Vivado Design Suite
Tutorial

High-Level Synthesis

UG871 (v2019.1) May 22, 2019

See all versions
"E of this document -~ °

https://www.xilinx.com/bin/public/docSeeAllVersions?productType=DesignTools&documentId=UG871

& XILINX.

Revision History

The following table shows the revision history for this document.

Section Revision Summary

05/22/2019 Version 2019.1

Locating the Tutorial Design Files Updated links.

High-Level Synthesis N Send Feedback
UG871 (v2019.1) May 22, 2019 www.xilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=2

& XILINX.

Table of Contents

ReVISION HIiStOryo oot ittt it it i et ettt entennsenassonssonssannsannsananss 2

Chapter 1: Tutorial Description

OV VIBW. « ot ittt ettt et teessoneansansosssssnssnsanssssssssssasanssnssnssssansass 6
Software ReqUIrEMENTS.ttt ittt iintineetenereneeennsenasenaseenssenasennnens 7
Hardware Requirements ooiiiiiiiiiin it ietieeententensosensansansosssssnssnsns 8
Locatingthe Tutorial Design Files.ciiiii ittt it iiietennernnesannsannnanns 8
Preparing the Tutorial Design Files. ittt it ettt tenennrnnnnens 8

Chapter 2: High-Level Synthesis Introduction

OV VIBW. « ot ittt ittt et e tssesasansosssssnssassnsonssssnssassnssnssnssssnnsass 9
Tutorial Design Description. ovt ittt ittt it iii i e enrensonsossasensansonsanans 9
Lab 1: Creating a High-Level SynthesisProjectc.c ittt iiiennnnnnns 10
Lab 2: Usingthe TclCommand Interface ...ttt it iieeernennnnnns 26
Lab 3: Using Solutions for Design Optimization.......... ..ottt it iiiinnnennns 30
(07 T 0T 11 oo 43

Chapter 3: C Validation

OV VW, + ot ittt ittt e tetessensansossosessanssssossssenssnssssossnssossnsansans 44
Tutorial Design Description.ttt ittt ittt ittt ieteereeenennsannanenesneannanss a4
Lab1l:CValidationand Debugciiiiiiiiiiiiiiiieinetnererenrenssosesnnnanss 45
Lab 2: C Validation with ANSI C Arbitrary Precision Typesccciiiiiiieiiinennnnnnns 52
Lab 3: C Validation with C++ Arbitrary Precision Types.o ettt ii i et e it eeiannnnn 56
(07 T 0T 11T T T 59

Chapter 4: Interface Synthesis

OV VI W, & ottt ittt ittt ittt it nenaetanesosssosnsosasenasssnssonnsosnssannsannses 60
Tutorial Design Description. i ii ittt ittt ittt et iieeteantennsennsanassnnssnnns 60
Lab 1: Block-Level 1/O Protocols . v oot vttt ite ittt ittt et eenernesneeneensnesasensennenes 61
Lab 2: Port 1/O ProtoCOolS . . .o i ittt ittt it ittt ea e ta et ee ettt 69
Lab 3: Implementing Arraysas RTLInterfaces............cciiiiiiiiiiiiiinnnnennnnnnnns 73
Lab 4: Implementing AXI4 Interfaces cci ittt i ettt tte e, 87

High-Level Synthesis N Send Feedback
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=3

& XILINX.

{000 T Yo 11 13 oY X 94

Chapter 5: Arbitrary Precision Types

OV VW, « ot ittt ittt e ittt etaanassasentoneansossnsensanssssossnssossnsansnns 95
Tutorial Design Description. i ittt ittt ittt et iieetiartennsennsenassnnsnnnns 96
Lab 1: Arbitrary Precisionc.iiiiiiiiii ittt e iie et raenaraataeraenaenananns 96
Lab 2: Arbitrary Precisioncotiiiiiiniiint ittt tenetenneeenereneseansananans 101
(07 T 0Tl 11 oo 106

Chapter 6: Design Analysis

OV VIBW. « ot ittt tttte e tessansensassasessanssnsassassssansansansnsssonsnssnsas 107
Tutorial Design Description.ttt ittt et e tie it reerarnanansnesasnnsnnnnns 108
Lab 1: Design Optimizationc.iiiiiiiiie ittt tienerenereneeenesennseaneennnans 108
(07 T 0T 11 o o 139

Chapter 7: Design Optimization

OV VI W, .« o ittt ettt ittt tesetenaeenaesaessaessosssonasosnssnsnssansssnnssnnsss 140
Tutorial Design Description.ttt ittt i e iieteereerannaransnesasnnsnnnnns 141
Lab 1: Optimizinga Matrix Multiplier.o it i i it i et et taerennnens 141
Lab 2: C Code Optimized for I/O ACCESSES vt vtt ettt eneneneeeeeenearaenennns 159
L0 ol 1T To T 161

Chapter 8: RTL Verification

OV VIBW. .« ot ittt ittt it e s eensensansassnssnssnsassossnssnssnsansnssonsnssnsss 162
Tutorial Design Description.ttt ittt ittt tiinetenereneeennsenneeenanannans 162
Lab 1: RTL VerificationandtheCTestBench............ciiiiiiiiii it nnrnnennans 163
Lab 2: Viewing Trace Filesin Vivado.o ittt it i e ittt it eenennnnnnnnns 170
Lab 3: Viewing Trace Filesin ModelSimottt ittt iieetenneennnnns 175
(07 T4 Yol 11T oo 180

Chapter 9: Using HLS IP in IP Integrator

OV VI W, .« o ittt ittt ittt tenetenaesnaesaesssessosssosnsesasssnssansssnnssnnsss 181
Tutorial Design Description.ttt ittt i e iieteereerannaransnesasnnsnnnnns 181
Lab 1: Integrate HLS IP with a Xilinx IPBlock.c ittt i i iieinennn 182
(07 T4 Yol 11T oo 207

Chapter 10: Using HLS IP in a Zynq SoC Design

OV VI W, .« o ittt ettt itt e tesetenaesnaesaesssessosssosasesnsssnssassssnnssnnsss 208
Tutorial Design Description.t ittt ittt et ettt teeeeraneanansnesasnnsnannns 208

High-Level Synthesis N Send Feedback
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=4

& XILINX.

Lab 1: Implement Vivado HLSIPonaZyngDeviceccuiitinennrnnrnnennnnennnnn 209
Lab 2: Streaming Data Between the Zynq CPU and HLS AcceleratorBlocks 235
(0003 ol [T 1o P 261

Chapter 11: Using HLS IP in System Generator for DSP

OV VIBW. « ot i ittt tttet e tessonsensansasessansansassssssssnsansanssssonsnssnsas 262
Tutorial Design Description.ttt ittt et e tie it reerarnanansnesasnnsnnnnns 262
Lab 1: Package HLS IP for System Generatorcii ittt iitenernnernnerenneennnnns 262
(07 T 4Tl 11 oo 268

Appendix A: Additional Resources and Legal Notices

XiliNX RESOUINCES . . o vt vttt ittt ten e tseenesnsansosssesssansanssnsssssssnnsnss 269
R o [T 4o T T =T =T 269
Documentation Navigatorand Design Hubs ittt iiniinnrnnnnnns 269
32T =T =T 4T 270
TrainiNg ReSOUICES. . oot i vt ittt it onetsnnessossssssosasosasssnssonsssnnsonnsons 270
Please Read: Important Legal Noticesciiiiiiiiiiinennerenereneeenneennnnns 270

High-Level Synthesis N Send Feedback
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=5

& XILINX

Chapter 1

Tutorial Description

Overview

This Vivado® tutorial is a collection of smaller tutorials that explain and demonstrate all
steps in the process of transforming C, C++ and SystemC code to an RTL implementation
using High-Level Synthesis. The tutorial shows how you create an initial RTL implementation
and then you transform it into both a low-area and high-throughput implementation by
using optimization directives without changing the C code. The following sections describe
a summary of each tutorial.

High-Level Synthesis Introduction

This tutorial introduces Vivado High-Level Synthesis (HLS). You can learn the primary tasks
for performing High-Level Synthesis using both the Graphical User Interface (GUI) and Tcl
environments.

C Validation

This tutorial reviews the aspects of a good C test bench and demonstrates the basic
operations of the Vivado High-Level Synthesis C debug environment. The tutorial also
shows how to debug arbitrary precision data types.

Interface Synthesis

This interface synthesis tutorial reviews all aspects of creating ports for the RTL design. You
can learn how to control block-level I/O port protocols and port I/O protocols, how arrays
in the C function can be implemented as multiple ports and types of interface protocol
(RAM, FIFO, AXI4-Stream), and how AXI4 bus interfaces are implemented.

To create an optimal implementation of the design the tutorial concludes with a design
example where I/O accesses and logic are optimized together.

High-Level Synthesis N Send Feedback 6
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=6

2: X”_INX® Chapter 1: Tutorial Description

Arbitrary Precision Types

The lab exercises in this tutorial contrast a C design written in native C types with the same
design written with Vivado High-Level Synthesis arbitrary precision types, showing how the
latter improves the quality of the hardware results without sacrificing accuracy.

Design Analysis

This tutorial uses a DCT function to explain the features of the interactive design analysis
features in Vivado High-Level Synthesis. The initial design takes you through a number of
analysis and optimization stages that highlight all the features of the analysis perspective
and provide the basis for a design optimization methodology.

Design Optimization

Using a matrix multiplier example, this tutorial reviews two-design optimization techniques.
The Design Optimization lab explains how a design can be pipelined, contrasting the
approach of pipelining the loops versus pipelining the functions.

The tutorial shows you how to use the insights learned from analyzing to update the initial
C code and create a more optimal implementation of the design.

RTL Verification

This tutorial shows how you can use the RTL CoSimulation feature to automatically verify
the RTL created by synthesis. The tutorial demonstrates the importance of the C test bench
and shows you how to use the output from RTL verification to view the waveform diagrams
in the Vivado and Mentor Graphics ModelSim simulators.

Using HLS IP in IP Integrator

This tutorial shows how RTL designs created by High-Level Synthesis are packaged as IP,
added to the Vivado IP Catalog, and used inside the Vivado Design Suite.

Using HLS IP in a Zyng SoC Design

In addition to using an HLS IP block in a Zynq®-7000 SoC design, this tutorial shows how
the C driver files created by High-Level Synthesis are incorporated into the software on the
Zynq Processing System (PS).

Using HLS IP in System Generator for DSP

This tutorial shows how RTL designs created by High-Level Synthesis can be packaged as IP
and used inside System Generator for DSP.

High-Level Synthesis N Send Feedback 7
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=7

2: X”_INX® Chapter 1: Tutorial Description

Software Requirements

This tutorial requires that the Vivado Design Suite 2017.1 release or later is installed.

Hardware Requirements

Xilinx recommends a minimum of 2 GB of RAM when using the Vivado tools.

Locating the Tutorial Design Files

The tutorial design files are located as a zipped archive on the Xilinx Website. After
accepting the license agreement the zip file will be automatically downloaded.

i? IMPORTANT: All the tutorial examples for Vivado High-Level Synthesis are available at: Reference
Design Files

Preparing the Tutorial Design Files

Extract the zip file contents into any write-accessible location.

This tutorial assumes that you have placed the unzipped design files in the location
C:\Vivado HLS Tutorial.

f IMPORTANT: /f the Vivado_HLS_Tutorial directory is unzipped to a different location, or if it resides on
Linux, adjust the pathnames to the location at which you have placed the Vivado HLS Tutorial
directory.

High-Level Synthesis N Send Feedback 8
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com/cgi-bin/docs/ctdoc?cid=026f56e2-0a0f-4986-aeb7-e92917398939;d=ug871-design-files.zip
https://www.xilinx.com/cgi-bin/docs/ctdoc?cid=026f56e2-0a0f-4986-aeb7-e92917398939;d=ug871-design-files.zip
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=8

& XILINX

Chapter 2

High-Level Synthesis Introduction

Overview

This tutorial introduces Vivado® High-Level Synthesis (HLS). You can learn the primary
tasks for performing High-Level Synthesis using both the Graphical User Interface (GUI) and
Tcl environments.

The tutorial shows how use of optimization directives transforms an initial RTL
implementation into both a low-area and high-throughput implementation.
Lab 1 Description

Explains how to set up a High-Level Synthesis (HLS) project and perform all the major steps
in the HLS design flow:

Validate the C code.
Create and synthesize a solution.

Verify the RTL and package the IP.

Lab 2 Description

Demonstrates how to use the Tcl interface.

Lab 3 Description

Shows you how to optimize the design using optimization directives. This lab creates
multiple versions of the RTL implementation and compares the different solutions.

Tutorial Design Description

To obtain the tutorial design file, see Locating the Tutorial Design Files.

High-Level Synthesis N Send Feedback 9
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=9

2: X”_INX® Chapter 2: High-Level Synthesis Introduction
This tutorial uses the design files in the tutorial directory.
Vivado HLS Tutoriall\Introduction.

The sample design used in this tutorial is a FIR filter. The hardware goal for this FIR design
project is:

« Create a version of this design with the highest throughput.

The final design must process data supplied with an input valid signal and produce output
data accompanied by an output valid signal. The filter coefficients are to be stored
externally to the FIR design, in a single port RAM.

Lab 1: Creating a High-Level Synthesis Project

Introduction

This lab shows how to create a High-Level Synthesis project, validate the C code, synthesize
the design to RTL, and verify the RTL.

f IMPORTANT: The figures and commands in this tutorial assume the tutorial data directory
Vivado HLS Tutorial files are unzipped and placed in the location C:\Vivado HLS Tutorial.

Step 1: Creating a New Project

1. Open the Vivado® HLS Graphical User Interface (GUI):

- On Windows systems, open Vivado HLS by double-clicking the Vivado HLS 2019.1
desktop icon.

Vivado HLS

Figure 2-1: The Vivado HLS Desktop Icon

o On Linux systems, type vivado_hls at the command prompt.

TIP: You can also open Vivado HLS using the Windows menu Start > All Programs > Xilinx Design
Tools > Vivado 2019.1 > Vivado HLS > Vivado HLS 2019.1.

Vivado HLS opens with the Welcome Screen as shown below. If any projects were previously
opened, they are shown in the Recent Project pane, otherwise this window is not shown in
the Welcome screen.

High-Level Synthesis N Send Feedback 10
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=10

(: XI LI NX® Chapter 2: High-Level Synthesis Introduction

¢ Vivado HLS 2019.1_EA2496192 — O X
File Edit Project Solution Window Help
- |+ | Vivado HLS Welcome Page i =8
bl N
VIVADO™ XILINX
. L]
HLS
Quick Start Recent Projects
proj_hls_stream
Cwivado_hls\hls_examples\hls_stream\proj_hls_stream
=\ -
I'I '\t/ I‘.)
Create Mew Project Open Project Open Example Project
Documentation
Tutorials User Guide Release MNotes Guide

Figure 2-2: The Vivado HLS Welcome Page
2. In the Welcome Page, select Create New Project to open the Project wizard.
3. As shown in Figure 2-3:
a. Enter the project name fir prj.
b. Click Browse to navigate to the location of the 1ab1l (Introduction) directory.
c. Select the 1ab1 directory and click OK.
d. Click Next.

High-Level Synthesis N Send Feedback 11
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=11

(: XI LI NX® Chapter 2: High-Level Synthesis Introduction

v

Project Configuration A
| Create Vivado HLS project of selected type i—Gl —

Project name: | fir_prj |

Location: | CA\Vivado_HLS_Tutorial\Introduction’lab1 Browse...

< Back Mext = Finish Cancel

Figure 2-3: Project Configuration

This information defines the name and location of the Vivado HLS project directory. In
this case, the project directory is £ir prj and it resides in the 1ab1 folder.

4. Enter the following information to specify the C design files:
a. Click Add Files.
b. Select fir.c and click OK.
c. Use Browse button to specify fir.c as the top-level function.

d. Click Next.

High-Level Synthesis N Send Feedback 12
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=12

(: XI LI NX® Chapter 2: High-Level Synthesis Introduction

¢ MNew Vivado HLS Praject O X
Add/Remove Files E‘,}' =
Add/remove C-based source files (design specification) %y
Top Function: | fir | |Brnwse...|
Design Files
Mame CFLAGS Add Files...
e New File...
Edit CFLAGS...
Remove
< Back Mext = Finish Cancel

Figure 2-4: Project Design Files

i? IMPORTANT: In this lab there is only one C design file. When there are multiple C files to be
synthesized, you must add all of them to the project at this stage. Any header files that exist in the local
directory labl are automatically included in the project. If the header resides in a different location,
use the Edit CFLAGS button to add the standard gcc/g++ search path information (for example,
-I<path to_header file dirs).

Figure 2-5 shows the input window for specifying the test bench files. The test bench and
all files used by the test bench (except header files) must be included. You can add files one
at a time, or select multiple files to add using the Ctrl and Shift keys.

High-Level Synthesis N Send Feedback 13
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=13

2: XI LI NX® Chapter 2: High-Level Synthesis Introduction

¢ MNew Vivade HLS Project O *
Add/Remove Files E;," —
Add/remove C-based testbench files (design test)
TestBench Files
MName CFLAGS Add Files...
fi !
et New File...
out.gold.dat
Add Folder...
Edit CFLAGS...
Remove
< Back Mext = Finish Cancel

Figure 2-5: Test Bench Files

5. Click the Add Files button to include both test bench files: fir test.c and
out.gold.dat.

6. Click Next.
Both C simulation (and RTL CosSmulation) execute in subdirectories of the solution.

If you do not include all the files used by the test bench (for example, data files read by the
test bench, such as out .gold.dat), C and RTL simulation might fail due to an inability to
find the data files.

The Solution Configuration window (shown in Figure 2-6) specifies the technical
specifications of the first solution.

A project can have multiple solutions, each using a different target technology, package,
constraints, and/or synthesis directives.

High-Level Synthesis N Send Feedback 14
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=14

& XILINX.

Chapter 2: High-Level Synthesis Introduction

MNew Vivado HLS Project

Solution Configuration

Create Vivadoe HLS solution for selected technelogy

Solution Mame: | solution

Clock

Period: | 10 | Uncertainty: |

Part Selection
Part: xcu200-fsgd2104-2-e

[JsDAccel Bottom Up Flow

= Back

Finich Cancel

Figure 2-6: Solution Configuration

7. Accept the default solution name (solutionl), clock period (10 ns), and clock
uncertainty (defaults to 12.5% of the clock period, when left blank/undefined).

8. Click the part selection button to open the part selection window.

9. Select Device xcvu9p-flgh2104-1 from the list of available devices. Select the
following from the drop-down filters to help refine the parts list:

a. Product Category: General Purpose

b. Family: Virtex® UltraScale™

c. Sub-Family: Virtex UltraScale+
d. Package: flgh2104
e. Speed Grade: 1
f. Temp Grade: All
10. Select xcvu9p-flgh2104-1.

11. Click OK.

In the Solution Configuration dialog box (shown in Figure 2-6, above), the selected part
name now appears under the Part Selection heading.

High-Level Synthesis

UG871 (v2019.1) May 22, 2019 www.xilinx.com

l Send Feedback I

15

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=15

& XILINX.

High-Level Synthesis

. l Send Feedback I
UG871 (v2019.1) May 22, 2019 www.xilinx.com

12. Click Finish to open the Vivado HLS project, as shown in Figure 2-7.

¢ Vivado HLS 2019.1 - fir_prj (C:\Vivado_HLS_TutoriahIntroductiontlab1\fir_prj) — O X
File Edit Project Solution Window Help [}
e : X o RSB aoie- BiA-EEia® | %5 Debug /| Synthesis & Analysis
[Explarer £2 = 8| 0% Outline 52 . [I¥ Directive = 0
v 1S fir_pij = O | An outlineis not available.
[l Includes
S Source
f= Test Bench
= solution1
B Console 5% @] Errors| & Warnings =% B B B | mB-8-7Z 7 0
Vivado HL5 Console
fir_prj

Figure 2-7: Vivado HLS Project
» The project name appears on the top line of the Explorer window.
« A Vivado HLS project arranges information in a hierarchical form.

» The project holds information on the design source, test bench, and solutions.

Chapter 2: High-Level Synthesis Introduction

« The solution holds information on the target technology, design directives, and results.

« There can be multiple solutions within a project, and each solution is an
implementation of the same source code.

TIP: At any time, you can change project or solution settings using the corresponding Project Settings

and/or Solution Settings buttons in the toolbar.

Understanding the Graphical User Interface (GUI)

Before proceeding, review the regions in the Graphical User Interface (GUI) and their

functions. Figure 2-8 shows an overview of the regions, and describes each below.

16

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=16

(: XI LI NX® Chapter 2: High-Level Synthesis Introduction

4 Vivado HLS - fir_prj (C:\Vivado_HLS _Tutorial\Introduction\lab1\fir_prj) o[)
File Edit Project Solution Window Help
I x RE@Gleaaair-~ Hidl~ & QI # Debug ||+ | Synthesis |6 Analysis
I Explorer &3 =R } = 0 || Outline 2 . Dirftive = 0
- & fir_prj 7

#! Includes An

= Source Toolbar Buttons Perspectives

= Test Bench ol

4 = solution1

4 # constraints
W directives.tcl

W scripttcl .
e Information
Pane
Project Auxiliary
Explorer Pane
Pane
B Console & @] Errors| & Wamings U D i i Easat
CDT Build Console [fir_prj]
Console
Pane

1 item selected

Figure 2-8: Vivado HLS Graphical User Interface

Explorer Pane

Shows the project hierarchy. As you proceed through the validation, synthesis, verification,
and IP packaging steps, sub-folders with the results of each step are created automatically
inside the solution directory (named csim, syn, sim, and impl respectively).

When you create new solutions, they appear inside the project hierarchy alongside
solutionl.

Information Pane

Shows the contents of any files opened from the Explorer pane. When operations complete,
the report file opens automatically in this pane.

Auxiliary Pane

Cross-links with the Information pane. The information shown in this pane dynamically
adjusts, depending on the file open in the Information pane.

High-Level Synthesis N Send Feedback 17
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=17

2: XI LI NX® Chapter 2: High-Level Synthesis Introduction

Console Pane

Shows the messages produced when Vivado HLS runs. Errors and warnings appear in
Console pane tabs.

Toolbar Buttons
You can perform the most common operations using the Toolbar buttons.

When you hold the cursor over the button, a popup tool tip opens, explaining the function.
Each button also has an associated menu item available from the pull-down menus.

Perspectives

The perspectives provide convenient ways to adjust the windows within the Vivado HLS
GUL

« Synthesis Perspective

The default perspective allows you to synthesize designs, run simulations, and package the
IP.

+ Debug Perspective

Includes panes associated with debugging the C code. You can open the Debug Perspective
after the C code compiles (unless you use the Optimizing Compile mode as this disables
debug information).

« Analysis Perspective

Windows in this perspective are configured to support analysis of synthesis results. You can
use the Analysis Perspective only after synthesis completes.

Step 2: Validate the C Source Code

The first step in an HLS project is to confirm that the C code is correct. This process is called
C Validation or C Simulation.

In this project, the test bench compares the output data from the £ir function with known
good values.

1. Expand the Test Bench folder in the Explorer pane.
2. Double-click the file fir test.c to view it in the Information pane.

3. In the Auxiliary pane, select main () in the Outline tab to jump directly to the main ()
function.

Figure 2-9 shows the result of these actions

High-Level Synthesis N Send Feedback 18
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=18

High-Level Synthesis
UG871 (v2019.1) May 22, 2019

v . . .
2 XI LI NX Chapter 2: High-Level Synthesis Introduction
V'S ®
’
File Edit Project Solution Window Help
=) @ EiEa i vk E1 R i @ %5 Debug ||, | Synthesis | 6 Analysis
[Explorer 52 = 3 fir_test.c 32 = O |[H outliine 53 . [Directive| =
v & firpg e () = SRL S
[ri Includes const int SAMPLES=600; =3 stdio.h
v E Source FILE “fp; =1 math.n |
[y fir.c . 1 firh
data_t signal, output; s
v = TE“_BE"CH coef_t taps[N] = {®,-1@,-9,23,56,63,56,23,-9,-10,8,}; ® mainQ:int
[fir_test.c
|5 out.gold.dat int i, ramp_up;
Y= solution? signal = @;
ramp_up = 1;
fp=fopen(“out.dat”,"w");
for (i=8;i<=SAMPLES;i++) {
if (ramp_up == 1)
signal — signal + 15
else
signal = signal - 13
/ Execute the function with latest input
Fir(foutput,taps,signal);
v
& Console 52 @ Errors| @ Warnings S REE B B~]
Vivado HLS Console
Figure 2-9: Reviewing the Test Bench Code

The test bench file, fir test.c, contains the top-level C function main (), which in turn
calls the function to be synthesized (£ir). A useful characteristic of this test bench is that it
is self-checking:

« The test bench saves the output from the £ir function into the output file, out . dat.
« The output file is compared with the golden results, stored in file out .gold.dat.

« If the output matches the golden data, a message confirms that the results are correct,
and the return value of the test bench main () function is set to 0.

« If the output is different from the golden results, a message indicates this, and the
return value of main () is set to 1.

The Vivado HLS tool can reuse the C test bench to perform verification of the RTL.

If the test bench has the previously described self-checking characteristics, the RTL results
are automatically checked during RTL verification. Vivado HLS re-uses the test bench during
RTL verification and confirms the successful verification of the RTL if the test bench returns
a value of 0. If any other value is returned by main (), including no return value, it indicates
that the RTL verification failed. There is no requirement to create an RTL test bench. This
provides a robust and productive verification methodology.

4. Click the Run C Simulation button, or use menu Project > Run C Simulation, to
compile and execute the C design.

5. In the C Simulation dialog box, click OK.

The Console pane (Figure 2-10) confirms the simulation executed successfully.

19

l Send Feedback I

www.Xxilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=19

(: XI LI NX® Chapter 2: High-Level Synthesis Introduction

¢ Vivado HLS 2019.1- fir_prj (C:\Vivado HLS Tutorial\Introduction\lab1\fir_prj) T O X
] P
File Edit Project Solution Window Help
BE B : EX RS BEIR- EIRA JEEsse-- g | 35 Debug |/ | Synthesis &' Analysis
[Explorer 23 = 0O |[[& fir_testc =| fir_csim.og & = O ||E= Outline 58 . [T Directive = 8
v 1S fir_prj 7INFO: [HLS 208-10] In directory 'C:/Vivado_HLS Tutorial/Introduction/labl/fira | |An outline is not available.
il Includes 8 INFO: [APCC 282-3] Tmp d%FE(tDFY is apcc_db
= s, 9INFO: [APCC 202-1] APCC is done.
Vs :..D_UKE 18 Compiling(apcc) ../../../../fir.c in debug mode
g firc 11INFO: [Common 17-1472] The existence of XHOMEDRIVE®/.Xilinx (e.g. C:/.Xilinx]
v fim Test Bench 12 INFO: [HLS 28@-18] Running "C:/Xilinx 2019 _1/Vivado/2019.1.EA2496192/bin/unwr
fﬁﬁy_tegt.(13 INFO: [HLS 2@@-1@] For user ‘scampbell’ on host "xcoscampbell3@’ (Windows NT
= out.gold.dat 14 INFO: [HLS 280-1@] In directory 'C:/Vivado HLS_Tutorial/Introduction/labl/fir
= 15 INFO: [APCC 202-3] Tmp directory is apcc_db

. 5
&= sofutiont 16 INFO: [APCC 262-1] APCC is done.

17 Generating csim.exe
18 Comparing against output data
19

26 PASS: The output matches the golden output!

21

22 INFO: [SIM 1] CSim done with @ errors.

23INFO: [SIM 3] *=s=sss=sssxsss (STY finish *=sssssssssssss

b

o >
B Console £ @] Errors| @& Warnings SRR E | MB-8-4 =0
Vivado HLS Console
INFO: [HLS 208-1@] In directory 'C:/Vivado_HLS_Tutorial/Intreduction/labl/fir_prj/solutionl/csim/build’ i
INFO: [APCC 282-3] Tmp directory is apcc_db
INFO: [APCC 282-1] APCC is done.

Generating csim.exe
Comparing against output data
PASS: The output matches the golden output!
INFO: [SIM 211-1] CSim done with @ errors.
INFO: [STM 211-3] *Hesssssssssss ooy finjsh HHeesteesseesss
Finished C simulation.

w

< >

Figure 2-10: Results of C Simulation

TIP: If the C simulation ever fails, select the Launch Debugger option in the C Simulation dialog box,
O compile the design, and automatically switch to the Debug perspective. There you can use a C
debugger to fix any problems.

The C Validation tutorial module provides more details on using the Debug environment.

The design is now ready for synthesis.

Step 3: High-Level Synthesis
In this step, you synthesize the C design into an RTL design and review the synthesis report

1. Click the Run C Synthesis toolbar button or use the menu Solution > Run C Synthesis
> Active Solution.

When synthesis completes, the report file opens automatically. Because the synthesis
report is open in the Information pane, the Outline tab in the Auxiliary pane automatically
updates to reflect the report information.

2. Click Performance Estimates in the Outline tab (Figure 2-11).

High-Level Synthesis N Send Feedback 20
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=20

(: XI LI NX® Chapter 2: High-Level Synthesis Introduction

3. In the Detail section of the Performance Estimates, expand the Loop view.

Performance Estimates
-] Timing (ns)

-] Summary

Clock | Target | Estimated | Uncertainty
ap_clk | 10,00 5772 1.25

- Latency (clock cycles)

- Summary

Latency Interval
min | max | min | max | Type
34 34 34 34 | nene

- Detail
+ Instance
- Loop
Latency Initiation Interval
Loop Mame min | max | lteration Latency | achieved | target | Trip Count | Pipelined
- Shift_Accum_Loop 33 33 3 - - 1 no

Figure 2-11: Performance Estimates

In the Performance Estimates pane, shown in Figure 2-11, you can see that the clock period
is set to 10 ns. Vivado HLS targets a clock period of Clock Target minus Clock Uncertainty
(10.00-1.25 = 8.75 ns in this example).

The clock uncertainty ensures there is some timing margin available for the (at this stage)
unknown net delays due to place and routing.

The estimated clock period (worst-case delay) is 5.772 ns, which meets the 8.75 ns timing
requirement.

In the Summary section, you can see:

« The design has a latency of 34-clock cycles: it takes 34 clocks to output the results.

« Theinterval is 34 clock cycles: the next set of inputs is read after 34 clocks. The design
is not pipelined. The next execution of this function (or next transaction) can only start
when the current transaction completes.

The Detail section shows:

« There are no sub-blocks in this design. Expanding the Instance section shows no
submodules in the hierarchy.

« All the latency delay is due to the RTL logic synthesized from the loop named
Shift Accum_Loop. This logic executes 11 times (Trip Count). Each execution

High-Level Synthesis N Send Feedback 21
UG871 (v2019.1) May 22, 2019 www.xilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=21

(: XI LI NX® Chapter 2: High-Level Synthesis Introduction

requires 3 clock cycles (Iteration Latency), for a total of 33 clock cycles, to execute all
iterations of the logic synthesized from this loop (Latency).

« The total latency is one clock cycle greater than the loop latency. It requires one clock
cycle to enter and exit the loop (in this case, the design finishes when the loop finishes,
so there is no exit cycle).

4. In the Outline tab, click Utilization Estimates (Figure 2-12).

- The design uses a single memory implemented as LUTRAM (since it contains less
than 1024 elements), 3 DSP48s, and approximately 200 flip-flops and LUTs. At this
stage, the device resource numbers are estimates.

- The resource utilization numbers are estimates because RTL synthesis might be able
to perform additional optimizations, and these figures might change after RTL
synthesis.

Litilization Estimates

= Summary

MName BRAM_18K | DSP48E FE LuT URAM
DsP
Expression - 3 0 85
FIFQ
Instance
Memaory 0 > od] 0
Multiplexer - 2 Z 105
Register : > m -
Total 0 3 175 196 0
Available 4320 6840 | 2364480 | 1182240 960
Available SLR 1440 2280 | 788160 | 394080 320
Utilization (%) 0 ~0 ~0 ~0 0
Utilization SLR (%) 0 ~0 ~0 ~0 0

Figure 2-12: Utilization Estimates
5. In the Detail section of the Utilization Estimates, expand the Expression view.
- The multiplier instance shown in the Expression view accounts for all the DSP48s.

- The multiplier is a pipelined multiplier. It appears in the Expression section
indicating it is a sub-block. Standard combinational multipliers have no hierarchy
and are listed in the Expressions section (indicating a component at this level of
hierarchy).

In: Lab 3: Using Solutions for Design Optimization, you optimize this design.

6. In the Outline tab, click Interface (Figure 2-13).

High-Level Synthesis N Send Feedback 22
UG871 (v2019.1) May 22, 2019 www.xilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=22

2: XI LI NX® Chapter 2: High-Level Synthesis Introduction

=| fir_csim.log =l Synthesis(solution1) &3 = O
Interface oy
- Summary
RTL Ports Dir Bits Protocol Source Object C Type
ap_clk in 1 ap_ctrl_hs fir return value
ap_rst in 1 ap_ctrl_hs fir return value
ap_start in 1 ap_ctrl_hs fir return value
ap_done out 1 ap_ctrl_hs fir return value
ap_idle out 1 ap_ctrl_hs fir return value
ap_ready out 1 ap_ctrl_hs fir return value
v out 32 ap_vid v pointer
y_ap_vid out 1 ap_vid ¥ painter
c_addressO out 4 ap_memary C array
c_cel out 1 ap_memory C array =
c_g0 in 32 ap_memory C array
X in 32 ap_none X scalar
4 il 3

Figure 2-13: Interface Report

The Interface section shows the ports and I/O protocols created by interface synthesis:

« The design has a clock and reset port (ap_clk and ap_reset). These are associated
with the Source Object £ir: the design itself.

« There are additional ports associated with the design as indicated by Source Object fir.
Synthesis has automatically added some block level control ports: ap start,
ap_done, ap_idle, and ap_ready.

« The Interface Synthesis tutorial provides more information about these ports.

« The function output y is now a 32-bit data port with an associated output valid signal
indicator y_ap_ vld.

« Function input argument c (an array) has been implemented as a block RAM interface
with a 4-bit output address port, an output CE port and a 32-bit input data port.

« Finally, scalar input argument x is implemented as a data port with no I/O protocol
(ap_none).

Later in this tutorial: Lab 3: Using Solutions for Design Optimization explains how to
optimize the I/O protocol for port x.

Step 4: RTL Verification

High-Level Synthesis can re-use the C test bench to verify the RTL using simulation.

High-Level Synthesis N Send Feedback 23
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=23

2: XI LI NX® Chapter 2: High-Level Synthesis Introduction

1. Click the Run C/RTL CoSimulation toolbar button or use the menu Solution > Run
C/RTL CoSimulation.

2. Click OK in the C/RTL Co-simulation dialog box to execute the RTL simulation.

The default option for RTL co-simulation is to perform the simulation using the Vivado
simulator and Verilog RTL. To perform the verification using a different simulator or
language use the options in the C/RTL Co-simulation dialog box.

When RTL co-simulation completes, the report opens automatically in the Information
pane, and the Console displays the message shown in Figure 2-14. This is the same
message produced at the end of C simulation.

« The C test bench generates input vectors for the RTL design.
« The RTL design is simulated.

« The output vectors from the RTL are applied back into the C test bench and the
results-checking in the test bench verify whether or not the results are correct.

« The Vivado HLS indicates that simulation passes if the test bench returns a value of 0. It
is the value of the return variable in the test bench, and this alone, which indicates if
the simulation was successful. It is important that the test bench returns a value of 0
only if the results are correct.

El Console &2 . 9] Erors| & Warnings| ‘S DRCs =% g & | e~ = 0
Vivado HLS Console
INFO: [COSIM 212-316] Starting C post checking ... s

Comparing against cutput data
EEEEE LR L L LR E L L L B EE L 2

PASS: The output matches the gelden output!

EEEEE LR L L LR E L L L B EE L 2

INFO: [COSIM 212-1@8@@8] *** C/RTL co-simulation finished: PASS ***
Finished C/RTL cosimulation.

Figure 2-14: RTL Verification Results

The Chapter 8, RTL Verification tutorial provides additional information.

Step 5: IP Creation

The final step in the High-Level Synthesis flow is to package the design as an IP block for
use with other tools in the Vivado Design Suite.

1. Click the Export RTL toolbar button or use the menu Solution > Export RTL.
2. Ensure the Format Selection drop-down menu shows IP Catalog.

3. Click OK.

High-Level Synthesis N Send Feedback 24
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=24

(: XI LI NX® Chapter 2: High-Level Synthesis Introduction

The IP packager creates a package for the Vivado IP Catalog. (Other options available from
the drop-down menu allow you to create IP packages for System Generator for DSP, a
Synthesized Checkpoint format for Vivado, or a Pcore for Xilinx Platform Studio.)

4. Expand Solutionl in the Explorer.
5. Expand the impl folder created by the Export RTL command.

6. Expand the ip folder and find the IP packaged as a zip file, ready for adding to the
Vivado IP Catalog (Figure 2-15).

() Explorer £ wn = 8

w 1= Xcvudp A
& constraints
(= csim
v = impl
v [=ip
=| autoimpl.log
= auxiliary.xml
= componentxml
[&2] pack.bat
o run_ippack.tcl
g vivade,jou
=| vivade.log
xilink_com_hls_fir_1_D.zip
@ constraints
(= bd
[~ doc
(= example
(= hdl
(= misc
(= subcore
(= xqui .

Figure 2-15: RTL Verification Results

At this stage, leave the Vivado HLS GUI open. You will return to this in the next lab exercise.

High-Level Synthesis N Send Feedback 25
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=25

(: XILINX® Chapter 2: High-Level Synthesis Introduction

Lab 2: Using the Tcl Command Interface

Introduction

This lab exercise shows how to create a Tcl command file based on an existing Vivado HLS
project and use the Tcl interface.

Step 1: Create a Tcl file

1. Open the Vivado HLS Command Prompt.

On Windows, use Start > All Programs > Xilinx Design Tools > Vivado 2019.1 >
Vivado HLS > Vivado HLS 2019.1 Command Prompt (Figure 2-16).

On Linux, open a new shell.

EX Vivado HLS 2019.1 Command Prompt - 0 W

== Vivado HLS Command Prompt
== Available commands:
vivado hls,apcc,gce,g++,make

Microsoft Windows [Version 16.8.15063]
(c) 2817 Microsoft Corporation. All rights reserved.

C:\Xilinx 2819 1\Vivado\2619.1»

Figure 2-16: The Vivado HLS Command Prompt

When you create a Vivado HLS project, Tcl files are automatically saved in the project
hierarchy. In the GUI still open from Lab 1, a review of the project shows two Tcl files in
the project hierarchy (Figure 2-17).

High-Level Synthesis N Send Feedback 26
UG871 (v2019.1) May 22, 2019 www.xilinx.com L\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=26

(: XI LI NX® Chapter 2: High-Level Synthesis Introduction

2. In the GUI, still open from Lab 1, expand the Constraints folder in solutionl and
double-click the file script.tcl to view it in the Information pane.

I’ Explorer &3 h{)ﬁ = O || scripticl i3
- '[D'C fir_prj 1 :. ...
il Includes 2 ## This file is generated automatically by Vivado HLS.
- 3 ## Please DO NOT edit it.
v 8 5':'“’.‘3 4 #& Copyright (C) 1986-2019 Xilinx, Inc. All Rights Reser
g fir.c R T
w flm Test Bench 6 open_project fir_prj
[fir_test.c 7 535_;95 fi;l
= g a 1les fir.c
@ outgold.dat 9 add_files -tb fir test.c
v & solutiont 18 add files -tb out.gold.dat
v 4§ constraints 11 open_solution "solutionl”
% directives.tcl 12 set_part {xcvu9p-flgb2l@4-1-e}
% scripttcl 13 create_clock -period 18 -name default
= csim 14 config_compile -no_signed_zeros=8 -unsafe_math_optimizai
. 15 config_schedule -effort medium -enable_dsp_full reg=8 -
= |r.'r1p| 16 config_bind -effort medium
= sIm 17 config_sdx -optimization_lewvel none -target none
= syn 8 config_export -format ip_cataleg -rtl verilog
19 #source "./fir_prj/solutionl/directives.tcl”
28 csim_design
21 csynth_design
22 cosim_design
23 export_design -rtl verilog -format ip_catalog
24

Figure 2-17: The Vivado HLS Project Tcl Files

e Thefile script.tcl contains the Tcl commands to create a project with the files
specified during the project setup and run all stages of the HLS flow.

« Thefile directives.tcl contains any optimizations applied to the design solution.
No optimization directives were used in Lab 1 so this file is empty.

In this lab exercise, you use the script.tcl from Lab 1 to create a Tcl file for the Lab 2
project.

3. Close the Vivado HLS GUI from Lab 1. This is project no longer needed.

4. In the Vivado HLS Command Prompt, use the following commands (also shown in
Figure 2-18) to create a new Tcl file for Lab 2.

a. Change directory to the Introduction tutorial directory
C:\Vivado HLS Tutorial\Introduction.

b. Use the command cp labl\fir prj\solutionl\script.tcl
lab2\run hls.tcl to copy the existing Tcl file to Lab 2. (The Windows command
prompt supports auto-completion using the Tab key: press the tab key repeatedly to
see new selections).

c. Use the command cd lab2 to change into the 1ab2 directory.

High-Level Synthesis N Send Feedback 27
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=27

(: XILINX® Chapter 2: High-Level Synthesis Introduction

C:\>cd Uivado_HLS_Tutorial\Introduction

C:\VUivado_HLS_Tutorial\Introduction>cp labl\fir_prj\solutioni\script.tcl lab2\ru
n_hls.tcl

C:\Uivado_HLS_Tutorial\Introduction>cd lab2

C:\Uivado_HLS_Tutorial\Introduction\lab2>

Figure 2-18: Copying the Lab 1 Tcl file to Lab 2

5. Using any text editor, perform the following edits to the file run_hls.tcl in the 1ab2
directory. The final edits are shown in Figure 2-19.

a. Add a -reset option to the open_project command. Because you typically run
Tcl files repeatedly on the same project, it is best to overwrite any existing project
information.

b. Add a -reset option to the open solution command. This removes any existing
solution information when the Tcl file is re-run on the same solution.

c. Leave the source command commented. If the previous project contains any
directives you wish to re-use, you can copy the directives directly into this file.

d. Add the exit command to the last line of the Tcl file.

e. Save and exit.

High-Level Synthesis N Send Feedback 28
UG871 (v2019.1) May 22, 2019 www.xilinx.com L\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=28

8 XI LI NX® Chapter 2: High-Level Synthesis Introduction

[run_hlstcl E3 ‘

I Siiiiissasasbastttttadsdddssaaaaassaaaiaaaa s iR
This file is generated automatically by Vivado HLS.

#+ Please DO NOT edit it.

#+ Copyright (C) 1986-2019 Xilinx, Inc. All Rights Reserved.
tHtttttaattarrrrrrrrrrrrrrtttaan A AATTAAAAAAAAAAL T

C e R o TRY S P T T —]

#Reset and create the project
open project -reset fir prj
set top fir

o co

10 add files fir.c

11 add files -tb fir test.c

12 add files -tb out.gold.dat

13

14 #Reset and open the solution

15 open solution -reset "solutionl"

16 set part {xcvuSp-flgh2104-1-¢}

17 create clock -period 10 -name default
1

19 #Configure default options

PR s S o T S Y I NC S e B T T v -

config compile -no signed zeros=0 -unsafe math optimizations=(

config schedule -effort medium -enable dsp full reg=0 -relax 11 for timing=(
config bind -effort medium

config sdx -optimization level none -target none

config export -format ip catalog -rtl verilog

= =H=

Comment out previous solutions directives

o Co

csim design

csynth design

cosim design

export design -rtl verilog -format ip catalog

S I P B E I o I o T N T I s I S A I A A
— o

(%)
n [}

A LD
[¥F%)

$Exit Vivado HLS
exit

14

(%)
n

Figure 2-19: Updated run_hls.tcl file for Lab 2

You can run the Vivado HLS in batch mode using this Tcl file.
6. In the Vivado HLS Command Prompt window, type vivado hls -f run hls.tcl.

Vivado HLS executes all the steps covered in labl. When finished, the results are available
inside the project directory fir prj.

* The synthesis report is available in fir prj\solutionl\syn\report.

High-Level Synthesis N Send Feedback 29
UG871 (v2019.1) May 22, 2019 www.xilinx.com I—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=29

2: XI LI NX® Chapter 2: High-Level Synthesis Introduction

+ The simulation results are available in fir prj\solution\sim\report.
« The output package is available in fir prj\solutionl\impl\ip.

« The final output RTL is available in fir prj\solutionl\impl and then Verilog or
VHDL.

& CAUTION! When copying the RTL results from a Vivado HLS project, you must use the RTL from the
impl directory. Additional processing is performed by Vivado HLS during export design before you
can use this RTL in other design tools.

Lab 3: Using Solutions for Design Optimization

Introduction

This lab exercise uses the design from Lab 1 and optimizes it.

Step 1: Creating a New Project

1. Open the Vivado HLS Command Prompt.

- On Windows, use Start > All Programs > Xilinx Design Tools > Vivado 2019.1 >
Vivado HLS > Vivado HLS 2019.1 Command Prompt.

o On Linux, open a new shell.

2. Change to the Lab 3 directory:
cd C:\Vivado HLS Tutorial\Introduction\lab3.

3. In the command prompt window, type: vivado hls -f run hls.tcl
This sets up the project.

4. In the command prompt window, type vivado hls -p fir prj to open the project
in the Vivado HLS GUL

Vivado HLS opens, as shown in Figure 2-20, with the synthesis for solutionl already
complete.

High-Level Synthesis N Send Feedback 30
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=30

2: XI LI NX® Chapter 2: High-Level Synthesis Introduction

¢ Vivado HLS 2019.7- fir_prj (C\Vivado_HLS_TutorialIntroduction\lab2\fir_prj) - O X
File Edit Project Sclution Window Help

ANE & X o Roceha Eaor-M@E G- &) %5 Debug |, | Synthesis | &° Analysis
I Explorer 23 | = 0O |[E= Outline 32 _[Z4 Directive = 08
v [fir_prj An outling is not available.
[l Includes
= Source
fl= Test Bench

v = solution?

v @ constraints
S directives.tel
S scriptic

v [= csim
(= build
[= report

v [= impl
[=ip
= misc
(= verilog
(= vhdl

v (= sim
(= autowrap
[= report
t: \trveyilgg B Console 52 @) Errors| & Wamings| * DRCs =
(= wrapc Vivado HLS Console

B

|#B8-08-4 =8
(= wrapc_pc
v = syn
[= report
[= systemc
(= verilog
= vhdl

fir_prj/solution]

Figure 2-20: Introduction Lab 3 Initial Solution

As stated earlier, the design goals for this design are:

« Create a version of this design with the highest throughput.
« The final design should be able to process data supplied with an input valid signal.
« Produce output data accompanied by an output valid signal.

« The filter coefficients are to be stored externally to the FIR design, in a single port
RAM.

Step 2: Optimize the 1/0 Interfaces

Because the design specification includes I/O protocols, the first optimization you perform
creates the correct I/0 protocol and ports. The type of I/O protocol you select might affect
what design optimizations are possible. If there is an I/O protocol requirement, you should
set the I/O protocol as early as possible in the design cycle.

You reviewed the I/O protocol for this design in Lab 1 (Figure 2-13), and you can review the
synthesis report again by navigating to the report folder inside the solutioni1\syn folder.
The I/O requirements are:

« Port C must have a single port RAM access.

High-Level Synthesis N Send Feedback 31
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=31

2: XI LI NX® Chapter 2: High-Level Synthesis Introduction

« Port X must have an input data valid signal.

« Port Y must have an output data valid signal.

Port C already is a single-port RAM access. However, if you do not explicitly specify the RAM
access type, High-Level Synthesis might use a dual-port interface. HLS takes this action if
doing so creates a design with a higher throughput. If a single-port is required, you should
explicitly add to the design the I/O protocol requirement to use a single-port RAM.

Input Port X is by default a simple 32-bit data port. You can implement it as an input data
port with an associated data valid signal by specifying the I/O protocol ap_v1d.

Output Port Y already has an associated output valid signal. This is the default for pointer
arguments. You do not have to specify an explicit port protocol for this port, because the
default implementation is what is required, but if it is a requirement, it is a good practice to
specify it.

To preserve the existing results, create a new solution, solution?2.

1. Click Project > New Solution toolbar button to create a new solution.

2. Leave the default solution name as solution2. Do not change any of the technology
or clock settings.

3. Click Finish.

This creates solution2 and sets it as the default solution. To confirm you can verify that
the current active solution2 is highlighted in bold in the Explorer pane.

To add optimization directives to define the desired I/O interfaces to the solution, perform
the following steps.

4. In the Explorer pane, expand the Source container (as shown in Figure 2-21).
5. Double-click £fir.c to open the file in the Information pane.

6. Activate the Directive tab in the Auxiliary pane and select the top-level function fir to
jump to the top of the fir function in the source code view.

High-Level Synthesis N Send Feedback 32
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=32

& XILINX.

High-Level Synthesis

Chapter 2: High-Level Synthesis Introduction

4 Vivado HLS 2019.1_EA2496192 - fir_prj (C:\Vivado_HLS_TuterialIntroduction\lzb2\fir_prj) — [m] =
File Edit Project Solution Window Help
N E B o R B aEaae - 1R L @) %5 Debug |, | Synthesis &5 Analysis
[Explorer 532 = B | firc 22 = B ||B= Outline | Directive 2 = B8
v I fir_prj Ead vender: Xilinx E| 2 ~ @ fir
& Includes 5 #include "fir.h ey
v E Source : ® c
firc data_t *y, -
@l Test Bench coef_t c[N], (1 shift_reg
(3 solutionl data_t x %" Shift_Accum_Loop
~ ¥= solution2) A
~ ¥ constraints static data_t shift_reg[N];
“f, directives.tcl acc_t accs
G script.tel data_t data;
int i;
acc=8;
Shift_Accum_Loop: for (i=N-13i>=@3i--) {
if (i==8) {
shift_reg[@]=x;
data = x;
} else {
shift_reg[i]=shift_reg[i-1];
data = shift regils ~
B Console 52 9 Errors| & Warnings| “2 DRCs =% b E | B2~ &4 = 0

Vivado HLS Console

1 item selected

Figure 2-21: Opening the Directives Tab

The Directives tab, shown on the right side of Figure 2-21, lists all of the objects in the
design that can be optimized. In the Directive tab, you can add optimization directives to
the design. You can view the Directives tab only when the source code is open in the
Information pane.

Apply the optimization directives to the design.

7. In the Directive tab, select the ¢ argument/port (green dot).

8. Right-click and select Insert Directive.

9. Implement the single-port RAM interface by performing the following:
a. Select RESOURCE from the Directive drop-down menu.
b. Click the core box.
c. Select RAM_1P_BRAM, as shown in Figure 2-22. Then select OK.

The steps above specify that array c be implemented using a single-port block RAM
resource. Because array c is in the function argument list, and hence is outside the function,
a set of data ports are automatically created to access a single-port block RAM outside the
RTL implementation.

Because 1/0O protocols are unlikely to change, you can add these optimization directives to
the source code as pragmas to ensure that the correct I/O protocols are embedded in the
design.

10. In the Destination section of the Directive Editor, select Source File.

11. To apply the directive, click OK.

. l Send Feedback I 33
UG871 (v2019.1) May 22, 2019 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=33

& XILINX.

Chapter 2: High-Level Synthesis Introduction

Directive

RESOURCE

Destination
() Source File
(®) Directive File

Options

’ Vivado HLS Core Selection O *
Filter
> Core Type: | storage v
Options
Memory Type: | RAM v
MNumber of Ports: m [v]
Resource Type: | ALL v

variable (required): | C

core (required): | RAM_1P_ERAM

RAM_1P
‘ |— RAM_1P_BRAM

RAM_1P_LUTRAM

latency (optional): |

| RAM_1P_URAM

metadata (optional): |

Help Cancel Cancel

Single-pert RAM using 'Block RAM'

Figure 2-22: Adding a Resource Directive

TIP: If you wish to change the destination of any directive, double-click on the directive In the Directive
O tab and modify the destination.

12. Next, specify port x to have an associated valid signal/port.

a.
b.

In the Directive tab, select input port x (green dot).

Right-click and select Insert Directive.

Select Interface from the Directive drop-down menu.

Select Source File from the Destination section of the dialog box.

Select ap_vld as the mode.

Click OK to apply the directive.

13. Finally, explicitly specify port y to have an associated valid signal/port.

a.

In the Directive tab, select input port y (green dot).

b. Right-click and select Insert Directive.

C.

Select Source File from the Destination section of the dialog box

High-Level Synthesis
UG871 (v2019.1) May 22, 2019

. | Send Feedback I 34
www.Xxilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=34

(: XI LI NX® Chapter 2: High-Level Synthesis Introduction

d. Select Interface from the Directive drop-down menu.
e. Select ap_vld for the mode.

f. Click OK to apply the directive

When complete, verify that the source code and the Directive tab are correct as shown in
Figure 2-23. Right-click on any incorrect directive to modify it.

[€] *firg &3 = O |[8= Outline |G Directive 52 =04
46 #include "fir.h" - ® fir

/ . . #[1 shift_reg

8void fir (

9 data_t *y, 2y

0 coef t c[N], # HLS INTERFACE ap_vld port=y

1 data_t x 4C

2) { # HLS RESOURCE variable=c core=RAM_1P_BRAM

3 #pragma HLS INTERFACE ap_vld port=y P x

4#pr‘agma HLS INTERFACE ap_vld pOI"‘t=X # HLS INTERFACE ap_\.fld port=x

5 #pragma HLS RESOURCE variable=c core=RAM_1P_BRAM %' Shift_Accum_Loop
static data_t shift_reg[N];
acc_t acc;

int i;

m

S WD 0O~ O

acc=0;
Shift_Accum_Loop: for (i=N-1;i»=0;i--) { 4
< 10 3

[z}

Figure 2-23: 1/0 Directives for solution2
14. Click the Run C Synthesis toolbar button to synthesize the design.

15. When prompted, click Yes to save the contents of the C source file. Adding the
directives as pragmas modified the source code.

When synthesis completes, the report file opens automatically.

16. Click the Outline tab to view the Interface results, or simply scroll down to the bottom
of the report file.

Figure 2-24 shows that the ports now have the correct I/O protocols.

High-Level Synthesis N Send Feedback 35
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=35

& XILINX.

