
SketchML in Apache Flink∗

Big Data Analytics Project

Ali Reza
TU-Berlin & DFKI
alireza.rm@dfki.de

Behrouz Derakhshan
TU-Berlin & DFKI

behrouz.derakhshan@dfki.de

Batuhan Tuter
TU-Berlin

batuhan.tuter@campus.tu-berlin.de

Kashif Rabbani
TU-Berlin

kashif.rabbani@campus.tu-berlin.
de

Marc Garnica
TU-Berlin

marc.garnicacaparros@campus.
tu-berlin.de

ABSTRACT
Gradient descent is one of the most used optimization method
in supervised distributed machine learning (ML) algorithms.
Recently, several researchers have proposed strategies and ap-
proaches to parallelize the computation of stochastic gradient
descent (SGD) and to distribute the workload across a number of
nodes in the cluster. These methods usually involve communica-
tion of the gradients through the network. The computational
power is becomingmore andmore efficient and an active research
is going on to reduce the communication cost between nodes in
a distributed network by means of gradient compression.

A recently published research paper known as SketchML [5]
presents a gradient compression method. This method introduces
a probabilistic data structure known as Sketch to approximate
and reduce the communication cost of gradients. Extensive exper-
iments are performed to analyze the rate of compression, model
correctness, and error bound in Sketch implementation on top
of Apache Spark. This study aims to present the details of the
compression technique implemented in SketchML and mimic its
implementation on top of Apache Flink. Our SketchML imple-
mentation remains the same as the one proposed in the research
paper. However, its properties are tested on top of a Flink SGD
optimization algorithm. The outcomes of this study include an ef-
fective comparison between SketchML implementation in Spark
and Flink, and an analysis of the impact of SketchML gradient
compression technique in Flink ML.

1 INTRODUCTION
ML techniques are used widely in numerous fields. Most common
applications of ML are recommendation engines, text mining and
image recognition. Decentralized ML is no more considered as
an enough solution to cope up with the growing demands of
high-volume data. In this project, we focus on a subclass of ML
models called Multiple Linear Regression (MLR) [6]. This class
of ML models is trained with first-order gradient optimization
methods known as Stochastic Gradient Descent (SGD) [3]. To
train our MLR model in a distributed way, we need to set up
an infrastructure to distribute the calculation of gradients by
partitioning the training dataset across different workers. Under
such setting, each worker computes gradients independently and
the gradients are exchanged via a network for aggregation and
the model is updated at each step. State-of-the-art ML research
acknowledges that a largemodel gives a better representation and
higher prediction. In order to train a large model in a distributed
manner, an expensive cluster infrastructure is required. Reducing
the communication between nodes in the distributed settings has
∗Accelerating Distributed Machine Learning with Data Sketches

become one of the most active and productive lines of research in
distributed ML. Proposed methods should be able to reduce the
time required by nodes to send gradients through the network
while retaining the algorithmic correctness of the model.

Our study is organized as follows. The main contribution of
SketchML with underlying data structures, compression frame-
work, and its theoretical proof are discussed in Section 2. Ob-
jectives and initial assumptions are mentioned in Section 3. The
main study and implementation plan is presented in Section 4.
Finally, the experimental results are analyzed in Section 5.

Implementation of SketchML in Apache Flink is available in
the GitHub repository1.

2 OVERVIEW OF SKETCHML FRAMEWORK
This section gives an overview of the technical details of SketchML
framework. The framework consists of three major components,
i.e. quantile bucket quantification, MinMaxSketch, and dynamic
delta binary encoding. First two components are responsible for
compressing the gradient values (encode phase), and the third
component is solely responsible for compressing the gradient
keys (decode phase). We will explain both phases in the details
below.

2.1 Encode Phase
In the encode phase, candidate splits are generated using quantile
sketches. Quantile sketch uses a small data structure to approxi-
mate the exact distribution of the data items in a single pass by
building quantile summaries [4]. Bucket sort is used to summa-
rize the values of the sketches. Each bucket has indexes related to
the corresponding values. Different hash functions are applied to
the keys to insert bucket indexes into aMinMaxSketch. MinMaxS-
ketch works on a simple principle, i.e. while inserting it prefers
to keep the minimum value and while querying it returns the
maximum of value. Keys in the MinMaxSketch are incremented
(delta keys) and finally, binary encoding is used to encode the
keys to save space. Figure 1 shows the encoding phase in five
simple steps.

