_pickle_filename=OUT_PICKLE_FILENAME, out_pickle_filename_2=OUT_PICKLE_FILENAME_2,
out_tsv_filename=OUT_TSV_FILENAME, out_fasta_filename=OUT_FASTA_FILENAME,
out_fig_filename=OUT_FIG_FILENAME):
""" Download PRO ontology, generate proteoforms, and encode with BpForms
Args:
in_obo_filename (:obj:`str`, optional): path to save/read PRO ontology in OBO format
in_pkl_filename (:obj:`str`, optional): path to save/read parsed content of PRO ontology
in_tsv_filename (:obj:`str`, optional): path to read PRO entries in TSV format
in_monomers_filename (:obj:`str`, optional): path to list of ids of monomeric forms used
by PRO and their alphabet code in tab-separated format
max_num_proteins (:obj:`int`, optional): maximum number of proteins to analyze
out_pickle_filename (:obj:`str`, optional): path to save results in pickle format
out_pickle_filename_2 (:obj:`str`, optional): path to save results in pickle format
out_tsv_filename (:obj:`str`, optional): path to save results in tab-separated format
out_fasta_filename (:obj:`str`, optional): path to save results in FASTA format
out_fig_filename (:obj:`str`, optional): path to save plot of results
Returns:
:obj:`list` of :obj:`dict`: proteoforms encoded with BpForms
"""
# get the PRO ontology and extract the modified proteins from the ontology
# proteins = get_pro_from_obo(obo_filename=in_obo_filename, pkl_filename=in_pkl_filename, max_num_proteins=max_num_proteins)
proteins = get_pro_from_tsv(in_tsv_filename, max_num_proteins=max_num_proteins)
# parse the modified proteins and retrieve their sequences
if not os.path.isfile(out_pickle_filename):
# parse the modified proteins and retrieve their sequences
parsed_proteins = []
for i_protein, protein in enumerate(proteins):
if i_protein % 100 == 0:
print('Parsing protein {} of {}'.format(i_protein + 1, len(proteins)))
parsed_proteins.append(parse_protein(protein))
# save the parsed proteins in pickle format
with open(out_pickle_filename, 'wb') as file:
pickle.dump(parsed_proteins, file)
else:
# load saved parsed proteins in pickle format
with open(out_pickle_filename, 'rb') as file:
parsed_proteins = pickle.load(file)
# read list of monomers
monomers = {}
with open(in_monomers_filename, 'r') as file:
reader = csv.DictReader(file, dialect='excel')
for row in reader:
monomers[row['PRO id']] = {
'mod': bpforms.protein_alphabet.monomers.get(row['BpForms code'], None),
'origin': [],
}
if row['Base monomer']:
monomers[row['PRO id']]['origin'] = row['Base monomer'].split(', ')
# generate list of modified monomeric forms
for protein in parsed_proteins:
for modification in protein['modifications']:
if modification['monomer'] not in monomers:
monomers[modification['monomer']] = {
'mod': None,
'origin': [],
}
# print list of unmapped monomers
unmapped_monomers = []
for monomer, code in monomers.items():
if not code['mod']:
unmapped_monomers.append(monomer)
unmapped_monomers.sort()
if unmapped_monomers:
print('Several PRO monomeric forms have not been mapped to BpForms monomeric forms:\n {}'.format(
'\n '.join(unmapped_monomers)))
# check for inconsistencies between residue and modified monomeric form
monomer_codes = {}
for code, monomer in bpforms.protein_alphabet.monomers.items():
monomer_codes[monomer] = code
for protein in parsed_proteins:
