
Web Application Penetration Testing Checklist 1

Web Application Penetration Testing Checklist
More than 200 custom testcases

Prepared by: Tushar Verma

Recon Phase

 Identify web server, technologies and database

 Subsidiary and Acquisition Enumeration

 Reverse Lookup

 ASN & IP Space Enumeration and Service Enumeration

 Google Dorking

 Github Recon

 Directory Enumeration

 IP Range Enumeration

 JS Files Analysis

 Subdomain Enumeration and Bruteforcing

 Subdomain Takeover

 Parameter Fuzzing

 Port Scanning

 Template-Based Scanning(Nuclei)

 Wayback History

 Broken Link Hijacking

 Internet Search Engine Discovery

 Misconfigured Cloud Storage

Registration Feature Testing

 Check for duplicate registration/Overwrite existing user

 Check for weak password policy

 Check for reuse existing usernames

 Check for insufficient email verification process

 Weak registration implementation-Allows disposable email addresses

 Weak registration implementation-Over HTTP

 Overwrite default web application pages by specially crafted username registrations. ⇒ After registration, does
your profile link appears something as www.tushar.com/tushar?

http://www.chintan.com/chintan

Web Application Penetration Testing Checklist 2

a. If so, enumerate default folders of web application such as /images, /contact, /portfolio

b. Do a registration using the username such as images, contact, portfolio

c. Check if those default folders have been overwritten by your profile link or not."

Session Management Testing

 Identify actual session cookie out of bulk cookies in the application

 Decode cookies using some standard decoding algorithms such as Base64, hex, URL, etc

 Modify cookie.session token value by 1 bit/byte. Then resubmit and do the same for all tokens. Reduce the
amount of work you need to perform in order to identify which part of the token is actually being used and
which is not

 If self-registration is available and you can choose your username, log in with a series of similar usernames
containing small variations between them, such as A, AA, AAA, AAAA, AAAB, AAAC, AABA, and so on. If another
user-specific data is submitted at login or stored in user profiles (such as an email address)

 Check for session cookies and cookie expiration date/time

 Identify cookie domain scope

 Check for HttpOnly flag in cookie

 Check for Secure flag in cookie if the application is over SSL

 Check for session fixation i.e. value of session cookie before and after authentication

 Replay the session cookie from a different effective IP address or system to check whether the server
maintains the state of the machine or not

 Check for concurrent login through different machine/IP

 Check if any user pertaining information is stored in cookie value or not If yes, tamper it with other user's data

 Failure to Invalidate Session on Email Change,2FA Activation)

Authentication Testing

 Username enumeration

 Bypass authentication using various SQL Injections on username and password field

Lack of password confirmation on

 Change email address

 Change password

 Manage 2FA

 Is it possible to use resources without authentication? Access violation

 Check if user credentials are transmitted over SSL or not

 Weak login function HTTP and HTTPS both are available

Test user account lockout mechanism on brute force attack

Variation : If server blocks instant user requests, then try with time throttle option from intruder and repeat the
process again.

 Bypass rate limiting by tampering user agent to Mobile User agent

 Bypass rate limiting by tampering user agent to Anonymous user agent

 Bypass rate liniting by using null byte

 Create a password wordlist using cewl command

Test Oauth login functionality

OAuth Roles

 Resource Owner → User

 Resource Server → Twitter

Web Application Penetration Testing Checklist 3

 Client Application → Twitterdeck.com

 Authorization Server → Twitter

 client_id → Twitterdeck ID This is a public, non-secret unique identifier_

 client_secret → Secret Token known to the Twitter and Twitterdeck to generate access_tokens

 response_type → Defines the token type e.g (code, token, etc.)

 scope → The requested level of access Twitterdeck wants

 redirect_uri → The URL user is redirected to after the authorization is complete

 state → Main CSRF protection in OAuth can persist data between the user being directed to the
authorization server and back again

 grant_type → Defines the grant_type and the returned token type

 code → The authorization code twitter generated, will be like ?code= , the code is used with client_id
and client_secret to fetch an access_token

 access_token → The token twitterdeck uses to make API requests on behalf of the user

 refresh_token → Allows an application to obtain a new access_token without prompting the user

Code Flaws

 Re-Using the code

 Code Predict/Bruteforce and Rate-limit

 Is the code for application X valid for application Y?