2.2 Decode Phase
This phase is responsible for recovering the compressed gradients
by transforming the delta keys to original keys, use the retrieved
original keys to query the MinMaxSketch, retrieve the bucket
index of each value from the sketch, and recover the value by
querying the bucket with the corresponding bucket index, as
shown in figure 1.

1https://github.com/Kashif-Rabbani/SketchMLFlink

https://github.com/Kashif-Rabbani/SketchMLFlink


Figure 1: SketchML Encode Decode Phase

2.3 Example
In order to understand the core steps of the encode and decode
phase, we have chosen a few gradient values to pass through
both phases step by step.

Quantile Splits: In the decode phase, we will first generate
quantile splits. To generate the quantile splits, gradient values
are scanned and added into a quantile sketch, absolute rank is
calculated for all the values in the quantile sketch, each gradient
value is divided by its absolute rank, and finally, quantile splits
are generated from the divided values by a formula shown in
figure 2.

Figure 2: Quantile Splits Generation

Bucket Sort: Next step is to quantify the gradient values
using bucket sort according to the generated quantile splits. Each
interval between two splits is considered as a bucket, having the
smallest value as a lower threshold and the largest value as the
upper threshold of the bucket. Each gradient value belongs to
a specific bucket based on its threshold values. Each bucket is
represented by the average of two splits known as a mean of
the bucket. The final step of bucket sort is to transform or map
each gradient value in the bucket to its mean value. This step
also introduces some quantification errors. Figure 3 shows the
transformation of our chosen gradient values after applying a
bucket sort, index and binary encoding.

Index Encode: Gradient values are quantified with bucket
means which are floating point number and are still consuming
space. Therefore, we encode the mean value of the bucket as a
bucket’s index to save space. E.g. quantified 0.21 gradient value
is quantified to the mean of the 4th bucket. It is further encoded
by its bucket’s index i.e. 3.

Binary Encode: Encoded index are integer numbers consuming
4 bytes at least, we compress these indexes by binary encoding.

Figure 3: Bucket Quantification & Encoding

MinMaxSketch: Encode phase has converted key value gra-
dient pairs into key and binary encoded value. Next step is to
insert these pairs into MinMaxSketch. Note that during decom-
pression, we also need to query the MinMaxSketch. Therefore,
we will discuss both aspects here. MinMaxSketch uses a prede-
fined number of hash functions to choose a hash bin to insert the
(k J ,b(VJ )). Each hash function returns a bin number, hash bin
having a current value greater than the value to be inserted is cho-
sen and its value is replaced with the minimum value. Similarly,
in the query phase, input to the MinMaxSketch is a gradient key,
hash functions are applied on the key and the hash bin having
the maximum value is returned. This is the reason it is called
MinMaxSketch.

Keys Compression: The final step of encoding phase is to com-
press the gradient keys. It is mandatory to choose a lossless com-
pression method because losing a gradient key will lead to losing
the gradient value. Therefore, gradient keys are transformed
into delta keys by calculating the difference between consecutive
gradient values starting from the end of the list. Delta keys are
passed to a binary encoding module to convert it into binary
format via threshold encoding.

Decode Phase: In order to decode the compressed gradient key
value pairs, reverse methodology is used. Gradient binary delta
keys are transformed into original keys using reverse binary en-
coding. This gradient key is used to query the MinMaxSketch to
retrieve the corresponding bucket index, which is used to query
the bucket to find the gradient value i.e. the mean of the bucket.
We recommend reading the original paper for more details and
formal proofs of the chosen approaches.

3 OBJECTIVES
As presented in the previous section, SketchML contribution
relies on the accelerations of distributed machine learning jobs
by reducing the communication among workers. In the original
implementation of SketchML in Spark [5], Jiang et al. analyzed
the error bounds of the proposed compression technique and
the model convergence.They proved that the SketchML tech-
nique can be 10x faster than the related current state-of-the-art
techniques. This demonstration is based on the results obtained
by extensive experiments of generalized linear ML models on
KDDB10 [1] and KDDB12 [2] datasets.