for modification in protein.get('modifications', []):
if modification['residue'] and modification['monomer']:
monomer = monomers.get(modification['monomer'], None)
if (monomer['mod'] and monomer['mod'].get_canonical_code(monomer_codes) != modification['residue']) \
or (monomer['origin'] and modification['residue'] not in monomer['origin']):
codes = set(monomer['origin'])
if monomer['mod']:
codes.add(monomer['mod'].get_canonical_code(monomer_codes))
msg = 'Modified monomeric form {} potentially inconsistent with residue {} != {}'.format(
modification['monomer'], modification['residue'],
', '.join(codes))
print(protein['id'] + ': ' + msg)
# generate BpForms for each protein
if not os.path.isfile(out_pickle_filename_2):
for i_protein, protein in enumerate(parsed_proteins):
if i_protein % 100 == 0:
print('Generating BpForms {} of {}'.format(i_protein + 1, len(parsed_proteins)))
protein['modified_seq'] = None
if not protein['uniprot_id']:
continue
if not protein['seq']:
continue
if protein['pro_errors']:
continue
processed_form = gen_bpform(protein, monomers, monomer_codes, apply_modifications=False)
protein['processed_seq'] = str(processed_form)
if not processed_form.validate():
processed_formula = processed_form.get_formula()
protein['processed_formula'] = str(processed_formula)
protein['processed_mol_wt'] = processed_form.get_mol_wt()
protein['processed_charge'] = processed_form.get_charge()
if not protein['modifications']:
continue
modified_form = gen_bpform(protein, monomers, monomer_codes, include_annotations=False)
protein['modified_seq'] = str(modified_form)
modified_form = gen_bpform(protein, monomers, monomer_codes)
if not modified_form.validate():
modified_formula = modified_form.get_formula()
protein['modified_formula'] = str(modified_formula)
protein['modified_mol_wt'] = modified_form.get_mol_wt()
protein['modified_charge'] = modified_form.get_charge()
protein['modifications_formula'] = str(modified_formula - processed_formula)
protein['modifications_mol_wt'] = protein['modified_mol_wt'] - protein['processed_mol_wt']
protein['modifications_charge'] = protein['modified_charge'] - protein['processed_charge']
# save the parsed proteins in pickle format
with open(out_pickle_filename_2, 'wb') as file:
pickle.dump(parsed_proteins, file)
else:
with open(out_pickle_filename_2, 'rb') as file:
parsed_proteins = pickle.load(file)
# save the proteoforms in TSV format
with open(out_tsv_filename, 'w') as file:
writer = csv.writer(file, dialect='excel-tab')
writer.writerow(['PRO id', 'UniProt id', 'Organism',
'Unmodified sequence (IUBMB)',
'Processing', 'Processsed sequence (IUBMB)', 'Processsed formula', 'Processsed molecular weight', 'Processsed charge',
'Modifications', 'Modified sequence (BpForms)', 'Is modified sequence concrete', 'Modified formula', 'Modified molecular weight', 'Modified charge',
'Modifications formula', 'Modifications molecular weight', 'Modifications charge',
'PRO issues', 'Monomeric form issues'])
for parsed_protein in parsed_proteins:
if parsed_protein.get('pro_errors', None):
pro_errors = '. '.join(parsed_protein['pro_errors']) + '.'
else:
pro_errors = None
if parsed_protein.get('modified_errors', None):
modified_errors = '. '.join(parsed_protein['modified_errors']) + '.'
