# public Khan /khan-exercises

### Subversion checkout URL

You can clone with HTTPS or Subversion.

Fetching contributors…

Cannot retrieve contributors at this time

file 132 lines (129 sloc) 5.343 kb
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131         Imaginary unit powers

randRange( 1, 4 )                (function() {                    switch ( EXP % 4 ) {                        case 0: return '1';                        case 1: return 'i';                        case 2: return '-1';                        case 3: return '-i';                    }                    })()

Simplify.

i ^ {EXP}

SOLUTION

• 1
•
• i
•
• -1
•
• -i
•

Anything to the first power is the number itself.

The most important property of the imaginary unit i is                    that \color{BLUE}{i ^ 2} = \color{ORANGE}{-1}.

i ^ 3 = (\color{ORANGE}{i ^ 2}) \cdot i = (\color{BLUE}{-1}) \cdot i = -i

i ^ 4 = (\color{ORANGE}{i ^ 2}) ^ 2 = (\color{BLUE}{-1}) ^ 2 = 1

i ^ EXP = SOLUTION

4 + randRange( 1, 30 )                (function() {                    switch ( EXP % 4 ) {                        case 0: return '1';                        case 1: return 'i';                        case 2: return '-1';                        case 3: return '-i';                    }                    })()

Simplify.

i ^ {EXP}

SOLUTION

• 1
•
• i
•
• -1
•
• -i
•

The most important property of the imaginary unit i is                    that \color{BLUE}{i ^ 2} = \color{ORANGE}{-1}.

When this property is plugged into i ^ 4, we get:                    i ^ 4 = (\color{BLUE}{i ^ 2}) ^ 2 = (\color{ORANGE}{-1}) ^ 2 = 1

So, we can reduce the exponent by multiples of 4 and have the same result.

The remainder after dividing EXP by 4 is EXP % 4,                     so i ^ {EXP} = i ^ {EXP % 4}.

Any number but zero to the zeroth power is one.

i ^ 0 = 1

Anything to the first power is the number itself.

i ^ 1 = i

As stated above, \color{BLUE}{i ^ 2} = \color{ORANGE}{-1}.

i ^ 3 = (\color{BLUE}{i ^ 2}) \cdot i = (\color{ORANGE}{-1}) \cdot i = -i

i ^ {EXP} = i ^ {EXP % 4} = SOLUTION.

Something went wrong with that request. Please try again.