Redirect_uri Flaws

 URL isn't validated at all: ?redirect_uri=https://attacker.com

 Subdomains allowed Subdomain Takeover or Open redirect on those subdomains): ?
redirect_uri=https://sub.twitterdeck.com

 Host is validated, path isn't Chain open redirect): ?redirect_uri=https://twitterdeck.com/callback?
redirectUrl=https://evil.com

 Host is validated, path isn't Referer leakages): Include external content on HTML page and leak code
via Referer

 Weak Regexes

 Bruteforcing the URL encoded chars after host: redirect_uri=https://twitterdeck.com§FUZZ§

 Bruteforcing the keywords whitelist after host (or on any whitelist open redirect filter): ?
redirect_uri=https://§FUZZ§.com

 URI validation in place: use typical open redirect payloads

State Flaws

 Missing State parameter? CSRF

 Predictable State parameter?

 Is State parameter being verified?

Misc

 Is client_secret validated?

 Pre ATO using facebook phone-number signup

 No email validation Pre ATO

Test 2FA Misconfiguration

 Response Manipulation

 Status Code

 Manipulation

http://twitterdeck.com/

Web Application Penetration Testing Checklist 4

 2FA Code Leakage in Response

 2FA Code Reusability

 Lack of Brute-Force Protection

 Missing 2FA Code Integrity Validation

 With null or 000000

My Account Post Login) Testing

 Find parameter which uses active account user id. Try to tamper it in order to change the details of the other
accounts

 Create a list of features that are pertaining to a user account only. Change Email Change Password Change
account details Name, Number, Address, etc.) Try CSRF

 Post login change email id and update with any existing email id. Check if its getting validated on server side or
not. Does the application send any new email confirmation link to a new user or not? What if a user does not
confirm the link in some time frame?

 Open profile picture in a new tab and check the URL. Find email id/user id info. EXIF Geolocation Data Not
Stripped From Uploaded Images.

 Check account deletion option if application provides it and confirm that via forgot password feature

 Change email id, account id, user id parameter and try to brute force other user's password

 Check whether application re authenticates for performing sensitive operation for post authentication features

Forgot Password Testing

 Failure to invalidate session on Logout and Password reset

 Check if forget password reset link/code uniqueness

 Check if reset link does get expire or not if its not used by the user for certain amount of time

 Find user account identification parameter and tamper Id or parameter value to change other user's password

 Check for weak password policy

 Weak password reset implementation Token is not invalidated after use

 If reset link has another param such as date and time, then. Change date and time value in order to make active
& valid reset link

 Check if security questions are asked? How many guesses allowed? ⟶ Lockout policy maintained or not?

 Add only spaces in new password and confirmed password. Then Hit enter and see the result

 Does it display old password on the same page after completion of forget password formality?

 Ask for two password reset link and use the older one from user's email

 Check if active session gets destroyed upon changing the password or not?

 Weak password reset implementation Password reset token sent over HTTP

 Send continuous forget password requests so that it may send sequential tokens

Contact Us Form Testing

 Is CAPTCHA implemented on contact us form in order to restrict email flooding attacks?

 Does it allow to upload file on the server?

 Blind XSS

Product Purchase Testing

Buy Now

 Tamper product ID to purchase other high valued product with low prize

 Tamper product data in order to increase the number of product with the same prize

Gift/Voucher

Web Application Penetration Testing Checklist 5

 Tamper gift/voucher count in the request (if any) to increase/decrease the number of vouchers/gifts to be
used

 Tamper gift/voucher value to increase/decrease the value of the voucher in terms of money. (e.g. $100 is
given as a voucher, tamper value to increase, decrease money)

 Reuse gift/voucher by using old gift values in parameter tampering

 Check the uniqueness of gift/voucher parameter and try guessing other gift/voucher code

 Use parameter pollution technique to add the same voucher twice by adding same parameter name and
value again with & in the BurpSuite request