The main goal of this study is to understand the compres-
sion technique presented in the SketchML research paper and

2



to implement a proof of this concept in Apache Flink. There-
fore, SketchML core (including data structures and compress-
ing/decompressing algorithms) is conceived as a third party li-
brary because its implementation in Apache Spark is also consid-
ering it as a library for the compression and decompression of
Generalized Linear Models. Consequently with this hypothesis,
our objective is to implement a linear model in Apache Flink that
can handle the addition of SketchML data structures and analyze
its impact on overall performance.

3.1 Plan of implementation
The abstraction of the required SketchML functionalities into a
self-sufficient software library and the following injection into a
baseline Flink optimization algorithm has not been trivial and
several approaches have been tested iteratively. The implemen-
tation options were as following.

(1) Generalized Linear Model of SketchML: Using the al-
gorithms provided by SketchML library while mapping
Spark operators to Flink operators one-to-one.

(2) Custom optimization algorithm for Apache Flink:
Implementing an optimization algorithm from scratch,
using Flink DataSet API and injecting compression algo-
rithms provided by SketchML library.

(3) FlinkML Multiple Linear Regression: Adopting the
Multiple Linear Regression implementation provided by
FlinkML library and injecting the SketchML compression
algorithms in it.

3.2 Experiments overview
In order to provide a fair comparison between SketchML imple-
mentation in Apache Spark andApache Flink, this study performs
extensive experiments to measure and analyze the relative im-
pact achieved by both of the data flow processing engines using
SketchML compression technique. In other words, we aim to
assess the performance of our proposed implementation with
and without the compression and map the relative speedups with
the result provided in [5] for SketchML in Apache Spark.

4 IMPLEMENTATION
4.1 Generalized Linear Model of SketchML
The first implementation approach derived directly from the
inspection of Spark implementation [5]. SketchML library imple-
ments a Generalized Linear Model with three core arguments:
weights vector with the model state, optimizer object responsi-
ble for the gradient computation, model update and calculation
of the loss function. The three values overwritten by the differ-
ent implementations provided are Linear Regression, Logistic
Regression and SVM Model.

The generalized linear model partitions the data to as many
workers as defined. Each worker node interacts with global vari-
ables to receive the assigned portion of the data locally. After
loading the data, the model loops for a number of epochs defined
and performs a mini-batch gradient descent optimization at each
epoch. On each batch, each worker in the distributed set is com-
puting a local gradient. These partial gradients are gathered all
together to compute the final gradient, which is used to update
the model, and the algorithm proceeds with the next iteration.

First approach is to remain consistent with the original code
structure of SketchML while substituting Spark operators with
similar Flink operators. In some cases, this task was trivial but in

some others, technical mismatch of Spark and Flink operators
made the code transition harder.

Two main examples can give an overview for the approach
and the problems encountered. First, we tried to mimic the re-
balance operation of Spark with custom map partitioning on
Flink. In parallel, we also tried to implement the distributed task
of computing the gradients on each worker. Spark is allowing
the developers to operate through a high-level API with the
Aggregate Operator. This operators expects three arguments,
the initialization of the result, the operation to be distributed
across the cluster, namely seqOp, and the operation in charge of
gathering and reducing all the results, the combOp.

These operators do not have directly mapped operators in
Flink, which made the implementation in-feasible without hav-
ing to change few characteristics of the initial implementation.
This approach turned out to be very cumbersome since using
Spark’s and Flink’s dependencies in the same project leads to
many problems, such as conflicts in class names and function
calls. Those are the reasons why we proceeded with option 2 and
worked in the implementation of baseline optimization problem
on top of Flink DataSet API from scratch.

4.2 Custom optimization algorithm for
Apache Flink

In this implementation step, our main goal was to develop an
end-to-end optimization algorithm using gradient descent as
its core. To achieve this, training data needed to be partitioned
across the workers, and each worker run as much batch gradient
descent execution as defined by the batch ratio. After the batch
computation, the gradients are sent to a centralized node where
all the partial gradients are aggregated and the complete gradient
is used to update the weights model. The last step of updating
the model can be done either in a centralized manner in the
driver node or by distributing the total gradient through the
network and letting each worker update its local instance of
the model. In order to achieve this, we need to use the native
iteration operators provided by Flink DataSet API i.e. Iterate and
Delta-Iterate functions.

The main focus of this study was to identify and measure the
impact of how SketchML contribution and compression tech-
nique could be applied to the current state-of-the-art Flink im-
plementation of gradient descent. Therefore, instead of investing
our efforts to implement a new optimal SGD implementation
from the scratch, we decided to make use of already in place
implementation of gradient descent optimization methods using
Flink DataSet API.