else:
modified_errors = None
writer.writerow([
parsed_protein['id'],
parsed_protein.get('uniprot_id', None),
parsed_protein.get('organism', None),
parsed_protein.get('seq', None),
', '.join('{}-{}'.format(p['start'], p['end']) for p in parsed_protein['processing']),
parsed_protein.get('processed_seq', None),
parsed_protein.get('processed_formula', None),
parsed_protein.get('processed_mol_wt', None),
parsed_protein.get('processed_charge', None),
', '.join('{} --> {} ({})'.format(m['residue'] or '?', m['monomer'], ', '.join(str(p) for p in m['positions']))
for m in parsed_protein['modifications']),
parsed_protein.get('modified_seq', None),
parsed_protein.get('modified_concrete', False),
parsed_protein.get('modified_formula', None),
parsed_protein.get('modified_mol_wt', None),
parsed_protein.get('modified_charge', None),
parsed_protein.get('modifications_formula', None),
parsed_protein.get('modifications_mol_wt', None),
parsed_protein.get('modifications_charge', None),
pro_errors,
modified_errors,
])
# save the proteoforms in FASTA format
seqs = (SeqRecord(id='{} | {}'.format(protein['id'], protein['uniprot_id']),
seq=Seq(protein['modified_seq']),
description='')
for protein in parsed_proteins
if protein['modified_seq'])
SeqIO.write(seqs, out_fasta_filename, "fasta")
# analyze frequency of modifications
plot_modifications(parsed_proteins, fig_filename=out_fig_filename)
# return proteins
return proteins, parsed_proteins
def get_pro_from_obo(obo_filename=IN_OBO_FILENAME, pkl_filename=IN_PKL_FILENAME, max_num_proteins=None):
""" Get the PRO ontology and extract the modified proteins from the ontology
Args:
obo_filename (:obj:`str`, optional): filename to save PRO in OBO format
pkl_filename (:obj:`str`, optional): filename to save/read PRO from pickled file
max_num_proteins (:obj:`int`, optional): maximum number of proteins to analyze
Returns:
:obj:`list` of :obj:`dict`: list of PRO ontology terms for modified proteins
"""
# download PRO
if not os.path.isfile(obo_filename):
response = requests.get(IN_URL)
response.raise_for_status()
with open(obo_filename, 'wb') as file:
file.write(response.content)
# parse PRO or read from cache
if not os.path.isfile(pkl_filename):
# parse PRO
proteins = []
protein = None
with open(obo_filename, 'r') as file:
for line in file:
line = line.rstrip('\n')
if line.startswith('['):
if line.startswith('[Term]'):
if max_num_proteins is not None and len(proteins) >= max_num_proteins:
break
protein = {}
else:
protein = None
elif line and protein is not None:
key, _, value = line.partition(': ')
if key not in protein:
protein[key] = []
protein[key].append(value)
if key == 'comment' and value.startswith('Category=organism-modification.'):
proteins.append(protein)
# save PRO in pickle format
with open(pkl_filename, 'wb') as file:
pickle.dump(proteins, file)
else:
# load PRO from pickle format
with open(pkl_filename, 'rb') as file:
proteins = pickle.load(file)
if max_num_proteins is not None and max_num_proteins < len(proteins):
proteins = proteins[0:max_num_proteins]
# return PRO
return proteins
def get_pro_from_tsv(filename, max_num_proteins=None):
""" Extract PRO entries from TSV file
Args:
obo_filename (:obj:`str`, optional): filename to save PRO in OBO format
max_num_proteins (:obj:`int`, optional): maximum number of proteins to analyze
Returns:
:obj:`list` of :obj:`dict`: list of PRO ontology terms for modified proteins
"""
proteins = []
with open(filename, 'r') as file:
reader = csv.DictReader(file, fieldnames=('id', 'category', 'synonym_type', 'seq'), dialect='excel-tab')
for row in reader:
proteins.append({
'id': [row['id']],
'category': [row['category']],
'synonym': ['"{}" {} PRO-proteoform-std'.format(row['seq'], row['synonym_type'])],
})
if max_num_proteins is not None and len(proteins) >= max_num_proteins:
break
return proteins
def parse_protein(protein):
""" Parse the modification information from a term for a modified protein
Args:
protein (:obj:`dict`): term for a modified protein