Step 3: Analyze the Results

ap_clk

ap_rst
ap_start
ap_done
ap_idle
ap_ready
y
y_ap_vid
c_address0
c_cel
c_gl

X
¥_ap_vid

R

32

—

32
32

11}

Figure 2-24:

Protocol
ap_ctrl_hs
ap_ctrl_hs
ap_ctrl_hs
ap_ctrl_hs
ap_ctrl_hs
ap_ctrl_hs
ap_vld
ap_vld
ap_memory
ap_memory
ap_memory
ap_vld
ap_vld

Chapter 2: High-Level Synthesis Introduction

Source Object
fir
fir
fir

C Type
return value
return value
return value
return value
return value
return value

pointer
pointer
array
array
array
scalar
scalar

1/0 Protocols for solution2

m

Before optimizing the design, it is important to understand the current design. It was shown
in Lab 1 how the synthesis report can be used to understand the implementation. However,
the Analysis perspective provides greater detail in an inter-active manner.

Follow the steps below to show the Analysis perspective as shown in Figure 2-25.

1. Click the Analysis perspective button.

2. Click the Shift_Accum_Loop in the Schedule Viewer window to expand it.

» The Chapter 6, Design Analysis tutorial provides a more complete understanding of the
Analysis perspective, but the following explains what is required to create the smallest
and fastest RTL design from this source code.

¢ The left column of the Performance pane view shows the operations in this module of

the RTL hierarchy.

« The top row lists the control states in the design. Control states are the internal states

High-Level Synthesis uses to schedule operations into clock cycles. There is a close

correlation between the control states and the final states in the RTL Finite State
Machine (FSM), but there is no one-to-one mapping.

High-Level Synthesis
UG871 (v2019.1) May 22, 2019

www.Xxilinx.com

l Send Feedback I

36

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=36

2: XI LI NX® Chapter 2: High-Level Synthesis Introduction

le] fir.c Efl Synthesis(solution2)(fir_csynth.rpt) = Schedule Viewer({solution2) &3

|#m | & @ 32 || Foc

Operation\Control Step |

L)
"
ra

w_read{ready | eeee———— L -

~ Shift_Accum_Loop
acc_0(phi_mux)
i_0(phi_muz)
icmp_InBd{icmp)
add_InB8(+)
data(read)
0_write_lnB3(write)
shift_reg_addr_1_write_InB8(write)
c_load(read)
i(+])
data_D(phi_muzx)
mul_In71(%)
acci+)

y_write_In73(write)

£ >

Cotodawmo..__ln e

Figure 2-25: Solution2 Analysis Perspective: Performance

Some of the objects here correlate directly with the C source code. Right-click the object to
cross-reference with the C code.

« The design starts in the first state with a read operation on port x.

« In the next state, it starts to execute the logic created by the for-loop
Shift Accum_ Loop. Loops are shown in grey, and you can expand or collapse them.

« In the first state, the loop iteration counter is checked: addition, comparison, and a
potential loop exit.

« There is a one-cycle memory read operation on the block RAM synthesized from array
data.

« There is a memory read on the c port.
« The multiplication operation takes 1 cycles to complete.
» The for-loop is executed 11 times.

« At the end of the final iteration, the loop exits in Control Step 1 and the write to porty
occurs.

You can also use the Analysis perspective to analyze the resources used in the design.

3. Click the Resource view, as shown in Figure 2-26.

4. Expand all the resource groups.

High-Level Synthesis N Send Feedback 37
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=37

2: XI LI NX® Chapter 2: High-Level Synthesis Introduction

Operation\Control Step

~ [+]I/O Ports
X rear]
y write
c(p0)

~w [+]Memory Ports
shift_reg{p0) write write
(p0) [

w [+]Expressions
i_0_phi_fu_120 nhi mux
acc_0_phi_fu_107 nhi mux
grp_fu_137 + +
icmp_Ingd_fu_136 icmn
data_0_phi_fu_131
acc_fu_181
mul_In71_fu_173

Figure 2-26: Solution2 Analysis Perspective: Resource

Figure 2-26 shows:

« Thereis aread on port x and a write to port y. Port c is reported in the memory section
because this is also a memory access (the memory is outside the design).

« There is a single pipelined multiplier used in this design.

« One of the adders is being shared: there are two instances of the adder on one row.
With the insight gained through analysis, you can proceed to optimize the design.

Before concluding the analysis, it is worth commenting on the multicycle multiplication
operations, which require multiple DSP48s to implement. The source code uses an int
data-type. This is a 32-bit data-type that results in large multipliers. A DSP48 multiplier is
18-bit and it requires multiple DSP48s to implement a multiplication for data widths greater
than 18-bit.

The Arbitrary Precision Types tutorial shows how you can create designs with more suitable
data types for hardware. Use of arbitrary precision types allows you to define data types of
any arbitrary bit size (more than the standard C/C++ 8-, 16-, 32- or 64-bit types).

Step 4: Optimize for the Highest Throughput (Lowest Interval)

The two issues that limit the throughput in this design are:

e The for loop. By default loops are kept rolled: one copy of the loop body is
synthesized and re-used for each iteration. This ensures each iteration of the loop is
executed sequentially. You can unroll the for loop to allow all operations to occur in
parallel.

High-Level Synthesis N Send Feedback 38
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=38

& XILINX.

Chapter 2: High-Level Synthesis Introduction

« The block RAM used for shift reg. Because the variable shift regis an array in
the C source code, it is implemented as a block RAM by default. However, this prevents
its implementation as a shift-register. You should therefore partition this block RAM
into individual registers.

Begin by creating a new solution.

1. Click the Synthesis perspective button.

v A wWwN

previous solutions.

Click the New Solution button.
Leave the solution name as solution3.

Click Finish to create the new solution.

The following steps, summarized in Figure 2-27 explain how to unroll the loop.

@ firc &2 Efl Synthesis(solution2) (fir

#pragma HLS INTERFACE ap vl
#pragma HLS RESOURCE variab

static data_t shift_reg[N
acc_t acc;

data_t data;

int 1i;

shift_reg[@e]=x;
data = x;
1 else {
shift_reg[i]=sh
data = shift_re

acc+=data*c[i];;

[#*] Vivado HLS Directive Editor X
Directive
UNROLL w
Destination
(O) Source File
(®) Directive File
Options
skip_exit_check (opticnal): O
region (optional): O

_EE Outline | [Directive &3

In the Project menu, select Close Inactive Solution Tabs to close any existing tabs from

v @ fir
®y
HLS INTERFACE ap_vld pert=y
® c
HLS RESOURCE variable=c core=RAM_1P_BRAM
@ x
HLS INTERFACE ap_vid port=x
#[1 shift_reg
#' Shift_Accum_Loop

Figure 2-27: Unrolling FOR Loop

6. Click in the £ir.c file, then in the Directive tab, select loop Shift_Accum_Loop.

in the Directive tab.

IMPORTANT: Reminder: the source code must be open in the Information pane to see any code objects

7. Right-click and select Insert Directive.

8. From the Directive drop-down menu, select Unroll.

Leave the Destination as the Directive File.

When optimizing a design, you must often perform multiple iterations of optimizations to
determine what the final optimization should be. By adding the optimizations to the

High-Level Synthesis
UG871 (v2019.1) May 22, 2019

www.Xxilinx.com

| Send Feedback I

39

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=39

2: XI LI NX® Chapter 2: High-Level Synthesis Introduction

directive file, you can ensure they are not automatically carried forward to the next solution.
Storing the optimizations in the solution directive file allows different solutions to have
different optimizations. Had you added the optimizations as pragmas in the code, they
would be automatically carried forward to new solutions, and you would have to modify the
code to go back and re-run a previous solution.

Leave the other options in the Directives window unchecked and blank to ensure that the
loop is fully unrolled.

9. Click OK to apply the directive.

10. Apply the directive to partition the array into individual elements.
a. In the Directive tab, select array shift_reg.
b. Right-click and select Insert Directive.
c. Select Array_Partition from the Directive drop-down menu.
d. Specify the type as complete.
e. Select OK to apply the directive.

With the directives embedded in the code from solution2 and the two new directives just
added, the directive pane for solution3 appears as shown in Figure 2-28.

5= Outline | (14 Directive &3 = = 08

~ @ fir
=Yy
HLS INTERFACE ap_vld port=y
® c
HLS RESOURCE variable=c core=RAM_1P_BRAM
® x
HLSINTERFACE ap_vld port=x
=[] shift_reg
Of HLS ARRAY_PARTITION variable=shift_reg complete dim=1
~ %' Shift_Accum_Loop
Ob HLS UNROLL

Figure 2-28: Solution3 Directives

In Figure 2-28, notice the directives applied in solution2 as pragmas have a different
annotation (#HLS) than those just applied and saved to the directive file (%HLS). You can
view the newly added directives in the Tcl file, as shown next.

11. In the Explorer pane, expand the Constraint folder in Solution3 as shown in
Figure 2-29.

12. Double-click the solution3 directives.tcl file to openitin the Information pane.

High-Level Synthesis N Send Feedback 40
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=40

& XILINX.

Chapter 2: High-Level Synthesis Introduction

7 Explorer 22 ¢ = 8 |4 fire |l Synthesissolution?)(fir_csynthapt) | directivesitel 3 = B

v [fir_prj -
[Includes ;

v = Source 1
[firc 5

flz Test Bench 6

[7 selution 7

(7 solutiond E

v = solutiond
v i constraints
% directives.tcl
4L seripttel

F########ﬁ######ﬁ######ﬁ######ﬁ###############ﬁ######ﬁ######
This file is generated automatically by Vivado HLS.

Please DO NOT edit it.

Copyright (C) 1986-2019 Xilinx, Inc. ALl Rights Reserved.

S L L L L L DL L L Lo LD Do DR oo o
set_directive_unroll "fir/shift_Accum_Loop”
set_directive_array_partition -type complete -dim 1 "fir" shift_reg

Figure 2-29: Solution3 Directives.tcl File

13. Click the Synthesis toolbar button to synthesize the design.

When synthesis completes, the synthesis report automatically opens.

14. Compare the results of the different solutions. Click the Compare Reports toolbar

button.

Alternatively, use Project > Compare Reports.

15. Add solutionl, solution2, and solution3 to the comparison.

16. Click OK.

Figure 2-30 shows the comparison of the reports. solution3 has the smallest initiation
interval and can process data much faster. As the interval is only 16, it starts to process a
new set of inputs every 16 clock cycles.

High-Level Synthesis
UG871 (v2019.1) May 22, 2019

. | Send Feedback I 4
www.Xxilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=41

8 XI LI NX® Chapter 2: High-Level Synthesis Introduction

Vivado HLS Report Comparison

All Compared Solutions

solutionl: xcvulp-flgb2104-1-¢
solution?: xcvudp-flgb2104-1-¢
solution3: xcvudp-flgb2104-1-e

Performance Estimates

= Timing (ns)
Clock solution] | solution2 | solution3
ap_clk | Target 10.00 10.00 10.00
Estimated | 5.772 6.339 7918

=l Latency (clock cycles)

solutien] | solution2 | solution3
Latency | min | 34 34 11
max | 34 34 H
Interval | min | 34 34 11
max | 34 34 H

Utilization Estimates

solution] | solution? | solution3
BRAM_18K | O 0 0
DSP4BE 3 3 33

Figure 2-30: Comparison of Lab3 Solutions

It is possible to perform additional optimizations on this design. For example, you could use
pipelining to further improve the throughput and lower the interval. The Chapter 7, Design
Optimization tutorial provides details on using pipelining to improve the interval.

As mentioned earlier, you could modify the code itself to use arbitrary precision types. For
example, if the data types are not required to be 32-bit int types, you could use bit accurate
types (for example, 6-bit, 14-bit, or 22-bit types), provided that they satisfy the required
accuracy. For more details on using arbitrary precision type see the Chapter 5, Arbitrary
Precision Types tutorial.

High-Level Synthesis N Send Feedback 42
UG871 (v2019.1) May 22, 2019 www.xilinx.com I—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=42

2: XI LI NX® Chapter 2: High-Level Synthesis Introduction

Conclusion

In this tutorial, you learned how to:

« Create a Vivado High-Level Synthesis project in the GUI and Tcl environments.
« Execute the major steps in the HLS design flow.
« Create and use a Tcl file to run Vivado HLS.

« Create new solutions, add optimization directives, and compare the results of different
solutions.

High-Level Synthesis N Send Feedback 43
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=43

& XILINX

Chapter 3

C Validation

Overview

Validation of the C algorithm is an important part of the High-Level Synthesis (HLS) process.
The time spent ensuring the C algorithm is performing the correct operation and creating
a C test bench, which confirms the results are correct, reduces the time spent analyzing
designs that are incorrect “by design” and ensures the RTL verification can be performed
automatically.

This tutorial consists of three lab exercises.

Lab 1 Description

Reviews the aspects of a good C test bench, the basic operations for C validation and the C
debugger.

Lab 2 Description

Validates and debugs a C design using arbitrary precision C types.

Lab 3 Description

Validates and debugs a design using arbitrary precision C++ types.

Tutorial Design Description

You can download the tutorial design file from the Xilinx website. See the information in
Locating the Tutorial Design Files.

This tutorial uses the design files in the tutorial directory
Vivado HLS Tutoriall\C Validation.

The sample design used in this tutorial is a Hamming Window FIR. There are three versions
of this design:

High-Level Synthesis N Send Feedback a4
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=44

(: X”_INX® Chapter 3: C Validation

« Using native C data types.
« Using ANSI C arbitrary precision data types.

« Using C++ arbitrary precision data types.

This tutorial explains the operation and methodology for C validation using High-Level
Synthesis. There are no design goals for this tutorial.

Lab 1: C Validation and Debug

Overview

This exercise reviews the aspects of a good C test bench and explains the basic operations
of the High-Level Synthesis C debug environment.

IMPORTANT: The figures and commands in this tutorial assume the tutorial data directory

i? Vivado HLS Tutorial is unzipped and placed in the location C:\Vivado HLS_ Tutorial. If the
tutorial data directory is unzipped to a different location, or on Linux systems, adjust the few
pathnames referenced, to the location you have chosen to place the Vivado HLS Tutorial
directory.

Step 1: Create and Open the Project

1. Open the Vivado HLS Command Prompt.

o On Windows use Start > All Programs > Xilinx Design Tools > Vivado 2019.1 >
Vivado HLS > Vivado HLS 2019.1 Command Prompt.

o On Linux, open a new shell.

2. Using the command prompt window (Figure 3-1), change the directory to the C
Validation tutorial, labl.

3. Execute the Tcl script to setup the Vivado HLS project, using the command vivado hls
-f run hls.tcl as shown in Figure 3-1.

C:\Uivado_HLS_Tutorial>cd C_Ualidation

C:\Uivado_HLS_Tutorial:C_Ualidation>cd labl

4 (M

C:\Uivado_HLS_Tutorial\C_Ualidation\labl1>vivado_hls -f run_hls.tcl

Figure 3-1: Setup the Tutorial Project

4. When Vivado HLS completes, open the project in the Vivado HLS GUI using the
command vivado_hls -p hamming window prj as shown in Figure 3-2.

High-Level Synthesis N Send Feedback 45
UG871 (v2019.1) May 22, 2019 www.xilinx.com L\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=45

(: X”_INX® Chapter 3: C Validation

@I [APCC-3] Tmp directory is apcc_db -
@I [APCC-1] APCC is done.
@I [LIC-101] Checked in feature [HLS]
Generating csim.exe
Running DUT. . .done.
Testing DUT results

@I [SIM-1] CSim done with O errors.
@I [LIC-101] Checked in feature [HLS]

4 [

C:\Uivado_HLS_Tutorial:C_Ualidation\labl>vivado_hls -p hamming_window_prj

Figure 3-2: Initial Project for C Validation Lab 1

Step 2: Review Test Bench and Run C Simulation

1. Open the C test bench for review by double-clicking hamming window test.cinthe
Test Bench folder (Figure 3-3).

[t5 Explorer &2 ¢ = B g hamming_window_test.c &2 =0
4 1= hamming_window_prj 73 // Check the results returned by DUT against expected va *
- [Includes fp=Ffopen("result.dat","w");

printf("Testing DUT results");

for (i = 0; i < WINDOW_LEN; i++) {

77 fprintf(fp, "%d %d \n", hw_result[i],sw_result[i]);
78 if (hw_result[i] !=s sw_result[i]) {

79 err_cnt++;

check_dots = @;

printf("\n!!! ERROR at i = %4d - expected: %10d\tg

Source
4 = Test Bench

lel hamming_window_test.c
a = solution1

I

4 % constraints
4 directives.tcl

W scripttcl i, sw_result[i], hw_result[i]);
4 = csim } else { // indicate progress on console
. &= build if (check_dots == @)
. & report printf("\n");

printf(".");
if (++check_dots == 64)
check_dots = @;
}

¥
fclose(fp);
printf("\n");

// Print final status messa
if (err_cnt) {

printf("!!! TEST FAILED - %d errors detected !!!\n",
} else

printf("*** Test Passed ***\n");

gg
ge

m

// Only return @ on success
return err_cnt;

4 11} I

Figure 3-3: C Test Bench for C Validation Lab 1

A review of the test bench source code shows the following good practices:

High-Level Synthesis N Send Feedback 46
UG871 (v2019.1) May 22, 2019 www.xilinx.com L\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=46

2: X”_INX® Chapter 3: C Validation

« The test bench:
- Creates a set of expected results that confirm the function is correct.
o Stores the results in array sw_result.

« The Design Under Test (DUT) is called to generate results, which are stored in array
hw_result. Because the synthesized functions use the hw_result array, it is this
array that holds the RTL-generated results later in the design flow.

« The actual and expected results are compared. If the comparison fails, the value of
variable err cnt is set to a non-zero value.

« The test bench issues a message to the console if the comparison failed, but more
importantly returns the results of the comparison. If the return value is zero the test
bench validates the results are good.

This process of checking the results and returning a value of zero if they are correct
automates RTL verification.

You can execute the C code and test bench to confirm that the code is working as expected.

2. Click the Run C Simulation toolbar button to open the C Simulation Dialog box, shown
in Figure 3-4.

¢ CSimulation Dialog @

C Simulation

bl

Options
Launch Debugger
Build Only
Clean Build

Optimizing Compile

Input Arguments

Do not show this dialog box again.

[Ok l | Cancel |

Figure 3-4: Run C Simulation Dialog Box

High-Level Synthesis N Send Feedback 47
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=47

(: X”_INX® Chapter 3: C Validation

3. Select OK to run the C simulation.
As shown in Figure 3-5, the following actions occur when C simulation executes:

« The simulation output is shown in the Console window.

« Any print statements in the C code are echoed in the Console window. This example
shows the simulation passed correctly.

« The C simulation executes in the solution subdirectory csim. You can find any output
from the C simulation in the build folder, which is the location at which you can see the
output file result.dat written by the fprintf command highlighted in Figure 3-5.

Because the C simulation is not executed in the project directory, you must add any data
files to the project as C test bench files (so they can be copied to the csim/build
directory when the simulation runs). Such files would include, for example, input data read
by the test bench.

[ty Explorer 2 w* = O]/ [¢ hamming_window_test.c 2 =0
fprintf(fp, "%d %d \n", hw_result[i],sw _result[i]);*

check_dots = @;
printf("\n!!! ERROR at i = %4d - expected: %1@d\
82 i, sw_result[i], hw_result[i]);

= Test Bench
[¢ hamming_window_test.c
= solution1

=5 hamming_window_prj 77
@l Includes 78 if (hw_result[i] != sw_result[i]) {
£ Source 79 err_cnt++;
80
81

83 } else { // indicate progress on console
& constraints 84 if (check_dots == @)
W directives.tcl 85 printf("\n");
W scripticl 86 printf(".");
= csim 87 if (++check_dots == 64)
& build Si check_dots = @;
[apcclog gé y b
csim.exe 1 fclose(fp);
csim.mk 92 printf("\n"};
= Makefile.rules 93
2 result.dat 94 // Print final status message 3
; 95 if (err_cnt) {
rL_Jn_5|m.th 96 printf("!!! TEST FAILED - %d errors detected !!!\n"
= sim.bat 97 } else
& apcc_db 98 printf("*** Test Passed ***\n"); -
&= obj Il n 3
= report

El Console &2 . 9] Errors| & Warnings
<terminated= hamming_window_prj.Debug [C/C++ Application] C\Vivado_HLS_Tutorial\
Testing DUT results

% Test Passed *
4

Figure 3-5: C Simulation Results

Step 3: Run the C Debugger

A C debugger is included as part of High-Level Synthesis.

High-Level Synthesis N Send Feedback 48
UG871 (v2019.1) May 22, 2019 www.xilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=48

& XILINX.

Chapter 3: C Validation

1. Click the Run C Simulation toolbar button to open the C Simulation Dialog box.

2. Select the Launch Debugger option as shown in Figure 3-6.

3. Click OK to run the simulation.

¢ CSimulation Dialog

C Simulation

bl

Options
¥ | Launch Debugger

Build Only
Clean Build

Optimizing Compile

Input Arguments
Do not show this dialog box again.
[OK l | Cancel |
Figure 3-6: C Simulation Dialog Box

The Launch Debugger option compiles the C code and then opens the Debug environment,
as shown in Figure 3-7. Before proceeding, note the following:

« Highlighted at the top-right in Figure 3-7, you can see that the perspective has
changed from Synthesis to Debug. Click the perspective buttons to return to the
synthesis environment at any time.

« By default, the code compiles in debug mode. The Launch Debugger option
automatically opens the debug perspective at time 0, ready for debug to begin. To
compile the code without debug information, select the Optimizing Compile option in
the C Simulation dialog box.

High-Level Synthesis
UG871 (v2019.1) May 22, 2019

www.Xxilinx.com

l Send Feedback I 49

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=49

8 X”_INX® Chapter 3: C Validation

y Vivado HLS - hamming_window_prj (C:\Vivado_HLS_Tutorial\C_Validation\labl\hamming_window_prj) = o (o
File Edit Project |Solution| Run Window Help
P IBNRRRT [&l HEHH & i@ % Debug |+ | Synthesis ¢ Analysis
3 Debug 2 [Exploref il ¥ = O ||@=Variables 2 . % Breakpoints| iiii Registers| % ;
4 [&] hamming_window_prj.Debug [C/C++ Application] % B |Fet v
4 (B csim.exe [4456) Name Type Value »
4 4 Thread [1] 0 (Suspended : Breakpoint) 9 arge int 1 =
= main() at hamming_window_test.c:54 0x40139d » argv char ** 0xa54f80
wi gdb (# test_data in_data_t [256] 0x28fd0c
(# hw_result out_data_t [256) 0x28790¢ v
4 }
[¢ hamming_window_test.c R hamming_window_csim.log . = 8 ||g Outline & =8
28Vendor: Xilinx [] . vELa e % ¥

45 #include <stdio.h> = U stdioh

U hamming_window.h
© main(int, char*(]) : int

47 #include "hamming_window.h"

48

49- int main(int argc, char *argv[])

50 {

51 in_data_t test_data[WINDOW_LEN];

52 out_data_t hw_result[WINDOW_LEN], sw_result[WINDOW_LEN];

53 int i;
® 54 unsigned err_cnt = @, check_dots = @;
55 FTIF *n- %
4 »
B Console i1 . & Tasks| €] Problems| O Executables| 0 Memory; [xEE&E=DO

hamming_window_prj.Debug [C/C++ Application] csim.exe

| R

Figure 3-7: The HLS Debug Perspective
You can use the Step Into button (Figure 3-8) to step through the code line-by-line.

Figure 3-8: The Debug Step Into Button
4. Expand the Variables window to see the sw_result array.
5. Expand the sw_result array to the view shown in Figure 3-9.

6. Click the Step Into button (or key F5) repeatedly until you see the values being updated
in the Variables window.

High-Level Synthesis N Send Feedback 50
UG871 (v2019.1) May 22, 2019 www.xilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=50

(: X”_INX® Chapter 3: C Validation

45 Debug & [t Explorer i ¥ = O | @#-=Variables & . % Breakpoints|iitf Registers| & Expressions =\ Modules =
4 [t] hamming_window_prj.Debug [C/C++ Application] =l e~
4 () csim.exe [3808] Name Type Value o
4 4P Thread [1] 0 (Suspended : Step) » (% hw_result out_data_t [256] 0x2890c =
= main() at hamming_window_test.c:57 0x4014a9 4 (8 g result out_data_t [256] 0x28f50¢
W gdb 4 [20..99] out_data_t [100] 0x28f50c
= sw_result[0] out_data_t -42923460
0= sw_result[1] out_data_t -37643710
0= sw_result[2] out_data_t -32413106
= sw_result[3] out_data_t 302692880 i
4 } :
& hamming_window_testc % . 5 hamming_window_csim.log = B /B outline % = B
s cEERY o % 7
for (i = @; i < WINDOW_LEN; i++) { U stdioh

// Generate a test pattern for input to DUT
test data[i] = (in_data t)((32767.0 * (double)((i % 16) - 8) / 8.8) + 0.5);
/] Calculate the coefficient value for this index
in_data_t coeff val = (in_data_t)(WIN_COEFF_SCALE * (.54 -
0.45 * cos(2.6 * MPI * i / (double)(WINDOW_LEN - 1))));
// Generate array of expected values -- n.b. explicit casts to avoid
/[integer promotion issues A

m

H hamming_windowh
® main(int, char*[]) : int

Figure 3-9: Analysis of C Variables

In this manner, you can analyze the C code and debug it if the behavior is incorrect.

For more detailed analysis, to the right of the Step Into button are the Step Over (F6), Step
Return (F7) and the Resume (F8) buttons.

7. Scroll to line 69 in the hamming window_test.c file.

8. Place the cursor in the left-hand margin on line 69, right-click with the mouse button
and select Toggle Breakpoint. A breakpoint (blue dot) is indicated in the margin, as
shown in Figure 3-10.

9. Activate the Breakpoints tab, also shown in Figure 3-10, to confirm there is a breakpoint
set at line 69.

10. Click the Resume button (highlighted in Figure 3-10) or the F8 key to execute up to the
breakpoint.

High-Level Synthesis N Send Feedback 51
UG871 (v2019.1) May 22, 2019 www.xilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=51

(: X”_INX® Chapter 3: C Validation

BNRBESEI[H, Li@iRiEN&® % Debug || Synthesis 6 Analysis
TDebug & & Bxplorer ti+ v= 0 'ri-\faxiabie {itl Registers| € Expressions| % Modules - 0
4 [t] hamming_window_prj.Debug [C/C++ Application] AW EBS ¥

4 ¥ csim.exe [3808] V| hamming_window_testc [line: 69]
4 f Thread [1] 0 (Suspended : Step)
= main{) at hamming_window_testc:57 0x4014a9

" gdb
(¢} hamming_window_testc 2 . = hamming_window_csim.log = 8 || Outline & =8
sw_result[i] = (out_data_t)test_data[i] * (out_data_t)coeff_val; » PEBRR o % ¥
} U stdioh
Z Y hamming_window.h
& // (all the [_]‘.\' E & mainfit, charf): it
| printf("Running DUT..."); ‘
= hamming_window(hw_result, test data);

printf("done.\n");

[/ Check the results returned by DUT against expected values

Figure 3-10: Using Breakpoints

11. Click the Step Into button (or key F5) multiple times to step into the hamming window
function.

12. Click the Step Return button (or key F7) to return to the main function.

13. Click the red Terminate button to end the debug session.

You can use the Run C simulation button to restart the debug session from within the
Debug perspective.

14. Exit the Vivado HLS GUI and return to the command prompt.

Lab 2: C Validation with ANSI C Arbitrary Precision
Types

Introduction

This exercise uses a design with arbitrary precision C types. You will review and debug the
design in the GUL

High-Level Synthesis N Send Feedback 52
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=52

(: X”_INX® Chapter 3: C Validation

Step 1: Create and Open the Project

1. From the Vivado HLS command prompt used in Lab 1, change to the 1ab2 directory, as
shown in Figure 3-11.

2. To create a new Vivado HLS project, type vivado _hls -f run hls.tcl.

C:\Wivado_HLS_Tutorial\C_Ualidation\labi>cd ..

C:\Uivado_HLS_Tutorial\C_Ualidation>cd lab2

C:\Uivado_HLS_Tutorial:C_Ualidation\lab2>vivado_hls -f run_hls.tcl

Figure 3-11: C Validation for Arbitrary Precision Types Lab
3. To open the Vivado HLS GUI project, type vivado hls -p hamming window prj.

4. Open the Source folder in the Explorer pane and double-click hamming window.c to
open the code, as shown in Figure 3-12.

[Explorer &3 ¢ = B [g hamming_window.c &2 =8
4 25 hamming_window_prj 45 #include "hamming_window.h" // Provides default WINDOW_LEN if no =
[k Includes 46 - o o .
4 E Source 47 f/ Translation module function prototypes:
- : : 48 static void hamming_rom_init(in_data_t rom_array[])};
lel hamming_window.c 49
= Test Bench 50 // Function definitions:
4 (= solution1 51void hamming_window(out_data_t outdata[WINDOW_LEN], in_data_t in
4 # constraints 524 L
% directives.tcl 53 static in_data_t window_coeff[WINDOW_LEN]; [
% scripticl 54 unsigned i;
. 55
= eim 56 // In order to ensure that 'window coeff' is inferred and pro
57 // initialized as a ROM, it is recommended that the arrya ini .
o 4 - I - 1 = I - = I "r

Figure 3-12: C Code for C Validation Lab 2

5. Hold down the Ctrl key and click hamming window.h on line 45 to open this header
file.

6. Scroll down to view the type definitions (Figure 3-13).

High-Level Synthesis N Send Feedback 53
UG871 (v2019.1) May 22, 2019 www.xilinx.com L\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=53

(: X”_INX® Chapter 3: C Validation

[hamming_window.c | hamming_window.h &2 =0
68 // scaled integer, which may be interpreted as a signed fixed po *
69 // with WIN_COEFF_FRACBITS bits after the binary point.

70

71/ /typedef intl6_t in_data_t;
72 /[typedef int32_t out_data_t;
73 #include "ap_cint.h"

74 typedef intl6 in_data_t;

75 typedef int32 out_data_t;

76
77 void hamming_window(out_data_t outdata[], in_data_t indata[]);

78 L
79 #endif // HAMMING _WINDOW_H_ not defined N
820 %

< 1 3

Figure 3-13: Type Definitions for C Validation Lab 2

In this lab, the design is the same as Lab 1, however, the types have been updated from the
standard C data types (intl6_t and int32_t) to the arbitrary precision types provided by
Vivado High-Level Synthesis and defined in header file ap_cint.h.

More details for using arbitrary precision types are discussed in the Chapter 5, Arbitrary
Precision Types tutorial. An example of using arbitrary precision types would be to change
this file to use 12-bit input data types: standard C types only support data widths on 8-bit
boundaries.

This exercise demonstrates how such types can be debugged.

Step 2: Run the C Debugger

1. Click the Run C Simulation toolbar button to open the C Simulation Dialog box.
2. Select the Launch Debugger option.
3. Click OK to run the simulation.

The warning and error message shown in Figure 3-14 appears.

The message in the console pane and log file indicate you cannot debug the arbitrary
precision types used for ANSI C designs in the debug environment.

ﬁ IMPORTANT: When working with arbitrary precision types you can use the Vivado HLS debug
environment only with C++ or SystemC. When using arbitrary precision types with ANSI C,the debug
environment cannot be used. With ANSI C, you must instead use printf or fprintf statements for
debugging.

High-Level Synthesis N Send Feedback 54
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=54

8 X”_INX@ Chapter 3: C Validation

4 Vivado HLS - hamming_window_prj (C:\Vivado_HLS_Tutorial\C_Validation\lab2\hamming_window_prj) [a @] =]
File Edit Project Solution Window Help
L = EX SR G B BEOr Y Bidr) :?SDebugﬁn”Analysis
(25 Explorer 52 = 8 |[[8 hamming_window. |5 hamming_window_ &2 P2 = O |8z Outline ¥ “._[H Directive @& ¥— 0o
4 5 hamming_window_prj 1 Compiling ../../../../hamming_window_test. = An outline is not available.
. i Includes 2@E [SIM-34] C:/Xilinx/Vivado HLS/2815.3/inclu
+ E Source 3@E [SIM-1] CSim file generation failed: compi
- a
[hamming_window.c
» fi= Test Bench
4 = solution1
4 # constraints
& directives.tcl K } Message Dialog @
& script.tcl
4 (= csim Vivado HLS C Simulation could not complete..
> & build Please check the error and warning messages:
. = report - There are 2 errors
4 = impl
s B ip "] Do not show this dialog box again.
: = verilog
4 [sim o
: = autowrap = = -
. &= report & Console 2 . @] Errors| & Warnings|% Man Page = | B-ci~i =0
Bt Vivado HLS Conscle
. & verilog while executing -
) "source C:/Vivado_HLS_Tutorial/C_Validation/lab2/hamming_window_prj/solution1/csim.tcl”
> = wrapc . . -
) invoked from within
_' & wrapc_pc "hls::main C:/Vivado_HLS_Tutorial/C_Validation/lab2/hamming_window_prj/solutionl/csim.tcl”
4 = syn ("uplevel” body line 1)
> = report invoked from within
> = systemc "uplevel 1 hls::main {*}$args"
. & verilog (procedure "hls_proc" line 5)
. & vhdl invoked from within
"hls_proc $argv"
@I [LIC-101] Checked in feature [HLS]
< | 1 »

Figure 3-14: C Simulation Dialog Box
4. Select the Explorer pane.
5. Expand the Test Bench folder in the Explorer pane.

6. Double-click the file hamming window test.c.

[t Explorer 52 " = B[g hamming_window.c <) *hamming_window_test.c &3 =0
=5 hamming_window_prj &
@ Includes // Check the results returned by DUT against expected values
= Source fp=fopen("result.dat","w");

printf("Testing DUT results");
for (i = @; i < WINDOW LEN; i++) {
fprintf(fp, "%d %d \n", hw_result[i],sw_result[i])};
brin‘tf("DuT results: Sample=¥d, DUT=%d, Expected=¥d\n", i, hw_result[i],sw result[i]);
if (hw_result[i] != sw_result[i]) {
err_cnt++;
check_dots = @;
printf("\n!!! ERROR at i = ¥4d - expected: ¥l@d\tgot: %1ed",

[& hamming_window.c
= Test Bench
[€) hamming_window_test.c
= solution1
& constraints
W directives.tcl

};?_scrlpt.tcl i, sw_result[i], hw_result[i]); ‘E
& csim } else { // indicate progress on console |

= build if (check _dots == @)

& report printf("\n");

printf("."); -

Figure 3-15: Enable Printing of the Results
7. Save the file.
8. Select the Synthesis button.

9. Click the Run C Simulation toolbar button or the menu Project > Run C Simulation to
open the C Simulation Dialog box.

High-Level Synthesis N Send Feedback 55
UG871 (v2019.1) May 22, 2019 www.xilinx.com I—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=55

2: X”_INX® Chapter 3: C Validation

10. Ensure the Launch Debugger option is not selected.

11. Click OK to run the simulation.

The results appear in the console window (Figure 3-16).

El Console &2 . @) Errors| & Warnings X pEE—O
<terminated= hamming_window_prj.Debug [C/C++ Application] C\Vivado_HLS_Tutorial\C_Validation\lab2\hamming_win
.DUT results: Sample=252, DUT=21807104, Expected=21807104 -

.DUT results: Sample=253, DUT=27011801, Expected=27011801
.DUT results: Sample=254, DUT=32266975, Expected=32266975
.DUT results: Sample=255, DUT=37559018, Expected=37559010

% Test Passed *

4 [m

Figure 3-16: C Validation Lab 2 Results

12. Exit the Vivado HLS GUI and return to the command prompt.

Lab 3: C Validation with C++ Arbitrary Precision
Types

Overview

This exercise uses a design with arbitrary precision C++ types. You will review and debug
the design in the GUL

Step 1: Create and Open the Project
From the Vivado HLS command prompt used in Lab 2, change to the 1ab3 directory.
Create a new Vivado HLS project by typing vivado _hls -f run hls.tcl.

Open the Vivado HLS GUI project by typing vivado _hls -p hamming window_ prj.

> w N

Open the Source folder in the Explorer pane and double-click hamming window.cpp
to open the code, as shown in Figure 3-17.

High-Level Synthesis N Send Feedback 56
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=56

8 X”_INX@ Chapter 3: C Validation

[Explorer &3 & = O|[¢ hamming_window.cpp & =0
4 25 hamming_window_prj 45 #include "hamming_window.h" // Provides default WINDOW_LEN if 1=
» ki Includes 46 . .
=g 47 // Translation module function prototypes:
4 = Source . . . A,
- - 48 static void hamming_rom_init(in_data_t rom_array[]);
[¢ hamming_window.cpp 19
’ &QTEEtSench 50 // Function definitions:
4 {= solution1 51void hamming_window(out_data_t outdata[WINDOW_LEN], in_data_t :
4 # constraints 524 X
< directives.tcl 53 static in_data_t window_coeff[WINDOW_LEN]; ‘:‘
W scripticl 22 unsigned 1i;
» = csim o

56 // In order to ensure that "window_coeff' is inferred and pi
57 // initialized as a ROM, it is recommended that the arrya i1

—
co Fd bhm Amomm aem m mwabn Liiimmd s men amdb T mbnd Fovnd bl mmiiinmm L.

< | il P

Figure 3-17: C++ Code for C Validation Lab 3

5. Hold down the Ctrl key down and click hamming window.h on line 45 to open this
header file.

6. Scroll down to view the type definitions (Figure 3-18).

l¢ hamming_window.cpp | hamming_window.h &3 =0
70 // This function applies an Hamming window function to the "ini=+
71// returning the windowed data in 'outdata'. The coefficients

72 // scaled integer, which may be interpreted as a signed fixed |
73// with WIN_COEFF_FRACBITS bits after the binary point.

74
75/ /typedef intl6_t in_data_t;
76 //typedef int32_t out_data_t;
77 #include "ap_int.h"
78 typedef ap_int<l6> in_data_t;
79 typedef ap_int<32> out_data_t;
20
81void hamming_window(out_data_t outdata[], in_data_t indata[]); E‘
82 n
07 Mawmds £ F VIARMTRI, LITRIDWME 1) ot ALl
< | il P

Figure 3-18: Type Definitions for C Validation Lab 3

Note: In this lab, the design is the same as in Lab 1 and Lab 2, with one exception. The design is now
C++ and the types have been updated to use the C++ arbitrary precision types, ap_int<#N>,
provided by Vivado HLS and defined in header file ap_int.h.

Step 2: Run the C Debugger

1. Click the Run C Simulation toolbar button to open the C Simulation Dialog box.
2. Select the Launch Debugger option.
3. Click OK.

The debug environment opens.

4. Select the hamming window.cpp code tab.

High-Level Synthesis N Send Feedback 57
UG871 (v2019.1) May 22, 2019 www.xilinx.com I—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=57

(: X”_INX® Chapter 3: C Validation

5. Set a breakpoint at line 61 in the hamming window. cpp file as shown in Figure 3-19.

6. Click the Resume button (or press the F8 key) to execute the code up to the breakpoint.

4 Debug 2 ™[5 Explorer |# ¥ = O ||t=Variables| % Breakpoin 5 & Registers|é Expressio | ®\ Modules] = O
4 [t] hamming_window_prj.Debug [C/C++ Application] REAN|EBES ¥
a [csimeexe [3740] 4@ hamming_window.cpp [line: 61]

4 Thread [1] 0 (Suspended : Breakpoint)
= main{) at hamming_window_test.cpp:50 0x4013a2

w gdb
l¢| hamming_window.cpp &2 . [4 hamming_window.h | [< hamming_window_testcpp = O |3 Outline 2 = 0
// In order to ensure that 'window_coeff' is inferred and properly - dEERY o ¥ ¥
// initialized as a ROM, it is recommended that the array initialization Y hamming_window.h
// be done in a sub-function with global (wrt this source file) scope. 45 hamming_rom_init(in_data [} : v

hamming_rom_init(window_coeff); o hamming window(out data t[, ir

for (1-0; i< WIN[[)DN_LEN; is4) | @ hamming_rom_init(in_data_t[]) : v
2 #pragma AP pipeline
outdata[i] = (out_data_t)window coeff[i] * (out_data_t)indata[i];

m

}
5} i

Figure 3-19: Debug Environment for C Validation Lab 3
7. Click the Step Into button (or press the F5 key) twice to see the view in Figure 3-20.

The variables in the design are now C++ arbitrary precision types. These types are defined
in header file ap_int.h. When the debugger encounters these types, it follows the
definition into the header file.

As you continue stepping through the code, you have the opportunity to observe in greater
detail how the results for arbitrary precision types are calculated.

[¢/ hamming_window.cpp | hamming_window.h | ap_inth &3 =0
50 INLINE ap_int(const volatile ap_int<_AP_W2> &op):Base((const ap private<_A

52 template<int _AP_W2> E
53 INLINE ap_int(const ap_int<_AP_W2> &op):Base((const ap private<_AP_W2,true

55 template<int _AP_W2:>
56 INLINE ap_int(const ap_uint<_AP_W2> &op):Base((const ap_private<_AP_lW2,fal

58 template<int _AP_W2:>
59 INLINE ap_int(const volatile ap_uint<_AP_W2> &op):Base((const ap_private<_

)

template<int _AP_W2, bool _AP_52>
INLINE ap_int(const ap_range ref<_AP_W2, _AP_S2>& ref):Base(ref) {} -
< 10 3

[=3 0= R

[z}

Figure 3-20: Arbitrary Precision Header File

A more productive methodology is to exit the ap_int.h header file and return to view the
results.

8. Click the Step Return button (or press the F7 key) to return to the calling function.

High-Level Synthesis N Send Feedback 58
UG871 (v2019.1) May 22, 2019 www.xilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=58

(: X”_INX® Chapter 3: C Validation

9. Select the Variables tab and expand the ap_private variable.

10. Expand the outdata variable, as shown in Figure 3-21 to see the value of the variable
shown in the VAL parameter.

% Debug = [y Explorer 13 M| 22 e S| i 0 ¥ T O|[®-Varables i3 . % Breakpoints| 1% Registers| =4 Modules =0
[] hamming_window_prj.Debug [C/C++ Application] <& 0| |cs et ™
1 C\Vivado_HLS_Tutorial\C_Validation\lab3yhamming_window_prj\solutit|| Name Type Value -
i Thread [1] 0 (Suspended : Step) 4 » outdata out_data_t * 0x28f4d8
= hamming_window() at hamming_window.cpp:63 0x4017fa 4 (2 ap_private<32, tr ap_private<32, true, true... {.}
= main() at hamming_window_test.cpp:69 0x401587)= mask const uint64 t =
v gdb 9= not_mask const uint64_t
0= sign_bit_mask const uint64_t
G- VAL ap_private<32, true, true... -42923460
* indata in_data_t* Ox28fcd8 il
<[11 b
4 1 » || <)
[¢ hamming_window.cpp ¥ ~ ap_inth |l ap_privateh | [¢ hamming_window_test. |™ = O[5 Qutline 2 AW e 70

'y AniLigiiscu a> da N, 1L 13 FELUnmieniiucu tiae e arri'ya diitialisacion
// be done in a sub-function with global (wrt this source file) scope.
hamming_rom_init(window_coeff);

- & hamming_window.h
£+° hamming_rom_init(in_data_t[]) : voit
® hamming_window(out_data_t[], in_c
for (i = @; i < WINDOW_LEN; i++) { @ £ hamming_rom_init(in_data_t[]) : voi
#pragma AP pipeline
outdata[i] = (out_data_t)window_coeff[i] * (out_data_t)indata[i];

11

4 1L} » 4 {11 3
Figure 3-21: Arbitrary Precision Variables

Arbitrary precision types are a powerful means to create high-performance, bit accurate
hardware designs. However, in a debug environment, your productivity can be reduced by
stepping through the header file definitions. Use breakpoints and the step return feature to
skip over the low-level calculations and view the value of variables in the Variables tab.

Conclusion

In this tutorial, you learned:

« The importance of the C test bench in the simulation process.
« How to use the C debug environment, set breakpoints and step through the code.

« How to debug C and C++ arbitrary precision types.

High-Level Synthesis N Send Feedback 59
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=59

& XILINX

Chapter 4

Interface Synthesis

Overview

Interface synthesis is the process of adding RTL ports to the C design. In addition to adding
the physical ports to the RTL design, interface synthesis includes an associated I/0O protocol,
allowing the data transfer through the port to be synchronized automatically and optimally
with the internal logic.

This tutorial consists of four lab exercises that cover the primary features and capabilities of
interface synthesis.

Lab 1 Description

Review the function return and block-level protocols.

Lab 2 Description

Understand the default I/O protocol for ports and learn how to select an I/O protocol.

Lab 3 Description

Review how array ports are implemented and can be partitioned.

Lab 4 Description

Create an optimized implementation of the design and add AXI4 interfaces.

Tutorial Design Description

Download tutorial design file from the Xilinx website. See Locating the Tutorial Design Files.

This tutorial uses the design files in the tutorial directory
Vivado HLS TutoriallInterface Synthesis.

High-Level Synthesis N Send Feedback 60
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=60

(: X”_INX® Chapter 4: Interface Synthesis

About the Labs

» The sample design used in the first two labs in this tutorial is a simple one, which helps
the focus to remain on the interfaces.

» The final two lab exercises use a multichannel accumulator.

« This tutorial explains how to implement I/O ports and protocols using High-Level
Synthesis.

« In Lab 4, you create an optimal implementation of the design used in Lab3.

Lab 1: Block-Level 1/O Protocols

Overview

This lab explains what block-level I/O protocols are and how to control them.

ﬁ IMPORTANT: The figures and commands in this tutorial assume the tutorial data directory
Vivado_HLS_Tutorial is unzipped and placed in the location C:\Vivado_HLS_Tutorial. If the tutorial data
directory is unzipped to a different location, or on Linux systems, adjust the few pathnames referenced,
to the location you have chosen to place the Vivado_HLS_Tutorial directory.

Step 1: Create and Open the Project

1. Open the Vivado HLS Command Prompt.

o On Windows use Start > All Programs > Xilinx Design Tools > Vivado 2019.1 >
Vivado HLS > Vivado HLS 2019.1 Command Prompt.

o In Linux, open a new shell.

2. Using the command prompt window (Figure 4-1), change directory to the Interface
Synthesis tutorial, lab1l.

3. Execute the Tcl script to setup the Vivado HLS project, using the command vivado hls
-f run_hls.tcl, as shown in Figure 4-1.

C:\VUivado_HLS_Tutorial>cd Interface_Synthesis

C:\VUivado_HLS_Tutorial\Interface_Synthesis>cd labl

A ([111

C:\Uivado_HLS_Tutorial\Interface_Synthesis\labl>vivado_hls -f run_hls.tcl

Figure 4-1: Setup the Tutorial Project

High-Level Synthesis N Send Feedback 61
UG871 (v2019.1) May 22, 2019 www.xilinx.com L\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=61

& XILINX.

Chapter 4: Interface Synthesis

4. When Vivado HLS completes, open the project in the Vivado HLS GUI using the
command vivado hls -p adders prj, as shown in Figure 4-2.

10+20+30=60
20+30+40=90
30+40+50=120
40+50+60=150
50+60+70=180

C:\Uivado_HLS_Tutorial\Interface_Synthesis\labl>vivado_hls -p adders_prj

@I [LIC-101] Checked in feature [HLS] -
Generating csim.exe

@I [SIM-1] CSim done with O errors.
@I [LIC-101] Checked in feature [HLS]

A ([111

Figure 4-2: Initial Project for Interface Synthesis Lab 1

Step 2: Create and Review the Default Block-Level I/O Protocol

1. Double-click adders.c in the Source folder to open the source code for review

(Figure 4-3).

This example uses a simple design to focus on the I/O implementation (and not the logic in
the design). The important points to take from this code are:

« Directives in the form of pragmas have been added to the source code to prevent any
I/O protocol being synthesized for any of the data ports (inA, inB and inC). I/O port
protocols are reviewed in the next lab exercise.

« This function returns a value and this is the only output from the function. As seen in
later exercises, not all functions return a value. The port created for the function return
is discussed in this lab exercise.

5 Explorer W T 8
== adders_prj
! Includes
= Source
l¢| adders.c
= Test Bench
= solution1
constraints
W directives.tcl
U scripttcl
= csim
= build
& report

High-Level Synthesis
UG871 (v2019.1) May 22, 2019

|| adders.c i =0
48int adders(int inl, int in2, int in3) { -
49

50

51// Prevent I0 protocols on all input ports

52 #pragma HLS INTERFACE ap_none port=in3
53 #pragma HLS INTERFACE ap_none port=in2
54 #pragma HLS INTERFACE ap_none port=inl
L= =

7 int sum;
58
59 sum = inl + in2 + in3;
60

61 return sum;

m

4 11} I

Figure 4-3: C Code for Interface Synthesis Lab 1

o | Send Feedback I 62
www.Xxilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=62

(: X”_INX® Chapter 4: Interface Synthesis

2. Execute the Run C Synthesis command using the dedicated toolbar button or the
Solution menu.

When synthesis completes, the synthesis report opens automatically.

3. To review the RTL interfaces scroll to the Interface summary at the end of the synthesis
report.

The Interface summary and Outline tab are shown in Figure 4-4.

|c| adders.c ED Synthesis(solution1)(adders_csynth.rpt) &3 = 8 EE Qutline &1 [Directive

Interface L] | General Information
w [Performance Estimates
= Summary

RTL Ports | Dir | Bits | Protocol | Source Object C Type

T Timing (ns)
E@ Latency (clock cycles)
ap_start in 1| ap_ctrl_hs adders | return value w | Utilization Estimates

ap_dene | out 1| ap_ctrl_hs adders | return value El Summary

=y
ap_idle out 1| ap_ctrl_hs adders | return value | Detail
w i) Interface

ap_ready | out 1| ap_ctrl_hs adders | return value

ap_retumn | out 32 | ap_ctrl_hs adders | return value & summary

inl in 32 | ap_none inl scalar

in2 in 32 ap_none in2 scalar

in3 in 32 | ap_none in3 scalar

Figure 4-4: Interface Summary

There are four types of ports to review:

« The design takes more than one clock cycle to complete, so a clock and reset have been
added to the design: ap_clk and ap_rst. Both are single-bit inputs.

» A block-level I/0 protocol has been added to control the RTL design: ports ap_start,
ap_done, ap_idle and ap_ready. These ports will be discussed shortly.

« The design has four data ports.

- Input ports In1, In2, and In3 are 32-bit inputs and have the I/O protocol
ap_none (as specified by the directives in Figure 4-4).

o The design also has a 32-bit output port for the function return, ap return.

The block-level I/O protocol allows the RTL design to be controlled by additional ports
independently of the data I/O ports. This I/O protocol is associated with the function itself,
not with any of the data ports. The default block-level I/O protocol is called ap ctrl hs.
Figure 4-5 shows this protocol is associated with the function return value (this is true even
if the function has no return value specified in the code).

Table 4-1 summarizes the behavior of the signals for block-level I/O protocol ap ctrl hs.

High-Level Synthesis N Send Feedback 63
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=63

(: X”_INX® Chapter 4: Interface Synthesis

Note: The explanation here uses the term “transaction”. In the context of high-level synthesis, a
transaction is equivalent to one execution of the C function (or the equivalent operation in the
synthesized RTL design).

Table 4-1: Block Level 1/0 Protocol ap_ctrl_hs

Signals Description

ap_start This signal controls the block execution and must be asserted to logic 1 for the design
to begin operation.

It should be held at logic 1 until the associated output handshake ap ready is
asserted. When ap_ready goes high, the decision can be made on whether to keep
ap_start asserted and perform another transaction or set ap_start to logic 0 and
allow the design to halt at the end of the current transaction.

Ifap_start is asserted low before ap _ready is high, the design might not have read
all input ports and might stall operation on the next input read.

ap_ready This output signal indicates when the design is ready for new inputs.

The ap_ready signal is set to logic 1 when the design is ready to accept new inputs,
indicating that all input reads for this transaction have been completed.

If the design has no pipelined operations, new reads are not performed until the next
transaction starts.

This signal is used to make a decision on when to apply new values to the inputs ports
and whether to start a new transaction should using the ap_start input signal.

If the ap start signal is not asserted high, this signal goes low when the design
completes all operations in the current transaction.

ap_done This signal indicates when the design has completed all operations in the current
transaction.

A logic 1 on this output indicates the design has completed all operations in this
transaction. Because this is the end of the transaction, a logic 1 on this signal also
indicates the data on the ap_return port is valid.

Not all functions have a function return argument and hence not all RTL designs have
an ap_return port.

ap_idle This signal indicates if the design is operating or idle (no operation).

The idle state is indicated by logic 1 on this output port. This signal is asserted low
once the design starts operating.

This signal is asserted high when the design completes operation and no further
operations are performed.

You can observe the behavior of these signals by viewing the trace file produced by RTL
CoSimulation. This is discussed in Chapter 8, RTL Verification tutorial, but Figure 4-5 shows
the waveforms for the current synthesis results.

High-Level Synthesis N Send Feedback 64
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=64

(: X”_INX® Chapter 4: Interface Synthesis

E adders.wcfg* x [

=4 ™ ap_return[31:0]
I 1 ap_idle

Al

Figure 4-5: RTL Waveforms for Block Protocol Signals

The waveforms in Figure 4-5 show the behavior of the block-level I/O signals.

« The design does not start operation until ap start is set to logic 1.
« The design indicates it is no longer idle by setting port ap_idle low.

« Five transactions are shown. The first three input values (10, 20, and 30) are applied to
input ports In1, In2, and In3 respectively.

« Output signal ap_ready goes high to indicate the design is ready for new inputs on
the next clock.

« Output signal ap_done indicates when the design is finished and that the value on
output port ap_return is valid (the first output value, 60, is the sum of all three
inputs).

* Because ap start is held high, the next transaction starts on the next clock cycle.

Note: In RTL CoSimulation, all design and port input control signals are always enabled. For
example, in Figure 4-5 signal ap_start is always high.

In the 2nd transaction, notice on port ap_return, the first output has the value 70. The result
on this port is not valid until the ap_done signal is asserted high.

Step 3: Modify the Block-Level 1/0 protocol

The default block-level I/O protocol is the ap_ctrl hs protocol (the Control Handshake
protocol). In this step, you create a new solution and modify this protocol.

High-Level Synthesis N Send Feedback 65
UG871 (v2019.1) May 22, 2019 www.xilinx.com L\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=65

(: X”_INX® Chapter 4: Interface Synthesis

1. Select New Solution from the toolbar or Project menu to create a new solution.
2. Leave all settings in the new solution dialog box at their default setting and click Finish.

