Skip to content

HTTPS clone URL

Subversion checkout URL

You can clone with HTTPS or Subversion.

Download ZIP
Fetching contributors…

Cannot retrieve contributors at this time

158 lines (140 sloc) 9.391 kb
<!DOCTYPE html>
<html data-require="math math-format word-problems">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Comparing improper fractions and mixed numbers</title>
<script src="../khan-exercise.js"></script>
</head>
<body>
<div class="exercise">
<div class="problems">
<div id="same-whole">
<div class="vars" data-ensure="M_DENOM !== I_DENOM">
<var id="WHOLE">randRange( 1, 5 )</var>
<var id="WHOLE_2">WHOLE</var>
<var id="M_NUM">randRange( 1, 9 )</var>
<var id="M_DENOM">randRange( M_NUM + 1, 10 )</var>
<var id="M_DENOM_REDUCED">M_DENOM/ getGCD( M_NUM, M_DENOM )</var>
<var id="M_NUM_REDUCED">M_NUM/ getGCD( M_NUM, M_DENOM )</var>
<var id="M_NUM_2">randRange( 1, 9 )</var>
<var id="M_DENOM_2">randRange( M_NUM_2 + 1, 10 )</var>
<var id="M_REDUCED_NUM">M_NUM_2 / getGCD( M_NUM_2, M_DENOM_2 )</var>
<var id="M_REDUCED_DENOM">M_DENOM_2 / getGCD( M_NUM_2, M_DENOM_2 )</var>
<var id="I_NUM">WHOLE_2 * M_REDUCED_DENOM + M_REDUCED_NUM</var>
<var id="I_DENOM">M_REDUCED_DENOM</var>
<var id="LCM">getLCM( M_DENOM_REDUCED, I_DENOM )</var>
<var id="F1">LCM / M_DENOM_REDUCED</var>
<var id="F2">LCM / I_DENOM</var>
<var id="BECOMES_1">F1 === 1 ? "remains as" : "becomes"</var>
<var id="BECOMES_2">F2 === 1 ? "remains as" : "becomes"</var>
<var id="M_AS_I">M_DENOM_REDUCED*WHOLE+M_NUM_REDUCED</var>
<var id="SOLUTION">(function() {
if ( (M_AS_I*F1) > (I_NUM*F2) ) {
return "&gt;";
} else if ( (M_AS_I*F1) === (I_NUM*F2) ) {
return "=";
}
else {
return "&lt;";
}
})()
</var>
</div>
<div class="problem">
<p>Fill in the blank.</p>
<p>
<code><var>WHOLE</var>\ <var>fraction( M_NUM, M_DENOM, false, true )</var></code>
____<code><var>fraction( I_NUM, I_DENOM, false, true )</var></code>
</p>
</div>
<p class="solution"><code><var>SOLUTION</var></code></p>
<ul class="choices" data-category="true">
<li><code>&lt;</code></li>
<li><code>=</code></li>
<li><code>&gt;</code></li>
</ul>
<div class="hints">
<p>First, let's convert the mixed number to an improper fraction with the same denominator.</p>
<p>To get the numerator of the improper fraction, multiply the denominator (<strong><var>M_DENOM_REDUCED</var></strong>) by the whole number (<strong><var>WHOLE</var></strong>) and add the numerator (<strong><var>M_NUM_REDUCED</var></strong>).</p>
<p class="hint_purple"><strong><code><var>M_DENOM_REDUCED</var> \cdot <var>WHOLE</var>+<var>M_NUM_REDUCED</var> = <var>M_AS_I</var></code></strong></p>
<p>We can write the mixed number as an improper fraction with numerator <strong><var>M_AS_I</var></strong> and denominator <strong><var>M_DENOM_REDUCED</var></strong>.</p>
<p>Now we need to compare <code><var>fraction ( M_AS_I, M_DENOM_REDUCED, false, true )</var></code> to <code><var>fraction ( I_NUM, I_DENOM, false, true )</var></code>.</p>
<div data-if="M_DENOM_REDUCED !== I_DENOM" data-unwrap>
<p>It is easier to compare these two fractions when they have the same denominator.</p>
<p>Their smallest common denominator is the LCM of <var>M_DENOM_REDUCED</var> and <var>I_DENOM</var>.</p>
<p><code>\lcm(<var>M_DENOM_REDUCED</var>, <var>I_DENOM</var>) = <var>LCM</var></code></p>
<div>
<p>The first fraction <var>BECOMES_1</var> <code>\dfrac{<var>M_AS_I * F1</var>}{<var>LCM</var>}</code>.</p>
<p>The second fraction <var>BECOMES_2</var> <code>\dfrac{<var>I_NUM * F2</var>}{<var>LCM</var>}</code>.</p>