Returns:
:obj:`dict` with PRO id, UniProt id, processing start position, processing end position, unmodified sequence, and modifications
"""
assert len(protein['id']) == 1
id = protein['id'][0]
errors = []
seq_synonyms = []
for synonym in protein.get('synonym', []):
if synonym.startswith('"UniProtKB:') and ' PRO-proteoform-std' in synonym:
seq_synonyms.append(synonym)
if not seq_synonyms:
errors.append('No synonym which defines a modified sequence')
return {
'id': id,
'uniprot_id': None,
'processing': [],
'modifications': [],
'seq': None,
'pro_errors': errors,
}
elif len(seq_synonyms) > 1:
errors.append('Multiple synonyms which define modified sequences')
synonym = seq_synonyms[0]
uniprot_id, _, processing_modifications_type = synonym.partition(', ')
uniprot_id = uniprot_id.partition(':')[2]
organism_name = None
response = session.get(UNIPROT_XML_ENDPOINT.format(uniprot_id))
response.raise_for_status()
if response.content:
xml_root = ElementTree.fromstring(response.content)
entry = xml_root.find('{http://uniprot.org/uniprot}entry')
organism = entry.find('{http://uniprot.org/uniprot}organism')
names = organism.findall('{http://uniprot.org/uniprot}name')
for name in names:
if name.get('type') == 'scientific':
organism_name = name.text
break
response = session.get(UNIPROT_SEQ_ENDPOINT.format(uniprot_id))
response.raise_for_status()
seq = response.content.decode('utf-8').partition('\n')[2].replace('\n', '')
if not seq:
errors.append('No sequence for UniProt entry; entry may be deprecated')
processing_modifications = processing_modifications_type.partition('"')[0]
processing = []
while True:
match = re.match(r'^(\?|\d+)\-(\?|\d+)(, |$)', processing_modifications)
if match:
if match.group(1) == '?':
start = None
errors.append('Unknown processing start position')
else:
start = int(float(match.group(1)))
if start <= 0 or start > len(seq):
errors.append('Start position must be within sequence')
if match.group(2) == '?':
end = None
errors.append('Unknown processing end position')
else:
end = int(float(match.group(2)))
if end <= 0 or end > len(seq):
errors.append('End position must be within sequence')
if start and end and start > end:
errors.append('End position must be after start position')
processing.append({
'start': start,
'end': end,
})
processing_modifications = processing_modifications[len(match.group(0)):]
else:
break
if processing_modifications.startswith('which') \
or processing_modifications.startswith('with') \
or 'MOD:00046 OR Thr-163, MOD:00047' in processing_modifications:
modifications_str = []
errors.append('Unable to parse sequence')
elif processing_modifications:
modifications_str = processing_modifications.split('|')
else:
modifications_str = []
modifications = []
for modification in modifications_str:
if modification and modification[0] == '(' and modification[-1] == ')':
modification = modification[1:-1]
if ' or ' in modification or ' and/or ' in modification:
errors.append('Boolean logic not supported')
continue
if ', ' in modification:
residue_positions, _, monomer = modification.partition(', ')
residue_codes = set()
positions = []
for residue_position in residue_positions.split('/'):
residue_chars, _, position = residue_position.partition('-')
residue_code = AA_CHARS_TO_CODES[residue_chars]
position = int(float(position))
if position > len(seq):
errors.append('Position {} is greater than the sequence length {}'.format(position, len(seq)))
elif seq[position - 1] != residue_code:
errors.append('Position {} != {}'.format(position, residue_code))
residue_codes.add(residue_code)
positions.append(position)
if len(residue_codes) != 1:
residue_code = None
errors.append('Residues {{{}}} annotated with the same modification {}'.format(
', '.join(residue_codes), monomer))
else:
residue_code = None
positions = []
monomer = modification
modifications.append({
'residue': residue_code,
'positions': positions,
'monomer': monomer
})
return {
'id': id,
'uniprot_id': uniprot_id,
'organism': organism_name,