3. Select the C source code tab (adders.c) in the Information pane (or re-open the C source
code if it was closed).

4. Activate the Directives tab and select the top-level function adders, as shown in

Figure 4-6.
¢ adders.c &2 = O |[8= Outline [Directive &3 =0
46 #include "adders.h" - 4| ® adders
j;'t't'l't'2't'3 2 inl

s n L [TSl S # HLS INTERFACE ap_none port=inl

50 @ in2

51// Prevent I0 protocols on all input ports # HLS INTERFACE ap_none port=in2

52 #pragma HLS INTERFACE ap_none port=in3 @ in3

53 #pragma HLS INTERFACE ap_none port=in2 # HLS INTERFACE ap_none port=in3

54 #pragma HLS INTERFACE ap_none port=inl

57 int sum;

59 sum = inl + in2 + in3;

NN
m

return sum;

ohoohooh Oy O

FENR Ve]
-

A

(1L} 4

Figure 4-6: Top-Level Function Selected

Because the block-level I/O protocols are associated with the function, you must specify
them by selecting the top-level function.

5. In the Directive tab, mouse over the top-level function adders, right-click, and select
Insert Directive.

The Directives Editor dialog box opens. Select the INTERFACE option from the Directive
pull-down list.

Figure 4-7 shows this dialog box with the drop-down menu for the interface mode
activated.

High-Level Synthesis N Send Feedback 66
UG871 (v2019.1) May 22, 2019 www.xilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=66

2: X”_INX® Chapter 4: Interface Synthesis

| Vivada HLS Directive Editor X

Directive

INTERFACE ~

Destination
(® Source File
() Directive File

Options

mode (optional): |ap_ctrl_none V|

register (optional): []

depth (optional): | |

latency (optional): | |

name (optienal): | |

Figure 4-7: Directive Dialog Box for ap_ctrl_none

The drop-down menu shows there are four options for the block-level interface protocol:

ap_ctrl none: No block-level I/O control protocol.
ap_ctrl hs: The block-level I/O control handshake protocol we have reviewed.

ap_ctrl chain: The block-level I/O protocol for control chaining. This I/O protocol is
primarily used for chaining pipelined blocks together.

s_axilite: May be applied in addition to ap_ctrl hs orap ctrl chain to
implement the block-level I/O protocol as an AXI Slave Lite interface in place of
separate discrete I/O ports.

The block-level I/0O protocol ap ctrl chain is not covered in this tutorial. This protocol
is similar to ap_ctrl hs protocol but with an additional input signal, ap_continue,
which must be high when ap done is asserted for the next transaction to proceed. This
allows downstream blocks to apply back-pressure on the system and halt further processing
when they are unable to continue accepting new data.

6.

In the Destination section of the Directives Editor dialog box, select Source File.

By default, directives are placed in the directives.tcl file. In this example, the directive
is placed in the source file with the existing I/O directives.

7. From the mode options, select ap_ctrl_none from the drop-down menu.

High-Level Synthesis

. l Send Feedback I 67
UG871 (v2019.1) May 22, 2019 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=67

8 X”_INX® Chapter 4: Interface Synthesis

8. Click OK.

The source file now has a new directive, highlighted in both the source code and directives
tab in Figure 4-8.

The new directive shows the associated function argument/port called return. All
interface directives are attached to a function argument. For block-level I/O protocols, the
return argument is used to specify the block-level interface. This is true even if the
function has no return argument in the source code.

[¢ *adders.c &2 = O |[8= Outline [Directive &3 =0
A6 #include "adders.h" - 4 ® adders
47 i i . i . i . # HLS INTERFACE ap_ctrl_none port=return
8int adders(int inl, int in2, int in3) { -
Elpragma HLS INTERFACE ap ctrl none port=retur 2 inl
0 # HLS INTERFACE ap_none port=inl
1 @ in2
2// Prevent I0 protocols on all input ports # HLS INTERFACE ap_none port=in2
3 #pragma HLS INTERFACE ap_none port=in3 2 in3

4 #pragma HLS INTERFACE ap_none port=in2

. # HLS INTERFACE ap_none port=in3
5#pragma HLS INTERFACE ap_none port=inl

o
7
8 int sum;
9
0

m

sum = inl + in2 + in3;

2 return sum;

< | il P

Figure 4-8: Block-Level Interface Directive ap_ctrl_none

9. Click the Run C Synthesis toolbar button or use the menu Solution > Run C Synthesis
to synthesize the design.

Adding the directive to the source file modified the source file. Figure 4-8 shows the source
file name as *adders. c. The asterisk indicates that the file is modified but not saved.

10. Click Yes to accept the changes to the source file.

When the report opens, the Interface summary appears, as shown in Figure 4-9.

High-Level Synthesis N Send Feedback 68
UG871 (v2019.1) May 22, 2019 www.xilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=68

(: X”_INX® Chapter 4: Interface Synthesis

17 Explorer &2 Q:>¢1 = 0 ED Synthesis(solutionZ) (adders_csynth.rpt) &2
[adders.c A + Multiplexer
flm Test Bench # Register
(3 solutionl
w = solution2 Interface
4% constraints
. =] Summary
= impl
v (= syn RTL Ports | Dir | Bits Protocol Source Object C Type
v (= report inl in 32 ap_none inl scalar
ED adders_csynth.rpt in2 in 32 ap_none in2 scalar
(= systemc in3 in 32 ap_none in3 scalar
[verilog ap_return | out 32 | ap_ctrl_none adders | return value
(= vhdl v

Figure 4-9: Interface Summary for ap_ctrl_none

When the interface protocol ap _ctrl none is used, no block-level I/O protocols are
added to the design. The only ports are those for the clock, reset and the data ports.

Note that without the ap done signal, the consumer block that accepts data from the
ap_return port now has no indication when the data is valid.

In addition, the RTL CoSimulation feature requires a block-level I/O protocol to sequence
the test bench and RTL design for CoSimulation automatically. Any attempt to use RTL
CoSimulation results in the following error message and RTL CoSimulation with halt:

@E [SIM-345] Cosim only supports the following 'ap ctrl none' designs: (1)
combinational designs; (2) pipelined design with task interval of 1; (3) designs with
array streaming or hls stream ports.

@E [SIM-4] *** C/RTL co-simulation finished: FAIL **%*

Exit the Vivado HLS GUI and return to the command prompt.

Lab 2: Port I/O Protocols

Overview

This exercise explains how to specify port I/O protocols.

Step 1: Create and Open the Project

1. From the Vivado HLS command prompt used in Lab 1, change to the 1ab2 directory as
shown in Figure 4-10.

2. Type vivado hls -f run hls.tcl to create a new Vivado HLS project.

High-Level Synthesis N Send Feedback 69
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=69

(: X”_INX® Chapter 4: Interface Synthesis

C:\Uivado_HLS_Tutorial\Interface_Synthesis\labl>cd ..

C:\VUivado_HLS_Tutorial\Interface_Synthesis>cd lab2

4 |11

C:\Uivado_HLS_Tutorial\Interface_Synthesis\lab2>vivado_hls -f run_hls.tcl

Figure 4-10: Setup for Interface Synthesis Lab 2
3. Type vivado hls -p adders io prj to open the Vivado HLS GUI project.

4. Open the source code as shown in Figure 4-11.

[&5 Explorer & ¢ = B[[<) adders_io.c &2 =8
) Includes :11: #include "adders_io.h"
« = Source o
- 48 void adders_io(int inl, int in2, int *in_outl) {
lel adders_io.c 19
= Test Bench 50 *in_outl = inl + in2 + *in_outl;
i ¢= solution 51
' # constraints 52
o directives.tcl 53}
G crri 54
o scripticl e |
' & csim - i
& build --
= report 58

Figure 4-11: C Code for Interface Sythesis Lab 2

The source code (adders_io.c) for this exercise is similar to the simple code used in Lab
1. For similar reasons, it helps focus on the interface behavior and not the core logic.

This time, the code does not have a function return, but instead passes the output of the
function through the pointer argument *in out1. This also provides the opportunity to
explore the interface options for bidirectional (input and output) ports.

The types of I/O protocol that you can add to C function arguments by interface synthesis
depends on the argument type. These options are fully described in the Vivado Design Suite
User Guide: High-Level Synthesis (UG902) [Ref 2].

The pointer argument in this example is both an input and output to the function. In the RTL
design, this argument is implemented as separate input and output ports.

High-Level Synthesis N Send Feedback 70
UG871 (v2019.1) May 22, 2019 www.xilinx.com L\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=70

& XILINX.

Chapter 4: Interface Synthesis

For the code shown in Figure 4-11, the possible options for each function argument are

described in Table 4-2.

Table 4-2: Port Level 1/0 Protocol Options for Lab 2

Function Argument

1/0 Protocol Options

Inl and In2 These are pass-by-value arguments that can be implemented with the
following I/O protocols:

ap_none: No I/O protocol. This is the default for inputs.

ap_stable: No I/O protocol.

ap_ack: Implemented with an associated output acknowledge port.
ap_vld: Implemented with an associated input valid port.

ap_hs: Implemented with both input valid and output acknowledge ports.

in_outl This is a pass-by-reference output that can be implemented with the
following I/O protocols:

ap_none: No I/O protocol. This is the default for inputs.
ap_stable: No I/O protocol.
ap_ack: Implemented with an associated input acknowledge port.

ap_vld: Implemented with an associated output valid port. This is the
default for outputs.

ap_ovld: Implemented with an associated output valid port (no valid port
for the input part of any inout ports).

ap_hs: Implemented with both input valid port and output acknowledge
ports

ap_fifo: A FIFO interface with associated output write and input FIFO full
ports.

ap_bus: A Vivado HLS bus interface protocol.

Note: The port directives applied in Lab 1 were not actually necessary because ap_none is the
defaultI/O protocol for these C arguments. The directives were provided to avoid addressing any I/O
port protocol behavior in that exercise, default behavior or not.

In this exercise, you implement a selection of I/O protocols.

Step 2: Specify the 1/0O Protocol for Ports

1. Ensure that you can see the C source code in the Information pane.

2. Activate the Directives tab and select input inl, as shown in Figure 4-12.

High-Level Synthesis
UG871 (v2019.1) May 22, 2019

o l Send Feedback I 71
www.Xxilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=71

& XILINX.

[€ adders_io.c &
45
46
a7

56
57
58

Chapter 4: Interface Synthesis

= 8 |[&= Outline |14 Directive &3

='<5:5<='<<5:='<<5:5<='<5:5<='<<5:='<<5<5<='<5<5<='<<5<5<<5:5<='<5<5<='<<5<5<<5:5<='<‘5<='<<>'<5<<5:>'<='<‘5<='<<5<5<<5<5<='<<>'<='<<5<5<<5<5<5<<5<5<<5:5<<i/ - ® dd R
4 ® adders_io
#include "adders_io.h" 2 inl
. I = . = . - @ in2
void adders_io(f a5 ll, int in2, int *in_outl) {
@ in_outl

*in_putl = inl + in2 + *in_outl;

m

Figure 4-12: Adding Port I/O Protocols

3. Right-click and select Insert Directive.
4. When the Directives Editor opens leave the Directive drop-down menu as INTERFACE.
a. Leave the destination at the default value. This time, the directives are stored in the
directives.tcl file.
b. Select ap_vld from the mode drop-down menu
c. Click OK.
5. Select argument in2 and add an interface directive to specify the I/O protocol ap_ack.
6. Select argument in out1l and add an interface directive to specify the I/O protocol
ap_hs.
7. In the Explorer pane, expand the Constraints folder and double-click the
directives.tcl file to open it, as shown in Figure 4-13.
[25 Explorer & W =0 adders_io.c < directives.tel & =0
= adders_io_prj 1 ~
& Includes 2 ## This file is generated automatically by Vivado HLS.
= Source 3 ## Please DO NOT edit it.
-) 4 ## Copyright (C) 2014 Xilinx Inc. All rights reserved.
¢l adders_io.c G I S
fizi Test Bench 6 set directive interface -mode ap vld "adders io" inl
= solution1 7 set_directive_interface -mode ap_ack "adders_io" in2
constraints 8 set_directive_interface -mode ap_hs "adders_io" in_outl
& directives.tcl 9 |
4 scripticl
&= csim
= build
(= report i
4 P
Figure 4-13: Directives for Lab 2
8. Synthesize the design.
9. Review the Interface summary when the report file opens (Figure 4-14).
High-Level Synthesis 72

UGS871 (v2019.1) May 22, 2019

| Send Feedback I

www.Xxilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=72

2: X”_INX® Chapter 4: Interface Synthesis

[¢ adders_io.c |9 directives.tel |z adders_io_csynth.rpt i3 =0

- Summary
Dir Bits Protocol Source Object C Type
ap_clk in 1 ap_ctrl_hs adders_io return value
ap_rst in 1 ap_ctrl_hs adders_io return value
ap_start in 1 ap_ctrl_hs adders_io return value
ap_done out 1 ap_ctrl_hs adders_io return value
ap_idle out 1 ap_ctrl_hs adders_io return value
ap_ready out 1 ap_ctrl_hs adders_io return value
inl in 32 ap_vld inl scalar
inl_ap_vid in 1 ap_vld inl scalar
in2 in 32 ap_ack in2 scalar
in2_ap_ack out 1 ap_ack in2 scalar
in_outl_i in 32 ap_hs in_outl pointer
in_outl_i_ap_vid in 1 ap_hs in_outl pointer
in_outl_i_ap_ack out 1 ap_hs in_outl pointer =
in_outl_o out 32 ap_hs in_outl pointer
in_outl_o_ap_vid out 1 ap_hs in_outl pointer
in_outl_o_ap_ack in 1 ap_hs in_outl pointer

Figure 4-14: Interface Summary for Lab 2
« The design has a clock and reset.
« The default block-level I/O protocol signals are present.
« Portinlis implemented with a data port and an associated input valid signal.
« The data on port inl is only read when port inl_ap_vld is active-High.
+ Portin2isimplemented with a data port and an associated output acknowledge signal.
« Portin2_ap_ack will be active-High when data port in2 is read.

« The inout i identifies the input part of argument inoutl. This has associated input
valid port inoutl i ap v1ld and output acknowledge port inoutl i ap ack.

« The output part of argument inoutl is identified as inout_o. This has associated output
valid port inoutl o _ap_ vld and input acknowledge port inoutl_o_ap_ack.

10. Exit the Vivado HLS GUI and return to the command prompt.

Lab 3: Implementing Arrays as RTL Interfaces

Introduction

This exercise shows how array arguments on the top-level function interface can be
implemented as a number of different types of RTL port.

High-Level Synthesis N Send Feedback 73
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=73

(: X”_INX® Chapter 4: Interface Synthesis

Step 1: Create and Open the Project

1. From the Vivado HLS command prompt window used in the previous lab, change to the
lab3 directory.

2. Create a new Vivado HLS project by typing vivado hls -f run hls.tcl.
3. Open the Vivado HLS GUI project by typing vivado hls -p array_ io prj.

4. Open the source code (array io.c) as shown in Figure 4-15.

This design has an input array and an output array. The comments in the C source explain
how the data in the input array is ordered as channels and how the channels are
accumulated. To understand the design, you can also review the test bench and the input
and output data in file result.golden.dat.

[25 Explorer 22 = O [aray.io.c &3 =0
= array_io_prj 46 #include "array_io.h" -
[Includes
B Source 8// The data comes in organized in a single array.
- - // - The first sample for the first channel (CHAN)
[€] array_io.c

/{ - Then the first sample for the 2nd channel etc.
// The channels are accumulated independently

/{ E.g. For 8 channels:

#= Test Bench
= solution1

& constraints // Array Order : ® 1 2 3 4 5 6 7 8 9 10 etc. 16 etc...
4 directives.tcl // Sample Order: A®@ BO CO D@ EP FO GO Ho Al Bl Cc2 etc. A2 etc...
& scriptacl // Output Order: A@ B@ CO DO E@ FO GO HO AB+Al BO+B1 CO+(2 etc. AG+Al+A2 etc...

eem void array_io (dout_t d_o[N], din_t d_i[N]) {
& build int i, rem;
= report

// Store accumulated data
static dacc t acc[CHANNELST;

// Accumulate each channel
For_Loop: for (1=0;i<M;i++) {
rem=1%CHANNELS ;
acc[rem] = acc[rem] + d_i[i];
d_o[i] = acc[rem];

Figure 4-15: C Code for Interface Synthesis Lab 3

Step 2: Synthesize Array Function Arguments to RAM Ports
In this step, you review how array ports are synthesized to RAM ports.

1. Run C Synthesis button in the toolbar and review the Interface summary when the
report opens (Figure 4-16).

The interface summary shows how array arguments in the C source are by default
synthesized into RTL RAM ports.

« The design has a clock, reset, and the default block-level I/O protocol ap ctrl hs
(noted on the clock in the report).

+ The d_o argument has been synthesized to a RAM port (I/O protocol ap_memory).

High-Level Synthesis N Send Feedback 74
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=74

2: X”_INX® Chapter 4: Interface Synthesis

+ A data port (d_o_do).
« An address port (d_o address0).
« Control ports for a chip-enable (d_o _ce0) and a write-enable port (do_we0).

« The d_i argument has been synthesized to a similar RAM interface, but has an input
data port (d_i_g0) and no write-enable port because this interface only reads data.

In both cases, the data port is the width of the data values in the C source (16-bit integers
in this case) and the width of the address port has been automatically sized to match the
number of addresses that must be accessed (5-bit for 32 addresses).

=l array_io_csynth.rpt &3 =g

1 i -~

- Summary
Dir = Bits Protocol Source Object C Type
ap_clk in 1 ap_ctrl_hs array_io return value
ap_rst in 1 ap_ctrl_hs array_io return value
ap_start in 1 ap_ctrl_hs array_io return value
ap_done out 1 ap_ctrl_hs array_io return value
ap_idle out 1 ap_ctrl_hs array_io return value
ap_ready out 1 ap_ctrl_hs array_io return value
d_o_address0 out 5 ap_memory do array
d_o_cel out 1 ap_memory do array
d_o_wel out 1 ap_memory do array
d_o_d0 out 16 ap_memory do array
d_i_address0 out 5 ap_memory d_i array =
d_i_cel out 1 ap_memory d_i array
d_i_g0 in 16 ap_memory d_i array

< 1 3

Figure 4-16: Interface Summary for Initial Lab 3 Design

Synthesizing array arguments to RAM ports is the default. You can control how these ports
are implemented using a number of other options. The remaining steps in Lab 3
demonstrate these options:

¢ Using a single-port or dual-port RAM interface.
« Using FIFO interfaces.

« Partitioning into discrete ports.

Step 3: Using Dual-Port RAM and FIFO Interfaces

High-Level Synthesis allows you to specify a RAM interface as a single-port or dual-port. If
you do not make such a selection, Vivado HLS automatically analyzes the design and selects
the number of ports to maximize the data rate.

High-Level Synthesis N Send Feedback 75
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=75

2: X”_INX® Chapter 4: Interface Synthesis

Step 2 used a single-port RAM interface because the for-loop in the source code is by
default left rolled: each iteration of the loop is executed in turn:

* Read the input port.

« Read the accumulated result from the internal RAM.

« Sum the accumulated and new data and write into the internal RAM.
» Write the result to the output port.

+ Repeat for the next iteration of the loop.

This ensures only a single input read and output write is ever required. Even if multiple input
and outputs are made available, the internal logic cannot take advantage of any additional
ports.

Note: If you specify a dual-port RAM and Vivado HLS can determine only a single port is required,
it uses a single-port and over-ride the dual-port specification.

In this design, if you want to implement an array argument using multiple RTL ports, the
first thing you must do is unroll the for-loop and allow all internal operations to happen in
parallel, otherwise there is no benefit in multiple ports: the rolled for-loop ensure only one
data sample can be read (or written) at a time.

Select New Solution from the toolbar or Project menu to create a new solution.
Accept the defaults, and click Finish.

Ensure the C source code is visible in the Information pane.

W N

In the Directive tab select For_Loop, and right-click and select Insert Directive to open
the Directives Editor dialog box.

a. Inthe Directives Editor dialog box activate the Directive drop-down menu at the top
and select UNROLL.

b. With the Directives Editor as shown in Figure 4-17, click OK.

High-Level Synthesis N Send Feedback 76
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=76

2: X”_INX® Chapter 4: Interface Synthesis

Vivado HLS Directive Editor

Directive

UNROLL v

Destination
Source File
@) Directive File

Options
skip_exit_check (optional):

factor (optional):

region (optional):

Help | | Cancel | [Ok l

Figure 4-17: Directives Editor to Unroll For_Loop

5. Next, specify a dual-port RAM for input reads. The Resource directive indicates the type
of RAM connected to an interface.

a. Inthe Directive tab, select port d_i and right-click and select Insert Directive to open
the Directives Editor dialog box.

b. In the Directives Editor activate the Directive drop-down menu at the top and select
RESOURCE.

c. Click the core box and select RAM_2P_BRAM.

d. Verify that the settings in the Directives Editor dialog box are as shown in
Figure 4-18 and click OK.

High-Level Synthesis N Send Feedback 77
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=77

& XILINX.

¢ Vivado HLS Core Selection O X

Filter
Core Type: | storage v

Options
Memeory Type: | RAM v
Mumber of Ports: | 2P v

Resource Type: | ALL v

RAM_2P
RAM_2P_LUTRAM
RAM_2P_URAM

Dual-port RAM (RO RW) using 'Block RAM'

6. Implement the output port using a FIFO interface.

Chapter 4: Interface Synthesis

Figure 4-18: Directives Editor for Specifying a Dual-port RAM

a. Inthe Directive tab, select port d_o and right-click and select Insert Directive to open
the Directives Editor dialog box.

b. In the Directives Editor, ensure the directive is Interface.

c. From the Mode drop-down menu, select ap_fifo.

d. Click OK.

The Directive tab shows the directives now applied to the design (Figure 4-19).

o= Qutline |4 Directive &2

4| @ array_io
2 do
9 HLS INTERFACE ap_fifo port=d_o
@ dli
9 HLS RESOURCE variable=d_i core=RAM_2P_BRAM
=1 acc
4 %" For_Loop

% HLS UNROLL

Figure 4-19:

Directives Summary for Lab 2 Solution

7. Run C Synthesis from the toolbar to synthesize the design.

High-Level Synthesis
UG871 (v2019.1) May 22, 2019

www.Xxilinx.com

| Send Feedback I 78

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=78

2: X”_INX® Chapter 4: Interface Synthesis

When the report opens in the Information pane, the Interface summary is as shown in
Figure 4-20.
« The design has the standard clock, reset, and block-level I/O ports.

« Array argument d_o has been implemented as a FIFO interface with a 16-bit data port
(d_o_din) and associated output write (d_o write) and input FIFO full
(d_o full n) ports.

« Argument d_i has been implemented as a dual-port RAM interface.

£l array_io_csynth.rpt i3 =" 1m|
Interface -
- Summary
RTL Ports Dir Bits Protocol Source Object C Type

ap_clk in p ap_ctrl_hs array_io return value
ap_rst in | ap_ctrl_hs array_io return value
ap_start in i ap_ctri_hs array_io return value
ap_done out 1 ap_ctrl_hs array_io return value
ap_idle out 1 ap_ctrl_hs array_io return value
ap_ready out T ap_ctrl_hs array_io return value
d_o_din out 16 ap_fifo do pointer
d_o_full_n in 1 ap_fifo do pointer
d_o_write out j ap_fifo do pointer
d_i_address0 out 5 ap_memory di array
d_i_cel out 1 ap_memory di array

d_i_g0 in 16 ap_memory d.i array =
d_i_address1 out 5 ap_memory di array
d_i_cel out 1 ap_memory d.i array
diqgl in 16 ap_memory d.i array

Figure 4-20: Dual-Port BRAM and FIFO Interfaces

By using a dual-port RAM interface, this design can accept input data at twice the rate of
the previous design. Because the for-loop was unrolled, the logic in the loop is able to
consume data at this rate. By default, each loop iteration is executed in turn. This
implementation code limits the logic to one read on d_1i in each iteration. Unrolling the
loops allows more reads to be performed (but creates N copies of the logic). However, by
using a single-port FIFO interface on the output the output data rate is the same as before.

Step 4: Partitioned RAM and FIFO Array interfaces
In this step, you learn how to partition an array interface into any arbitrary number of ports.

1. Select New Solution from the toolbar or the Project menu and create a new solution.

2. Accept the defaults, and click Finish. This includes copying existing directives from
solution2.

3. Ensure the C source code is visible in the Information pane.

High-Level Synthesis N Send Feedback 79
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=79

2: X”_INX® Chapter 4: Interface Synthesis

4. In the Directive tab, select d_o and right-click and select Insert Directive to open the
Directive Editor dialog box.

a. Inthe Directives Editor dialog box activate the Directive drop-down menu at the top
and select ARRAY_PARTITION.

b. Activate the type drop down to partition the array into blocks. Set type to block.
c. Inthe Vivado HLS Directive Editor dialog box, set the factor (optional) to 4.
d. With the Vivado HLS Directive Editor as shown in Figure 4-21, click OK.

Vivado HLS Directive Editor

Directive

ARRAY_PARTITION v

Destination
Source File

@) Directive File

Options

variable (required): do

type (optional): block hd

factor (optional): 4

dimension (optional): 1

| Help | | Cancel | [(]9 l

Figure 4-21: Directives Editor for Partitioning Array d_o

Now, partition the input array into two blocks (not four).

5. In the Directive tab, select d_i and repeat the previous step, but this time partition the
port with a factor of 2.

The directives tab shows the directives now applied to the design (Figure 4-22).

High-Level Synthesis N Send Feedback 80
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=80

(: X”_INX® Chapter 4: Interface Synthesis

o= Qutline |4 Directive &2 i

4 @ array_io
2 do
9 HLS ARRAY_PARTITION partition variable=d_o block factor=4 dim=
9 HLS INTERFACE ap_fifo port=d_o
@ dli
9% HLS ARRAY_PARTITION variable=d_i block factor=2 dim=1
9 HLS RESOURCE variable=d_i core=RAM_2P_BRAM
®[1 acc
4% For_Loop
9 HLS UNROLL
« 111 »

Figure 4-22: Directives Summary for Lab 2 Solution3

6. Run C Synthesis from the toolbar to synthesize the design.

When the report opens in the Information pane, the Interface summary is as shown in
Figure 4-23.

« The design has the standard clock, reset, and block-level I/O ports.

« Array argument d_o has been implemented as a four separate FIFO interfaces.

« Argument d_i has been implemented as two separate RAM interfaces, each of which
uses a dual-port interface. (If you see four separate RAM interfaces, confirm a partition
factor for d_1i is two and not four).

High-Level Synthesis N Send Feedback 81
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=81

(: X”_INX® Chapter 4: Interface Synthesis

=l array_io_csynth.rpt i3 =8
Interface i
- Summary
RTL Ports Dir Bits Protocol Source Object C Type

ap_clk in 1 ap_ctrl_hs array_io return value
ap_rst in 1 ap_ctrl_hs array_io return value
ap_start in 1 ap_ctrl_hs array_io return value
ap_done out 1 ap_ctrl_hs array_io return value
ap_idle out 1 ap_ctrl_hs array_io return value
ap_ready out 1 ap_ctrl_hs array_io return value
d_o_0_din out 16 ap_fifo do0 pointer
d_o_0_full_n in 1 ap_fifo do0 pointer
d_o_0_write out 1 ap_fifo do0 pointer
d_o_1_din out 16 ap_fifo dol pointer
d_o_1_full_n in 1 ap_fifo dol pointer
d_o_1_write out 1 ap_fifo dol pointer
d_o_2_din out 16 ap_fifo do?2 pointer
d_o_2_full_n in 1 ap_fifo do?2 pointer
d_o_2_write out 1 ap_fifo do?2 pointer
d_o_3_din out 16 ap_fifo do 3 pointer
d_o_3_full_n in 1 ap_fifo do 3 pointer
d_o_3_write out 1 ap_fifo do 3 pointer
d_i_0_address0 out 4 ap_memory d.i0 array
d_i_0_cel out 1 ap_memory d.i0 array
d_i_0_ gl in 16 ap_memory d.i0 array
d_i_0_addressl out 4 ap_memory d.i0 array

d_i_0_cel out 1 ap_memory d.i0 array =
d_i0qgl in 16 ap_memory d.i0 array
d_i_1_address0 out 4 ap_memory dlil array
d_i_1l_cel out 1 ap_memory dlil array
d_i_l gl in 16 ap_memory dlil array
d_i_1_addressl out 4 ap_memory dlil array
dli_lcel out 1 ap_memory dlil array
dilaqgl in 16 ap_memory dlil array

Figure 4-23: Interface Report for Partitioned Interfaces

If input port d_1i was partitioned into four, only a single-port RAM interface would be

required for each port. Because the output port can only output four values at once, there

would be no benefit in reading eight inputs at once.

The final step in this tutorial is to partition the arrays completely.

Step 5: Fully Partitioned Array Interfaces
This step shows you how to partition an array interface into individual ports.

1. Select New Solution from the toolbar and create a new solution.

High-Level Synthesis N Send Feedback
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

82

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=82

(: X”_INX® Chapter 4: Interface Synthesis

2. Click Finish and accept the defaults. This includes copying existing directives from
solution3.

3. Ensure the C source code is visible in the Information pane.

4. In the Directive tab, select the existing partition directive for d_o as shown in
Figure 4-24.

5. Right-click and select Modify Directive.

8= Outline | Directive £ - O

4 @ array_io
2 do
%, HLS ARRAY PARTITION variable=d_o complete factor=4 dim=1

0| # Modify Directive do
2 ¥ Remove Directive

% HLS ARRAY_PARTITION partition variable=d_i complete dim=1
% HLS RESOURCE variable=d_i core=RAM_2P_BRAM
=1 acc
4 %" For_Loop
% HLS UNROLL

Figure 4-24: Modifying the Directive for d_o
6. In the Vivado HLS Directive Editor dialog box:

a. Inthe Vivado HLS Directive Editor dialog box, delete the value 4. Since this array will
be completely partitioned into registers, the partitioning factor is no longer relevant.
(If you leave it there, it will be ignored).

b. Activate the type (optional) drop down and modify the partitioning type to
complete.

c. With the Directives Editor as shown in Figure 4-25, click OK.

High-Level Synthesis N Send Feedback 83
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=83

(: X”_INX® Chapter 4: Interface Synthesis

Vivado HLS Directive Editor

Directive

ARRAY_PARTITION v

Destination
() Source File
(@) Directive File

Options
variable (required): do
type (optional): complete hd

factor (optional):

dimension (optional): 1

l Help] l Cancel] [(0]4 l

Figure 4-25: Directives Editor for Partitioning Array d_o

7. Inthe Directive tab, select d_ i and repeat the previous step to completely partition the
d 1 array.

8. In the Directive tab, select the RESOURCE directive on d_1i, right-click with the mouse
and select Remove Directive. If the array is partitioned into individual elements, it
cannot be assigned to a block RAM.

The Directives tab shows the directives now applied to the design (Figure 4-26).

High-Level Synthesis N Send Feedback 84
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=84

2: X”_INX® Chapter 4: Interface Synthesis

2= Qutline | (4 Directive &2 « =8

4| @ array_io
® do
% HLS INTERFACE ap_fifo port=d_o
% HLS ARRAY_PARTITION variable=d_o complete dim=1
® di
% HLS ARRAY_PARTITION variable=d_i complete dim=1
®[1 acc
® temp
4 %" For_Loop
% HLS UNROLL

Figure 4-26: Directives Summary for Lab 2 Solution4
9. Run C Synthesis from the toolbar to synthesize the design.

10. When the report opens in the Information pane, review the interface summary. Note the
following:

« The design has the standard clock, reset, and block-level I/O ports.
« Array argument d_o has been implemented as 32 separate FIFO interfaces.

« Argument d_1i has been implemented as 32 separate scalar ports. Because the default
interface for input scalars is not in the I/O protocol, they have the I/O protocol
ap_none.

Although this tutorial has focused exclusively on the I/O interfaces, at this point it is worth
examining the differences in performance across all four solutions.

11. Select Compare Reports from the toolbar or the Project menu to open a comparison of
the solutions.

12.In the Solution Selection dialog box, add each of the four solutions to the Selected
Solutions pane (Figure 4-27).

13. Click OK.

High-Level Synthesis N Send Feedback 85
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=85

8 X”_INX® Chapter 4: Interface Synthesis

u iSqution Selection Dialog @
Solution Selection
Please select the solutions you want to compare
Available solutions: Selected solutions:
solutionl
Add> > solution2
<<Remove solution3
solutiond
[Ok l l Cancel]

Figure 4-27: Compare All Solutions for Lab 3

When the solutions comparison report opens (Figure 4-28), it shows that solution4, using a
unique port for each array element, is much faster than the previous solutions. The internal
logic can access the data as soon as it is required. (There is no performance bottleneck due
to port accesses.)

Performance Estimates

= Timing (ns)
Clock solutienl | solution2 | solution3 | solutiond
ap_clk | Target 4.00 4.00 4.00 4.00

Estimated | 2.602 3150 3.363 3.363
-] Latency (clock cycles)

solutienl | solution2 | solution3 | solutiond

Latency | min | €3 33 10 1

max | 63 33 10 1
Interval | min | 63 33 10 1

max | 63 33 10 1

Figure 4-28: Performance Comparisons for All Lab 3 Solutions

Scroll further down the comparison report (Figure 4-29) and note that solutions with more
I[/O ports (solutions 2, 3, and 4), allows more parallel processing, but also use considerably
more resources.

High-Level Synthesis N Send Feedback 86
UG871 (v2019.1) May 22, 2019 www.xilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=86

& XILINX.

Utilization Estimates

Chapter 4: Interface Synthesis

solution? | solution2 | solution3 | solutiond
BRAM_1BK | D]]]
DSP48E]]]]
FF 28 1202 EE) 642
LuT 137 2125 2083 1945
URAM]]]]

Figure 4-29: Resource Comparisons for All Lab 3 Solutions

In the next exercise, you implement this same design with an optimum balance between the
ports and resources. In addition to this more optimal implementation, the next exercise
shows how to add AXI4 interfaces to the design.

14. Exit the Vivado HLS GUI and return to the command prompt.

Lab 4: Implementing AXI4 Interfaces

Introduction

This exercise explains how to specify AXI4 bus interfaces for the I/O ports. In addition to
adding AXI4 interfaces this exercise also shows how to create an optimal design by using
interface and logic directives together.

Step 1: Create and Open the Project

1.

From the Vivado HLS command prompt window used in the previous lab, change to the

lab4 directory.

Create a new Vivado HLS project by typing vivado _hls -f run hls.tcl.

Open the Vivado HLS GUI project by typing vivado hls -p axi interfaces prj.

Open the source code as shown in Figure 4-30.

High-Level Synthesis
UG871 (v2019.1) May 22, 2019

www.Xxilinx.com

l Send Feedback I 87

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=87

(: X”_INX® Chapter 4: Interface Synthesis

le| axi_interfaces.c & =0
46 #include "axi_interfaces.h" -
47

48 // The data comes in organized in a single array.

49 // - The first sample for the first channel (CHAN)

50 // - Then the first sample for the 2nd channel etc.

51// The channels are accumulated independently

52// E.g. For 8 channels:

53// Array Order : @ 1 2 3 4 5 6 7 8 9 10 etc. 16 etc...

54 // Sample Order: A® BO CO DO EO FO GO He Al Bl c2 etc. A2 etc...

55// Output Order: A® B@ CO DO EO FO GO HO A@+Al BO+Bl CO+(2 etc. AO+A1+A2 etc...
56

57void axi_interfaces (dout_t d_o[N], din_t d_i[N]) {

58 int i, rem;

59

60 // Store accumulated data

61 static dacc_t acc[CHANNELS];

62

63 // Accumulate each channel =
64 For_Loop: for (i=@;i<M;i++) {

65 rem=i%CHANNELS;

66 acc[rem] = acc[rem] + d_i[i];

67 d_o[i] = acc[rem];

68 }

69}

70 s

Figure 4-30: Source Code for Lab 4

This design uses similar source C code as Lab 3: with the design renamed to
axi interfaces.

Step 2: Create an Optimal Design with AXI4-Stream Interfaces

To reach optimal performance implementation of this design, the data for each channel is
processed in parallel, with dedicated hardware for each channel.

The key to understanding how best to perform this optimization is to recognize that the
channels in the input and output arrays lend themselves to cyclic partitioning. Cyclic
partitioning is fully explained in the Vivado Design Suite User Guide: High-Level Synthesis
(UG902) [Ref 2], but basically means each array element is, in turn, sorted into a different
partition.

In this exercise, you specify the array arguments to be implemented as AXI4-Stream
interfaces. If the arrays are partitioned into channels, you can stream the samples for each
channel through the design in parallel.

Finally, if the I/O ports are configured to supply and consume individual streams of channel
data, partial unrolling of the for-loop can ensure dedicated hardware processes each
channel.

First, partition the arrays:

1. Ensure the C source code is visible in the Information pane.

High-Level Synthesis N Send Feedback 88
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=88

2: X”_INX® Chapter 4: Interface Synthesis

2. In the Directive tab, select d_o and right-click and select Insert Directive to open the
type dialog box.

a. Select the Directive drop-down menu at the top and select ARRAY_PARTITION.
b. Click the type (optional) drop-down menu to specify cyclic partitioning.

c. In the factor (optional) box, enter the value 8, to create eight separate partitions.
(This results in eight ports.)

d. With the Directives Editor dialog box filled in as shown in Figure 4-31, click OK.

Vivado HLS Directive Editor

Directive

ARRAY_PARTITION v

Destination
Source File
@) Directive File

Options

variable (required): do

type (optional): cyclic hd
factor (optional): 8

dimension (optional): 1

| Help | | Cancel | [(0]4 l

Figure 4-31: Directives Editor for Cyclic Partitioning

3. Inthe Directive tab, select d_o again and right-click and select Insert Directive to open
the Insert Directives Editor dialog box.

a. Activate the Directive drop-down menu at the top and select INTERFACE.
b. Click the Mode drop-down menu to specify an axis interface.
c. Click OK.

4. In the Directive tab, select d_i and repeat steps 2 and 3 above.

a. Apply ARRAY_PARTITION.

High-Level Synthesis N Send Feedback 89
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=89

2: X”_INX® Chapter 4: Interface Synthesis

b.
C.

d.

Apply Cyclic with a factor of 8.
Apply Interface.

Apply an axis interface.

5. Next, partially unroll and pipeline the for-loop:

a.

d.

e.

In the Directive tab, select For_Loop and right-click and select Insert Directive to
open Vivado HLS Directive Editor dialog box.

Select the Directive drop-down menu at the top and select UNROLL.

Select a factor of 8 to partially unroll the for-loop. This is equivalent to re-writing the
C code to execute eight copies of the loop-body in each iteration of the loop (where
the new loop only executes for four iterations in total, not 32).

Click OK.

In the Directive tab, select For_Loop again and right-click and select Insert
Directive to open Vivado HLS Directive Editor dialog box.

Activate the Directive drop-down menu at the top and select PIPELINE. Leave the
interval (II) blank and let it default to 1.

Select enable loop rewinding.

Click OK.

When the top-level of the design is a loop, you can use the pipeline rewind option. This
informs Vivado HLS that when implemented in RTL, this loop runs continuously (with no
end of function and function re-start cycles).

After performing the above steps, the Directives tab should be as shown in Figure 4-32. Be
sure to check all options are correctly applied. If not, double-click the directive to re-open
the Directives Editor.

High-Level Synthesis N Send Feedback 90
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=90

2: X”_INX® Chapter 4: Interface Synthesis

&= Outline | Directive 2 - O

@ axi_interfaces
2 do
% HLS INTERFACE axis port=d_o
% HLS ARRAY_PARTITION partition variable=d_o cyclic factor=8 dim=1
@ dli
% HLS INTERFACE axis port=d_i
% HLS ARRAY_PARTITION partition variable=d_i cyclic factor=8 dim=1
®[1 acc
%" For_Loop
% HLS UNROLL factor=8
% HLS PIPELINE rewind

Figure 4-32: Directives Tab for Lab 4 Solutionl

6. Run C Synthesis from the toolbar.

When the report opens in the information pane, confirm both d_i and d_o are implemented
as eight separate AXI4-Stream ports.

7. In the performance section of the report, confirm that the for-loop processes one
sample every clock cycle (Initiation Interval 1) with a latency of 4, and that the design
has less area than solutions 2, 3, or 4 in Lab 3 (Figure 4-29).

Cyclic partitioning of the array interfaces and partial for-loop unrolling has allowed
implementation of this C code as eight separate channels in the hardware.

Pipelining the for-loop allows the logic in each channel to process 1 sample per clock.
Varying the partitioning and loop unrolling allows you to create a design which is the
optimal balance of area and performance to satisfy your particular requirements.

Step 3: Implementing an AXI4-Lite Interfaces

In this exercise, you group block-level I/O protocol ports into a single AXI4-Lite interface,
which allows these block-level control signals to be controlled and accessed from a CPU.

1. Select New Solution from the toolbar or the Project menu to create a new solution.

2. Accept the defaults and click Finish. This includes copying existing directives from
solutionl.

3. Ensure the C source code is visible in the Information pane.

4. In the Directive tab, select the top-level function axi_interfaces and right-click and
select Insert Directive to open the Insert Directives Editor dialog box.

a. Select the Directive drop-down menu at the top and select INTERFACE.

High-Level Synthesis N Send Feedback 91
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=91

2: X”_INX® Chapter 4: Interface Synthesis

b. Select the mode drop-down menu and select s_axilite. This specifies that the ports
associated with the function return (the block-level I/O ports) are implemented as an
AXI4-Lite interface. Since the default mode for the function return is ap_ctrl_hs, there
is no requirement to specify this I/O protocol.

c. Click OK.

The Directives tab appears, as shown in Figure 4-33.

o= Qutline |4 Directive &2 i

419 axi interfaces
% HLS INTERFACE s_axilite port=return
2 do
% HLS INTERFACE axis port=d_o
% HLS ARRAY_PARTITION partition variable=d_o cyclic factor=8 dim=1
@ dli
% HLS INTERFACE axis port=d_i
% HLS ARRAY_PARTITION partition variable=d_i cyclic factor=8 dim=1
®[1 acc
4 %" For_Loop
% HLS UNROLL factor=8
% HLS PIPELINE rewind

Figure 4-33: Directives for Specifying AXI4-Lite Interfaces

5. Run C Synthesis from the toolbar.

When the report opens, review the interface summary to confirm the block-level I/O
protocol ports (ap_start, ap done, etc.) have been replaced with an AXI4Lite interface
and that the output interrupt signal has been added to the design. The source of the
interrupt can be selected through the AXI-Lite interface.

6. Select Export RTL from the toolbar or the Solution menu to create an IP package.

7. Leave the Format Selection as IP Catalog and click OK.

You can see the IP package in the solution2/impl folder. Because you used the Vivado
IP Catalog format, the package is in the ip folder.

The ip folder includes the drivers subfolder, as shown in Figure 4-34.

When you add an AXI4-Lite interface to the design, the IP packaging process also creates
software driver files to enable an external block, typically a CPU, to control this block (start
it, stop it, set port values, review the interrupt status).

High-Level Synthesis N Send Feedback 92
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=92

& XILINX.

L Explorer &2

v = axi_interfaces_prj
[Includes
= Source
fi= Test Bench
(3 solutionl
v = solution2
& constraints
v = impl
v [=ip
=| autoimpl.log
=| auxiliary.xml

= axi_interfaces_info.xml

=| componentxml
[E] pack.bat

“ff run_ippack.tcl
Thy . -

g vivado,jou

=| vivado.log

Chapter 4: Interface Synthesis

= g

xilinx_com_hls_axi_interfaces_1_0.zip

& constraints
(= bd
[= doc

v (= drivers

v (= axi_interfaces_v1_0

= data
v [src

Makefile

\g| xaxi_interfaces_hw.h

\g| xaxi_interfaces_linux.c
\.g| xaxi_interfaces_sinit.c
\.g| xaxi_interfaces.c

\g| xaxi_interfaces.h

Figure 4-34:

(= example
(= hdl
&= misc
= subcore
(= xgui

&= misc

(= verilog

(= vhdl

[= syn

IP Package with AXI4 Interfaces

8. Double-click the xaxi interfaces hw.h file to open it in the Information pane.

This shows the addresses to access and control the block-level interface signals. For
example, setting control register 0x0 bit 0 to the value 1 will enable the ap_start port, or
alternatively, setting bit 7 will enable the auto-restart and the design will re-start
automatically at the end of each transaction.

The remaining C driver files are used to integrate control of the AXI4 Slave Lite interface
into the code running on a CPU or microcontroller and are included in the packaged IP.

High-Level Synthesis
UG871 (v2019.1) May 22, 2019

www.Xxilinx.com

l Send Feedback I 3

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=93

& XILINX.

18//

Chapter 4: Interface Synthesis

// Vivado(TM) HLS - High-Level Synthesis from C, C++ and SystemC v2819.1 (64-bit)
3 // Copyright 1986-2019 Xilinx, Inc. ALl Rights Reserved.

/)
//f AXILiteS

// @x@ : Control signals

2 bit @ - ap_start (Read/Write/COH)

I bit 1 - ap_done (Read/COR)

Iz bit 2 - ap_idle (Read)

I bit 3 - ap_ready (Read)

I bit 7 - aute_restart (Read/Write)

I others - reserved

// ex4 : Global Interrupt Enable Register

i bit @ - Global Interrupt Enable (Read/Write)
I others - reserved

// @x8 : IP Interrupt Enable Register (Read/Write)

I bit @ - Channel @ (ap_done)

I bit 1 - Channel 1 (ap_ready)

1 others - reserved

// @xc : IP Interrupt Status Register (Read/TOW)

I bit @ - Channel @ (ap_done)

I bit 1 - Channel 1 (ap_ready)

1 others - reserved

// (SC = Self Clear, COR = Clear on Read, TOW = Toggle on Write, COH = Clear on Handshake)

#define XAXI_INTERFACES_AXILITES_ADDR_AP_CTRL Bx@
#define XAXI_INTERFACES AXILITES_ADDR_GIE @xd
#define XAXI_INTERFACES_AXILITES_ADDR_IER exs
#define XAXI_INTERFACES AXILITES_ADDR_ISR Bxc

r[\jExplorer 3 w = B | [H *xaxiinterfaces hwh 5
v (25 axi_interfaces_prj
[rl! Includes z
= Source 4
fl Test Bench 5
(3 solutionl 6
v = solution? 7
@ constraints g
v = impl 18
v [=ip 11
= auteimpllog 12
wxiliaryml 13
wi_interfaces_infoaml E
|2 componentaml 16
pack.bat 17
4 run_ippacktcl 18
U vivado,jou 19
5| vivado.log if
& xilime_com_hls_axi_interfaces_1_0.zip 33
@ constraints 23
(= bd 24
(= doc 25
v [drivers 26
v [axi_interfaces_v1_0 ;;
(= data 20
v [sic 38
1 31
| @ Makefile >

€] xaxi_interfaces_hw.h
€] xaxi_interfaces_linuec

Figure 4-35:

IP Software Driver Files

Conclusion

In this tutorial, you learned:

« What block-level I/O protocols are and how to control them.

« How to specify and apply port-level I/O protocols.

« How to specify array ports as RAM and FIFO interfaces.

« How to partition RAM and FIFO interfaces into sub-ports.

+ How to use both I/O directives and optimization directives to create an optimal design

with AXI4 interfaces.

High-Level Synthesis
UG871 (v2019.1) May 22, 2019

www.Xxilinx.com

| Send Feedback I

94

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=94

& XILINX

Chapter 5

Arbitrary Precision Types

Overview

C/C++ provided data types are fixed to 8-bit boundaries:

« char (8-bit)

« short (16-bit)

« int (32-bit)

« long long (64-bit)
« float (32-bit)

« double (64-bit)

« Exact width integer types such as intl6_t (16-bit) and int32_t (32-bit)

When creating hardware, it is often the case that more accurate bits-widths are required.
Consider, for example, a case in which the input to a filter is 12-bit and the accumulation of
the results only requires a maximum range of 27 bits. Using standard C data types for
hardware design results in unnecessary hardware costs. Operations can use more LUTs and

registers than needed for the required accuracy, and delays might even exceed the clock
cycle, requiring more cycles to compute the result.

Vivado High-Level Synthesis (HLS) provides a number of bit accurate or arbitrary precision
data-types, allowing you to model variables using any (arbitrary) width.

This tutorial consists of a two lab exercises:

Lab 1 Description

Synthesize a design using floating-point types and review the results. The design uses
standard C++ floating-point types.

Lab 2 Description

Synthesize the same function used in Lab 1 using arbitrary precision fixed-types
highlighting the benefits in accuracy and results. This exercise shows how this same design

High-Level Synthesis N Send Feedback 95
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=95

(: XI LI NX® Chapter 5: Arbitrary Precision Types

can be converted to the Vivado HLS ap_fixed types, retaining the required accuracy but
creating a more optimal hardware implementation.

Tutorial Design Description

Download the tutorial design file from the Xilinx website. See the information in Locating
the Tutorial Design Files.

This tutorial uses the design files in the tutorial directory
Vivado HLS TutoriallArbitary Precision.

Lab 1: Arbitrary Precision

Arbitrary Precision Lab 1: Review a Design using Standard C/C++ types.

In this lab, you synthesize a design using standard C types. You use this design as a
reference for the design using arbitrary precision types, which is the basis for Lab 2.

i? IMPORTANT: The figures and commands in this tutorial assume the tutorial data directory
Vivado_HLS_Tutorial is unzipped and placed in the location C:\Vivado_HLS_Tutorial. If the tutorial data
directory is unzipped to a different location, or on Linux systems, adjust the few pathnames referenced,
to the location you have chosen to place the Vivado_HLS_Tutorial directory.

Step 1: Create and Open the Project

1. Open the Vivado HLS Command Prompt.

a. On Windows use Start > All Programs > Xilinx Design Tools > Vivado 2019.1 >
Vivado HLS > Vivado HLS 2019.1 Command Prompt.

b. On Linux, open a new shell.In the command prompt window (Figure 5-1), change the
directory to the Arbitrary Precision tutorial, labl.

2. Execute the Tcl script to setup the Vivado HLS project, using the command as shown in
Figure 5-1:

vivado hls -f run hls.tcl

High-Level Synthesis N Send Feedback 96
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=96

(: XI LI NX® Chapter 5: Arbitrary Precision Types

C:\VUivado_HLS_Tutorial>cd Arbitrary_Precision

C:\VUivado_HLS_Tutorial\Arbitrary_Precision>cd labl

A ([111

C:\Uivado_HLS_Tutorial\Arbitrary_Precision\labl>vivado_hls -f run_hls.tcl

Figure 5-1: Setup the Tutorial Project

3. When Vivado HLS completes, open the project in the Vivado HLS GUI using the
command vivado_hls -p window_fn prj as shown in Figure 5-2.

hw_result 38.24289 sW_result 38.24289 -
hw_result 32.00000 sW_result 32.00000
hw_result 25.75711 sW_result 25.75711
hw_result 19.75413 sW_result 19.75413
hw_result 14.22175 sW_result 14.22175
hw_result 9.37258 sW_result 9.37258
hw_result 5.39297 sW_result 5.39297
hw_result 2.43585 sW_result 2.43585
hw_result 0.61487 sW_result 0.61487

H: H: H: H: H- H- H. H H

Test Passed
@I [SIM-1] CSim done with O errors.
@I [LIC-101] Checked in feature [HLS]

A ([111

C:\Uivado_HLS_Tutorial\Arbitrary_Precision\lab1>vivado_hls -

Figure 5-2: Initial Project for Arbitrary Precision Lab1l

Step 2: Review Test Bench and Run C Simulation

1. Open the Source folder in the Explorer pane and double-click window fn top.cpp to
open the code as shown in Figure 5-3.

[t5 Explorer &2 = 8| ¢ window_fn_top.cpp i3 =8
4 125 window_fn_prj
! Includes
4 = Source
Ll window_fn_top.cpp
= Test Bench
= solution1

| %

4 % constraints

4 directives.tcl

4 scripttcl 54void window_fn_top(
4 = csim 55 win_fn_out t outdata[WIN_LEN], =
. : 56 win_fn_in_t indata[WIN_LEN])
= build 57
& report 58 // Instantiate a window_fn object - types and params define: _

Figure 5-3: C Code for Arbitrary Precision Types Lab 1

2. Hold down the Control key and click the window fn top.h on line 45 to open this
header file.

High-Level Synthesis N Send Feedback 97
UG871 (v2019.1) May 22, 2019 www.xilinx.com L\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=97

& XILINX.

Chapter 5: Arbitrary Precision Types

3. Scroll down to view the type definitions (Figure 5-4).

€] window_fn_top.cpp T window_fn_top.h &2 =08

587/ Test parameters n
51 #define FLOAT_DATA // Used to select error tolerance in test pi
52 #define WIN_TYPE xhls_window_fn: :HANN

53 #define WIN_LEN 32

54

55// Define floating point types for input, output and window cos
56 typedef float win_fn_in_t;

57 typedef float win_fn_out_t;

58 typedef float win_fn_coef_t;

59

60 // Top level function prototype - wraps all object, method and
1void window_fn_top(win_fn_out_t outdata[WIN_LEN], win_fn_in_t :

e
(s}

m

#endif // WINDOW FN_TOP H_

oo

FEN VR N

< 1 3

Figure 5-4: Types Definition for Arbitrary Precision Types Lab 1

This design uses standard C/C++ floating-point types for all data operations. Vivado
High-Level Synthesis can synthesize floating-point types directly into hardware, provided
the operations are standard arithmetic operations (+, -, *, %).

When using math functions from math.h or cmath.h, see the Vivado Design Suite User
Guide: High-Level Synthesis (UG902) [Ref 2] for details on which math functions are
supported for synthesis.

4. Click the Run C Simulation toolbar button to open the C Simulation Dialog box.

5. Accept the default setting (no options selected) and click OK.

The Console pane shows that the design simulates with the expected results.

Step 3: Synthesize the Design and Review Results

1. Click the Run C Synthesis toolbar button to synthesize the design to RTL.

When synthesis completes, the synthesis report opens automatically. Figure 5-5 shows the

synthesis report.

High-Level Synthesis

. l Send Feedback I 98
UG871 (v2019.1) May 22, 2019 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=98

8 X”_INX® Chapter 5: Arbitrary Precision Types

Performance Estimates
= Timing (ns)
= Summary
Clock | Target | Estimated | Uncertainty
ap_clk 5.00 4,084 0.63

= Latency (clock cycles)

= Summary

Latency Interval

min max | min | max | Type
161 161 161 161 | none

= Detail
Instance

Loop

Utilization Estimates

= Summary

Mame BRAM_12K | DSP43E FF LUT URAM
Dsp - - - = -
Expression 2 L 0 26 :
FIFQ - - - = -
Instance 2 3 143 78 :
Memory 1 - 0 0 -
Multiplexer 2 = - 47 -
Register - - 24 = -
Total i 3 167 15 0
Aovailable 4320 6840 | 2364480 | 1182240 960
Posailable SLR 1440 2280 733160 354080 320
Utilization (35) ~0 ~0 ~0 ~0 0
Utilization SLR (%6) ~0 -0 ~0 =0 0

Figure 5-5: Synthesis Report for Floating Point Design

Instances in the top-level design account for most of the area used.