Add/Delete Product from Cart

 Tamper user id to delete products from other user's cart

 Tamper cart id to add/delete products from other user's cart

 Identify cart id/user id for cart feature to view the added items from other user's account

Address

 Tamper BurpSuite request to change other user's shipping address to yours

 Try stored XSS by adding XSS vector on shipping address

 Use parameter pollution technique to add two shipping address instead of one trying to manipulate
application to send same item on two shipping address

Place Order

 Tamper payment options parameter to change the payment method. E.g. Consider some items cannot be
ordered for cash on delivery but tampering request parameters from debit/credit/PayPal/net banking option
to cash on delivery may allow you to
place order for that particular item

 Tamper the amount value for payment manipulation in each main and sub requests and responses

 Check if CVV is going in cleartext or not

 Check if the application itself processes your card details and then performs a transaction or it calls any
third-party payment processing company to perform a transaction

Track Order

 Track other user's order by guessing order tracking number

 Brute force tracking number prefix or suffix to track mass orders for other users

Wish list page testing

 Check if a user A can add/remote products in Wishlist of other user B’s account

 Check if a user A can add products into user B’s cart from his/her (user A’s) Wishlist section.

Post product purchase testing

 Check if user A can cancel orders for user B’s purchase

 Check if user A can view/check orders already placed by user B

 Check if user A can modify the shipping address of placed order by user B

Out of band testing

 Can user order product which is out of stock?

Banking Application Testing

Billing Activity

 Check if user 'A' can view the account statement for user 'B'

 Check if user 'A' can view the transaction report for user 'B'

 Check if user 'A' can view the summary report for user 'B'

 Check if user 'A' can register for monthly/weekly account statement via email behalf of user 'B'

Web Application Penetration Testing Checklist 6

 Check if user 'A' can update the existing email id of user 'B' in order to retrieve monthly/weekly account
summary

Deposit/Loan/Linked/External Account Checking

 Check if user 'A' can view the deposit account summary of user 'B'

 Check for account balance tampering for Deposit accounts

Tax Deduction Inquiry Testing

 Check if user 'A' with it's customer id 'a' can see the tax deduction details of user 'B' by tampering his/her
customer id 'b'

 Check parameter tampering for increasing and decreasing interest rate, interest amount, and tax refund

 Check if user 'A' can download the TDS details of user 'B’

 Check if user 'A' can request for the cheque book behalf of user ‘B’.

Fixed Deposit Account Testing

 Check if is it possible for user 'A' to open FD account behalf of user 'B'

 Check if Can user open FD account with the more amount than the current account balance

Stopping Payment on basis of cheque/date range

 Can user 'A' stop the payment of user 'B' via cheque number

 Can user 'A' stop the payment on basis of date range for user 'B’

Status Enquiry Testing

 Can user 'A' view the status enquiry of user 'B'

 Can user 'A' modify the status enquiry of user 'B'

 Can user 'A' post and enquiry behalf of user 'B' from his own account

Fund transfer testing

 Is it possible to transfer funds to user 'C' instead of user 'B' from the user 'A' which was intended to transfer
from user 'A' to user 'B'

 Can fund transfer amount be manipulated?

 Can user 'A' modify the payee list of user 'B' by parameter manipulation using his/her own account

 Is it possible to add payee without any proper validation in user 'A' 's own account or to user 'B' 's account

Schedule transfer testing

 Can user 'A' view the schedule transfer of user 'B'

 Can user 'A' change the details of schedule transfer for user 'B’

Testing of fund transfer via NEFT

 Amount manipulation via NEFT transfer

 Check if user 'A' can view the NEFT transfer details of user 'B’

Testing for Bill Payment

 Check if user can register payee without any checker approval

 Check if user 'A' can view the pending payments of user 'B'

 Check if user 'A' can view the payment made details of user 'B'