'processing': processing,
'modifications': modifications,
'seq': seq,
'pro_errors': errors,
}
def gen_bpform(protein, pro_ids_to_bpform_monomers, monomer_codes, apply_modifications=True, include_annotations=True):
""" Generate BpForm for a modified protein in PRO
Args:
protein (:obj:`dict`): term for modified protein
pro_ids_to_bpform_monomers (:obj:`dict`): dictionary which maps ids of monomeric forms
used by PRO to monomeric forms in the BpForms protein alphabet
monomer_codes (:obj:`dict`): dictionary that maps monomers to their codes in the alphabet
apply_modifications (:obj:`bool`, optional): if :obj:`True`, include modifications in proteoform
include_annotations (:obj:`bool`, optional): if :obj:`True`, include metadata about modified monomers
Returns:
:obj:`bpforms.ProteinForm`: BpForm for a term in PRO
"""
form = bpforms.ProteinForm()
monomers = bpforms.protein_alphabet.monomers
# generate BpForm for unmodified sequence
for base in protein['seq']:
form.seq.append(monomers[base])
# apply processing
modifications = copy.deepcopy(protein['modifications'])
seq = protein['seq']
if protein['processing']:
procesed_seq = []
seq = ''
for processing in protein['processing']:
procesed_seq.extend(form.seq[processing['start']-1:processing['end']])
seq += protein['seq'][processing['start']-1:processing['end']]
form.seq = procesed_seq
for modification in modifications:
modification['processed_positions'] = []
for position in modification['positions']:
seq_len = 0
processed_position = None
for processing in protein['processing']:
if position >= processing['start'] and position <= processing['end']:
processed_position = seq_len + position - processing['start'] + 1
break
seq_len += processing['end'] - processing['start'] + 1
if processed_position is not None:
modification['processed_positions'].append(processed_position)
else:
for modification in modifications:
modification['processed_positions'] = modification['positions']
# apply modifications
if apply_modifications:
concrete = True
protein['modified_errors'] = []
for modification in modifications:
monomer = pro_ids_to_bpform_monomers[modification['monomer']]['mod']
origin = pro_ids_to_bpform_monomers[modification['monomer']]['origin']
if modification['monomer'] == 'PR:000026291':
if include_annotations:
monomer = bpforms.Monomer().from_dict(
monomers[modification['residue']].to_dict(
alphabet=bpforms.protein_alphabet),
alphabet=bpforms.protein_alphabet)
monomer.base_monomers.add(monomers[modification['residue']])
else:
monomer = bpforms.Monomer(id=modification['residue'])
monomer.name = None
monomer.synonyms = []
monomer.identifiers = [bpforms.Identifier('pro', modification['monomer'])]
monomer.comments = None
elif monomer is None:
concrete = False
monomer = bpforms.Monomer(id=modification['monomer'])
if modification['residue']:
monomer.base_monomers.add(monomers[modification['residue']])
else:
monomer.base_monomers.update(monomers[base] for base in origin)
if modification['positions']:
for position in modification['processed_positions']:
if form.seq[position - 1] == monomers[seq[position - 1]]:
form.seq[position - 1] = monomer
else:
protein['modified_errors'].append('Unable to set monomeric form at position {}'.format(
position))
elif modification['residue']:
concrete = False
if pro_ids_to_bpform_monomers[modification['monomer']]['mod'] is None:
base_monomers = monomer.base_monomers
else:
base_monomers = set()
monomer = bpforms.Monomer(id=monomer.id, base_monomers=base_monomers)
monomer.start_position = seq.find(modification['residue']) + 1
monomer.end_position = seq.rfind(modification['residue']) + 1
set_monomer = False
for i_monomer in range(monomer.start_position, monomer.end_position + 1):
if form.seq[i_monomer - 1] == monomers[seq[i_monomer - 1]]:
set_monomer = True
form.seq[i_monomer - 1] = monomer
break
if not set_monomer:
protein['modified_errors'].append('Unable to set monomeric form')
else:
concrete = False
canonical_code = monomer.get_canonical_code(monomer_codes)