2. Scroll down the report and expand the Instances in the Details section of the Utilization
Estimates (Figure 5-6).

High-Level Synthesis N Send Feedback 99
UG871 (v2019.1) May 22, 2019 www.xilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=99

8 X”_INX® Chapter 5: Arbitrary Precision Types

Utilization Estimates

E Summary
Mame BRAM_12K | DSP43E FF LuT URAM
Dsp
Expression 7 - 0 26
FIFO
Instance - 3 143 73
Mernory 1 - 0 0
Multiplexer 7 - T 47
Register 2 - 24
Total 1 3 167 1531 0
Aovailable 4320 6340 | 2364480 | 1132240 960
Hovailable SLR 1440 2230 | 723160 | 304030 320
Utilization (%) ~0 ~0 ~0 =0 0
Utilization SLR (35) ~0 ~0 ~0 -0 0
= Detail
= Instance
Instance Module BRAM_12K | DSP42E | FF | LUT | URAM
window_fn_top_frmucud_ U1 | window_fn_tep_fmucud 0 3 [143 78 0
Total 1 0 3| 143 78 0

Figure 5-6: Area Details for Floating Point Design

The details show this is a floating-point multiplier (fmul). Floating-point operations are
costly in terms of area and clock cycles. The Analysis perspective (Figure 5-7) shows this
operator is also responsible for most of the clock cycles (It takes three of the five states to
execute the logic created by loop winfn loop).

More details on using the Analysis perspective are available in the Chapter 6, Design
Analysis tutorial. For the purposes of understanding this design, two of the operations in
the first state are one-cycle read-from-memory operations, and the operation in the final
state is a write-to-memory operation.

High-Level Synthesis N Send Feedback 100
UG871 (v2019.1) May 22, 2019 www.xilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=100

(: XI LI NX® Chapter 5: Arbitrary Precision Types

%mmmmm HE 73 F ScheduleViewerlsolution]) £
NegativeSlzck BRAM DSP FFLUT Latency Inteval :## & & 8 [|re
o window_fn_top - 1 3167 1311
. , Operation| Control Step 0 :) . A ;
. | .
28 pefomance Profle | Resource Profle 21 RE=0| ¥ W‘”fn'léop. ! : : 'W'“f"-""’,P : \
= 1.0.i(phi_mu : : : : : :
BRAM DSPOFFLUT BitsPO BitsP1 BitsP2 iemp 1 2cmp) : : : : ! :
: ftop 1 316 15t i) ! ! ! ! ! :
10 Purt) B coef t] Joadead) P | | l
. 1 I I I I I
Tg Instances(t) 0 I B1 Indata_Joad(rezd) :—I I I I :
Vemoresl) 1 00 R tmp_ifm) ! | , : . |
§ Bgressons) 0 00 % 12 § 0 autdats_addr_wite 131 wite) ! : : : : !
1 Renictre) now ! ! ! ! ! l

Figure 5-7: Performance Details for Floating Point Design

3. Exit the Vivado HLS GUI and return to the command prompt.

Lab 2: Arbitrary Precision

Review a Design using Arbitrary Precision types.

Introduction

This lab exercise uses the same design as Lab 1, however, the data types are now arbitrary
precision types. You first review the design and then examine the synthesis results.

Step 1: Create and Simulate the Project

1. From the Vivado HLS command prompt used in Lab 1, change to the lab2 directory as
shown in Figure 5-8.

2. Create a new Vivado HLS project by typing vivado hls -f run hls.tcl.

m(»

C:\Vivado_HLS_Tutorial>cd Arbitrary_Precision\labl

C:\VUivado_HLS_Tutorial\Arbitrary_Precision\labl>cd ..

C:\Vivado_HLS_Tutorial\Arbitrary_Precision>cd lab2

C:\Vivado_HLS_Tutorial\Arbitrary_Precision\lab2>vivado_hls -f run_hls.tcl

Figure 5-8: Setup for Arbitrary Precision Lab 2

3. Open the Vivado HLS GUI project by typing vivado hls -p window fn prj.

High-Level Synthesis N Send Feedback 101
UG871 (v2019.1) May 22, 2019 www.xilinx.com L\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=101

8 X”_INX® Chapter 5: Arbitrary Precision Types

4. Open the Source folder in the Explorer pane and double-click window_fn_top.cpp to
open the code as shown in Figure 5-9.

[t Explorer & w = O] [c) window_fn_top.cpp &3 =0
bcwindow_fn_prj 2], KKK AR AR KR AR K K K K KK SRR R AR R HEK KK 3K K K K K SROK KK KKK HOK KK SRR K KKK KK ROK KKK T
& Includes 45 #include "window_fn_top.h" // Provides typedefs and params
= Source 46 . . .
& window._fn_top.cpp a7 // ?nclude the gnthe xh1§_w1ndow_fn namespace so thaF scope resolution -
48 // i.e. prepending xhls_window_fn:: to everything -- is not necessary
U= Test Bench . . X
: 49 using namespace xhls_window_fn;
= solution1 50
constraints 51 //Vivado HLS requires a top-level function definition that wraps all obje:
W directives.tcl 52// instantiations and method calls to be synthesized as well as mapping
4 scripticl 53// the top-level I/0 (function arguments) into/out of the methods/functiol—
& csim 54void window_fn_top(=
& build 55 win_fn_out_t outdata[WIM_LEN],
56 win_fn_in_t indata[WIN_LEN]) [
= report 57 {

58 // Instantiate a window_fn object - types and params defined in header -
< | I | r

Figure 5-9: C Code for Arbitrary Precision Lab 2
5. Hold the Control key down and click window_fn_ top.h to open this header file.

6. Scroll down to view the type definitions (Figure 5-10).

[¢ window_fn_top.cpp | window_fn_top.h 22 =08
54 // Types and top-level function prototype -
55#include <ap_int.h>
56 // Define widths of fixed point fields
57 #define W_IN 8
58 #define IW_TN 8
590 #define W_OUT 24
60 #define IW OUT B8
61 #define W_COEF 18
62 #define IW_COEF 2
63
64 // Define fixed point types for input, output and coefficients i
65 typedef ap_fixed<W IN,IW_IN> win_fn_in_t; L
66 typedef ap_fixed<W OUT,IW OUT> win_fn_out_t; I
67 typedef ap_fixed<W COEF,IW_COEF> win_fn_coef t;

68 il

—— a a . PR i] - . . ' T

< | I | ' r

Figure 5-10: Type Definitions for Arbitrary Precision Lab 2

This header file, window _fn_top.h, is the only file that is different from Lab 1. The data
types have been changed to ap_fixed point types, which are similar to float and double
types in that they support integer and fractional bit representations. These data types are
defined in the header file ap_fixed.h. The definitions in the header file define sizes of
the data types:

« W_IN defines the total word length.

High-Level Synthesis N Send Feedback 102
UG871 (v2019.1) May 22, 2019 www.xilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=102

(: XI LI NX® Chapter 5: Arbitrary Precision Types

« IW_IN defines the number of integer bits.

« The number of fractional bits is therefore the first term minus the second.

When you revise C code to use arbitrary precision types instead of standard C types, one of
the most common changes you must make is to reduce the size of the data types. In this
case, you change the design to use 8-bit, 24-bit, and 18-bit words instead of 32-bit float
types. This results in smaller operators, reduced area, and fewer clock cycles to complete.

Similar optimizations help when you change more common C types such as int, short, and
char. For example, changing a data type that only needs to be 18-bit from int (32-bit)
ensures that only a single DSP48 is required to perform any multiplications.

In both cases, you must confirm that the design still performs the correct operation and
that it does so with the required accuracy. The benefit of the arbitrary precision types
provided with Vivado High-Level Synthesis is that you can simulate the updated C code to
confirm its function and accuracy.

7. Open the Test Bench folder in the Explorer pane and double-click window_fn_test.cpp
to open the code.

8. Scroll down to see the view shown in Figure 5-11.

25 Explorer 2 w* = B [g window_fn_top.cpp ‘® window_fn_top.h || window_fn_test.cpp &2 =0
= window_fn_prj window_fn_top(hw_result, testdata); -

[w Includes

Jd o
~ @

J
-]

// Check results

}

cout << endl; P

= /o
= SOUFFE 79 cout << "Checking results against a tolerance of " << ABS_ERR_THRESH << endl;
gl window_fn_top.cpp 80 cout << fixed << setprecision(5);
f= Test Bench 21 for (unsigned i = @; i < WIN_LEN; i++) {
[¢] window_fn_test.cpp 82 float abs_err = float(hw_result[i]) - sw_result[i];
= solution1 83 #if WINDOW_FM_DEBUG
constraints 84 cout << "1 = " << 1 << "\thw result = " << hw_result[i];
% directives.tcl 85) cout << "\t sw_result = " << sw_result[i] << endl;
W script.tcl 86 fandif
T 87 if (fabs(abs_err) > ABS_ERR_THRESH) {
= csim 88 cout << "Error threshold exceeded: i = " << 1i;
= build 39 cout << " Expected: " << sw_result[i];
(= report 99 cout << " Got: " << hw_result[i];
91 cout << " Delta: " << abs_err << endl; =
92 err_cnt++;
93 }
94
95

Figure 5-11: Test Bench for Arbitrary Precision Lab 2

The test bench for this design contains code to check the accuracy of the results. The
expected results are still generated using float types. Because of the difference in precision
between fixed point and floating point operations, the result checking verifies that the
results are within a specified range of accuracy (in this case, within 0.001 of the expected
result).

This allows the updated design to be validated quickly and efficiently in C, with fast compile
and run times.

9. Click the Run C Simulation toolbar button to open the C Simulation dialog box.

High-Level Synthesis N Send Feedback 103
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=103

(: XI LI NX® Chapter 5: Arbitrary Precision Types

10. Accept the default setting (no options selected) and click OK.

The Console pane shows the results of the C simulation. With the updated data types, the
results are no longer identical to the expected results. However, they are within tolerance.

Bl Console 2 @] Errors| & Warnings X pEE—O
<terminated > window_fn_prj.Debug [C/C++ Application] C\Vivado_HLS_Tutorial\Arbitrary_Precision\lab2\window_fn_prj\solution1\csim\build
i =24 hw result = 32 sw_result = 32.00000 -
i =25 hw_result = 25.757 sw_result = 25.75711
i =26 hw result = 19.754 sw_result = 19.75413
i =27 hw_result = 14.222 sw_result = 14.22175
i = 28 hw_result = 9.3721 sw_result = 9.37258
i =29 hw_result = 5.3926 sw_result = 5.39297
i =30 hw_result = 2.4355 sw_result = 2.43585
i =31 hw_result = 8.61426 sw_result = 0.61487

m

Test Passed

Figure 5-12: C Simulation Results for Fixed Point Types

Step 2: Synthesize the Design and Review Results

1. Click the Run C Synthesis toolbar button to synthesize the design to RTL.

When synthesis completes, the synthesis report opens automatically. Figure 5-13 shows the
synthesis report.

High-Level Synthesis N Send Feedback 104
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=104

8 X”_INX® Chapter 5: Arbitrary Precision Types

Performance Estimates
[Timing (ns)
¥ Summary
Clock | Target | Estimated | Uncertainty
ap_clk 5.00 4,306 0.63

B Latency (clock cycles)

E Summary

Latency Interval
min | max | min | max | Type
97 97 a7 97 | none

= Detail
Instance

E Loop

Utilization Estimates

E Summary

Mame BRAM_18K | DSP43E FF LuT URAM
DspP - 1
Expression - - 0 26
FIFO
Instance
Memory 0 - 17 9
Multiplexer - - - 36
Register - - 39 -
Total 0 1 56 il 0
Available 4320 6240 | 2364480 | 1182240 960
Available SLR 1440 2280 | 788160 | 394020 320
Utilization (%) 0 ~0 ~0 -0 0
Utilization SLR (%) 0 -0 ~0 -0 0

Figure 5-13: Synthesis Report for Fixed Point Design

Note that through use of arbitrary precision types, you have reduced both the latency and
the area (by 40% and 50% respectively), and the operations in the RTL hardware are no
larger than necessary. Since the total number of bits in the memory is now less than
1024-bits, it is now automatically implemented with LUTs and FFs rather than with a block
RAM.

2. Scroll down the report to the Interface summary (Figure 5-14).

Figure 5-14 shows the data ports are now 8-bit and 24-bit.

High-Level Synthesis N Send Feedback 105
UG871 (v2019.1) May 22, 2019 www.xilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=105

(: X”_INX® Chapter 5: Arbitrary Precision Types

=l window _fn_top csynth.rpt &3 & El'_
Interface 3
- Summary
RTL Ports Dir Bits Protocol Source Object C Type
ap_clk in 1 ap_ctrl_hs window_fn_top return value
ap_rst in il ap_ctrl_hs = window_fn_top return value
ap_start in 1 ap_ctrl_hs window_fn_top return value
ap_done out at ap_ctrl_hs window_fn_top return value
ap_idle out 1 ap_ctrl_hs window_fn_top return value
ap_ready out 1 ap_ctrl_hs window_fn_top return value
outdata_V_address0 out 5 ap_memory outdata_V array
outdata_V_ce0 out 1 ap_memory outdata_V array
outdata_V_we0 out 1 ap_memory outdata_V array
outdata_V_d0 out 24 ap_memory outdata_V array A
indata_V_address0 out 5 ap_memory indata_V array T
indata_V_ce0 out 1 ap_memory indata_V array
indata_V_g0 in 8 ap_memory indata_V array
N I »

Figure 5-14: Fixed Point Interface Summary

3. Exit the Vivado HLS GUI and return to the command prompt.

Conclusion

In this tutorial, you learned:

+ How to update the existing standard C types to Vivado High-Level Synthesis arbitrary
precision types.

« The advantages in terms of hardware performance and area of using bit accurate
data-types.

High-Level Synthesis N Send Feedback 106
UG871 (v2019.1) May 22, 2019 www.xilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=106

& XILINX

Chapter 6

Design Analysis

Overview

The general design methodology for creating an RTL implementation from C, C++, or
SystemC includes the following tasks:

« Synthesizing the design.
« Reviewing the results of the initial implementation.

» Applying optimization directives to improve performance.

You can repeat the steps above until the required performance is achieved. Subsequently,
you can revisit the design to improve area.

A key part of this process is the analysis of the results. This tutorial explains how to use the
reports and the GUI Analysis perspective to analyze the design and determine which
optimizations to apply.

This tutorial consists of a single lab exercise that:
« Demonstrates the HLS interactive analysis feature.

« Takes you through one design from the initial implementation through six steps and
multiple optimizations to produce the final optimized design.

As demonstrated throughout the tutorial, performing these steps in a single project gives
you the ability to compare the different solutions.

Lab 1 Description

Synthesize and analyze a DCT design. Use the insights from the design analysis to apply
optimizations and judge the effectiveness of the optimization.

High-Level Synthesis N Send Feedback 107
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=107

(: X”_INX® Chapter 6: Design Analysis

Tutorial Design Description

You can download the tutorial design file from the Xilinx Website. See the information in
Locating the Tutorial Design Files.

This tutorial uses the design files in the tutorial directory
Vivado HLS Tutoriall\Design Analysis.

The sample designs used in the lab exercise is a 2-D DCT function. To highlight the design
analysis feature, your goal is to have this design operate with an interval of 125 or less. The
design should be able to process a new set of input data at least every 125 clock cycles.

Lab 1: Design Optimization

This exercise explains the basic operations of the GUI Analysis perspective and how you can
use it to drive design optimization.

ﬁ IMPORTANT: The figures and commands in this tutorial assume the tutorial data directory
Vivado HLS Tutorial is unzipped and placed in the location C:\Vivado HLS_ Tutorial. If the
tutorial data directory is unzipped to a different location, or if it is on a Linux system, adjust the few
pathnames referenced to the location at which you placed the Vivado HLS Tutorial directory.

Step 1: Create and Open the Project

1. Open the Vivado HLS Command Prompt.

- On Windows click Start > All Programs > Xilinx Design Tools > Vivado 2019.1 >
Vivado HLS > Vivado HLS 2019.1 Command Prompt.

o On Linux, open a new shell.

2. Using the command prompt window (Figure 6-1), change the directory to the Design
Analysis tutorial, lab1.

3. Execute the Tcl script to setup the Vivado HLS project, using the command vivado hls
-f run hls.tcl, as shown in Figure 6-1.

High-Level Synthesis N Send Feedback 108
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=108

(: X”_INX® Chapter 6: Design Analysis

C:\Vivado_HLS_Tutorial\Arbitrary_Precision>cd ..

C:\VUivado_HLS_Tutorial>cd Design_Analysis

C:\Vivado_HLS_Tutorial\Design_Analysis>cd labl

C:\Uivado_HLS_Tutorial\Design_Analysis\labl1>vivado_hls -f run_hls.tcl

Figure 6-1: Setup the Design Analysis Tutorial Project

4. When Vivado HLS completes, open the project in the Vivado HLS GUI using the
command vivado hls -p dct prj as shown in Figure 6-2.

@I [HLS-18] Cleaning up the solution database.

@I [HLS-18] Setting target device to 'xcTk160tfbgi84-1"

@I [SYN-201] Setting up clock ‘'default’ with a period of 8ns.
Compiling ../../../../dct_test.cpp in debug mode
Compiling ../../../../dct.cpp in debug mode
Generating csim.exe

Test passed !

@I [SIM-1] CSim done with O errors.

@I [LIC-101] Checked in feature [HLS]

C:\Uivado_HLS_Tutorial\Design_Analysis\lab1>vivado_hls -

Figure 6-2: Open Design Analysis Project for Lab 1
Step 2: Review the Source Code and Create the Initial Design
1. Double-click the file dct . cpp in the Source folder to open the source code for review.

This example uses a DCT function. Figure 6-3 shows an overview of this code.

High-Level Synthesis N Send Feedback 109
UG871 (v2019.1) May 22, 2019 www.xilinx.com L\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=109

8 X”_INX® Chapter 6: Design Analysis

Hierarchy Loops Dataflow
RD_Loop_Row:
RD_Loop_Col: \ 4

[a]
=
[
(&)
[a]

}

}
Row_DCT_Loop:
DCT_Outer_Loop:
DCT_Inner_Loop:
H
}
}
Xpose_Row_Outer_Loop:
Xpose_Row_Inner_Loop: °

}

}
Col_DCT_Loop:

Q_ DCT_Outer_Loop: {
I DCT _Inner_Loop:

[

(8] }

= }

}

Xpose_Col_Outer_Loop:
Xpose_Col_Inner_Loop: \
}

}

WR_Loop_Row:
WR_Loop_Col:
}

}

*+

-

Figure 6-3: Overview of the DCT Design
« The left side of Figure 6-3 shows the code hierarchy.
o Top-level function dct has three sub-functions: read_data, dct_2d and write_data.
o Function dct_2d has a single sub-function dct_1d.
» The center of Figure 6-3 shows loops inside each of the functions.

« The right side of Figure 6-3 shows the how the data is processed through the functions
and loops.

o The read_data function executes, and the data is processed through loop
RD_Loop_Row, which has a sub-loop RD_Loop_Col.

o After the read_data function completes, function dct_2d executes.

o In function dct_2d, Row_DCT_Loop processes the data. Row_DCT_Loop has two
nested loops inside it: DCT_output_loop and DCT_inner_loop.

o DCT_inner_loop calls function dct_1d.
And so on, until the function write_data processes the data.

« Click the Run C Synthesis toolbar button to synthesize the design to RTL.

High-Level Synthesis N Send Feedback 110
UG871 (v2019.1) May 22, 2019 www.xilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=110

8 X”_INX® Chapter 6: Design Analysis

Step 3: Review the Performance Using the Synthesis Report

When synthesis completes, the synthesis report opens automatically. Figure 6-4 shows the
performance section of the report.

Performance Estimates
= Timing (ns)

= Summary

Clock Target | Estimated Uncertainty
ap_clk 2.00 4,143 1.00

= Latency (clock cycles)

= Summary

Latency Interval
min max | min max | Type
2035 | 2035 | 2935 | 2935 | none

= Detail
= Instance
Latency Interval
Instance Module | min max | min max | Type
grp_dct_2d_fu_152 | dct Zd 2644 | 2644 | 2644 | 2644 | none
2 Loop
Latency Initiation Interval
Loocp Mame min | max | [teration Latency | achieved | target | Trip Count | Pipelined
- RD_Loop_Row 144 144 18 - - 2 no
+ RD_Loop_Col 16 16 2 - 2 no
- WR_Loop_Row 144 144 18 - - 2 no
+ WER_Loop_Col 16 16 2 - 2 no

Figure 6-4: Report for Initial DCT Design
Figure 6-4 highlights the following information.

« The clock frequency of 8 ns has been met.
« The top-level design takes 2935 clock cycles to write all the outputs.

* You can apply new inputs after 2935 clock cycles. This immediately reveals that the
design is not pipelined, but this fact is also noted in the report: type is set to none and
not pipelined.

« The top level has a single instance, which has a latency and initiation interval of 2644.
- This block also has no pipelining and accounts for most of the clock cycles.

» Notice that the functions read data and write data are not noted here as
instances of the top level.

- Figure 6-5 shows that, during synthesis, these blocks were automatically inlined
(the hierarchy was removed).

High-Level Synthesis N Send Feedback 111
UG871 (v2019.1) May 22, 2019 www.xilinx.com I—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=111

8 X”_INX® Chapter 6: Design Analysis

o High-level synthesis might automatically inline small functions to improve the
quality of results (QoR). You can prevent this by adding the Inline directive with the
-of £ option to any function being automatically inlined.

El Console &2 . 9] Errors| & Warnings EkRgE="10
Vivado HLS Console

WL [AL3~1IY] ILdi'LLiy Lude Lrdaisiurmdoiunts ...

@I [HLS-18] Checking synthesizability ...

[XFORM-602] Inlining function 'read_data' into 'dct' (dct.cpp:128) automatically.
DI [XFORM-602] Inlining function 'write data' into 'dct' (dct.cpp:133) automatically.
@I [HLS-111] Elapsed time: 7.476 seconds; current memory usage: 70.6 MB.

@I [HLS-10] Starting hardware synthesis ...

@I [HLS-10] Synthesizing 'dct' ... -
< | il P

Figure 6-5: Automatic Optimization Reporting

« The loops in the read_data and write_data functions are therefore implemented at the
top level and are reported as loops in the top-level function (Figure 6-4).

« Each loop has a latency of 144 clock cycles. (Because the loops are not pipelined, there
is no initiation interval.)

« Using RD_Loop_Row as an example, you can see why the loop latency is 144.

o Sub-loop RD_Loop_Col has a latency of 2 cycles for each iteration of the loop
(iteration latency) and a tripcount of 8: 2 x 8 = 16 clock cycles total latency for the
loop.

o From RD_Loop_Row, it takes 1 clock to enter loop RD_Loop_Col and 1 clock cycle to
return to RD_Loop_Row. The iteration latency for RD_Loop_Row is therefore (1 + 16
+1) 18 clock cycles.

o RD_Loop_Row has a tripcount of 8 so the total loop latency is 8 x 18 = 144 clock
cycles.

« The total latency of 2935 cycles for the dct block is therefore:
o 144 clocks for the RD_Loop_Row block.
o Plus 2644 clock cycles for the dct_2d block.
o Plus 144 clock cycles for WR_Loop_Row.

o Plus a clock cycle to enter each of those three blocks.

To review the details of the instantiated sub-blocks dct_2d and dct_1d, open their respective
reports from the syn/report folder under solutionl in the Explorer pane.

You can also use the design analysis perspective to review these details in a more interactive
manner.

Step 4: Review the Performance Using the Analysis Perspective

Invoke the Analysis perspective any time after synthesis completes.

High-Level Synthesis N Send Feedback 112
UG871 (v2019.1) May 22, 2019 www.xilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=112

(: X”_INX® Chapter 6: Design Analysis

1. Click the Analysis perspective button (Figure 6-6) to begin interactive design analysis.

[E=N Eol
%5 Debug || Synthesis |& Analysis
]
Figure 6-6: Opening the Analysis Perspective

The Analysis perspective consists of five panes, each of which is highlighted in Figure 6-7.
You use all of these in the tutorial. The module and loops hierarchies are shown expanded
(by default, they are shown collapsed).

%Mndu\eHierarchy i EﬂSyﬂthesis(sn\utinﬂ](dct_tsynth‘rpt] 3 Sl Veohton] !

Negetveck BRAN D50 FF LT Lty Il Pty TLEE:
v Ot) T W B o

vl - 1 IR B e | Ol nnnnnne
R0 Loop fow : -0 Loop o : : : :
Cfmaehe] | oo 570 dctld(fpunctiun] = p: |
: 1 R
Dol Lty bein sty ion el Tt | VR Lop oo Lo R o o
1 I
vt - W M (I O O I
Mgl W0 : B (I O T
Rl 0 EEEEEEE
1

Figure 6-7: Overview of the Analysis Perspective

Use the Module Hierarchy pane to navigate through the hierarchy. The Module Hierarchy
pane shows both the performance and area information for the entire design. The
Performance Profile pane shows the performance details for this level of hierarchy. The
information in these two panes is similar to the information you reviewed earlier in the
report (for the top-level dct block).

The Performance view is also shown (on the right side of Figure 6-8). This view shows how
the operations in this particular block are scheduled into clock cycles.

High-Level Synthesis N Send Feedback 113
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=113

(: X”_INX® Chapter 6: Design Analysis

« The left column lists the resources.
o Sub-blocks are shown in blue text.
o Operations resulting from loops are labeled and expandable.
- Standard operations are also shown.

» Notice that the dct has three main blocks:

o Aloop called RD_Loop_Row. The plus symbol (+) indicates that the loop has
hierarchy and that you can expand the loop to view it.

o A sub-block called dct_2d.
o Aloop called WR_Loop_Row.

The top row lists the control states in the design. Control states are the internal states
High-Level Synthesis uses to schedule operations into clock cycles. There is a close
correlation between the control states and the final states in the RTL Finite State Machine
(FSM), but there is no one-to-one mapping.

2. Click loop RD_Loop_Row and sub-loop RD_Loop_Col to fully expand the loop hierarchy
(Figure 6-8).

&' Schedule Viewer(solutionl) &2

Operation’, Control Step | 0 | 1 | 7 | 3 | 4 | [| 3 | 7 |

v RD_Loop_Row

1

1

r_0_i(phi_mw) i
icmp_In101(icmp) :
ri+) i
RD_Loop_Col E
det_2d(function) :
i

1

1

1

1

1

1

1

1

1

v WR_Loop_Row
r_0_i2(phi_muz)

- WR_Loop_Row

icmp_In113(icmp)
r_1(+)
WR_Loop_Col

Figure 6-8: Expanded View of RD_Loop_Row

From this, you can see that in the first state (C1) of the RD_Loop_Row, the loop exit
condition is checked and an add operation performed. This addition is likely the counter for
the loop iterations, and we can confirm this.

3. Select the adder in state C1, right-click and select Go to Source (Figure 6-9).

a. When the dialog box opens, press OK to select item O.

High-Level Synthesis N Send Feedback 114
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=114

& XILINX.

This opens the C source code to highlight the operation in the C source that created this
adder. From the details on screen (also shown in Figure 6-9), you can determine it is indeed
the loop counter. It is the only addition on this line, and the variable is named “r".

=' Schedule Viewer(solution1) 52

| |4 - | E
Operation\Control Step | 0 |] | 3 | 3
v RD_Loop Row - RD_Loop_Row
r_0_i(phi_mux) - i i i
. > 1
icmp_In101(icmp) - !
r+) i
RD_Loop_Col - RD Loop _Col

det_2d(function)
WE_Loop_Row

Schedule Viewer | Resource Yiewer

i Properties | & Warnings | || C Source &2

File: C\Vivado_HLS_Tutorial\Design_Analysisilab1\dct.cpp

100 intr, ¢

1M

102 RD_Loop_Raow:

103 for(r=0;r< DCT_SIZE; r++) {

104 RD_Loop_Caol:

105 for(c=0;c<DCT_SIZE; c++)

106 buf[r][c] = input[r* DCT_SIZE + c];
107 }

108}

Figure 6-9:

C Source Code View

o e e (|

Chapter 6: Design Analysis

In the next state of loop RD_Loop_Row (state C2), loop RD_Loop_Col starts to execute.

4. Click any of the operations in the RD_Loop_Col to see the source code highlighting

update.

This should help confirm your understanding of how the operations in the C source code
are implemented in the RTL.

The loop exit condition is checked.

This is an adder for loop count variable “c”".

A read from a RAM performed (one cycle to generate the address, one cycle to read the

data).

A write operation is performed to a RAM.

High-Level Synthesis

UGS871 (v2019.1) May 22, 2019

www.Xxilinx.com

l Send Feedback I 115

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=115

(: X”_INX® Chapter 6: Design Analysis

Loops in the Performance view mean that the design iterates around these states multiple
times. The number of iterations is noted as the loop tripcount and shown in the
Performance Profile.

To improve performance, these loops should be pipelined. You can review the rest of the
design for other performance optimization opportunities.

5. Click the X in the C Source pane tab to close this window.

6. In the Module Hierarchy pane, click the function dect_2d to navigate into the view for
this function (Figure 6-10).

Operatien\Control Step 0 1 7 3 | 4 | 5 5 | 7 3 | 9 | 10

Rewberd ol] i
- Xpose Row Quter ... ! !

Row_DCT _Loop
Kpose_Row_Outer_Loop
Col_ DCT_Loop
Xpose_Col_Cuter_Loop

I
1 1 I]
: : : :l : - Xpose Col Quter ...
1 1 1 1 1 [1 [1] 1

Figure 6-10: DCT_2D Performance View

Again, you can see a number of loops (shown in Figure 6-11). Loops ensure the design will
have small area but the design will take multiple iterative states to complete: each iteration
of the loop will complete before the next iteration starts.

You can pipeline the loops to improve the performance. The details in the Performance
Profile show that most of the latency is caused by loops Row_DCT_Loop and Col_DCT_Loop.

7. Click loops Row_DCT_Loop and Col_DCT_Loop of the dct_2d block in the performance
viewer to fully expand them, as shown in Figure 6-11.

Expanding these loops in Performance view shows both loops call function dct_dct_1d2.
Unless this function itself is pipelined, there is no benefit in pipelining the loop. TheModule
Hierarchy shows the interval for dct_1d2 is 145clock cycles, which means it can only accept
a new input every 145 clock cycles.

8. In the Module Hierarchy, click function dct_1d2 to navigate into the view for this
function.

9. Expand the loops in the Performance Profile and Performance view to see the view
shown in Figure 6-11.

High-Level Synthesis N Send Feedback 116
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=116

(: X”_INX® Chapter 6: Design Analysis

oy 1270 3 e Veweuton)

Negeve St RAM D FF LUT Leeney e Pelnetye

vt) T WA B e
v 0 gl oV Im o BE B e | OponConol g
il | Th W W e
v o DCT Lo
g
?Mmm%%%\ﬂmm%k pEo 0 o ding
Pelned Leeny Reshon oty ntdon kenl T coun H .
o A * mﬂﬁﬁj%
Ohov Tl o IH W B Ty
0 fpoe fow Ontrloop no—— 14 1 B i
00Tlop o IH W | i
O bpse Col Ot foop 0 W |
14
act |4 funcho)
Hoose Col O Lop

Figure 6-11: DCT_1D Performance View

In Figure 6-11 you can see a series of nested loops (Row_DCT_loop, Col_DCT_Loop) that can

be pipelined.

You can choose to do one of the following:

High-Level Synthesis N Send Feedback 117
UG871 (v2019.1) May 22, 2019 www.xilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=117

(: X”_INX® Chapter 6: Design Analysis

« You can pipeline the function and then pipeline the loop that calls it. (Because the
function is pipelined, the loop can take advantage of using a pipelined part.)

» You can pipeline the loops within this function and simply make this function execute
faster.

Pipelining the function unrolls all the loops within it, and thus greatly increases the area. If
the objective is to get the highest possible performance with no regard for area, this may be
the best optimization to perform.

You can find more details on pipelining loops and functions in the Chapter 7, Design
Optimization tutorial. For this case, the approach is to optimize the loops and keep the area
at a minimum.

10. Click the Synthesis perspective button to return to the main synthesis view.

E=8 Eol ™™
35 Debug [s | Synthesis |5 Analysis

QOutline 2 .4 Directive =

Figure 6-12: Re-Opening the Synthesis Perspective

Step 5: Apply Loop Pipelining and Review for Loop Optimization
In this step, you create a new solution and add pipelining directives to the loops.

When pipelining nested loops, it is generally best to pipeline the inner-most loop. Typically,
High-Level Synthesis can generally flatten the loop nest automatically (allowing the outer
loop to simply feed the inner loop). For more information on why it is better to perform
certain loop optimizations rather than others, see the Chapter 7, Design Optimization
tutorial.

1. Select the New Solution toolbar button or use the menu Project > New Solution to
create a new solution.

2. Click Finish and accept the defaults.

3. Ensure that you can see the C source code (dct.cpp) in the Information pane.

4. Inthe Directive tab, add a pipeline directive to loop DCT_Inner_Loop in function dct_1d.
a. Right-click DCT_Inner_Loop in the Directive pane and select Insert Directive.

b. In the Directives Editor dialog box activate the Directive drop-down menu at the top
and select PIPELINE.

c. Click OK to select the default maximum pipeline rate (II=1).

5. Repeat step 4 for the following loops:

High-Level Synthesis N Send Feedback 118
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=118

(: X”_INX® Chapter 6: Design Analysis

a. In function dct_ 2d loop Xpose Row_Inner Loop
b. In function dct 2d loop Xpose Col Inner Loop
¢c. In function read data loop RD_Loop Col

d. In function write data loop WR_Loop Col

The Directive pane shows the following (highlighted) optimization directives applied.

o= Outline |4 Directive =8

4 @ dct_1d il
®[1 dct_coeff_table
4 %" DCT_Outer_Loop
4 %" DCT_Inner_Loop
% HLS PIPELINE
4 @ dct_2d
=1 row_outbuf
#[1 col_outbuf
#[1 col_inbuf
%" Row_DCT_Loop
4 %" Xpose_Row_Outer_Loop
ad Xpose_Row_Inner_Loop
% HLS PIPELINE
% Col_DCT_Loop
4 %" Xpose_Col_Outer_Loop
4 %" Xpose_Col_Inner_Loop
% HLS PIPELINE
4 @ read_data
4 %" RD_Loop_Row
4% RD_Loop_Col
% HLS PIPELINE
4 @ write_data
4 %" WR_Loop_Row
4% WR_Loop_Col
% HLS PIPELINE
4 @ dct -

Figure 6-13: Optimization Directive for DCT Loop Pipelines

6. Click the Run C Synthesis toolbar button to synthesize the design to RTL. If a file was
modified, please select YES.

7. When synthesis completes, use the Compare Reports toolbar button or the menu
Project > Compare Reports to compare solutions 1 and 2.

Figure 6-14 shows the results of comparing solutionl and solution2. Pipelining the loops
has improved the latency of the design with an almost 50% reduction in solution2.

High-Level Synthesis N Send Feedback 119
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=119

(: X”_INX® Chapter 6: Design Analysis

Performance Estimates

=] Timing (ns)

Clock solution solution?
ap_clk | Target 2.00 2.00
Estimated | 4.143 4,143

- Latency (clock cycles)

solution selution2
Latency | min | 2935 1723
max | 2935 1723
Interval min 2935 1723
max | 2935 1723

Figure 6-14: DCT Solutionl and Solution2 Comparison

Next, you once again open the Analysis perspective, analyze the results, and determine
whether or not there are more opportunities to for optimization.

8. Click the Analysis perspective button to begin interactive design analysis.

When the Analysis perspective opens, you can see that the majority of the latency is still
due to block dct_2d. Before proceeding to analyze further, you can review how the loops at
this level have been optimized.

The Performance Profile (Figure 6-15) shows that the latency of both loops has been
reduced from 144 clock cycles in solutionl to only 64 clock cycles.

gﬁpeﬁormanceprnfile 3 | . Resource Profile = |

Pipelined Latency [Iteration Latency Initiation Interval Trip count

v @ dct - 1723 - 1724
@ RD_Loop Row RD_Loop_Col yes b4 2 1 B4
@ WR_Loop_Row WR_Loop_Col yes b4 2 1 B4

Figure 6-15: DCT Solution2 Performance of Top-Level Loops
Pipelining loops transforms the latency from
Latency = iteration latency * (tripcount * interval)
to
Latency = iteration latency + (tripcount * interval)

Vivado HLS also made this possible by automatically performing loop flattening (there is no
longer any loop hierarchy). You can see this by reviewing the Console pane, or log file, for
solution2. Figure 6-16 shows the loops that have been automatically optimized.

High-Level Synthesis N Send Feedback 120
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=120

8 X”_INX® Chapter 6: Design Analysis

B Console 22 . @] Errors| & Wamnings| BepE= "0
Vivado HLS Console

ET pTTTiTT TTD§ STSIIITg CITTIISIIT L SIT=rIIm o DiIT TIT o §IIITIFFTITZ STIImIISITEDZ

@I [XFORM-602] Inlining function 'write_data' into "dct' (dct.cpp:94) automatically.]

[XFORM-541] Flattening a loop nest 'RD_Loop Row' (dct.cpp:59) in function 'dct’.
[XFORM-541] Flattening a loop nest 'WR_Loop Row' (dct.cpp:71) in function 'dct’.
[XFORM-541] Flattening a loop nest 'Xpose Row Outer_ Loop"' (dct.cpp:37) in function 'dct_2d'.
[XFORM-541] Flattening a loop nest 'Xpose Col Outer loop' (dct.cpp:48) in function 'dct 2d'.
0T [HLS-111] Elapsed time: 12.191 seconds; current memory usage: 30.6 MB.
@I [HLS-10] Starting hardware synthesis ...

@T THIS-141 Sunthecizino "drt’
< | 1 | »

Figure 6-16: DCT Solution2 Loop Flattening

9. In the Module Hierarchy, click function dct 2d to navigate into the view for this
function.

In the Performance Profile you can see that the latency of all the loops has been
substantially reduced (Row_DCT_Loop and Col_DCT_loop have been approximately halved
from the earlier report in Figure 6-10). However, the majority of the latency is still due to
these two loops, each of which calls the dct_1d block.

10. In the Module Hierarchy, click function dct_1d2 to navigate into the view for this
function.

The Performance Profile (Figure 6-17) shows the loop latencies have been reduced, but
there is still a loop hierarchy here. (There is still loop DCT_Outer_Loop, shown in
Figure 6-17, so no loop flattening occurred).

E£F performance Profile 52 | . Resource Profile} = — B8 1
Pipelined Latency Iteration Latency Initiation Interval Trip count
vie det 1d2; - 8a - 29 -
v @ DCT_Outer_Loop no 28 1 - 2
@ DCT_Inner_Loop yes 8 2 1 8

Figure 6-17: DCT Solution2 Performance of dct_1d Loops

Viewing these loops in Performance view shows why this loop was not optimized further.

11.In the Performance view, click loops DCT Outer Loop and DCT Inner Loop to view
the loop hierarchy (Figure 6-18).

12. Select the write operation in state C3.

13. Right-click and select Go to Source.
Figure 6-18 shows that this loop was not flattened because additional operations outside of

DCT Inner Loop, atthelevel of DCT Outer Loop, prevented loop flattening. One of the
operations that prevented loop flattening is highlighted in Figure 6-18, below.

High-Level Synthesis N Send Feedback 121
UG871 (v2019.1) May 22, 2019 www.xilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=121

(: X”_INX® Chapter 6: Design Analysis

= Performance(solution2) &2 = B

Current Medule : dct > dct dect 2d > det det 1d2

| Oneration\Contral 5.1 co | c1 | o2 | | ca |
tmp 21 read(read)

tmp 2 read(read)
s DCT Outer Loop
k(phi mux)
exitcondl (icmp)
k 1(+)
tmp 9 (+)
8-...| ¥DCT Inner Loop
19 tmp s (+)

node 60 (write) M

Performance | Resource

RN Rl R, ER RS R S R

[Properties | [<| C Source 2 = 8

File: CA\Vivado_HLS_Tutorial\Design_Analysis\labl\dct.cpp
55).
56 DCT_OQuter_Loop:
57 for (k =0; k< DCT_SIZE; k++) {
58 DCT_Inner_Loop:
59 for(n =0, tmp = 0; n < DCT_SIZE; n++) {
60 int coeff = (int)dct_coeff_table[k][n];
61 tmp += src[n] * coeff;
62 3
63 dst[k] = DESCALE(tmp, CONST_BITS);
64 }
65}
66
67 void dct_2d(dct data tin_block[DCT_SIZE])DCT_SIZE],
68 dct data_t out_block[DCT_SIZEJ[DCT_SIZE])
694
70 dct_data_t row_outbuf[DCT_SIZE]DCT_SIZE];

71 dct data t col outbuf[DCT SIZENDCT SIZE], col inbuf[DCT SIZE] ™
< 1 b

111

Figure 6-18: DCT Solution2 dct_1d Performance View

The write to the array cannot be flattened into the inner loop. To achieve an interval of 1 on
DCT Outer Loop you will need to pipeline the output loop - there is no benefit in simply
pipelining the inner loop itself.

You should pipeline the outer loop instead. This causes the inner loop to be completely
unrolled. An increase in area results, but you are still far from the throughput goal of 125
and not yet ready to pipeline the entire function (and see an even greater area increase, as
the outer loop is also completely unrolled).

14. Click the Synthesis perspective button to return to the main synthesis view.

High-Level Synthesis N Send Feedback 122
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=122

(: X”_INX® Chapter 6: Design Analysis

Step 6: Apply Loop Optimization and Review for Bottlenecks

1. Select the New Solution toolbar button or use the menu Project > New Solution to
create a new solution.

2. Click Finish and accept the defaults to create solution3.

3. Ensure the C source code is visible in the Information pane.

4. In the Directive tab

a.

b.

f.

In function dct_1d, select the pipeline directive on loop DCT_Inner_Loop.
Right-Click and select Remove Directive.

Still in function dct_1d, select loop DCT_Outer_Loop.

Right-click and select Insert Directive.

In the Directives Editor dialog box activate the Directive drop-down menu at the
top and select PIPELINE.

Click OK to select the default maximum pipeline rate (II=1).

The Directive pane should show the following (highlighted) optimization directives applied.

High-Level Synthesis

o= Outline |4 Directive =g

4 @ dct_1d -
#[1 dect_coeff_table
4 %" DCT_Outer_Loop
% HLS PIPELINE
%" DCT_Inner_Loop
4 @ dct_2d
=[1 row_outbuf
#[1 col_outbuf
#[1 col_inbuf
%" Row_DCT_Loop
4 %" Xpose_Row_Outer_Loop |
a Xpose_Row_Inner_Loop
% HLS PIPELINE
%' Col_DCT_Loop
4 %" Xpose_Col_Outer_Loop
4 %" Xpose_Col_Inner_Loop
% HLS PIPELINE
read_data
4 %' RD_Loop_Row
4 %' RD_Loop_Col
% HLS PIPELINE
4 @ write_data
4 %" WR_Loop_Row
4 % WR_Loop_Col
% HLS PIPELINE
4 @ dct -

[
@

Figure 6-19: Updated Optimization Directives for DCT Loop Pipelines

o l Send Feedback I 123
UG871 (v2019.1) May 22, 2019 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=123

& XILINX.

Chapter 6: Design Analysis

5. Click the Run C Synthesis toolbar button to synthesize the design to RTL.

6. When synthesis completes, click the Compare Reports toolbar button to compare

solutions 2 and 3.

Figure 6-20 shows the results of comparing solution2 and solution3. Pipelining the
outer-loop has in fact resulted in an increase to the performance and the area.

The significant latency benefit is achieved because multiple loops in the design call the
dct_1d function multiple times. Saving latency in this block is multiplied because this
function is used inside many loops.

Performance Estimates

= Timing (ns)
Cleck solution? | solution3
ap_clk | Target 8.00 8.00
Estimated | 4.143 6.351
=] Latency (clock cycles)
solution2 solution3
Latency | min 1723 243
max | 1723 843
Interval min 1723 243
max | 1723 243
Utilization Estimates
solution2 | solution3
BRAM_12K | 5 5
DSP42E 1 3
FF 223 546
LUT 1211 1356
URAM 0 0

Figure 6-20: DCT Solution2 and Solution3 Comparison

In this case, the report indicates the clock period for solution3 is larger, but can still be
achieved. Vivado HLS will sometimes create a design in which the estimated clock period
fails to meet the required clock period. Typically, the design will meet timing after RTL
synthesis - in this case, you can confirm this by using the Export RTL feature and selecting
Evaluate. In the event you encounter a case where the design fails to meet timing after RTL
synthesis, use LATENCY directive in conjunction with regions in the C code to force Vivado
HLS to register intermediate points on the failing RTL path.

Now that all the loops are pipelined, it is worthwhile to review the design to see if there are
performance-limiting "bottlenecks.” Bottlenecks are limitations in the flow of data that can
prevent the logic blocks from working at their maximum data rate.

High-Level Synthesis
UG871 (v2019.1) May 22, 2019

www.Xxilinx.com

l Send Feedback I 124

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=124

(: X”_INX® Chapter 6: Design Analysis

Such limitations in the data flow can come from a number of sources, for example, I/O ports
and arrays implemented as block RAM. In both cases, the finite number of ports (on the I/O
or block RAM) limits the rate at which data can be read or written.

Another source of bottlenecks is data dependencies in the original source code. In some
cases, these data dependencies are inherent in how the algorithm operates, as when a
calculation cannot be performed until an earlier calculation has completed. Sometimes,
however, the use of an optimization directive or a minor change to the C code can remove
them.

The first task is to identify such issues in the RTL design. There are a number of approaches
you can take:

« Start with the largest latency or interval in the Module Hierarchy report and navigate
down the hierarchy to find the source of any large latency or interval.

« Click the Resource Profile to examine I/O and memory usage.

« Use the power of the graphical viewer and look for patterns in the Performance view
which indicate a limitation in data flow.

In this case, you will use the latter approach. You can use the Analysis perspective to
identify such places in the design quickly.

7. Click the Analysis perspective button to begin interactive design analysis.
8. In the Module Hierarchy, ensure module dct is selected.

9. In the Performance view, expand the first loop in the design as shown in Figure 6-21,
RD Loop Row_RD Loop_ Col (these loops were flattened and the name is now a
concatenation of both loops).

This loop is implemented in two states. The red arrow in Figure 6-21 shows the path from
the start of the loop to the end of the loop: the arrow is almost vertical (everything happens
in two clock cycles) and this loop is well implemented in terms of latency.

High-Level Synthesis N Send Feedback 125
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=125

(: X”_INX® Chapter 6: Design Analysis

Operation!\ Control Step 0 . 7] 4 5 6

v RD_Loop_Row RD Loop_Col

k RD_Loop_Rof RD_Loop C...
indvar flatten(phi_mux) i

\

r_0_i(phi_mux)

¢ 0_ifphi_mux]

icmp_n103(icmp)

add_In103(+)

i(+]

icmp_In103(icmp)

select In103(select)

gelect In103_1(select)

add_In106{+)

input_load(read)

)

add_In106_1(+)

buf 2d in_addr write_In106(write)
det_2d(function)
WR_Loop_Row_WR_Loep_Col

-

3

|
|
i “WR Laap el VR Laan ..

1 1

Figure 6-21: Analysis of DCT RD_Loop_Row

10. In the Performance view, expand the WR_Loop_Row_WR_Loop_Col and perform similar
analysis. It is similarly well optimized for latency.

11. Double-click function dct_2d and navigate into the dct_2d function.

You can use same analysis process down through the hierarchy. If you perform this analysis
you will discover that all the function blocks and loops have a similar optimal (few cycles)
implementation, until the dct_1d block is examined.

12.1In the Performance view, double-click function dct 142 and navigate into the
dct_1d2 function.

13. Expand the DCT Outer Loop to see the view shown in Figure 6-22.

Figure 6-22 shows a very different view from the earlier loop schedules (which had only a
few cycles of latency). The schedule shows a long drift from input to output (as shown by
the red arrow).

Figure 6-22 shows the analysis of dct _1d RD Loop_ Row.

High-Level Synthesis N Send Feedback 126
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=126

& XILINX.

Outer_Loop

Diphi_muz)
mp_In33{icmp)

+]

id_InB3_&(+)
it_coeff_table_0_lo(read)
c_load(read)
it_coeff_table_1_lo(read)
c_load_1{read)
it_coeff_table_2_lo(read)
it_coeff_table_3_lo(read)
it_coeff_table_d_lo(read)
it_coeff_table_5_lo(read)
it_coeff_table_6_lo(read)
it_coeff_table_7_lo(read)
wl_In@1(*)

wl_In@1_1(%)
c_load_2{read)
c_load_3{read)
id_InB3_1{+)
wl_InG1_2(*)
wl_InG1_3(%)
c_load_3{read)
c_load_7{read)
id_InB3_2(+)
c_load_4{read)
wl_In@1_5(*)
c_load_&{read)
wl_In@1_7(%)
id_InB3_3(+)
id_InB3_5(+)
wl_In@1_4(%)
wl_InG1_6(%)
id_InG3_4{+)
id_InB3_6(+)
id_InB3_7(+)

id_InB3(+)
it_addr_write_InB3(write)

Figure 6-22:

Chapter 6: Design Analysis

- DCT_Quter_ Loop 1i=4

4
" S

4
v

Analysis of dct_1d RD_Loop_Row

There are typically two things that cause this type of schedule: data dependencies in the
source code and limitations due to I/O or block RAM. You will now examine the resources

sharing in this block.

14.In the Performance view, click the Resource Viewer tab at the bottom of the window.

High-Level Synthesis
UG871 (v2019.1) May 22, 2019

www.Xxilinx.com

| Send Feedback I 127

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=127

(: X”_INX® Chapter 6: Design Analysis

15. Expand the Memory Ports, as shown in Figure 6-23.

Operation\Control Step | 0 | 1 | 2 | 3 | 4

[+]1/0 Ports
v [+]Memaory Ports
dect_coeff_table_7(p0)

det_coeff_table_1(p0)
dect_coeff_table_0(p0)
dect_coeff_table_5(p0)
dst(pl)
[+]Expressions

rﬁiid
det_coeff_table_4(p0) I'Hiid
det_coeff_table_3(p0) I'Hiid
srclpl) e e e,
dect_coeff_table_2(p0) I'Hiid
dect_coeff_table_6(p0) I'Hiid
srcipl) e e e,
e
i
e
i
e

Figure 6-23: Resource Sharing of Memory Ports in DCT_1d

The Resource view shows how the resources in the design are used in different control
states.

The rows list the resources in the design. In Figure 6-23, the memory resources are
expanded.

The columns show the control states in which the resource is used. If a resource is active in
multiple states, the resource is being re-used in different clock cycles.

Figure 6-23 shows the memory accesses on block RAM src are being used to the maximum
in every clock cycle. (At most, a block RAM can be dual-port and both ports are being used).
This is a good indication the design may be bandwidth-limited by the memory resource. To
determine if this really is the case, you can examine further.

16. Select one of the read operations for the src block RAM.

17. Right-click and select Goto Source to see the view shown in Figure 6-24.

High-Level Synthesis N Send Feedback 128
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=128

(: X”_INX® Chapter 6: Design Analysis

Operation\Control Step 0 T) 3 | 5
[+]/0 Parts A
v [+|Memary Ports
dct_coef table 7(p0) m;ad
det._coeff table 4(pl) rpiad
det_coeff table 3(p0) read
stc(pl) :I"i # o red
det_coeff table 2(p0) reiad
det._coeff table G(pl) rpiad
sre(pl) " 8 ® ezt
det_coeff table_1(p0) mlad
det_coeff table 0(p0) reiad
det._coeff table_3(pl) rearl
dst(pl) | write
[+1Expressions g
¢ } |

ichedule Viewer | Resource Viewer

jProperties & Warnings | b¢| C Souree £f

File: CAVivado_HLS Tutorial\Design_Analysis\labT\dct.cpp
560CT_Outer_Loap

57 forfk =0k < DCT_3IZE; ke#){
580CT_Inner_Loap:

% forln=0.tnp=0n<0CT_SIZE:n++){
B0 intcoefi= (infdct coeft tale[k][n);

£ tmp += srcfn] * coeft

R}

6 dst]=DESCALEtmp, CONET BITS)
B}

65}

Figure 6-24: Memory Resource SRC and Source Code

Figure 6-24 shows this read on the src variable is from the read operation inside loop
DCT Inner Loop. This loop was automatically unrolled when DCT Outer Loop was
pipelined and all operations in this loop can occur in parallel (if data dependencies allow).

The eight reads are being forced to occur over multiple cycles because the array src is
implemented as a block RAM in the RTL and a block RAM can only allow two reads
(maximum) in any one clock cycle. In Figure 6-24, the read operations take 2 clocks cycles:
a cycle to generate the address for the block RAM and a cycle to read the data. Only the
launch (address generation cycle) is shown because it overlaps with the operation in the
next clock cycle.

High-Level Synthesis N Send Feedback 129
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=129

(: X”_INX® Chapter 6: Design Analysis

You can optimize the block RAM accesses using optimization directives to partition the
block RAM. The array that function dct _1d accesses is defined as an input argument to the
function and therefore resides outside this block.

« The input array to the first instance of dct_1d is buf 2d_in in function dct.

« The input array to the second instance of dct _1d is col inbuf in function dct_2d.

In both cases, the arrays are 2-dimensional of size DCT_SIZE by DCT_SIZE (8x8). By default,
this results in a single block RAM with 64 elements. Because the arrays are configured in the
code in the form of Row by Column, we can partition the second dimension and create eight
separate Block RAMs: one for each row, allowing the row data to be accessed in parallel.

18. Click the Synthesis perspective button to return to the main synthesis view.

Step 7: Partition Block RAMs and Analyze Concurrency

1. Select the New Solution toolbar button or use the menu Project > New Solution to
create a new solution, solution4.

2. Click Finish and accept the defaults to create solution4.
3. Ensure the C source code is visible in the Information pane.
4. 1In the Directive tab:

a. In function dct, select array buf _2d_in.

b. Right-click and select Insert Directive.

c. In the Directives Editor dialog box, activate the Directive drop-down menu at the
top and select ARRAY_PARTITION.

d. Set the type to Complete.

e. Change the dimension setting to 2 to partition the array along the second
dimension.

f. Click OK.

5. Repeat this process for array col inbuf in function dct 24d.

The Directive pane displays optimization directives, as shown in Figure 6-25 (the two new
directives are highlighted).