4.3 FlinkML Multiple Linear Regression
FlinkML is the Machine Learning library for Flink. Its main ob-
jective is to gather and optimize scalable ML algorithms using
Flink Dataset API as well as provide a high-level API and tools to
minimize the coding of end-to-end ML systems and prioritizing
the analysis of data and results.

After a brief research we identified that FlinkML provides a
Multiple Linear Regression module. Multiple linear regression
algorithm aims to find a linear representation which best fits
the input data. This model basically finds a weight vector to be
applied to the data so that the sum of the squared residuals is
minimized.

The important thing in this model is that FlinkML applies SGD
to compute an approximation of the optimal weight vector. The

3



resulting gradient is applied to the current weight vector and the
updated vectors is processed to the next iteration.

FlinkML allows the algorithm to finish with a fixed number
of iterations or by a custom convergence criteria. For the study
purposes we have only focused on the first option.

4.3.1 Injection of SketchML. As mentioned before, after
investigating the FlinkML source code, we have found that Flink
has implemented a Stochastic Gradient Descent class2 with some
example ML algorithms such as Linear Regression3. We have
decided to use these classes as our optimization function and
the preferred ML algorithm. It is important to note that current
version of the Flink (v 1.7) does not provide a sampling operator
thus, this SGD implementation is effectively used as a Batch
Gradient Descent algorithm.

In the SGD implementation of Flink uses the iterate function
to compute on each iteration a SGD step. There are 3 main oper-
ations that are applied in each iteration (epoch):

MAP => REDUCE => MAP

In the first Map operation, initial weights are broadcasted to
each node so that they can individually calculate the gradients on
their training data. After gradients are calculated on each worker
node, the reduce operation is applied to these gradients at each
node. A node receives two gradients (called left and right), adds
these two gradients into one and sends this sum to another node
for the next accumulation. Next node receives the previous sum
as the left gradient and another gradient as the right gradient to
be added to the left gradient.

This accumulation continues until all gradients are summed
up and rests in one of the nodes. The last Map operation is
receiving again the current weights as a broadcast variable and it
is computing the new weight vector for next iteration taking into
account: the resulting gradient, the iteration, and the effective
learning rate which computed dynamically.

The injection of SketchML libraries into this algorithm has
been implemented with two different approaches, focusing on
the reduce part of the data flow. After the first map operator
computes the gradient, a new map function has been introduced
to convert the resulting partial gradients into SketchML format,
i.e. gradients are compressed.

The first approach was to use initial Reduce operation pro-
vided within the SGD class of FlinkML for the pair-wise aggrega-
tion of gradients, while being aware of the new data structures
injected. The second approach substitute the pair-wise reduce
operator with a group reduce operator. With a single group re-
duce operation, the algorithm can decompress all the partial
gradients and aggregate them at once, rather than having to
compress/decompress the gradients several times during the
pair-wise reduce.

4.3.2 Pair-wise Reduce Operation. After the first Map op-
eration, where each node calculates their gradients individually,
we applied a second Map operation on these gradients to com-
press them into sketches. After the gradients are compressed, the
reduce operation is applied to these compressed sketch gradients
and they are transferred over the network for the accumulation.
When two sketch gradients are received by a node, compressed
gradients are decompressed for the summation operation. After

2https://github.com/apache/flink/blob/master/flink-libraries/flink-ml/src/main/
scala/org/apache/flink/ml/optimization/GradientDescent.scala
3https://github.com/apache/flink/blob/master/flink-libraries/flink-ml/src/main/
scala/org/apache/flink/ml/regression/MultipleLinearRegression.scala

the accumulation of two gradients, accumulated gradient needs
to be compressed again to be sent over the network for the next
reduce operation. After all the gradients are accumulated in one
of the nodes, weight vectors are updated by that node and the
epoch finishes.

We have identified that the main bottleneck of this approach
is the re-compression of the summed gradients in each Reduce
operation.

4.3.3 Reduce Group Operation. In the original SketchML
gradient descent implementation, gradients are collected into
one machine and accumulated at once. This operation of Spark
corresponds to the ReduceGroup operation in Flink. As we have
identified that re-compressing the accumulated gradients in Re-
duce function increases the computation in each operation, we
have decided to use a ReduceGroup operation instead of the
Reduce operation to eliminate the re-compression step.