Open Redirection Testing

Common injection parameters

/{payload}
?next={payload}
?url={payload}
?target={payload}
?rurl={payload}

Web Application Penetration Testing Checklist 7

?dest={payload}
?destination={payload}
?redir={payload}
?redirect_uri={payload}
?redirect_url={payload}
?redirect={payload}
/redirect/{payload}
/cgi-bin/redirect.cgi?{payload}
/out/{payload}
/out?{payload}
?view={payload}
/login?to={payload}
?image_url={payload}
?go={payload}
?return={payload}
?returnTo={payload}
?return_to={payload}
?checkout_url={payload}
?continue={payload}
?return_path={payload}

 Use burp 'find' option in order to find parameters such as URL, red, redirect, redir, origin, redirect_uri, target etc

 Check the value of these parameter which may contain a URL

 Change the URL value to www.tushar.com and check if gets redirected or not

 Try Single Slash and url encoding

 Using a whitelisted domain or keyword

 Using // to bypass http blacklisted keyword

 Using https: to bypass // blacklisted keyword

 Using \\ to bypass // blacklisted keyword

 Using \/\/ to bypass // blacklisted keyword

 Using null byte %00 to bypass blacklist filter

 Using ° symbol to bypass

Host Header Injection

 Supply an arbitrary Host header

 Check for flawed validation

Send ambiguous requests

 Inject duplicate Host headers

 Supply an absolute URL

 Add line wrapping

 Inject host override headers

SQL Injection Testin

Entry point detection

 Simple characters

 Multiple encoding

 Merging characters

 Logic Testing

 Weird characters

Use SQLmap to identify vulnerabile parameters

 Fill form in browser GUI submit it normally

 Go to history tab in burpsuite and find the relevent request

 Right click and select the option "copy to file"

 Save file as anyname.txt

http://www.chintan.com/

Web Application Penetration Testing Checklist 8

 SQLmap command to run

 python sqlmap.py r ~/Desktop/textsqli.txt proxy= http://127.0.0.18080

 Run SQL injection scanner on all requests

Bypassing WAF

 Using Null byte before SQL query

 Using SQL inline comment sequence

 URL encoding

 Changing Cases (uppercase/lowercase)

 Use SQLMAP tamper scripts

Time Delays

 Oracle dbms_pipe.receive_message(('a'),10)

 Microsoft WAITFOR DELAY '0:0:10'

 PostgreSQL SELECT pg_sleep(10)

 MySQL SELECT sleep(10)

Conditional Delays

 Oracle SELECT CASE WHEN (YOUR-CONDITION-HERE) THEN 'a'||dbms_pipe.receive_message(('a'),10) ELSE NULL END FROM du

 Microsoft IF (YOUR-CONDITION-HERE) WAITFOR DELAY '0:0:10'

 PostgreSQL SELECT CASE WHEN (YOUR-CONDITION-HERE) THEN pg_sleep(10) ELSE pg_sleep(0) END

 MySQL SELECT IF(YOUR-CONDITION-HERE,sleep(10),'a')

Cross-Site Scripting Testing

 Try XSS using QuickXSS tool by theinfosecguy

 Upload file using '">.txt

 If script tags are banned, use <h1 and other HTML tags

 If output is reflected back inside the JavaScript as a value of any variable just use alert(1)

 if " are filtered then use this payload />

 Upload a JavaScript using Image file

 Unusual way to execute your JS payload is to change method from POST to GET. It bypasses filters sometimes

Tag attribute value

 Input landed -<input type=”text” name=”state” value=”INPUT_FROM_ USER”>

 Payload to be inserted -“ onfocus=”alert(document.cookie)"

 Syntax Encoding payload “%3cscript%3ealert(document.cookie)%3c/script%3e"

XSS filter evasion

 < and > can be replace with html entities < and >

 You can try an XSS polyglot.Eg:-javascript:/→</title></style></textarea></script></xmp>
<svg/onload='+/"/+/onmouseover=1/+/[/[]/+alert(1)//'>

XSS Firewall Bypass

 Check if the firewall is blocking only lowercase

 Try to break firewall regex with the new line(\r\n)