High-Level Synthesis N Send Feedback 130
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=130

(: X”_INX® Chapter 6: Design Analysis

o= Outline |4 Directive =g

@ dct_1d
#[1 dect_coeff_table
%" DCT_Outer_Loop
96 HLS PIPELINE
%" DCT_Inner_Loop
@ dct_2d
=[1 row_outbuf
#[1 col_outbuf
#[1 col_inbuf
9 HLS ARRAY_PARTITION variable=col_inbuf complete dim=2
%" Row_DCT_Loop
%" Xpose_Row_Outer_Loop
3 Xpose_Row_Inner_Loop
96 HLS PIPELINE
%' Col_DCT_Loop
%" Xpose_Col_Outer_Loop
%" Xpose_Col_Inner_Loop
96 HLS PIPELINE
@ read_data
%" RD_Loop_Row
¥ RD_Loop_Col
96 HLS PIPELINE
@ write_data
%" WR_Loop_Row
%" WR_Loop_Col
96 HLS PIPELINE
@ dct
=[] buf_2d_in
96 HLS ARRAY_PARTITION variable=buf_2d_in complete dim=2
=[] buf_2d_out
@ input
2 output

Figure 6-25: Optimization Directives for Array Partitioning
6. Click the Run C Synthesis toolbar button to synthesize the design to RTL.

7. When synthesis completes, use the Compare Reports toolbar button to compare
solutions 3 and 4.

Figure 6-26 shows the results of comparing solution3 and solution4. Improving access to
the data in the src block RAM in the dct_1d block has improved the overall performance
because the dct_1d block executes frequently.

High-Level Synthesis N Send Feedback 131
UG871 (v2019.1) May 22, 2019 www.xilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=131

& XILINX.

Figure 6-26:

Performance Estimates

-] Timing (ns)
Clock zolution3 | =olutiond
ap_clk | Target 2.00 3.00

Estimated | 6351 £.904
- Latency (clock cycles)

solution3 | solutiond

Latency | min | 843 477

max | 243 477
Interval | min | 243 477

max | 243 477

Chapter 6: Design Analysis

DCT Solution3 and Solution4 Comparison

You can review the impact of the partitioning directive on the device resource.

8. Click the Analysis perspective button to begin interactive design analysis.

9. In the Module Hierarchy, ensure module dct is selected.

10. Select the Resource Profile tab in the lower-left.

11. Expand the Memories and Expressions see the view in Figure 6-27.

EEI Performance Profile || . Resource Profile &3
BRAM DSP FF LUT
Wi 3 8 1003 1879
32
‘Eg Instances(2) 2 8 711 1320
w B Memories(9) 1 256 16 144
¢ buf 2d_ out U 1 0 (] 16
¢ buf 2d_in 6 U 0 32 2 16
¢ buf 2d_in 53U 0 32 2 16
¢ buf 2d_in 4 U 0 32 2 16
¢ buf 2d_in_3 U 0 32 2 18
¢ buf 2d_in_7 U 0 32 2 18
¢ buf 2d_in 2 U 0 32 2 18
¢ buf 2d_in_1.U 0 32 2 16
¢ buf 2d_in 0 U 0 32 2 16
W E Expressions(11) 0 0 0 103 39
@ + 0 0 0 69 23
@ icmp 0 0 /] 22 11
@ select 0 0 0 8 2
@ xor 0 0 0 4 3
Figure 6-27:

Bits PO Bits M1

44

23
13
5
3

BB~ O

Bits P2 Banks/Depth Words W*Bits"Banks

L=R - - I = = = -}

DCT Resource Profile

JEEA U IO U I I T =]

-
(]
[=-]

20438
1024
128
128
128
128
128
128
128
128

@ o m e e,

The Resource Profile shows the resources being using at the current level of hierarchy (the

block selected in the Module Hierarchy pane). Figure 6-27 shows:

High-Level Synthesis

UGS871 (v2019.1) May 22, 2019

www.Xxilinx.com

| Send Feedback I 132

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=132

(: X”_INX® Chapter 6: Design Analysis

« This block has two I/O ports.
« Most of the area is due to instances (sub-blocks) within this block.

« There are nine memories, eight of which are the partitioned buf_2d_in block RAM. Since
they are less than 1024 bits they are automatically implemented as LUTRAM.

» Most of the logic (expressions) at this level of hierarchy is due to adders, with some due
to comparators and selectors.

The important point from the previous optimization is that you can see there are now
additional memories due to the array partitioning optimization.

You still have a goal to ensure that the design can accept a new set of samples every 125

clock cycles. The synthesis report, however, shows that you can only accept new data every
477 clocks. This is much better than the original, pre-optimized design (approx. 2600 clock
cycles), but further optimization is required.

Up to this point, you have focused on improving the latency and interval of each of the
individual loops and functions in the design. You must now apply the dataflow
optimization, which enables the individual loops and functions to execute in parallel, thus
improving the overall design interval.

12. Click the Synthesis perspective button to return to the main synthesis view.

Step 8: Partition Block RAMs and Apply Dataflow optimization

1. Select the New Solution toolbar button or use the menu Project > New Solution to
create a new solution, solution5.

2. Click Finish and accept the defaults to create solution5.
3. Ensure the C source code is visible in the Information pane.
4. In the Directive tab:

a. Select the top-level function dct.

b. Right-click and select Insert Directive.

c. In the Directives Editor dialog box activate the Directive drop-down menu and
select DATAFLOW.

d. Click OK.

The Directive pane now displays the following optimization directives (the new directive is
highlighted).

High-Level Synthesis N Send Feedback 133
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=133

(: X”_INX® Chapter 6: Design Analysis

o= Outline |4 Directive =g

4 © dct_1d
#[1 dect_coeff_table
4 %" DCT_Outer_Loop
96 HLS PIPELINE
%" DCT_Inner_Loop
4 © dct_2d
=[1 row_outbuf
#[1 col_outbuf
#[1 col_inbuf
9 HLS ARRAY_PARTITION partition variable=col_inbuf complete dim=2
%" Row_DCT_Loop
4 %" Xpose_Row_Outer_Loop
a Xpose_Row_Inner_Loop
96 HLS PIPELINE
%' Col_DCT_Loop
4 %" Xpose_Col_Outer_Loop
4 %" Xpose_Col_Inner_Loop
96 HLS PIPELINE
4 @ read_data
4 %' RD_Loop_Row
4 %' RD_Loop_Col
96 HLS PIPELINE
4 @ write_data
4 %" WR_Loop_Row
4 % WR_Loop_Col
96 HLS PIPELINE
4 @ dct
9 HLS DATAFLOW
=[] buf_2d_in
9b HLS ARRAY_PARTITION partition variable=buf_2d_in complete dim=2
=[] buf_2d_out
@ input
2 output

Figure 6-28: Dataflow Optimization for the DCT Design
5. Click the Click the Run C Synthesis toolbar button to synthesize the design to RTL.

6. When synthesis completes, use the Compare Reports toolbar button or the menu
Project > Compare Reports to compare solutions 4 and 5.

Figure 6-29 shows the results of comparing solution4 and solution5, and you can see the
interval has improved. The design takes 476 clocks cycles to produce the outputs but can
now accept new inputs every 343 clocks.

High-Level Synthesis N Send Feedback 134
UG871 (v2019.1) May 22, 2019 www.xilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=134

(: X”_INX® Chapter 6: Design Analysis

Performance Estimates

= Timing (ns)
Clock solutiond | solution3
ap_clk | Target 8.00 2.00

Estimated | 6.904 6.904
-] Latency (clock cycles)

solutiond | sclutions

Latency | min | 477 476

max | 477 478
Interval | min | 477 343

max | 477 343

Figure 6-29: DCT Solution4 and Solution5 Comparison

This is still greater than the 125 cycles required, so you must analyze the current
performance.

7. Click the Analysis perspective button to begin interactive design analysis.

8. In the Module Hierarchy, you can see dct _dct 2d accounts for most of the interval.
Ensure module dct_2d is selected to see the view in Figure 6-30.

H Module Hierarchy = = 8
MNegative Slack BRAM D3P FF LUT Latency Interval Pipeline type
v F det - 3 g 1009 1654 476 343 dataflow
v @ dct_2d - 2 g2 684 111 342 342 none
o dct_1d - 0 g 350 200 M 1 none
@ write_data -] 0 32 186 66 66 none
@ read_data -] 0 29 171 66 66 none
E£F Performance Profile 52 | . Resource Profile = = 8
Pipelined Latency Iteration Latency Initiation Interval Trip count
v @ dct_2d - 342 - 342 -
@ Row_DCT_Loop no 104 13 - 2
@ Xpose_Row_Outer_Loop_Xpose_Row_Inner_Loop yes b4 2 1 B4
@ Col DCT_Loop no 104 13 - 2
@ Xpose Col_Outer Loop_¥pose_Col_lnner_Loop yes b4 2 1 B4

Figure 6-30: DCT Analysis View after Dataflow Optimization

Here, you can see two things:
« The interval of the dct block is less than the sum of the individual latencies (for

read data, dct_2d and write data). This means the blocks are operating in
parallel.

High-Level Synthesis N Send Feedback 135
UG871 (v2019.1) May 22, 2019 www.xilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=135

(: X”_INX® Chapter 6: Design Analysis

« The interval of dct is nearly the same as the interval for sub-block dct _2d. The
dct_ 2d block is therefore the limiting factor.

Because the dct_2d block is selected in the Module Hierarchy the Performance Profile
shows the details for this block. Figure 6-31 shows the interval is the same as the latency, so
none of these blocks operate in parallel.

One way to have the blocks in dct_2d operate in parallel would be to pipeline the entire
function. This, however, would unroll all the loops, which can sometimes lead to a large area
increase. An alternative is use dataflow optimization on function dct_2d.

Another alternative is to use a less obvious technique: raise these loops up to the top-level
of hierarchy, where they will be included in the dataflow optimization already applied to the
top-level. This can be achieved by using an optimization directive to remove the dct_2d

hierarchy: inline the dct_ 24 function.

Before performing this optimization, review the area increase caused by using dataflow
optimization.

9. In the Module Hierarchy, ensure module dct_2d is selected.
10. Activate the Resource Profile view.

11. Expand the memories to see the view in Figure 6-31.

High-Level Synthesis N Send Feedback 136
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=136

& XILINX.

E] Module Hierarchy

Megative Slack BRAM DSP

v 8: det
v @ dct_2d

@ dect_1d
@ write_data
@ read_data

EF Performance Profile || Resource Profile &2

BRAM

v @ dct 2d 2
gt /0 Ports(9)
?g Instances(1) 0
v [Memories(10) 2
& row_outhuf_ 1
col_outbuf L 1
col_inbuf 0_ 0
col_inbuf 1_ 10
col_inbuf 6_ 0
col_inbuf 7_ 0
colinbuf 2_ 0
colinbuf 3_ 0
col_inbuf 4_ 0
col_inbuf 5_ 0
E Expressions(26) 0
1% Registers(23)

9 g g g e e e e

Channels(0) 0
@ Multiplexers(54) 0
DSP(1)

DsP FF

8

684

330
236
0

0

32
32
32
2
32
32
32
32
0
78
0

0

L= =R ==

Figure 6-31:

3
3
8
0
0

LuT
1M

200
16

=)

[T S R S R R]

239

0
716

FFLUT Latency

1008 1654 476
B84 1171 342
330 200 M
32 186 66
29 17 66

Interval

343
42
"
&6
66

Chapter 6: Design Analysis

Pipeline type
dataflow
none

none

none

none

e |

+ —|

Bits PO Bits P1 Bits P2 Banks/Depth Words W*Bits*Banks

144

160
16
16
16
16
16
16
16
16
16
16
100 48 16
78
0
242

=

RN U A A T N A 1 S N Y

DCT Resource Profile

—y
w
(%]

3072
1024
1024
128
128
128
128
128
128
128
128

12. Click the Synthesis perspective button to return to the main synthesis view.

Step 9: Optimize the Hierarchy for Dataflow

> w N

In the Directive tab:

a. Select function det_24d.

b. Right-click and select Insert Directive.

High-Level Synthesis
UG871 (v2019.1) May 22, 2019

www.Xxilinx.com

Click Finish and accept the defaults to create solution6.

Ensure the C source code is visible in the Information pane.

Select the New Solution toolbar button to create a new solution, solution6.

l Send Feedback I 137

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=137

(: X”_INX® Chapter 6: Design Analysis

¢. In the Directives Editor dialog box activate the Directive drop-down menu at the
top and select INLINE.

d. Click OK.
The Directive pane now shows the following optimization directives (the new directive is
highlighted).
&= Outline |4 Directive &2 =8
© ® dct 1d

®[1 dct_coeff_table
%" DCT_Outer_Loop
% HLS PIPELINE
%" DCT_Inner_Loop
1 @ dct_2d
% HLS INLINE
=1 row_outbuf

#[1 col_outbuf

=[] col_inbuf

9 HLS ARRAY_PARTITION partition variable=col_inbuf complete dim=2
%" Row_DCT_Loop

%" Xpose_Row_Outer_Loop

4 Xpose_Row_Inner_Loop
9 HLS PIPELINE
%' Col_DCT_Loop
%" Xpose_Col_Outer_Loop

1 " Xpose_Col_Inner_Loop
96 HLS PIPELINE
1 @ read_data
%" RD_Loop_Row
+ ¥ RD_Loop_Col
96 HLS PIPELINE
@ write_data
%" WR_Loop_Row
+ ¥ WR_Loop_Col
96 HLS PIPELINE
1 @ dct
9b HLS DATAFLOW
=[] buf_2d_in
9b HLS ARRAY_PARTITION partition variable=buf_2d_in complete dim=2
#[1 buf_2d_out
@ input
2 output

Figure 6-32: Dataflow Optimization for the DCT Design
5. Click the Run C Synthesis toolbar button to synthesizes the design to RTL.

6. When synthesis completes, use the Compare Reports toolbar button or the menu
Project > Compare Reports to compare solutions 5 and 6.

Figure 6-33 shows the results of comparing solution5 and solution6. You can see the
interval has improved substantially.

High-Level Synthesis N Send Feedback 138
UG871 (v2019.1) May 22, 2019 www.xilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=138

& XILINX.

Performance Estimates

-] Timing (ns)
Clock solutiond | solutiont
ap_clk | Target 8.00 8.00

Estimated | 6904 £.904
-1 Latency (clock cycles)

colution3 | solutionf

Latency | min | 476 463

max | 476 463
Interval | min | 343 98

max | 343 i

Chapter 6: Design Analysis

Figure 6-33: DCT Solution5 and Solution6 Comparison

The interval is now below the 125 clock target. This design can accept a new set of inputs

data every 98 clock cycles.

Conclusion

In this tutorial, you learned:

« How to analyze a design using the analysis perspective.

* How to cross-link operations in the views with the C code.

« How to apply and judge optimizations.

« A methodology for taking the initial design results and creating an implementation

which satisfies the design goals.

High-Level Synthesis

UG871 (v2019.1) May 22, 2019 www.xilinx.com

| Send Feedback I 139

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=139

& XILINX

Chapter 7

Design Optimization

Overview

A crucial part of creating high quality RTL designs using High-Level Synthesis is having the
ability to apply optimizations to the C code. High-Level Synthesis always tries to minimize
the latency of loops and functions. To achieve this, within the loops and functions, it tries to
execute as many operations as possible in parallel. At the level of functions, High-Level
Synthesis always tries to execute functions in parallel.

In addition to these automatic optimizations, directives are used to:

« Execute multiple tasks in parallel, for example, multiple executions of the same function
or multiple iterations of the same loop. This is pipelining.

« Restructure the physical implementation of arrays (block RAMs), functions, loops and
ports to improve the availability of data and help data flow through the design faster.

« Provide information on data dependencies, or lack of them, allowing more
optimizations to be performed.

The final optimization technique is to modify the C source code to remove unintended
dependencies in the code that may limit the performance of the hardware.

This tutorial consists of two lab exercises. You may perform the analysis in these lab
exercises using the Analysis perspective. A prerequisite for this tutorial is completion of the
Chapter 6, Design Analysis tutorial.

Lab 1 Description

Contrast the uses of loop and function pipelining to create a design that can process one
sample per clock. This lab includes examples that give you the opportunity to analyze the
two most common causes for designs failing to meet performance requirements: loop
dependencies and data flow limitations or bottlenecks.

Lab 2 Description

This lab shows how modifications to the code from Lab 1 can help overcome some
performance limitations inherent, but unintended, in the code.

High-Level Synthesis N Send Feedback 140
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=140

2: X”_INX® Chapter 7: Design Optimization

Tutorial Design Description

You can download the tutorial design file from the Xilinx Website. See the information in
Locating the Tutorial Design Files.

For this tutorial, you use the design files in the tutorial directory
Vivado HLS Tutoriall\Design Optimization.

The sample design you use in the lab exercise is a matrix multiplier function. The design
goal is to process a new sample every clock period and implement the interfaces as
streaming data interfaces.

Lab 1: Optimizing a Matrix Multiplier

This exercise uses a matrix multiplier design to show how you can fully optimize a design
heavily based on loops. The design goal is to read one sample per clock cycle using a FIFO
interface, while minimizing the area.

The analysis includes a comparison of a methodology that optimizes at the loop level with
one that optimizes at the function level.

ﬁ IMPORTANT: The figures and commands in this tutorial assume the tutorial data directory
Vivado_HLS_Tutorial is unzipped and placed in the location C:\Vivado_HLS_Tutorial. If the tutorial data
directory is unzipped to a different location, or on Linux systems, adjust the few pathnames referenced,
to the location you have chosen to place the Vivado_HLS_Tutorial directory.

Step 1: Create and Open the Project

1. Open the Vivado HLS Command Prompt.

- On Windows use Start > All Programs > Xilinx Design Tools > Vivado 2019.1 >
Vivado HLS > Vivado HLS 2019.1 Command Prompt.

o On Linux, open a new shell.

2. Using the command prompt window (Figure 7-1), change directory to the Design
Optimization tutorial, lab1l.

3. Execute the Tcl script to set up the Vivado HLS project, using the command
vivado _hls -f run hls.tcl, as shown in Figure 7-1.

High-Level Synthesis N Send Feedback 141
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=141

(: X”_INX® Chapter 7: Design Optimization

C:\VUivado_HLS_Tutorial>cd Design_Optimization

C:\Vivado_HLS_Tutorial\Design_Optimization>cd labl

4 [

C:\Uivado_HLS_Tutorial\Design_Optimization\labl>vivado_hls -f run_hls.tcl

Figure 7-1: Setup the Design Optimization Tutorial Project

4. When Vivado HLS completes, open the project in the Vivado HLS GUI using the
command vivado hls -p matrixmul prj, as shown in Figure 7-2.

@I [HLS-18] Creating and opening solution 'C:/Uivado_HLS_Tutorial/Design_Optimizjg

ation/labl/matrixmul _prj/solutionl’.

@I [HLS-18] Cleaning up the solution database.

@I [HLS-18] Setting target device to 'xcTk160tfbgi84-1"

@I [SYN-201] Setting up clock ‘'default’ with a period of 13.3333ns.
Compiling ../../../../matrixmul_test.cpp in debug mode
Compiling ../../../../matrixmul.cpp in debug mode
Generating csim.exe

Test passes.

@I [SIM-1] CSim done with O errors.

@I [LIC-101] Checked in feature [HLS]

4 [

C:\Uivado_HLS_Tutorial\Design_Optimization\labl>vivado_hls -p matrixmul_prj

Figure 7-2: Open Design Optimization Project for Lab 1

5. Expand the Sources folder in the Explorer pane and double-click matrixmul.cpp to
view the source code (Figure 7-3).

Scroll down the file to see that the source code has two input arrays, a and b, and output
array res. Hold the mouse over the macros (as shown in Figure 7-3) to see that each is
three-by-three for a total of nine elements.

[t5 Explorer &2 = B[¢ matrixmul.cpp &3 =0
=5 matrixmul_prj 46 #include "matrixmul.h” -
! Includes a7
= Source 48 void matrixmul(
" B matrienul o 49 mat_a_t a[MAT_A ROWS][MAT A COLS],
LE B A -
o Teot Bonch 50 mat_b_t b[MAT_B_ROWS][[acro Expansion
= 51 result_t r“es[J\MT_A_RDL\I'3)
= solution1 52 {
- Press 'F2' for focus|
constraints 53 // Iterate over the rows o IL"":‘ HT rlnleul_x
4 directives.tcl 54 Row: for(int i = @; i < MAT_A ROWS; i++) { i
4 scripticl 55 // Iterate over the c.o'_‘.m-'s of the SImatr“ix i
- 56 Col: for(int j = @; j < MAT_B_COLS; j++) {
= csim - ST
o 57 res[1][j] = @;
& build 58 // Do the inner nroduct of a row of A and col of R -
= report < 1l 3

Figure 7-3: Source Code for the Matrix Multiplier

Step 2: Synthesize and Analyze the Design

1. Click the Run C Synthesis toolbar button to synthesize the design to RTL.

High-Level Synthesis N Send Feedback 142
UG871 (v2019.1) May 22, 2019 www.xilinx.com L\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=142

2: X”_INX® Chapter 7: Design Optimization

When synthesis completes, the synthesis report opens (Figure 7-4), and the Performance
Estimates appear:

« Theinterval is 80 clock cycles. Because there are nine elements in each input array, the
design takes approximately nine cycles per input read.

« The interval is one cycle longer than the latency, so there is no parallelism in the
hardware at this point.

« The latency/interval is due to nested loops.

- The inner loop called Product:
- Has a latency of 2 clock cycles.
- Has 6 clock cycles total for all iterations.

o The Col loop:
- It requires 1 clock to enter loop Product and 1 clock to exit.
- It takes 8 clock cycles for each iteration (1+6+1).
- Has 24 cycles for all iterations to complete.

- The top-level loop has a latency of 26 clock cycles per iteration, for a total of 78
clock cycles for all iterations of the loop.

High-Level Synthesis N Send Feedback 143
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=143

(: X”_INX® Chapter 7: Design Optimization

High-Level Synthesis

Performance Estimates

- Timing (ns)
= Summary
Clock | Target | Estirnated | Uncertainty
ap_clk 13.33 3.576 1.67

-1 Latency (clock cycles)

= Summary

Latency Interval

min | max | min | max | Type

79 79 79 79 | none
- Detail
+ Instance
i Loop
Latency Initiation Interval

Loop Mame | min | max | lteration Latency | achieved | target | Trip Count | Pipelined
- Row 73 73 26 - - 3 no
+ Col 24 24 2 - - 3 no
++ Product & & 2 - - 3 no

Figure 7-4: Synthesis Report for the Matrix Multiplier

You can do one of two things to improve the initiation interval: Pipeline the loops or
pipeline the entire function. You begin by pipelining the loops and then compare those
results to pipelining the entire function.

When pipelining loops, the initiation interval of the loops is the important metric to
monitor. As seen in this exercise, even when the design reaches the stage at which the loop
can process a sample every clock cycle, the initiation interval of the function is still reported
as the time it takes for the loops contained within the function to finish processing all data
for the function.

Step 3: Pipeline the Product Loop

1. Select the New Solution toolbar button or use the menu Project > New Solution to
create a new solution, solution2.

2. Click Finish and accept the defaults to create solution2.

3. Ensure the C source code is visible in the Information pane.

When pipelining nested loops, you realize the greatest benefit by pipelining the inner-most
loop, which processes a sample of data. High-Level Synthesis automatically applies loop

. | Send Feedback I 144
UG871 (v2019.1) May 22, 2019 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=144

2: X”_INX® Chapter 7: Design Optimization

flattening, collapsing the nested loops, removing the loop transitions (essentially creating a
single loop with more iterations but overall fewer clock cycles).

4. In the Directive tab:
a. Select loop Product.
b. Right-click and select Insert Directive.

c. In the Directive Editor dialog box, activate the Directive drop-down menu at the
top and select PIPELINE.

d. Click OK. With the default options, an initiation interval (II) of 1 (one new loop
iteration per clock) will be the default.

The Directive pane should show the following optimization directives. (The new directive is
highlighted.)

o= Outline |4 Directive &3 =g

4 @ matrixmul
2 a
@b
? res
4% Row
2% Col
4% Product
% HLS PIPELINE

Figure 7-5: Initial Pipeline Directive

5. Click the Run C Synthesis toolbar button to synthesize the design to RTL.

During synthesis, the information reported in the Console pane shows loop flattening was
performed on loop Row and that the default initiation internal target of 1 could not be
achieved on loop Product due to a dependency.

INFO: [XFORM 203-541] Flattening a loop nest 'Row' (matrixmul.cpp:54:37) in function
'matrixmul’.

INFO: [SCHED 204-61] Pipelining loop 'Product'.
WARNING: [SCHED 204-68] Unable to enforce a carried dependency constraint (II = 1,
distance = 1)

between 'store' operation (matrixmul.cpp:60) of variable 'tmp 8', matrixmul.cpp:60
on array 'res' and 'load' operation ('res load', matrixmul.cpp:60) on array 'res'.
INFO: [SCHED 204-61] Pipelining result: Target II: 1, Final II: 2, Depth: 2.

High-Level Synthesis N Send Feedback 145
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=145

8 X”_INX® Chapter 7: Design Optimization

The synthesis report (Figure 7-6) shows that although the Product loop is pipelined with an
interval of 2, the interval of top-level loop is not pipelined.

Performance Estimates
-] Timing (ns)

-1 Summary

Clack | Target | Estirnated | Uncertainty
ap_clk 13.33 4,306 1.67

-1 Latency (clock cycles)

-1 Summary

Latency Interval

min | max | min | max | Type
a2 a2 a2 82 | none

I Detail

¥ Instance

Latency Initiaticn [nterval
Loop Mame | min | max | |teration Latency | achieved | target | Trip Count | Pipelined
- Row_Col g1 a1 9 - - 9 no
+ Product b b 2 2 1 3 =

Figure 7-6: Matrixmul Initial Pipeline Report

The reason the top-level loop is not pipelined is that loop flattening only occurred on loop
Row_Col. There was no loop flattening of loop Col into the Product loop. To understand why
loop flattening was unable to flatten all nested loops, use the Analysis perspective.

6. Open the Analysis perspective.

7. In the Performance View, expand loops Row_Col and Product.
8. Select the write operation in state C1.
9

Right-click and select Goto Source to see the view in Figure 7-7.

The write operation in state C1 is due to the code that sets res to zero before the Product
loop. Because res is a top-level function argument, it is a write to a port in the RTL: This
operation must happen before the operations in loop Product are executed. Because it is
not an internal operation but has an impact on the I/O behavior, this operation cannot be
moved or optimized. This prevents the Product loop from being flattened into the Row_Col
loop.

High-Level Synthesis N Send Feedback 146
UG871 (v2019.1) May 22, 2019 www.xilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=146

2: X”_INX® Chapter 7: Design Optimization

Operation\Control Step |

indvar_flatten_nesxt(+] ~
i_1(+)

exitcond1(icmp)

j_mid2(select)

trp_mid2_v(select)

tmp_1(-)

trp_si(+)

node_33(write) _..J-r"'_‘:p
Product
110+)

< >

- Procliulct ii=2
1

A

Schedule Viewer | Resource Viewer
i Properties | &4 Warnings ‘= DRCs| [£] C Source 52

File: C\Vivado_HLS_Tutorial\Design_Optimization\lab1\matrixmul.cpp
57 res[i[i] = 0

58 A Dothe inner product of & row of A and col of B

59 Froduct: for(int k = 0; k < MAT_B_ROWS; k++) £

60 res[il[i] += a[il[k] * b[k][]:
61}
62 1}

Figure 7-7: Matrixmul Initial Performance View

More importantly, it is worth addressing why only an initiation interval (II) of 2 was possible
for the Product loop (as shown in Figure 7-6).

The message SCHED-68 in the console pane (and file vivado_ hls.log) tells you:

WARNING: [SCHED 204-68] Unable to enforce a carried dependency constraint (II = 1,
distance = 1)

between 'store' operation (matrixmul.cpp:60) of variable 'tmp 8', matrixmul.cpp:60
on array 'res' and 'load' operation ('res_load', matrixmul.cpp:60) on array 'res'.

« Theissue is a carried dependency. This is a dependency between an operation in one
iteration of a loop and an operation in a different iteration of the same loop. For
example, an operation when k=1 and when k=2 (where k is the loop index).

« The first operation is a load (memory read operation) on array res on line 60.

« The second operation is a store (memory write operation) on array res on line 60.

From Figure 7-8 you can see line 60 is a read from array res (due to the += operator) and a
write to array res. An array is mapped into a block RAM by default and the details in the
Performance View can show why this conflict occurred.

The Performance view shows in which states the operations are scheduled. Figure 7-8
shows that two of the operations are responsible for the II violation. These are the
operations which have a dependency between loop iterations. The analysis view provides
that capability to filter the analysis view to the operations causing an Il violation. To use this
feature, select II Violation in the filter drop-down combo box.

High-Level Synthesis N Send Feedback 147
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=147

2: X”_INX® Chapter 7: Design Optimization

The first iteration of the loop shows the states in which the operations occur. The read in
states 2 and 3, and the write in state 3. The operation in the next iteration must start 1 cycle
after this, because the 2nd read cannot occur until the 1st write has finished: the operations
in each iteration of the loop are to a different address and only 1 address can be applied at
the same time.

= | & Q5L [1violstion v |

Operation'\Control Step 0 1 2 3

v Product - Product ii=2
res_load(read)

node_62(write)

|

£ I 4

Schedule Viewer | Resource Viewer
[Properties | & Wamings | “Z DRCs | || C Source &2

File: C:\Vivado_HL5_Tutenal\Design_Optimization\labT\matrixmul.cpp

s res[i]=0:
58 jfDatheinner product of a row of A and col of B
38 Product for(intk = 0; k <MAT_B_ROWS: k++) |

§0 res[i[] += afi][k]* bIKI.
a1 }

Figure 7-8: Carried Dependency Analysis

You cannot pipeline the Product loop with an initiation interval of 1. The next lab exercise
shows how re-writing the code can remove this limitation. In this lab exercise you will
continue to optimize the code as it is.

The next step is to pipeline the loop above, the Col loop. This automatically unrolls the
Product loop and creates more operators and hence more hardware resources, but it
ensures there is no dependency between different iterations of the Product loop.

10. Return to the Synthesis perspective.

Step 4: Pipeline the Col Loop

1. Select the New Solution toolbar button to create a new solution, solution3.

High-Level Synthesis N Send Feedback 148
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=148

2: X”_INX® Chapter 7: Design Optimization

2. Because solution2 already has a directive added, use the drop-down menu to select
solutionl as the source for existing directives and constraints (solutionl has none).

3. Click Finish and accept the default solution name, solution3.
4. Open the C source code matrixmul.cpp to make it visible in the Information pane.
5. In the Directive tab:

a. Select loop Col.

b. Right-click and select Insert Directive.

c. In the Directive Editor dialog box activate the Directive drop-down menu at the
top and select PIPELINE.

d. Click OK. With the default options, an initiation interval (II) of 1 (one new loop
iteration per clock) becomes the default.

The Directive pane, shown below, displays the following optimization directives (the new
directive is highlighted).

o= Outline |4 Directive &3 =g

@ matrixmu
@ a
@b
P res
4 % Row
4% Col
% HLS PIPELINE
% Product

Figure 7-9: Col Pipeline Directive

6. Click the Run C Synthesis toolbar button to synthesize the design to RTL.

During synthesis, the information reported in the Console pane shows that loop Product
was unrolled, loop flattening was performed on loop Row, and the default initiation internal
target of 1 could not be achieved on loop Row Col due to resource limitations on the
memory for array a.

INFO: [XFORM 203-502] Unrolling all sub-loops inside loop 'Col' (matrixmul.cpp:56) in
function 'matrixmul' for pipelining.

INFO: [XFORM 203-501] Unrolling loop 'Product' (matrixmul.cpp:59) in function
'matrixmul' completely.

INFO: [XFORM 203-541] Flattening a loop nest 'Row' (matrixmul.cpp:54:37) in function
'matrixmul’.

INFO: [SCHED 204-61] Pipelining loop 'Row Col'.
WARNING: [SCHED 204-69] Unable to schedule 'load' operation ('a load 1',
matrixmul.cpp:60) on array 'a' due to limited memory ports.

High-Level Synthesis N Send Feedback 149
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=149

2: X”_INX® Chapter 7: Design Optimization

INFO: [SCHED 204-61] Pipelining result: Target II: 1, Final II: 2, Depth: 3.

Reviewing the synthesis report shows, as noted above, that the interval for loop Row_Col is
only two: the target is to process one sample every cycle. Once again, you can use the
Analysis perspective to highlight why the initiation target was not achieved.

7. Open the Analysis perspective.

8. In the Performance View, expand the Row_Col loop

The operations on array a (mentioned in the SCHED-69 message above) are highlighted in
Figure 7-10. There are three read operations on array a. One operation in each state C1
through C3.

Arrays are implemented as block RAMs and arrays which are arguments to the function are
implemented as block RAM ports. In both cases a block RAM can only have a maximum of
two ports (for dual-port block RAM). By accessing array a through a single block RAM

interface, there are not enough ports to be able to read all three values in one clock cycle.

|#m wp | & L 52 || Focus OFF ~ [T

Operation\Centrol Step |

tmp_1(-) ~
a_load(read)
b_load(read)
tmp_8(+]
tmp_s(+]
a_load_2(read)
b_load_2(read)
10+
tmp_4(+]
tmp_9(+)
tmp_10(+)
tmp_T(*)
a_load_1{read)
b_load_1{read)

Figure 7-10: Matrixmul Pipeline Col Performance View

Another way to view this resource limitation is to use to the Resource pane.

9. Click the Resource tab.
10. Expand the Memory Ports to see the view shown in Figure 7-11.
In Figure 7-11 the 2-cycle read operations in state C1 overlap with those starting in state C2

and so only a single cycle is visible: however, it is clear that this resource is used in multiple
states.

High-Level Synthesis N Send Feedback 150
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=150

2: X”_INX® Chapter 7: Design Optimization

In looking at this view, it is clear that even when the issue with port a is resolved, the same
issue occurs with port b: it also has to perform 3 reads.

High-Level Synthesis can only report one schedule error or warning at a time, because, as
soon as the first issue occurs, the actions to create an achievable schedule invalidates any
other infeasible schedules.

Operation\Control Step | 0 |] | 3 | 3 |

[+]I/O0 Parts
w» [+]Memory Ports
(p0)
b(p0)
b(p1)
2(p1)
res(pl)
[+]Expressions

3 _3

Figure 7-11: Matrixmul Pipeline Col Resource View

High-Level Synthesis allows arrays to be partitioned, mapped together and re-shaped.
These techniques allow the access to array to be modified without changing the source
code.

11. Return to the Synthesis perspective.

Step 5: Reshape the Arrays

1. Select the New Solution toolbar button or use the menu Project > New Solution to
create a new solution, solution4.

2. Click Finish and accept the default solution name solution4.

Because the loop index for the Product loop is k, both arrays should be partitioned along
their respective k dimension: the design needs to access more than two values of k in each
clock cycle.

For array a, this is dimension 2 because its access patternsis a[i] [k]; for array b, this is
dimension 1 because its access patternis b [k] [j].

Partitioning these arrays creates MAT_A_COLS arrays - in this case, MAT_A_COLS number
ports. Alternatively, we can use re-shape instead of partition allowing one wide array (port)
to be created instead of k ports.

After this transformation, the data in the block RAM outside this block must be reshaped in
an identical manner: if this process is not done by HLS, the data must be arranged as:

High-Level Synthesis N Send Feedback 151
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=151

2: X”_INX® Chapter 7: Design Optimization

For array a: MAT_A_ROWS elements, each of width data_word_size times MAT_A_COLS.

5.

For array b: MAT_B_COLS elements, each of width data_word_size times MAT_B_COLS.

Open the C source code matrixmul.cpp to make it visible in the Information pane.

In the Directive tab, do the following:

a.
b.

C.

d.

e.

Select variable a.
Right-click and select Insert Directive.

In the Directive Editor dialog box activate the Directive drop-down menu at the
top and select ARRAY_RESHAPE.

Set the dimension to 2.

Click OK.

Repeat this process for variable b, but set the dimension to 1.

The Directive pane should show the following optimization directives.

o= Outline |4 Directive =g

@ matrixmul
2 a
% HLS ARRAY_RESHAPE reshape variable=a complete dim=2
b
% HLS ARRAY_RESHAPE reshape variable=b complete dim=1
d res
% Row
% Col
% HLS PIPELINE
% Product

Figure 7-12: Array Reshape Directive

6. Click the Run C Synthesis toolbar button to synthesize the design to RTL.

The synthesis report shows the top-level loop Row_Col is now processing data at 1 sample
per clock period (Figure 7-13).

High-Level Synthesis

o l Send Feedback I 152
UG871 (v2019.1) May 22, 2019 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=152

8 X”_INX® Chapter 7: Design Optimization

Performance Estimates

=] Timing (ns)

-] Summary
Clock | Target | Estimated | Uncertainty
ap_clk 13.33 7.566 1.67

-] Latency (clock cycles)

-] Summary

Latency Interval
min | max | min | max | Type
1 1 1A 1 | none

- Detail

¥ Instance

-] Loop

Latency Initiaticn Interval
Loop Mame | min | max | lteration Latency | achieved | target | Trip Count | Pipelined
- Row_Col 9 9 2 1 1 9 yes

Figure 7-13: Optimized Loop Processing Report
« The top-level module takes 11 clock cycles to complete.
« The Row_Col loop outputs a sample after 2 cycles (iteration latency).
« It then reads 1 sample every cycle (Initiation Interval).
« After 9 iterations/samples (Trip count) it completes all samples.

« 2+ 9=11clock cycles
The function can then complete and return to start to process the next set of data.

Now, change the block RAM interfaces to FIFO interfaces to allow for streaming data.

Step 6: Apply FIFO Interfaces
Select the New Solution toolbar button to create a new solution.
Click Finish and accept the default solution name, solution5.

Open the C source code matrixmul.cpp to make it visible in the Information pane.

H> W N

In the Directive tab, do the following:
a. Select variable a.

b. Right-click and select Insert Directive.

High-Level Synthesis N Send Feedback 153
UG871 (v2019.1) May 22, 2019 www.xilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=153

(: X”_INX® Chapter 7: Design Optimization

c. In the Directive Editor dialog box activate the Directive drop-down menu at the
top and select INTERFACE.

d. Click the mode drop-down menu to select ap fifo.
e. Click OK.

5. Repeat this process for variables b and variable res.

The Directive pane displays the following optimization directives. (The new directives are
highlighted).

o= Outline |4 Directive =g

4 @ matrixmul

@ a

9 HLS ARRAY_RESHAPE reshape variable=a complete dim=2
% HLS INTERFACE ap_fifo port=a

b

% HLS INTERFACE ap_fifo port=b

9 HLS ARRAY_RESHAPE reshape variable=b complete dim=1
d res

9 HLS INTERFACE ap_fifo port=res

Y

F]

Row
¥ Col

Figure 7-14: Matrixmul FIFO Directives

6. Click the Run C Synthesis toolbar button to synthesizes the design to RTL.

Figure 7-15 shows the Console display after synthesis runs.

&l Console 33 @ Errors| & Warnings “= DRCs

Vivado HLS Console
INFO: [HLS 288-1@] Opening project 'C:/Vivado_q;S_Tutoria1/Design_Dptimization/labl/matrixmul_prj'.

INFO: [HLS 288-18] Adding design file "matrixmul.cpp’ to the project

INFO: [HLS 28@-1@] Adding test bench file "matrixmul_test.cpp’' to the project

INFO: [HLS 2@e@-1@] Opening scluticn 'C:/Vivado_HLS Tuterial/Design_Optimization/labl/matrixmul_prj/scluticns’
INFO: [SYN 281-281] Setting up clock 'default’ with a period of 13.333ns.

INFO: [HLS 28@-18] Setting target device to "xcwvu9p-flgb2l@4-1-e’

INFO: [SCHED 284-61] Option 'relax_ii_for_timing' is enabled, will increase II to preserve clock frequency co

INFO: [HLS 2@@-1@] Analyzing design file 'matrixmul.cpp’ ..

INFO: [HLS 28@-111] Finished Linking Time (s): cpu = @28:80:81 ; elapsed = 88:88:18 . Memory (MB): peak = 1@5.
INFO: [HLS 288-111] Finished Checking Pragmas Time (s): cpu = @8:88:81 ; elapsed = 89:88:18 . Memory (MB): pe
INFO: [HLS 2@@-1e] Starting code transformations ...

INFO: [HLS 28@-111] Finished Standard Transforms Time (s): cpu = 88:88:81 ; elapsed = @8:808:18 . Memory (MB):
INFO: [HLS 28@-18@] Checking synthesizability ...

ERROR: [SYNCHK 228-91] Port 'res' (matrixmul.cpp:48) of function 'matrixmul’ cannot be set to a FIFO
ERROR: [SYNCHK 2@@-91] as it has both write (matrixmul.cpp:68:13) and read (matrixmul.cpp:6@:13) operations.

Figure 7-15: FIFO Synthesis Warning

From the code shown in Figure 7-16, array res performs writes in the following sequence
(MAT_B_COLS = MAT_B_ROWS = 3):

« Write to [0][0] on line57.

High-Level Synthesis N Send Feedback 154
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=154

(: X”_INX® Chapter 7: Design Optimization

« Then a write to [0][0] on line 60.
« Then a write to [0][0] on line 60.
« Then a write to [0][0] on line 60.
» Write to [0][1] on line 57 (after index J increments).

« Then a write to [0][1] on line 60.

Four consecutive writes to address [0][0] does not constitute a streaming access pattern;
this is random access.

matrixmul.cpp 2 =0
24 -
3 // Iterate over the rows of the A matrix

4 Row: for(int i = @; i < MAT_A ROWS; i++) {

5 // Iterate over the columns of the B matrix

6 Col: for(int j = @; j < MAT_B_COLS; j++) {

7 res[1][j] = @;

8 // Do the inner product of a row of A and col of B

9 Product: for(int k = @; k < MAT_B_ROWS; k++) {

o res[1][J] += a[il[k] * b[k][]l;

2

3

4

5

1 3

Figure 7-16: Matrixmul Code

Examining the code in Figure 7-16 reveals that there are similar issues reading arrays a and
b. It is impossible to use a FIFO interface for data access with the code as written. To use a
FIFO interface, the optimization directives available in Vivado High-Level Synthesis are
inadequate because the code currently enforces a certain order of reads and writes. Further
optimization requires a re-write of the code, which you accomplish in Lab 2.

Before modifying the code, however, it is worth pipelining the function instead of pipelining
the loops to contrast the difference in the two approaches.

Step 7: Pipeline the Function

1. Select the New Solution toolbar button to create a new solution, solution6.

f IMPORTANT: /n this step, copy the directives from solution4 as this solution does not have FIFO
interfaces specified.

2. Select solution4 from both the drop down menus in the Options section. The Solution
Wizard appears as shown in Figure 7-17.

High-Level Synthesis N Send Feedback 155
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=155

(: X”_INX® Chapter 7: Design Optimization

4 Solution Wizard O X

Solution Configuration —

Create Vivado HLS solution for selected technelogy

Solution Mame: | solution® |

Clock
Period: | 73MHz | Uncertainty: | |

Part Selection

Part: xcvu9p-flgh2104-1-e

Options
Copy directives and censtraints from solution: ~

(] 5DAccel Bottom Up Flow

Figure 7-17: New Solution Based on Solution4 Directives

3. Click Finish and accept the default solution name, solutionsé.

4. Open the C source code matrixmul.cpp to make it visible in the Information pane.

5. In the Directive tab:

a.

b.

f.

Select the pipeline directive on loop Col.
Right-click and select Remove Directive.
Select the top-level function matrixmul.
Right-click and select Insert Directive.

In the Directive Editor dialog box activate the Directive drop-down menu at the
top and select PIPELINE.

Click OK.

The Directives tab should appear as Figure 7-18.

High-Level Synthesis

. l Send Feedback I 156
UG871 (v2019.1) May 22, 2019 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=156

(: X”_INX® Chapter 7: Design Optimization

o= Outline |4 Directive =g

4 @ matrixmul
% HLS PIPELINE
@ a
9 HLS ARRAY_RESHAPE reshape variable=a complete dim=2
b
9 HLS ARRAY_RESHAPE reshape variable=b complete dim=1
d res
4% Row
% Col

Figure 7-18: Directives for Solution6
6. Click the Run C Synthesis toolbar button to synthesize the design to RTL.
7. Click the Compare Reports toolbar button.
a. Add solution4.
b. Add solutioné.
c. Click OK.

The comparison of solutions 4 and 6 is shown in Figure 7-19.

High-Level Synthesis N Send Feedback 157
UG871 (v2019.1) May 22, 2019 www.xilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=157

(: X”_INX® Chapter 7: Design Optimization

EF compare reports &2

Performance Estimates

= Timing (ns)
Clock solutiond | sclutiont
ap_clk | Target 13.33 13.33

Estimated | 7.566 7.566
= Latency (clock cycles)

solutiond | solutiont

Latency | min | 11 5

max | 11 5
Interval min | 11 5

max | 11 5

Utilization Estimates

solutiond | solutiont
BRAM_12K | O o
DSPARE 2 18
FF 18 343
LuUT 187 565
URAR o o

Figure 7-19: Loop Versus Function Pipelining

The design now completes in fewer clocks and can start a new transaction every 5 clock
cycles. However, the area and resources have increased substantially because all the loops
in the design were unrolled.

INFO: [XFORM 203-502] Unrolling all loops for pipelining in function 'matrixmul'
(matrixmul.cpp:49) .INFO: [HLS 200-489] Unrolling loop 'Row' (matrixmul.cpp:54) in
function 'matrixmul' completely with a factor of 3.

INFO: [HLS 200-489] Unrolling loop 'Col' (matrixmul.cpp:56) in function 'matrixmul'
completely with a factor of 3.

INFO: [HLS 200-489] Unrolling loop 'Product' (matrixmul.cpp:59) in function
'matrixmul' completely with a factor of 3.

Pipelining loops allows the loops to remain rolled, thus providing a good means of
controlling the area. When pipelining a function, all loops contained in the function are
unrolled, which is a requirement for pipelining. The pipelined function design can process a
new set of 9 samples every 5 clock cycles. This exceeds the requirement of 1 sample per
clock because the default behavior of High-Level Synthesis is to produce a design with the
highest performance.

The pipelined function results in the best performance. However, if it exceeds the required
performance, it might take multiple additional directives to slow the design down.

High-Level Synthesis N Send Feedback 158
UG871 (v2019.1) May 22, 2019 www.xilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=158

8 X”_INX® Chapter 7: Design Optimization

Pipelining loops gives you an easy way to control resources, with the option of partially
unrolling the design to meet performance.

Lab 2: C Code Optimized for I/O Accesses

In Lab 1, you were unable to use streaming interfaces. The nature of the C code, which
specified multiple accesses to the same addresses, prevented streaming interfaces being
applied.

« In a streaming interface, the values must be accessed in sequential order.

« Inthe code, the accesses were also port accesses, which High-Level Synthesis is unable
to move around and optimize. The C code specified writing the value zero to port res
at the start of every product loop. This may be part of the intended behavior. HLS
cannot simply decide to change the specification of the algorithm.

The code intuitively captured the behavior of a matrix multiplication, but it prevented a
required behavior in the hardware: streaming accesses.

This lab exercise uses an updated version of the C code you worked with in Lab 1. The
following explains how the C code was updated.

Figure 7-20 shows the I/O access pattern for the code in Lab 1. Out of necessity the address
values are shown in a small font.

As variables i, j and k iterate from 0 to 3, the lower part of Figure 7-20 shows the
addresses generated to read a, b and write to res. In addition, at the start of each Product
loop, res is set to the value zero.

il e ——

L
U ————
Product k wmwwwwmwuﬂ

res FMPEWEFEFHPEFEFEFE

Figure 7-20: Matrix Multiplier Address Accesses

To have a hardware design with sequential streaming accesses, the ports accesses can only
be those shown highlighted in red. For the read ports, the data must be cached internally to

High-Level Synthesis N Send Feedback 159
UG871 (v2019.1) May 22, 2019 www.xilinx.com I—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=159

(: X”_INX® Chapter 7: Design Optimization

ensure the design does not have to re-read the port. For the write port res, the data must
be saved into a temporary variable and only written to the port in the cycles shown in red.

The C code in this lab reflects this behavior.

Step 1: Create and Open the Project

1. From the Vivado HLS command prompt used in Lab 1, change to the lab2 directory as
shown in Figure 7-21.

2. Create a new Vivado HLS project by typing vivado _hls -f run hls.tcl.

C:\Vivado_HLS_Tutorial\Design_Optimizationilabl>cd ..

C:\Vivado_HLS_Tutorial\Design_Optimization>cd lab2

4 (M

C:\Uivado_HLS_Tutorial\Design_Optimization\lab2>vivado_hls -f run_hls.tcl

Figure 7-21: Setup for Interface Synthesis Lab 2
3. Open the Vivado HLS GUI project by typing vivado _hls -p matrixmul prj.

4. Open the Source folder in the Explorer pane and double-click matrixmul . cpp to open
the code as shown in Figure 7-22.

matrixmul.cpp 2 =0
24 -
)3 #pragma HLS ARRAY_RESHAPE variable=b complete dim=1

»/ #pragma HLS ARRAY_RESHAPE variable=a complete dim=2

5 #pragma HLS INTERFACE ap_fifo port=a

6 #pragma HLS INTERFACE ap_fifo port=b

#pragma HLS INTERFACE ap_fifo port=res

mat_a_t a_row[MAT_A ROWS];

mat_b_t b_copy[MAT_B_ROWS][MAT_B_COLS];

int tmp = 8;

s @ D oo

// Iterate over the rowa of the A matrix
Row: for(int i = @; i < MAT_A ROWS; i++) {
// Iterate over the columns of the B matrix
Col: for(int j = @; j < MAT_B_COLS; j++) {
6 #pragma HLS PIPELINE

N ool pa

// Do the inner product of a row of A and col of B
tmp=0;

// Cache each row (so it's only read once per function)
if (j == @)

Cache_Row: for(int k = 0; k < MAT_A ROWS; k++)
a_rowl[k] = a[i][k];

m

// Cache all cols (so they are only read once per function)
if (i == 0)
Cache_Col: for(int k = @; k < MAT_B_ROWS; k++)

b_copy[k][3j] = b[k][]1;
Product: for(int k = @; k < MAT_B_ROWS; k++) {

tmp += a_row[k] * b_copy[k][i]; A
4 1 3

Figure 7-22: C Code with Updated I/O Accesses

High-Level Synthesis N Send Feedback 160
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=160

2: X”_INX® Chapter 7: Design Optimization

Review the code and confirm the following:

The directives from Lab 1, including the FIFO interfaces, are specified in the code as
pragmas.

For-loops have been added to cache the row and column reads.

A temporary variable is used for the accumulation and port res is only written to when
the final result is computed for each value.

Because the for-loops to cache the row and column would require multiple cycles to
perform the reads, the pipeline directive has been applied to the Col for-loop, ensuring
these cache for-loops are automatically unrolled.

Synthesize the design and verify the RTL using co-simulation.

5.
6.

7.

Click the Run C Synthesis toolbar button to synthesize the design to RTL.

When synthesis completes, use the Run C/RTL CoSimulation toolbar button to launch
the CoSimulation Dialog box.

Click OK to start RTL verification.

The design has been now been fully synthesized to read one sample every clock cycle using
streaming FIFO interfaces.

Conclusion

In this tutorial, you learned:

High-Level Synthesis

How to analyze pipelined loops and understand exactly which limitations prevent
optimizations targets from being achieved.

The advantages and disadvantages of function versus loop pipelining.

How unintended dependencies in the code can prevent hardware design goals from
being realized and how they can be overcome by modifications to the source code.

o l Send Feedback I 161
UG871 (v2019.1) May 22, 2019 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=161

& XILINX

Chapter 8

RTL Verification

Overview

The High Level Synthesis tool automates the process of RTL verification and allows you to
use RTL verification to generate trace files that show the activity of the waveforms in the
RTL design. You can use these waveforms to analyze and understand the RTL output. This
tutorial covers all aspects of the RTL verification process.

To perform RTL verification, you use both the RTL output from High-Level Synthesis
(Verilog, VHDL or SystemC) and the C test bench. RTL verification is often called
CoSimulation or C/RTL CoSimulation; because both C and RTL are used in the verification.

This tutorial consists of three lab exercises.

Lab 1 Description

Perform RTL verification steps and understand the importance of the C test bench in
verifying the RTL.

Lab 2 Description

Create RTL trace files and analyze them using the Vivado Design Suite.

Lab 3 Description

Create RTL trace files and analyze them using a third-party RTL simulator. This lab requires
a license for Mentor Graphics ModelSim simulator. (You can use an alternative, third-party
simulator with minor modifications to the steps).

Tutorial Design Description

You can download the tutorial design file from the Xilinx website. See the information in
Locating the Tutorial Design Files.

High-Level Synthesis N Send Feedback 162
UG871 (v2019.1) May 15, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=162

(: X”_INX® Chapter 8: RTL Verification

This tutorial uses the design files in the tutorial directory
Vivado HLS Tutorial\RTL Verification.

The sample design used in the lab exercise is a DUC (digital up converter) function. The
purpose of this lab is to demonstrate and explain the features of RTL verification. There are
no design goals for these lab exercises.

Lab 1: RTL Verification and the C Test Bench

This exercise explains the basic operations for RTL verification and highlights the
importance of the C test bench.

i? IMPORTANT: The figures and commands in this tutorial assume the tutorial data directory
Vivado_HLS_Tutorial is unzipped and placed in the location C:\Vivado_HLS_Tutorial. If the tutorial data
directory is unzipped to a different location, or on Linux systems, adjust the few pathnames referenced,
to the location you have chosen to place the Vivado_HLS_Tutorial directory.

Step 1: Create and Open the Project

1. Open the Vivado HLS Command Prompt.

o On Windows use Start > All Programs > Xilinx Design Tools > Vivado 2019.1 >
Vivado HLS > Vivado HLS 2019.1 Command Prompt.

o On Linux, open a new shell.

2. Using the command prompt window (Figure 8-1), change directory to the
RTL_Verification tutorial, 1ab1.

3. Execute the Tcl script to setup the Vivado HLS project, using the command vivado hls
-f run hls.tcl, as shown in Figure 8-1.

C:\Vivado_HLS_Tutorial>cd RTL_Verification

C:\Wivado_HLS_Tutorial\RTL_Uerification>cd lab1l

4 (1M

C:\Uivado_HLS_Tutorial\RTL_Uerification\lab1>vivado_hls -f run_hls. tcl

Figure 8-1: Setup the RLTL Verification Tutorial Project

4. When Vivado HLS completes, open the project in the Vivado HLS GUI using the
command vivado_hls -p duc_prj, as shown in Figure 8-2.