Once the second map operation is finished in each node to
compress the calculated gradients, we call the GroupReduce oper-
ation without applying any grouping to the compressed gradients
so that one of the nodes receive all the compressed gradients at
once, in contrast to the Reduce operation where each node re-
ceives two gradients each time. After receiving all the compressed
gradients, they are decompressed for accumulation. When all the
gradients are accumulated, the last Map operation is applied by
this node to update the weight vectors and the epoch is finished
as the previous approach.

It is important to note that neither ReduceGroup nor Reduce
operation is better. It is intuitive that ReduceGroup operation
has less computation overhead thus, at each epoch, run time is
expected to be lower compared to the Reduce operation. On the
contrary, GroupReduce operation does not perform as efficient
as Reduce operation when the parallelism is high since all the
gradients are accumulated in only one worker machine. If the
parallelism is low, then ReduceGroup operation improves the
run time per epoch but if scaling in terms of parallelism is de-
sired, then Reduce operation should be preferred. For the rest
of the report, we will use the ReduceGroup operation for our
experiments.

5 EXPERIMENTS
In order to prove this case study, multiple experiments are per-
formed to analyze the performance of the proposed algorithm
"SketchML in Flink" in comparison with the SGD implementation
in Flink and its relative impact in contrast with the SketchML in
Spark.

5.1 Dataset and Cluster
The KDDB10 [1] dataset is used in LIBSVM format for all the
experiments. This data set contains 5GB of data with 29 mil-
lion features. As a test environment, IBM Cluster is used, which
is provided by TU-Berlin having 7 IBM machines with 62 GB
memory and 42 cores each with 1TB total disk space. Operat-
ing system that is used is Fedora 27 with Linux version 4.18.12-
100.fc27.ppc64. As the Flink server, version 1.7.0 is used.

5.2 Metrics of evaluation
This study aims to evaluate the impact of SketchML compression
technique in the FlinkML optimization algorithms. The list of
evaluation metrics are total runtime, runtime per epoch, and
average sum squared error per record to measure the model error
bound.

4

https://github.com/apache/flink/blob/master/flink-libraries/flink-ml/src/main/scala/org/apache/flink/ml/optimization/GradientDescent.scala
https://github.com/apache/flink/blob/master/flink-libraries/flink-ml/src/main/scala/org/apache/flink/ml/optimization/GradientDescent.scala
https://github.com/apache/flink/blob/master/flink-libraries/flink-ml/src/main/scala/org/apache/flink/ml/regression/MultipleLinearRegression.scala
https://github.com/apache/flink/blob/master/flink-libraries/flink-ml/src/main/scala/org/apache/flink/ml/regression/MultipleLinearRegression.scala


5.3 Test execution
Experiments have been executed automatically with a bash script
provided in the project repository. This bash script iterates over
different command line parameters. The variations in the execu-
tions are the following:

• Execution: SketchML or FlinkML: The experiment is
executing FlinkML baseline code or SketchML-aware new
functionality.

• Compression: Sketch or None: The experiments can
run with compression "None" or "Sketch". Sketch compres-
sion means algorithm is compressing the gradients using
SketchML compression technique.

• Parallelism: Number of parallelism applied to the opera-
tors to check the behaviour of the algorithm to smaller or
bigger distribution environments.

• Iterations: Number of iterations to run.
• Dimensionality: Maximum number of features intro-
duced in the algorithm.

• Data size: Experiments have been run with different data
sizes: 10MB, 100MB and 1GB.

5.4 Experiments
5.4.1 Defining the number of iterations. The experiments per-

formed did not include any convergence criteria to stop the com-
putation of gradients, but a maximum number of iterations. To
simplify the number of tests to be performed, we first analyzed
the impact of the number of iterations executed in the averaged
sum squared error and the total run time of the execution.

Figure 4: Average Sum Square error evolution as iterations grow with sys-
tem parallelism 10

In figure 4, we are showing the evolution of the squared sum
error average per record depending on the number of iterations.
As it can be seen, after a certain amount of iterations the average
error is below 0.29 and it starts to decrease its sharpness with
a limit approximately 0.27. Our goal was to try to find a proper
value which keeps the error small but does not take a lot of time
to finish all the iterations. In the following figure 5 it can be
seen that the total time increases accordingly to the number of
iterations performed. 120 iterations matched our objectives for
this study.