if pro_ids_to_bpform_monomers[modification['monomer']]['mod'] is None:
base_monomers = monomer.base_monomers
else:
base_monomers = set()
monomer = bpforms.Monomer(id=monomer.id, base_monomers=base_monomers)
if canonical_code and canonical_code != '?':
start_position = seq.find(canonical_code) + 1
end_position = seq.rfind(canonical_code) + 1
if start_position == 0:
protein['modified_errors'].append('Sequence does not contain residue {} for modification {}'.format(
canonical_code, monomer.id))
else:
monomer.start_position = start_position
monomer.end_position = end_position
elif origin:
start_position = float('inf')
end_position = -float('inf')
for base in origin:
start_pos = seq.find(base) + 1
if start_pos > 0:
start_position = min(start_position, start_pos)
end_pos = seq.rfind(base) + 1
if end_pos > 0:
end_position = max(end_position, end_pos)
if numpy.isinf(start_position):
protein['modified_errors'].append('Sequence does not contain residues {} for modification {}'.format(
', '.join(origin), monomer.id))
else:
monomer.start_position = start_position
monomer.end_position = end_position
else:
monomer.start_position = 1
monomer.end_position = len(seq)
if monomer.start_position:
set_monomer = False
for i_monomer in range(monomer.start_position, monomer.end_position + 1):
if form.seq[i_monomer - 1] == monomers[seq[i_monomer - 1]]:
form.seq[i_monomer - 1] = monomer
set_monomer = True
break
if not set_monomer:
protein['modified_errors'].append('Unable to set monomeric form')
# validate
if apply_modifications:
protein['modified_concrete'] = concrete
protein['modified_errors'].extend(form.validate())
# return proteoform represented with BpForms
return form
def plot_modifications(proteins, organism='Homo sapiens', fig_filename=OUT_FIG_FILENAME):
""" Plot a summary of the modifications in PRO
Args:
proteins (:obj:`list` of :obj:`dict`): entries in PRO ontology
organism (:obj:`str`, optional): organism to analyze
fig_filename (:obj:`str`, optional): path to save analysis
"""
code_freq = {}
canonical_code_freq = {}
for protein in proteins:
if (organism is None or protein.get('organism', None) == organism) and protein.get('modified_seq', None):
for modification in protein['modifications']:
if modification['residue'] and modification['monomer']:
n_mods = max(1, len(modification['positions']))
if modification['residue'] not in canonical_code_freq:
canonical_code_freq[modification['residue']] = 0
if modification['monomer'] not in code_freq:
code_freq[modification['monomer']] = 0
canonical_code_freq[modification['residue']] += n_mods
code_freq[modification['monomer']] += n_mods
pyplot.style.use('ggplot')
fig, axes = pyplot.subplots(nrows=1, ncols=2, gridspec_kw={'width_ratios': [1, 4]})
fig.set_size_inches(9.3, 1.5)
plot_codes(canonical_code_freq,
'Frequency of modifications',
axes[0], ignore_canonical=False)
plot_codes(code_freq,
'Frequency of modified monomeric forms',
axes[1], ignore_canonical=True)
fig.savefig(fig_filename, transparent=True,
bbox_inches=matplotlib.transforms.Bbox([[0.69, -0.5], [8.35, 1.5]]))
pyplot.close(fig)
def plot_codes(code_freq, title, axis, ignore_canonical=False):
id_freqs = []
for code, count in code_freq.items():
if ignore_canonical and code in ['A', 'C', 'G', 'U']:
continue
id_freqs.append((code, count))
id_freqs.sort()
y_pos = numpy.arange(len(id_freqs))
freq = numpy.array([id_freq[-1] for id_freq in id_freqs])
freq = freq / numpy.sum(freq) * 100.
x_tick_labels = {id: y_pos for y_pos, (id, _) in enumerate(id_freqs)}
axis.bar(y_pos, freq, align='center', alpha=0.5)
axis.set_xticks(y_pos)
axis.set_xticklabels(x_tick_labels, rotation=270, fontsize=6, fontfamily='Raleway')
axis.set_ylabel('Frequency (%)', fontdict={
'fontsize': 10,
'fontweight': 'regular',
'fontfamily': 'Raleway',
})
axis.set_title(title, fontdict={
'fontsize': 10,
'fontweight': 'regular',
'fontfamily': 'Raleway',
})
axis.set_xlim((-0.75, len(id_freqs) - 0.25))
You can’t perform that action at this time.