High-Level Synthesis N Send Feedback 163
UG871 (v2019.1) May 15, 2019 www.xilinx.com L\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=163

(: X”_INX® Chapter 8: RTL Verification

@I [LIC-181] Checked in feature [HL$] -
Generating csim.exe

xxx DUC hardware test PASSED 1 xxx

BRI [SIM-1] CSim done with O errors.
@I [LIC-101] Checked in feature [HLS]

4 [

C:\Vivado_HLS_Tutorial\RTL_Uerification\labl>vivado_hls -

Figure 8-2: Open RTL Verification Project for Lab 1

Step 2: Perform RTL Verification

1. Click the Run C Synthesis toolbar button to synthesize the design to RTL.

2. When synthesis completes, use the Run C/RTL CoSimulation toolbar button
(Figure 8-3) to launch the CoSimulation dialog box.

.

File Edit Project Solution Window Help
: ® CewE & » V8

Figure 8-3: Run C/RTL CoSimulation Toolbar Button

The CoSimulation Dialog box opens, as shown in Figure 8-4.

High-Level Synthesis N Send Feedback 164
UG871 (v2019.1) May 15, 2019 www.xilinx.com L\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=164

(: X”_INX® Chapter 8: RTL Verification

¢ Co-simulation Dialog X

C/RTL Co-simulation -

Verilog/VHDL Simulator Selection

Auto ~
RTL Selection
(®) Verilog (JVHDL
Options

[[]Setup Only

Dump Trace | none ~

[J Optimizing Cornpile

[[JReduce Diskspace
Wave Debug

[] Disable Deadlock Detection

Compiled Library Location | Browse...

Input Argurnents |

] Do not show this dialog box again.

Figure 8-4: CoSimulation Dialog Box

The drop-down menu allows you to select the RTL simulator for HDL simulation. For this

exercise, you use the default Auto selection (Auto selects the Vivado Simulator) with Verilog
RTL for CoSimulation.

3. Click OK to start RTL verification.
When RTL Verification completes, the simulation report opens automatically (Figure 8-5).

The report indicates if the simulation passed or failed. In addition, the report indicates the
measured latency and interval.

High-Level Synthesis

. l Send Feedback I 165
UG871 (v2019.1) May 15, 2019 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=165

(: X”_INX® Chapter 8: RTL Verification

High-Level Synthesis

Cosimulation Report for ‘duc’

Result
Latency Interval
RTL Status min avg max min avg max
VHDL NA NA NA NA NA NA NA

Verilog Pass 36 37 44 37 38 45

Figure 8-5: CoSimulation Report

RTL simulation completes in three steps. To better understand how the RTL verification
process is performed, scroll up in the console window to confirm that the messages
described below were issued.

First, the C test bench is executed to generate input stimuli for the RTL design.

INFO: [COSIM 212-14] Instrumenting C test bench ...

< C simulation executes to generate input stimuli >

At the end of this phase, the simulation shows any messages generated by the C test bench.
The output from the C function is not used in the C test bench at this stage, but any
messages output by the test bench can be seen in the console.

INFO: [COSIM 212-302] Starting C TB testing ...
*%% DUC hardware test PASSED | *#*%*

An RTL test bench with newly generated input stimuli is created and the RTL simulation is
then performed.

INFO: [COSIM 212-333] Generating C post check test bench ...
INFO: [COSIM 212-12] Generating RTL test bench ...

Finally, the output from the RTL simulation is re-applied to the C test bench to check the
results. Once again, you can see any message output by the C test bench in the console.
Finally, RTL verification issues message SIM-1000 if the RTL verification passed.

INFO: [COSIM 212-316] Starting C post checking ...
*** DUC hardware test PASSED | ***
INFO: [COSIM 212-1000] *** C/RTL co-simulation finished: PASS **x*

To fully understand why the C test bench should check the results and how message
SIM-1000 is generated, you will modify the C test bench.

. l Send Feedback I 166
UG871 (v2019.1) May 15, 2019 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=166

8 X”_INX® Chapter 8: RTL Verification

Step 3: Modify the C test bench
1. Expand the Test Bench folder in the Explorer pane (Figure 8-6).

2. Double-click duc_test.c to open the C test bench in the Information pane.

&5 Explorer 22 & = O([¢) dug_teste £ =g
) bd /™ Lheck the result */
=d1t
.uc_prj 61 int retl = system("diff --brief duc_i.dat golden/duc_i.d:
! Includes 62 int ret2 = system("diff --brief duc_qg.dat golden/duc_g.d:
£ Source 63
fim Test Bench 64 if (retl | ret2) {
[duc_testc 65 printf("\n *** DUC hardware test FAILED ! *** \n\n"),
& golden 66} else {
¢= solution{ 67 printf("\n *#**% DUC hardware test PASSED | *** \n\n"),
& constraints fi i
[Ebc-sim 76 return ((retl | ret2) ? 1 : 8);
& sim 71//return 1; =
= syn 72}
7

Ld b
4

1 ' P

-~

Figure 8-6: RTL Test Bench
3. Scroll to the end of the file to see the code shown in Figure 8-7.

4. Edit the return statement to match Figure 8-7 and ensure the test bench always returns
the value 1.

[¢ *duc_test.c & = O
g /7 Check the result ¥/ Pl
int retl = system("diff --brief duc_i.dat golden/duc_i.d:

2 int ret2 = system("diff --brief duc_g.dat golden/duc_qg.d:
3
A if (retl | ret2) {
5 printf("\n *** DUC hardware test FAILED ! *** \n\n");
6 } else {
7 printf("\n *** DUC hardware test PASSED ! *** \n\n");
8 }
9
@//return ({retl | ret2) ? 1 : @); | _
| return 1; =
2}

73 7

4 | 1] ' P

Figure 8-7: Modified RTL Test Bench
5. Save the file.
6. Click the Run C Synthesis toolbar button to synthesize the design to RTL.

High-Level Synthesis N Send Feedback 167
UG871 (v2019.1) May 15, 2019 www.xilinx.com I—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=167

(: X”_INX® Chapter 8: RTL Verification

7. Click the Run C/RTL CoSimulation toolbar button to launch the CoSimulation Dialog
box.

8. Leave the CoSimulation options at their default value and click OK to execute the RTL
CoSimulation.

When RTL CoSimulation completes, the CoSimulation report opens and says the verification
has failed (Figure 8-8).

2 Simulation(solutionl) & = 8 | E= outline ¥ I Directive v =8

. . , , An outline is not available.
Cosimulation Report for 'duc

Result

Latency Interval
RTL Status min avg max min avg max
VHDL NA NA NA NA NA NA NA
Verilog Fail NA NA NA NA NA NA

Export the report{html) using the Export Wizard

B Console 53 . @) Errors| & Wamnings %l =B~y i =0
Vivado HLS Consale
INFO: [COSIM 212-302] Starting C TB testing

% DUC hardware test PASSED | ***

CRITICAL WARNING: [COSIM 212-359] Aborting co-simulation: C TB simulation failed, nonzero return value '1'.
CRITICAL WARNING: [COSIM 212-32@] C TB testing failed, stop generating test vectors. Please check C TB or re-run cosim.
CRITICAL WARNING: [COSIM 212-4] *** C/RTL co-simulation finished: FAIL ***
command 'ap_source' returnsd error codd
while executing
"source C:/Vivado HLS Tutorial/RTL Verification/labl/duc_prj/solutionl/cosim.tcl”
invoked from within
"hls::main C:/Vivado HLS Tutorial/RTL_Verification/labl/duc_prj/solutionl/cosim.tcl"
("uplevel™ body line 1)
invoked from within
"uplevel 1 hls::main {*}$args"
« 11l P

4 |11

Figure 8-8: CoSimulation Report Failure

In Figure 8-8, you can see from the message printed to the console (DUC hardware test
PASSED) that the results are correct, however, the verification report says the RTL
verification failed.

If required, you can confirm the results are correct. To do this, compare the output files
created by the RTL simulation with the golden results. The RTL simulation is executed in the
simulation directory wrapc, which is inside the solution directory. Figure 8-9 shows the
solution directory, with the output files highlighted.

High-Level Synthesis N Send Feedback 168
UG871 (v2019.1) May 15, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=168

& XILINX.

Chapter 8:
[Explorer 2 = 0
i Includes -
» = Source

» = Test Bench
a = solution1
4 @ constraints
“ directives.tcl
& scripttcl
> = csim
4 = sim
+ = autowrap
: = report
A=A
4 (= wrapc
le AESL_pkg.h
l¢] apatb_duc.cpp
l¢| apatb_duch
|5 apcc.log
b cosim.tv.exe

m

cosim.tv.mk

l¢| dds.c_pre.ctb.c
duc_ldat
duc_g.dat

l¢ duc_test.c_pre.ctb.c
duc.autotvin.dat
duc.autotvout.dat

lel duc.c_pre.ctb.c

lel imfl.c_pre.ctb.c

lel imf2.c_pre.ctb.c

Figure 8-9: Cosimulation Output Files

RTL Verification

RTL CoSimulation only reports a successful verification when the test bench returns a value
of 0 (zero). Modifying the test bench to return a non-zero value ensures RTL verification
(and C simulation if it was performed) would always report a failure.

To ensure that the RTL results are automatically verified: the C test bench must always check
the output from the C function to be synthesized and return a 0 (zero) if the results are
correct OR return any other value if they are not correct.

When RTL Verification is performed, the same testing occurs in the test bench, and the
output from the RTL block is automatically checked. This is why it is important for the C test
bench to check the results and return a zero value only if they are correct (or return a
non-zero value if they are incorrect).

9. Exit the Vivado HLS GUI and return to the command prompt.

High-Level Synthesis
UG871 (v2019.1) May 15, 2019

www.Xxilinx.com

l Send Feedback I 169

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=169

(: X”_INX® Chapter 8: RTL Verification

Lab 2: Viewing Trace Files in Vivado

This exercise explains how to generate RTL trace files and how to view them using the
Vivado Design Suite tools.

Step 1: Create an RTL Trace File using Vivado Simulator

1. From the Vivado HLS command prompt you used in Lab 1, change to the lab2 directory
as shown in Figure 8-10.

2. Create a new Vivado HLS project by typing vivado hls -f run hls.tcl.

¢:\Vivado HLS Tutorial\RTL Verification\lab21s
ds..c dic.c polden infd.c inf3coef.h run hls.tcl
dls.dat duch inflc nf2coef.h mac.c SPPC.C

dds table.h duc test.c inflcoef.h infl.c mixer.c serc_coefh

¢:\Vivado LS Tutorial\RTL Verification\Lab2svivado hls -f run hls.tcl

Figure 8-10: Setup for RTL Verification Lab 2

3. Open the Vivado HLS GUI project by typing vivado _hls -p duc_prj.
4. Click the Run C Synthesis toolbar button to synthesize the design to RTL.

5. Click the Run C/RTL CoSimulation toolbar button to launch the CoSimulation Dialog
box.

In this case, you will produce a trace file you can open using the Vivado Simulator.

6. In the Co-simulation Dialog box:
a. Leave the default auto selection (using Vivado Simulator and Verilog).

b. Activate the Dump Trace drop-down menu and select the all option, to have the
options shown in Figure 8-11.

c. Click OK to execute RTL CoSimulation.

High-Level Synthesis N Send Feedback 170
UG871 (v2019.1) May 15, 2019 www.xilinx.com L\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=170

(: X”_INX® Chapter 8: RTL Verification

Co-simulation Dialog >

C/RTL Co-simulation

Verilog/WVHDL Simulator Selection

Auto ~
RTL Selection
(®) Verilog (JVHDL
Options

[Setup Only

Dump Trace |port

[] Optirmizing Compile

] Reduce Diskspace
Wave Debug

] Disable Deadlock Detection

Compiled Library Location | Browse...

Input Arguments |

[J Do not show this dialog bex again.

Figure 8-11: CoSimulation Dialog Box for Lab 2

When RTL verification completes, the CoSimulation report automatically opens. The report
shows that the Verilog simulation has passed (and the measured latency and interval). In
addition, because the Dump Trace option was used with the Vivado Simulator simulator
option and because Verilog was selected, two trace files are now present in the Verilog
simulation directory. These are shown highlighted in Figure 8-12.

High-Level Synthesis

. | Send Feedback I 171
UG871 (v2019.1) May 15, 2019 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=171

& XILINX.

[Explorer
a4 =

Chapter 8: RTL Verification

2 = 8

sim -

» = autowrap

» = report
=t

F

Figure 8-12:

High-Level Synthesis
UG871 (v2019.1) May 15, 2019

= verilog
“@ check_sim.tcl
ait duc_am_submul_16s_16s_18s_32 4v
st duc_ama_addmuladd_18s_18s_16s5 325 32 3w
rit duc_ama_submuladd_18s_18s_165_32s_32 3
= duc_c_ 2 rom.dat
ad duc_c_2v

= duc_c_3 rom.dat

[

Ril duc_c_3v
= duc_imf2_c_ 1 rom.dat

P

duc_imf2_c_lv
=l duc_imf2_shift_reg_p_ram.dat

RTI

st duc_imf2_shift_reg_p.v
it duc_imf2y
= duc_imf3_c_0_rom.dat

rd duc_imf3_c 0w

m

= duc_imf3_c_rom.dat

st duc_imf3_cv

=l duc_imf3_shift_reg_p0_ram.dat
st duc_imf3_shift_reg_pO.v

rit duc_imf3.v

st duc_mac_muladd_18s_18s 38ns_38 4w
=l duc_mixer_dds_table_rom.dat
s duc_mixer_dds_tablew

= duc_mixer_DI_cache_ram.dat
s duc_mixer DI cachev

it duc_mixery

|=l duc_shift_reg_p_1_ram.dat

st duc_shift_reqg_p_lv

|=l duc_shift_reg_p_2_ram.dat

st duc_shift_reqg_p_2.v

sl duc.autotby
duc.performance.result.transaction.xml

= duc.prj

|5l ducresultlatrb

W ductcl

arit ducy

|5 ducwcfg

=l ducwdb gl

Verilog Vivado Simulator CoSimulation Results

. | Send Feedback I 172
www.Xxilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=172

(: X”_INX® Chapter 8: RTL Verification

The next step is to view the trace files inside the Vivado Design Suite.

Since waveform trace data has been generated for the Vivado Simulator, the Open Wave
Viewer toolbar button is now highlighted, as shown in Figure 8-13.

Note: The Open Wave Viewer toolbar button can only be used when Vivado Simulator is selected
as the Verilog/VHDL Simulator.

File Edit Project Solution Window Help
RORBREBWB RO P B0

Figure 8-13: Opening the Trace File in Vivado

7. Click on the Open Wave Viewer toolbar button to open the Vivado IDE with the RTL
waveforms traces.

Note: The only functionality provided by the Vivado IDE by this action is the viewing and analysis of
RTL waveforms.

You can then view the waveforms in the waveform viewer. Figure 8-14 shows the zoomed
waveforms where the output data ports and their associated I/O protocol signals (output
valid signals) are expanded to view.

High-Level Synthesis N Send Feedback 173
UG871 (v2019.1) May 15, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=173

& XILINX.

Chapter 8: RTL Verification

duc.wefg

% |Design Top Signals
% C Ouputs
v T dout_q(wire)
dout_q_ap_id
W dout_q17:0]
T dout_i(wire)
dout i_ap_vid
W dout_i{17:0]
% Clnputs
% freq(wire)
W fraq[15:0]
v T din_i(wire)
W din_i[17.0]

% Block-level 0 Handshake

w ap_start
W ap_done
W ap_idle
W ap_ready
+ T Reset
W ap_rst
% Clock

u ap_clk

QWaaQ.i-»

M [

Value 0 us

0

- CORKERE

U ‘

o O EEEEE R LR

100 us

Figure 8-14: Analyzing the RTL Trace File

8. Exit the Vivado IDE.
9. Exit and close the Vivado HLS GUI.

High-Level Synthesis

UG871 (v2019.1) May 15, 2019

www.Xxilinx.com

| Send Feedback I 174

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=174

(: X”_INX® Chapter 8: RTL Verification

Lab 3: Viewing Trace Files in ModelSim

This exercise explains how you can generate and view RTL trace files and using the Mentor
Graphics ModelSim RTL simulator. Other third-party simulators are supported, and similar
process can be used if another RTL simulator is selected.

C CAUTION! This lab exercise requires that the executable for ModelSim is defined in the system search
path and that the required license to perform HDL simulation is available on the system.

Step 1: Create an RTL Trace File using ModelSim

1. From the Vivado HLS command prompt you used in Lab 2, change to the 1ab3
directory.

Create a new Vivado HLS project by typing vivado _hls -f run hls.tcl.
Open the Vivado HLS GUI project by typing vivado hls -p duc_prj.
Click the Run C Synthesis toolbar button to synthesize the design to RTL.

v~ W

Click the Run C/RTL CoSimulation toolbar button to launch the CoSimulation Dialog
box.

This exercise uses the Mentor Graphics ModelSim RTL simulator. The path to the simulator
executable must be set in your system search path.

6. In the Co-simulation Dialog box:
a. Select ModelSim from the Verilog/VHDL Simulator Selector.
b. Select VHDL.

c. Activate the Dump Trace drop-down menu and select the all option, to have the
options shown in Figure 8-15.

d. Click OK to execute RTL CoSimulation.

High-Level Synthesis N Send Feedback 175
UG871 (v2019.1) May 15, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=175

(: X”_INX® Chapter 8: RTL Verification

¢# Co-simulation Dialog @

C/RTL Co-simulation

Verilog/VHDL Simulator Selection

ModelSim -

RTL Selection

() Verilog @ VHDL
Options

[] Setup Only

Dump Trace

[Optimizing Compile

|| Reduce Diskspace

Compiled Library Location

Input Arguments

[] Do not show this dialog box again.

[OK l l Cancel

Figure 8-15: CoSimulation Dialog Box for Lab 3

When RTL verification completes, the CoSimulation report automatically opens, showing
the VHDL simulation has passed (and the measured latency and interval). In addition,
because the Dump Trace option was used with the ModelSim simulator option and because

VHDL was selected, a trace file is now present in the VHDL simulation directory. The trace
file is shown highlighted in Figure 8-16.

High-Level Synthesis

. l Send Feedback I 176
UG871 (v2019.1) May 15, 2019 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=176

(: X”_INX® Chapter 8: RTL Verification

[Explorer &2 ¥ = B
4 2 duc_prj -
e Includes
= Source

= Test Bench
a4 Y= solution1
& constraints
= csim
4 = sim
= autowrap
= report
= tv
4 = vhdl
st AESL_sim_pkg.vhd
W check_sim.tcl
E compile_modelsim.sh

11

= cosim.modelsim.scr

s duc_c_l.whd

s duc_c.vhd

s duc_mul_175_18s_32 4.vhd

s duc_mul_18s_17ns_35_3.vhd

rrd duc_mul_18s 18s 36 3.vhd

sl duc_mul_19s_16s_32 3.vhd

s duc_shift_reg_p_lvhd

s duc_shift_reg_p.vhd

s duc.autotb.vhd

El duc.performance.result.transaction.xml
=l duc.resultlatrb

s ducvhd

= duc.wlf

sl imf2_c_2.vhd

st iImf2_shift_reg_p_2vhd -

Figure 8-16: VHDL ModelSim Trace File

The next step is to view the trace files inside ModelSim.

7. Exit the Vivado HLS GUI and return to the command prompt.

Step 2: View the RTL Trace File in ModelSim

1. Launch the Mentor Graphics ModelSim RTL Simulator.
2. Click the menu File > Open.
3. Select Log Files as the file type (Figure 8-17).

High-Level Synthesis N Send Feedback 177
UG871 (v2019.1) May 15, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=177

& XILINX.

Chapter 8: RTL Verification

4. Navigate to the VHDL simulation directory and select duc.wlf.

5. Click Open.
ﬁOpen File @
@Ov‘ « 0SDisk (C) » Vivado_HLS Tutarial » RTL Verification » lab3 » duc_prj » solutionl » sim » vhdl b "‘?H Search vhdl Pl
Organize = New folder =+ 0 8
Name Date modified Type Size
| work 3/6/2013452PM File folder
ducwif 3/6/2013432PM WLF File 3936 KB
=5
=]
b
_JE,:
L
&
Fv
File name: ducwlf v ILog Files (*wilf) v
{ Open ‘v Cancel ‘
Figure 8-17: ModelSim Open File WLF

6. Add the signals to the trace window and adjust to see a view similar to Figure 8-18.

High-Level Synthesis
UG871 (v2019.1) May 15, 2019

www.Xxilinx.com

| Send Feedback I 178

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=178

(: X”_INX® Chapter 8: RTL Verification

8| Wave Hd| >

4

ap_clk
B’ ap_cs fsm
“ ap_done
 ap_idle
B’ ap_ns fsm
“ ap_ready
4 ap_rst
 ap_start
B’ c 1 addressd
4 ¢ 1 cel
B c_1_load_req 691
B clqo
B c_address0
4 c_cel
B’ c load_reg 618
B’ cqo
B ch
[
B ch_1_load_reg ...
B’ ch_load_reg_607
B cnt
B dinj
=9 dout i
+ dout_i_ap_vid
ﬁ')dout_q
$ dout_g_ap_vld

OO T T T T T

N T T T T T T T T T T T T T

(E S B 1L TS s T S L S S TS N S LY A A= S = L T Y R o S

1.0 fooafin L Jo F To1s07 [Fo Jo i o
... [224f1Ll] 2.J0. . 1t 0

ave flenefTens fU

TR r-h -t e - W A L AL ST S N NN . Y N S L« S - S P AL S - P B e S RO PV

At S T A LT YT

-1

(TS EUT ETTEV NCTEN F SEC A =F L ' S =S S W8T EXTEY SCETR L= S YT ik le L B CETT SCETW) = O T,

o - X EEEFAISEEEE < O X X DO O X X O O X X O ©0 O 2 O O = O o O

259054660 ps 00 ps 00 ps [
0ps
i

1 A L3 3

Figure 8-18: Viewing the Trace File in ModelSim

7. Exit and close the ModelSim RTL simulator.

High-Level Synthesis N Send Feedback 179
UG871 (v2019.1) May 15, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=179

(: X”_INX® Chapter 8: RTL Verification

Conclusion

In this tutorial, you learned how to:

« Perform RTL verification on a design synthesized from C and the importance of the test
bench in this process.

« Create and open waveform trace files using the Vivado Design Suite.

« Create and open waveform trace files using a third-party HDL simulator (ModelSim)
and view the trace file created by RTL verification.

High-Level Synthesis N Send Feedback 180
UG871 (v2019.1) May 15, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=180

& XILINX

Chapter 9

Using HLS IP in IP Integrator

Overview

You can package the RTL from High-Level Synthesis and use it inside IP Integrator. This
tutorial demonstrates how to take HLS IP and use it in IP Integrator as part of a larger
design.

This tutorial consists of a single lab exercise.

Lab 1 Description

Complete the steps to generate two HLS blocks for the IP catalog and use them in a design
with Xilinx IP, an FFT. You validate and verify the final design using an RTL test bench.

Tutorial Design Description

You can download the tutorial design file from the Xilinx Website. See the information in
Locating the Tutorial Design Files.

This tutorial uses the design files in the tutorial directory Vivado HLS Tutorial\
Using IP with IPI.

The design blocks in this tutorial process the data for a complex FFT.

« The Xilinx FFT IP block only operates on complex data. Although you can perform an
FFT of real data on a complex data set with all imaginary components set to zero, it can
be done more efficiently by pre-processing the data.

» The front-end HLS block in this lab applies a Hamming windowing function to the 1024
(N) real data samples and sends even/odd pairs to an N/2-point XFFT as though they
are complex data.

« The back-end HLS block takes bit-reverse ordered data, puts it in natural order and
applies an O(N) transformation to FFT output to extract the spectral data for the
N-point real data set. Note, the first output pair packs the Oth and 512th (purely real)
spectral data point into the real and imaginary parts, respectively.

High-Level Synthesis N Send Feedback 181
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=181

(: XILINX® Chapter 9: Using HLS IP in IP Integrator

« The designs are fully pipelined, streaming designs for high throughput; intended for
continuous processing of data, but with throttling capability (stalls if input stalls).

« AXI4-Stream interfaces are used to connect all blocks in IP Integrator.

Lab 1: Integrate HLS IP with a Xilinx IP Block

This lab exercise shows how two HLS IP blocks are combined with a Xilinx IP FFT in IP
Integrator and the design verified in the Vivado Design Suite.

ﬁ IMPORTANT: The figures and commands in this tutorial assume the tutorial data directory
Vivado_HLS_Tutorial is unzipped and placed in the location C:\Vivado_HLS_Tutorial. If the tutorial data
directory is unzipped to a different location, or on Linux systems, adjust the few pathnames referenced,
to the location you have chosen to place the Vivado_HLS_Tutorial directory.

Step 1: Create Vivado HLS IP Blocks

Create two HLS blocks for the Vivado IP Catalog using the provide Tcl script. The script runs
HLS C-synthesis, RTL co-simulation and package the IP for the two HLS designs
(hls real2xfft and hls xfft2real).

1. Open the Vivado HLS Command Prompt.

- On Windows use Start > All Programs > Xilinx Design Tools > Vivado 2019.1 >
Vivado HLS > Vivado HLS 2019.1 Command Prompt.

o On Linux, open a new shell.

2. Using the command prompt window, change the directory to
Vivado HLS Tutorial\Using IP with IPI\labl\hls designs (Figure 9-1).

3. Typevivado _hls -f run hls.tcl to create the HLS IP (Figure 9-1).

C:\Vivado_HLS_Tutorial>cd Using_IP_with_IPI

C:\Vivado_HLS_Tutorial\Using_IP_with_IPI>cd lab1l

C:\Vivado_HLS_Tutorial\Using_IP_with_IPI\labl1>cd hls_designs

C:\Vivado_HLS_Tutorial\Using_IP_with_IPI\lab1\hls_designs>vivado_hls -f run_hls.
tecl

4 [

Figure 9-1: Create the HLS Design for IP Integrator

When the script completes, there are two Vivado HLS project directories, fe vhls prj
and be_vhls_ prj, which contain the HLS IP, including the Vivado IP Catalog archives for
use in Vivado designs.

High-Level Synthesis N Send Feedback 182
UG871 (v2019.1) May 22, 2019 www.xilinx.com L\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=182

8 X”_INX® Chapter 9: Using HLS IP in IP Integrator

« The "front-end” IP archive is located at fe_vhls prj/IPXACTExport/impl/ip/

« The "back-end” IP archive is located at be_vhls prj/IPXACTExport/impl/ip/

The remainder of this tutorial shows how the Vivado HLS IP blocks can be integrated into a
design (in IP Integrator) and verified.

Step 2: Create a Vivado Design Suite Project

1. Launch the Vivado Design Suite (not Vivado HLS):

o On Windows use Start > All Programs > Xilinx Design Tools > Vivado 2019.1 >
Vivado 2019.1.

o On Linux, type vivado in the shell.

2. From the Welcome screen, click Create Project (Figure 9-2).

Fila Flow Tools Window Help Q- QuickAccess

VIVADO!

HLx Editions

Quick Start

Create Project »
Open Project >
Open Example Project »

IESS

Manage IP >

Open Hardware Manager >

Xilinx Tcl Store »

Learning Center !

Figure 9-2: Create a Vivado Project

3. Click Next on the first page of the Create a New Vivado Project wizard.

4. Click the ellipsis button to the right of the Project location text entry box and browse to
and select the tutorial directory (Figure 9-3).

High-Level Synthesis N Send Feedback 183
UG871 (v2019.1) May 22, 2019 www.xilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=183

(: X”_INX® Chapter 9: Using HLS IP in IP Integrator

42 Choose Project Location

31

Recent: | & C:f -

-
5}
[
=

%

i
x
G
B4
5

Directory: C:\Vivado_HLS_Tutorial\Using_IP_with_IPT\lab1

Titus -
Users

Vivado_HLS
Vivado_HLS_Tutorial
Arbitrary_Precision
C_Validation
Design_Analysis
Design_Optimization
Interface_Synthesis
Introduction
RTL_Verification
Using_IP_with_IPI
--miﬂs_designs
E=8 verilog_tb
Using_IP_with_SysGen -
Lisina TP with Fwnn (=]

m

’ Select ” Cancel

Figure 9-3: Path to the Vivado Design Suite Project
5. Click Next to move to the Project Type page of the wizard.
a. Select RTL Project.
b. Select Do not specify sources at this time (if not the default).
c. Click Next.

6. On the Default Part page, under Specify, click Boards and select the ZYNQ-7 ZC702
Evaluation Board, as shown in Figure 9-4 and press Next.

High-Level Synthesis N Send Feedback 184
UG871 (v2019.1) May 22, 2019 www.xilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=184

i: X”_INX® Chapter 9: Using HLS IP in IP Integrator

A New Project x
Default Part
Choose a default Xilinx part or board for your project. This can be changed later. ‘
Select: {8k Parts | [Boards
~ Filter/ Preview
Vendor: All w
Display Mame: | All w
Board Rew Latast w
Feseat All Filters
Search: w
Display Mame Vendor Board Rev Part 1/0 Pin Co
@ Kintex-UltraScale KCU105 Evaluation Platform ¥ilinx.com 1.0 8 xcku040-fivalls6-2-e 1,156 &
@ Kintex UltraScale+ KCU116 Evaluation Platform ¥ilinx.com 1.0 & xckuSp-fivb676-2 -2 676
@ Kintex UltraScale KCU1500 Acceleration Development Board xilinx.com 1.0 8 xckull5-fivb2 104-2 -8 2,104
@ virtex-7 VC707 Evaluation Platform ¥ilinx.com 1.1 {8} xc7vi4851ffgl761-2 1,761
@ virtex-7 VC709 Evaluation Platform ¥ilinx.com 1.0 8 xcTVE90Mfg1761-2 1,761
@ virtex-UltraScale VCU108 Evaluation Platform ¥ilinx.com 1.0 8 xow095-ffva2 104-2-e 2,104
@ virtex-UltraScale VCU110 Evaluation Platform ¥ilinx.com 1.0 8 xow190-flgc2 104-2 -2 2,104
@ virtex UltraScale+ VCU118-ES1 Evaluation Platform ¥ilinx.com 1.1 & xow9p-flga2 104-2L-e-as1 2,104
| @ ZYnNQ-7 2C702 Evaluation Board ¥ilinx.com 1.0 {8} xc72020clg484-1 484
@ 7yNQ-7 ZC706 Evaluation Board ¥ilinx.com 1.1 {8} xc7z0451fg900-2 Q00
@ Zyng UltraScale+ ZCU102 Evaluation Board ¥ilinx.com 1.0 8 xczu9eg-fivib1156-2-i 1,156 -
< »
Board Connectors Target Connactions
FMC1_LPC w
FMC2 _LPC w
P

Figure 9-4: Vivado Project Specification

7. On the New Project Summary Page, click Finish to complete the new project setup.

The Vivado workspace populates and appears as shown in Figure 9-5.

High-Level Synthesis N Send Feedback 185
UG871 (v2019.1) May 22, 2019 www.xilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=185

& XILINX.

PROJECT MANAGER - project_1

Sources ?_00X
Qs+ #
Dasign Sources
) 1 Constraints
v Simulation Sources
sim_1
Hierarchy Lioraries — Compile Order
Properties 00X
]
Select an object o see properties
Tcl Console | Messages | Log | Reports | Design Runs

Qx5 %

Name Constraints ~ Status WS TS WHS
v smhl o consts.l Mot started
impl.l constrs.l Mot started

Chapter 9:

Using HLS IP in IP Integrator

?X
Project Summary 200X
Settings Edit
Project name: project.1
Project location: Jwrke/ta]_vefi/orucey/home UGE7 1 fug87 1-design-files Using_IP_with_Pl/lab 1 /project_1
Product family: Iyng-7000
Project part TYNQ-7 7702 Evaluation Board (xc72020clg484-1)
Top module name: Mot definad
Target language Verilog
Simulator language: Mixed
Board Part
Display name T¥NQ-7 2C702 Evaluation Board
Board part name: xilin com:z¢702:pan: 1.3
Connectors;
Reposforypattc Jprojfibuilds/2017.1.0405 _1/instalslin64 Vivalo 2017, /dara/ooards Jaoard.fles
URL www,ilinx.com/ 26702
Board overview. TYNQ-7 1702 Evaluation Board
Synthesis Implementation
Status Not started Status: Not started o
X ?2.00

THS TPWS Total Power Failed Routes LUT

fFBRAMs URAM DSP Stat FElapsed Strategy

Vivada Synthesis Defaults (Vivao Synthesis 2017)

Vivada Implementation Defaults (Vivado Implementation 2017)

Figure 9-5: Vivado Project

Step 3: Add HLS IP to an IP Repository

1. In the Project Manager area of the Flow Navigator pane, click IP Catalog.

High-Level Synthesis
UG871 (v2019.1) May 22, 2019

www.Xxilinx.com

Fart Host Description

x(72020clg484-1 Vivado Syntk

x72020clg484-1 Default setti
¥

| Send Feedback I 186

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=186

& XILINX.

Flow Navigator 5 PROJECT MANAGER - project_1

Chapter 9: Using HLS IP in IP Integrator

v PROJECT MANAGER
Sources 200X
£ Settings
Add Sources IR 4
Design Sources
Language Templates
) [Constraints
G P ey v Simulation Sources
sim.1
v [PINTECRATOR
Create Block Design
Open Ble
Conerae Bce Design Hierarchy Libraries Compile Order
Properties ?7-0CX
v SIMULATION
Run Simultian ¢

v RTLANALYSES

> Open Elaborated Design
Select an object to see properties

v SYNTHESS

P Run synthesis

Figure 9-6:

2 X
Project Summary % IPCatalog 200
Cores | Imerfaces
1 | 4
Name Al 4 Statls licens VLWV
v = Vivada Repository W

> Mliance Parmers

) = Auomotive & Industrial

) & Al nfrastructure

) = BaselP

) = Basic Elements

> = Communication & Networking
) - Dabug & Verficarion

) - Digital Signal Processing

) = Embedded Processing

) FPGA Features and Design
) = Math Functions

Details

Select an IP or Interface or Repository to see details

Open the IP Catalog

2. The IP Catalog appears in the main pane of the workspace. Click the IP Settings icon.

Project Settings
General
Simulation
Elaboration
Synthesis
Implementation
Bitstream

~ P

Repository
Fackager

Tool Settings

Project

IP Defaults

Source File

Display

WebTalk

Halp

Teaxt Editor

3rd Party Simulators

w

e

Colors

Selaction Rules

Shortcuts

Strategies

» Remote Hosts

> Window Eehavior v

Figure 9-7:

High-Level Synthesis
UG871 (v2019.1) May 22, 2019

-

Settings

IP = Repository
Add directories to the list of repositories. You may then add additional IP to a selected ‘
repository. If an IP is disakled then a tool-tip will alert you to the reason.

IP Repositories

www.Xxilinx.com

Refrash All

oK

ance

Open the IP Catalog Settings

| Send Feedback I 187

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=187

8 X”_INX® Chapter 9: Using HLS IP in IP Integrator

3. Right click and select Add Repository.
4. In the IP Repositories dialog:

a. Browse to the tutorial directory,
Using IP with IPI\labl\hls designs\fe vhls prj\IPXACTExport\im
pl\ip as shown in Figure 9-8.

b. Click Select to close the IP Repositories window.

¢ [P Repositories @
Recent: |) C:/Vivado_HLS_Tutorial/Using_IP_with_IPI/lab1/hls_designs/fe_vhls_prj/IPXACTExport/impl...v | (3 @ = g, W | X DO I 5

cTho HIT RGN RGN Ising_IP_with_IPT\ab1\hls_designs\fe_vhls_pri\IPXACT Export\implip

= | Vivado_HLS_Tutorial .
i | Arbitrary_Precision
| C_Validation
| Design_Analysis
| Design_Optimization
| Interface_Synthesis
Introduction
RTL_Verification
| Using_IP_with_IPI
= | lab1

e Xil
=) hls_designs
--, be_vhls_prj
E--, fe_vhls_prj

B | IPXACTExport

--, .autopilot

m

B | csim
=L impl
i F.xn
| bd
| constraints -
doc

’ Select ” Cancel]

Figure 9-8: Create a New IP Repository
5. Press Select to accept the new repository, then select OK on the added repository.

6. Follow the same procedure to add the second HLS IP package:
labl/hls designs/be vhls prj/IPXACTExport/impl/ip/.

7. Click OK to exit the dialog box.

A Vivado HLS IP category now appears in the IP Catalog as HLS IP (Figure 9-9).

High-Level Synthesis N Send Feedback 188
UG871 (v2019.1) May 22, 2019 www.xilinx.com I—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=188

& XILINX.

Project Summary X | IP Catalog

Cores | Interfaces

v a

t R NI [|

Name

~ [= User Repository (/wrk/xbj_vdi/brucey/hom

v o VIVADO HIS IP
1F His_real2xfft

v [User Repository (/wrk/xbj_vdli/brucey/home/UGE7 1/ug87 1-des

v [= VIVADO HLS IP
IF His_xfft2real
w = Vivado Repository
Alliance Partnars
Automative & Industrial

H

)

» o Al Infrastructure
» [BaselP

H

Basic Elements

Details

Figure 9-9:

Al A4
AX14-5tream

Af14-5tream

ab1fhls_de

Chapter 9: Using HLS IP in IP Integrator

Status License VLNV

Pre-Production Includad xilinx.com:hls:hls_real2xfft: 1.0

Pre-Production Included xilinx.com:his:hls_xfft2real: 1.0

IP Catalog with HLS IP

Step 4: Create a Block Design for RealFFT

1. Click Create Block Design under IP Integrator in the Flow Navigator.

a. In the resulting dialog box, name the design RealFFT.

b. Click OK.

High-Level Synthesis
UG871 (v2019.1) May 22, 2019

. l Send Feedback I 189
www.Xxilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=189

(: X”_INX® Chapter 9: Using HLS IP in IP Integrator

File Edit Fow Tools Window Layout View Help

AR meR2EB X P D> N & X X (G |SDefaul Layout & 22

Flow Navigator “| | Project Manager - project_1
az= Sources S TS £ Project Summary X |iFIP Catalog X
Qazs mebE 51| search
4 Project Manager = ¢ RE ' search:
.) 1 Design Sources = A1
Project Sett : ne
ﬁi roject settings 5 Constraints | Name
(i Add Sources [+ Simulation Sources = |&F ECC
/) Language Templates [sim_1 3E|&F Ethernet 1000BASE-X PCS/PMA or SGMII
IF P Catalo _ |1k Ethernet PHY MII to Reduced MII
: &Ik Fast Fourier Transform
FIFO G It
4 TP Integrator & g FIR Cor?ﬂlﬁlrearor
=) ¥
¥, Create Block Design |2 Foed nterval Timer
j¥ Open Block Design 3
P b (e . Create Block Design
¥ Generate Block Design Hierarchy | Libraries | Comy
4 Simulation & Sources | ¢ Templat Please specify name of block design.
% Simulation Settings P Properties
() Run Simulation & &J % Design name: RealFFT]
4 RTL Analysis IF His_real2xft Directory: &5 <Local to Project> v | N
= i
ia7 Open Elaborated Design Version: 1.0 (Rev. 1411 Specify source set: | = Design Sources M
4 Synthesis Interfaces: AXH4-Stream
ﬁ Synthesis Settings Description: An IP generate)
@ Run Synthesis Status: Pre-Production |
. - 0K Cance
> @ Open Synthesized Design License: Included l] ’] o HLS

4 il T | CFafiis Pra-Brodurtinn
4 Tmnlamentatinn

Figure 9-10: Create Block Design

The upper-right pane now has a Diagram tab. Add a Xilinx FFT IP block to the design and
customize it.

2. In the Diagram tab click the Add IP link (Figure 9-11).
a. In the Search box type fourier.
b. Select Fast Fourier Transform.

c. Press Enter.

High-Level Synthesis N Send Feedback 190
UG871 (v2019.1) May 22, 2019 www.xilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=190

8 X”_INX® Chapter 9: Using HLS IP in IP Integrator

£= Diagram X oov x

H] & RealFFT

(3 matches)

LTE Fast Fourier Transform

ENTER to select, ESC to cancel, Ctrl+Q for IP details

This design is empty. Press the ¥ button to add IF.

BCRE&EQW ST GBRHALODTESR

Figure 9-11: Add the Xilinx FFT IP

The Xilinx IP block FFT is now instantiated in the design, as shown in Figure 9-12.

High-Level Synthesis N Send Feedback 191
UG871 (v2019.1) May 22, 2019 www.xilinx.com I—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=191

& XILINX.

Chapter 9

: Using HLS IP in IP Integrator

Z= Diagram X
#] i RealFFT

B R R

-

RSy EH AL S

@,

3

-

xfft_0

M_AXIS_DATA-R =

event_frame_started

2= 5_AXIS_DATA event_tlast_unexpected
== 5_AXIS_CONFIG event_tlast_missing
aclk event_status_channel_halt
event_data_in_channel_halt
event_data_out_channel_halt

Fast Fourier Transform

»

11

Figure 9-12: Xilinx FFT IP

3. Double-click the new Fast Fourier Transform IP symbol to open the Re-customize IP

dialog box.

4. On the Configuration tab (Figure 9-13):

a. Change the Transform Length to 512.

b. Select Pipelined, Streaming I/O in the Architecture Choice section.

High-Level Synthesis
UG871 (v2019.1) May 22, 2019

www.Xxilinx.com

| Send Feedback l 192

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=192

€ XILINX, Chapter 9: Using HLS IP in IP Integrator

1 F Re-customize IP @
Fast Fourier Transform (9.0) ‘

ﬁﬂ Documentation | IP Location

IP Symbol | Implementation Detz 4 » B Component Name RealFFT_xfft_0_0
|| Show disabled ports Configuration | Implementation | Detailed Implementation
Mumber of Channels 1 -

Transform Length 512 -

Architecture Configuration
Target Clock Frequency (MHz) | 250 [1-550]
Target Data Throughput (MSPS) |50 [1-550]
Architecture Choice

() Automatically Select

M_AXIS DATA LfE
event_frame_started
o 15_ANIS_DATA event_tlast_unerpected
E|_15_AKIS_CONFIG event_tlast_missing

(@) Pipelined, Streaming IO

: | Radix-4, Burst IJO

aclk event_status_channel_halt
ewent_data_in_channel_halt

() Radi-2, Burst /O

event_data_our_channel_hal

(") Radix-2 Lite, Burst /O

["] Run Time Configurable Transform Length

OK] l Cancel

Figure 9-13: Xilinx FFT Configuration
5. Select the Implementation tab (Figure 9-14):
a. Select ARESETN (active low) in the Control Signals group.
b. Verify that Non Real Time is selected as Throttle Scheme.

c. Click OK to exit the Re-customize IP dialog box.

High-Level Synthesis N Send Feedback 193
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=193

& XILINX.

Chapter 9: Using HLS IP in IP Integrator

<F Re-customize IP
Fast Fourier Transform (9.0)

ﬁj Documentation | IP Location

IP Symbol | Implementation Detz 4 ¥ B
|| show disabled ports

M_AKIS_DATA B

event_Frame_started

2 5 ANIS_DATA

|G i e event_tlast_unezpected

= TI‘:_ . event_tlast_missing
al

ewvent_status_channel_halt
ewvent_data_in_channel_halt

event_data_out_channel_halt

Component Name |RealFFT_xfft_0_0

Configuration” Implementation Detailed Implementation

‘_J Auto) Data Format | Fixed Point

Scaling Options Scaled v
Rounding Modes Truncation -

Precision Options
() Atts) Input Data Width | 16

Control Signals

Phase Factor Width | 16 +

[Aciken ARESETn (active low)
ARESETn must be asserted for a minimum of 2 cycles
Output Ordering Options
Output Ordering | Bit/Digit Reversed Order ~

Cyclic Prefix Insertion

Optional Output Fields Throttle Scheme

[[x<_moex [[]ovrio (@) Non Real Time () Real Time

Figure 9-14:

Xilinx FFT Implementation

Add one instance of each of the HLS generated blocks to the design.

6. Right-click in any space in the canvas and select Add IP (Figure 9-15).

High-Level Synthesis
UG871 (v2019.1) May 22, 2019

www.Xxilinx.com

l Send Feedback I 194

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=194

& XILINX.

Chapter 9

: Using HLS IP in IP Integrator

| Z= Diagram X

& RealFFT
&
o
! B Fropertie Ctrl+E
5 X Delete) xfft_0)
i : ' Et:' {, M_AXIS_DATA
','ih’ S Search... Cirlh:‘j QESEARTSSTIA T MT:;T:_:::
_J: & Select All Ctrl+A +i_M[5_OONF[G evel'l_;a!ﬂ:_mlsg'ng
; 2 AddFP... Crl+1 ﬂ:;m event_status_channel_halt

@ [P Settings... event_data_in_channel_halt
E’i— @ Validate Design F6 event_data_out_channel_halt
* Create Hierarchy... Fast Fourier Transform

Create Comment

¥ Create Port... Ctrl+K
e Create Interface Port... Ctrl+L
j @ Regenerate Layout
-, ® Save as FDF File...

11

Figure 9-15: Add IP Blocks

7. Type “hls” into the Search text entry box.

a. Highlight both IPs. (Click the control key and select both.)

b. Press Enter.

The design block now has three IP blocks, as shown in Figure 9-16.

High-Level Synthesis
UG871 (v2019.1) May 22, 2019

www.Xxilinx.com

l Send Feedback l 195

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=195

& XILINX.

Chapter 9:

Using HLS IP in IP Integrator

I= Diagram X
% RealFFT

"z PR R

>
=

hls_xfft2real _0

His_xfft2real {Pre-Praduction)

|E&QW P it H L Q0

@

3
*

hls_real2xfft_0

| AEdin_V_V h
- Virada™ LS
dkap_ctd s
‘r_‘:; [p] dout [
_rst_n

Hls_real 2xfft { Pre-Praduction)

[R
-
xft_0
M_AXIS DATAZE 2 E
5 P s DATA event_frame_started
= - event_tlast_unexpected
| IFS_AXIS_CONFIG -
ack event_thast_missing
event_status_channel_halt
aresetn
event_data_in_channel_halt
event_data_out_channel_halt
Fast Fourier Transform
8

Figure 9-16: RealFFT IP Blocks

The next step is to connect HLS blocks to the FFT block and ports.

8. Hover the cursor over the dout interface connector of the Hl1s real2xftt block until

pencil cursor appears.

a. Left-click and hold down the mouse button to start a connection.

b. Drag the connection line to the S_AXIS DATA port connector of FFT block and
release (when green check mark appears next to it).

9. In a similar fashion, connect the FFT's M_AXIS DATA interface to the din interface of
the Hls xfft2real block.

The two connections are shown in Figure 9-17.

High-Level Synthesis
UG871 (v2019.1) May 22, 2019

www.Xxilinx.com

| Send Feedback l 196

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=196

8 X”_INX® Chapter 9: Using HLS IP in IP Integrator

Z= Diagram X Oor x
#]| 4 RealFFT

hls_xfft2real 0 hls_real2xfft 0

M_AXIS_DATASF £
event_frame_started

1

, , Tl4Es AXIS_DATA
Hls_xfft2real (Pre-Production) Hls_real2xfft { Pre-Production) EN event_tlast unexpected
5] 4k S_AXIS_CONFIG w
7 ek evert_tlast missing
event_status_channel_halt
—laresetn

event_data_in_channel_halt
event_data_out_channel_halt

Fast Fourier Transfarm

eREQWMM iy ItH L LoD R R

st
£l

Figure 9-17: Connecting Ports on the IP Blocks

To create I/O ports for the design, make some external connections.

10. Right-click the din_V_V interface connector on the hls real2xfft block and select
Make External (Figure 9-18).

High-Level Synthesis N Send Feedback 197
UG871 (v2019.1) May 22, 2019 www.xilinx.com I—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=197

8 X”_INX® Chapter 9: Using HLS IP in IP Integrator

%< Diagram X oW x
#] & RealFFT

his_xfft2real_0 his_real2xfft_0
din_V_v 4 .
- XTE0 =
J M_AXIS DATA -
= 1.5 XIS DATA event_frame_started
His_xfM2real (Pre-Production) His_real2xTt (Pre-Production) Ss s conrg e iestunespeted

Fast Fourier Transform

e SsQmripiiH LD =B R R

e

Ea

Figure 9-18: Make External Connections
11. Give the new interface port a unique name.
a. Click the port symbol to highlight it.

b. In the External Interface Properties pane (Figure 9-19), click in the Name text entry
box to highlight din_v_V.

c. Type real2xfft din and press Enter.

f IMPORTANT: Property changes might not take effect if this re-naming step is not done.

High-Level Synthesis N Send Feedback 198
UG871 (v2019.1) May 22, 2019 www.xilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=198

& XILINX.

12.

13.
14.
15.

Block Design - RealFFT *

Design - O

Q I |E =
&, RealFFT
=M= External Interfaces

=

+-8F ¥fft_0 (Fast Fourier Transform:9.0)

£ Sources-, H Design Signals | @ Board

External Interface Properties - O

PN
= real2xfft_din

real2xfft_din
Mode: SLAVE

Connection: | <= din_V_V_1

Clock Port: There are no clock ports in this design.

Name:

General | Properties

Figure 9-19:

In a similar manner to the previous step:

Chapter 9: Using HLS IP in IP Integrator

I
X

5= Diagram X
[& RealFFT

real 2xfft_din

| Eali

CCROQM LY BHLOOTE LR

Port Naming

a. Make the dout V interface of the Hls xfft2real block external and rename it

xfft2real dout.

Right-click the ac1k connector of FFT block and select Make External.

Right-click the aresetn connector of the FFT block and select Make External.

Tie the ap_start ports of both HLS blocks High.

a. Right-click the canvas and select Add IP.

b. Type const into the Search text entry box.

c. Select Constant IP.

d. Double-click the Constant IP symbol (Figure 9-20) and verify that Const Width and

Const Val are set to 1.

High-Level Synthesis

UGS871 (v2019.1) May 22, 2019

www.Xxilinx.com

| Send Feedback I 199

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=199

(: X”_INX® Chapter 9: Using HLS IP in IP Integrator

e. Click OK to close Re-customize IP dialog box.

LF Re-customize IP =

Constant (1.1) '

‘f’J Documentation | IP Location

[show disabled ports Component Name | xlconstant_0
Const Width | 1] [1 - 4096]
ConstVal |1
dout[0:0]

[oK H Cancel]

Figure 9-20: Constant IP Properties

f. Expand the ap ctrl bus port on both hls xfft2real and hls real2xfft
(click the plus symbol associated with each port).

g. Connect ap_start in both HLS blocks to the Constant block (Figure 9-21).

High-Level Synthesis N Send Feedback 200
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=200

8 X”_INX® Chapter 9: Using HLS IP in IP Integrator

Diagram 700X

e a x m o Q + E C 9 T &

;‘ Designer Assistance available. Run Connection Automation

his_xfft2real_0

hls_real2xfft_0
real2xfft_din [’ e din VY
& din V.V TVALID
4 din V.V TREADY xfftzreal_dout
B din V_V_TDATA[15:0]

His_xfftZreal {Pre-Production)

L — ap_arrl Vinco ™ LS
| 4 ap_dane ’ dout 4 [
B ap_start
«fft.0
4 ap_ready
4 ap_idle M_AXIS_DATA o el

ap_dk event frame_started

¥constant 0 ap_rstn =1 :’: :fgmm event_tlast_unexpected

dout [:0] — — = l(“(- - event_tlast_missing

aclk [His_real2xfft (Pre-Production) ’_. -
aresetn Constant aresetn

‘ event.data_in_channel_halt

event_data_out_channel_halt

Fast Fourier Transform

Figure 9-21: Connect AP_START to Constant

16. Make the remaining connections.

a. Click and drag from the aclk connector of hls real2xfft and hls xfft2real
blocks to the aclk external port (or aclk connector on FFT block or anywhere on

“wire"” connecting them).

b. Connectap rst n of the hls real2xfft and hls xfft2real blocks to the
aresetn network.

17. Click the Regenerate Layout icon to clean up and reorganize the Block Design.

High-Level Synthesis N Send Feedback 201
UG871 (v2019.1) May 22, 2019 www.xilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=201

8 X”_INX® Chapter 9: Using HLS IP in IP Integrator

Diagram 200 X

CRECHIFRR R e + ¥ C g & %

his_xfft2real_0

his_real2xfft_0 = ap_etn
- 4 ap_do
rRal2fft_ (i [iV LR

[l|= ap-an I :’P-"*:;‘
ap_re. B
apdore fft.0 anie / cout ¥ 4 el fit2real dout
¥ ap_start h
4:"'““ dout 4 Fomed M_AXIS_DATA, 4 ComntemeZ] din
wlconstant_0 o ' = event_frame_started ap_ck
gt S MEDATA event tlast_unexpected ap_stn
doutf00] }—n Zl4 5_AY5_CONFIC e -
S — aclk e Hls_xfft2real (Pra-Production)
Constant B ewent_status_channel_halt -HerEat ’
adk D Hls_real2xfft {Fre-Production) | event_data_in_channel_halt
ewent_data_out_channel_halt
aresetn [2

Fast Fourier Transform

Figure 9-22: Re-generated Design Diagram

18. Click the Validate Design button to validate the design is correct.

The validate design will show some warnings. These are related to the s_axis_config pin of
the FFT.

a. The XFFT configuration interface is left unconnected because this design always
operates in the default mode of the core.

b. Click OK to close the messages..
19. Click File > Save Block Design.
20. Close the Block Design.
21. The next step is to generate output products.

a. In the Sources tab of Project Manager pane (Figure 9-23), right-click RealFFT.bd
and select Generate Output Products.

b. Click Generate in the resulting dialog to initiate the generation of all output
products.

c. Select OK to ignore the warnings discussed above.

High-Level Synthesis N Send Feedback 202
UG871 (v2019.1) May 22, 2019 www.xilinx.com I—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=202

2: X”_INX® Chapter 9: Using HLS IP in IP Integrator

| @ % E 5 | ES Default Layout v \t%\ &)

Project Manager - project_1

Sources — O @ = L Project Summary X
el =11 1N = e
A = adl = E = @ Project Settings
=I5 Design Sources (1) }3_;) .
ks = . | Proipck name: projec
-1 Constraints (1) & Source Mode Properties.., Ctrl+E uck Family: Zyng-
=i Simulation Sources (1) | [Open File Alt+0 bct part: AN
Fh-E sim_1 (1)
Create HDL Wrapper module name: Mok O
Wiews Instantiation Template Synthesis
Generate Output Products..,
Reset Cutput Products.., us: = Ready
72020cl948¢
Export Hardware for SDE... Feradaiely
. tegy: Wivado Swnthe
Package Block Design..,

Hierarchy | IF Sources | Lib

&5 Sources | 77 Templ
Source Node Properties Alt+] DRC Yiolations
o > # Remove File fram Project... Delete
|
#, RealFFT (RealFFT.bd) Alt+Equals | pac information

Disable File Alt+Minus
Module: Re. T .