 Try Double Encoding

http://sqlmap.py/
http://127.0.0.1:8080/

Web Application Penetration Testing Checklist 9

 Testing for recursive filters

 Injecting anchor tag without whitespaces

 Try to bypass whitespaces using Bullet

 Try to change request method

CSRF Testing

 Validation of CSRF token depends on request method

 Validation of CSRF token depends on token being present

 CSRF token is not tied to the user session

 CSRF token is tied to a non-session cookie

 Validation of Referer depends on header being present

SAML Vulnerabilities

 Signature Wrapping XSW Attacks

 SAML Message Integrity Abuse

 Missing / Invalid Signature

 SAML Message Replay

 Token Recipient Confusion

XML Injection Testing

 Change the content type to text/xml then insert below code. Check via repeater

<?xml version="1.0" encoding="ISO 8859 1"?>
<!DOCTYPE tushar [
<!ELEMENT tushar ANY
<!ENTITY xxe SYSTEM "file:///etc/passwd" >]><tushar>&xxe;</
<!ENTITY xxe SYSTEM "file:///etc/hosts" >]><tushar>&xxe;</
<!ENTITY xxe SYSTEM "file:///proc/self/cmdline" >]><tushar>&xxe;</
<!ENTITY xxe SYSTEM "file:///proc/version" >]><tushar>&xxe;</

 Blind XXE with out-of-band interaction

Cross-origin resource sharing CORS

 Errors parsing Origin headers

 Whitelisted null origin value

Server-side request forgery SSRF

Common injection parameters

"access=",
"admin=",
"dbg=",
"debug=",
"edit=",
"grant=",
"test=",
"alter=",
"clone=",
"create=",
"delete=",
"disable=",
"enable=",
"exec=",
"execute=",
"load=",
"make=",
"modify=",
"rename=",
"reset=",
"shell=",
"toggle=",
"adm=",
"root=",

Web Application Penetration Testing Checklist 10

"cfg=",
"dest=",
"redirect=",
"uri=",
"path=",
"continue=",
"url=",
"window=",
"next=",
"data=",
"reference=",
"site=",
"html=",
"val=",
"validate=",
"domain=",
"callback=",
"return=",
"page=",
"feed=",
"host=",
"port=",
"to=",
"out=",
"view=",
"dir=",
"show=",
"navigation=",
"open=",
"file=",
"document=",
"folder=",
"pg=",
"php_path=",
"style=",
"doc=",
"img=",
"filename="

 Try basic localhost payloads

Bypassing filters

 Bypass using HTTPS

 Bypass with [::]

 Bypass with a domain redirection

 Bypass using a decimal IP location

 Bypass using IPv6/IPv4 Address Embedding

 Bypass using malformed urls

 Bypass using rare address(short-hand IP addresses by dropping the zeros)

 Bypass using enclosed alphanumerics

Cloud Instances

AWS

http://instance-data
http://169.254.169.254
http://169.254.169.254/latest/user-data
http://169.254.169.254/latest/user-data/iam/security-credentials/[ROLE NAME]
http://169.254.169.254/latest/meta-data/
http://169.254.169.254/latest/meta-data/iam/security-credentials/[ROLE NAME]
http://169.254.169.254/latest/meta-data/iam/security-credentials/PhotonInstance
http://169.254.169.254/latest/meta-data/ami-id
http://169.254.169.254/latest/meta-data/reservation-id
http://169.254.169.254/latest/meta-data/hostname
http://169.254.169.254/latest/meta-data/public-keys/
http://169.254.169.254/latest/meta-data/public-keys/0/openssh-key
http://169.254.169.254/latest/meta-data/public-keys/[ID]/openssh-key
http://169.254.169.254/latest/meta-data/iam/security-credentials/dummy
http://169.254.169.254/latest/meta-data/iam/security-credentials/s3access
http://169.254.169.254/latest/dynamic/instance-identity/document

Google Cloud

Web Application Penetration Testing Checklist 11

http://169.254.169.254/computeMetadata/v1/
http://metadata.google.internal/computeMetadata/v1/
http://metadata/computeMetadata/v1/
http://metadata.google.internal/computeMetadata/v1/instance/hostname
http://metadata.google.internal/computeMetadata/v1/instance/id
http://metadata.google.internal/computeMetadata/v1/project/project-id

