Skip to content

HTTPS clone URL

Subversion checkout URL

You can clone with HTTPS or Subversion.

Download ZIP
Fetching contributors…

Cannot retrieve contributors at this time

74 lines (65 sloc) 3.8 kb
<!DOCTYPE html>
<html data-require="math calculus polynomials expressions">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Quotient rule</title>
<script src="../khan-exercise.js"></script>
</head>
<body>
<div class="exercise">
<div class="vars" data-ensure="FUNCN.fText !== FUNCD.fText">
<var id="FUNCN">generateSpecialFunction("x")</var>
<var id="FUNCD">generateSpecialFunction("x")</var>
<var id="N_F">FUNCN.fText</var>
<var id="N_DF">FUNCN.ddxFText</var>
<var id="D_F">FUNCD.fText</var>
<var id="D_DF">FUNCD.ddxFText</var>
<var id="NOTATION">funcNotation("x")</var>
<var id="ANSWER">function( a, b, c, d, e, min ) {
// create fraction of the form ( (a)(b) + (c)(d) ) / e^2
var term1 = "(" + a + ")" + ( a === b ? "^2" : "(" + b + ")" ),
term2 = "(" + c + ")" + ( c === d ? "^2" : "(" + d + ")" );
return "\\dfrac{" + term1 + min + term2 + "}{(" + e + ")^2}";
}</var>
</div>
<div class="problems">
<div>
<p class="question">Find <code>\displaystyle \frac{d}{dx}\biggl( \frac{<var>FUNCN.fText</var>}{<var>FUNCD.fText</var>} \biggr)</code>.</p>
<!-- (n-df)(d-f) - (d-df)(n-f) / d-f -->
<p class="solution"><code><var>ANSWER( N_DF, D_F, D_DF, N_F, D_F, "-" )</var></code></p>
<ul class="choices" data-show="5" data-none="true">
<!-- (n-df)(d-df) - (d-f)(n-f) / d-f -->
<li data-if="D_DF !== D_F"><code><var>ANSWER( N_DF, D_DF, D_F, N_F, D_F, "-" )</var></code></li>
<!-- (n-df)(d-f) - (d-df)(n-f) / n-f -->
<li data-if="N_F !== D_F"><code><var>ANSWER( N_DF, D_F, D_DF, N_F, N_F, "-" )</var></code></li>
<!-- (n-df)(d-df) - (d-f)(n-f) / n-f -->
<li data-if="N_F !== D_F && D_DF !== D_F"><code><var>ANSWER( N_DF, D_DF, D_F, N_F, N_F, "-" )</var></code></li>
<!-- (n-df)(d-f) + (d-df)(n-f) / d-f -->
<li><code><var>ANSWER( N_DF, D_F, D_DF, N_F, D_F, "+" )</var></code></li>
<!-- (n-df)(d-df) + (d-f)(n-f) / d-f -->
<li data-if="D_DF !== D_F"><code><var>ANSWER( N_DF, D_DF, D_F, N_F, D_F, "+" )</var></code></li>
<!-- (n-df)(d-f) + (d-df)(n-f) / n-f -->
<li data-if="N_F !== D_F"><code><var>ANSWER( N_DF, D_F, D_DF, N_F, N_F, "+" )</var></code></li>
<!-- (n-df)(d-df) + (d-f)(n-f) / n-f -->
<li data-if="N_F !== D_F && D_DF !== D_F"><code><var>ANSWER( N_DF, D_DF, D_F, N_F, N_F, "+" )</var></code></li>
</ul>
</div>
</div>
<div class="hints">
<p>Using the chain rule and the product rule, we know <code>\displaystyle \frac{d}{dx\strut}\frac{f(x)}{g(x)} = \frac{f'(x)g(x) - g'(x)f(x)}{g(x){}^2}</code>.</p>
<div>
<p>In this case,</p>
<p><code>\qquad f(x) = <var>FUNCN.fText</var></code>,</p>
<p><code>\qquad g(x) = <var>FUNCD.fText</var></code>.</p>
</div>
<p>Differentiate each function:</p>
<p><code>\qquad f'(x) = <var>FUNCN.ddxFText</var></code>,</p>
<p><code>\qquad g'(x) = <var>FUNCD.ddxFText</var></code>.</p>
<div>
<p>Thus, the answer is</p>
<p><code>\qquad \dfrac{{(<var>FUNCN.ddxFText</var>)(<var>FUNCD.fText</var>) - (<var>FUNCD.ddxFText</var>)(<var>FUNCN.fText</var>)}}{(<var>FUNCD.fText</var>)^2}</code>.</p>
</div>
</div>
</div>
</body>
</html>
Jump to Line
Something went wrong with that request. Please try again.