Figure 9-23: Generating Output Products
22. Create an HDL Wrapper.

a. Inthe Sources tab of the Project Manager pane, right-click RealFFT.bd and select
Create HDL Wrapper. This is the same procedure and menu as described in the
previous step.

b. Click OK and let Vivado manage the wrapper.

Step 5: Verify the Design

The next step in creating the final design is to verify design with the HDL test bench
provided in the lab exercise: realfft rtl tb.v.

1. Right-click Simulation Sources in the Sources tab of the Project Manager pane
(Figure 9-24).

2. Select Add Sources.

High-Level Synthesis N Send Feedback 203
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=203

(: X”_INX® Chapter 9: Using HLS IP in IP Integrator

PP P T ¥ | Ly U3 |ESULEIdUL Ldyul - > L
Block Design - RealFFT
Sources — O @ = E= Diagram X | ¥ RealFF
a Z %] O? ? B | Sl fubarialsHLS_TF
) Design Sources (1) < ; ;?ﬁr:ciell pi
; i nre;
Smodule RealFFT
n e 4 {aclk,

G sim_1 (1) Ctrl+E j 5 aresetn,
Hierarchy Update 3 jj & realZxEfr_¢

. =l 7 lzxffr
@ Refresh Hierarchy FeAalaXILL
X| 8 realZxffr_o
Edit Constraints Sets.., il] realZxEfr_¢
Edit Simulation Sets... realzxffr o
xfftiZreal ¢
B Add Sources... Alt+d 5[L2 xEftireal ¢
|13 xfftiZreal ¢
& 14 xfftiZreal ¢
@15 xfftireal i

Hierarchy | IP Sources | Libraries | Compile Order 8 16 input aclk;
4 Sources | F Design Hierarchy Sikag input aresetz
4p |18 input [31:001
Properties i 4|19 dnput [3:0]r
« =% |20 dinput [0:07re
21 output realZ:

Figure 9-24: Adding Simulation Sources
3. Select Add or Create Simulation Sources in the Add Sources dialog box.
4. Click Next.
5. In the Add Sources dialog box, click the “+" symbol Figure 9-25 and select Add Files.

High-Level Synthesis N Send Feedback 204
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=204

(: X”_INX® Chapter 9: Using HLS IP in IP Integrator

¢ Add Sources @

Add or Create Simulation Sources

Specify simulation specific HDL files, or directories containing HDL files, to add to your project. Create a new source file on disk and add ‘
it to your project.

Specify simulation set: | = sim_1 -
+

- Add Files...

Add Directories...

Create File...

UUse Add Files, Add Directories or Create File buttons below

Add Files l ’ Add Directories] [Create File

Scan and add RTL include files into project
Copy sources into project
Add sources from subdirectories

Include all design sources for simulation

Figure 9-25: Add Source Dialog Window

6. Browse to the file realfft rtl tb.v in the tutorial directory
Using IP with IPI\labl\verilog tb.

7. Select it and click OK.
8. Select the checkbox Copy sources into the project (Figure 9-26).

High-Level Synthesis N Send Feedback 205
UG871 (v2019.1) May 22, 2019 www.xilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=205

(: X”_INX® Chapter 9: Using HLS IP in IP Integrator

4. Add Sources @

Add or Create Simulation Sources

Specify simulation specific HDL files, or directories containing HOL files, to add to your project. Create a new source file on '?1‘/
disk and add it to your project.

Specify simulation set: | &= sim_1 -
Index Name Library Location
@ 1 realfft_rtl_tb.v work C:fVivado_HLS_Tutorial/Using_IP_with_IPI/labl/verilog_tb
b2
£
[AddFiles.. | I Add Directories... ‘ I Create File...

["] scan and add RTL include files into project
Copy sources into project
Add sources from subdirectories

Include all design sources for simulation

Next = Finish ‘I Cancel

Figure 9-26: Copy Design Sources

Note: When you copy the design source files into the project, edits to the file(s) are not
automatically propagated to the original source file.

9. Click Finish.

10. Click Run Simulation in the Flow Navigator (Figure 9-27) and select Run Behavioral
Simulation.

Flows Mavigator L
4 Project Manager

@ Project Settings

O? Add Sources

ﬁ IP Catalog

4 TP Integrator
Iﬁ,”‘ Create Block Design
--,b Open Block Design

4 Simulation
@ Simulation Settings
() Run Simulation

Run Behaviaral Sirmulation

4 RTLA

>

Figure 9-27: Execute Simulation

11. Once the simulation has started, click the Run All icon to complete simulation.

High-Level Synthesis N Send Feedback 206
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=206

2: X”_INX® Chapter 9: Using HLS IP in IP Integrator

e
elp
b | 55 Default Layout - \1&\ 4] Em Jpiri 10 |us = | b= Q|8
ation - Functional - sim_1 - realfft_rtl_th Run Al (F3)
— O x Run the simulation until there are no more events or until a Verilog pp
= =1 '$finish' or '$stop’.
2| =GB | & ~ L T ST |
Design Unit Block Type | |Name Value Data Type | ‘r:]u Name

Figure 9-28: Run the Simulation to Conclusion

Conclusion

In this tutorial, you learned:

+ How to create Vivado HLS IP using a Tcl script.

« How to import a created design using IP integrator and include both Xilinx IP and the
Vivado IP blocks.

« How to verify the design in IPL

High-Level Synthesis N Send Feedback 207
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=207

& XILINX

Chapter 10

Using HLS IP in a Zynqg SoC Design

Overview

A common use of High-Level Synthesis design is to create an accelerator for a CPU - to
move code that executes on the CPU into the FPGA programmable logic to improve
performance. This tutorial shows how you can incorporate a design created with High-Level
Synthesis into a Zynq device.

This tutorial consists of two lab exercises:

Lab 1 Description

You create and configure a simple HLS design to work with the CPU on a Zynq device. The
HLS design used in this lab is simple to allow the focus of the tutorial to be on explaining
the connections to the CPU and how to configure the software drivers created by
High-Level Synthesis to control the device and manage interrupts.

Lab 2 Description

This lab illustrates a common high performance connection scheme for connecting
hardware accelerator blocks that consume data originating in the CPU memory and/or
producing data destined for it in a streaming manner. The lab highlights the software
requirements to avoid cache coherency issues.

Tutorial Design Description

You can download the tutorial design file can be downloaded from the Xilinx Website. See
the information in Locating the Tutorial Design Files.

This tutorial uses the design files in the tutorial directory
Vivado HLS Tutoriall\Using IP with Zyng.

The sample design is a simple multiple accumulate block. The focus of this tutorial exercise
is the methodology, connections and integration of the software drivers. (The tutorial does
not focus on the logic in the design itself.)

High-Level Synthesis N Send Feedback 208
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=208

(: X”_INX® Chapter 10: Using HLS IP in a Zynqg SoC Design

Lab 1: Implement Vivado HLS IP on a Zynq Device

This lab exercise integrates both the High-Level Synthesis IP and the software drivers
created by HLS to control the IP in a design implemented on a Zynq device.

i? IMPORTANT: The figures and commands in this tutorial assume the tutorial data directory
Vivado_HLS_Tutorial is unzipped and placed in the location C:\Vivado_HLS_Tutorial. If the tutorial data
directory is unzipped to a different location, or on Linux systems, adjust the few pathnames referenced,
to the location you have chosen to place the Vivado_HLS_Tutorial directory.

Step 1: Create a Vivado HLS IP Block

1. Open the Vivado HLS Command Prompt.

- On Windows use Start > All Programs > Xilinx Design Tools > Vivado 2019.1 >
Vivado HLS > Vivado HLS 2019.1 Command Prompt.

o On Linux, open a new shell.

2. Using the command prompt window, change the directory to
Vivado HLS Tutoriall\Using IP with Zyng\labl\hls macc (Figure 10-1).

3. Type vivado hls -f run hls.tcl to create the HLS IP (Figure 10-1).

C:\Vivado_HLS_Tutorial>cd Using_IP_with_2Zynqg

C:\Vivado_HLS_Tutorial\Using_IP_with_2yng>cd labl

C:\Vivado_HLS_Tutorial\Using_IP_with_2Zyng\labl1>cd hls_macc

C:\Vivado_HLS_Tutorial\Using_IP_with_2Zyng\labl1\hls_macc>vivado_hls -f run_hls.tcliE

Figure 10-1: Create the HLS Design

When the script completes, there is a Vivado HLS project directory vhls prj, which
contains the HLS IP, including the Vivado IP Catalog archive for use in Vivado designs.

The remainder of this tutorial exercise shows how the Vivado HLS IP blocks can be
integrated into a Zynq design using IP Integrator.

Step 2: Create a Vivado Zynq Project

1. Launch the Vivado Design Suite (not Vivado HLS):

- On Windows use Start > All Programs > Xilinx Design Tools > Vivado 2019.1 >
Vivado 2019.1.

High-Level Synthesis N Send Feedback 209
UG871 (v2019.1) May 22, 2019 www.xilinx.com L\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=209

8 X||_|NX® Chapter 10: Using HLS IP in a Zynq SoC Design

o On Linux, type vivado in the shell.

2. From the Welcome screen, click Create New Project (Figure 10-2).

¢ Vivado 20171

File Flow Tools Window Help - Ouick Access

VIVADO!

HLx Editions

Quick Start

Create Project >
Open Project >

Open Example Project >

IENS

Manage IP >
Open Hardware Manager »

Xilinx Tcl Store »

Learning Center

Documentation and Tutorials »

Quick Take Videos »

Tcl Console

Q /s B B @

! gtart_gui

Figure 10-2: Vivado Welcome Screen
3. In the New Project wizard:

a. Click Next.

High-Level Synthesis N Send Feedback 210
UG871 (v2019.1) May 22, 2019 www.xilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=210

(: X”_INX® Chapter 10: Using HLS IP in a Zynqg SoC Design

b. In the Project Location text entry box, browse to the location of the tutorial file
directory Using IP with Zyng\labl and click Next (Figure 10-3).

c. On the Project Type page, select RTL Project and Do not specify sources at this
time (if it is not the default).

d. Click Next.

¢ New Project !. &3 |

Project Name

Enter a name for your project and specify a directory where the project data files will be stored. ‘

Project name: project_1
Project location: C:Vivado_HLS_Tutorial/Using_|IP_with_Zynagilab II‘

v | Create project subdirectory

Project will be created at C:MVivado_HLS_TutoriallJsing_IP_with_Zyngflabi/project_1

Figure 10-3: Specify the Vivado Project Directory
4. On the Default Part page:
a. Click Boards.
b. Select the ZYNQ-7 ZC702 Evaluation Board (Figure 10-4).

High-Level Synthesis N Send Feedback 211
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=211

(: X”_INX® Chapter 10: Using HLS IP in a Zynqg SoC Design

¢ NewProject HE _‘

Default Part

Choase a default Xilinx part or board for your prajact. This can be changed later. ¢

Select @Pats [Boards

* Filter/ Preview

Vendor. All v

Display Name: | All v

Board Rey Latest v

Reset All Filters
Search, & ¥
)) Available LUT)

Display Name Vendor BoardRev Part !0 Pin Count ~ File Version 10Bs Sl FlipFlog
 Virtex-UltraScale VCU 110 Evaluation Platform siling.com 10 B yow190-ge2104-2-e 2,104 11 416 1074240 214848
 7YNQ-7 ZC702 Evaluation Board iling.com 10 {8 yc72020cl9484-1 434 13 200 53200 106400
@ 7YNO-7 ZC706 Evaluation Board siling.com 11 {8 xc72045fg900-2 500 14 362 218600 437200
Zynq UltraScale+ ZCU102 Evaluation Board wlink.com 10 @ yczudeg-fo1158-24 1,156 30] 274080 543160,
¢)

(2) <Back Next> Cancel

Figure 10-4: Specify the Vivado Project Details
a. Click Next.

b. Click Finish on the New Project Summary Page.

The project workspace opens as shown in Figure 10-5.

High-Level Synthesis N Send Feedback 212
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=212

& XILINX.

Chapter 10: Using HLS IP in a Zynq SoC Design

¢ project.1 - [CVivado_HLS Tutcrial/Using_IP_with Zyna/lab1/project_1/project Lxpr] - Vivado 2017.1
Eile Edt Flow Zods Window Leyout Uiew dep Qui al
u
G, - PR X
Flow Navigator PROJECT MANAGER - proec_1 ?X
v PROJECT MARACER
Sources ? 0@ X Project Summary 200X
£ Setings n
Qs+t &
Acd SoLrces Setiings Edit
Design Sources
Lenguage Tempates —— Proect name polect 1
& IPCatabog v = Sinulation Sources Projectlocaton C:Nivado_HLS TuzorialUsing_IP_wth_Zyglabt/projact 1
sim_1 Product family: Zne-7000
¥ PINTEGRATOR Project part ZND-T2C702 Bvzluztion Board (xc7z020¢g484-1)
Creaze Block Design Top modulename; Not defned
Oper BlockDesign Targetlanguags: Verilog
Simulatorlanquage: Mixed
Generate Elock Design
¥ SINULATION Hierarchy Librarizs ~ Compile Order Board Part
Run Simulsien Display name: NG 20702 Evalusticn Bozrd
Properties 206X
Boardpartrame: ilink comzcT02partC:1.3
v AAALISS # ot
> Oper Elaborated Design Repositery path C:liline\ivador2017 /datalboards/bozrd files
URL: i xdin comize702
v SINTHESIE Boadowenew ZYNG ZCT02 Evalusicn Board
P Run Syrthesis
Selectan objectto see properie
2 Oper Synthe:
Synihesis Implzmentation
¥ WPLEUENTATON Stas: Notstatec Stabis Notstatec
P Run mplementaion Messzges: N erro's orviarings Nessages: N efro's orviarings o
TclConsole | Messages | Log | Reports | DesignRuns ¥ 700
v 3ROGRAN AND DEBUG QI3 %
u "
i Generte Etsream Hame Constraints ~ Siatus WNS NS WHS THS TPWS ToalSowsr FeleRoues LUT FF BRAMs URAN DSP Stat Flapsed Strategy Part Descipton
> Oper Hardware Wanager v gymht constrs_t Notstarted fvado Syniresis Defauts (Vivad Syntnesis 2017) X7z02001g484-1 Vivada Synthesi
impl_1 censs_ 1 Notstated VivadoIrrplementation Defaults (Vivado Implemrentation 2017) xe72020:1g484-1 Default seffings
<)|
CGenerzte Juputs reeded fer synthesis, simu afion and inplemenation

Figure 10-5:

Initial Vivado Zynq Project

Step 3: Add HLS IP to the IP Catalog

1. In the Project Manager area of the Flow Navigator pane, click IP Catalog.

High-Level Synthesis
UG871 (v2019.1) May 22, 2019

Send Feedback 213

www.Xxilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=213

8 X||_|NX® Chapter 10: Using HLS IP in a Zynq SoC Design

¢ project_1 - [C/Vivado_HLS_Tutorial/Using_IP_with_Zyng/labl/project_1/project_1.xpr] - Vivado

File Edit Flow Tools Window Layout View Help Q- Quick Access
m, - > ¥ B =
Flow Navigator e B PROJECT MANAGER - project_1
w PROJECT MANAGER
Sources ? 00 X
£ Settings
Q = £ + : &
Add Sources
Design Sources
Language Templates
* Constraints
¥ IP Catalog ~ Simulation Sources
sim_1
v |P INTEGRATOR
Create Block Design
Open Block Design
Generate Block Design
~ SIMULATION Hierarchy Libraries Compile Order
Run Simulation
Properties ? 00 X
v RTL AMALYSIS R
» Open Elaborated Design
v SYNTHESIS
P Run Synthesis
. . Select an objectto see properties
» Open Synthesized Design

Figure 10-6: Open the IP Catalog

The IP Catalog appears in the main pane of the workspace.

2. Right click in an open space, and select Add Repository.

Properties...

IP Seftings...
Add Repository...

Refresh All Repositaries

. {E Compatible Eamilies
Product Webpage

Exportto Spreadsheet..

Figure 10-7: Open the IP Catalog Settings

High-Level Synthesis N Send Feedback 214
UG871 (v2019.1) May 22, 2019 www.xilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=214

(: X”_INX® Chapter 10: Using HLS IP in a Zynqg SoC Design

3. Right click on IP Catalog Canvas and select Add Repository.
4. 1In the IP Repositories dialog box:

a. Browse to the location of the IP created by Vivado HLS,
Using_IP_with_Zynq\lab1\hls_macc\vhls_prj\solutionI\impN\ip and click Select.

¢ Repositories | 23|
Recent | C:MVivado_HLS TutoriallUsing_IP_with_Zynglab2Mls_designsbe_vhis.. ~ (F) = 4 , W | X O T 5
Directory: C:Wivado_HLS_TutoriallUsing_IP_with_Zynglab1ihls_maccvhls_prj\solutionimplip

v | Using_IP_with_Zynqg -

v | lant
» | arm_src
v | his_mace

~ | whis_pr
v | solutiont
> | .autopilot
» | csim
~ | impl
* Lip
> | verilog
» | vhdl
> | sim
> L syn
> | project_1
> | lab2
> | Windows
> | Xiling
> L oproj
» | wireless

Lo

Figure 10-8: IP Repository
5. Click OK to close the IP repository manager.

High-Level Synthesis

. | Send Feedback I 215
UG871 (v2019.1) May 22, 2019 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=215

& XILINX.

< | IPCatalog

Cores | Interfaces

g4 5 00

MName
h 4

User Repository (c/Vivado

IF His_macc

Vivado Repository

F 10/25G Ethernet PCSIPMA or SGMII
¥ 2D Graphics Accelerator Bit Block Transfer
1F 3PP LTE Channel Estimator

#F 3GPP LTE MIMO Decoder

1F 3PP LTE MIMO Encader

4 3GPPLTE Turbo Encoder

1F 2CPP Mied Mode Turbo Decoder

4 3GPP Turbe Encoder

¥ 10G Ethemet MAC

¥ 32-bitInitiator/Target for PCI (7-Series)
4 64-bit InitiatorTarget for PCI (7-Series)

Chapter 10: Using HLS IP in a Zynq SoC Design
200
o
Status License VLNV
Zyngflab1/hls_macchvhls_pri/solution1/implip o
Pre-Production Included xilinx.com:hls:hls_macc1.0
Production Included xilinx.com:ip:gia_ethernet_pcs_pma:16.0
AX14 Production Purchase logicbricks.com:logicbricks:logibitblt0.0
AX14-Stream Production Purchase xilinx.comip:ite_3gpp_channel_estimator2.0
Production Purchase silinx.comip:lte_3gpp_mimo_decoder.3.0
AX14-Stream Production Purchase xilinx.com:ip:ite_3gpp_mimo_encoder4.0
Production Purchase linx.comipdce_encoder_3gpplie:4.0
AXI4-Stream Production Included xiliny.com:ip:tee_decoder_3gppmm:2.0
Production Purchase silinx.comipdce_encoder_3gpp:5.0
AXI4, AXl4-Stream Production Purchase xiliny.com:ip:ten_gig_eth_mac:15.1
Production Purchase silinx.comip:pcid2.5.0
Production Purchase xilinx.com:ip:pcifd:5.0 ¥

Figure 10-9:

HLS IP in the Repository

6. There is now an HLS IP in the IP Catalog, Hl1s macc.

Step 4: Creating an IP Integrator Block Design of the System

1.

Zyng Design in the dialog box.

High-Level Synthesis
UG871 (v2019.1) May 22, 2019

www.Xxilinx.com

In the IP Integrator area of the Flow Navigator, click Create Block Design and type

l Send Feedback I 216

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=216

(: X”_INX® Chapter 10: Using HLS IP in a Zynqg SoC Design

/ project 1« [C\ivado_HLS TutorialUsing_IPwith Zynaylabproject praject_Lpr - Vivado 20171 BEER
file Edt Flow Tools \Wndow Lajout View Help Quick Access wite_bitsream Complete &/
, E X ’, LI I ¥ DefaultLajout v
Flow Navigator -3 S PROJECT MANAGER - project 1 ? X
v PROJECT MANAGER
Sources ? O X ProjctSummary X/ IPCatalog X 200
{ Setings
Qs+ £t Cores | Inferfaces
Add Sources
v Design Sources (1 XA
Language Templates .) TR "[:A 4 L o‘ #
) W8y Iynq_Design_wrapper (Zy10_Desion_wrappery) (1 .
A
T PCatiog Nr— Name A4 Status License VLWV

v = UserRepository (c/Vi

5 © Simuations 1 do_HLS _TutoriglUsing_IP_with_Zynqhabitikls_macchvhls_prilsolutiont implip)
imulation Sources (1)
v |PINTEGRATOR 4 His_macc A4 Pre-Production Included inxcomhls:hls_mace: 1.0
¥ - Vivado Repository

Create Block Desiqn

4 16250 Ehemet PCSPIA or SGHI Producion Included xinc.comip:gig_sthemet_pcs_pma16.0
Open Block Design % 2D Graphics Accelerator it Block Trangfer A4 Producion Purchase logichricks.comogicoricks-ogibitot0.0
Generate Black Design 4F 3PP LTE Channel Estimator A4-Gream Production Purchase linkcomipfie_3gpp_channel_esimator2.0
) — Production Purchase xilinc.comipie_3gpp_mimo_decoder3.0
§ Create Block Design \ X \
v SHULATION — Production ~ Purchase xiincomp:te_3gpp_mimo_encoder 4.0
Run Simulaion Hierarchy [P Sources Libraries Compile Order Please specifyname of block design Producion Purchase xilink.comiptec_encoder_3gpplte4.0
‘ Production Included xiline.comipec_decoder_3gppmm:2.0
2 . ind y
v RILAALYSS P Properties ?_00EX Production Purchase ilink comiptoc_encoder_3gpp:5.0
Designname: Iynq_Design ream Production Purchase xlinc.comipten_gig_eth_mac:15.1
3 Open Eiahoraled Design F He_mane %
A Diecly Lot P N Production Purchase xilinc.comippcia2 5.0
Version: 1.0 (Rev. 1703171807) Producion Purchase xilin.comiprpcifd 5.0 v
v SNTHESS [Speciy sowrce set. | Design Sources v
P RunSiiess Description: An P generated by Vivado HLS ~ n
2)
» Open Synhesized Design Staus PreProducion N
License: Included

¥ INPLENENTATION Change Log: View Chang Log Metaces A4
P Run Implementaion Vendor. Xiliny, Inc. Descrption: An P generated by Uvado HLS
> Open Implemented Design VLAV. il comhlg:hls_mace:1.0 o Saus PreProducion
() nnnnnn nnliudad v

Figure 10-10: Create the Zynqg Design

The Block Design view opens in the main pane, with a new Diagram tab, containing a blank
Block Design canvas.

2. Press the Add IP button on the main screen open the IP search dialog.
a. Type zyng into the Search text entry box.
b. Select ZYNQ7 Processing System and press Enter.

High-Level Synthesis N Send Feedback 217
UG871 (v2019.1) May 22, 2019 www.xilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=217

Chapter 10

& XILINX.

Diagram

L%
ke e

‘ € ™

Search: U~ zyng (1 match)

i ZYNQT Processing System

ENTER to select, ESC to cancel, Cirl+Q for IP details

Figure 10-11: Add a CPU Processor to

An IP symbol for the ZYNQ7 Processing System appears o

: Using HLS IP in a Zynq SoC Design

the Design

n the canvas.

3. Double-click the ZYNQ IP symbol to open the associated Re-customize IP dialog box.

a.

High-Level Synthesis

UG871 (v2019.1) May 22, 2019 www.xilinx.com

Click the Presets icon and select ZC702 (Figure 10-

12).

l Send Feedback I 218

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=218

8 X||_|NX® Chapter 10: Using HLS IP in a Zynq SoC Design

¢ Re-customize IP

ZYNQT Processing System (5.5) g

O Documentation -ﬂ Presets IP Location @t Import XPS Seftings

Page Navigator — | | Zyng Block Design Summary Report
Zyng Block Design
/ 1
| V0 Penpnerais el
PS-PL Configuration E b e Aplicaion Pracessor Ut (APU)
e e | o . .
Peripheral /0 Pins (15:0) 126 1 — ARM Coriex -A9 ARM Coriex -AS
CAND | cPU
T gyslemfl‘.evel CPU
MIO Configuration UARTO B 1)
o ART 1 | — L1 | aa
MUX GPIO (] T ACP
Clock Configuration o) T 1] s, — S St - siave
- ~+— Jnsa‘n L Channel l 512 KB L2 Cache and Controlier Ports
DDR Configuration T ocM JEEKE
ENET O | = Coretight nterconnect | SRAM
i : s | s Components ———
SMC Timing Calculation Rankf o
o FLASHMemory “ t 1
(53:16) Interfaces — ol | DR
Intefrupts A] e
; <
oum 5P _— Programmable DDRZ3 LPODR2
- Tl | | |
Interconnect
m i
Caloulation
OMA §yne BEEE
2 | |01 p { S ps
4|5 |8
Ressts I [F (s YStem()
ol ?JJE M mop Cma Contg IRQ | High Perlormamee XADG I
e (am) AES] AX| 32064b Siave L
Ciocchl‘a Mm Qm SHA Porta
Pors Forta
Programmable Logic(PL)

Figure 10-12: Configure the Zynqg SoC
4. Click MIO Configuration in the Page Navigator pane.
a. Expand the Application Processor Unit tree view.

b. Deselect Timer 0 (or any other timers if they are selected).

High-Level Synthesis N Send Feedback 219
UG871 (v2019.1) May 22, 2019 www.xilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=219

& XILINX.

Chapter 10: Using HLS IP in a Zynq SoC Design

¢ Re-customize IP | 28 |
ZYNQT Processing System (5.5) d
ODocumentation ﬂ-F’resets IP Location @ImponXPS Settings
Page Navigator - MIO Configuration Summary Report
Zynq Block Design 4= Bank0 U0 Voltage LVCMOS 3.3V Bank 110 Voltage | LVCMOS 3.3V ~
PS-PL Configuration Q Search:
Peripheral 1/0 Pins = Peripheral 10 Signal 10 Type Speed Pullup Dire
o+ MemoryInterfaces
MIO Configuration -
» 1O Peripherals
Clock Configuration 0ov Application Processor Unit
Timer 0
DDR Configuration °
Timer 1
SMC Timing Calculation
Watchdog

Interrupts

» Programmable Logic Test and Debug

Figure 10-13: Zynq SoC MIO Configuration

5. Click Interrupts in the Page Navigator pane.

a. Select Fabric Interrupts and expand its tree view and expand the PL-PS Interrupt

Ports.

b. Select IRQ_F2P[15:0] and click OK to close the Re-customize IP dialog box.

High-Level Synthesis

UGS871 (v2019.1) May 22, 2019

. l Send Feedback I 220
www.Xxilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=220

€ XILINX, Chapter 10: Using HLS IP in a Zyng SoC Design

¢ Re-customize IP | 52|

ZYNQ7 Processing System (5.5) i

© Documentation £} Presets |P Location @ Import XPS Settings

Page Navigator = Interrupis Summary Report

Zynq Block Design - p—

REEL Connigaration Q.| Interrupt Port D Description

Peripheral 0 Fins E v Fabric Interrupts Enable PL Interrupts to PS and vice versa =

v PL-PSInterrupt Ports

MO Configuration e IRQ_F2P[15:0] [91:84] [6.. Enables 16-bit shared interrupt port from the PL. MSB is assigned th...
Corel_nFIQ 28 Enables fast private interrupt signal for CPUO from the PL

Clock Configuration Core0_nlIRQ N Enables private interrupt signal for CPUO from the PL

DDR Configuration Corel1_nFIQ 28 Enables fast private interrupt signal for CPU1 from the PL
Corel1_niRQ K| Enables private interrupt signal for CPU1 from the PL

SMC Timing Calculation v PS8-PLInterrupt Pors
IRQ_P2F_DMAC_ABORT Enables shared interrupt abort signal from DMAC to the PL

sl s IRQ_P2F_DHACO Enables shared interrupt signal 0 from DNAC to the PL
IRQ_P2F_DMACA Enables shared interrupt signal 1 from DMAC to the PL
IRQ_P2F_DMAC2 Enables shared interrupt signal 2 from DMAC to the PL
IRQ_P2F_DMAC2 Enables shared interrupt signal 3 from DMAC to the PL
IRQ_P2F_DMAC4 Enables shared interrupt signal 4 from DMAC to the PL
IRQ_P2F_DMACS Enables shared interrupt signal 5 from DMAC to the PL
IRQ_P2F_DMACE Enables shared interrupt signal 6 from DMAC to the PL
IRQ_P2F_DMACY Enables shared interrupt signal 7 from DMAC to the PL
IRQ_P2F_SNC Enables shared interrupt signal fram SMC to the PL
IRQ_P2F_Q5PI Enables shared interrupt signal from QSPI to the PL

L W W Vo |l § [S PRSP SPAPPY [P P TRTSF SESE ETS I SP I T T 1 i

| OK | | Cancel |

Figure 10-14: Zynqg SoC Interrupt Configuration

IPI provides Designer Assistance to automate certain tasks, such as making the correct
external connections to DDR memory and Fixed I/O for the ZYNQ PS7.

6. Click the Run Block Automation link under the title bar (Figure 10-15).
a. Ensure processing_system7_0 is selected.

b. Ensure Apply Board Presets is deselected. If this remains selected it re-applies the
timers that were disabled in step 4 and results in additional ports on the Zynq block
in Figure 10-15.

c. Click OK to complete in the resulting dialog box.

High-Level Synthesis N Send Feedback 221
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=221

High-Level Synthesis

(: X”_INX® Chapter 10: Using HLS IP in a Zynqg SoC Design

¢ Run Block Automation [

Automatically make connections in your design by checking the boxes of the blocks to connect. Select a block on the left to display its
configuration options on the right. ‘

Qx| =
v /| All Automation (2 out of 1 selected)
v F processing_system7_0

Description
This option sets the board preset on the Processing System. All current properties will be

overwritten by the board preset. This action cannot be undone. Zyng7 block automation

applies current board preset and generates external connections for FIXED_IO, Trigger
and DDR interfaces.

NOTE: Apply Board Preset will discard existing IP configuration - please uncheck this box,
if you wish to retain previous configuration.

Instance: iprocessing_system7_0
Options

Make Interface External: FIXED_IO, DDR

Apply Board Preset i
Cross TriggerIn: Dizable w

Cross Trigger Qut: Disable w

Figure 10-15: Run Automation
7. To add HLS IP to the design:
a. right-click in an open space of canvas and select Add IP from the context menu.

b. Type hls in the Search text entry box and press Enter to add it to design
(Figure 10-16).

. | Send Feedback I 222
UG871 (v2019.1) May 22, 2019 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=222

(: X”_INX® Chapter 10: Using HLS IP in a Zynqg SoC Design

Diagram % Address Editor
elald/E ol + EC Y 8

7} Designer Assistance available. Run Block Automation Run Cannection Automation

hls_macc 0

“I4 5 ad HLS MACC_PERIPH BUS |vio®ris
ap_clk ‘ interrupt

aprstn
\

His_mace (Pre-Production)

processing_system? 0

DOR +.||

. o+ I

M_AXI_GPO_ACLK ZYNQ M :iKGEfEK;-
FCLK_RESETO_N

i

ZYNQT Processing System

Figure 10-16: Processor and HLS IP

Designer assistance is also available to automate the interconnection of IP blocks.

8. Click the Run Connection Automation link at the top of the canvas.

9. Select /hls macc 0/S AXI HLS MACC PERIPH BUS and click OK in the resulting
dialog box to automatically connect the HLS IP to the M_AXI GPO interface of the Zynq
Processor.

This adds an AXIInterconnect (block instance: processing system7_ 0), a Proc Sys Reset
block and makes all necessary AXI related connections to create the design shown in
Figure 10-17.

High-Level Synthesis N Send Feedback 223
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=223

8 X”_INX® Chapter 10: Using HLS IP in a Zynqg SoC Design

Diagram » Address Editor 00

e M0 Q + @ C Y & o

d»

his_mace

b | 5 i LS MACE PERFH BUS [omteon
ok ‘ Intemups pracessing_system?
i oA 4 D oR
s _macs Pre-Praducio

FBED 10 4 O FED 1D
1 GRO_ALK UBRD O 4 J

Y
R F2F(D0) ZYNQ 01 P o
FCLK CLKD f=—1
FCLK REGETO N

ZYNQT Processing Systam

= ps? 0_50M

pe?_0_am_pesigh

sowest Fyne_ck mb reset
il s In bus_sruct esa]
au_fesd in pripheral_feseqD]
mh dobug S5 ! Ieomect arcsen{D]
& loched peripheral_aresnr0]

FRESETH
ook B oo g e
.

NI ACIK

MO ARESETH

X1 Inmmannec

?-00C

Figure 10-17: Design with AXI4 Interconnect

The only remaining connection necessary is from the HLS interrupt port to the Ps7
IRQ F2P port.

10. Mouse over the interrupt pin on the hls macc_0 IP symbol. When the cursor changes
to pencil shape, click and drag to the IRQ F2P[0:0] port of the PS7 and release,
completing the connection.

11. Select the Address Editor tab and confirm that the hls macc_0 peripheral has been
assigned a master address range. If it has not, click the Auto Assign Address icon.

High-Level Synthesis N Send Feedback 224
UG871 (v2019.1) May 22, 2019 www.xilinx.com I—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=224

€ XILINX, Chapter 10: Using HLS IP in a Zyng SoC Design

Address Editor

Q= o
Cell Slave Interface BaseName OffsetAddress Range High Address
~ F processing_system?7_0
v B Data (32 address bits : 0140000000 (1G]
@ his_mact 0 5_ai_HLS_MACC_PERIPH_BUS Rag 0443000000 64K v Ox43C0_FFFE

Figure 10-18: Address Editor

The final step in the Block Diagram design entry process is to validate the design.

12. Click the Validate Design icon in the toolbar.

13. Upon successful validation, save the Block Design.

Step 5: Implementing the System

Before proceeding with the system design, you must generate implementation sources and
create an HDL wrapper as the top-level module for synthesis and implementation.

1. Return to the Project Manager view by clicking on Project Manager in the Flow
Navigator.

2. In the Sources browser in the main workspace pane, a Block Diagram object called
Zyng Design is at the top of the Design Sources tree view (Figure 10-19). Right-click
this object and select Generate Output Products.

3. In the resulting dialog box, click Generate to start the process of generating the
necessary source files.

High-Level Synthesis N Send Feedback 225
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=225

€ XILINX, Chapter 10: Using HLS IP in a Zyng SoC Design

| PROJECT MANAGER - project_1

Sources ? 008 X
Q = ¢ + o
A Design Sources (2
» Wi Fyng_Design_wrapper (Zyng_Desion_wrapper.y) (1
B0 des|

. Source Mode Properies...
» Constrain

> = Simulatio] ™= OpenFile

Create HDL Wrapper...
View Instantiation Template
Generate Qutput Products...

Reset Qutput Products...

Hierarchy IF

Figure 10-19: Generate Output Producs

4. Right-clickthe zyng Design object again, select Create HDL Wrapper, and click OK to
exit the resulting dialog box.

The top-level of the Design Sources tree becomes the Zyng Design wrapper.v file. The
design is now ready to be synthesized, implemented and to have an FPGA programming
bitstream generated.

5. Click Generate Bitstream to initiate the remainder of the flow.

a. Click Yes to implement the design.

6. In the dialog that appears after bitstream generation has completed, select Open
Implemented Design and click OK.

Step 6: Developing Software and Running it on the ZYNQ
System

You are now ready to export the design to Xilinx SDK. In SDK, you create software that runs
on a ZC702 board (if available). A driver for the HLS block was generated during HLS export
of the Vivado IP Catalog package. This driver must be made available in SDK so that the PS7
software can communicate with the block.

1. From the Vivado File menu select Export > Export Hardware.

Note: Both the IPI Block Design and the Implemented Design must be open in the Vivado
workspace for this step to complete successfully.

2. In the Export Hardware dialog box (Figure 10-20), ensure that the Include Bitstream is
enabled and click OK.

High-Level Synthesis N Send Feedback 226
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=226

(: X”_INX® Chapter 10: Using HLS IP in a Zynqg SoC Design

¢ Export Hardware LX)

Export hardware platform for software development
tools. ‘

< Include bitstream

Exportto: | @0 =Local to Project= A

(o)
\2) OK Cancel

Figure 10-20: Export Hardware Dialog Box
3. From the Vivado File menu, select Launch Hardware.
4. Click OK to open SDK.
5. From the SDK File menu, select New > Application Project.
a. Inthe New Project dialog enter the project name Zyng Design Test.
b. Click Next.
c. Select the Hello World template.
d. Click Finish.

High-Level Synthesis N Send Feedback 227
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=227

(: X”_INX® Chapter 10: Using HLS IP in a Zynqg SoC Design

B New Project o || B &
Application Project —
/—
Create a managed make application project.

Project name: Zync_Design_Test

[¥] Use default location

CA\Vivado_HLS_Tutorial\Using_IP_with_Zyng\labl\project 1\project_

o
A
T

default «
OS Platform: ‘5tanda|0ne v|
Target Hardware
Hardware Platform: |Zynq_Design_wrapper_hw_platform_[} '] |New...|
Processor: l ps/_cortexa?_0 -]
Target Software
Language: @C @ C++
32-bit >
/A -
Board Support Package: @) Create New Zync_Design_Test bsp
(©) Use existing |Zyng_Design_Test_bsp -
Ef?j} < Back MNext = ‘ [Finish] l Cancel

Figure 10-21: Application Project

6. Power up the ZC702 board and test the Hello World application. Ensure the board has all
the connections to allow you to download the bitstream on the FPGA device. See the
documentation that accompanies the ZC702 development board.

7. Click Xilinx Tools > Program FPGA (or toolbar icon).
Notice that the Done LED (DS3) is now on.

8. Click on SDK Terminal and click on add button to add a port to the terminal.

High-Level Synthesis N Send Feedback 228
UG871 (v2019.1) May 22, 2019 www.xilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=228

(: X”_INX® Chapter 10: Using HLS IP in a Zynqg SoC Design

a. Click the Connect icon (Figure 10-22).

i*! Problems ¥ Tasks & Console [Properties B SDK Terminal 2 w &L 70O

Click on + button to add a port to the terminal.

4 I

Figure 10-22: The Connect Icon
b. Select Connection Type > Serial.

c. Select the COM port to which the USB UART cable is connected (generally not COM1
or COM3). On Windows, if you are not sure, open the Device Manager and identify
the port with the Silicon Labs driver under Ports (COM & LPT).

d. Change the Baud Rate to 115200 (Figure 10-23).
e. Click OK to exit the Terminal Settings dialog box.

@ Connect to serial port | 3 |

Basic Settings

Port: COM3 -
Baud Rate: 115200 v|

= Advance Settings

Data Bits: [8 ']
Stop Bits: [1 v]
Parity: [None ']
Flow Control: [None v]

Timeout (sec):

OK l [Cancel l

Figure 10-23: Terminal Settings

9. Right-click the application project Zynq_Design_Test in the Explorer pane
(Figure 10-24).

High-Level Synthesis N Send Feedback 229
UG871 (v2019.1) May 22, 2019 www.xilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=229

8 X||_|NX® Chapter 10: Using HLS IP in a Zynq SoC Design

a. Click Run As > Launch on Hardware.

project_Lsdk - C/C++ - Xilinx SDK
File Edit Navigate Search Project Run Xilinx Tools Window Help

TR AEIEIR-RA SA-R S | | KAt 240 RAACWHEICE SR
&y Project Explorer & a%|¥ v=1 g systemhdf g systemmss [9 helloworld.c 2
[Zyng Dacian Tact #* Copyright (C) 2009 - 2014 Xilinx, Inc. All
8 Zyn New '
. @zng Golnto @ [
: . * helloworld.c: simple test application
Open in New Window %
& Copy Ctrl+C * This application configures UART 16550 to
Paste CtrisV * PS7 UART (Zyng) is not initialized by this
% £ - 115
X Delete Delee : bootrom/bsp configures it to baud rate 115
Source 4 Ty
Mave.. * | UART TYPE BAUD RATE
Rename... P2 =

¥ uvartns550 9600

\.
f“ Tt * uartlite Configurable only in HW desi
B | Expert. * ps7_uart 115200 (configured by bootre
Build Project *
Clean Project . .
e o #include <stdio.h>
Eires) #include "platform.h"
Close Project #include "xil printf.h"

Close Unrelated Projects

Build Configurations 4 - int main()

Run As £ 1Launch on Hardware (System Debugger)

Debug As B 2 Start Performance Analysis

Compare With v| £ 3 Launch on Hardware (System Debugger on QEMU)
& 4Launch on Hardware (GDB)

5 Lacal C/C++ Application

Restore from Local History...

C/C++ Build Settings
B Generate Linker Script
M. Change Referenced BSP

Run Configurations..
i

Figure 10-24: Run the Application Project

10. Switch to the Terminal tab and confirm that Hello World was received.

High-Level Synthesis N Send Feedback 230
UG871 (v2019.1) May 22, 2019 www.xilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=230

€ XILINX, Chapter 10: Using HLS IP in a Zyng SoC Design

I*! Problems) Tasks B Console [Properties B SDK Terminal 2 w X L =0

- - —— A —— e

Connected to: Serial { COM3, 115200, 0, 8

Connected to COM3 at 115200
Hello World

k

Figure 10-25: Console Output

Step 7: Modify software to communicate with HLS block

The completely modified source file is available in the arm code directory of the tutorial
file set. The modifications are discussed in detail below.

1.
2.

High-Level Synthesis

Open the helloworld. c source file.

Several BSP (and standard C) header files need to be included:

#include <stdlib.h> // Standard C functions, e.g. exit()

#include <stdbool.h> // Provides a Boolean data type for ANSI/ISO-C
#include "xparameters.h" // Parameter definitions for processor peripherals
#include "xscugic.h" // Processor interrupt controller device driver
#include "xHls macc.h" // Device driver for HLS HW block

Define variables for the HLS block and interrupt controller instance data. The variables
will be passed to driver API calls as handles in the respective hardware.

// HLS macc HW instance
XHls_macc HlsMacc;

//Interrupt Controller Instance
XScuGic ScuGic;

Define global variables to interface with the interrupt service routine (ISR).

volatile static int RunHlsMacc = 0O;
volatile static int ResultAvailHlsMacc = 0;

Define a function to wrap all run-once API initialization function calls for the HLS block.

int hls macc_init (XHls macc *hls maccPtr)
XHls_macc_Config *cfgPtr;
int status;

cfgPtr = XHls macc_LookupConfig (XPAR XHLS MACC 0 DEVICE ID) ;

if (lcfgPtr) {
print ("ERROR: Lookup of accelerator configuration failed.\n\r");
return XST FAILURE;

}
status = XHls _macc_CfgInitialize (hls_maccPtr, cfgPtr);
if (status != XST SUCCESS) {

. l Send Feedback I 231
UG871 (v2019.1) May 22, 2019 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=231

€ XILINX, Chapter 10: Using HLS IP in a Zyng SoC Design

print ("ERROR: Could not initialize accelerator.\n\r");
return XST FAILURE;

}

return status;

}

6. Define a helper function to wrap the HLS block API calls required to enable its interrupt
and start the block.

void hls macc_start (void *InstancePtr) {
XHls macc *pAccelerator = (XHls macc *)InstancePtr;
XHls macc_InterruptEnable (pAccelerator, 1) ;
XHls macc_InterruptGlobalEnable (pAccelerator) ;
XHls macc_Start (pAccelerator) ;

}

An interrupt service routine is required in order for the processor to respond to an interrupt
generated by a peripheral.

Each peripheral with an interrupt attached to the PS must have an ISR defined and
registered with the PS’s interrupt handler.

The ISR is responsible for clearing the peripheral’s interrupt and, in this example, setting a
flag that indicates that a result is available for retrieval from the peripheral. In general, ISRs
should be designed to be lightweight and as fast as possible, essentially doing the
minimum necessary to service the interrupt. Tasks such as retrieving the data should be left
to the main application code.

void hls macc_isr(void *InstancePtr)
XHls_macc *pAccelerator = (XHls macc *)InstancePtr;

//Disable the global interrupt

XHls macc_InterruptGlobalDisable (pAccelerator) ;
//Disable the local interrupt

XHls macc_InterruptDisable (pAccelerator, OXff£f£ffff) ;

// clear the local interrupt
XHls macc_InterruptClear (pAccelerator,1);

ResultAvailHlsMacc = 1;
// restart the core if it should run again
if (RunHlsMacc) {
hls macc_start (pAccelerator) ;
}

7. Define a routine to setup the PS interrupt handler and register the HLS peripheral’s ISR.

int setup_interrupt ()
{
//This functions sets up the interrupt on the Arm
int result;
XScuGic_Config *pCfg = XScuGic_LookupConfig (XPAR SCUGIC_ SINGLE_DEVICE_ID) ;
if (pCfg == NULL) {
print ("Interrupt Configuration Lookup Failed\n\r");
return XST_ FAILURE;

}

High-Level Synthesis N Send Feedback 232
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=232

(: X”_INX® Chapter 10: Using HLS IP in a Zynqg SoC Design

result = XScuGic CfgInitialize (&ScuGic,pCfg,pCfg->CpuBaseAddress) ;
if (result != XST SUCCESS) {

return result;
}

// self-test
result = XScuGic_SelfTest (&ScuGic) ;
if (result != XST SUCCESS) {
return result;
!

// Initialize the exception handler

Xil_ ExceptionInit () ;

// Register the exception handler

//print ("Register the exception handler\n\r") ;

Xil ExceptionRegisterHandler (XIL EXCEPTION ID INT,
(Xil ExceptionHandler)XScuGic InterruptHandler, &ScuGic) ;

//Enable the exception handler

Xil_ ExceptionEnable() ;

// Connect the Adder ISR to the exception table

//print ("Connect the Adder ISR to the Exception handler table\n\r");

result = XScuGic_Connect (&ScuGic, XPAR FABRIC HLS MACC_ 0 INTERRUPT INTR,
(Xil InterruptHandler)hls macc_ isr, &HlsMacc) ;

if (result != XST SUCCESS) {

return result;
}

//print ("Enable the Adder ISR\n\r");
XScuGic_Enable (&ScuGic,XPAR FABRIC HLS MACC_0 INTERRUPT INTR) ;
return XST SUCCESS;

8. Define a software model of the HLS hardware functionality with which you can compare
reference results.

void sw_macc(int a, int b, int *accum, bool accum_clr)
{
static int accum reg = 0;
if (accum clr)
accum_reg = 0;
accum _reg += a * b;
*accum = accum_reg;

}

9. Modify main() to use the HLS device driver API and the functions defined above to test
the HLS peripheral hardware.

int main()
{
print ("Program to test communication with HLS MACC peripheral in PL\n\r") ;
int a = 2, b = 21;
int res_hw;
int res_sw;
int i;
int status;

//Setup the matrix mult
status = hls macc_init (&HlsMacc) ;

if (status != XST_ SUCCESS) {
print ("HLS peripheral setup failed\n\r");
exit (-1);

High-Level Synthesis N Send Feedback 233
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=233

€ XILINX, Chapter 10: Using HLS IP in a Zyng SoC Design

}

//Setup the interrupt

status = setup interrupt();

if (status != XST_SUCCESS) {
print ("Interrupt setup failed\n\r");
exit (-1) ;

}

//set the input parameters of the HLS block
XHls macc_SetA(&HlsMacc, a);
XHls_macc_SetB(&HlsMacc, b);
XHls_macc_SetAccum clr (&HlsMacc, 1);

if (XHls macc_IsReady (&HlsMacc))
print ("HLS peripheral is ready. Starting... ");

else {
print ("!!! HLS peripheral is not ready! Exiting...\n\r");
exit (-1);

}

if (0) { // use interrupt
hls macc_start (&HlsMacc) ;
while (!ResultAvailHlsMacc)
; // spin
res_hw = XHls macc_GetAccum(&HlsMacc) ;
print ("Interrupt received from HLS HW.\n\r");
} else { // Simple non-interrupt driven test
XHls macc_Start (&HlsMacc) ;
do {
res_hw = XHls_macc_GetAccum(&HlsMacc) ;
} while (!XHls macc_IsReady (&HlsMacc)) ;
print ("Detected HLS peripheral complete. Result received.\n\r");

}

//call the software version of the function
sw_macc(a, b, &res sw, false);

printf ("Result from HW: %d; Result from SW: %d\n\r", res hw, res sw);
if (res_hw == res sw) {

print ("*** Results match ***\n\r");

status = 0;

}

else {
print ("!!! MISMATCH !!!\n\x");
status = -1;

}

cleanup platform() ;
return status;

}

10. Save the modified source file. When you save the file, SDK automatically attempts to
re-build the application executable. If the build fails, fix any outstanding issues.

Run the new application on the hardware and verify that it works as expected. Ensure that
a TCF hardware server is running, that the FPGA is programmed and a terminal session is

High-Level Synthesis N Send Feedback 234
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=234

2: X”_INX® Chapter 10: Using HLS IP in a Zynqg SoC Design

connected to the UART. Then Launch on Hardware, as you did for the previous Hello World
application code.

Upon success, the Terminal session looks similar to Figure 10-26.

[£4 Problems | ¥ Tasks | El Console | =] Properties | {2 Terminal 1 52 HEL ._.E' M - =8
Serial: (COMS, 115200, 8, 1, None, Mone - CONMECTED] - Encoding: (I50-8859-1)
Result from HW: 42; Result from SW: 42 -

SWoand HW results match!

Frogram to test communication with HLS MACC bleck in PL

fccelerator is ready. Starting... Detected HLS bleock complete. Result received.
Result from HW: 42; Result from SW: 42

#% Sl oand HW results match ##*

m

Figure 10-26: Console Output with Updated C Program

Lab 2: Streaming Data Between the Zynq CPU and
HLS Accelerator Blocks

This lab illustrates a common high-performance connection scheme for connecting
hardware accelerator blocks that consume data originating in the CPU memory and/or
producing data destined for it, in a streaming manner.

« This tutorial uses the same Vivado HLS and XFFT IP blocks created in Lab 1 of the
tutorial "Using HLS IP in IP Integrator”. In this lab exercise these blocks are connected
to the HPO Slave AXI4 port on a Zynq7 processing system via an AXI DMA IP core.

« The hardware accelerator blocks are free-running and do not require drivers; as long as
data is pushed in and pulled out by the CPU (often simply referred to as the Processing
System or PS).

« The lab highlights the software requirements to avoid cache coherency issues.

Step 1: Generate the HLS IP

1. From the Vivado HLS command prompt used in Lab 1, change to the 1ab2 directory as
shown in Figure 10-26.

2. Run Vivado HLS to create two HLS IP blocks by typing vivado _hls -f run hls.tcl.

High-Level Synthesis N Send Feedback 235
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=235

(: X”_INX® Chapter 10: Using HLS IP in a Zynqg SoC Design

[Vivado HLS 2013.2 Command Prompt == EoE <™

C:\Vivado_HLS_Tutorial\Using_IP_with_2Zyng\labl>cd .. -

C:\Vivado_HLS_Tutorial\Using_IP_with_2ynq>cd lab2

C:\VUivado_HLS_Tutorial\Using_IP_with_2yng\lab2>cd hls_designs

C:\Vivado_HLS_Tutorial\Using_IP_with_2Zyng\lab2\hls_designs>vivado_hls -f run_hls{E
.tel b

Figure 10-27: Setup for Zynq Lab 2

When the script completes, there are two Vivado HLS project directories, fe _vhls prj
and be_vhls prj, which contain the HLS IP, including the Vivado IP Catalog archives for
use in Vivado designs.

« The "front-end” IP archive is located at fe_vhls prj/IPXACTExport/impl/ip/

« The "back-end” IP archive is located at be _vhls prj/IPXACTExport/impl/ip/

Step 2: Create a Vivado Design Suite Project

1. Launch the Vivado Design Suite (not Vivado HLS):

- On Windows use Start > All Programs > Xilinx Design Tools > Vivado 2019.1 >
Vivado 2019.1.

o On Linux, type vivado in the shell.
2. From the Welcome screen, select Create New Project.
3. Click Next on the first page of the Create a New Vivado Project wizard.

4. Click the ellipsis button to the right of the Project location text entry box and browse to
the lab2 tutorial directory.

5. Set the project name to project 1, if it is not already specified.
6. Click Next to move to the Project Type page of the wizard.
a. Select RTL Project.
b. Select do not specify sources at this time (if not the default); just click Next.

7. On the Default Part page, under Specify, click Boards and select the ZYNQ-7 ZC702
Evaluation Board. Click Next.

8. On the New Project Summary Page, click Finish to complete the new project setup.

Step 3: Add HLS IP to an IP Repository

1. In the Project Manager area of the Flow Navigator pane, click IP Catalog.

2. Click the IP Catalog pane, right-click and select Add Repository.

High-Level Synthesis N Send Feedback 236
UG871 (v2019.1) May 22, 2019 www.xilinx.com L\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=236

(: X”_INX® Chapter 10: Using HLS IP in a Zynqg SoC Design

In the IP Repositories dialog box:

a. Browse to the 1ab2 tutorial directory .

b. Click the Create New Folder icon.

c. Entervivado ip repo in the resulting dialog box.
d. Click OK.

e. Click Select to close the IP Repository window.

On returning to the IP Setting dialog box:

a. Click the “+" symbol to Add IP.

b. In the IP Repositories dialog box, browse to the location of the HLS IP
lab2/hls designs/fe vhls prj/IPXACTExport/impl/ip/ or, if using IP
created in previous tutorial, browse to the corresponding path.

c. Selectthe xilinx com hls hls real2xfft 1 00 a.zip file.
d. Click OK.

Follow the same procedure to add the second HLS IP package, in directory
lab2/hls designs/be vhls prj/IPXACTExport/impl/ip/, to the repository:
xilinx com_hls hls xfft2real 1 00 a.zip.

The new HLS IP now appears in the IP Setting dialog box.
Click OK to exit the dialog box.
There is now HLS IP in the IP Catalog (HIs_real2xfft and Hls_xfft2real).

Step 4: Create a Top-level Block Design

1.

High-Level Synthesis

Click Create Block Diagram under IP Integrator in the Flow Navigator.
a. In the resulting dialog box, name the design Zzyng RealFFT.

b. Click OK.

In the Diagram tab, click the Add IP button to add IP

a. In the Search box, type fourier.

b. Select the Fast Fourier Transform and double-click with the mouse.

Double-click the new Fast Fourier Transform IP symbol to open the Re-customize IP
dialog box. On the Configuration tab:

a. Change the Transform Length to 512.
b. Change the Target Clock Frequency to 100 MHz.
¢. Inthe Architecture Choice section, select Pipelined, Streaming I/O.

Select the Implementation tab:

o l Send Feedback I 237
UG871 (v2019.1) May 22, 2019 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=237

2: X”_INX® Chapter 10: Using HLS IP in a Zynqg SoC Design

a.
b.
C.

d.

