Skip to content
Permalink
Branch: master
Find file Copy path
Find file Copy path
Fetching contributors…
Cannot retrieve contributors at this time
280 lines (229 sloc) 9.8 KB
import torch
from torch import optim
import os
import os.path
import time
import numpy as np
import pandas as pd
from collections import defaultdict
import argparse
import utils
from utils import read_vocab, Tokenizer, timeSince, try_cuda
from env import R2RBatch, ImageFeatures
from model import SpeakerEncoderLSTM, SpeakerDecoderLSTM
from speaker import Seq2SeqSpeaker
import eval_speaker
from vocab import SUBTRAIN_VOCAB, TRAIN_VOCAB, TRAINVAL_VOCAB
MAX_INSTRUCTION_LENGTH = 80
batch_size = 100
max_episode_len = 10
word_embedding_size = 300
glove_path = 'tasks/R2R/data/train_glove.npy'
action_embedding_size = 2048+128
hidden_size = 512
bidirectional = False
dropout_ratio = 0.5
feedback_method = 'teacher' # teacher or sample
learning_rate = 0.0001
weight_decay = 0.0005
FEATURE_SIZE = 2048+128
n_iters = 20000
log_every = 100
save_every = 1000
def get_model_prefix(args, image_feature_list):
image_feature_name = "+".join(
[featurizer.get_name() for featurizer in image_feature_list])
model_prefix = 'speaker_{}_{}'.format(
feedback_method, image_feature_name)
if args.use_train_subset:
model_prefix = 'trainsub_' + model_prefix
return model_prefix
def eval_model(agent, results_path, use_dropout, feedback, allow_cheat=False):
agent.results_path = results_path
agent.test(
use_dropout=use_dropout, feedback=feedback, allow_cheat=allow_cheat)
def filter_param(param_list):
return [p for p in param_list if p.requires_grad]
def train(args, train_env, agent, log_every=log_every, val_envs=None):
''' Train on training set, validating on both seen and unseen. '''
if val_envs is None:
val_envs = {}
print('Training with %s feedback' % feedback_method)
encoder_optimizer = optim.Adam(
filter_param(agent.encoder.parameters()), lr=learning_rate,
weight_decay=weight_decay)
decoder_optimizer = optim.Adam(
filter_param(agent.decoder.parameters()), lr=learning_rate,
weight_decay=weight_decay)
data_log = defaultdict(list)
start = time.time()
split_string = "-".join(train_env.splits)
def make_path(n_iter):
return os.path.join(
args.SNAPSHOT_DIR, '%s_%s_iter_%d' % (
get_model_prefix(args, train_env.image_features_list),
split_string, n_iter))
best_metrics = {}
last_model_saved = {}
for idx in range(0, args.n_iters, log_every):
agent.env = train_env
interval = min(log_every, args.n_iters-idx)
iter = idx + interval
data_log['iteration'].append(iter)
# Train for log_every interval
agent.train(encoder_optimizer, decoder_optimizer, interval,
feedback=feedback_method)
train_losses = np.array(agent.losses)
assert len(train_losses) == interval
train_loss_avg = np.average(train_losses)
data_log['train loss'].append(train_loss_avg)
loss_str = 'train loss: %.4f' % train_loss_avg
save_log = []
# Run validation
for env_name, (val_env, evaluator) in sorted(val_envs.items()):
agent.env = val_env
# Get validation loss under the same conditions as training
agent.test(use_dropout=True, feedback=feedback_method,
allow_cheat=True)
val_losses = np.array(agent.losses)
val_loss_avg = np.average(val_losses)
data_log['%s loss' % env_name].append(val_loss_avg)
agent.results_path = '%s%s_%s_iter_%d.json' % (
args.RESULT_DIR, get_model_prefix(
args, train_env.image_features_list),
env_name, iter)
# Get validation distance from goal under evaluation conditions
results = agent.test(use_dropout=False, feedback='argmax')
if not args.no_save:
agent.write_results()
print("evaluating on {}".format(env_name))
score_summary, _ = evaluator.score_results(results, verbose=True)
loss_str += ', %s loss: %.4f' % (env_name, val_loss_avg)
for metric, val in score_summary.items():
data_log['%s %s' % (env_name, metric)].append(val)
if metric in ['bleu']:
loss_str += ', %s: %.3f' % (metric, val)
key = (env_name, metric)
if key not in best_metrics or best_metrics[key] < val:
best_metrics[key] = val
if not args.no_save:
model_path = make_path(iter) + "_%s-%s=%.3f" % (
env_name, metric, val)
save_log.append(
"new best, saved model to %s" % model_path)
agent.save(model_path)
if key in last_model_saved:
for old_model_path in \