Digital Ocean

curl http://169.254.169.254/metadata/v1/id
http://169.254.169.254/metadata/v1.json
http://169.254.169.254/metadata/v1/
http://169.254.169.254/metadata/v1/id
http://169.254.169.254/metadata/v1/user-data
http://169.254.169.254/metadata/v1/hostname
http://169.254.169.254/metadata/v1/region
http://169.254.169.254/metadata/v1/interfaces/public/0/ipv6/address

Azure

http://169.254.169.254/metadata/v1/maintenance
http://169.254.169.254/metadata/instance?api-version=2017-04-02
http://169.254.169.254/metadata/instance/network/interface/0/ipv4/ipAddress/0/publicIpAddress?api-version=2017-04-02&f
ormat=text

 Bypassing via open redirection

File Upload Testing

 upload the malicious file to the archive upload functionality and observe how the application responds

 upload a file and change its path to overwrite an existing system file

 Large File Denial of Service

 Metadata Leakage

 ImageMagick Library Attacks

 Pixel Flood Attack

Bypasses

 Null Byte %00 Bypass

 Content-Type Bypass

 Magic Byte Bypass

 Client-Side Validation Bypass

 Blacklisted Extension Bypass

 Homographic Character Bypass

CAPTCHA Testing

 Missing Captcha Field Integrity Checks

 HTTP Verb Manipulation

 Content Type Conversion

 Reusuable Captcha

 Check if captcha is retrievable with the absolute path such as
www.tushar.com/internal/captcha/images/24.png

 Check for the server side validation for CAPTCHA.Remove captcha block from GUI using firebug addon and
submit request to the server

 Check if image recognition can be done with OCR tool?

JWT Token Testing

http://www.chintan.com/internal/captcha/images/24.png

Web Application Penetration Testing Checklist 12

 Brute-forcing secret keys

 Signing a new token with the “none” algorithm

 Changing the signing algorithm of the token (for fuzzing purposes)

 Signing the asymmetrically-signed token to its symmetric algorithm match (when you have the original public
key)

Websockets Testing

 Intercepting and modifying WebSocket messages

 Websockets MITM attempts

 Testing secret header websocket

 Content stealing in websockets

 Token authentication testing in websockets

GraphQL Vulnerabilities Testing

 Inconsistent Authorization Checks

 Missing Validation of Custom Scalars

 Failure to Appropriately Rate-limit

 Introspection Query Enabled/Disabled

WordPress Common Vulnerabilities

 XSPA in wordpress

 Bruteforce in wp-login.php

 Information disclosure wordpress username

 Backup file wp-config exposed

 Log files exposed

 Denial of Service via load-styles.php

 Denial of Service via load-scripts.php

 DDOS using xmlrpc.php

Denial of Service

 Cookie bomb

 Pixel flood, using image with a huge pixels

 Frame flood, using GIF with a huge frame

 ReDoS Regex DoS

 CPDoS Cache Poisoned Denial of Service)

Other Test Cases All Categories)

Check for security headers and at least

 X Frame Options

 XXSS header

 HSTS header

 CSP header

 Referrer Policy

 Cache Control

 Public key pins

Testing for Role authorization

 Check if normal user can access the resources of high privileged users?

Web Application Penetration Testing Checklist 13

 Forced browsing

 Insecure direct object reference

 Parameter tampering to switch user account to high privileged user

Blind OS command injection

 using time delays

 by redirecting output

 with out-of-band interaction

 with out-of-band data exfiltration

 Command injection on CSV export Upload/Download)

 CSV Excel Macro Injection

 If you find phpinfo.php file, check for the configuration leakage and try to exploit any network vulnerability.

 Parameter Pollution Social Media Sharing Buttons

Broken Cryptography

 Cryptography Implementation Flaw

 Encrypted Information Compromised

 Weak Ciphers Used for Encryption

Web Services Testing

 Test for directory traversal

 Web services documentation disclosure Enumeration of services, data types, input types boundaries and
limits

Created by: Tushar Verma(e11i0t_4lders0n)
Contact Me: LinkedIn ,Twitter

http://www.linkedin.com/in/tushars25
https://twitter.com/e11i0t_4lders0n