Select ARESETN (active-Low) in the Control Signals group.
Verify that Bit/Digit Reversed Order is selected under Output Ordering Options.
Verify that Non Real Time is selected as Throttle Scheme.

Click OK to exit Re-customize IP dialog

5. Add one instance of each of the HLS generated blocks to the design.

o))

o

Right-click in any space in the canvas and select Add IP.
Type hls into the Search text entry box.
Highlight both IPs. (Click the control key and select both.)

Press Enter.

6. Connect the HLS blocks to the FFT block.

a.

Mouse over the dout interface connector of the hls real2xftt block until a
pencil cursor appears.

Left-click and hold down the mouse button to start a connection.

Drag the connection line to the S AXIS DATA input port connector of the FFT block
and release when a green check mark appears next to it.

7. In a similar fashion:

a.

Connect the FFT's M_AXIS DATA interface to the din input interface of the
hls xfft2real block.

8. Put the data processing blocks into their own level of hierarchy.

a.

b.

High-Level Synthesis

Select everything in the current digram by pressing Ctrl+A.

Right-click the canvas and select Create Hierarchy from the context menu.

o l Send Feedback I 238
UG871 (v2019.1) May 22, 2019 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=238

(: X”_INX® Chapter 10: Using HLS IP in a Zynqg SoC Design

Diagram 200X

Q ok 0)Q + 0 5B CUD "

Block Properties... Cir+E
% Highlight)

¥ Delate
r 1B Coy

Q searh.
W SelectAl

L + Adgp.
Add Module... L -1 r -.I

%y ake Exiernal f o [|4

F Customize Block. _ ' - |t
IP Documentation b ‘ '
Editin IP Packager ‘
Crientation 4
P Setings...

M Validate Design [I : 4

Debug

Create Hierarchy..

Figure 10-28: Create a Hierarchy Block
c. In the Create Hierarchy dialog box, enter RealFFT as the Cell name.

d. Ensure that the Move ‘3’ selected blocks to new hierarchy option is checked, as
shown in Figure 10-29.

High-Level Synthesis N Send Feedback 239
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=239

(: X”_INX® Chapter 10: Using HLS IP in a Zynqg SoC Design

2 Create Hierarchy @
Please specify name of hierarchical cell to create in Zyng_RealFFT.
You can also move selected blocks to new hierarchy. ‘

Cell name: | 3E5lE30

[] Move '3' selected blocks to new hierarchy

’ 0K ” Cancel]

Figure 10-29: Name Hierarchy Block
e. Click OK.

The diagram will appear as shown in Figure 10-30.

Diagram 200X

aan&oq + @ CJ &

dlr

RealFFT

Figure 10-30: New Hierarchy Block

High-Level Synthesis N Send Feedback 240
UG871 (v2019.1) May 22, 2019 www.xilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=240

8 X”_INX® Chapter 10: Using HLS IP in a Zynqg SoC Design

Add pins to the RealFFT hierarchical block so that you can connect it at the top-level.

9. Double-click the RealFFT block to open its diagram.

Diagram x| Diagram -RealfFT x 700
aa X oa + g C g & &
hls_xfft2real 0
hls_real2xfft 0 xfit 0
r 3 fr ||+3|3“3m \vade® HIS
=4 din V V : M_AXIS_DATA 4=
1 Vivada™ HLS - * dout 4
+ ap il evenl frame started
dout 4+

ap clk

ap_rst n

event tlast unexpected

=+ S_AXIS_CONFIG o
event_tlast missing

ack His xfft2real (Pre-Production)
event_status_channel_halt m= -

evenl_data in_channel_halt

event_data out_chamel_halt

i+ §_AXIS_DATA
<

His_real2xfft (Pre-Production) aresetn

Fast Fourler Transform

Figure 10-31: RealFFT Diagram

10. Right-click the din_V_V pin of the hls real2xfft 0 block and select Create
Interface Pin from the context menu.

High-Level Synthesis N Send Feedback 241
UG871 (v2019.1) May 22, 2019 www.xilinx.com I—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=241

(: X”_INX® Chapter 10: Using HLS IP in a Zynqg SoC Design

hls_xfft2real 0
his_real2xftt 0 ¥fft 0 (
y - = : ; = . [+ ap.ctt
Vhade' HLS
¥ —c | M_AXS _DATA + o
|| + ap | Block Interface Properties.. + S evenl_frame_started
ap clk i event last inexpecied
P] % Highlight) CONFIG . DE ‘ .
ap_rsi event_liast_missing T 2T I]
| | g His_xfit2real (Pre-Production)
— evenl_status_channel_halt
His_ré i
B event data in_channel_halt
E] Copy Bl evenl_data oul_channe| halt

Fast Fourier Transform

Q gsarch..
W SelectAl
+ AddiP.

Add Wodule.
T Make Extemal

|P Settings...
¥ Validate Design

Start Connection Mode

Make Connection...

Create Hierarchy.

Create Comment

Create Interface Pin.. Cirl+L
' Regenerate Layout

Figure 10-32: Creating an Interface Pin

11. In the Create Interface Pin dialog box, change the Interface name to
realfft s axis din.

a. Accept all other defaults and click OK.

High-Level Synthesis N Send Feedback 242
UG871 (v2019.1) May 22, 2019 www.xilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=242

(: X”_INX® Chapter 10: Using HLS IP in a Zynqg SoC Design

4. Create Interface Pin @
Create interface pin for cell RealFFT. ‘
Interface name:

VLNV: xilinx.com:interface:axis_rtl:1.0 A
Mode: SLAVE A
Qonnect to selected interface din_V_V

’ 0K] ’ Cancel]

Figure 10-33: Naming an Interface Pin

12. Right-click the ap clk pinofthe hls real2xfft 1 block and select Create Pin from
the context menu.

a. Change the name to aclk and click OK.

High-Level Synthesis N Send Feedback 243
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=243

8 X”_INX® Chapter 10: Using HLS IP in a Zynqg SoC Design

Diagram | Diagram -RealFFT % 260
g a X woaQ + B C Y & %

} Designer Assistance available. Run Connection Automation

Block Pin Properties
Highlight 3
realfft_s_axis_din o
Copy
hs_xfit2real 0
Xfft_0
Q, Search
M_AXIS_DATA + & =+ din
SelectAll
event_frame_started ap_clk
AddIP. | DATA t tlast cled t
’ ;I CONFIG even! atsﬂuntexpfa E ap_rstn
event_tast_missin
Addodule . His_xfft2real (Pre-Production)
event_status_channel_halt
His | M Make External)
event_data_in_channel_halt
* Run Connection Automaton... evert data oul chamel hall
P Settings -
g Fast Fourier Transform

[Validate Design

Start Connection Made

Iake Connection

Create Hierarchy.
Create Comment
Create Pin Ciri+K

™ Rananarata | uniit

Figure 10-34: Create a Clock Pin

After you create this clock pin, the RealFFT diagram appears as shown in Figure 10-35.

High-Level Synthesis N Send Feedback 244
UG871 (v2019.1) May 22, 2019 www.xilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=244

& XILINX.

Diagram x| Diagram - RealFfT ~ x

Chapter 10: Using HLS IP in a Zynq SoC Design

aawioa +

realfit_s_axis_din

ack

¥ CY T

hls_real2xfft_0

xfit_0

Vo™ HLS
dout [Cm— 1 S AXIS_DATA
’ + S_AXIS_CONFIG

= ack

M_AXIS_DATA + =

event_frame_started
event tlast unexpected

event_last_missing

7200

his_xfft2real_0

His_xffi2real (Pre-Production)

- event_status_channel_halt
His_real2xfft (Pre-Production) 4

aresetn
event_data_in_channe!_halt

event_data_out_chamnel halt

Fast Fourler Transform

Figure 10-35: RealFFT Diagram with Interface Pin and Clock Pin

13. Following the procedures in steps 10 to 12:
a.

Create an interface pin called realfft m_axis_ dout connected to the dout Vv
pin of the hls xfft2real component.

b. Create a pin for aresetn (from any one of the blocks).

After this step, the RealFFT diagram appears as shown in Figure 10-36.

High-Level Synthesis
UG871 (v2019.1) May 22, 2019

www.Xxilinx.com

| Send Feedback I 245

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=245

(: X”_INX® Chapter 10: Using HLS IP in a Zynqg SoC Design

Diagram % Diagram-RealffT % PN

gas o + gCydl]

1 Designer Assistance available. Run Connection Automation

realfft_s_axis_din

hls_xfft2real_0
fls_real2xfft_0 xfft 0
= = = ||-|-apc1r\ o
vedo™ HLS
ok =+ din V o M_AXIS_DATA + £ =+ din fot + :_,—D realfft_m_axis_dout
|| + ap et - B event_frame_started ap_clk
dout o [m— 4 5 AXIS_DATA
ap clk E evenl tlast unexpecled aprstn
. £+ S.AXS_CONFIG oel i
; R = ack t E;:H : m:mi His_xfft2real (Pre-Production)
aresetn — event_status_channel_hal =
His_real2xfit (Pre-Production) 4 areseln)
-) ’ event dala in_channel_halt =
event_data_out_channel halt =

Fast Fourier Transform

Figure 10-36: RealFFT Diagram with All Pins

Finalize RealFFT block internal connections. The ap_start pins for the HLS blocks are
tied HIGH, and the aclk and aresetn pins on all blocks are tied together.

14. Right-click the canvas and select Add IP from the context menu.

a. Type const into the search box and press Enter.

b. Double-click the x1constant 0 component and verify that the Const Val field in
the Customize IP dialog is set to 1.

High-Level Synthesis N Send Feedback 246
UG871 (v2019.1) May 22, 2019 www.xilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=246

€ XILINX, Chapter 10: Using HLS IP in a Zyng SoC Design

¢ Re-customize IP [&3
Constant (1.1) y
ﬂ Documentation IP Location
Show disabled ports Component Name | RealFFTilconstant 0
Const Width | 1 [1-4098]
Constval 1

dout[0:0]

OK | | Cancel

Figure 10-37: Create a Constant 1 Tie-Off

15. Expand the ap_ctrl interface by clicking the + sign next to it on the hls real2xfft
and hls xfft2real block symbols and:

a. Connect the output pin of x1constant 0 to the ap start pin of
hls real2xfft O.

b. Connect the output pin of x1constant 0 to the ap start pin of
hls xfft2real_ O.

16. Similarly, connect all remaining component dout V and reset pins to the RealFFT
block diagram aclk and aresetn pins respectively.

17. Add another x1constant block and configure it with a Const Width of 16 and Const
Val of 0.

18. Expand the S AXIS CONFIG interface of the FFT block and connect
s _axis config tdata and s axis config tvalid to the new constant block.

Leave all other output pins of the components disconnected. The final RealFFT diagram
appears with the connections shown in Figure 10-38.

High-Level Synthesis N Send Feedback 247
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=247

€ XILINX, Chapter 10: Using HLS IP in a Zyng SoC Design

BLOCK DESIGN - Zynq_RealFFT *

Sub-block Properties |

ces

é 2alfft_s_axis_din

Deslgn

Signals

| BoAra

sEditor % Diagram - RealFFT x 280
+ B CYD %

slconstant_1

‘ doul]15:0] }—

Constant

Aconstant 0

‘; dout[0:0] F—

Constanl

«ft 0 his_xfit2real 0
his_real2ft 0 o) () realfi_m_axis_dout
ack , = 2 == 5.AXIS_DATA [Il4 zp_ct Fo
ﬁ: din_V_V = P 5 ayis_data {data[31.0] P ap_start [Vide" HLS
[l apctt Jrneeris o b 5 ads data fagt M_AXIS DATA o & =4 dn dout 4
F ap start dout 4 = 45 avis dala tready event_frame_started ap_ck '
areseln [— ') i
L ap_ck = P 5 axis data tvald event_flast unexpecied ap_rst n
ap rstn :- S AXIS_CONFIG avent_tiast missing m= e e
i , JEee o His_silZeal(Fre-Producton)
His_real2xift {Pre-Production) s o i 151) v siate_tanne_fak. 1=
= 4 5 ais_config tready event_data_in_channel halt m=
P 5_axis_config_tvalid event_data_out_channel halt m
aclk

ansetn

Fasl Fourier Transform

Figure 10-38: Final RealFFT Diagram

19. Close the RealFFT diagram tab and return to the top-level Zyng RealFFT diagram.

20. Create the Zynq system.

a.

High-Level Synthesis

Right-click the canvas of the top-level diagram and select Add IP from the context
menu.

Type zyng in the search box, select ZYNQ7 Processing System and press Enter.

Notice that designer assistance is available and click the Run Block Automation
link. Accept the defaults in the dialog by clicking OK.

Double-click the processing_system7_0 component to enter the Re-customize IP
wizard for the ZYNQ7.

Click the Presets button near the top of the wizard screen, select the ZC702
Development Board Template, and click OK.

Click PS-PL Configuration in the Page Navigator pane on the left of the wizard.

Expand the HP Slave AXI Interface category and check the box for the S AXI HPO
interface, leaving the S AXI HPO DATA WIDTH at 64.

. l Send Feedback I 248
UG871 (v2019.1) May 22, 2019 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=248

(: X”_INX® Chapter 10: Using HLS IP in a Zynqg SoC Design

¢ Re-customize [P |. 23 |

ZYNQT Processing System (5.5) ‘

© Documentation £F Presets IP Location #5% Import XPS Settings

Page Navigator — | | PS-PL Configuration Summary Report
Zynqg Block Design
® gearn:
PS-PL Configuration Q' Name Select Description
" : « ¢ General
Peripheral /0 Pins =
> AXI Non Secure Enablement 0 % Enable AXI Non Secure Transaction

q»

WO Configuration > GP Slave AX Interface

. ~ HP Slave AXl Interface
Clock Configuration

~ 5 AXI HPO interface 7 Enables AXl high performance slave interface 0
DOR Configuration S AXI HPO DATA WIDTH 64 | Allows HPO to be used in 32/64 bit data width mode

5 ; .
SHC Timing Calculation S AXI HP1 interface Enables AXl high performance slave interface 1

» 5 AN HPZ interface Enables AXI high perfarmance slave interface 2
Interrupts > 5 AXIHP3 interface Enables AX| high performance slave interface 3

> ACP Slave AXl Interface
> DMA Controller

> P3-PL Cross Trigger interface Enables PL cross trigger signals to PS and vice-versa

Figure 10-39: Configuring Port HPO

h. Select Clock Configuration in the Page Navigator, expand PL Fabric Clocks, and
change the requested frequency to 100 (MHz).

High-Level Synthesis N Send Feedback 249
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=249

& XILINX.

¢ Re-customize IP

ZYNQT Processing System (5.5)

O Documentation £F Presets

Page Navigator — | | Clock Configuration
2y Block Design Basic Clocking Advanced Clocking
PS-PL Configuration # |nputFrequency (MHz) 33.333333 CPU Clock Ratio 6:21
Peripheral 110 Pins Q Search:
MIO Configuration z Component Clock Source Requested Frequ..
» 0 ProcessorMemory Clocks
Clock Configuration M Peripheral Clocks
: i v PLFabricClocks
DDR Configuration
v/ FCLK_CLKD 10 PLL 100

SWC Timing Calculation

FCLK_CLK1 I0PLL 50
Intermupts FCLK_CLK2 I0PLL 50

FCLK_CLK3 IO PLL 50

IP Location (Et Import XPS Seftings

» System Debug Clocks

> Timers

Chapter 10: Using HLS IP in a Zynq SoC Design

Actual Frequencyl...

100.000000

10.000000

10.000000

10.000000

Figure 10-40: Configuring the Clock

Summary Report

Range(MHz)

0.100000: 250.000000
0.100000: 250.000000
0.100000 : 250.000000

0.100000: 250.000000

‘ 0K ‘ ‘Cancel‘

i. Leave all other settings at their defaults; click OK to apply customizations.

21. Make a connection from RealFFT block’s realfft_s_axis_din to Zynq SoC’'s S_AXI_HPO,
accept the defaults in the Make Connection dialog and click OK.

IPI will place several new blocks require to complete the connection automatically,
including an AXI DMA core, an AXI Interconnect and a Processor System Reset block.

22. Make a connection from the RealFFT block’s realfft_m_axis_dout to the Zynq's
S_AXI_HPO interface. Accepting the defaults in the Make Connection dialog will cause IPI
to use the existing AXI DMA (which has an unused write channel) and AXI Interconnect
to make the 'S2MM’ connection.

High-Level Synthesis
UG871 (v2019.1) May 22, 2019

www.Xxilinx.com

l Send Feedback I 250

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=250

€ XILINX, Chapter 10: Using HLS IP in a Zyng SoC Design

23. Note that Designer Assistance is again available. Run Connection Automation on
/axi_dma/S_AXI_LITE and click OK in the resulting dialog box.

24. Connect the aclk and aresetn ports of the RealFFT hierarchical block to nets
processing_system7_0 pin FCLK_CLKO and rst_processing_system7_0_100M pin
peripheral_aresetn respectively.

25.To complete the design, run Validate Design. When validation completes successfully,
the block diagram should look like Figure 10-41.

High-Level Synthesis N Send Feedback 251
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=251

8 X”_INX® Chapter 10: Using HLS IP in a Zynqg SoC Design

Step 5: Implementing the System

BLOCK DESIGN - Zynq_RealFFT 7 X
«o || Diagram X AddressEditor % | Diagram -RealFFT X | IPCatalog % 200
o
L
o LY IS] - I3
é @1 o M 0 Q v + o C Cj it 'u'
[
2 ps_0_axi_periph
3 1
2 il S0 AN
0
& ———={ ACLK
— BRESETH Iil
. (S0 ALK W= MO0 AN e
£ SO0 ARESETH o
g M0 ACLK
§ 100 ARESETN
| AXl ntercannect
5
[
E ad_mem_infercon
— processing_system? 0
il 80080
o 10R ;5‘;_ e O 00R
g FIED 16 [R
5 10 4 | ol ="} FIXED_ID
@ | LSEIND 0 4
al [.4 e e 1 MEEN g g
b 14 5 4K R N R =] oL saak X
S TTCO_ WAVED_OUT (= 7 LA 00 A e
4 = M_AKl_GPO_ACLK ZYNO nw-wp\w“our 500 ARESETN lxl ekl
] — 5 AX| HPO_ACLK A e W00 ACLK =1
3 TTCO_WAVER OUT =
o | i W00 ARESETN
FELK RESET) N] i
£ i S01 ARESETN
ZYNGT Processing System 15t_ps7_0_100M
AXI Interconnect
sovest gyne ok mb_reset
ot et n bug_ druct resef(i0]
B fesel in pepheral reseffl(]
mo_debug sys 8 Interconned aresei{0ig]
dom locked pengneral areselnin]
Procassor System Reset
RealFFT
S et 3 as dn i
adkrestt m axs dout F W AXLMNES e
+ S AN LITE : 4
5 AN S5 AL
areseln ¥ A HLAXS MHZS e
5.4 e adk
mm2s_prmry resed oul 0
m_an_mmis sck
m an_gdmm_gek

mm2s_nrout

o
sdmm_pmy_resel out 0 @

a2mm _nirout

AX| Direct Memory Access

Figure 10-41: Zynq Diagram with Internal Connections

Before proceeding with the system design, you must generate implementation sources and
create an HDL wrapper as the top-level module for synthesis and implementation.

1. Return to the Project Manager view by clicking Project Manager in the Flow Navigator.

2. In the Sources browser in the main workspace pane, a Block Diagram object called
Zyng RealFFT appears at the top of the Design Sources tree view. Right-click this
object and select Generate Output Products.

High-Level Synthesis N Send Feedback 252
UG871 (v2019.1) May 22, 2019 www.xilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=252

(: X”_INX® Chapter 10: Using HLS IP in a Zynqg SoC Design

3. In the resulting dialog box, click OK to start the process of generating the necessary
source files.

4. Right-click the Zyng RealFFT object again, select Create HDL Wrapper, and click OK
to exit the resulting dialog box.

The top-level of the Design Sources tree becomes the Zyng RealFFT wrapper.v file.
You are now ready to synthesize, implement, and generate an FPGA programming bitstream
for the design.

5. Click Generate Bitstream to initiate the remainder of the flow.

6. In the dialog that appears after bitstream generation has completed, select Open
Implemented Design and click OK.

Step 6: Setup SDK and Test the ZYNQ System

You are now ready to export the design to Xilinx SDK. In SDK, you create software to run on
a ZC702 board (if available). A driver for the HLS block was generated during HLS export of
the Vivado IP Catalog package and must be made available in SDK for the PS7 software to
communicate with the block.

1. From the Vivado File menu select Export > Export Hardware for SDK.

Note: Both the IPI Block Design and the Implemented Design must be open in the Vivado
workspace for this step to complete successfully.

2. Inthe Export Hardware for SDK dialog box, ensure that the Include Bitstream option is
checked, and click OK.

3. From the Vivado File menu, select Launch SDK.
4. Click OK to launch SDK.
5. Create aHello World application (also creates BSP).
a. Select File > New > Application Project.
b. Enter the project name Zyng RealFFT Test.
c. Click Next.
d. Select Hello World (if it is not the default).
e. Click Finish.
6. Power up the ZC702 board and program the FPGA.

Ensure the board has all the connections to allow you to download the bitstream on the
FPGA device. Refer to the documentation that accompanies the ZC702 development
board.

7. Click XilinxTools > Program FPGA. The Done LED (DS3) goes on.

High-Level Synthesis N Send Feedback 253
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=253

2: X”_INX® Chapter 10: Using HLS IP in a Zynqg SoC Design

8. Set up a Terminal in the tab at bottom of workspace:
a. Click the Connect icon.
b. Select Connection Type > Serial.

c. Select the COM port to which the USB UART cable is connected (generally not COM1
or COM3). On Windows, if you are not sure, open the Device Manager and identify
the port with the Silicon Labs driver under Ports (COM & LPT).

d. Change the Baud Rate to 115200.
e. Click OK to exit Terminal Settings dialog box.
f. Check that terminal is connected by message in tab title bar.
9. Right-click application project Zzyng Design Test in the Explorer pane.
a. Select Run As > Launch on Hardware.
10. Switch to the Terminal tab and confirm that Hello World was received.

11. This project uses the C math library (1ibm), so you must adjust the build settings to link
to it.

a. Right-clickthe zyng realfft test projectinthe Project Explorer pane and select
C/C+ Build Settings (Figure 10-42).

High-Level Synthesis N Send Feedback 254
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=254

8 X”_INX® Chapter 10: Using HLS IP in a Zynqg SoC Design

M project_1sdk - C/C++ - Zyng_RealFFT Test_bsp/system.mss - Xilink S
File Edit Navigate Search Project Run Xilinx Tools Window

HrHG[B Q@i 0-NDEREE S

T Project Explorer 12 BS[Y 750 G
: & Zyng_RealFFT ==
il Zyng_RealFFT|
4 (8 7yng Repry G0 1000

(6 ps7_init.g Openin New Window
psT_init.gf -

New 4

R Copy Cirl+C
[ps?_fnftc Daste Crl+V
ps?_f”ft‘h % Delete Delete
? ps?_fnfthtn o '
& psT_inittcl e
5 systemhaf Rename. 9]
& Zynq_Real

g Import.

Ly Bxport..

Build Project

(lean Project

Refresh F5
Close Project

(lose Unrelated Projects

Build Configurations 4
Run As '
Debug As 4
Compare With 4

Restore from Local History...

(/C++ Build Settings
[Generate Linker Script

[T nor 1Ren

Figure 10-42: Specify C/C++ Build Settings

b. Add the Arm gcc linker libraries.
i. Inthe Tool Settings tab, select Arm gcc linker > Libraries.

ii. Click the Add icon.

High-Level Synthesis N Send Feedback 255
UG871 (v2019.1) May 22, 2019 www.xilinx.com I—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=255

& XILINX.

Chapter 10: Using HLS IP in a Zynq SoC Design

@) C/T++ - yng_realf Run &3

File Edit Source Debug &5
=4 Profile As
- =) .

5 eam
= B _
Cormpare Yifith

RN A Restore from Local History..,

= “'5“ Run C/C++ Code Analysis
a g hoe_platfarm_
[@ psT_initc Generate Linker Script

5] psT_init.h I}, Change Referenced BSP
@ psT_inithy B Create BootImage

Su

dte

Alt+Enter e

Target Processor ps7_cortexad_0

standalone
ERTIE

Standalone is a simple, |
as weell as the basic feat

B psTnitts ooy Buyild Settings
systermn.bit
L systemm Properties
4 |i5 zyng_realfft_test
» [Includes
"+ (& Debug Operating System
4 [src
- &) helloworld.c Board Support Package 05,
> platforrm_config.h Marne:
- g platform.c Wersion:
> platfarmm.h Description:
Tl script.ld
4 @ zyng_realfft_test_bsp Documentation:

standalone w3 10 a

Figure 10-43: C/C++ Build Settings

c. Enter min the text field in the Enter Value dialog box and click OK.

High-Level Synthesis
UG871 (v2019.1) May 22, 2019

www.Xxilinx.com

l Send Feedback I 256

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=256

& XILINX.

Chapter 10: Using HLS IP in a Zynq SoC Design

@ Properties for Zynq_RealFFT_Test

type filter text

» Resource
Builders
4 C/C++ Build
Build Variables
Environment
Logging
Settings
Tool Chain Editor
» C/C++ General
Project References
Run/Debug Settings

Settings

oD

b v wv

Configuration; lDebug [Active]

'] [Manage Conﬁgulations..‘]

& Tool Settings ‘ B Devices | # Build Steps| Build Artifactl Binary Parsen;l)

4 1 ARM 7 gec assembler
(% General
4 % ARM VT gcc compiler
(& Symbols
(2 Warnings
(%% Optimization
 Debugging
& Profiling
Directories
(2 Miscellaneous
4 (% Inferred Options
(# Software Platform
(22 Procassor Options
4 ARM 7 g linker
(# General
|ibraries
(# Miscellaneous

G

Figure 10-44:

Libraries (-)

B

Add..

Library search path (-L)

Library Setting

d. Click OK to exit the Properties for the zyng realfft test dialog box.

Step 7: Modify software to communicate with HLS block

The completely modified source file is available in the arm_code directory of the tutorial

file set. The modifications are discussed in detail below.

1. Open the helloworld.c source file.

2. Several BSP (and standard C) header files must be included:

#include
#include
#include
#include

<stdlib.h> // Std C functions, e.g.
// libm header:
"xparameters.h" // System parameter definitions

<math.h>

sgrt (),

exit ()

cos (), etc

"xaxidma.h" // Device driver API for AXI DMA

3. Define the (real data) transform length of the FFT:

#define REAI, FFT_LEN

1024

4. Define a custom complex data type with 16-bit real and imaginary members:

High-Level Synthesis

UGS871 (v2019.1) May 22, 2019

www.Xxilinx.com

| Send Feedback I 257

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=257

€ XILINX, Chapter 10: Using HLS IP in a Zyng SoC Design

typedef struct {
short re;
short im;

} complex16;

5. Declare helper functions before the definition of main (); they will be defined later.

Note: The init dma () function wraps up all run-once, initialization AXI DMA driver API calls and
checks that hardware initialization is successful before returning or exiting on an error condition.
The generate waveform() function fills an array with a simple, periodic waveform to be used as
input stimulus for the RealFFT accelerator.

int init dma (XAxiDma *axiDma) ;
void generate waveform(short *signal buf, int num samples) ;

6. Modify main () to generate and send input data to the RealFFT accelerator and receive
the spectral data from it via the AXI DMA engine. Sections of particular importance will
be discussed in detail.

// Program entry point
int main()

{

a. Declare an XAxiDma instance to use as a handle to the AXI DMA hardware:

// Declare a XAxiDma object instance
XAxiDma axiDma;

b. Declare variable for local data storage:

// Local variables

int 1, j;

int status;

static short realdata[4*REAL_ FFT LEN];

volatile static complexlé6 realspectrum[REAL FFT LEN/2];

c. Run platform and DMA initialization functions:

// Initialize the platform
init platform() ;

Print (M-----mmmm e - \n\r") ;
print ("- RealFFT PL accelerator test program -\n\r");
Print (M----- oo e \n\r")

// Initialize the (simple) DMA engine

status = init dma (&axiDma) ;
if (status != XST SUCCESS) {
exit (-1);

d. Generate a stimulus waveform:

// Generate a waveform to be input to FFT
for (i = 0; i < 4; 1i++)
generate waveform(realdata + i * REAL FFT LEN, REAL FFT LEN);

High-Level Synthesis N Send Feedback 258
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=258

€ XILINX, Chapter 10: Using HLS IP in a Zyng SoC Design

e. Before making the DMA transfer request, the buffer containing the data must be
flushed from the processor’s data cache. Without this step, the DMA might pull stale
data from the DRAM.

// *IMPORTANT* - flush contents of 'realdata' from data cache to memory
// before DMA. Otherwise DMA is likely to get stale or uninitialized data
Xil DCacheFlushRange ((unsigned)realdata, 4 * REAL FFT LEN * sizeof (short));

f. Request DMA transfer from PS to PL. Enough data to fill the front-end block and the
FFT processing pipelines must be sent in order for spectral data to be ready when
the PL to PS transfer is requested. Therefore, four data sets are sent before the first
output set is requested:

// DMA enough data to push out first result data set completely
status = XAxiDma_ SimpleTransfer (&axiDma, (u32)realdata,
4 * REAL,_FFT LEN * sizeof (short), XAXIDMA DMA TO DEVICE) ;

// Do multiple DMA xfers from the RealFFT core's output stream and

// display data for bins with significant energy. After the first frame,
// there should only be energy in bins around the frequencies specified
// in the generate waveform() function - currently bins 191~193 only
for (i = 0; 1 < 8; i++) {

g. Request DMA transfer of a frame of FFT spectral data from PL to PS then poll for
completion of the transfer before proceeding.

// Setup DMA from PL to PS memory using
// AXI DMA's 'simple' transfer mode
status = XAxiDma SimpleTransfer (&axiDma, (u32)realspectrum,
REAL _FFT LEN / 2 * sizeof (complex16), XAXIDMA DEVICE TO DMA) ;
// Poll the AXI DMA core
do {
status = XAxiDma Busy (&axiDma, XAXIDMA DEVICE TO DMA) ;
} while(status) ;

h. Before attempting to use the spectral data, the processor’'s data cache copy of the
buffer must be invalidated to avoid use of stale data.

// Data cache must be invalidated for 'realspectrum' buffer after DMA
Xil DCacheInvalidateRange ((unsigned)realspectrum,
REAL _FFT LEN / 2 * sizeof (complexl6));

i. Push another set of stimulus data to the PL in order to start the accelerator
processing the next frame:

// DMA another frame of data to PL
if (!XAxiDma_ Busy (&axiDma, XAXIDMA DMA TO DEVICE))
status = XAxiDma SimpleTransfer (&axiDma, (u32)realdata,
REAL_FFT LEN * sizeof (short), XAXIDMA DMA TO DEVICE) ;
printf ("\n\rFrame #%d received:\n\r") ;

j. Do something to verify that the accelerator is functioning. In this case, the spectral
data is scanned for bins that contain significant energy. The expectation is to detect
only energy in bins around the single tone (192) generated by the
generate waveform() function.

// Detect energy in spectral data above a set threshold
for (j = 0; j < REAL FFT LEN / 2; j++) {

High-Level Synthesis N Send Feedback 259
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=259

€ XILINX, Chapter 10: Using HLS IP in a Zyng SoC Design

// Convert the fixed point (s.15) values into floating point values
float real = (float)realspectrum([j].re / 32767.0f;
float imag = (float)realspectrum([j].im / 32767.0f;
float mag = sqgrtf(real * real + imag * imag) ;
if (mag > 0.00390625f) {
printf ("Energy detected in bin %3d - ",3j);
printf ("{%8.5f, %8.5f}; mag = %8.5f\n\r", real, imag, mag);
}
}
printf ("End of frame.\n\r");
I}Jrintf("***************\n\r");
printf ("* End of test *\n\r");
printf("***************\n\r\n\r");
return 0O;

}

7. Define the helper function that generates the waveform data sets. This version simply
fills a buffer with a single tone with 192 cycles per num_samples data window with
values in a S.15 fixed point format.

void generate waveform(short *signal buf, int num samples)
{
const float cycles_per_win = 192.0f;
const float phase = 0.0f;
const float ampl = 0.9f;
int 1i;
for (i = 0; 1 < num samples; i++) {
float sample = ampl *
cosf((i * 2 * M PI * cycles per win / (float)num samples) + phase);
signal buf[i] = (short) (32767.0f * sample) ;

8. Define a routine to set up the and initialize the AXI DMA engine, wrapping all driver API
calls that only need to be run once at startup.

int init dma (XAxiDma *axiDmaPtr) {
XAxiDma Config *CfgPtr;
int status;
// Get pointer to DMA configuration
CfgPtr = XAxiDma_ LookupConfig (XPAR_AXIDMA 0_DEVICE_ID) ;
if (1CfgPtr) {
print ("Error looking for AXI DMA config\n\r");
return XST FAILURE;
}
// Initialize the DMA handle
status = XAxiDma CfgInitialize (axiDmaPtr, CfgPtr) ;
if (status != XST SUCCESS) {
print ("Error initializing DMA\n\r") ;
return XST FAILURE;
}
//check for scatter gather mode - this example must have simple mode only
if (XAxiDma HasSg(axiDmaPtr)) {
print ("Error DMA configured in SG mode\n\r") ;
return XST FAILURE;

}

//disable the interrupts

High-Level Synthesis N Send Feedback 260
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=260

€ XILINX, Chapter 10: Using HLS IP in a Zyng SoC Design

XAxiDma_IntrDisable (axiDmaPtr, XAXIDMA TRQ ALI, MASK,XAXTDMA DEVICE TO DMA) ;
XAxiDma_IntrDisable (axiDmaPtr, XAXIDMA IRQ ALL MASK,XAXIDMA DMA TO DEVICE) ;

return XST SUCCESS;

9. Save the modified source file. As soon as you save the file, SDK automatically attempts
to re-build the application executable.

10. Run the new application on the hardware and verify that it works as expected. Ensure
that the FPGA is programmed and a terminal session is connected to the UART. Then
Launch on Hardware, as done for the previous Hello World application code.

Conclusion

In this tutorial, you learned:

+ How to create Vivado HLS IP using a Tcl script.
* How to import an HLS design as IP into IP Integrator.

« How to connect HLS IP to a Zynq SoC using AXI4-Lite interfaces and AXI4-Stream
interfaces.

« How to configure HLS IP with AXI4-Lite in software.

« How to control DMAs using AXI4-Stream in software.

High-Level Synthesis N Send Feedback 261
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=261

& XILINX

Chapter 11

Using HLS IP in System Generator for DSP

¥

High-Level Synthesis

Overview

The RTL created by High-Level Synthesis can be packaged as IP and used inside System
Generator for DSP (Vivado). This tutorial shows how this process is performed and
demonstrates how the design can be used inside System Generator for DSP.

This tutorial consists of a single lab exercise.

Lab 1 Description

Generates a design using Vivado HLS and package the design for use with System Generator
for DSP. Then include the HLS IP into a System Generator for DSP design and execute an RTL
simulation.

Tutorial Design Description

You can download the tutorial design file from the Xilinx Website. See the information in
Locating the Tutorial Design Files.

This tutorial uses the design files in the tutorial directory
Vivado HLS Tutoriall\Using IP with SysGen.

The sample design is a FIR filter that uses streaming interfaces modeled with the High-Level
Synthesis hls::stream class. The design is fully pipelined at the function level. The
optimization directives are embedded into the C code as pragmas.

Lab 1: Package HLS IP for System Generator

This lab exercise integrates the High-Level Synthesis IP into System Generator for DSP.

IMPORTANT: The figures and commands in this tutorial assume the tutorial data directory
Vivado HLS Tutorial is unzipped and placed in the location C:\Vivado HLS Tutorial.

o l Send Feedback I 262
UG871 (v2019.1) May 22, 2019 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=262

(: X”_INX® Chapter 11: Using HLS IP in System Generator for DSP

If the tutorial data directory is unzipped to a different location, or on Linux systems, adjust the few
pathnames referenced, to the location you have chosen to place the Vivado HLS Tutorial
directory.

Step 1: Create a Vivado HLS IP Block

Create two HLS blocks for the Vivado IP Catalog using the provided Tcl script. The script
runs HLS C-synthesis, runs RTL co-simulation, and package the IP.

1. Open the Vivado HLS Command Prompt.

- On Windows, go to Start > All Programs > Xilinx Design Tools > Vivado 2019.1
> Vivado HLS > Vivado HLS 2019.1 Command Prompt.

o On Linux, open a new shell.

2. Using the command prompt window, change the directory to
Vivado HLS Tutorial\Using IP with SysGen\labl.

3. Typevivado_hls -f run hls.tcl to create the HLS IP.

[Vivado HLS 2013.2 Command Prompt == EoE <™

C:\Vivado_HLS_Tutorial>cd Using_IP_with_SysGen

C:\Vivado_HLS_Tutorial\Using_IP_with_SysGen>cd labl

4 [

C:\Uivado_HLS_Tutorial\Using_IP_with_SysGen\lab1>vivavo_hls -f run_hls.tcl

Figure 11-1: Create the HLS Design

A key aspect of the Tcl script used to create this IP is the command export design
-format sysgen. This command creates an IP package for System Generator. When the
script completes there is a Vivado HLS project directories £ir prj, which contains the HLS
IP, including the IP package for use in a System Generator for DSP design.

The remainder of this tutorial exercise shows how to integrate the Vivado HLS IP block into
a System Generator design.

Step 2: Open the System Generator Project

1. Open System Generator for DSP.
o On Windows use the desktop icon.

o On Linux, open a new shell and type sysgen.

High-Level Synthesis N Send Feedback 263
UG871 (v2019.1) May 22, 2019 www.xilinx.com L\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=263

Chapter 11: Using HLS IP in System Generator for DSP

& XILINX.

Figure 11-2: System Generator Icon

2. When Matlab invokes, click the Open toolbar button, as shown in Figure 11-3.

HOME

P New Variable Analyze Code
E I:ll:ll:' - [Find Files g’ E g g
Open Variable « Run and Time
Save

New Mew |-l Compare Import
Script Data Workspace @Clearwm.paoe = [Clear Comman

4__,30;1&%.. Ctrl=0

Figure 11-3: Open the System Generator Design

3. Navigate to the tutorial directory
Vivado HLS Tutoriall\Using IP with SysGen\labl and select the file

fir sysgen.slx, as shown in Figure 11-4.

High-Level Synthesis
UG871 (v2019.1) May 22, 2019 www.xilinx.com

| Send Feedback I 264

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=264

8 X”_INX® Chapter 11: Using HLS IP in System Generator for DSP

4 Open =X
@(Jo| | « Vivado_HLS Tutorial » Using IP_with_SysGen b labl » ~| 4 || search a1 Pl
Organize ~ New folder =~ [@
Name Date modified Type
= Libraries
b fir_prj 9/2/2015 1:23 PM File folder
. Documents
] fircpp 3/29/2013 838 AM C++ Source
4. Music
) firh 7/6/2012 218 PM C/C++ Head
= Pictures
) " fir_sysgen.slx 3/11/2015 1215 PM Simulink Mo
;, Videos -
] fir_testcpp 71672012 223 PM C++ Source
3. Vivado_HLS
& Computer
& 0SDisk (C) =
% duncanm (\\xcocl2) (X:)
< duncanm (\\xsj-smb) (¥:) |
- gdrive (\\ppdeng) (£
» |4 11 | P
File name: fir_sysgen.slx - [AII MATLAB files (*.rpt*.tmf; VI
[Open |v| ‘ Cancel ‘

Figure 11-4: Select File fir_sysgen.slx

When System Generator invokes, all blocks and ports except the HLS IP are already
instantiated in the design.

4. Right-click in the canvas and select Xilinx BlockAdd, as shown in Figure 11-5.

High-Level Synthesis N Send Feedback 265
UG871 (v2019.1) May 22, 2019 www.xilinx.com I—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=265

(: X”_INX® Chapter 11: Using HLS IP in System Generator for DSP

\'ﬁﬁr_sysgen

File Edit View Display Diagram Simulation Analysis Code Tools Help

B~ & e~ 4® b (® ~ 100 Normal - @~
fir_sysgen |

@®

|%alfir_sysgen

B e

S Xilinx BlockAdd

B =
Xilinx BlockConnect
| Xilinx Tools ’ >
.—’ im b1 Xilinx View Signals ..
Constant ap rst il
Explore "
e M T « e N
o = Can't Undo Ctrl+Z >
Can't Redo Ctri+Y

T |
m—f—— =

p
input_val V_dout aste

Puke Generatorl

Paste Duplicate Inport

= i et Vemph ’ Select All Ctri+A
- a V_wrie *
| Find Referenced Variables... i

— STV i Most Frequently Used Blocks AT

Remove Highlighting Ctrl+5Shift+H —

pe
;.4:1__; Update Diagram Ctr+D

Figure 11-5: Adding a New Block
5. Type hls in the Add Block field.
6. Select Vivado HLS.

Add block | hls
Vivado HLS

Figure 11-6: Selecting a Vivado HLS IP Block
7. Double-click the Vivado HLS block to open the Vivado HLS dialog box.

8. Navigate to the fir prj project and click Choose to select the solutionl folder.

i? IMPORTANT: System Generator for DSP uses the location of the solution folder to identify the IP.

9. Click OK to load the IP block, as shown in Figure 11-7.

High-Level Synthesis N Send Feedback 266
UG871 (v2019.1) May 22, 2019 www.xilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=266

8 X”_INX® Chapter 11: Using HLS IP in System Generator for DSP

5¢ Vivado HLS (Xilinx High Level Sy...| = || B |[mt3m]

This block allows including C,C++ and SystemC source files in
System Generator for DSP designs.

Solution with_SysGen/lab1/fir_prj/solution1/" w

|:| Use C simulation model if available

|:| Display signal types

Output Sample Times’SimuIink system period v]

’ OK ” Cancel ” Help ” Apply]

Figure 11-7: Selecting the FIR IP Block

The FIRIP block is instantiated into the design.

10. Connect the design I/O ports to the ports on the FIR IP block, as shown in Figure 11-8.

" sysgen ==
File Edit View Display Diagram Simulation Analysis Code Tools Help
] =l (ol (
-8 = OB 4OP » ©- w @~
fir_sysgen
@ |[*alfir_sysgen v
@)
= 8
ap_do > Out
Constant ap_rst ap_don=
. S
- T P lapide
S ap_idle
ap_start
ConsEnt - . =’—0m|
- L U 1 ap ready
°mpm—al—v—iﬂ’fﬁ{:mh:del ey
C 2 output_val_V_full_n . N |
ensen D P Out It V.din
output_val V_din
_ input_val_V_dout
input_val V_dout output_val_V_write > Out 1
Pulse Genaratorl put_val v L 1 ouput i v e
output_val_V_wrie
. input_val_¥_empty n input_val_V_read '—"—Outl
Constnt1 input_al V_empy_n input_swal V_read nput_val V_read
Vivado HLS
Soope
>
Ready 94% oded5 .

Figure 11-8: Design with All Connections

11. Ensure the simulation stop time says 300.

High-Level Synthesis N Send Feedback 267
UG871 (v2019.1) May 22, 2019 www.xilinx.com I—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=267

2: X”_INX® Chapter 11: Using HLS IP in System Generator for DSP

12. Click the Run button on the toolbar to execute simulation.

13. Double-click the Scope block to view the simulation waveforms.

Conclusion

In this tutorial, you learned:

« How to create Vivado HLS IP using a Tcl script.

« How to import an HLS design as IP into System Generator for DSP.

High-Level Synthesis N Send Feedback 268
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=268

& XILINX

Appendix A

Additional Resources and Legal Notices

Xilinx Resources

For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Solution Centers

See the Xilinx Solution Centers for support on devices, software tools, and intellectual
property at all stages of the design cycle. Topics include design assistance, advisories, and
troubleshooting tips.

Documentation Navigator and Design Hubs

Xilinx Documentation Navigator provides access to Xilinx documents, videos, and support
resources, which you can filter and search to find information. To open the Xilinx
Documentation Navigator (DocNav):

« From the Vivado IDE, select Help > Documentation and Tutorials.
+ On Windows, select Start > All Programs > Xilinx Design Tools > DocNav.

« At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other
topics, which you can use to learn key concepts and address frequently asked questions. To
access the Design Hubs:

« In the Xilinx Documentation Navigator, click the Design Hubs View tab.
« On the Xilinx website, see the Design Hubs page.

Note: For more information on Documentation Navigator, see the Documentation Navigator page
on the Xilinx website.

High-Level Synthesis N Send Feedback 269
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/support/solcenters.htm
https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=269

(: X”_INX® Appendix A: Additional Resources and Legal Notices

References

1. Introduction to FPGA Design with Vivado High-Level Synthesis (UG998)

2. Vivado® Design Suite User Guide: High-Level Synthesis (UG902)

3. Vivado Design Suite User Guide: Release Notes, Installation, and Licensing (UG973)
4. Vivado Design Suite Documentation

Training Resources

Xilinx provides a variety of training courses and QuickTake videos to help you learn more
about the concepts presented in this document. Use these links to explore related training

resources:

1. C-based Design: High-Level Synthesis with the Vivado HLS Tool Training Course
2. C-based HLS Coding for Hardware Designers Training Course

3. C-based HLS Coding for Software Designers Training Course

4. Vivado Design Suite QuickTake Video Tutorials

5. Vivado Design Suite QuickTake Video Tutorials: Vivado High-Level Synthesis

6. Vivado Design Suite QuickTake Video: Getting Started with High-Level Synthesis
7. Vivado Design Suite QuickTake Video: Verifying your Vivado HLS Design

8. Vivado Design Suite QuickTake Video: Creating Different Types of Projects

Please Read: Important Legal Notices

The information disclosed to you hereunder (the "Materials”) is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS
ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether
in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related
to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special,
incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a
result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised
of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of
updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of Xilinx's limited warranty, please refer to
Xilinx's Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and
support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use
in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in such critical
applications, please refer to Xilinx's Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

High-Level Synthesis N Send Feedback 270
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;t=vivado+release+notes
https://www.xilinx.com/cgi-bin/docs/rdoc?d=ug998-vivado-intro-fpga-design-hls.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;t=vivado+docs
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2019.1;d=ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=dsp/high-level-synthesis-with-vivado-hls.htm
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=dsp/c-based-hld-coding-for-hardware-designers.htm
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=dsp/c-based-hld-coding-for-software-designers.htm
https://www.xilinx.com/cgi-bin/docs/ndoc?t=vivado+videos
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/vivado-high-level-synthesis.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/getting-started-vivado-high-level-synthesis.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/verifying-your-vivado-hls-design.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/creating-different-types-of-projects.html
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=270

2: X”_INX® Appendix A: Additional Resources and Legal Notices

AUTOMOTIVE PRODUCTS (IDENTIFIED AS “XA" IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF
AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE (“SAFETY APPLICATION") UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD (“SAFETY
DESIGN"). CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY
TEST SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A SAFETY DESIGN IS FULLY
AT THE RISK OF CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.

© Copyright 2012-2019 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynqg, and other designated
brands included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of
their respective owners.

High-Level Synthesis N Send Feedback 271
UG871 (v2019.1) May 22, 2019 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=Tutorials&docId=UG871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2019.1&docPage=271

	Vivado Design Suite Tutorial: High-Level Synthesis
	Revision History
	Table of Contents
	Ch. 1: Tutorial Description
	Overview
	High-Level Synthesis Introduction
	C Validation
	Interface Synthesis
	Arbitrary Precision Types
	Design Analysis
	Design Optimization
	RTL Verification
	Using HLS IP in IP Integrator
	Using HLS IP in a Zynq SoC Design
	Using HLS IP in System Generator for DSP

	Software Requirements
	Hardware Requirements
	Locating the Tutorial Design Files
	Preparing the Tutorial Design Files

	Ch. 2: High-Level Synthesis Introduction
	Overview
	Lab 1 Description
	Lab 2 Description
	Lab 3 Description

	Tutorial Design Description
	Lab 1: Creating a High-Level Synthesis Project
	Introduction
	Step 1: Creating a New Project
	Understanding the Graphical User Interface (GUI)
	Explorer Pane
	Information Pane
	Auxiliary Pane
	Console Pane
	Toolbar Buttons
	Perspectives

	Step 2: Validate the C Source Code
	Step 3: High-Level Synthesis
	Step 4: RTL Verification
	Step 5: IP Creation

	Lab 2: Using the Tcl Command Interface
	Introduction
	Step 1: Create a Tcl file

	Lab 3: Using Solutions for Design Optimization
	Introduction
	Step 1: Creating a New Project
	Step 2: Optimize the I/O Interfaces
	Step 3: Analyze the Results
	Step 4: Optimize for the Highest Throughput (Lowest Interval)

	Conclusion

	Ch. 3: C Validation
	Overview
	Lab 1 Description
	Lab 2 Description
	Lab 3 Description

	Tutorial Design Description
	Lab 1: C Validation and Debug
	Overview
	Step 1: Create and Open the Project
	Step 2: Review Test Bench and Run C Simulation
	Step 3: Run the C Debugger

	Lab 2: C Validation with ANSI C Arbitrary Precision Types
	Introduction
	Step 1: Create and Open the Project
	Step 2: Run the C Debugger

	Lab 3: C Validation with C++ Arbitrary Precision Types
	Overview
	Step 1: Create and Open the Project
	Step 2: Run the C Debugger

	Conclusion

	Ch. 4: Interface Synthesis
	Overview
	Lab 1 Description
	Lab 2 Description
	Lab 3 Description
	Lab 4 Description

	Tutorial Design Description
	About the Labs

	Lab 1: Block-Level I/O Protocols
	Overview
	Step 1: Create and Open the Project
	Step 2: Create and Review the Default Block-Level I/O Protocol
	Step 3: Modify the Block-Level I/O protocol

	Lab 2: Port I/O Protocols
	Overview
	Step 1: Create and Open the Project
	Step 2: Specify the I/O Protocol for Ports

	Lab 3: Implementing Arrays as RTL Interfaces
	Introduction
	Step 1: Create and Open the Project
	Step 2: Synthesize Array Function Arguments to RAM Ports
	Step 3: Using Dual-Port RAM and FIFO Interfaces
	Step 4: Partitioned RAM and FIFO Array interfaces
	Step 5: Fully Partitioned Array Interfaces

	Lab 4: Implementing AXI4 Interfaces
	Introduction
	Step 1: Create and Open the Project
	Step 2: Create an Optimal Design with AXI4-Stream Interfaces
	Step 3: Implementing an AXI4-Lite Interfaces

	Conclusion

	Ch. 5: Arbitrary Precision Types
	Overview
	Lab 1 Description
	Lab 2 Description

	Tutorial Design Description
	Lab 1: Arbitrary Precision
	Step 1: Create and Open the Project
	Step 2: Review Test Bench and Run C Simulation
	Step 3: Synthesize the Design and Review Results

	Lab 2: Arbitrary Precision
	Introduction
	Step 1: Create and Simulate the Project
	Step 2: Synthesize the Design and Review Results

	Conclusion

	Ch. 6: Design Analysis
	Overview
	Lab 1 Description

	Tutorial Design Description
	Lab 1: Design Optimization
	Step 1: Create and Open the Project
	Step 2: Review the Source Code and Create the Initial Design
	Step 3: Review the Performance Using the Synthesis Report
	Step 4: Review the Performance Using the Analysis Perspective
	Step 5: Apply Loop Pipelining and Review for Loop Optimization
	Step 6: Apply Loop Optimization and Review for Bottlenecks
	Step 7: Partition Block RAMs and Analyze Concurrency
	Step 8: Partition Block RAMs and Apply Dataflow optimization
	Step 9: Optimize the Hierarchy for Dataflow

	Conclusion

	Ch. 7: Design Optimization
	Overview
	Lab 1 Description
	Lab 2 Description

	Tutorial Design Description
	Lab 1: Optimizing a Matrix Multiplier
	Step 1: Create and Open the Project
	Step 2: Synthesize and Analyze the Design
	Step 3: Pipeline the Product Loop
	Step 4: Pipeline the Col Loop
	Step 5: Reshape the Arrays
	Step 6: Apply FIFO Interfaces
	Step 7: Pipeline the Function

	Lab 2: C Code Optimized for I/O Accesses
	Step 1: Create and Open the Project

	Conclusion

	Ch. 8: RTL Verification
	Overview
	Lab 1 Description
	Lab 2 Description
	Lab 3 Description

	Tutorial Design Description
	Lab 1: RTL Verification and the C Test Bench
	Step 1: Create and Open the Project
	Step 2: Perform RTL Verification
	Step 3: Modify the C test bench

	Lab 2: Viewing Trace Files in Vivado
	Step 1: Create an RTL Trace File using Vivado Simulator

	Lab 3: Viewing Trace Files in ModelSim
	Step 1: Create an RTL Trace File using ModelSim
	Step 2: View the RTL Trace File in ModelSim

	Conclusion

	Ch. 9: Using HLS IP in IP Integrator
	Overview
	Lab 1 Description

	Tutorial Design Description
	Lab 1: Integrate HLS IP with a Xilinx IP Block
	Step 1: Create Vivado HLS IP Blocks
	Step 2: Create a Vivado Design Suite Project
	Step 3: Add HLS IP to an IP Repository
	Step 4: Create a Block Design for RealFFT
	Step 5: Verify the Design

	Conclusion

	Ch. 10: Using HLS IP in a Zynq SoC Design
	Overview
	Lab 1 Description
	Lab 2 Description

	Tutorial Design Description
	Lab 1: Implement Vivado HLS IP on a Zynq Device
	Step 1: Create a Vivado HLS IP Block
	Step 2: Create a Vivado Zynq Project
	Step 3: Add HLS IP to the IP Catalog
	Step 4: Creating an IP Integrator Block Design of the System
	Step 5: Implementing the System
	Step 6: Developing Software and Running it on the ZYNQ System
	Step 7: Modify software to communicate with HLS block

	Lab 2: Streaming Data Between the Zynq CPU and HLS Accelerator Blocks
	Step 1: Generate the HLS IP
	Step 2: Create a Vivado Design Suite Project
	Step 3: Add HLS IP to an IP Repository
	Step 4: Create a Top-level Block Design
	Step 5: Implementing the System
	Step 6: Setup SDK and Test the ZYNQ System
	Step 7: Modify software to communicate with HLS block

	Conclusion

	Ch. 11: Using HLS IP in System Generator for DSP
	Overview
	Lab 1 Description

	Tutorial Design Description
	Lab 1: Package HLS IP for System Generator
	Step 1: Create a Vivado HLS IP Block
	Step 2: Open the System Generator Project

	Conclusion

	Appx. A: Additional Resources and Legal Notices
	Xilinx Resources
	Solution Centers
	Documentation Navigator and Design Hubs
	References
	Training Resources
	Please Read: Important Legal Notices