agent._encoder_and_decoder_paths(
last_model_saved[key]):
os.remove(old_model_path)
last_model_saved[key] = model_path
print(('%s (%d %d%%) %s' % (
timeSince(start, float(iter)/args.n_iters),
iter, float(iter)/args.n_iters*100, loss_str)))
for s in save_log:
print(s)
if not args.no_save:
if save_every and iter % save_every == 0:
agent.save(make_path(iter))
df = pd.DataFrame(data_log)
df.set_index('iteration')
df_path = '%s%s_log.csv' % (
args.PLOT_DIR, get_model_prefix(
args, train_env.image_features_list))
df.to_csv(df_path)
def setup():
torch.manual_seed(1)
torch.cuda.manual_seed(1)
def make_speaker(args):
enc_hidden_size = hidden_size//2 if bidirectional else hidden_size
glove = np.load(glove_path)
feature_size = FEATURE_SIZE
vocab = read_vocab(TRAIN_VOCAB)
encoder = try_cuda(SpeakerEncoderLSTM(
action_embedding_size, feature_size, enc_hidden_size, dropout_ratio,
bidirectional=bidirectional))
decoder = try_cuda(SpeakerDecoderLSTM(
len(vocab), word_embedding_size, hidden_size, dropout_ratio,
glove=glove))
agent = Seq2SeqSpeaker(
None, "", encoder, decoder, MAX_INSTRUCTION_LENGTH)
return agent
def make_env_and_models(args, train_vocab_path, train_splits, test_splits,
test_instruction_limit=None):
setup()
image_features_list = ImageFeatures.from_args(args)
vocab = read_vocab(train_vocab_path)
tok = Tokenizer(vocab=vocab)
train_env = R2RBatch(image_features_list, batch_size=batch_size,
splits=train_splits, tokenizer=tok)
enc_hidden_size = hidden_size//2 if bidirectional else hidden_size
glove = np.load(glove_path)
feature_size = FEATURE_SIZE
encoder = try_cuda(SpeakerEncoderLSTM(
action_embedding_size, feature_size, enc_hidden_size, dropout_ratio,
bidirectional=bidirectional))
decoder = try_cuda(SpeakerDecoderLSTM(
len(vocab), word_embedding_size, hidden_size, dropout_ratio,
glove=glove))
test_envs = {
split: (R2RBatch(image_features_list, batch_size=batch_size,
splits=[split], tokenizer=tok,
instruction_limit=test_instruction_limit),
eval_speaker.SpeakerEvaluation(
[split], instructions_per_path=test_instruction_limit))
for split in test_splits}
return train_env, test_envs, encoder, decoder
def train_setup(args):
train_splits = ['train']
# val_splits = ['train_subset', 'val_seen', 'val_unseen']
val_splits = ['val_seen', 'val_unseen']
vocab = TRAIN_VOCAB
if args.use_train_subset:
train_splits = ['sub_' + split for split in train_splits]
val_splits = ['sub_' + split for split in val_splits]
vocab = SUBTRAIN_VOCAB
train_env, val_envs, encoder, decoder = make_env_and_models(
args, vocab, train_splits, val_splits)
agent = Seq2SeqSpeaker(
train_env, "", encoder, decoder, MAX_INSTRUCTION_LENGTH)
return agent, train_env, val_envs
# Test set prediction will be handled separately
# def test_setup(args):
# train_env, test_envs, encoder, decoder = make_env_and_models(
# args, TRAINVAL_VOCAB, ['train', 'val_seen', 'val_unseen'], ['test'])
# agent = Seq2SeqSpeaker(
# None, "", encoder, decoder, MAX_INSTRUCTION_LENGTH,
# max_episode_len=max_episode_len)
# return agent, train_env, test_envs
def train_val(args):
''' Train on the training set, and validate on seen and unseen splits. '''
agent, train_env, val_envs = train_setup(args)
train(args, train_env, agent, val_envs=val_envs)
# Test set prediction will be handled separately
# def test_submission(args):
# ''' Train on combined training and validation sets, and generate test
# submission. '''
# agent, train_env, test_envs = test_setup(args)
# train(args, train_env, agent)
#
# test_env = test_envs['test']
# agent.env = test_env
#
# agent.results_path = '%s%s_%s_iter_%d.json' % (
# args.RESULT_DIR, get_model_prefix(args, train_env.image_features_list),
# 'test', n_iters)
# agent.test(use_dropout=False, feedback='argmax')
# if not args.no_save:
# agent.write_results()
def make_arg_parser():
parser = argparse.ArgumentParser()
ImageFeatures.add_args(parser)
parser.add_argument(
"--use_train_subset", action='store_true',
help="use a subset of the original train data for validation")
parser.add_argument("--n_iters", type=int, default=20000)
parser.add_argument("--no_save", action='store_true')
return parser
if __name__ == "__main__":
utils.run(make_arg_parser(), train_val)
You can’t perform that action at this time.