</div>
</div>
<p>We see that <code>\dfrac{<var>M_AS_I * F1</var>}{<var>LCM</var>} <var>SOLUTION</var> \dfrac{<var>I_NUM * F2</var>}{<var>LCM</var>}</code>.</p>
</div>
</div>
<div id="different-whole">
<div class="vars" data-ensure="M_DENOM !== I_DENOM">
<var id="WHOLE">randRange( 1, 5 )</var>
<var id="WHOLE_2">randRange( 1, 5 )</var>
<var id="M_NUM">randRange( 1, 9 )</var>
<var id="M_DENOM">randRange( M_NUM + 1, 10 )</var>
<var id="M_DENOM_REDUCED">M_DENOM/ getGCD( M_NUM, M_DENOM )</var>
<var id="M_NUM_REDUCED">M_NUM/ getGCD( M_NUM, M_DENOM )</var>
<var id="M_NUM_2">randRange( 1, 9 )</var>
<var id="M_DENOM_2">randRange( M_NUM_2 + 1, 10 )</var>
<var id="M_REDUCED_NUM">M_NUM_2 / getGCD( M_NUM_2, M_DENOM_2 )</var>
<var id="M_REDUCED_DENOM">M_DENOM_2 / getGCD( M_NUM_2, M_DENOM_2 )</var>
<var id="I_NUM">WHOLE_2 * M_REDUCED_DENOM + M_REDUCED_NUM</var>
<var id="I_DENOM">M_REDUCED_DENOM</var>
<var id="LCM">getLCM( M_DENOM_REDUCED, I_DENOM )</var>
<var id="F1">LCM / M_DENOM_REDUCED</var>
<var id="F2">LCM / I_DENOM</var>
<var id="BECOMES_1">F1 === 1 ? "remains as" : "becomes"</var>
<var id="BECOMES_2">F2 === 1 ? "remains as" : "becomes"</var>
<var id="M_AS_I">M_DENOM_REDUCED*WHOLE+M_NUM_REDUCED</var>
<var id="SOLUTION">(function() {
if ( (M_AS_I*F1) > (I_NUM*F2) ) {
return "&gt;";
} else if ( (M_AS_I*F1) === (I_NUM*F2) ) {
return "=";
}
else {
return "&lt;";
}
})()
</var>
</div>
<div class="problem">
<p>Fill in the blank.</p>
<p>
<code><var>WHOLE</var>\ <var>fraction( M_NUM, M_DENOM, false, true )</var></code>
____<code><var>fraction( I_NUM, I_DENOM, false, true )</var></code>
</p>
</div>
<p class="solution"><code><var>SOLUTION</var></code></p>
<ul class="choices" data-category="true">
<li><code>&lt;</code></li>
<li><code>=</code></li>
<li><code>&gt;</code></li>
</ul>
<div class="hints">
<p>First, let's convert the mixed number to an improper fraction with the same denominator.</p>
<p>To get the numerator of the improper fraction, multiply the denominator (<strong><var>M_DENOM_REDUCED</var></strong>) by the whole number (<strong><var>WHOLE</var></strong>) and add the numerator (<strong><var>M_NUM_REDUCED</var></strong>).</p>
<p class="hint_purple"><strong><code><var>M_DENOM_REDUCED</var>\cdot<var>WHOLE</var>+<var>M_NUM_REDUCED</var> = <var>M_AS_I</var></code></strong></p>
<p>We can write the mixed number as an improper fraction with numerator <strong><var>M_AS_I</var></strong> and denominator <strong><var>M_DENOM_REDUCED</var></strong>.</p>
<p>Now we need to compare <code><var>fraction ( M_AS_I, M_DENOM_REDUCED, false, true )</var></code> to <code><var>fraction ( I_NUM, I_DENOM, false, true )</var></code>.</p>
<div data-if="M_DENOM_REDUCED !== I_DENOM" data-unwrap>
<p>It is easier to compare these two fractions when they have the same denominator.</p>
<p>Their smallest common denominator is the LCM of <var>M_DENOM_REDUCED</var> and <var>I_DENOM</var>.</p>
<p><code>\lcm(<var>M_DENOM_REDUCED</var>, <var>I_DENOM</var>) = <var>LCM</var></code></p>
<div>
<p>The first fraction <var>BECOMES_1</var> <code>\dfrac{<var>M_AS_I * F1</var>}{<var>LCM</var>}</code>.</p>
<p>The second fraction <var>BECOMES_2</var> <code>\dfrac{<var>I_NUM * F2</var>}{<var>LCM</var>}</code>.</p>
</div>
</div>
<p>We see that <code>\dfrac{<var>M_AS_I * F1</var>}{<var>LCM</var>} <var>SOLUTION</var> \dfrac{<var>I_NUM * F2</var>}{<var>LCM</var>}</code>.</p>
</div>
</div>
</div>
</div>
</body>
</html>
Jump to Line
Something went wrong with that request. Please try again.