5.4.2 Base comparison between algorithms. FlinkML origi-
nal implementation and the proposed adaption using SketchML
(FlinkSketch) were tested with 10MB sized dataset and different
values for parallelism and dimensions.

Figure 5: Total run time execution depending in the number of iterations.

In figures 6 and 7 we can see the impact of parallelism with
a low number of features. The model error remains stable inde-
pendently on the parallelism. Figure 6 shows the average run
time per epoch with 1000 number of dimensions. Figure 7 shows
that FlinkML outperforms FlinkSketch execution and that FlinkS-
ketch does not use parallelism to get a proper speedup. More
tests with several dimensions can be found in Appendix A.

Figure 6: Average Sum Square error evolution tests with 1000 dimensions
and varying parallelism values for FlinkML and FlinkSketch artifacts

FlinkML performs better with low dimensionality as it uses
a pair-wise reduce which enables the parallelism of the gradi-
ents summation. On the other hand, FlinkSketch reduce group
implementations forces the parallelism to one, every time the
algorithms needs to aggregate the gradients. With lower levels
of parallelism this approach can be effective since the algorithm
avoids the overhead of re-compression of the gradients. However,
reduce group implementation is not able to scale up with the
number of nodes of the cluster as the reduce option of FlinkML
is able to.

It is also important to analyze how dimensionality growth
is effecting the two implementations under test. As expressed
before, Figure 8 shows that the error of the model remains stable
as dimensionality grows.

Interestingly, FlinkML starts to produce some very bad results
when the data dimensionality increases while FlinkSketch imple-
mentation achieves better results, as it can be seen in Figure 9.

5



Figure 7: Average run time per epoch evolution tests with 1000 dimensions
and varying parallelism values for FlinkML and FlinkSketch artifacts

The scope of our tests did not manage to identify the reason why
this behaviour is observed but we identified two possibilities:

• Apache Flink’s pair-wise reduce is not efficient for high di-
mensional data, which makes the usage of a reduce group
operator able to handle this more efficiently.

• FlinkSketch compression technique allows the system to
reduce communication cost while dealing with high di-
mensionality and improves the performance.

In both cases, it is clear that FlinkML suffers from bad perfor-
mance when dealing with a relatively high number of features,
while adoption of FlinkSketch solves this problem.

Figure 8: Average Sum Square error evolution tests with 1000 dimensions
and varying parallelism values for FlinkML and FlinkSketch artifacts

5.4.3 Big data experiments. This study aims to analyze how
much the implementations under test can deal with bigger sizes
of data. Intuitively, as FlinkSketch implementation suffers from
lack of efficient parallelism utilization, it was quite clear at prior
that FlinkML original implementation would be able to cope with
bigger data size more efficiently.

For this experiment, a 1GB data file from the original data set
was used. To be able to get some results in a proper time only 1000

Figure 9: Average run time per epoch evolution tests with 1000 dimensions
and varying parallelism values for FlinkML and FlinkSketch artifacts

features were accepting in the execution. For these experiments,
a third option was tested, namely Sketch None, which consist of
the Sketch implementation but with no compression technique
applied to the gradients.

Figure 10 shows that FlinkML is performing better with 1GB
data than both implementation for FlinkSketch, with Sketch com-
pression or without compression. As expected, the group reduce
implementation is not able to efficiently deal with that amount
of data as it forces all the gradients to be aggregated in a single
node.

Figure 10: Average run time per epoch for the tested implementations with
1GB data file

What is also interesting to extract from figure 10 is that the
None compression option is performing better than the Sketch
compression option. Run time per epoch is clearly lower but
the None option as well as the FlinkML original implementation
require much more data transfer that should also be studied in
detail in further work.

6 FUTUREWORK AND CONCLUSION
With the trend of increasing data size and model size, reducing
the communication between nodes in a distributed settings has
become one of the main bottleneck of the system. To address this
problem, SketchML proposed a novel way to save the communi-
cation cost between nodes hence making the distributed machine

6



learning more efficient. We have implemented the SketchML gra-
dient compression technique in Apache Flink and analyzed its
overall performance by extensive experiments.

The adaptation of SketchML compression technique using
Flink’s dataset API (FlinkSketch) has been quite challenging.
Our main assumption was that SketchML is ready and capable
to be imported as a third party library into any other project.
After the closure of this project, this assumption has not been
certainly verified as this study identified several dependencies
and breaking points in SketchML implementation which makes
it difficult to be used outside the box. The result of this study
has proved that a proper adaptation of SketchML in Apache
Flink should be done from scratch i.e. understanding the data
structures of FlinkML optimization algorithms and implementing
the SketchML compression technique at low-level.

Nevertheless, the presented studywas satisfactory and it proved
the initially proposed hypothesis. Sketch implementation of the
Multiple linear regression model in Flink DataSet API could not
improve the performance of original FlinkML code in a low di-
mensional space. However, it showed that it can handle large
number of features more efficiently.

The proposition regarding the efficiency of the pair-wise re-
duce and the reduce group remained unattainable throughout
the project, as this study could not come up with a functional
implementation of the pair-wise reduce using SketchML library.
Implementing the optimization problem with a pair-wise reduce
allows the algorithm to scale and be efficiently distributed. On the
other hand, in each pair-wise reduce operation, gradients need
to be decompressed, aggregated and compressed again, adding a
relatively larger overhead as compared to reduce group operation.
The reduce group operation avoids this overhead by gathering
all the partial gradients at once and operate without the need to
decompress them again. Although, the group reduce appears to
be a better option in terms of computational cost, the fact that
this operation can not distribute resulted in a very bad perfor-
mance during experiments. As a future work, it is recommended
to quantify and isolate the runtime of group reduce operation
and the compression overhead introduced by pair-wise reduce.
This report has documented all the steps of implementation and
analyzed the experimented results in detail, which will be useful
for further studies of distributed machine learning optimization
methods in Apache Flink.

REFERENCES
[1] 2010. KDDB. (2010). https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

binary.html#kdd2010(bridgetoalgebra)
[2] 2012. KDDB12. (2012). https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/

datasets/binary.html#kdd2012
[3] Léon Bottou. 2010. Large-scale machine learning with stochastic gradient

descent. (2010), 177–186.
[4] Michael Greenwald, Sanjeev Khanna, et al. 2001. Space-efficient online com-

putation of quantile summaries. ACM SIGMOD Record 30, 2 (2001), 58–66.
[5] Jiawei Jiang, Fangcheng Fu, Tong Yang, and Bin Cui. 2018. SketchML: Accel-

erating Distributed Machine Learning with Data Sketches. In Proceedings of
the 2018 International Conference on Management of Data. ACM, 1269–1284.

[6] George AF Seber and Alan J Lee. 2012. Linear regression analysis. Vol. 329.
John Wiley & Sons.

A APPENDIX
Figure 11 shows the evolution of average of sum of squared
errors for FlinkML (Red) and FlinkSketch (Green) with increasing
number of dimensions from 1,000 till 1,000,000. For each of the
mentioned dimension, parallelism is increased from 10 to 50. Both
algorithms show almost the same accuracy for the model being
trained.

Missing or unconnected lines indicate that experiments couldn’t
complete due to memory issues with the cluster.

Figure 11: Average sum square error evolution with varying dimensions
and parallelism.

Figure 12 shows the evolution of average runtime per epoch for
FlinkML (Red) and FlinkSketch (Green) with increasing number
of dimensions from 1,000 till 1,000,000. For each of the mentioned
dimension, parallelism is increased from 10 to 50. It is observed
that Flink SGD can not afford large number of dimensions.

Missing or unconnected lines indicate that experiments couldn’t
complete due to memory issues with the cluster.

Figure 12: Average run time per epoch evolution with varying dimensions
and parallelism.

7

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#kdd2010(bridgetoalgebra)
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#kdd2010(bridgetoalgebra)
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#kdd2012
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#kdd2012

	Abstract
	1 Introduction
	2 Overview of SketchML Framework
	2.1 Encode Phase
	2.2 Decode Phase
	2.3 Example

	3 Objectives
	3.1 Plan of implementation
	3.2 Experiments overview

	4 Implementation
	4.1 Generalized Linear Model of SketchML
	4.2 Custom optimization algorithm for Apache Flink
	4.3 FlinkML Multiple Linear Regression

	5 Experiments
	5.1 Dataset and Cluster
	5.2 Metrics of evaluation
	5.3 Test execution
	5.4 Experiments

	6 Future work and conclusion
	References
	A Appendix

